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1 Introduction and summary

Wilson loops are universal gauge-invariant operators which were originally devised to char-
acterize the vacuum of the given gauge theory [1]. With the advent of AdS/CFT and
localization, supersymmetric extensions of Wilson loops came to the forefront as tools to
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both study the vacuum structure of gauge theories using holography, and also to further
our understanding of holography itself. In this paper we focus on the latter.

The most widely studied holographic Wilson loop (WL) is the circular one in N = 4 su-
persymmetric Yang-Mills theory (SYM). The standard operator is dressed with coupling to
adjoint scalars such that the operator preserves 1/2 of the supercharges of the theory. The
vast amount of supersymmetry enables the exact computation of the vacuum expectation
value (vev) at large rank N using supersymmetric localization [2–4]. In holography, Wilson
loop operators are dual to fundamental strings hanging from the conformal boundary [5].
In particular, for the circular Wilson loop in N = 4 SYM, the dual string is attached to
the boundary of AdS5 and extends into the bulk while staying at fixed location on the
five-sphere. The partition function of the quantized string should reproduce the Wilson
loop vev exactly

〈W〉 = Zstring . (1.1)

In practice, the right hand side can only be evaluated when the string coupling is sufficiently
weak and the worldsheet sigma model is weakly coupled. In this case we can utilize a saddle
point expansion around a classical string in AdS. The leading order contribution is given
by the string action evaluated on-shell which is just its regularized area. The next-to-
leading order correction is given by the one-loop string partition function, and so on. This
expansion on the string theory side corresponds to the strong coupling expansion on the
SYM side, which fortunately we have access to via supersymmetric localization. Finding a
precise match between the SYM result and the string theory result beyond leading order
has unfortunately proved difficult. Presumably this requires a careful treatment of all
measure factors and regularization of UV divergences in the string path integral. A careful
treatment was initiated in [6] where gauge fixing and ghost determinants were discussed in
detail. The one-loop path integral was then computed for the circular string in [7–9] using
various methods. Collecting all contributions to this order does not lead to a satisfactory
match with the field theory result. In fact, even the scaling of the answer with λ does
not agree.

The origin of this mismatch has been discussed recently in [10]. There it was empha-
sized that the Wilson loop operator, appearing on the left hand side of (1.1), should not
be normalized with respect to the rank of the gauge group and therefore scales as ∼ N .
On the string theory side this effect is reproduced by the dilaton coupling of the string
worldsheet which is provided by the so-called Fradkin-Tseytlin (FT) action [11, 12]. The
role of the FT action for holographic Wilson loops was previously emphasized in [13, 14]. In
AdS5 the FT term means that the tree-level string partition function scales with g−1

s where
gs = λ

4πN is the string coupling constant.1 The FT term therefore affects the λ scaling of
the string partition function but still does not fully resolve the mismatch when compared
to the QFT. Giombi and Tseytlin [10] suggested that the remaining discrepancy should be
corrected by a careful treatment of the cancellation of UV divergences one encounters when
computing one-loop string partition functions. The outcome of which should be that the

1The coupling to the dilaton on general worldsheet is g−χs where the χ is the Euler character of the
worldsheet.
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naive string result is multiplied by (T/2π)χ/2 where T is the effective tension of the string.2

Some possible explanations for this factor were offered in [10] but a full clarification of its
origin is still lacking.

Another way to deal with the mismatch in the Wilson loop vev prefactor is to compute
ratio of Wilson loop vevs. This program was carried out in [15–19] where the circular WL
discussed above was compared to the latitude one. The latitude WL [20–22] can also be
evaluated on the QFT side using supersymmetric localization [23–25], but on the string
theory side the advantage of computing a ratio of WL vevs is that multiplying factors
drop out.

In this paper we study the circular Wilson loop in five-dimensional SYM on S5 with
radius R. Since SYM is not conformal in d 6= 4, placing the theory on a curved manifold
including only minimal couplings breaks supersymmetry. In order to preserve all 16 super-
symmetries, one must introduce additional couplings in the Lagrangian [26]. Once this is
done, the theory can be localized to a matrix model which enables the computation of free
energy and WL vev just as for N = 4 SYM in four dimensions [27] (see also [28–30]). The
matrix model turns out to be the same as for pure supersymmetric Chern-Simons theory
in three dimensions. This model has been solved exactly [31] which enables us to obtain a
closed form expression for the WL expectation value at large N

〈W〉 = N

ξ
(eξ − 1) +O(N−1) , (1.2)

where ξ = g2
YMN/(2πR) is the dimensionless ’t Hooft coupling of the theory, as discussed

in section 2.
The holographic dual to SYM on S5 was identified in [32] to be a particular analytic

continuation and dimensional reduction of AdS7 × S4 in eleven-dimensional supergravity.
We will review this geometry in detail in section 3. A key feature of the gravitational
solution is that the dilaton is non-trivial, signalling the non-conformal nature of the theory.
Indeed, it is well known that a five-dimensional SYM is naively non-renormalizable but in
the UV grows an extra dimension and is UV completed in the six-dimensional (2,0) theory.
This is built into the gravitational dual as a dimensional reduction of AdS7. The goal of
this paper is to use the holographic dual geometry to compute the vev of the circular WL.
In this way we hope to reproduce the first two terms of (1.2) in the large ξ expansion:

log〈W〉 = ξ + log N
ξ

+O(e−ξ) . (1.3)

The first term was previously reproduced by computing the classical string area in [30],
and so here we are mainly interested in the first quantum correction. Along the way we
encounter many of the same issues as in AdS5 discussed above, but due to the non-conformal
nature of the theory we also have to resolve some new ones.

As we have discussed, the first quantum correction consists of two terms, the one-loop
fluctuations of the string worldsheet, and the FT term. Since the dilaton is not constant,

2This is the tension felt by the string in a curved background. For a circular string in AdS the classical
worldsheet geometry is just AdS2 and the classical action of the string is Sclassical = −2πT . Since the
regularized area of AdS2 is −2π, the remaining factor in Sclassical can be taken as the definition of T in
this case.
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the FT term gives a non-trivial contribution beyond simply g−χs (see also [14]). Moreover,
we find that the FT is highly divergent. We believe this to be a direct consequence of
the fact that 5D SYM is non-renormalizable, which means that the dilaton grows without
bound in the UV. We will argue that the divergence of the FT term is cancelled by a similar
divergence of the one-loop fluctuation of the string worldsheet. We see this indirectly by
a Weyl rescaling of the worldsheet metric to the flat one. Now the worldsheet Ricci scalar
is zero and so the bulk FT term simply vanishes. In fact the surface term also vanishes
and so it would seem that we get no contribution from the FT term. This is however
naive. As emphasized in [18], the Weyl rescaling is ill-defined at the center of the disk
which effectively changes the topology of the worldsheet from a disk to a cylinder. This
also means that the Euler characteristic changes from 1 to 0 and the naive evaluation of
the FT term gives g0

s . We must therefore add back the FT associated with a small disk at
the center of the worldsheet before Weyl rescaling.

In order to compute the one-loop partition function of the string, we adopt the phase
shift method [14, 18] utilizing the flat metric. The one-loop partition function is both
UV and IR divergent, where the IR divergence is associated with a cutoff radius R close
to the center of the worldsheet. The structure of the divergences is logZ ∼ − log(Λe−R)
where Λ is a cutoff on the phase shift momentum. As we have discussed, the cancellation of
divergences requires a careful understanding of all measure factors and ghost determinants.
We will sidestep this problem by instead computing a ratio of string partition functions.
As long as the same steps are followed for the computations of two partition functions,
we expect the divergences to have exactly the same structure. We verify this explicitly by
computing the one-loop partition function for the circular string in AdS4 ×CP 3 dual to a
circular WL in the ABJM theory [33] using exactly the same steps as we did for the 5D
SYM case. Our choice to use the ABJM WL is somewhat arbitrary but is preferred since
we want to remain within type IIA string theory. Before cancelling the UV and IR cutoffs
in a ratio of partition functions, we must translate the IR regulator R to a diffeomorphism
invariant cutoff given by the area of the worldsheet which we remove when computing
the one-loop determinants [18]. This translation depends on the string worldsheet metric
and is different for the two cases. In particular, this introduces a factor reminiscent of
the

√
T/2π prefactor proposed by Giombi and Tseytlin [10].3 After this is done however,

we argue that the UV cutoff Λ and IR cutoff A can be cancelled in the ratio of partition
functions resulting in a finite answer

Zstring
SYM

Zstring
ABJM

=
(
NABJM

4πλ eπ
√

2λ
)−1(NSYM

ξ
eξ
)
. (1.4)

On the right hand side we see a perfect match with the ratio of vevs of the circular WLs
in 5D SYM (1.2) on the one hand, and ABJM (6.2) on the other [34–36].

We close this summary with a few comments. First, the close connection of 5D SYM
and the (2,0) theory in six dimensions implies that our computation should perhaps be

3This is for the worldsheet with a disk topology, we expect that the factor (T/2π)χ/2 to be produced in
a similar way on higher genus worldsheets.
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rephrased purely in terms of the (2,0) theory. The Wilson loop in SYM corresponds to a
BPS surface operator in six dimensions. On the holographic side, instead of computing
the string partition function, we should compute the M2 brane partition function in AdS7
with toroidal boundary. We have verified that the classical contribution is identical to the
classical string area (see [37]) but have not attempted to reproduce the quantum correc-
tion from a purely eleven-dimensional computation. Recently there has been considerable
progress in this direction [38–41], and it would be interesting to understand whether our
result can be rephrased in the M2 surface operator language.

Next, we note that the localization result, reviewed in section 2, can be used to compute
the free energy beyond leading order in the ’t Hooft coupling ξ. It would interesting
to reproduce this answer on the gravity side by computing on-shell action using higher
derivative corrections to the supergravity action. Naively the R4 correction of eleven-
dimensional supergravity should be all that is needed (see for example [42]), and it is easy
to verify that it scales in the correct way. However, it is also apparent that the higher
derivative corrections are UV divergent when evaluated on-shell and so a careful treatment
of the divergences should be carried out to obtain a precise match. We leave this for
future work.

The structure of the remainder of the paper is as follows. In section 2, we review the
localization of 5D SYM on S5 and compute the WL vev at large N . In section 3, we review
the holographic dual geometry in ten dimensions and discuss its relation to AdS7 × S4

solution of eleven-dimensional supergravity. In section 4 we introduce the fundamental
string solution dual to the circular WL and discuss the one-loop action. In section 5 we
compute the one-loop partition function using the phase shift method and compare with
a similar computation for ABJM in order to find a match with the QFT in section 6. We
also include three appendices on the details of the one-loop string action (appendix A), the
computation of one-loop partition functions of the SYM string (appendix B) and of the
circular ABJM string (appendix C).

2 Super Yang-Mills on S5

The construction of a maximal supersymmetric gauge theory on the round sphere is non-
trivial since introducing only the minimal coupling to the curved metric breaks supersym-
metries. Progress in this direction was made in [26, 28]. In these works an action for
Euclidean maximal supersymmetric Yang-Mills theory (SYM) on a d-sphere Sd is obtained
by a dimensional reduction from ten-dimensional SYM in flat space, with the introduction
of a minimal coupling to the sphere metric and additional interaction terms. On one hand,
these break the original flat space R-symmetry from SO(1, 9− d) to SU(1, 1)× SO(7− d),
but on the other hand, guarantee the existence of sixteen real supercharges [26, 28]. The
corresponding Lagrangian [26, 28] is given by

L = − 1
2g2

YM
Tr

(1
2FMNF

MN −Ψ /DΨ + (d− 4)
2R ΨΓ089Ψ + 2(d− 3)

R2 φAφA

+ d− 2
R2 φiφ

i + 2i
3R(d− 4)

[
φA, φB

]
φCεABC −KmK

m
)
.

(2.1)
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Here, R is the radius of the d-dimensional sphere where the theory lives on, the indices
M,N = 0, . . . , 9 are the original ten-dimensional Lorentz indices, which split into the
spacetime indices on the sphere Sd, and the scalar indices I, J = 0, d+ 1, . . . , 9, due to the
reduction from the original ten-dimensional SYM theory. Moreover, the scalar indices I, J
are further broken into the scalar indices i, j = d+ 1, . . . , 7, and A,B = 0, 8, 9, due to the
terms proportional to the Sd radius R (and its squared) in the above Lagrangian. The
ten-dimensional Majorana-Weyl spinors Ψ get reduced to 16 real components obeying the
chirality condition Γ11Ψ = Ψ. Finally Km are auxiliary fields. The above Lagrangian (2.1)
is in Lorentzian signature, and it needs to be Wick rotated, which entails the scalar field
to transform as φ0 → iφ0, and the Lagrangian as L → −iL.

In this paper, we are interested in the maximal SYM on a five-dimensional sphere
S5. The R-symmetry group is then SU(1, 1)× SO(2). The theory is Euclidean and so the
corresponding space transformation group is SO(6). The full supergroup of symmetries is
the four-dimensional N = 2 superconformal group SU(4|1, 1). It should be noticed that
in five dimensions, the coupling constant g2

YM is irrelevant, implying that five-dimensional
maximal SYM theories are non-renormalisable. At high energies, these theories are UV
completed in the six-dimensional (2, 0) superconformal field theory [43, 44]. For later
convenience we introduce the ’t Hooft-like coupling constant4

ξ = g2
YMN

2πR . (2.2)

The theories described by the Lagrangian (2.1) can be localized [4, 28, 29, 45], and
the corresponding matrix-model partition function was given (up to instanton corrections)
in [28, 29, 45] for any d. The supercharge employed in [28] localizes the theory on a locus
described by vanishing gauge fields Aµ = 0 and scalar fields φI = 0 for I 6= 0, that is with
the exception of φ0. This is the field used to construct a (dimensionless) N ×N Hermitian
matrix M , after being Wick rotated and rescaled by R. In the large N limit, the gauge
fixed partition function can be evaluated in terms of the eigenvalues of the matrix M .
The corresponding large N partition function (neglecting instanton contributions) for the
five-dimensional case is

Z = 1
N !

∫ N∏
i=1

dµi e−Seff , (2.3)

where the effective action is given by

Seff = 2π2N

ξ

N∑
i=1

µ2
i −

N∑
j 6=i

N∑
i=1

log | sinh(π(µi − µj))| , (2.4)

and µi are the eigenvalues of the N × N Hermitian matrix M . In the large N limit the
saddle point equation is then

N
2π
ξ
µi =

∑
j 6=i

coth π(µi − µj) , i, j = 1, . . . , N . (2.5)

4The constant ξ is related to ’t Hooft coupling constant λ used in [30] by simply ξ = λ
2π .
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After introducing an eigenvalue distribution ρ as follows

ρ(µ) = 1
N

N∑
i=1

δ(µ− µi) , (2.6)

and taking the large N continuum limit, the saddle point equation (2.5) becomes

2π
ξ
σ = PV

∫ b

−b
ρ(µ′) coth(µ− µ′)dµ′ . (2.7)

The integral equation (2.7) for ρ and b is well known. Indeed, the partition function (2.3)
and the consequent equation (2.5) appear in the matrix formulation of Chern-Simons the-
ories on a three-dimensional sphere S3 [31, 46–48]. The fact that the partition function for
maximal SYM on a S5 equals the partition function of Chern-Simons theories on S3 was
originally emphasized in [27]. The solution to the integral equation (2.7) is given by [31]

ρ(µ) = 2
ξ

arctan


√
eξ − cosh2 (πµ)

cosh (πµ)

 , (2.8)

and
b = 1

π
arccosh (eξ/2) . (2.9)

Notice that the solution (2.8)–(2.9) is exact in the ’t Hooft coupling ξ. At leading order
in the strong coupling expansion, the eigenvalue density ρ and the extreme of integration
b reduce to

lim
ξ→∞

ρ(µ) = π

ξ
, lim

ξ→∞
b = ξ

2π , (2.10)

in perfect agreement with the leading-order results obtained in [30].
Before discussing the Wilson loop, we report the large N result for the free energy for

the maximal SYM on S5,

F

N2 = 2π2

ξ

∫ b

−b
ρ(µ)µ2dµ−

∫ b

−b
dµρ(µ)

∫ b

−b
dµ′ρ(µ′) log | sinh(π(µ− µ′))| , (2.11)

which can be computed from the effective action (2.4) in the continuum limit. The planar
result can be read from the Chern-Simons free energy on S3 [31]

F

N2 = −ξ6 + π2

3ξ −
2ζ(3)
ξ2 +O(e−ξ) +O

( 1
N

)
. (2.12)

The leading order was also obtained in [27, 30, 49, 50] from a five-dimensional point of view.

2.1 1
2-BPS Wilson loop expectation value from localization

In this paper our main focus is on the 1
2 -BPS Wilson loop operator and its vacuum expec-

tation value. As discussed in [30] its vev can be computed using the localization procedure
sketched above. Here we extend the result of [30] to all orders in the coupling constant ξ

– 7 –
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but remaining at large N . The Wilson loop in question wraps the equator of the 5-sphere
and its expectation value is

〈W〉 =
〈

Tr
(
Pei

∮
Aµdxµ+i

∮
ds φ0)〉

, (2.13)

where Aµ is the five-dimensional gauge fields and φ0 is the “timelike” scalar that does not
vanish on the localization locus. The gauge field on the other hand does vanish and the
WL vev can be evaluated by taking the continuum limit and keeping only leading term in
the large N expansion5

〈W〉 = N

∫ b

−b
ρ(µ)e2πµdµ+O

( 1
N

)
= N

ξ

(
eξ − 1

)
+O

( 1
N

)
. (2.14)

This is the expectation value of a 1
2 -BPS Wilson loop located on the equator of the sphere

S5 at large N but for any ’t Hooft coupling ξ.6 For large values of the ’t Hooft coupling
constant ξ, the 1

2 -BPS Wilson loop expectation value approaches to

lim
ξ→∞

log〈W〉 = ξ , (2.15)

which is the classical result derived in [30] both from field theory and supergravity. Con-
sidering the next-to-leading order in ξ, we have for the 1

2 -BPS Wilson loop VEV

〈W 〉 = N
eξ

ξ
+O(e−ξ) +O

( 1
N

)
. (2.16)

The goal of the next sections is to reproduce the 1
2 -BPS Wilson loop VEV in a string theory

setting. In particular, the exponential behaviour in the large ξ-expansion corresponds to
(minus) the classical action of the dual string [30], cf. section 4.2, while the prefactor is
encoded in the one-loop string partition function, cf. sections 5–6.

3 Spherical D4 branes

3.1 Solution of type IIA∗

The holographic dual to SYM on S5 was constructed in [32] by first solving BPS equations
in seven-dimensional maximal supergravity, and then subsequently uplifting to ten dimen-
sions. Since we use slightly different coordinates here, we will review the full supergravity
solution. Given that we are working with Euclidean branes, the proper framework are the
so-called type II∗ theories of Hull [52–54]. The only difference with the standard type II
theories is that the RR-fields are purely imaginary.7 The ten-dimensional metric is given by

ds2
10 = `2s(NπeΦ)2/3

[
4
(
dσ2 + dΩ2

5
)

sinh2 σ
+ dθ2 + cos2 θ ds2

dS2 + sin2 θ dφ2

1− h2

4 tanh2 σ sin2 θ

]
, (3.1)

5We have restored an explicit factor of N which was omitted in [30] due to a different normalization
convention for the WL operator.

6We refer the reader to [51] for analogous results for Wilson loops in Chern-Simons theories on S3.
7The role of II∗ theories will not play a fundamental role in this paper and the imaginary form fields

can be thought of as a result of a formal analytic continuation of the supergravity background.

– 8 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
8

where the ten-dimensional dilaton Φ is

eΦ = ξ3/2

Nπ

(
coth2 σ − h2

4 sin2 θ

)3/4
. (3.2)

This background exhibits
SO(6)× SO(1, 2)×U(1) (3.3)

continuous symmetry in complete agreement with the field theory. The five-sphere dΩ2
5 is

where the field theory is living and 0 ≤ σ < ∞ plays the role of a radial direction. The
solution depends on three (dimensionless) parameters ξ, h, and N . The integer N denotes
the number of D4-branes and is taken to be large to ensure that the length scales set by the
metric is large in string units. Next, we have ξ which we already encountered in section 2
and is related to the Yang-Mills coupling constant in the QFT. Finally, we seem to have
one more parameter h. For all 0 ≤ h ≤ 2 the metric defines a regular background of type
IIA∗ supergravity. Note that for h = 0 the symmetry of the background is enhanced to
SO(5)×SO(1, 4) which does not match the expected symmetry of the QFT. Indeed, in [32]
it was determined that for h = 1 we obtain the relevant supersymmetric background dual
to SYM on S5. In this paper we will focus on h = 1, but will keep h unfixed throughout
the computation.

In addition to the metric and dilaton we have the gauge potentials

B2 = hξ`2s
2 cos3 θ voldS2 ,

C1 = hiNπξ`s
2 (NπeΦ)−4/3 sin2 θ dφ ,

C3 = −iNπ`3s cos3 θ dφ ∧ voldS2 .

(3.4)

From these we can compute the NSNS and RR field strengths

H3 = dB2 , F2 = dC1 , F4 = dC3 −H3 ∧ C1 . (3.5)

In [30], the geometry (3.1) was used to compute the holographic free energy of SYM on
S5. This was done by first reducing to six-dimensional supergravity, and then evaluating
the regularized on-shell action. In addition to standard infinite counterterms required to
regularize the bare evaluation of the on-shell action, a number of finite counterterms had
to be considered. These ultimately allowed for a successful match with the QFT.

As mentioned above, the metric (3.1) is completely regular. In particular, for large σ
the metric takes the form

ds2
10 → `2s(NπeΦ)2/3

[
16
(
dr2 + r2dΩ2

5
)

+ dθ2 + cos2 θ ds2
dS2 + sin2 θ dφ2

1− h2

4 sin2 θ

]
, (3.6)

where we have changed coordinates r = e−σ. Here we see that as r → 0, the five-sphere
smoothly shrinks down to zero size without introducing irregularities in the metric (or
other supergravity fields). In the opposite limit, as σ → 0 we get back the flat-space D4
brane solution:

ds2
10 → ξ`2s

[
4U3/2dΩ2

5 +
dU2 + U2ds2

dS4

U3/2

]
, (3.7)
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where we have momentarily changed coordinates sinh σ = U−1/2 and we have combined
the metric on dS2 with the θ and φ coordinates to form the metric on dS4. The coordinate
U measures the distance to the stack of branes which are formally located at U = 0. Here,
we clearly see that the five-sphere acts as the brane world-volume, whereas the remaining
five directions are transverse to the brane. We also note that the isometry of the solution
is enhanced in this limit to SO(1, 4) which is the R-symmetry of the UV field theory.

3.2 11D solution

The metric for D4 branes in flat space develops a singularity in the far UV (σ → 0 or
U � 1) where also the dilaton blows up

eΦ = ξ3/2U3/4

Nπ
. (3.8)

This solutions should therefore be reinterpreted in eleven dimensions as the geometry
around a stack of M5 branes. As explained in [32, 52–54], the solutions of type IIA∗-
theory are uplifted to the exotic M∗-theory with (2, 9) signature. This means that the
extra coordinate introduced during the uplift is in fact timelike.

For completeness we review here the uplift of the spherical D4 brane solution in (3.1).
The eleven-dimensional metric is obtained by combining the ten-dimensional metric with
the dilaton and C1 form (see for example [32]),

ds2
11 = L2

AdS7

[dσ2 + dΩ2
5

sinh2 σ
− dt2

tanh2 σ
+ 1

4

(
dθ2 + cos2 θ ds2

dS2 + sin2 θ (dφ− hdt)2
)]

(3.9)

where the eleventh coordinate is x11 = 2Nπi`st/ξ and is taken to be imaginary to imple-
ment the timelike uplift. We note that t is periodic with periodicity ξ/N , and the AdS7
length scale LAdS7 is related to ten-dimensional quantities through

L3
AdS7 = 8πN`3s . (3.10)

The three-form is constructed similarly yielding

A3 = −
iL3

AdS7

8 cos3 θ (dφ− hdt) ∧ voldS2 . (3.11)

We note that the parameter h can be absorbed into a coordinate redefinition φ 7→ φ̃+ ht.
In fact, this is just the metric on AdS7×dS4 which is the near horizon geometry of N M5
branes in the M∗-theory. This geometry is the holographic dual to the six-dimensional
(2, 0) theory with non-compact R-symmetry.

4 Holographic Wilson loop

The holographic dictionary instructs that the vev of a supersymmetric Wilson loop can
be computed by evaluating the partition function of a string which satisfies the boundary
conditions compatible with the WL [5]. To leading order in the large ξ limit, the partition
function reduces to the on-shell action of the string. In this paper we are interested in the
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subleading correction to this leading order answer, and so we expand the partition function
to second order in the coupling ξ:

logZ ≈ −Sclassical − SFT + log Sdet−1/2K = −Sclassical − SFT − ΓK . (4.1)

In this expression the partition function Z of the string is expanded in terms of the classical
action Sclassical at order ξ1 as well as two “quantum” correction at order ξ0. The first cor-
rection term is the Fradkin-Tseytlin action SFT evaluated on-shell, which we review below.
The second correction, ΓK, is the one-loop partition function of bosonic and fermionic fluc-
tuations around the classical configuration of the string. Since only the leading order action
for the fluctuations is kept, the path integral is Gaussian and reduces to the determinant
of bosonic and fermionic operators. We collectively denote the second order operators by
K, and their determinants by SdetK.

Before embarking on the journey of computing these three terms, we give a general
discussion of the ingredients in the string action and introduce our notation. The worldsheet
action of the string we will use, consists of three parts

S = Sbosons + Sfermions + SFT . (4.2)

First we have the Polyakov action8

Sbosons = 1
4π`2s

∫ (
γijGijvolγ + 2iBijdxi ∧ dxj

)
, (4.3)

where i, j = 1, 2 denotes the two-dimensional worldsheet indices and γij is the worldsheet
metric. Here Gµν are the ten-dimensional metric components and Bµν are the components
of the 2-form field B2. The notation Gij where we use two-dimensional indices on a
ten-dimensional object refers to the pull-back of the ten-dimensional tensor down to two
dimensions

Gij = Gµν∂iX
µ∂jX

ν , (4.4)

where Xµ are the ten scalar fields living on the worldsheet, and in this context, can be
thought of as defining the embedding of the string into the ten-dimensional geometry.

Next, we have the so-called Fradkin-Tseytlin (FT) [11, 12] action which introduces a
dilaton coupling on the worldsheet

SFT = 1
4π

∫
M

ΦRγvolγ + 1
2π

∫
∂M

ΦKds , (4.5)

where K is the geodesic curvature and ds is the reparametrization invariant measure on
the boundary. We have included the boundary term to ensure that the dilaton coupling
correctly accounts for string loop counting even on worldsheets with boundaries. For
constant dilaton this simply gives SFT = χΦ0 as expected.

Two remarks are in order about the FT action which will be crucial below. First, we
note that in the large ξ expansion,9 the FT action (4.5) should be thought of as subleading

8Our worldsheet is Euclidean which explains the i multiplying the two-form.
9Or in fact any derivative expansion, where the momenta of the string modes are small compared to the

length scales set by the classical geometry.
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when compared with the bosonic action (4.3) above. This can be seen from the fact that the
bosonic action (4.3) is of order T = 1/2π`2s, whereas the FT term (4.5) is of order T 0. The
second related point is that the FT action (4.5) classically violates Weyl invariance of the
worldsheet theory: the classical energy-momentum tensor computed from the FT action
has non-zero trace. However, as we will review below, the classical Weyl “anomaly” of the
FT action is exactly compensated by the one-loop quantum Weyl anomaly of the bosonic
theory in (4.3) as well as the fermionic terms discussed below. This pattern of cancellation
of Weyl anomaly is expected to carry on to subleading orders such that for example, the
one-loop Weyl anomaly of the FT term cancels the two-loop anomaly of Sbosons + Sfermions
and so on.

Finally, the Green-Schwarz (GS) action which couples the ten-dimensional, 32 compo-
nent worldsheet GS fermions θ to the background geometry reads [55]

Sfermions = − 1
2π`2s

∫ {
iθ̄P ijΓiDjθ −

i

8 θ̄P
ijΓ11Γ µν

i Hjµνθ

+ i

8eΦθ̄P ijΓi(−Γ11 /F 2 + /F 4)Γjθ
}
, (4.6)

where Γµ are the ten-dimensional gamma matrices, Γ11 is the chirality operator and

P ij = √γγij − iεijΓ11 . (4.7)

Once again, the pull-back of ten-dimensional indices is implied in our notation, for exam-
ple Γi = ∂iX

µΓµ. In this paper we will work in static gauge where the two worldsheet
coordinates are directly identified with corresponding ten-dimensional coordinates. This
means that ∂iXµ = δµi .

4.1 The string configuration

We consider a Wilson loop wrapping the equator of S5. This is dual to a fundamental
string wrapping the same S5 and extending along the σ-coordinate.

The classical string solution was presented in [30]. In static gauge, the two worldsheet
coordinates are identified with the ten-dimensional coordinates σ and τ and Gij = γij .
Here the coordinate τ has been introduced to parametrize the equator of S5. Minimizing
the action leads to the remaining scalars X to be constant at

equator of S5 , θ = 0 , any fixed point on dS2 . (4.8)

The worldsheet metric is then

ds2
2 = e2ρ

(
dσ2 + dτ2

)
, (4.9)

where
e2ρ = 4ξ`2s

tanh σ sinh2 σ
, (4.10)

is the conformal factor. In the conformal coordinates used in (4.9), the volume form is
given by volγ = e2ρdσ ∧ dτ and the curvature scalar is

e2ρRγ = −2∂2
σρ = sech 2σ − 4

sinh2 σ
. (4.11)
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The classical string solution can be uplifted to an M2-brane in eleven dimensions. The
M2 brane wraps the eleven dimensional directions τ and t (see (3.9)), and extends in the
σ direction. The metric on the M2-brane worldvolume is

ds2
M2 = L2

AdS7

[dσ2 + dτ2

sinh2 σ
− dt2

tanh2 σ

]
, (4.12)

which is just the metric on AdS3 with boundary topology T2.

4.2 The classical on-shell action

In this section we review the classical action of the string described by the embedding (4.8).
As mentioned in section 1, this was discussed in [30], however here we provide a different
way to regularize the classical string action by its Legendre transform [56].

First, we notice that the pull-back of the B-field (3.4) vanishes. Hence, the on-shell
action of the string (4.3) takes the simple form

Sclassical = 1
2π`2s

∫
e2ρ dσ dτ = 4ξ

∫ dσ
tanh σ sinh2 σ

= 2ξ
ε2 −

2ξ
3 +O(ε) . (4.13)

This diverges at the boundary σ = ε → 0. In order to regularize the integral we must
Legendre transform to the variables that are conjugate to the transverse directions to
the Wilson loop [56] (see also [57, 58] for a similar setup to ours). These are properly
identified in the UV limit of our ten-dimensional solution. This limit was already discussed
in section 3 and the metric was given in (3.7). The appropriate Legendre transformation
should be done with respect to the UV coordinates, i.e. the five angles parametrizing dΩ2

5,
and the five flat space coordinates used to parametrize

ds2
R1,4 = dU2 + U2ds2

dS4 , where U = sinh−2 σ . (4.14)

The latter we can write as xa = Uθ̂a where a = 1, · · · , 5. The angular variables θ̂a

parametrize a unit radius dS spacetime through the constraint θ̂aθ̂bηab = 1 and ηab =
diag(1, 1, 1, 1,−1). Only these five flat space coordinates are of interest to us as they
explicitly depend on U = sinh−2 σ. We now compute the term required for the Legendre
transform and treat that as a counterterm for the classical action10

Sct = −
∫
∂i

(
Xµ δL

δ∂iXµ

)
dσdτ = − 1

2π`2s

∫ √
γγij∂i(Xµ∂jXµ)dσdτ . (4.15)

Reexpressing this as a boundary integral at fixed small σ = ε, and using the flat D-brane
coordinates just defined, we find

Sct = ξ

2π

∫
∂M

∂σU

U1/2 dτ = −2ξ
ε2 −

ξ

3 +O(ε) . (4.16)

Combining the bulk term (4.13) with the counterterm (4.16), we obtain the final answer

Sclassical + Sct = −ξ . (4.17)
10We ignore the B-field term as it does not play a role for our solution.
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This result can also be obtained by evaluating the classical volume of the M2 brane (4.12)

SM2 = 1
(2π)2`3s

∫ √
−gM2 dσ dτ dt . (4.18)

Using the periodicity of t and the relation (3.10) we recover (4.13). In this case the volume
can be regularized by introducing a boundary counterterm which is proportional to the
boundary area of the M2 brane and the final result is again (4.17).

When compared with the minus logarithm of the Wilson loop expectation value (2.15)
as computed in the QFT in section 2, we see that this precisely agrees with the leading
order answer in the large ξ expansion. For the reminder of this paper we will focus on
extracting the next-to-leading order contribution in string theory and compare it with the
QFT result.

4.3 The one-loop string action

In this subsection we work out the string action at order ξ0, which comprises two terms,
the FT action and the action for the quantum fluctuations. As we explained above, the
FT action gives a contribution which is of order ξ0 even though it is a classical term in the
string action.

4.3.1 Fradkin-Tseytlin action

In order to evaluate the FT action (4.5) on-shell, we need the pull-back of the dilaton (3.2),
which is

e2Φ0 ≡ P [e2Φ] = ξ3

N2π2 coth3 σ . (4.19)

This should be evaluated directly in the action (4.5). For this we need in addition to the
curvature scalar in (4.11), the geodesic curvature on the boundary which is located at a
fixed small σ. This is easily computed in conformal coordinates, and takes the form

Kds = (∇µnµ)eρdτ = ∂σρ dτ . (4.20)

Combining these expressions, we obtain

SFT = −
∫ ∞
ε

Φ0∂
2
σρ dσ + Φ0∂σρ

∣∣∣
σ=ε

= 9
4ε +O(ε0) , (4.21)

where we have performed the integration over the angular variable τ . We easily see that
even including the boundary term, this expression has divergences which do not cancel in
the limit ε → 0. We will argue that this divergence is cancelled by a divergence of the
one-loop fluctuations of the string worldsheet. This is the first indication that treating the
terms SFT and ΓK separately leads to inconsistencies which are hard to resolve. As we will
emphasize, these terms should be treated together to obtain a finite one-loop correction of
the holographic Wilson loop.
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4.3.2 Second order fluctuations

We now turn to the quantum fluctuations of the worldsheet fields around the classical
configuration (4.8). This leads to a Gaussian model whose partition function is formally
expressed in terms of determinants. The evaluation of the determinants will be the subject
of the next section, but here we summarize the structure of the second order action, the
derivation is carried out in appendix A.

The Gaussian bosonic fields consist of eight scalar modes that determine the fluctua-
tions of the embedding of the worldsheet in the ten-dimensional geometry. Let Xcl denote
the classical embedding of the string in the ten-dimensional geometry defined in (4.8). The
scalar fluctuations around this solution can then be written as

Xµ = Xµ
cl + δXµ = Xµ

cl + Eµµ̂ζ
µ̂ , (4.22)

where Eµµ̂ are the ten-dimensional vielbeine, Eµµ̂Eνν̂ δµ̂ν̂ = Gµν . A priori there are ten scalar
fields ζ µ̂ as well as the dynamical worldsheet metric, but in static gauge these are reduced
to eight. For our diagonal ten-dimensional metric, this simply means that ζ σ̂ and ζ τ̂ are
set to zero. To underline the fact that we are only working with the transverse fluctuations
we use ζa where now a = 1, . . . , 8 (see appendix A).

For a proper treatment of the theory, in place of static gauge one should use conformal
gauge which keeps the conformal factor of the metric as well as the longitudinal modes
active. In addition, one then has to properly treat the reparametrization bc-ghost system as
explained in [6, 59]. The proper treatment ultimately leads to the same result as the static
gauge approach where these extra modes are effectively cancelled against the ghosts.11 For
this reason, in this paper we choose the simpler static gauge and refer the reader to [6, 59]
for a detailed account on the difference between the two gauges.

The fermionic fields are eight just like the scalars. These originate as 32 real target
space fermions. The κ-symmetry gauge fixing reduces the physical modes to 16, which
then are mapped to 8 two-dimensional fermions which we denote by θa. The combined
second order action can be written as

SK = 1
4π`2s

∫ √
γ
(
ζaKabζb + θ̄aDabθb

)
d2σ . (4.23)

Here the bosonic operators are diagonal with degeneracies (4, 2, 2):

Kab = diag(Kx,Kx,Kx,Kx,Ky,Ky,Kz,Kz) . (4.24)

Explicitly the operators take the form

Ka = e−2ρK̃a , K̃a = −∂2
σ − ∂2

τ + Ea , (4.25)

11Some care must be exercised when treating the ghost determinant and its cancellation against the
longitudinal modes. The bc ghost determinant must exclude the zero modes which correspond to conformal
Killing vector which are already accounted for in the measure.
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with

Ex = ∂2
σρ+ (∂σρ)2 − 1 = 7 + 8 cosh 2σ

sinh2 2σ
,

Ey = 1
2∂

2
σρ = 1 + 2 cosh 2σ

sinh2 2σ
,

Ez = 1− 3h2

2 ∂2
σρ+ h2(∂σρ)2 − h2 = 1 + 2h2 + 2(1− h2) cosh 2σ

sinh2 2σ
.

(4.26)

The fermionic operators are likewise diagonal with all identical entries Dab = Dδab where

D = e−3ρ/2D̃eρ/2 , D̃ = i/∂ + τ3a+ v (4.27)

and
a = hi

2 cosh σ , v = 3i
2 sinh σ . (4.28)

The path integral measure is implicitly defined with respect to the norms

‖ζ‖2 =
∫

d2σ
√
γζaζbδab , ‖θ‖2 =

∫
d2σ
√
γ θ̄aθbδab , (4.29)

through
1 =

∫ [
Dζ
]
e
− 1

4π`2s
‖ζ‖2

, 1 =
∫ [

DθDθ̄
]
e
− 1

4π`2s
‖θ‖2

. (4.30)

Using this we perform the Gaussian path integral

ΓK = − log
∫ [

DζDθDθ̄
]
e−SK = 1

2 log (detKx)4(detKy)2(detKz)2

(detD)8 . (4.31)

The subject of next section is evaluating these determinants.

5 One-loop partition function

The focus of this section is to evaluate the one-loop functional determinants (4.31). To this
end, instead of evaluating the determinants of Ka and D, we would like to compute the
considerably simpler determinants of the tilded operators K̃a and D̃, cf. (4.25) and (4.27).
The operators K̃a and D̃ are flat operators, since they are obtained from the operators Ka
and D by stripping off a conformal factor. This is equivalent to perform a Weyl rescaling,
which is allowed only in a Weyl invariant theory. The computation of the Weyl anomaly
and its relation to UV divergences of the one-loop partition function are discussed in the
subsection 5.1. In subsection 5.2 we illustrate the main points in the computation of the
one-loop determinants (4.31) by means of the phase shift method.

5.1 Weyl anomaly

As mentioned above, the Weyl invariance of the theory should allow us to perform Weyl
rescalings of the metric, and thus to employ the flat operators K̃a and D̃ in the computation
of the functional determinants (4.31). In particular, the absence of a Weyl anomaly is
required for this procedure. Fortunately, consistency of string theory requires the total
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central charge c to vanish and by it the Weyl anomaly. In this subsection we will shortly
review the Weyl anomaly in string theory and argue that indeed for our particular setup the
total anomaly vanishes. Essentially this a simple consequence of our background geometry
being a consistent background of string theory. We will also review how it relates to the
logarithmic divergences of the partition function.

The quantization of the string in general backgrounds, leads to a non-trivial trace of
the energy momentum tensor. This can be parametrized as12

2`2s〈Tii〉 = `2sβ
ΦRγ + βGµν∂iX

µ∂iXν + βBµν∂iX
µ∂jX

νεij . (5.1)

Here we have introduced the Weyl anomaly functions β which are computed in the α′ = `2s
expansion of string theory. The consistency of the theory relies on the fact that all β-
functions vanish, eliminating the Weyl anomaly completely. It is proven to all orders in
the α′-expansion that, if βGµν = βBµν = 0, then βΦ is constant [60] and we get back the
familiar expression13

〈Tii〉 = − c

12Rγ , βΦ = − c6 , (5.2)

where c is the total central charge. In the RNS formulation of the superstring in flat space,
the contribution of the worldsheet scalars and fermions adds up to 3D/2. This should be
combined with the reparametrization ghosts with c = −26 and the superconformal ghosts
with c = 11 giving [61, 62]

c = 3
2(D − 10) . (5.3)

We conclude that the total Weyl anomaly vanishes in the critical dimension D = 10.
The cancellation of the Weyl anomaly in the GS string works slightly differently as

reviewed in [6] (see references therein for further details). The lack of worldsheet super-
symmetry means there are no superconformal ghosts and we only have eight worldsheet
fermions instead of 10. However, it is important to note that the GS fermions are really
2D scalars with the wrong statistics, their contribution to the conformal anomaly is subtle
to compute, but effectively they contribute four times the naive expectation for a normal
2D fermion, due to the fact that they couple to the worldsheet metric as scalars would.14

Combining all contributions yields

c = D − 10 , (5.4)

which, again, vanishes in the critical dimension.
The Weyl anomaly is closely related to logarithmic divergences in the partition func-

tion. This can be observed directly from the definition of the quantum energy-momentum
tensor as a variation of the effective action with respect to the conformal factor. We use
γij = e2ρδij , then

〈Tii〉K = 2π
√
γ

δΓK

δρ
, (5.5)

12This expression is relevant for the bosonic string and for the superstring when the fermions vanish
on-shell.

13We use the convention Tij = − 4π√
γ
δS
δγij .

14Unfortunately this is obscured in our expressions since we use static gauge.
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and the right-hand-side can be expressed in terms of the DeWitt-Seeley coefficients that
control logarithmic divergences [6]. In particular

δ log detK = −2a2(δρ|K) , δ log detD2 = −2a2(δρ|D2) , (5.6)

where a2(f |O) is the second DeWitt-Seeley coefficients for the operator O evaluated on a
test function f . Using this we can rewrite (5.5) as

〈Tii〉K = 1
4Tr b2(D2)− 1

2Tr b2(K) , (5.7)

where a2 and b2 are related through

a2(f |O) = 1
4π

∫ √
γfb2(O) + boundary terms . (5.8)

Notice that in (5.7) we have implicitly assumed that the variation δρ vanishes on the
boundary. The “local” DeWitt-Seeley coefficients in our conventions (which are the same
as those of [18]) take the form

b2(D2) = −1
6Rγ + 2e−2ρ(v2 − a2) , b2(K) = 1

6Rγ − e−2ρE . (5.9)

The complete expression for the quantum energy momentum tensor for the eight scalars
and eight fermions is then given by

〈Tii〉K = −1
2
(
2Rγ − e−2ρTr E − e−2ρTr (v2 − a2)

)
, (5.10)

where the trace should be understood as over all bosonic and fermionic
masses (4.26)–(4.28).

Just as in (5.1), the terms in (5.10) should be separated into terms proportional to Rγ
on one hand, and ∂iXµ∂jX

ν on the other. However, since we have worked in static gauge,
it is difficult to separate the two terms. In order to do so, we would have to expand the
Polyakov action using the conformal gauge and a background metric that is not identified
with the induced metric (see [6, 59] for a detailed discussion). In addition to the eight
transverse scalars, we would now have the two longitudinal modes as well as ghost fields.
The contribution to 〈Tii〉 that is proportional to ∂iXµ∂jX

ν turns out to be the total mass
contribution of all physical fields. The total scalar masses of all ten fields is e−2ρTr E−Rγ
while the fermions still give e−2ρTr (v2 − a2). Note that including also the ghost fields,
the total contribution to the DeWitt-Seeley coefficients is the same in the two gauges [6].
With this in mind we can suggestively rewrite (5.10) as

〈Tii〉K = −1
2
(
Rγ − e−2ρTr E − e−2ρTr (v2 − a2)

)
− 1

2Rγ , (5.11)

where the first term should now be understood as the one proportional to ∂iXµ∂jX
ν .

Indeed we can explicitly verify using the ten-dimensional solution that

Rγ − e−2ρTr E = ∂iX
µ∂iXν

[
Rµν −

1
2 |H|

2
µν

]
, (5.12)
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which are the first two terms in the expected Weyl anomaly function βGµν . Similarly we
have checked that

− e−2ρTr (a2 − v2) = −1
4∂iX

µ∂iXνe2Φ∑
n

|Fn|2µν . (5.13)

Here the sum over n runs over form fields as well as their Hodge duals (this is the so-called
democratic formulation). Using these results we see that the ∂iXµ∂jX

ν-terms in (5.10)
can be expressed as

− 1
2∂iX

µ∂iXν
[
Rµν −

1
2 |H|

2
µν −

1
4e2Φ∑

n

|Fn|2µν
]

= ∂iX
µ∂iXν∇µ∇νΦ , (5.14)

where we used the equations of motion of ten-dimensional supergravity. We therefore see
that if the dilaton is non-constant (as for our background) then the ∂iXµ∂jX

ν-terms in
the energy momentum tensor do not vanish as they must for a consistent theory.

This should not come as a particular surprise since we have neglected to take into
account the classical Weyl “anomaly” of the FT action. It is well known that the classical
Weyl rescaling of the FT action is cancelled by the anomaly of the one-loop fluctuations of
the string (see for example [60]). We can correct for this by adding to (5.10) the classical
energy-momentum tensor computed using the FT action (4.5)

(Tii)FT = −∂iXµ∂iXν∇µ∇νΦ , (5.15)

which exactly compensates for the missing term in (5.14), ensuring that the ∂iXµ∂jX
ν-

terms in the full energy momentum tensor do in fact vanish as expected.
We are then left with

〈Tii〉 = 〈Tii〉K + (Tii)FT = −1
2Rγ , (5.16)

which is identical to the result one would get from an similar treatment of the GS string
in flat space [6]. The remaining anomaly is universal and is cancelled here in exactly the
same way as in flat space. Roughly speaking this is accomplished by the combination
of two effects. First, the transformation of the GS fermions to two-dimensional fermions
on the worldsheet is accompanied by a Jacobian which contributes additional −Rγ , next,
in conformal gauge the FP determinant can be rewritten as a bc-ghost system for which
zero-modes must be excluded. This produces an additional (3/2)Rγ which makes the total
conformal anomaly vanish (see for example [63]).

Since we will not take care of these two ingredients, and only use its universal na-
ture [10], our partition function will carry logarithmic divergences controlled by the DeWitt-
Seeley coefficients. In terms of the Weyl anomaly, the divergence is just

1
2π

∫
〈Tii〉volγ = −χ = −1 , (5.17)

where χ is the Euler characteristic of the worldsheet. We will recover exactly this logarith-
mic divergence when we explicitly compute the partition function in section 5.2.
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To summarize this subsection, our treatment of the Weyl anomaly shows that because
the ten-dimensional dilaton is non-trivial in our background, we should not separately
compute SFT and ΓK if we want to perform our desired Weyl rescaling. Rather these
should be treated as a combined object

W ≡ SFT + ΓK . (5.18)

Since the total Weyl anomaly vanishes in string theory, we can perform the Weyl transfor-
mation to the flat metric as desired. Due to the fact that we do not carefully keep account
of all string theory ingredients discussed above, our one-loop determinants will carry diver-
gences. These divergences are however argued to be universal. As we will explain in further
detail in section 6, in order to control the universal contributions we suggest to compute the
ratio of two string partition functions keeping in mind that all universal factors drop out.

For now, let us discuss a different issue that we encounter. We denote the corresponding
flat space quantities (i.e. Weyl transformed quantities) by a tilde. It turns out that S̃FT
identically vanishes. This is somewhat surprising since we expect to find something in the
spirit of χ log gs. Since our worldsheet is a disc (that is χ = 1), and since the vacuum value
of the dilaton does not vanish, the FT term should not vanish.

The problem is that the Weyl transformation effectively changes the topology of our
manifold due to the choice of coordinates used. The “center” of our worldsheet is located in
our coordinates at σ →∞. In the Weyl rescaled flat metric, this point is pushed infinitely
far away. This was first emphasized in [18]. In all practical computations we must place
an IR cutoff at some large finite σ = R which changes the topology of the worldsheet to a
cylinder. The Euler characteristic of the cylinder vanishes, which explains why the direct
application of the formula (4.5) results in the answer S̃FT = 0. What we have neglected
to take into account is the contribution of the small disc located at σ ≥ R that we cut off
by the Weyl rescaling. In this region the dilaton (4.19) is approximately constant, and we
can just use

S̃FT = χ lim
σ→∞

Φ0 = − log Nπ
ξ3/2 . (5.19)

In principle we should also retain a contribution from one-loop fluctuations of fields inside
this small disc. However, the bosonic and fermionic operators are exactly free in this limit
and so we obtain only the universal contribution due to UV divergences. We will take these
into account when computing the one-loop fluctuation for σ ≤ R and so do not account
for these here. In total we then have

W = − log Nπ
ξ3/2 + Γ̃K(R) , (5.20)

where Γ̃K(R) is the one-loop partition function of the Weyl rescaled operators using an IR
cutoff at σ = R � 1. Notice that this expression, and in particular the FT term (5.19) is
free from the divergence encountered in (4.21). We expect that if we had not performed
the Weyl rescaling discussed here, the one-loop fluctuations ΓK(R) would carry a similar
divergence as (4.21) and cancel it. However, using the Weyl rescaled quantities both
quantities are now free from this powerlaw UV divergence.
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5.2 Phase shift method

Our remaining task is to compute the one-loop partition function Γ̃K(R) for the tilded (flat)
operators, that is

Γ̃K(R) = 1
2 log (det K̃x)4(det K̃y)2(det K̃z)2

(det D̃)8 , (5.21)

where the operators are given in equations (4.25) and (4.27). To this end we will use the
phase shift method [14, 18]. The operators we are interested in are two-dimensional, for
example the bosonic operators are of the form

K̃a = −∂2
σ − ∂2

τ + Ea(σ) , (5.22)

where the potentials Ea are defined in (4.26). The first step is to Fourier expand with
respect to the angle τ , then ∂τ is mapped to iω. Bosonic and fermionic operators obey pe-
riodic and anti-periodic boundary conditions with respect to the τ coordinate, respectively,
then ω will be an integer for the bosonic fluctuations and half-integer for the fermionic ones.
Computing the functional determinants in (5.21) amounts to solve the spectral problem
for these now one-dimensional Schrödinger operators, i.e.

K̃a ηω(σ) =
(
−∂2

σ + ω2 + Ea(σ)
)
ηω(σ) = λ ηω(σ) , (5.23)

where ηω(σ) represents now only the “radial” component of the full wave function, that is
Ψ(σ, τ) = Σωe

iωτηω(σ). For large σ the potentials Ea(σ), v(σ) and a(σ) asymptote to zero,
and we are left with free operators. Hence, the solutions asymptotically behave as waves.
The effect of the potential (and hence the information about the spectrum) is contained in
a phase shift, δ, which measures at large σ how close the solution is to a free (ingoing or
outgoing) wave, that is

ηω → C sin(pσ + δ(ω, p)) . (5.24)

From here it is also manifest that the dispersion relation is simply

λ = ω2 + p2 . (5.25)

The goal is to compute the phase shift δ(ω, p) for each of our bosonic and fermionic oper-
ators. This scattering problem is clearly illustrated in [18], hence here we only summarize
the main steps.

Firstly, our fluctuations obey Dirichlet boundary conditions at σ = 0. In the UV
limit, the potentials diverge Ea ∼ σ−2 which implies that the wave functions are either
non-normalizable or they vanish. We will choose normalizable wavefunctions that vanish
in the UV:

ηω(σ = 0) = 0 . (5.26)

Secondly, to get a discrete spectrum we introduce an IR cutoff at large distance σ =
R and impose Dirichlet boundary conditions at σ = R, that is ηω(R) = 0. Given the
asymptotic behaviour (5.24) of the solutions, this quantization condition reads

pR+ δ(ω, p) = πk , (5.27)
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where k is a positive integer. From this we can read the density of states, or the multiplicity
of the eigenvalues,

ρ = dk
dp = 1

π

(
R+ dδ(ω, p)

dp

)
. (5.28)

Hence, the functional determinant reduces to

log det K̃ =
∑
ω

∫ ∞
0

dp
π

(
R+ dδ(ω, p)

dp

)
log(p2 + ω2) , (5.29)

where we used the fact that the spectrum is approximately continuous in the large R limit,
and the explicit form of the eigenvalues (5.25). We can then integrate by parts over p, and
replace the sum over Matsubara frequencies with a contour integral over ω, which gives
contributions only at the poles ω = ±ip and hence λ = 0.15 This gives for the bosonic
operators

log det K̃ = −
∫ ∞

0
dp coth(πp)

(
2pR+ δ(ip, p) + δ(−ip, p)

)
, (5.30)

and for the fermionic operators

log det D̃ = −
∫ ∞

0
dp tanh(πp)

(
2pR+ δ(ip, p) + δ(−ip, p)

)
. (5.31)

Finally, we can use the fact that the bosonic operators (4.25) are Hermitian, which
leads to δ(ip, p) = δ(−ip, p). We will denote the phase shifts corresponding to the bosonic
operators by simply δa where a = x, y, z. On the other hand, the fermionic operators (4.27)
are not Hermitian, and so we will have two independent phase shifts for ω = ±ip, which
we denoted by δ±.

At this point we are ready to write the full expression for the effective action
Γ̃K(R) (5.21) in terms of the phase shifts, that is collecting all the terms we have

Γ̃K(R) = −
∫ ∞

0
dp
[

coth(πp)(4δx + 2δy + 2δz)− tanh(πp)(4δ+ + 4δ−)
]
−R , (5.32)

where we have performed the explicit p-integral multiplying the cutoff R.

5.2.1 Phase shifts for the bosonic operators

In this subsection we focus on the bosonic operators. As we have seen above, in order to
compute the phase shifts, we have to solve the zero eigenvalue Schrödinger problem

K̃aηa(σ) = 0 , a = x, y, z , (5.33)

with boundary conditions (5.26) and (5.27). Since the bosonic operators are Hermitian, the
two independent solutions come in complex conjugate pairs ηa(p;σ) and η̄a(p;σ). Like [18],
we normalize our basis functions such that

lim
σ→∞

e−ipσηa(p;σ) = 1 = lim
σ→∞

eipση̄a(p;σ) . (5.34)

15More details can be found in [18].
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The explicit form of the bosonic basis function is then

ηx(p;σ) =
(
2 sinh σ

)ip(coth σ)1/2
2F1

(
− 1 + ip

2 ,
3− ip

2 ; 1− ip;−csch2σ

)
,

ηy(p;σ) =
(
2 sinh σ

)ip(coth σ)1/2
2F1

(
− ip

2 ,
2− ip

2 ; 1− ip;−csch2σ

)
,

ηz(p, h;σ) =
(
2 sinh σ

)ip(coth σ)−1/2
2F1

(1− ip
2 ,−1 + ip

2 ; 1− ip;−csch2σ

)
,

(5.35)

for the three operators K̃x, K̃y, and K̃z. Here we have set the parameter h equal to 1,
however the results for generic values of h are discussed in appendix B.1. A wave function
that is regular at σ → 0 vanishes there, and can be directly constructed as follows

η(p;σ) = N
(
η̄(p; 0)η(p;σ)− η(p; 0)η̄(p;σ)

)
, (5.36)

where N is an unimportant normalization of the wave function. The phase shift can then
be determined directly by evaluating the limit σ → ∞ and imposing the quantization
condition (5.27). The resulting phase shifts for the three bosonic operators for h = 1 are

δx(p) = Arg
[
2−ipΓ

(3− ip
2

)2
Γ(1 + ip)

]
,

δy(p) = Arg
[
Γ
(

1− ip

2

)
Γ
(1 + ip

2

)]
,

δz(p) = Arg
[
2−ipΓ

(1− ip
2

)
Γ
(3− ip

2

)
Γ(1 + ip)

]
.

(5.37)

The bosonic phase shifts for any h are reported in appendix B.1.

5.2.2 Phase shifts for the fermionic operators

Here, we start by illustrating the computation and the results of the fermionic phase shifts.
At the end of the section we collect our findings in the expression (5.42).

Unfortunately, for the fermionic operators we could not analytically solve the wave
equation for all h. We are now looking at the following matrix equation

D̃η = 0 , (5.38)

where the operator D̃ is given in (4.27). Only for a few values of h (h = 0, 3) we can find an
analytic solution to the above equations, and the results are reported in appendix B.2. For
this reason, we have to resort to numerics. Exactly as for the bosonic operators, we impose
regular boundary conditions (5.26) and read off the oscillating wave function for large σ,
cf. (5.24). We must do this for both ω = ip and ω = −ip since the fermionic operator (4.27)
is not Hermitian, and thus, the corresponding phase shifts will not be equal.

The most stable approach we have found to numerically extract the phase shifts is to
first compute the two component wave function to high accuracy, imposing regular bound-
ary conditions at small σ. Then, we evaluate a particular ratio of these two components
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Figure 1. The total absolute numerical error for the sum of all fermionic phase shifts computed
using numerical methods compared with the analytic expressions obtained for h = 0, h = 3, and
reported in (B.4) and (B.5).

at large σ which approaches a constant, which is just the phase shift. At large σ the wave
functions take the form16

η(σ) =
(
η1(σ)
η2(σ)

)
∼
(
c1e∓ipσ

c2e±ipσ

)
, (5.39)

where upper sign refers to ω = +ip, and lower sign to ω = −ip. Here c1,2 are two constants
that depend on p and must be computed numerically. Using this asymptotic form we can
impose quantization condition at large σ = R which takes the form [18] (see also [64] for a
more detailed discussion)

τ2η(R) = η(R) or pR = kπ ± 1
2Arg

ic1
c2

. (5.40)

Comparing with (5.27) and using the components of the wave function we find

δ = ∓1
2Arg

(
ie±2ipRη1(R)

η2(R)

)
, (5.41)

where the signs are correlated with ω = ±ip. We have performed many numerical eval-
uations for a large range of p and for many values of the parameter h, as discussed in
appendix B. For h = 0 and 3 we can compare directly the numerical results with the ana-
lytic answers (B.4)–(B.5) to evaluate the precision of our code. We find excellent agreement
with the analytic phase shifts with errors ranging between 10−9 and 10−7 (see figure 1).

16We reuse η here for a two-dimensional fermionic wave function.
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Figure 2. The full integrand in (5.32) obtained by combining numerical results for the fermionic
phase shifts and the analytic expression for the bosonic phase shift. We have set the parameter
h = 1 in this figure. The integral over the shaded region gives us the regularized ΓK.

We also compare our numerical results against a WKB approximation at large p finding a
perfect match.

The numerical fermionic phase shifts are combined with the analytic ones for the
bosons (5.37) into the integrand in (5.32) denoted by I(p) and shown in figure 2 for h = 1.
We then perform a numerical integration of our integrand I(p). This is logarithmically
divergent for large p with a coefficient given by the worldsheet Euler characteristic χ = 1,
as we expected from our analysis in section 5.1. For this reason, we numerically integrate
up to a large UV cutoff p = Λ and subtract log Λ from the numerical answer. At this point
the integral is finite, and we find that it matches 2 log π up to five digits. We therefore
conclude that, for h = 1, the one-loop effective action (5.21) is given by

Γ̃K(R) = 2 log π + log(Λe−R) . (5.42)

6 Ratio with ABJM and match with QFT

In this section we collect the results obtained so far. Up to one-loop in the ’t Hooft coupling
constant ξ, the logarithm of the string partition function (4.1) comprises of three terms:
the classical regularized action (4.17), the Fradkin-Tseytlin contribution (5.19), and finally
the contribution coming from the fluctuations (5.42). Hence, collecting all the pieces, we
find that the string partition function takes the form

logZstring
SYM ≈ ξ + log NSYM

ξ3/2π
− log(Λe−RSYM) , (6.1)
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where RSYM is the IR cutoff on the coordinate σ. We have introduced the label SYM on
the integer N and the cutoff R in order not to confuse with ABJM quantities which we
will encounter in this section.

In order to compare this result with the field theory prediction (2.14) we must first
find a way to deal with the two cutoffs Λ, RSYM. We suggest to follow a similar procedure
used in [15–19], that is to compute a ratio of string partition functions, where the string
worlsheets have the same topology, and then compare this with the corresponding ratio
of Wilson loop expectation values on the field theory side. In [15–19] the ratio considered
was that of a latitude Wilson loop with the circular one. Without having an analogue of
the latitude WL in 5D SYM, this approach seems not applicable. However, as we have
anticipated in the introduction and discussed in section 5, the divergences plagued by
our string theory computation are universal. Indeed, the UV divergent piece is present
even for a string in flat space [56], whereas the IR divergence is directly related to the
procedure we used to compute the one-loop functional determinants. Therefore, we should
be able to compute a ratio of string partition functions (for string worldsheets with the
same topology), and cancel the two regulators as long as the same computational method
is used, implying that the same regularization scheme is employed.

Staying within a type IIA/M-theory setup, we will compute the ratio of our string
partition function (6.1) with that of a circular string in AdS4×CP 3. The partition function
of this string should capture the expectation value of a 1/2-BPS circular (fermionic) Wilson
loop operator [65] in the ABJM theory [33] which can be computed by supersymmetric
localization [34–36, 66]

〈W〉ABJM ≈
NABJM

4πλ eπ
√

2λ , λ� 1 . (6.2)

Note that here we have used the conventions of [10] when normalizing the Wilson loop
VEV, and included the rank of the gauge group NABJM in this expression.

Let us now consider the dual string wrapping the equator of S3 inside AdS4 (or its
analytic continuation H4) in global coordinates. The classical solution was firstly discussed
in [36, 67]. Using the same conventions as we have done so far, the metric on the string
worldsheet is in this case given by the conformal factor

e2ρ = π
√

2λ `2s
sinh2 σ

. (6.3)

where λ is the corresponding ’t Hooft coupling.17 This allows us to compute the regularized
classical action

Sclassical = −π
√

2λ , (6.4)

reproducing the exponential behavior of the Wilson loop vev in (6.2).
Next we compute the one-loop correction to the classical result. This is exactly the

same procedure we have been doing so far for the D4-branes except that, since the geometry
17In the AdS4/CFT3 duality the ’t Hooft coupling is given by λ = N

k
where k is the level of gauge groups

U(N)k × U(N)−k [33].
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is AdS, it is technically simpler. The one-loop correction consists of two terms: the FT
action and the one-loop fluctuations of worldsheet fields. For the AdS4 string the FT action
is simple to evaluate due to the fact that the dilaton is constant

SFT = χ log gs = − log N√
π(2λ)5/4 , (6.5)

where the string coupling is indeed gs =
(
32π2λ5)1/4N−1. Here we have simply followed

the steps discussed at the end of section 5.1.
The one-loop fluctuation of worldsheet fields is computed in much the same way as in

section 5.2. First, we perform a Weyl transformation to strip off the metric factor so that
we can compute the functional determinant of operators on flat space. Next, we use the
phase shift method to compute determinants themselves (see appendix C).

The one-loop partition function for a string in AdS4×CP 3 dual to a 1/2-BPS circular
(fermionic) WL was computed in [68, 69], where either a Gel’fand-Yaglom method or a
heat kernel approach were utilized.18 These methods implicitly employ a different UV
regularization scheme with respect to the phase shift method used here, and so we cannot
simply borrow their results. In fact, for this reason, the answer (6.6) we obtain does not
agree e.g. with the heat kernel result.19 In [64] the phase shift method was used to calculate
the 1/2-BPS circular WL in ABJM at one loop at strong coupling. Since there the focus
was slightly different, and also in order to match with the notation of this work, we have
included our calculation of the AdS4 string partition function in appendix C. The final
expression is

ΓAdS4 = 2 log π + log(Λe−RABJM) , (6.6)

where RABJM above is an IR cutoff in the coordinate σ. Combining (6.4), (6.5), and (6.6),
the string partition function for the AdS4 string is

logZstring
ABJM ≈ π

√
2λ+ log N

(2π2λ)5/4 − log(Λe−RABJM) . (6.7)

It is important to note that the IR cutoff appearing in (6.6), cannot be identified with the
IR regulator R in (6.1), as indeed underlined by the different suffix. Since the metric is
different for the two cases, it is not sensible to identify the two cutoffs. Instead, we should
follow the procedure in [18] and replace R by a diffeomorphism invariant regulator given
by the area of the worldsheet that is being cut off in the computation of the phase shifts.
This dimensionless area is defined by

A = 2π
`2s

∫ ∞
R

e2ρdσ , (6.8)

for the two cases at hand, i.e. (4.10) and (6.3), we obtain

AABJM = 4π2√2λ e−2RABJM , ASYM = 16πξ e−2RSYM . (6.9)
18See also [9, 10] for a computation of the one-loop string partition function directly using the heat kernel

method without performing any Weyl rescaling.
19See eq. (2.21) in [10] for a summary of the regularised one-loop string effective action in AdSn calculated

by means of the heat kernel.
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The cutoffs defined in terms of the area A can now safely be identified for the two cases,
that is

AABJM = ASYM ≡ A . (6.10)
We can now express the string partition function in the two cases, i.e. (6.1) and (6.7),

using the diffeomorphism invariant cutoff A defined in (6.9), then we have

logZstring
SYM ≈ ξ + log 4NSYM

ξ
√
π
− log(Λ

√
A) ,

logZstring
ABJM ≈ π

√
2λ+ log NABJM

π3/2λ
− log(Λ

√
A) .

(6.11)

Since the cutoffs in these two expressions are now the same we can safely cancel them in a
ratio of string partition functions, and obtain

Zstring
SYM

Zstring
ABJM

=
(
NABJM

4πλ eπ
√

2λ
)−1(NSYM

ξ
eξ
)
. (6.12)

Let us then consider the ratio of the two localization results for the vev of the 1/2-BPS
Wilson loop operators, expanded at strong coupling, in five-dimensional SYM (2.16) on
one hand, and ABJM (6.2) on the other. It is then clear that comparing the two ratios we
find a perfect match:

〈W〉SYM
〈W〉ABJM

= Zstring
SYM

Zstring
ABJM

. (6.13)
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A One-loop lagrangian

In this appendix we summarise the derivation of the bosonic and fermionic operators
K (4.25) and D (4.27), respectively.

A.1 Bosonic Lagrangian

We closely follow [59] in order to compute the action for the bosonic fluctuations, see
also [6, 60]. First, we notice that a second order expansion of the B-field (3.4) around the
classical configuration (4.8) gives

B2 = d
[
hiξ`2s

2 y1dy2

]
, (A.1)

which is pure gauge, and therefore does not play a role.
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In static gauge the quadratic bosonic Lagrangian can be written in terms of fluctuations
transverse to the worldsheet, that is

Ltransv = √γ
(
γijDiζ

aDjζa −Mabζ
aζb
)
. (A.2)

The index a is the index on the normal bundle, i.e. transverse directions with respect to
the string worldsheet, and so a = 1, . . . , 8 with a flat metric δab. We remind the reader
that i, j are the worldsheet curved indices. The transverse fluctuations are defined as

ζ µ̂ = ζµEµ̂µ = N µ̂
a ζ

a , (A.3)

where µ̂ is the ten-dimensional flat index, µ is the 10-dimensional curved index, and N µ̂
a

are 8 orthonormal vector fields orthogonal to the worldsheet. The covariant derivative Di

is defined as

Diζ
a = ∂iζ

a −Aabiζb, with Aabi = N µ̂
b

(
∂iN

a
µ̂ −Na

ν̂Ων̂
µ̂i

)
, (A.4)

where Aabi is a connection on the normal bundle which contains a term depending on the
orthonormal frame N µ̂

a and a term with the 10-dimensional spin connection projected down
to the classical worldsheet Ων̂

µ̂i = Ων̂
µ̂µ∂iX

µ. For the classical configuration (4.8) (which
essentially does not extend on the compact part of the ten-dimensional target space), the
covariant derivative is trivially the derivative along the worldsheet directions:

Di = ∂i . (A.5)

The mass term Mab in (A.2) is constructed from the ten-dimensional Riemann tensor as
well as from the extrinsic curvature

Mab = Rµ̂ λ̂, ν̂ κ̂E
λ̂
µ ∂iX

µEκ̂ν ∂
iXν N µ̂

aN
ν̂
b +Ka,ijK

ij
b , (A.6)

where Ka
ij is the orthogonal components of the extrinsic curvature Ka

ij = K µ̂
ijN

a
µ̂ induced

by the classical solution. Again for the solution (4.8) the story is quite simple, because all
the components of the extrinsic curvature are zero on-shell

Kµ
ij = 0 , (A.7)

and so the contribution toMab comes only from the projected Riemann tensor. Indeed this
is exactly what happens for the string solution in AdS5 dual to the 1/2-BPS circular WL
discussed in [59], we can simply read the orthonormal vectors N µ̂

a from there. This is not
surprising since our induced metric on the worldsheet (4.9) differ by a conformal factor from
the induced metric for the circular string in AdS5, and the classical equations of motion
are the same. The mass termMab is then given by a diagonal matrixMab = Maδab where

Ma = Rγ −
3 tanh σ

16`2sξ cosh2 σ
, a = 1, 2, 3, 4 ,

Ma = 1
4Rγ , a = 5, 6 ,

Ma = 1
4Rγ + h2

4`2sξ
tanh3 σ , a = 7, 8 ,

(A.8)

where Rγ = −2e−2ρ∂2
σρ is the worldsheet Ricci scalar defined in (4.11).
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Looking at the ten-dimensional metric (3.1), the first four directions correspond to
the fluctuations along the directions transverse to the equator (parametrized by τ) in the
5-sphere S5, which we denote by x = (x1, x2, x3, x4). The fluctuations labelled by a = 5, 6
are local coordinates on S2, and we denote them by y = (y1, y2). Finally, on the classical
solution (4.8), the metric (3.1) is degenerate along the φ direction, hence we can introduce
a two-vector z = θn̂ such that z · z = θ2 and dz · dz = θ2dφ2 + dθ2. We use then z as local
coordinates in this new R2, which corresponds to a = 7, 8. Notice that it’s here that the h
term enters.

The final transverse bosonic action (A.2) then reads as

Ltransv = −ζaδij∂i∂jζa − e2ρMaaζ
aζa . (A.9)

For later use, it is convenient to directly compute e2ρMaa, that is

Ex = −e2ρMx = ∂2
σρ+ (∂σρ)2 − 1 ,

Ey = −e2ρMy = 1
2∂

2
σρ ,

Ez = −e2ρMz = 1− 3h2

2 ∂2
σρ+ h2(∂σρ)2 − h2 ,

(A.10)

where we used the identities

∂2
σρ = 2

sinh2 σ
− 2

(
∂σρ+ 1

tanh σ

)2
= −1

2e2ρRγ ,

2
cosh2 σ

= 2 + 3∂2
σρ− 2(∂σρ)2

(A.11)

to simplify the above expressions. In this way the transverse bosonic Lagrangian becomes

Ltransv = −ζaδij∂i∂jζa + Eaζ
aζa ≡ ζaK̃aζa , (A.12)

where K̃a are the flat bosonic operators in (4.25), that is

K̃a = −∂2
σ − ∂2

τ + Ea , with a = x, y, z . (A.13)

As explained in the main body, we are usually interested in the determinant of operators
where we have stripped off the conformal factor, then it is useful to also define the Ka
operators, as in (4.23), that is

Ka = e−2ρK̃a . (A.14)

A.2 Fermionic Lagrangian

We now turn to the evaluation of the fermionic Lagrange density LF . Our starting point
is the quadratic fermionic action (4.6) which we rewrite here for convenience, that is

Sfermions = − 1
2π`2s

∫ {
iθ̄P ijΓiDjθ −

i

8 θ̄P
ijΓ11Γ µν

i Hjµνθ

+ i

8eΦθ̄P ijΓi(−Γ11 /F 2 + /F 4)Γjθ
}
, (A.15)
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where Γµ are the ten-dimensional gamma matrices, i, j = σ, τ are the curved worldsheet
indices, and the projector P ij is defined as

P ij = √γγij − iεijΓ11 , (A.16)

where the matrix Γ11 in our convention reads as

Γ11 = iΓσ̂τ̂ x̂1x̂2x̂3x̂4ŷ1ŷ2ẑ1ẑ2 . (A.17)

We have written hats on indices to stress that these are tangent target space indices. We
remind the reader that we work in static gauge, which implies ∂iXµ = δµi .

First of all, we notice that there is no contribution from the three-form H3 = dB2 once
projected on the classical string solution (4.8). We can then simplify the action (A.15) as

Sfermions = − 1
2π`2s

∫ {
iθ̄P ijΓiDjθ + i

8eΦθ̄P ijΓi(−Γ11 /F 2 + /F 4)Γjθ
}
. (A.18)

It is useful to define the following projector

P ≡ (1− iΓσ̂τ̂Γ11)
2 , (A.19)

then we see that

P ijΓiΓj = 2√γ(1− iΓσ̂τ̂Γ11) = 4√γP , and P ijΓi = 2√γ ΓjP , (A.20)

where we have used that ε12 = εστ = 1.
The covariant derivative is defined as

Dj = ∂j + 1
4∂jX

µωµ̂ν̂µ Γµ̂ν̂ , (A.21)

where µ̂, ν̂ are flat ten-dimensional indices. The only non-zero component of the spin
connection along the directions tangent to the worldsheet is

ωτ
τ̂ σ̂ = − 1

tanh σ −
1

sinh 2σ = ∂σρ . (A.22)

Using this and the fact that the projector P commutes with Γj , leads to the following
simple expression for the kinetic term in (A.15):

/D = e−ρ
(

Γσ̂∂σ + Γτ̂∂τ + 1
2∂σρΓσ̂

)
. (A.23)

The two- and four-form are particularly simple since H3 = 0, and to leading order
we have

F2 = dC1 = hNπi`s
ξ

tanh2 σ volR2
z
,

F4 = dC3 = −3Nπ`3s volR2
z
∧ volR2

y
,

(A.24)
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where the potentials are defined in (3.4). Notice that in principle we could also have a
term H3∧C1 in F4 (see (3.5)). However, this would contribute to a higher order, and since
here we are only interested in quadratic fluctuations, we can safely neglect it. From the
expressions (A.24), the flux terms in the fermionic Lagrangian become

1
4eΦ /F 2 = ih

4
√
ξ`s

tanh3/2 σΓẑ1ẑ2 ,

1
4eΦ /F 4 = − 3

4
√
ξ`s

√
tanh σΓẑ1ẑ2ŷ1ŷ2 ,

(A.25)

where we also used the on-shell expression for the dilaton (4.19).
We are ready to collect all the terms. The projection operator P commutes with the

kinetic operator (A.23), the four-flux /F 4 in (A.25), and with the two-form Γ11 /F 2 (A.25),
that is we can rewrite the fermionic action as

Sfermions = − i

π`2s

∫
e2ρ θ̄

{
/D + 1

4eΦ(Γ11 /F 2 + /F 4)
}
Pθ . (A.26)

From the above Lagrangian, it is natural to choose a gauge to fix the κ-symmetry as

Pθ = θ , (A.27)

which reduces the spinors from 32 to 16 components. For simplicity we define

D ≡ i
{
/D + 1

4eΦ(Γ11 /F 2 + /F 4)
}

= i
(
/D + e−ρX

)
, (A.28)

where
X = hi

2 cosh σΓ11Γẑ1ẑ2 −
3

2 sinh σΓẑ1ẑ2ŷ1ŷ2 . (A.29)

Then the action (A.26) is simply given by

Sfermions = − i

π`2s

∫
e2ρ θ̄DPθ . (A.30)

We choose a Hermitian basis for the ten-dimensional gamma matrices, then we notice that
/D
† = /D, and X† = X which implies

D† = i
(
/D − e−ρX

)
, (A.31)

that is our fermionic operator is not Hermitian. For later convenience, we can write the
fermionic operator as

D = e−3ρ/2(i/∂ + iX
)
eρ/2 . (A.32)

This operator acts on the entire 16 component fermion on the worldsheet (after fixing the
κ-symmetry). Our aim is to obtain a two-dimensional fermionic operator. To this end, we
can make this manifest by defining ± eigenspaces of the operators

iΓẑ1ẑ2 , iΓŷ1ŷ2 , (A.33)
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each of the four eigenspace is four-dimensional accounting for all fermionic degrees of
freedom. In practice we introduce the projectors

P±,ẑ = 1± iΓẑ1ẑ2

2 , P±,ŷ = 1± iΓŷ1ŷ2

2 , (A.34)

whose eigenvalues are ±1. We label the eigenspaces by s1 and s2 respectively. These
should be split further into a pair of two-dimensional fermions. We do this by identify
the ten-dimensional σ and τ Gamma matrices with Pauli matrices and define proper two-
dimensional operators that act on the fermions, that is we choose the following represen-
tation for the Γ-matrices

Γσ̂ = τ1 ⊗ 116 , Γτ̂ = −τ2 ⊗ 116 , Γp̂ = τ3 ⊗ γp̂ , p̂ 6= σ̂, τ̂ , (A.35)

where γp̂ are 16×16 Dirac matrices along the 8 transverse Euclidean directions. Combining
the κ-symmetry gauge choice (A.27) with our representation for the Γ-matrices results in

Γ11θ = −(τ3 ⊗ 116)θ . (A.36)

Applying the decomposition (A.34)–(A.36) to the operator (A.32) leads to the two-
dimensional operators

D(s1, s2, s3) = e−3ρ/2D̃(s1, s2, s3)eρ/2 ,
D̃(s1, s2, s3) = i/∂ + τ3as1 + vs1s2

(A.37)

where
as1 = −i hs1

2 cosh σ , vs1s2 = 3is1s2
2 sinh σ , (A.38)

and each of the 8 two-dimensional fermion is labeled by s1,2,3 = ±1. It is clear that
the operators in (A.37) do not depend on the third eigenvalue s3. With a view to the
computation of functional determinants, this implies that∏

s1,s2,s3=±1
detD(s1, s2, s3) =

∏
s1,s2=±1

(detD(s1, s2, 1))2 . (A.39)

Furthermore, denoting the time reflection operator by T, we see that

Tτ1D(s1, s2, s3)τ1 = D(−s1,−s2, s3) , (A.40)

which allows us to reduce to two determinants. However, there is still a residual symmetry
given by

τ3D(s1, s2, s3)τ3 = −D(−s1, s2, s3) , (A.41)

which, combined with the time reflection, gives us∏
s1,s2,s3=±1

detD(s1, s2, s3) = (detD(−1,−1, 1))8 . (A.42)

This means that we are left only with one two-dimensional fermionic operator (with a
multiplicity 8):

D ≡ D(−1,−1, 1) , (A.43)

which is the fermionic operator in (4.27)–(4.28).
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B Phase shifts for generic values of h

In this section we collect the results for the phase shifts corresponding to the bosonic and
fermionic operators for different values of the parameter h. We recall that h was initially
defined in (3.1) and (3.2). As a consequence, h appears in the potential Ez(σ) for the
bosonic fluctuations along the z-directions, cf. equation (4.26), and in the term a(σ) (4.28)
in the fermionic operator D̃ (4.27).

B.1 Phase shifts for bosonic operators

The phase shifts for the bosonic operators can be found analytically for any value of the
parameter h. Recall that we are dealing with Hermitian operators, and so the two linear
independent solutions are complex conjugated, i.e. ηa(p;σ) and η̄a(p;σ), which implies for
the phase shifts

δa(ip, p) = δa(−ip, p) , a = x, y, z . (B.1)

We can simply repeat all the steps discussed in section 5.2 in a straightforward way. The
explicit form of the bosonic basis function is then

ηx(p;σ) =
(
2 sinh σ

)ip(coth σ)1/2
2F1

(
− 1 + ip

2 ,
3− ip

2 ; 1− ip;− sinh−2 σ

)
,

ηy(p;σ) =
(
2 sinh σ

)ip(coth σ)1/2
2F1

(
− ip

2 ,
2− ip

2 ; 1− ip;− sinh−2 σ

)
,

ηz(p, h;σ) =
(
2 sinh σ

)ip(coth σ)1/2−h
2F1

(
− h− 2 + ip

2 ,−h+ ip

2 ; 1− ip;− sinh−2 σ

)
,

(B.2)

for the three operators K̃x, K̃y, and K̃z (4.25). Thus, the phase shifts for the three bosonic
operators for arbitrary h are given by

δx(p) = Arg
[
2−ipΓ

(3− ip
2

)2
Γ(1 + ip)

]
,

δy(p) = Arg
[
Γ
(

1− ip

2

)
Γ
(1 + ip

2

)]
,

δz(p) = Arg
[
2−ipΓ

(2− h− ip
2

)
Γ
(2 + h− ip

2

)
Γ(1 + ip)

]
,

(B.3)

where again the dependence on h of the phase shift is only along the z-directions.

B.2 Phase shifts for fermionic operators

Concerning the fermionic operators, we are able to analytically obtain the phase shifts for
h = 0 and h = 3. The reason is due to the fact that the differential equations (5.38)
drastically simplify for these special values of h and reduce to hypergeometric differential
equations. By looking at the explicit expression of the fermionic operator (4.28), we see
that for h = 0 the term a(σ) vanishes, and the operator D̃ becomes degenerate, while for
h = 3 the terms a(σ) and v(σ) now enter with the same coefficient.
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Figure 3. The regularized one-loop effective function Γ̃K(R) − log(Λe−R) (5.32) for different
values of h, integers and half-integers.

The steps to analytically find the phase shifts are the same as performed numerically,
and they are described in section 5.2. Here we only present the results for h = 0, that is

(4δ+ + 4δ−) = 8Arg
[
Γ
(1

2 + ip

)
Γ(2− ip)

]
, (B.4)

and for h = 3, namely

(4δ+ + 4δ−) = −4 arctan 2p
5 − 4 arctan 2p

3 − 4 arctan 2p . (B.5)

It is natural to ask ourselves how the parameter h affects the one-loop effective action.
We remind the reader that this parameter is not visible on the matrix model side since it
breaks supersymmetry. However, it clearly influences the one-loop string partition function
e−Γ̃K(R) (5.32), being part of the geometrical background (3.1)–(3.2). For this reason we
have computed the finite part of Γ̃K(R) for different values of h as summarised in figure 3.

C Phase shifts for circular string in AdS4

In this appendix, using the phase shift method, we compute the functional determinants
for strings in AdSn (n = 5, 4, 3) dual to 1/2-BPS circular Wilson loops. The ultimate goal
is to find the string one-loop partition function e−Γ̃K(R) for the case n = 4 in the same
regularization scheme adopted throughout this manuscript. This will allows us to safely
remove the regulators in (6.1) (and thus safely compare the corresponding WL expectation
values). The following calculations have been also performed in [18, 19, 64] with the
same method.

In the language we have been using, we now have the following bosonic operators

K̃a,AdS = −∂2
σ − ∂2

τ + Ea(σ) , a = 1, 2 ,

E1 = 2
sinh2 σ

, n− 2 times, a = 1 ,

E2 = 0 , 10− n times, a = 2 ,

(C.1)

– 35 –



J
H
E
P
0
3
(
2
0
2
2
)
0
1
8

and fermionic operators

D̃a,AdS = i/∂ + τ3aa + va, a = 1, 2 ,

a1 = 1
sinh σ , v1 = 0 , 2n− 2 times, a = 1 ,

a2 = 0 , v2 = 0 , 10− 2n times, a = 2 .

(C.2)

Notice that all the operators are Hermitian. We can now compute the logarithm of the
one-loop partition function for the flat operators D̃a,AdS and K̃a,AdS. In particular, for the
case n = 4, the logarithmic of the string partition function we are interested in is given by

Γ̃K,AdS(R) = 1
2 log det2 K̃1,AdS det6 K̃2,AdS

det6 D̃1,AdS det2 D̃2,AdS
, (C.3)

which, in terms of the phase shift, becomes

Γ̃K,AdS(R) = −
∫ ∞

0
dp
[

coth(πp)δB − tanh(πp)δF
]
−R , (C.4)

where we have denoted the sum of the bosonic and fermionic phase shifts by δB and δF
respectively. These are straightforward to compute, and for general n, we find

δB = −(n− 2) arctan p , δF = −2(n− 1) arctan 2p , n = 5, 4, 3 . (C.5)

We note that the phase shifts are only defined up to factors of π. The logarithm of the
one-loop partition function (C.4) is now UV divergent in two ways. Indeed, for large p,
we have

lim
p→∞

(δB − δF ) = nπ

2 −
1
p
. (C.6)

The first term produces linear divergence in the partition function, while the second term
produces the expected log Λ divergence.

We now focus on the AdS4 case with n = 4 in the above equation. By shifting δF by
a factor of 2π we can eliminate the spurious linear divergence

δF 7→ δF + 2π . (C.7)

Thus, for n = 4 the one-loop partition function (C.4) can now be written as

ΓAdS4 = −
∫ ∞

0
dp
[
− 2 arctan p coth(πp)− (2π − 6 arctan 2p) tanh(πp)

]
−R

= 2 log π + log(Λe−R) .
(C.8)

where in the last step we analytically evaluated the integral using the results in [19] .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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