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Abstract: Statistical modelling approaches which produce fine spatial resolution population 

estimates have been developed to fill data gaps in resource-poor countries where census data are 

either outdated or incomplete. These population modelling methods often draw upon recent 

georeferenced sample population enumeration datasets to predict population density and 

distribution at both sampled and non-sampled locations, based on their correlation with a set of 

carefully selected geospatial covariates. These modelled population estimates are increasingly used 

to support governance, health surveillance, equitable resource allocation, and humanitarian 

response. However, methodological challenges remain. For example, the georeferenced sample 

enumeration data are usually disparate and patchy in their distributions, with a high proportion of 

non-sampled locations that result in highly uncertain estimates. Here, we present a model-based 

Bayesian geostatistical small area population estimation approach which simultaneously: • 

Combines multiple sample population enumeration datasets and • Explicitly integrates spatial 

autocorrelation within a single modelling framework. Findings from a simulation study show 

varying levels of accuracy in the posterior parameter estimates over different levels of spatial 

variance and data missingness. The methodology, which was further validated using five nationally 

representative household listing datasets in Cameroon, provides a valuable methodological 

development in small area population estimation modelling from sparsely distributed sample 

enumeration data.  

Keywords: population model; bayesian inference; satellite imagery; geospatial covariates; census-

independent data; multiple data sources 

 

Specifications Table 

Subject area Environmental Science 

More specific subject 

area 
Population density and distribution modelling/estimation 

Name of your method 

Bayesian Hierarchical Small Area Population modelling, which integrated 

multiple data sources and spatial autocorrelation within the Integrated Nested 

Laplace Approximations and Stochastic Partial Differential Equations (INLA-

SPDE).  
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Name and reference of 

original method 

1) Bottom-up Population modelling: Wardrop N.A., Jochem W.C., Bird 

T.J., Chamberlain H.R., Clarke D., Kerr D., Bengtsson L., Juran S., 

Seaman V., Tatem A.J. (2018). “Spatially disaggregated population 

estimates in the absence of national population and housing census 

data.” Proceedings of the National Academy of Sciences 115, 3529–3537. 

https://www.pnas.org/doi/10.1073/pnas.1715305115 

2) INLA: Rue, Havard, Sara Martino, and Nicolas Chopin. (2009). 

“Approximate Bayesian Inference for Latent Gaussian Models by Using 

Integrated Nested Laplace Approximations.” Journal of the Royal 

Statistical Society, Series B 71 (2): 319–92 

3) SPDE: Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link 

between Gaussian fields and Gaussian Markov random fields: The 

stochastic partial differential equation approach. Journal of the Royal 

Statistical Society: Series B (Statistical Methodology), 73(4), 423–498  

Resource availability  
All the R codes and datasets used in this study including the simulation study and 

methods validation/application data are found in this GitHub repository.  

Background 

Small area population count data support decision-making across all areas of governance. 

Estimating population numbers affected by disasters, delivering health interventions, planning for 

elections and allocating resources equitably all require reliable estimates of population distributions 

at small area scales (UNFPA 2020). Such data are typically collected through a national population 

and housing census, but these can become quickly outdated in settings with substantial population 

movements and spatially heterogeneous patterns of fertility and mortality that are hard to predict 

(Tatem 2022). In addition, in some areas of certain countries, it is sometimes not possible to directly 

collect such population data due to poor access, conflicts or other security challenges. To fill these 

data gaps, geospatial methods have recently been developed that leverage advances in satellite 

imagery, computer vision, geospatial computation and spatial statistics to produce small area 

population estimates across national extents (e.g., Leasure et al., 2020; Boo et al., 2022; Darin et al, 

2022; Nnanatu et al., 2024). 

‘Bottom-up’ population models leverage the statistical relationships between population density 

measures in incomplete enumerations of an area of interest and a set of geospatial datasets capturing 

features known to correlate with how humans distribute themselves on the landscape. Predictions of 

numbers of residents for 100 by 100m grid cells are then typically made, and the use of Bayesian 

statistical inference methods for the estimation of the population model parameters means that 

estimates of uncertainties can be provided (Wardrop et al., 2018). However, the input enumeration 

data which can come from purposely designed ‘microcensus’ surveys (e.g. Leasure et al, 2020; Boo et 

al., 2022), incomplete census enumeration (e.g. Darin et al, 2022), or listings from household surveys 

(e.g. Dooley et al, 2021), are typically sparsely distributed and often exhibit spatial autocorrelation 

(Chan-Golston et al., 2022). In such situations, the integration of spatial autocorrelation within the 

analytical framework is highly recommended (Anselin, 1990; Chi & Voss, 2011; Chan-Golston et al., 

2022).  

Existing bottom-up population models (e.g., Leasure et al., 2020; Boo et al., 2022; Darin et al, 

2022), use Bayesian hierarchical regression models to more accurately represent levels of variabilities 

within a single source of observed enumeration data as random effects, and quantify uncertainties in 

the parameter estimates in a more straightforward manner. Here, with an aim of improved accuracy 
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in small area population predictions, we extend the existing approach to allow for the integration of 

multiple disparate enumeration data sources to increase sample size and obtain larger statistical 

power. We do this while simultaneously accounting for spatial autocorrelation within the 

observations to borrow strength (e.g., Chi & Voss, 2011) from nearby locations and more accurately 

predict population counts in non-sampled locations. 

Motivated by the need to rapidly produce small area population data for Cameroon using 

multiple household listing datasets, we used geostatistical modelling frameworks (Cressie, 1993; 

Wakefield, 2007; Diggle & Giorgi, 2016; Giorgi et al., 2018), to imply spatial autocorrelation as a 

distance dependent covariance matrix, such that population distribution between nearby locations is 

more similar than those further apart (Tobler, 1970). To increase computational efficiency, the 

integrated nested Laplace approximation (INLA; Rue & Held, 2005; Rue et al., 2009) was used in 

conjunction with the stochastic partial differential equation (SPDE; Lindgren et al., 2011). 

Method Details 

Method 

Within the context of the bottom-up population modelling (Wardrop et al., 2018), we are often 

faced with the problem of population prediction at high resolution regular grid cells (pixels) in order 

to build a set of estimates that can be flexibly summarised and aggregated to other decision making 

using, for example, administrative units, health zones, wards, or facility catchment areas, including 

areas where little or no data are observed. In most cases, population enumeration data are only 

available at some locations, for example, census units (CUs), primary sampling units (PSUs) or 

enumeration areas (EAs), across a given geographical domain of interest.  

Figure 1 shows the schematic representation of the entire population modelling process 

developed here to address this problem. Specifically, in step 1, the input datasets were first assembled 

from the disparate sources. These datasets include the enumeration data (containing population 

counts of people within geographically defined small areas), the gridded geospatial covariates, (e.g., 

night-time lights intensity, road density, topography, land cover, distance to markets  (Nieves et al., 

2017)), and the settlement data (e.g. gridded data summarising buildings mapped from satellite 

imagery (Chamberlain et al., 2024), containing counts of building, building height estimates and other 

derived metrics). In step 2, these datasets were explored, cleaned, and prepared for the next steps.  

Part of the exploratory data analysis was testing for the presence of spatial autocorrelation in the 

observed data using Moran’s I statistics (Moran 1950) under the null hypothesis of no spatial 

clustering. Then, a statistically significant test indicates the presence of spatial autocorrelation.  
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Figure 1. Schematic representation of the Bayesian hierarchical geostatistical bottom-up population modelling 

steps. INLA – Integrated Nested Laplace Approximation; SPDE – Stochastic Partial Differential Equation; WAIC 

– Widely Acceptable Information Criterion; CPO – Conditional Predictive Ordinate; MAE – Mean Absolute 

Error; RMSE – Root Mean Square Error. 

To ensure that spurious effects of redundant geospatial covariates are eliminated in the model 

parameter estimates, a rigorous covariate selection process is carried out in step 3, where only the 

covariates that significantly predicted population density are retained for the final analysis. Fior a 

given location i, the population density variable Di was obtained as the number of people (Ni) per 

building (Bi), that is, Di = Ni/Bi. The continuous geospatial covariates are scaled using z-score so that 

the parameter estimates based on the datasets emanating from disparate measurement scales can be 

compared and interpreted in terms of standard deviation. The covariates selection is done using a 

robust stepwise regression scheme implemented within the Generalized Linear Model (GLM) 

framework (McCullagh & Nelder, 1989) with the stepAIC function of the ‘MASS’ package in R. Then 

the selected covariates were further tested to ensure that the potential effects of multicollinearity are 

drastically reduced. To do this, we used the ‘vif’ function of the ‘car’ package in R to calculate the 

variance inflation factor (vif) values of each covariate and those with vif < 5 are retained (e.g., James 

et al.,2013). Finally, the GLM model was refitted and only the statistically significant covariates were 

retained for the next steps.  

In step 4, the geospatial covariates selected in step 3 were used to train Bayesian hierarchical 

population models using the INLA-SPDE approach. The INLA-SPDE approach provides 

computational efficiency by using a mesh which is a triangulation of the entire spatial domain of 

interest allowing the use of sparse covariance matrix on a discrete space instead of a dense covariance 

on a continuous space (Lindgren et al., 2011).  

Steps 5 to 10 follow immediately after model fitting and involved the collation and testing of the 

model results, posterior predictions at high resolution (approximately 100m by 100m) grid cells, 

aggregation to various administrative units of interest, and disaggregation of the population totals 

by age/sex classes.  

The model fit assessments and cross-validation of the statistical models were performed by 

comparing a constellation of model fit metrics. Specifically, for model selection, we relied on the 

Deviance Information Criterion (DIC), the Widely Applicable Information Criterion (WAIC; 

Watanabe, 2013) and Conditional Predictive Ordinate (CPO; Pettit 1990). The predictive ability of the 
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selected models were further evaluated using Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), Absolute Bias (BIAS), and the Pearson correlation coefficients (CORR) of the observed versus 

predicted population counts. Smaller values of the DIC, WAIC, and CPO indicate a better fit model. 

Also, smaller values of MAE, RMSE, BIAS, and larger values of CORR indicate model with better 

predictive ability. Posterior simulations and grid cell predictions were based on the best-fit model. 

Finally, by dividing the observed data into train (80%) and test (20%) sets, k-fold cross-validation was 

carried out. 

Statistical Modelling  

Let 𝑌𝑖 denote the response variable, the count (population) of people in each small area 𝑖 (𝑖 =

1, 2, … , 𝑁), such that  

                                                     𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)                                                                (1) 

with equal mean and variance equal to 𝜆𝑖 > 0 (McCullagh and Nelder 1989).  However, it is well 

known that within the context of population modelling, the data are almost always over-dispersed 

in that the variance of the response is often larger than the mean and the assumption of equal mean 

and variance is rarely met (Leasure et al., 2020; Boo et al., 2022).  

To circumvent this analytical challenge and improve estimates of population whilst accounting 

for potential sources of variability, the response variables is redefined in terms of population density 

(e.g., Leasure et al. 2020) so that 

                     𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑝𝑒𝑜𝑝𝑙𝑒

𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡
× 𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡                                                   (2) 

where the term 𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 is generic and represents any variable that provides an indication of 

human settlement intensity within a given area, such as, the total built-up area, number of buildings, 

number of households, and building intensity, all typically obtained from satellite imagery feature 

extraction. However, the values of any such settlement variable must be available throughout the 

country for country-wide model prediction purposes. Thus, the term 𝑝𝑒𝑜𝑝𝑙𝑒/𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 represents 

the population density, 𝐷. For ease of exposition, from now on, we will use building count (number 

of buildings in each area of interest) 𝐵 as the 𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 variable and using a Poisson-Gamma two-

stage model (e.g., Wakefield, 2007). Equation (1) becomes   

                                                 𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝐵𝑖)                                                            (3)  

where the mean and variance parameter 𝜆𝑖  of Equation (1) is now respecified in terms of the 

expected  density 𝜇𝑖 and building counts 𝐵𝑖  of area 𝑖, that is, 𝜆𝑖 = 𝜇𝑖𝐵𝑖 , and 𝐷𝑖  is the population 

density which gives the Maximum Likelihood Estimator (MLE) for 𝜇𝑖. Thus, the model specification 

in equation (3) allows us to model explicitly the potential overdispersion within the data via the mean 

density parameter by assuming a Gamma distribution with shape and rate parameters given by 𝜇𝑖
2/𝜙 

and 𝜇𝑖/𝜙, respectively. That is, 

                                       𝐷𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜇𝑖
2/𝜙 , 𝜇𝑖/𝜙)                                                              (4) 

where 𝐸[𝐷𝑖] = 𝜇𝑖 and 𝑣𝑎𝑟(𝐷𝑖) = 𝜙. Note that the choice of the Poisson-Gamma two-stage model is 

because it allows flexibility to explicitly model the inherent overdispersion via the parameter 𝜙. 

Other positively skewed long tail distribution such as the LogNormal distribution (e.g., Leasure et al, 

2020) could also be used, so that, 𝐷𝑖 ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖, 𝜎𝐷
2) , where 𝜇𝑖  and 𝜎𝐷

2  are the log of the 

expected population density and the random variations in the population density due to 

overdispersion, respectively.  

Despite the simplicity of the specification implied by equation (3), it is important to note that the 

variance of 𝐷𝑖  increases for very small values of 𝐵𝑖  which could arise from sparse observations (e.g., 

Wakefield, 2007). Thus, to avoid inflated population estimates, care must be taken while using this 

model specification to account for either overdispersion or as aggregation weights to account for 

potential aggregation error (e.g., Paige et al. 2022). In any case, the expected population density 𝜇𝑖  is 
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linked to the geospatial covariates (e.g., nighttime lights, distance to healthcare facilities) through the 

linear predictor 𝜂𝑖 given by 

                                                     ℎ(𝜇𝑖) = 𝜂𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘

𝐾

𝑘=1

+ 𝜀𝑖                                      (5) 

where ℎ(. ) is an appropriate link function (e.g., log-link), 𝛽0 is the intercept parameter representing 

the average population density when there is zero effect of the other covariates;  (𝛽1, … , 𝛽𝐾) are the 

unknown fixed effect coefficients of the K geospatial covariates (𝑥1, 𝑥2, … , 𝑥𝐾) found to significantly 

predict the population density; 𝜀𝑖  is a Gaussian noise or nugget effect  (Cressie, 1993), which 

accounts for the observation level variability (also known as the fine scale variability, e.g., Paige et 

al., 2022) not captured by the geospatial covariates, that is, 𝜀𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜀
2). To ensure that the 

estimates of the fixed effects parameters (𝛽1, … , 𝛽𝐾)  are interpretable and comparable, it is 

recommended that the corresponding continuous geospatial covariates which are potentially on 

different measurement scales be rescaled using for example the z-score such that 

                                                  𝑍𝑖 =
𝑥𝑖 − 𝑥̅𝑖

𝜎𝑖

                                                                 (6) 

where 𝑍𝑖 is the scaled version of the geospatial covariate 𝑥𝑖.  

Specifically, we extended equation (5) to include the spatial autocorrelation term 𝜉(𝑠𝑖) such that 

the geographical units that share common boundaries are more like each other in terms of population 

distribution than those further apart (Tobler, 1970). Thus,  

                                   𝜂(𝑠𝑖) = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘

𝐾

𝑘=1

+ 𝜉(𝑠𝑖) + 𝜀𝑖                                                        (7) 

where 𝜂(𝑠𝑖)  is the linear predictor,  𝑠𝑖 ∈ {𝑠1, 𝑠2, … , 𝑠𝑁} is the 𝑖 -th spatial unit (e.g., enumeration 

areas) of the 𝑁  geolocated spatial units within the study domain. The term  𝜉(𝑠𝑖)  is the 𝑖 -th 

realisation of the Gaussian Random Field (GRF), that is, 𝜉(𝒔) ∼ 𝐺𝑅𝐹(0, Σ) , with the distance 

dependent Matérn covariance function  

                                                    𝐶(𝑠𝑖 , 𝑠𝑗) =
𝜎𝜁

2

Γ(𝜈)2𝜈−1 (𝜅𝑑𝑖𝑗)
𝜈

𝐾𝜈(𝜅𝑑𝑖𝑗)      (8) 

where Γ is a gamma function; 𝐾𝜈 is the modified Bessel function of the second kind, order 𝜈; 𝑑𝑖𝑗 =

||𝑠𝑖 − 𝑠𝑗||  is the Euclidean distance between spatial locations 𝑠𝑖  and 𝑠𝑗 ; 𝜈  is the smoothness 

parameter; 𝜅 =
√8𝜈

𝜌
 is the scale parameter where 𝜌 is the spatial distance at which the correlation is 

approximately 0.13; 𝜎  is the marginal variance. One computational challenge of geostatistical 

models of this form especially those implemented via the Markov chain Monte Carlo (MCMC) 

methods is that the computation of the dense covariance matrix Σ becomes very expensive as the 

sample size increases (e.g., Bakka et al., 2018).  However, the use of the integrated nested Laplace 

approximation in conjunction with the stochastic partial differential equation (INLA-SPDE; Rue and 

Held, 2005; Rue et al., 2009; Lindgren et al., 2011) approach provide significant computational 

advantage. With the INLA-SPDE approach we only need to compute the sparse precision matrix 𝑸 =

Σ−1 , and the continuously indexed GRF, 𝜉(𝒔) is approximated by a discretely indexed Gaussian 

Markov Random Field (GMRF) using a piecewise linear basis function representation on a 

triangulation of the entire study domain also known as ‘mesh’. Thus, 

                                                                   𝜉(𝒔) = ∑ 𝜑ℎ(𝑠)

𝐻

ℎ=1

𝜁ℎ                                                    (9) 
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where 𝜑ℎ ∈ {0,1} is the value of the piecewise linear function which takes the value of 1 at the 𝑑-th 

node of the mesh and 0 elsewhere for a mesh with a total of 𝐻 nodes; 𝜁 = (𝜁1, 𝜁2, … , 𝜁𝐻) is a GMRF 

with sparse correlation matrix parameters 𝜅 and 𝜎𝜁
2 (see, Lindgren et al., 2011; Blangiardo et al., 

2013). Thus, under the INLA-SPDE approach, equation (7) is respecified as: 

                                               𝜂(𝑠𝑖) = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘

𝐾

𝑘=1

+ ∑ 𝑨̃𝑖ℎ𝜁

𝐻

ℎ=1

+ 𝜀𝑖                                          (10) 

where 𝑨̃𝑖ℎ  is the 𝑖, 𝑑 -th element of the 𝑁 × 𝐻  sparse projection matrix  𝑨̃  which maps the 𝑁 

observations to the 𝐻 nodes of the mesh. Note that it is straightforward to extend equation (10) to 

include other random effects terms to capture other unobserved sources of variability like those due 

to settlement type (rural-urban), regions, data source, interacting random effect terms, etc.  Thus, the 

hierarchical regression-modelling framework is specified below: 

𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝐵𝑖) 

𝐷𝑖 ∼ 𝐺𝑎𝑚𝑚𝑎 (
𝜇𝑖

2

𝜙
,
𝜇𝑖

𝜙
) 

ℎ(𝜇(𝑠𝑖)) = 𝜂(𝑠𝑖) 

𝜂(𝑠𝑖) = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖,𝑘

𝐾

𝑘=1

+ ∑ 𝑓𝑚(𝑧𝑚,𝑖)

𝑀

𝑚=1

+ ∑ 𝑨̃𝑖ℎ𝜁

𝐻

ℎ=1

+ 𝑓𝑝(𝑡𝑦𝑝𝑒) + 𝑓𝑟(𝑟𝑒𝑔) + 𝑓𝑟,𝑝(𝑟𝑒𝑔 × 𝑡𝑦𝑝𝑒) + 𝜀𝑖  

(11)            

where {𝑓𝑚}𝑚=1
𝑀  are the random effect functions of the M different data sources; while 𝑓𝑝(𝑡𝑦𝑝𝑒) , 

𝑓𝑟(𝑟𝑒𝑔),  and 𝑓𝑟,𝑝(𝑟𝑒𝑔 × 𝑡𝑦𝑝𝑒) capture the variabilities due to differences in population distributions 

across different settlement types, regions, and their interactions, respectively. As stated above, the 

framework allows the incorporation of as many random effects as possible, however, care must be 

taken to avoid overfitting the data.  

Bayesian Inference for Hierarchical Population Models 

In Bayesian inference context, interest is on the joint posterior distribution of the latent field 

 𝒘 = (𝜂, 𝛽0, 𝜷, 𝑓𝑚, 𝑓𝑝, 𝑓𝑟𝑝, 𝜁, 𝜀) and the hyperparameters 𝜽 = (𝜏𝛽 , 𝜏𝑚, 𝜏𝑝, 𝜏𝑟𝑝, 𝜏𝛽 , 𝜏𝜀) given by 

                                       𝜋(𝒘, 𝜽|𝒚) ∝ 𝜋(𝜽)𝜋(𝒘|𝜽) ∏ 𝜋(𝑦𝑖|𝑤𝑖𝜽)

𝑖∈𝐼

                                       (12) 

where 𝜋(𝜽) is the prior distribution, 𝜋(𝒘|𝜽) is a latent Gaussian model (LGM), and 𝜋(𝒚|𝑤, 𝜃) is the 

likelihood function of observing the data given the latent field and the hyperparameters which are 

assumed to be conditionally independent. The posterior distribution is then approximated and 

evaluated using INLA-SPDE as already stated above with prior distributions given by: 

𝜋(𝛽0) ∝ 1 

𝛽𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝛽 ,
1

𝜏𝛽

) 

𝜁 ∼ 𝐺𝑀𝑅𝐹 (0, 𝜓(𝜅, 𝜎𝜁
2)) 

𝑓𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0,
1

𝜏𝑘

) 
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𝜀𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1/𝜏𝜀) 

                                                               𝜏𝑤 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑤 , 𝛽𝑤)                                                       (13) 

where 𝛼𝑤 > 0 and 𝛽𝑤 > 0 are hyperparameters and  𝑘, 𝑤 ∈ {𝛽, 𝑚, 𝑝, 𝑟, 𝑟𝑝, 𝜀}.  Then the predicted 

density  𝐷̂(𝑠𝑖)  is obtained as the back transformed values of the predicted linear predictor 𝜂̂𝑖, that 

is,  𝐷̂𝑖 = exp(𝜇̂𝑖). 

Finally, the predicted population count is given as a weighted product of the population density 

and the building count, that is,  𝑦̂𝑖 = 𝐷̂𝑖 × 𝐵𝑖 .  

Model Fit Checks and Cross-Validation Metrics 

Conditional Predictive Ordinates (CPO) 

The CPO is a cross-validatory criterion which calculates the probability of observing a held-out 

observation not used in the model training set such that given the 𝑖-th observation 𝑦𝑖 . Thus, the CPO 

is the posterior probability of observing 𝑦𝑖  when the model is fit using all data but 𝑦𝑖, that is,  

                                                                𝐶𝑃𝑂𝑖 = 𝜋(𝑦𝑖|𝑦−𝑖)                                                 (14)           

Large values of CPO indicate a better fit of the model to the observation, while small values 

indicate a bad fitting of the model to that observation, which may be an outlier. 

Then, the negative sum of the log of the CPO given in equation (14) provides a measure of 

predictive ability of the model with the smaller the better, that is, 

                      − ∑ log(𝐶𝑃𝑂𝑖)𝑛
𝑖=1                                                            (15)      

Mean Absolute Error (MAE) 

The mean absolute error (MAE) provides a measure of the average magnitude of errors within 

a set of predictions irrespective of the direction. It is calculated using  

                                                        MAE =
1

𝑁
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=1

                                                  (16)       

where, 𝑦𝑖  and  𝑦̂𝑖 are the observed and predicted values, respectively. The model with the smaller 

MAE value provides a better fit. 

Root Mean Square Error (RMSE) 

The root mean square error (RMSE) is similar to the MAE in that they both provide an idea on 

the average magnitude of prediction error. However, the RMSE is found to be more useful when 

large errors are not desirable. RMSE is given by 

                                                       RMSE = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

                                               (17)         

Similar to the MAE, models with lower RMSE values provide better fit.  

Pearson Correlation 

The Pearson correlation coefficient 𝑟(−1 ≤ 𝑟 ≤ 1) is the coefficient of correlation between the 

observed counts and predicted counts.  

                         𝑟 =
∑ (𝑦𝑖 − 𝑦̅) (𝑦𝑖

(𝑝𝑟𝑒𝑑)
− 𝑦̅(𝑝𝑟𝑒𝑑))𝑖

√∑ (𝑦𝑖 − 𝑦̅𝑖)
2 ∑ (𝑦𝑖

(𝑝𝑟𝑒𝑑)
− 𝑦̅(𝑝𝑟𝑒𝑑))

2

𝑖𝑖

                                    (18)    
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where 𝑦𝑖 , 𝑦̅, 𝑦𝑖
(𝑝𝑟𝑒𝑑)

 and 𝑦̅(𝑝𝑟𝑒𝑑) are the observed values, mean of the observed values, the predicted 

values, and the mean of the predicted values, respectively. Note that equation can be simply written 

as 

                                𝑟 =
𝐶𝑜𝑣(𝑌, 𝑌(𝑝𝑟𝑒𝑑))

𝜎𝑌𝜎𝑌(𝑝𝑟𝑒𝑑)
                                                                          (19)       

where, 𝐶𝑜𝑣(𝑌, 𝑌(𝑝𝑟𝑒𝑑)) is the covariance between the observed 𝑦 and the predicted value 𝑦(𝑝𝑟𝑒𝑑), 

and 𝜎𝑧, 𝑧 ∈ {𝑦, 𝑦(𝑝𝑟𝑒𝑑)}, are the corresponding standard deviations.  

Absolute Bias (BIAS) 

This measures the average deviation of the predicted value from the observed value: 

                           BIAS = |
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑁

𝑖=1

|                                                                     (20)       

Smaller values of BIAS indicate better fit model. The closer the value to zero the better the model.  

Coefficient of Variation  

For each posterior sample, we computed the coefficient of variation as a measure of uncertainty 

in the posterior parameter estimation. This was done by dividing the standard deviation with 

the.mean.  

Motivating Dataset  

This study was motivated by the lack of a reliable up-to-date small area population data to 

support healthcare campaigns and other intervention programmes in Cameroon, and to build an 

alternative sample frame given that the most recent census at the time of writing was conducted in 

2005. Completely anonymized versions of seven (7) nationally representative but disparate 

household listings conducted between 2018 and 2022, were obtained from the Cameroon National 

Institute of Statistics (NIS), also known in French as Institut National de la Statistique (INS, https://ins-

cameroun.cm/en/). Following rigorous data cleaning and exploratory activities, five of these datasets 

conducted between 2021 and 2022 were selected for population modelling (Figure 2). There were 

2,587,569 people counted across the 509,628 households with an average of ~5 people per household, 

across 2,290 Enumeration Areas (EAs). Eventually, the datasets were combined and aggregated up 

to the EA level which served as the population modelling unit. Further details on how the datasets 

were explored, cleaned and combined are provided within Section S1 of the Supplementary 

document.  
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Figure 2. Map of Cameroon showing the distribution of the 2290 Enumeration Areas (EAs) observed across the 

10 regions of the country for the 5 household listing datasets. CMIS - Cameroon Malaria Indicator Survey (CMIS 

2022); ECAM5_Phase1-The 2021/2022 fifth Cameroon Households Survey phase 1; ECAM5_Phase2-The 2021/2022 fifth 

Cameroon Households Survey phase 2; ECAM5_Phase3-The 2021/2022 fifth Cameroon Households Survey phase 3; EESI3 

– 2021 third Employment and Informal Sector Survey. 

Testing for Spatial Clustering 

Before proceeding to analyse the data, we first carried out Moran’s I test for the existence of 

spatial autocorrelation using the ‘moran.test’ function of the ‘spdep’ package in R, after defining the 

neighbourhood structure using the ‘queen’ option.  However, the Moran’s I test statistic returned a 

statistically significant test with p-value < 0.01 which indicated the presence of spatial autocorrelation 

within the data.  

Statistical Model Implementation 

Following from equations (1) – (11) above, the observed data 𝑌𝑖 (the total number of people 

observed per EA) is Poisson distributed random variable with mean/variance parameters 𝜆𝑖 = 𝜇𝑖𝐵𝑖 , 

where 𝜇𝑖 is the average population density per EA, and 𝐵𝑖  is the total number of buildings  (total 

building counts) per EA. The building counts were obtained from the building footprint layer 

provided by the Digitize Africa project of Ecopia AI and Maxar Technologies (‘year 2’, 2020/2021; 

Ecopia.AI and Maxar Technologies, 2020). The building footprint layer contains polygons 
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representing visible individual buildings on satellite images. This was rasterised using WorldPop’s 

3-arc-sercond resolution mastergrid to calculate number of buildings, building area, building 

perimeter, coefficient of variation, and other related metrics for each grid cell.  

Figure S1.1 of the Supplementary document shows the rasterised building footprints and the 

settlement type classifications of the structures in Cameroon. The settlement type classification was 

obtained from the Global Human Settlement (GHS) degree of urbanization layer (Schiavina, 2022), 

which was re-classified into four settlement types namely: cities, small urban, towns and villages. 

Model Fitting  

Of the 43 geospatial covariates initially identified (Table S1 of the Supplementary document), 

after covariates selection using the GLM-based stepwise selection methods (McCullagh & Nelder, 

1989; James et al., 2013), only 8 were eventually retained as providing the best fit for the population 

density model (Table 1).  

Table 1. List of the last 8 geospatial covariates included in the final model. 

Covariate Description Source Year Original 

format 

Resolution 

Cov1  Distance to 

ACLED 

conflict data 

https://acleddata.

com/ 

2021 Raster 100m 

Cov2  Distance to 

ACLED 

explosions 

https://acleddata.

com/ 

2021 Raster 100m 

Cov3  Distance to 

waterbodies 

https://www.geof

abrik.de/data/do

wnload.html 

2022 Raster 100m 

Cov4  Distance to 

herbaceous 

areas 

https://www.worl

dpop.org/project/

categories?id=14 

2022 Raster 100m 

Cov5  Distance to 

local roads 

https://www.geof

abrik.de/data/do

wnload.html 

2022 Raster 100m 

Cov6  Distance to 

marketplaces 

https://www.geof

abrik.de/data/do

wnload.html 

2022 Raster 100m 

Cov7  Slope https://www.worl

dpop.org/project/

categories?id=14 

2000 Raster 100m 

Cov8  Night-time 

light 

brightness 

https://www.worl

dpop.org/project/

categories?id=17 

2020 Raster 100m 

Note. ACLED- Armed Conflict Location & Event Data (www.acleddata.com). 

The 8 final geospatial covariates were then used to test various nested Bayesian hierarchical 

models, and the four top competing nested models are specified below:  
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𝐌𝐨𝐝𝐞𝐥𝟏: 𝜂(𝑠𝑖) = 𝛽0 + ∑ 𝛽𝑘𝐶𝑜𝑣𝑖,𝑘

8

𝑘=1

+ ∑ 𝑨̃𝑖𝑑𝜁

534

𝑑=1

+ 𝑓𝑝(𝑡𝑦𝑝𝑒) + 𝜀𝑖  

𝐌𝐨𝐝𝐞𝐥 𝟐: 𝜂(𝑠𝑖) = 𝛽0 + ∑ 𝛽𝑘𝐶𝑜𝑣𝑖,𝑘

8

𝑘=1

+ ∑ 𝑨̃𝑖𝑑𝜁

534

𝑑=1

+ 𝑓𝑝(𝑡𝑦𝑝𝑒) + 𝑓𝑟(𝑟𝑒𝑔) + 𝜀𝑖  

𝐌𝐨𝐝𝐞𝐥 𝟑: 𝜂(𝑠𝑖) = 𝛽0 + ∑ 𝛽𝑘𝐶𝑜𝑣𝑖,𝑘

8

𝑘=1

+ ∑ 𝑨̃𝑖𝑑𝜁

534

𝑑=1

+ 𝑓𝑟,𝑝(𝑟𝑒𝑔 × 𝑡𝑦𝑝𝑒) + 𝜀𝑖  

𝐌𝐨𝐝𝐞𝐥 𝟒: 𝜂(𝑠𝑖) = 𝛽0 + ∑ 𝛽𝑘𝐶𝑜𝑣𝑖,𝑘

8

𝑘=1

+ ∑ 𝑨̃𝑖𝑑𝜁

534

𝑑=1

+ 𝑓𝑝(𝑡𝑦𝑝𝑒) + 𝑓𝑟,𝑝(𝑟𝑒𝑔 × 𝑡𝑦𝑝𝑒) + 𝜀𝑖            (21) 

where, the terms 𝛽0, {𝛽𝑘}𝑘=1
8 , 𝑨 , 𝜁, 𝑓𝑝, 𝑓𝑟,𝑝 , and 𝜀 are intercept, fixed effect coefficients of the 8 

geospatial covariates (Table 1)  𝐶𝑜𝑣𝑖,𝑘 ( 𝑖 = 1, … , 2290; 𝑘 = 1, … , 8 ), 2290 ×  534  projection matrix, 

spatial autocorrelation term, settlement type (4 classes – cities, small urbans, towns and villages),  

settlement type – region interaction term, and the zero mean Gaussian nugget effect, respectively. 

The 10 regions in Cameroon along with the 4 settlement classes constituted a total of 4 × 10 (= 40) 

settlement type versus region interaction effects. Figure S3.1C of the supplementary material shows 

the mesh with 534 vertices which was employed for the model implementation. More details about 

the design of mesh can be found in Gomez-Rubio (2020) and some of the references therein. The 

projection matrix 𝑨   maps the observations unto the mesh nodes to facilitate computational 

efficiency at the mesh nodes.  

Prior Distribution 

Initial sensitivity analyses which involved the testing of various priors and hyperprior values 

indicated that the following INLA default priors and hyperpriors provided no worse fit:  

β0 ∼ Uniform(0,1) 

βk ∼ Normal(0, 0.01) 

ϑ ∼ Normal(0, 1000), where ϑ ∈ {fm, fp, frp} 

τε ∼ Gamma(0.01,0.01) 

                                         τw  ∼ Gamma(1, 0.00005)  where w ∈ {β, m, p, rp}    (22) 

However, an alternative prior specification using a joint penalized complexity (PC) prior 

(Simpson et al. 2017) could still be used.   

Finally, the predicted population density  D̂i  is obtained by as the exponent of the linear 

predictor, that is, 

D̂i = exp (β̂0 + ∑ β̂kxi,k

8

k=1

+ ∑ 𝐀̃idζ

534

d=1

+ f̂p(type) + f̂r,p(reg × type) + ε̂i)         (23) 

So that the predicted population count is obtained deterministically as  ŷi = D̂i × Bi.   

Model Fit Checks 

When implemented to the Cameroon combined household listing data, model 4 (which included 

spatial autocorrelation, settlement type and settlement type - region interactions random effects) has 

the lowest DIC and lowest CPO values according to Table 2, thus, provided the best fit for the data. 

This underscores the importance of jointly accounting for spatial autocorrelation and the random 

effects of data hierarchy across settlement types within various regions/administrative units within 

a bottom-up population modelling framework.  
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Table 2. Model fit indices for the top competing models. 

Model DIC WAIC CPO 

Model 1 1953.635 1453.671 6143.235 

Model 2 1944.475 1486.583 6108.889 

Model 3 1922.432 1636.743 6326.046 

Model 4 1921.678 1501.331 5990.725 

Posterior sampling and GRID Cell Predictions 

The INLA-SPDE approach utilized here allowed us to generate posterior marginal distributions 

of the best fit model (Model 4) which allowed us to draw more samples from the stationary 

distribution and carry out Bayesian statistical inference. This was implemented by using the 

‘inla.posterior.sample’ function of the ‘INLA’ package. However, to use the ‘inla.posterior.sample’ 

function, it needs to be activated during the model fitting by setting config = TRUE within the 

control.compute argument of the inla() function. The posterior samples were then used to predict 

population densities/numbers at high resolution prediction pixels. Further details of the posterior 

simulation and grid cell prediction approach are provided in Section S2 of the Supplementary 

document.  

Posterior predictions of the mean population count per 100m square grid cell (or pixel) across 

the entire spatial domain along with the corresponding inset maps are provided in Figure 3A.  The 

inset maps focused on the two major cities in Cameroon, namely, Yaoundé which is the 

administrative capital located in the Central region of Cameroon, and Douala which is the 

commercial capital and located within the Littoral region of Cameroon (see Figure 2). The zoomed in 

(inset) maps show overall higher population density and distribution per grid cell in Douala than in 

Yaoundé.
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Figure 3A. Predicted population counts across Cameroon at 100m-by-100m square, with corresponding inset maps created for the two major cities in Cameroon – Douala and Yaoundé. 

A minimum of ~1 and a maximum of ~799 people per grid cell was predicted across the country.This suggests the existence of more clustered but heterogeneous settlement patterns or 

higher concentration of various forms of residential high-rise buildings per grid cell in Douala than in Yaoundé. It could also mean that more high-rise buildings in Douala are used for 

residential purposes. 
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Figure 3B. Coefficient of variation (CV) of the predicted mean of population counts across Cameroon at 100m-by-100m square, with corresponding inset maps created for and within 

the two major cities in Cameroon – Douala and Yaoundé. 
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Estimates of uncertainties in the predictions of population counts across the grid cells were 

quantified through the coefficient of variations (CV) which was calculated as the ratio of the standard 

deviation of the predicted population count 𝜎𝑔 and the predicted mean count  𝑥̅𝑔 per grid cell. The 

CV provides the relative measures of variability across the grid cells and was provided across the 

entire spatial domain of Cameroon (Figure 3B). The values of the CV ranged from 0.2 to 0.8 with the 

highest values obtained in the highest population density areas of Doula but in mostly lowest 

population density areas of Yaoundé (Figure 3B, inset maps). The high variabilities in the high 

population density areas of Douala further reinforce the existence of more heterogeneous settlement 

patterns in Douala than in Yaoundé.  

Method Validation 

We used a two-pronged approach to validate our methods: 

1) A simulation study 

2) K-fold cross-validation using the combined real household listing datasets.  

Simulation Study  

First, the entire spatial domain was taken as a regular rectangle and divided into 11,008 grid cells 

at 10km-by-10km resolution (Figure S3.1 of the Supplementary document). Note that the 10km 

square grid cell resolution was chosen for computational convenience while maintaining spatial 

detail, but any other resolution could be used. We used the Cameroon boundary file, which was 

provided by the Cameroon National Institute of Statistics (NIS) to crop the grid cells to align perfectly 

with Cameroon boundary (Figure S2.1C).  To check the impacts of spatial autocorrelation, first, we 

assumed that the entire population was completely observed, i.e. 100% survey coverage provided 

through five (5) different data sources. We simulated 3 datasets using different spatial variance 

parameter values set at σξ ∈ {0.01, 0.1, 1} , where σξ = 0.01  - low spatial variance;  σξ = 0.1  – 

moderate spatial variance; and σξ = 1 for high spatial variance. Other input parameter values used 

in the simulation are presented in Table 3. 

For each of the 3 initially simulated datasets, different levels of missingness or proportions of 

survey coverages were allowed – 100%, 80%, 60%, 40%, 20%. Thus, altogether, 15 datasets were 

simulated and tested. And for ease of exposition, variabilities across the different data sources were 

assumed to be similar with a variance parameter of 0.01. The R scripts used for the implementation 

of the simulation study are available on the GitHub repository here: 

https://github.com/wpgp/Efficient-Population-Modelling-using-INLA-SPDE.   

Table 3. Simulation study parameters. 

Parameter Value 

Grid cell size 10,000 

Percentage spatial coverage, 𝑃% 100; 80; 60; 40; 20 

Smoothness parameter, 𝜈 1 

Range of spatial dependence, 𝜌 0.3 

Marginal variances, 𝜎𝜉  0.01, 0.1, 1 

Intercept and Coefficients of 5 geospatial covariates, 𝜷 

for building count simulation  

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝛽0 =2.21, 𝛽1 =0.06 𝛽2 =0.15, 

𝛽3=-0.21, 𝛽4=-0.18, 𝛽5=0.27 

Intercept and Coefficients of 5 geospatial covariates, 𝜷 

for population count simulation 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝛽0 =3.5, 𝛽1 =0.41 𝛽2 =0.08, 

𝛽3=-0.04, 𝛽4=-0.15, 𝛽5=0.22 

Model Fit Metrics (Simulation Study) 
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Figure 4 shows the model fit metrics calculated from the various combinations of the simulation 

parameter values. Apart from the absolute BIAS, model predictive ability increased with lower 

spatial variance across all fit metrics regardless of the proportion of missingness within the observed 

enumeration data. Interestingly, model predictive ability based on BIAS appears to be more sensitive 

to missingness proportions with model predictions becoming less accurate over lower spatial 

variance as the proportion of missing data increased. This finding underscores the importance of 

accounting for spatial variance/spatial autocorrelation while dealing with spatially clustered 

demographic datasets. But it also highlights the advantage of using multiple model fit metrics to 

validate and evaluate model performance.   

 

Figure 4. Model fit metrics calculated across the different data scenarios within the simulation study – low, 

medium and high spatial variance and different levels of survey coverage. These are A) the Pearson correlation 

coefficient (CORR), B) Root Mean Square Error (RMSE), C) Mean Absolute Error (MAE), and D) absolute bias. 

Further evaluation of the simulation study outputs was done by examining the correlations 

between the simulated population counts and the predicted population counts. Figure 5 shows the 

scatter plots of the simulated counts versus predicted counts produced across the different levels of 

data missingness over different spatial autocorrelation structures (i.e., different levels of spatial 

variances). Overall, the predicted population counts across the various levels of survey coverage (or 

missingness) within each level of spatial variance, correlated nicely with the corresponding simulated 

population counts. However, there are indications of higher prediction accuracy of population count 

for higher spatial dependence (i.e., lower spatial variance). For example, Figure 5B (moderate spatial 

variance) and Figure 5C (high spatial variance) show evidence of overestimation of the population 

counts when compared to the low spatial variance scenario in Figure 5A. This suggests a widening 

variability in the estimates of the population counts as the magnitude of spatial variance increased, 

thereby underscoring the importance of taking the potential effects of spatial autocorrelation into 

account in population modelling.  
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Figure 5. Scatter plots of the simulated population count versus predicted population counts at A) low spatial 

variance (𝜎𝜁
2 = 0.01); B) medium spatial variance (𝜎𝜁

2 = 0.1), and C) high spatial variance (𝜎𝜁
2 = 1).Low spatial 

variance (high spatial dependence) produced the highest prediction accuracy. The log-transformed version of 

Figure 5 is shown in Figure S3.2 of the supplementary document. 

k-Fold Cross-Validation (Real Data Application) 

k-fold cross validation was used to validate the proposed methodology and test the stability and 

the predictive ability of the model. Here, the observed motivating Cameroon dataset was used to 

investigate two forms of cross-validation approaches – in-sample and out-of-sample cross-validation. 

For the in-sample cross validation, all the datasets were used to train the model as described above. 

Then 20% of the data was randomly selected and used as a test set. In this case, the test set were 

random subsets of the training set. This was repeated for 5 times with a different set of test samples 

selected each time.  For each fold, the values of the test samples were set to NA and then predicted 

using the model parameters. Model fit metrics were then computed and stored. 

The out-of-sample cross-validation approach is slightly different and more rigorous. Here, the 

full data was randomly split into a 20% test set and 80% training set. The model was trained with the 

80% training set, while the withheld values of the 20% test set were predicted using the trained model 

parameters. In this case, the test set was not part of the training set. As in the in-sample strategy, the 

k-folds test sets were non-overlapping, and the values of model fit metrics were calculated after 
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model predictions with each test set. Thus, for each of the in-sample and out-of-sample cross-

validations we used k {=5} folds. The model fit metrics calculated across all the folds for each method 

along with their average values are presented in Table 3.  Model fit metrics based on the two 

strategies were stable and similar, and there is an adequate average correlation coefficient of at least 

98% for both strategies. The R scripts used for the implementation of the cross-validation strategies 

are available in the GitHub repository: https://github.com/wpgp/Efficient-Population-Modelling-

using-INLA-SPDE.  

Additionally, we carried out a visual inspection of the cross-validation outputs by displaying 

the violin plots with embedded notched boxplots of the predicted population counts for each test set 

fold (Figure 6). The findings further reinforced the outputs in Table 4, which highlighted the high 

level of accuracy and efficiency of our methodology. There was good agreement between the 

predicted values across each corresponding folds for both the in-sample and out-of-sample strategies. 

 

Figure 6. Violin plots with notched box plots of the predicted population counts for each of the 5 folds used for 

the real data cross-validation for both in-sample and out-of-sample cross-validations. The in-sample fit figures 

are looking similar to the out-of-sample ones indicating a good performance of our methodology. 
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Table 4. Model validation metrics obtained from the k{=5}-fold cross validation (in-sample and out-of-sample). 

  METRICS 

DATA FOLD MAE RMSE BIAS CORR 

In-Sample 

Fold 1 148.2161 314.2054 88.0447 0.9909 

Fold 2 133.7209 187.8360 76.3253 0.9895 

Fold 3 137.3771 216.0733 68.3691 0.9813 

Fold 4 137.5897 203.0070 73.1012 0.9796 

Fold 5 136.8034 214.6483 68.7344 0.9875 

Mean 138.7414 227.1540 74.9150 0.9858 

Out-of-Sample 

Fold 1 160.5572 350.7214 67.3685 0.9838 

Fold 2 135.8985 189.0198 38.2595 0.9870 

Fold 3 171.1974 292.6777 107.5242 0.9726 

Fold 4 157.2633 247.1928 121.7557 0.9774 

Fold 5 135.7502 199.6707 70.2284 0.9868 

Mean 152.1333 255.8565 81.02725 0.9815 

Comparing the Modelled Estimates with Projected Estimates  

The last population and housing census in Cameroon was in 19 years ago in 2005 and since then, 

official population data for Cameroon have been provided through projections that use the 2005 

census as the baseline. The projections were made using the cohort component approach (Preston et 

al., 2001). In Figure 7, we compare the 2022 official projections received from the Cameroon National 

Institute of Statistics (NIS) with the modelled estimates produced from our methodology for 

administrative unit 1 (regions). Given the different input data sources and modelling approaches 

used, we do not expect the output population estimates to agree, but the comparisons can be 

informative. 
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Figure 7. A bar plot for the comparison of the aggregated modelled population estimates for Cameroon with the 

2022 official population projections (National Institute of Statistics, 2016) provided by the Cameroon National 

Institute of Statistics. 

Notably, apart from the Nord Ouest and Sud Ouest regions, all of the regions showed slightly 

higher modelled estimates than the official projections. The lower modelled estimates for the Nord 

Ouest and Sud Ouest regions could be a result of prolonged high rates of conflicts and insecurity 

within the regions, thereby leading to high rates of displacement and out-migration that were not 

accounted for in the cohort component projections.  

One key strength of the modelling approach outlined here is that it takes advantage of more 

recent small area population data and geospatial covariates that can capture recent changes in 

population distributions and associated drivers, unlike the cohort component population projection 

approach used by the NIS. This feature of our modelling approach has led the Cameroon NIS to adopt 

the modelled estimates in supporting census preparation and as a sample frame in the design and 

implementation of health campaigns. 

The full datasets have been published online and can be download freely from WorldPop data 

repository.   

Discussions  

In this paper, we presented statistical population modelling method that allowed for the 

integration of multiple data sources as well as spatial autocorrelation within a bottom-up population 

modelling framework (e.g., Leasure et al., 2020; Boo et al., 2022; Darin et al, 2022; Nnanatu et al., 2024). 

For an improved computational efficiency and higher accuracy, we adapted the integrated nested 

Laplace approximation (INLA; Rue et al. 2009) statistical modelling technique, in conjunction with 

the stochastic partial differential equation (SPDE; Lindgren et al. 2011) strategies. Bayesian statistical 
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framework enabled us to integrate prior information whilst simultaneously estimating the 

hierarchical regression model parameters along with their uncertainties.  

The methodology was successfully validated using both an extensive simulation study and real 

data application. The aim of the simulation study was to evaluate the robustness of the methodology 

over different combinations of missing data proportions and spatial autocorrelation (spatial 

variance). Model performance in terms of prediction accuracy increased with lower proportion of 

missing data values and higher spatial autocorrelation. As a proof of concept, small area estimates of 

population were produced for Cameroon using 5 nationally representative household listing 

datasets. Modelled estimates were validated using k-fold cross-validation while model selection was 

based on the deviance information criterion (DIC; smaller values indicated better fit models).  

However, it is important to highlight the key limitations of our methodology: First, within the 

simulation study, we only the scenario where the different data sources do not differ significantly in 

terms of their data collection designs. Although, this was the case in the motivating dataset where all 

five data sources used the same sampling strategy. The data source random effect was found not to 

be statistically significant in preliminary studies and so it was not included in the later models. 

However, in contexts where data are collated from different sources with significantly different data 

collection strategies, it makes sense to explore the potential effects of different levels of data source 

variabilities using an extensive simulation study. Also, the use of household listing datasets and 

geospatial covariates from different years without explicitly accounting for the year difference effects, 

and the various sampling frames is likely to be a source of variability that needs to be investigated in 

future studies. Additionally, temporarily displaced populations due to insecurity may affect 

population estimates when building footprints are used as a covariate. These aspects will be explored 

further in future studies. 

Nevertheless, the methodology presented here is an important development within the context 

of population modelling and will serve to provide more accurate small area population data required 

to address several population data gaps across many countries. Our modelling approach draws upon 

more recent small area population data and geospatial covariates to estimate population numbers at 

unsampled locations thereby capturing recent drivers of population changes/density and 

distributions. As noted, this is a key strength of our approach over the commonly used population 

projection methods like the cohort component population projection method (e.g., Smith et al., 2013). 

These datasets which were produced in close collaboration with the Cameroon National Institute of 

Statistics are publicly available (https://data.worldpop.org/repo/wopr/CMR/population/v1.0/) and 

now being used by the Cameroon NIS in supporting census preparation and as a sample frame in the 

design and implementation of health campaigns in Cameroon.  

Finally, we have made the R programming codes used to implement the methodology publicly 

available (https://github.com/wpgp/Efficient-Population-Modelling-using-INLA-SPDE) and easily 

accessible to facilitate its reproducibility and easier adaptation in different contexts by students, 

researchers and policymakers.  

Supplementary Materials: Supplementary material which contains a description of the posterior simulation, 

and some relevant figures is available here: https://github.com/wpgp/Efficient-Population-Modelling-using-

INLA-SPDE/blob/main/Bayesian_Geostat_Pop_Mod_MethodsX_supplementary.pdf. 
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