

1 A robust cross-sectional assessment of the impacts of COVID-19
2 pandemic on the prevalence of female genital mutilation among 0 -
3 14 years old girls in Nigeria

4 Corentin Visée^{1,2*}, Camille Morlighem^{1,2,3} and Chibuzor Christopher Nnanatu^{4,5**}

5 1 Department of Geography, University of Namur, Namur, Belgium

6 2 ILEE, University of Namur, Namur, Belgium

7 3 Fonds National de la Recherche Scientifique (F.R.S-FNRS), Brussels, Belgium

8 4 WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United
9 Kingdom

10 5 Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria

11 *Corresponding Author: corentin.visee@unamur.be

12 ** Corresponding Author: cc.nnanatu@soton.ac.uk

13 **Background**

14 Female genital mutilation (FGM) is a human rights violation that still affects more than 3
15 million girls aged 0-14 years each year. To achieve the Sustainable Development Goal 2030
16 agenda, efforts have been made at the local, national and international levels to end the
17 practice by the year 2030. However, the recent COVID-19 pandemic may have reversed the
18 progress made due to increased rates of early marriage of girls, violence against children and
19 school closures during lockdowns. Although some surveys have examined changes in FGM
20 prevalence over the COVID-19 period, changes at the national and sub-national levels among
21 0-14 years old girls have not been quantified.

22 **Objectives**

23 This study aimed to understand the potential impacts of the COVID-19 pandemic on the
24 likelihood of FGM among girls aged 0-14 years, and whether it affected progress towards the
25 elimination of FGM.

26 **Design**

27 We used Bayesian hierarchical regression models implemented within the integrated nested
28 Laplace Approximations (INLA) frameworks.

29 **Methods**

30 We modelled the likelihood and prevalence of FGM among girls aged 0-14 years before and
31 after the COVID-19 pandemic in Nigeria, with respect to individual and community-level
32 characteristics, using Bayesian hierarchical models. We used the 2018 Demographic and
33 Health Survey as the pre-COVID-19 period and the 2021 Multiple Indicator Cluster Survey as
34 the post-COVID-19 period.

35 **Results**

36 At the state level, FGM prevalence varied geographically and increased by 23% and 27% in the
37 northwestern states of Katsina and Kana respectively. There were 11% increase in Kwara and
38 14% increase in Oyo. However, at the national level the prevalence of FGM was found to
39 decrease from 19.5% to 12.3% between 2018 and 2021. Cultural factors were identified as the
40 key drivers of FGM among 0-14 years old girls in Nigeria. The changes in the likelihood of girls
41 undergoing FGM across the two time periods also varied across ethnic and religious groups
42 following COVID-19 pandemic.

43 **Conclusion**

44 Our findings highlight that FGM is still a social norm in some states/regions and groups in
45 Nigeria, thereby highlighting the need for a continued but accelerated FGM interventions
46 throughout the country.

47 **Keywords:** Bayesian hierarchical modelling, spatial analysis, DHS, MICS, social norms, FGM
48 abandonment

49 Introduction

50 Female genital mutilation (FGM) is a practice involving the partial or complete removal of the
51 external female genitalia for no medical reason ¹⁻³. This practice is known to have adverse
52 effects on both the psychological and physical health of women as FGM practices are painful
53 and traumatic, including an increase in neonatal deaths compared to women who have not
54 undergone any form of FGM ^{1,3,4}. The practice of FGM has its roots in ancient community
55 practices and is seen as a way to control sexual behaviour of women and ensure purity before
56 marriage ⁵. While the practice has been reduced in several countries around the world thanks
57 to the efforts of local communities, governments, national and international organisations ⁶,
58 UNICEF estimates that about two hundred million girls and women have undergone at least
59 one form of FGM, with large disparities across world regions and religious, social and cultural
60 groups ^{2,3,7}. FGM practice is indeed highly influenced by local and cultural practices, resulting
61 in social sanctions against women who are not cut, including immediate divorce, forced
62 excision, curses and ancestral wrath ⁸. Furthermore, the community enforcement mechanism
63 described in ⁸ shows that once girls are cut, they are rewarded with public recognition and
64 gifts, and are seen as women, allowing them to participate in adult social functions.

65 Recent estimates by the World Health Organization show that 30 million girls aged 0-15 years
66 are at risk of undergoing FGM in the next decade ⁹. Although the global prevalence of FGM is
67 declining, this is not enough to meet the United Nations Sustainable Development Goal (SDG)
68 5.3 on gender equality, which calls for an end to the practice and other forms of gender-based
69 violence (GBV) by 2030 ^{7,10}. In addition, the global downward trend in the practice of FGM
70 may have been interrupted in recent years by the COVID-19 crisis in 2020, which resulted in
71 lockdowns, school closures and the diversion of health resources. ¹¹. Research has shown that
72 in South Africa, lockdowns and the associated economic consequences (i.e. loss of work and
73 reduced income) have led to food insecurity and physical violence against children,
74 particularly girls ^{12,13}. Former cutters who had abandoned the practice, as well as new cutters,
75 turned to the practice in hopes of coping with the loss of income ¹⁴. This loss of income in
76 households with children may also have led to early marriage of girls to earn money, thereby
77 increasing FGM of girls as a prerequisite for marriage ¹¹. Surveys conducted in East and West
78 Africa have shown that the lockdown was seen by practitioners as an undetected way of
79 performing FGM on girls ¹¹. At the onset of the COVID-19 pandemic, it was estimated that the
80 pandemic would result in 2 million more cases of FGM than in a non-pandemic scenario ¹⁵.
81 This potential increase in the global incidence of FGM cases must be added to the natural
82 population increase in regions where FGM is practiced, meaning that while prevalence is
83 decreasing, the absolute number of girls cut is increasing ¹. In some countries, such as Nigeria,
84 prevalence has decreased among women aged 15-49, but not among girls, with an increase
85 from 16.9% in 2013 to 19.2% in 2018, despite a 2015 law (i.e. the VAPP Act) banning the
86 practice of FGM ¹⁶. Furthermore, Nigeria has a high regional variation in FGM prevalence ^{17,18}
87 and a high economic burden due to the practice of FGM ¹⁹. This has led several authors,

88 including ^{18,20,21}, to investigate the spatio-temporal evolution of FGM prevalence patterns
89 using Bayesian hierarchical models.

90 While some qualitative studies have explored the impact of the COVID-19 pandemic on FGM
91 prevalence in Nigeria ^{11,22} no research to date has used a Bayesian hierarchical modelling
92 framework to examine this impact on Nigerian girls aged 0-14 years, accounting for individual
93 and community-level drivers of FGM and providing uncertainty around estimates of likelihood.
94 This study aims to fill this gap by analysing how FGM prevalence and likelihood have evolved
95 over the pandemic, using nationally representative datasets from the Demographic and
96 Health Survey (DHS) and the Multiple Indicator Cluster Survey (MICS). We examined temporal
97 trends in the prevalence of FGM among girls between 2018 and 2021 across different cultural,
98 social, and geographic groups in Nigeria, controlling for both community (e.g. community
99 support for FGM, geopolitical zone, community prevalence of FGM) and individual-level (e.g.
100 mother's education level, mother's FGM status) drivers of FGM.

101 Methods

102 Study data and variables

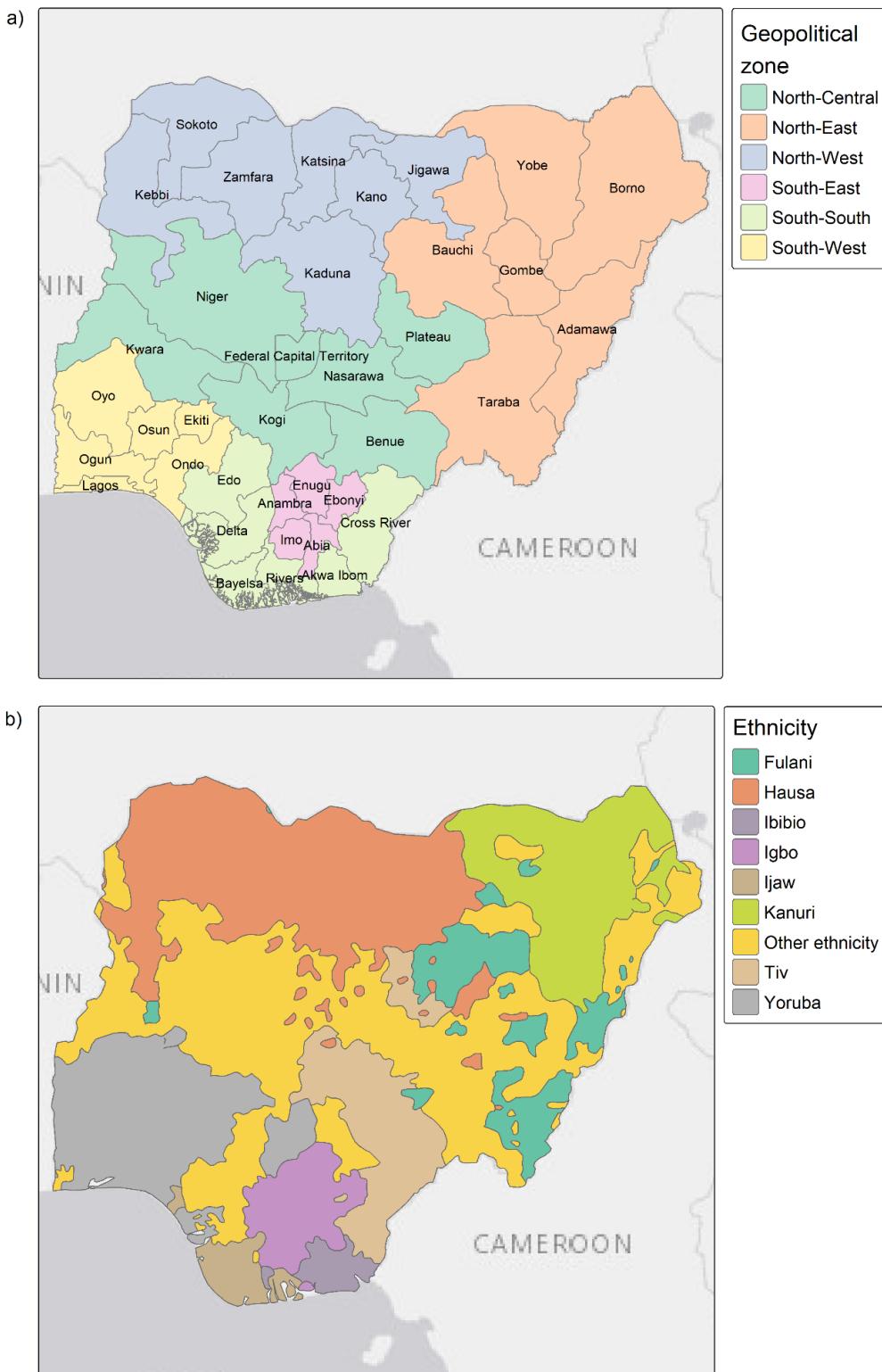
103 We used data from the DHS conducted in Nigeria in 2018 for the pre-COVID-19 period, and
104 data from the Nigerian MICS in 2021 for the post-COVID-19 period. The MICS and the DHS
105 used a similar sampling design strategy: primary sampling units, or clusters, were first selected
106 with probability based on their population size, and then a group of 25-30 households in each
107 cluster was randomly selected. The full methodology for sampling the DHS and the MICS
108 datasets using stratified multistage sampling, including the methodology for estimating the
109 optimal sample size through a specific power analysis called power allocation (see section 1.6

110 of ²³ for DHS and ²⁴ for MICS), determining sampling weights, and reducing sampling error, are
111 detailed in ²³ and in ²⁴ for DHS and MICS respectively. Women aged 15-49 in each of the
112 selected households were interviewed using the Women's Questionnaire (available in ²⁵ for
113 DHS and in ²⁶ for MICS), which includes a module on FGM. Women who have ever heard of
114 FGM were asked about their FGM status, their opinion on the continuation of the practice,
115 and the FGM status of their girls, if any, among other FGM-related questions. After data checks
116 and cleaning, we retained data on 41,821 women and 24,143 girls aged 0-14 years from the
117 2018 DHS dataset collected from 1,400 clusters ²⁵. From the 2021 MICS, we extracted data on
118 40,326 women and 19,034 girls from 1,755 clusters ²⁶. We then followed the appropriate DHS
119 and MICS procedures ^{25,26} to obtain representative estimates of FGM-related characteristics,
120 following other studies ^{20,27,18,21}. We have followed the STROBE Guidelines developed in ²⁸
121 when preparing the manuscript.

122 *Statistical Analysis*

123 The statistical model used in this study follows the Bayesian hierarchical regression modelling
124 framework ²⁹⁻³¹. The dependent variable was a binary variable indicating the FGM status of a
125 Nigerian girl aged 0-14 years, taking the value of 1 if the girl had been cut and 0 if she had not
126 been cut at the time of the survey for each dataset. Explanatory variables included individual-
127 level characteristics of the girls and their mothers (see
128 Table 1). We also included the sampling weights of each survey as a covariate to ensure the
129 representativeness of the sample.

130 As the practice of FGM is also known as a social norm, in which the decisions of individuals
131 (mothers) are influenced by the shared beliefs and practices of the majority in the community
132 (defined here as the survey cluster) ³²⁻³⁴, we also examined variables that are indicative at the


133 community level. These included the geographic location of women and girls (i.e. geopolitical
134 zones as shown in Figure 1a and urban/rural residence), as people who live closer together
135 are more likely to be part of the same community and therefore follow similar socio-cultural
136 norms 20. Other community-level variables are listed in

137 Table 1. We also included an Ethnic Fractionalisation Index ²⁰ (EFI), which ranges from 0 to 1
138 and indicates the ethnic mix in a community, with mono-ethnic communities having an EFI
139 close to 0 and multi-ethnic communities with groups of equal size having an EFI close to one.

140 **Table 1.** Individual- and community-level characteristics investigated in this study.

Level	Characteristics
Individual	Mother education, mother age, girl age, household wealth quintile, mother marital status, ethnicity, religion, mother support for FGM continuation, mother FGM status
Community	Geopolitical zone, residence, percentage of women with at least secondary education, percentage of women supporting FGM continuation, percentage of women that are cut, EFI, main religion in community, main wealth quintile in community

141

142

143 **Figure 1.** Maps of Nigeria's states, the Federal Capital Territory (FCT), geopolitical zones (a) and ethnic
 144 groups (b). The administrative boundaries shapefile was downloaded from GADM. Data on ethnicity
 145 was obtained from the “Geo-referencing of ethnic groups” (GREG) dataset ³⁵.

146 In multi-ethnic communities, it may be easier for members of the community to choose not
147 to practise FGM if at least one of the ethnic groups has abandoned the practice. Conversely,
148 in mono-ethnic communities where FGM is still a social norm, it may be more difficult for
149 individuals to oppose the practice ²⁰. The EFI is calculated using:

$$EFI = 1 - \sum_{k=1}^n s_k^2 \quad (1)$$

150 where s_k is the proportion of the k^{th} ethnic group in a community with $n \geq 2$ ethnic groups.
151 Main Nigerian ethnic groups are shown in Figure 1b. Note that the MICS religion and ethnicity v
152 ariables are only collected at household level and are therefore based on the household head,
153 whereas in the DHS we used the mother's religion and ethnicity.

154 Bayesian hierarchical modelling

155 In contrast to previous work ^{18,20} that used Markov chain Monte Carlo (MCMC) algorithms to
156 model the likelihood of FGM among girls and women, we used logistic Bayesian hierarchical
157 modelling within the integrated nested Laplace approximation (INLA) ²⁹, which offers an
158 improvement over MCMC in terms of computational requirements. This allowed us to account
159 for the effect of individual-level and community-level variables and spatial autocorrelation on
160 a girl's FGM status, coded 0 if not cut and 1 if cut, and to generate posterior estimates of FGM
161 prevalence including uncertainty estimates. Our Bayesian logistic model is expressed as
162 follows:

$$\text{logit}(p_i) = \beta_0 + z_i' \beta + f_1(x_{i1}) + \dots + f_p(x_{ip}) + f_{\text{str}}(s_i) + f_{\text{unstr}}(s_i) + \beta_w \text{weight} \quad (2)$$

163 Where p_i is the probability of girl i being cut (random variable y) following a Bernoulli
164 distribution, β_0 is the intercept, β is the vector of regression coefficients of the z_i' vector of
165 covariates and f_1, \dots, f_p are smooth functions included to account for the non-linear effect
166 of covariates such as the girl's current age, the age of her mother, the proportion of women
167 cut in the community and the proportion of women in the community who support the
168 continuation of FGM^{18,20}. To adjust for the representativeness of the sample, the sample
169 weight (with regression coefficient β_w) of the survey respondents was added as a covariate.
170 To assess the extent to which individual and community-level characteristics influence a girl's
171 FGM status, we fitted several Bayesian models based on different combinations of individual-
172 and community-level variables (see
173 Table 1).

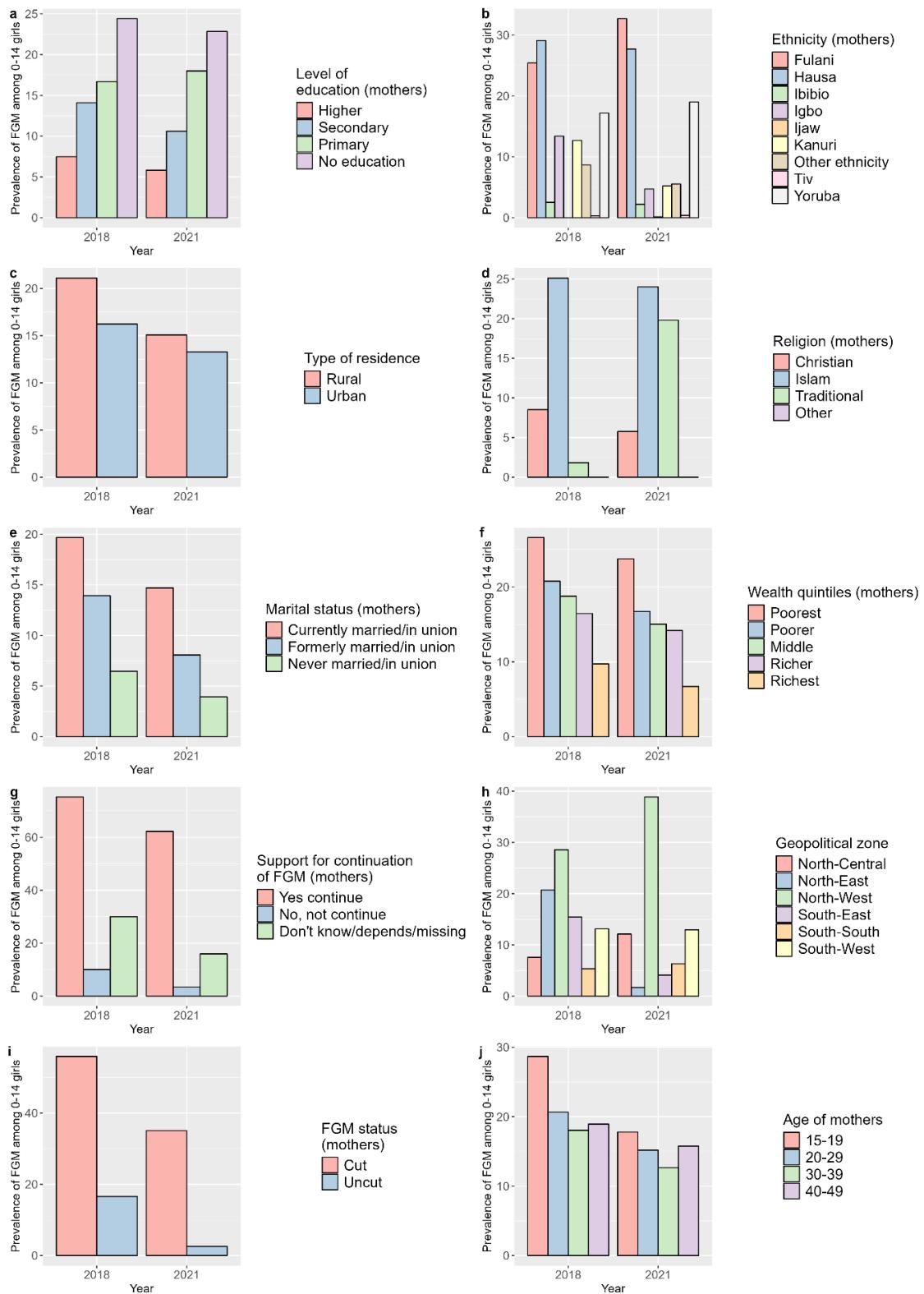
174 In addition to using individual and community-level variables, we performed Bayesian
175 modelling with structured $f_{str}(s_i)$ and unstructured $f_{unstr}(s_i)$ spatial random variation across
176 the 37 states of residence of girls and their mothers. The structured effects account for spatial
177 autocorrelation between neighbouring states, while the unstructured effects represent the
178 remaining spatial variation not included in the covariates and the spatially correlated effects.
179 The structured spatial effects of the models are expressed as an intrinsic conditional
180 autoregressive (iCAR) *Besag* model³⁶. The unstructured spatial effects follow a zero-mean
181 independent and identically distributed (i.i.d.) Gaussian prior. All model structures tested in
182 this study are shown in Table 2.

183 **Table 2.** Bayesian model specifications

Complexity	Model	Specification

Low	m1	$\beta_0 + z_i' \beta + f_1(x_{i1}) + \dots + f_p(x_{ip}) + \beta_w \text{weight}$
	m2	$\beta_0 + z_i' \beta + f_1(x_{i1}) + \dots + f_p(x_{ip}) + f_{\text{str}}(s_i) + \beta_w \text{weight}$
High	m3	$\beta_0 + z_i' \beta + f_1(x_{i1}) + \dots + f_p(x_{ip}) + f_{\text{str}}(s_i) + f_{\text{unstr}}(s_i) + \beta_w \text{weight}$

184 To compare all models, we calculated the Deviance Information Criteria (DIC) for m1, m2 and
 185 m3 to select the best-fitting model (i.e. the model that lowered the DIC). To compare the use
 186 of individual-, community- and both individual and community-level variables in the models,
 187 we estimated the R^2 (i.e. the square of the correlation between observations and predictions),
 188 root mean square error (RMSE) and mean absolute error (MAE) between posterior estimates
 189 and weighted observed estimates of FGM prevalence aggregated at the state level. In
 190 addition, we tested the performance of the best (lowest DIC) Bayesian model using a 5-fold 5-
 191 repeated cross-validation and calculated accuracy (proportion of correct predictions to all
 192 predictions), precision (proportion of true positives to all predictions), recall (proportion of
 193 true positives to all positives) and the Area Under Curve (AUC). The model estimates of the
 194 regression coefficients β are presented as posterior odd ratios (POR).


195 **Results**

196 **Descriptive analysis**

197 Over the COVID-19 pandemic period, the national prevalence of FGM among girls aged 0-14
 198 years decreased from 19.2% to 14.1%, as calculated from DHS 2018 and MICS 2021 data,
 199 respectively. However, this national declining pattern masks heterogeneities when FGM
 200 prevalence is aggregated across individual and community-level characteristics that influence
 201 girls' risk of undergoing FGM.

202 *Individual-level characteristics*

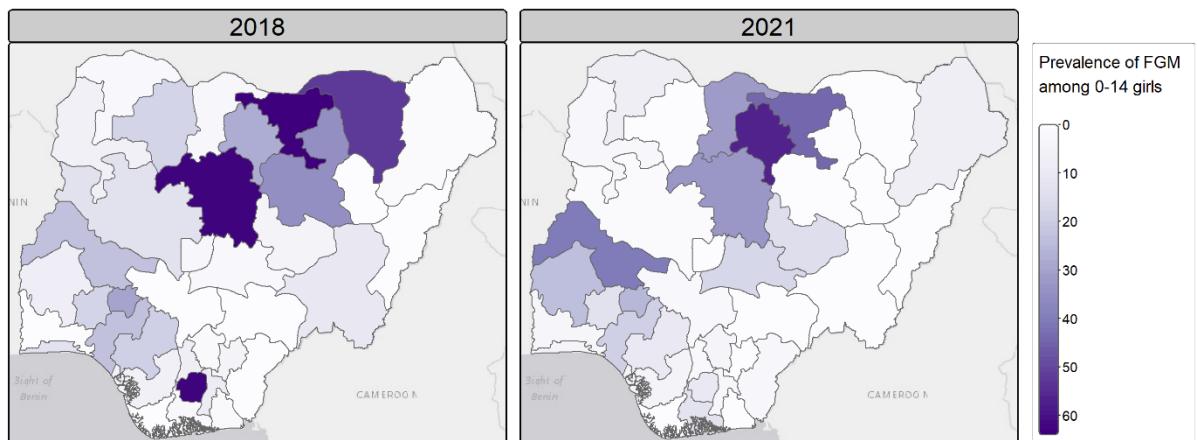
203 Between 2018 and 2021, the prevalence of FGM among girls aged 0-14 years decreased at all
204 levels of several individual-level variables, consistent with the overall national decline. For
205 example, FGM prevalence decreased regardless of mothers' marital status, but remained
206 higher among girls whose mothers were currently in a union (i.e. 19.7% and 14.7%) compared
207 to those formerly in a union (i.e. 13.9% and 8.1%) and never in a union (i.e. 6.5% and 3.4%)
208 (see Figure 2 and Table S1). FGM prevalence among girls also decreased across all age groups
209 of their mothers, with the largest decrease among girls whose mothers were aged 15-19 years
210 (i.e. from 28.7% to 17.8%), although this group still had the highest prevalence in 2021. In
211 addition, girls whose mothers had undergone FGM or supported its continuation had a much
212 higher FGM prevalence than girls whose mothers had not been cut or were against FGM,
213 though the prevalence declined over 2018-2021. Finally, FGM prevalence decreased across all
214 wealth quintiles, with wealthier households having lower rates in both 2018 and 2021.

215

216 **Figure 2.** Observed FGM prevalence by individual- and community-level characteristics in 2018 (DHS)
217 and 2021 (MICS).

218

219 While FGM prevalence decreased among daughters of mothers with no, secondary, or higher
220 education, it increased among daughters of mothers with primary education. FGM prevalence
221 increased among traditionalists from 18%, while it decreased among Christians and Muslims,
222 with the latter remaining the highest practising group in 2021 (24.0%). FGM prevalence
223 decreased among ethnic groups such as the Ibibio, Igbo and Kanuri between 2018 and 2021,
224 but remained high among the Hausa (i.e. 29.1% to 27.7%), and increased significantly among
225 the Fulani (i.e. 25.4% to 32.7%), who became the highest-practising group in 2021 (Figure 2 a
226 nd Table S1).


227 FGM prevalence also varied by girls' age, with the highest prevalence in 2018 among girls aged
228 2-4 years (20.0%), but shifting to girls aged 10-14 years (15.9%) by 2021 (Figure 3a). Despite a
229 decrease in FGM prevalence across all age groups, the largest decrease was seen in the 2-4
230 year age group. Most girls continued to be cut by the age of 1 year or younger, although there
231 was a slight increase in girls cut at 10-14 years in 2021 (Figure 3b).

232

233 **Figure 3.** FGM prevalence by age group of girls (a) and percentage of girls cut by age at cutting (b).

234 *Community-level characteristics*

235 At the community level, FGM prevalence among girls aged 0-14 years showed different trends,
236 not always in line with the national decline. For example, FGM prevalence increased among
237 girls in the North-West (i.e. 28.6% to 38.9%) and North-Central (i.e. 7.6% to 12.1%) zones,
238 while it decreased from almost 20% in the North-East zone (i.e. 20.7% to 1.7%) (Figure 2 and Table
239 S1). In the southern areas, FGM prevalence decreased in the South-West and South-East
240 zones but increased in the South-South zone (i.e. from 5.3% to 6.3%) between 2018 and 2021.
241 Disparities emerged at the state level, as shown in Figure 4.

243 **Figure 4.** Observed prevalence of FGM in girls aged 0-14 by Nigerian states and FCT in (a) 2018 (DHS)
244 and (b) 2021 (MICS). Shapefile of administrative units was downloaded from GADM.

245 In the North-West, Jigawa and Kaduna experienced large declines (63.8% to 43.6% and 63.1%
246 to 32.8%, respectively), while prevalence rose from nearly 30% in the neighbouring states of
247 Katsina and Kano, which became the state with the highest FGM prevalence in 2021 (see
248 Figure 4 and Table S2). In the North-East, FGM prevalence decreased in most states, with decreases
249 of almost 35% in Bauchi and 52% in Yobe, bringing the prevalence of FGM down to
250 0.0% in 2021. Different patterns are observed in the North-Central, with a decline in the

251 practice of FGM in some states (e.g. Niger, FCT) but an increase of more than 15% in others
252 (e.g. Kwara and Nasarawa) (see Figure 4 and Table S2). In the South-West, states like Ondo, O
253 sun and Lagos experienced modest declines of 4-5%, while Oyo experienced increases of up
254 to 15%. Most of the south-eastern states show a decrease in FGM prevalence among girls,
255 with a sharp decrease in Imo from 62.8% to 9.8% over 2018-2021. In the South-South, FGM
256 prevalence decreased in Edo or Akwa Ibom, but increased for girls in Rivers and Cross River
257 (Figure 4 and Table S2). Lastly, FGM prevalence decreased in girls living in both rural and urban a
258 reas over 2018-2021, while remaining higher in rural areas (Figure 2 and Table S1).

259 Bayesian hierarchical modelling

260 *Model metrics*

261 The selection of the best fitting Bayesian model (among m1, m2, and m3) to model the
262 likelihood of FGM was done by minimising the Deviance Information Criteria (DIC) (Table 3).
263 Considering that a difference below 2 does not significantly affect the model fit and therefore
264 the simpler model is better ³⁷, m2 (i.e. using Besag structured spatial effect) performs better
265 than any of the others (four times out of six models), with the use of individual-level variables
266 providing the best fit. We calculated the R^2 , RMSE and MAE by comparing the observed and
267 posterior predicted prevalence of FGM among girls at the state level (Table 4). The best
268 performance is achieved with individual-level variables, with an R^2 of 0.97, indicating almost
269 perfect agreement between observations and predictions (Figure S1).

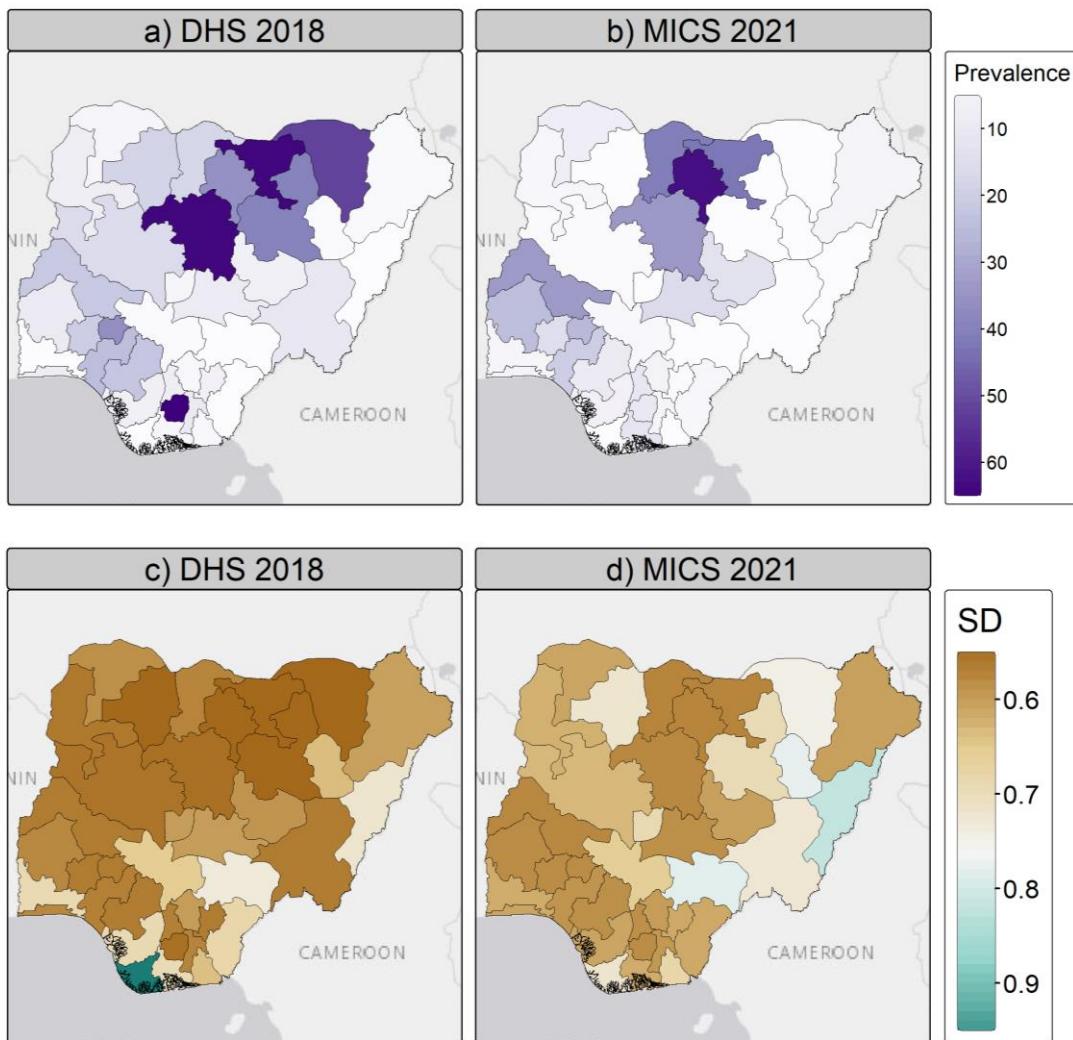
270

271 **Table 3.** Model DIC

	DHS 2018			MICS 2021		
Model	m1	m2	m3	m1	m2	m3
Individual	10293.1	8710.5	<u>8707.6</u>	6809.7	<u>5554.2</u>	5555.7
Community	10670.6	<u>10479.1</u>	10480.1	7506.0	<u>7119.0</u>	7119.3
Individual & community	10862.3	<u>10479.7</u>	10479.9	7491.0	7015.3	<u>7010.4</u>

272 *Note.* Models that best fit the data are underlined, i.e. models with the lowest DIC, taking as a rule of
273 thumb that for a difference in DIC of 2 simpler models are preferred.

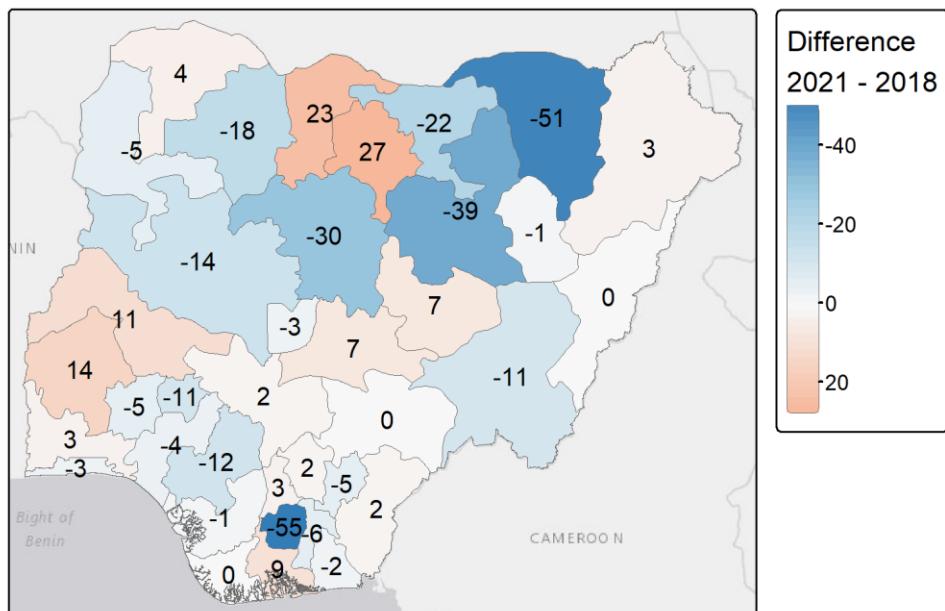
274 **Table 4.** R^2 , RMSE and MAE scores


	DHS 2018			MICS 2021		
Model	R^2	RMSE	MAE	R^2	RMSE	MAE
Individual (m2)	<u>0.97</u>	<u>3.46</u>	<u>2.01</u>	<u>0.97</u>	<u>2.69</u>	<u>1.34</u>
Community (m2)	0.88	8.95	5.49	0.97	2.70	1.34
Individual & community (m2)	0.87	9.09	5.69	0.97	2.69	1.35

275 *Note.* Best performing models are underlined, i.e. models with the lowest RMSE, MAE and highest R^2 .
276 RMSE, MAE and R^2 values are calculated by comparing the observed and posterior predicted FGM
277 prevalence per state from the best fit model as indicated by the DIC in Table 3 (m2, using spatial r
278 andom effects).

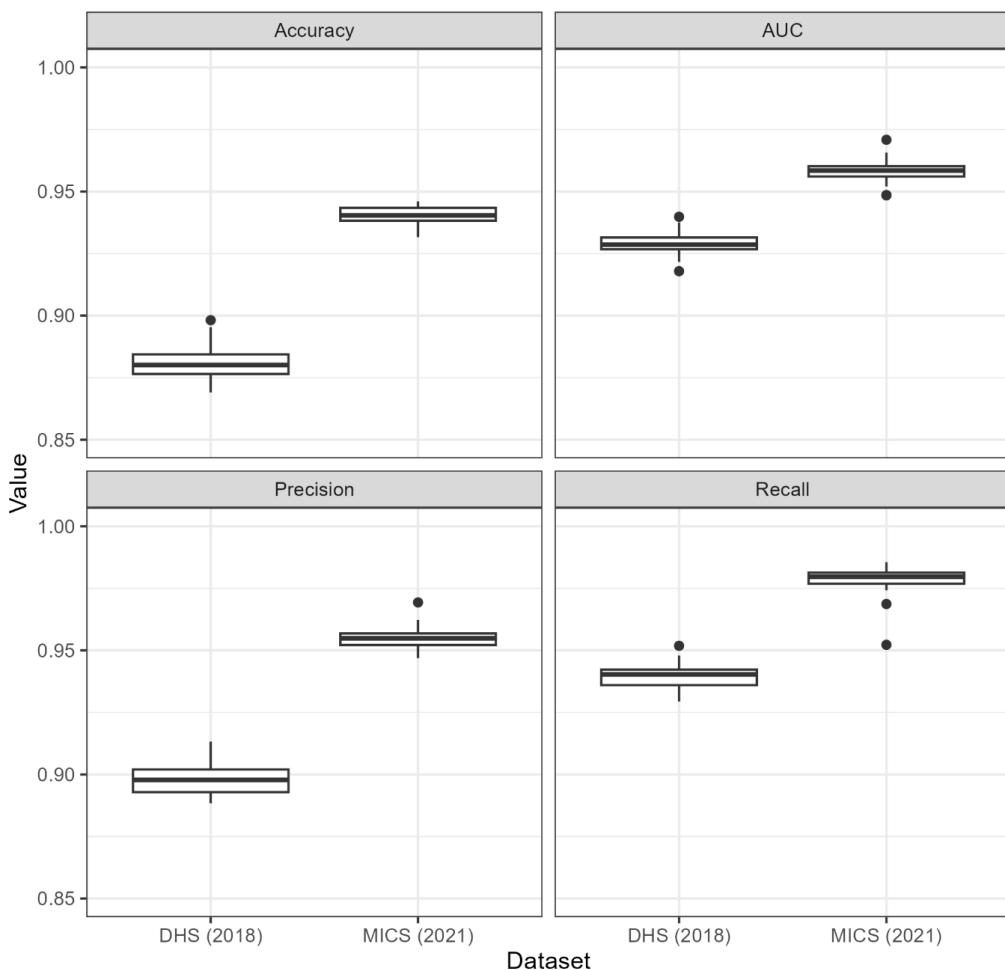
279 *FGM prevalence estimates*

280 Using model m2 with structured spatial random effects and individual-level variables, we
281 mapped the posterior estimates of FGM prevalence among girls and the standard deviations
282 of these estimates (Figure 5). At the national level, the predicted prevalence of FGM decreased
283 from 19.5% in 2018 to 12.3% in 2021. The standard deviation of the estimates is quite low, but


284 slightly higher in Bayelsa in 2018 and Benue in 2021. The highest predicted prevalence is in
285 Imo with 65.4% in 2018 and Kano with 62.3% in 2021.

286
287 **Figure 5.** Posterior predicted FGM prevalence among girls aged 0-14 years (a,b) and uncertainty (c,d)
288 estimates. Posterior estimates are based on the m2 model using individual-level variables and
289 structured spatial random effects for both DHS 2018 and MICS 2021. SD stands for standard deviation.
290 Shapefile downloaded from GADM.

291 At the state level, FGM prevalence shows significant heterogeneity. Some states, such as Imo
292 (South-East) and Yobe (North-East), have seen reductions of more than 50% (see Figure 6).
293 Neighbouring states to Imo experienced little to no change, and some, such as Rivers, actually


294 experienced increases. In the North, Kaduna and Bauchi saw a decrease in prevalence of more
295 than 30%, but neighbouring states such as Katsina and Kano experienced increases of more
296 than 20%. Other increases were seen in Oyo (South-West) and Kwara (North-Central), while
297 prevalence in neighbouring states (e.g. Niger, Ekiti) decreased between 2018-2021. Some
298 states showed no change between 2018 and 2021 and kept FGM prevalence close to zero (e.g.
299 Adamawa, Gombe, Benue). Spatial random effects are discussed in the supplementary
300 information (see Figure S2).

301
302 **Figure 6.** Difference in the posterior predicted FGM prevalence per state between 2021 (MICS) and
303 2018 (DHS). Redish areas indicate that the FGM prevalence was higher in 2021 than in 2018, while
304 blue areas indicate that the FGM prevalence has decreased over the period. Posterior estimates are
305 based on the m2 model using individual-level variables and structured spatial random effects for both
306 DHS 2018 and MICS 2021. Note that the numbers superimposed on the states are rounded to the
307 nearest integer.

308 *Cross-validation*

309 The performance of the best-fit model (i.e. m2) was assessed using a cross-validation
310 framework and is presented as accuracy, AUC, precision and recall (Figure 7). Overall, all
311 metrics show high performance, with values close to 1 and low dispersion across all 25 folds.
312 Models using MICS data perform better than models using DHS, although they are relatively
313 close.

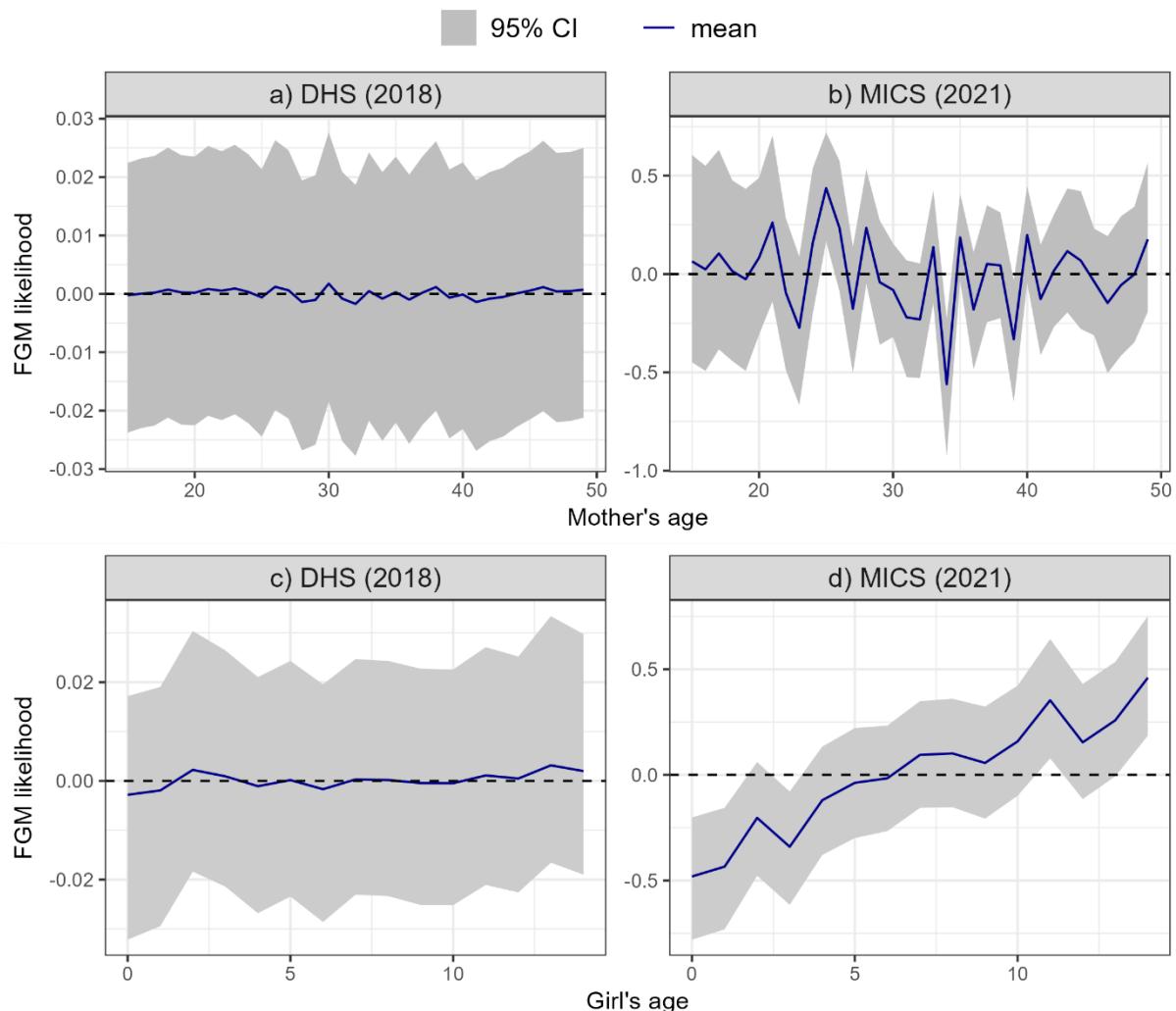
314

315 **Figure 7:** Result of the 5-fold 5-repeated cross-validation of model m2 using individual variables

316 *Posterior odd ratios*

317 We calculated the posterior odd ratios (POR) estimates from the best fit models, i.e. m2 for
318 both DHS 2018 and MICS 2021 (see Table 3), and presented them in Table 5.

319 **Table 5.** Posterior odd ratios from the Bayesian models fitted to DHS 2018 and MICS 2021 data.


Variables		Levels			DHS 2018			MICS 2021		
					POR	2.5%	97.5%	POR	2.5%	97.5%
		(Intercept)			<u>0.022</u>	<u>0.014</u>	<u>0.034</u>	<u>0.0076</u>	<u>0.0046</u>	<u>0.0123</u>
Mother education	No education (ref)	1	-	-	1	-	-			
	Higher	<u>0.708</u>	<u>0.522</u>	<u>0.961</u>	0.8362	0.5912	1.1829			
	Secondary	0.971	0.802	1.176	1.1939	0.9537	1.4947			
	Primary	1.033	0.870	1.227	1.1743	0.9472	1.4557			
Mother marital status	Currently married/in union (ref)	1	-	-	1	-	-			
	Formerly married/in union	<u>0.764</u>	<u>0.585</u>	<u>0.997</u>	0.8262	0.6036	1.131			
	Never married/in union	1.207	0.575	2.531	<u>2.099</u>	<u>1.047</u>	<u>4.2078</u>			
Mother age		See Figure 8a			See Figure 8b					
Girl age		See Figure 8c			See Figure 8d					
Mother support for FGM continuation	No, not continue (ref)	1	-	-	1	-	-			
	Yes continue	<u>16.436</u>	<u>14.324</u>	<u>18.861</u>	<u>26.728</u>	<u>22.280</u>	<u>32.072</u>			
	Don't know/depends/miss									
	ing	<u>2.311</u>	<u>1.942</u>	<u>2.750</u>	<u>3.620</u>	<u>2.972</u>	<u>4.409</u>			
Mother FGM status	Uncut (ref)	1	-	-	1	-	-			
	Cut	<u>8.145</u>	<u>7.022</u>	<u>9.461</u>	<u>10.992</u>	<u>8.991</u>	<u>13.439</u>			
Wealth quintile	Poorest (ref)	1	-	-	1	-	-			
	Poorer	0.937	0.799	1.100	1.006	0.797	1.271			
	Middle	0.952	0.797	1.137	1.060	0.831	1.354			

	Richer	0.804	0.655	0.987	1.212	0.934	1.572
	Richest	0.606	0.473	0.777	0.800	0.578	1.105
Ethnicity	Fulani (ref)	1	-	-	1	-	-
	Hausa	0.930	0.768	1.127	0.478	0.356	0.643
	Ibibio	0.851	0.274	2.643	0.246	0.086	0.706
	Igbo	1.043	0.637	1.708	0.241	0.130	0.447
	Ijaw	0.000	0.000	0.000	0.016	0.003	0.078
	Kanuri	0.614	0.405	0.932	0.242	0.112	0.524
	Other	0.552	0.438	0.696	0.147	0.096	0.224
	Tiv	0.086	0.010	0.778	0.140	0.027	0.733
	Yoruba	0.809	0.541	1.210	0.654	0.419	1.021
Religion	Christian (ref)	1	-	-	1	-	-
	Islam	1.344	1.059	1.705	1.998	1.564	2.553
	Traditional	0.163	0.035	0.754	2.779	1.533	5.039
	Other	0.000	0.000	0.017	0.000	0.000	0.002
Sampling weight		1.018	0.933	1.110	0.8901	0.8209	0.9652

320 *Note.* Posterior odd ratios (POR) are derived from the m2 model using individual-level variables and
 321 i.i.d. spatial random effects for both DHS 2018 and MICS 2021. Underlining indicates significant
 322 relationships, i.e. where the 2.5% and 97.5% CIs are both either greater or less than 1.

323 In 2018, daughters of mothers with higher education are less likely to undergo FGM than
 324 daughters of mothers with no education (Table 5). Also in 2018, girls whose mothers were p
 325 reviously in a union are less likely to undergo FGM than girls whose mothers are currently
 326 married. By 2021, this relationship is no longer significant, and girls whose mothers have never
 327 been in a union are more than twice as likely to perform FGM as girls whose mothers are
 328 currently married. Mothers' support for the continuation of FGM also strongly influence the
 329 likelihood of FGM among their daughters; girls are 16 and 27 times more likely to be cut if

330 their mothers support the continuation of FGM in 2018 and 2021, respectively. Girls whose
 331 mothers were cut are 8 and 11 times more likely to be cut in 2018 and 2021, respectively
 332 (Table 5). In 2021 the likelihood of FGM varies strongly with mother's age, particularly b
 333 etween the ages of 20 and 45, before increasing for older mothers (Figure 8a). FGM likelihood
 334 also rises sharply as a function of girl's age (Figure 8d).

335
 336 **Figure 8.** Non-linear effects (log-odds) of mother's age (a,b) and girl's age (c,d) on FGM likelihood.
 337 Estimates are based on the m2 model using individual-level variables and structured spatial random
 338 effects for both DHS 2018 and MICS 2021.

339 Cultural factors also influence the likelihood of FGM, with Muslim girls more likely to
340 experience FGM than Christians in 2018 and even more so in 2021 (Table 5). Traditionalists a
341 re less likely to perform FGM in 2018, but the relationship is reversed in 2021, with girls in
342 traditional households almost three times more likely to be cut than those in Christian
343 households. Being from an ethnic group other than Fulani reduces the likelihood of FGM
344 among girls, with this effect being significant for Ijaw, Kanuri, Tiv and others in 2018, and for
345 all ethnic groups except Yoruba by 2021. Finally, girls from wealthier households are less likely
346 to be cut in 2018, but household wealth does not affect the likelihood of FGM differently in
347 2021 (Table 5).

348 Discussion

349 The lockdown during the COVID-19 pandemic led to the closure of schools and other safe
350 places, leading to an increase in domestic violence, including against children. In addition, in
351 Nigeria and other low-income countries, COVID-19 led to a large loss of income, resulting in
352 food insecurity^{38,39}. Economically affected households needed other sources of income and
353 adopted adaptation strategies to continue earning money^{38,39}. One such strategy was to
354 marry off daughters to receive the bride price, which in turn increased FGM on girls as it is
355 seen as a prerequisite for marriage. While qualitative research has explored these patterns
356 through interviews with the population, there is a lack of nationally representative data and
357 statistical analyses to quantify the impact of the COVID-19 pandemic on FGM practice. The
358 aim of this study was to fill this gap by examining the likelihood and prevalence of FGM among
359 girls aged 0-14 years in Nigeria, before and after COVID-19, at the national and sub-national
360 levels. We modelled girls' FGM status with respect to individual- and community-level FGM

361 drivers using a Bayesian hierarchical model implemented within INLA. We also compared the
362 added value of explicitly including unstructured and structured spatial random effects with a
363 baseline model that included only covariates, and cross-validated the best-fit model.

364 Using the best-fit model, the predicted national FGM prevalence was 19.5% in 2018 and 12.3%
365 in 2021. However, this decrease between 2021 and 2018 was not shared across religious and
366 ethnic groups, with an increase among traditionalists and among the Fulani, Ijaw, Tiv and
367 Yoruba. Geographically, FGM prevalence increased in three geopolitical zones: North-West,
368 North-Central and South-South. Within these geopolitical zones, most of the increase was
369 located in Kwara, Oyo, Katsina and Kano states. However, in some states, such as Imo (South-
370 East) and Yobe (North-East), the prevalence of FGM decreased by more than 50%. These
371 findings are consistent with previous work^{18,27} that highlighted strong spatial variation in FGM
372 prevalence between 2003 and 2017 among Nigerian girls aged 0-14 years. They found that
373 FGM prevalence, which was initially higher in southern Nigerian states, decreased in these
374 areas between 2008 and 2017, but increased in the North-West, resulting in an average
375 increase in prevalence at the national level (from 17.3% to 25.3% over 2003-2017). In our
376 study, we showed that FGM is still more prevalent in the northern parts of the country, even
377 more so after the COVID-19 period, while also highlighting some resurgence in the south.

378 Of all the sets of variables, we found that using only individual-level variables led to the best
379 model fit (DIC) and validation metrics (RMSE, MAE, R^2) when aggregated at the states level.
380 That is, a girl's FGM status here was more related to the characteristics of her mother than to
381 the characteristics of her community, whether before or after the COVID-19 pandemic. Girls
382 whose mothers were highly educated were less likely to have undergone FGM in 2018, but
383 not after the pandemic. In 2021, mother support for continuing FGM dramatically increased

384 the likelihood of FGM compared to 2018, as mothers who supported FGM were 26 times more
385 likely to have their daughters cut in 2021. This is consistent with ^{18,21}, where support for FGM
386 significantly increased the likelihood of FGM for girls in Nigeria, and in Ethiopia ⁴⁰. Another
387 highly significant factor was the FGM status of mothers, where girls were 8 times more likely
388 to be cut in 2018 and 11 times more likely in 2021 if their mothers were also cut, supporting
389 the social-norms theory ²¹. Similar results were found in Kenya ²⁰ and in Ethiopia ⁴⁰. We also
390 found that the likelihood of being cut was higher among never-married mothers after COVID-
391 19 compared to currently married mothers. This could be explained by the increased
392 vulnerability of single-income households to external changes (such as the COVID-19
393 pandemic), such as single mothers having to find another source of income as they don't have
394 a husband's salary. They may rely more on bride price as an alternative source of income and
395 hence to marry off more of their daughters during the COVID-19 pandemic compared to
396 currently married women.

397 While belonging to the traditionalist religious group reduced the likelihood of a girl being cut
398 in 2018, the effect was reversed in 2021, when they were more than twice as likely to be cut
399 as Christians. Similarly, surveys conducted in Abuja in 2019 found that FGM was more likely to
400 be performed on daughters among traditionalist women than any other religious group ⁴¹.
401 They also found that the FGM status of the mother affected the FGM status of a girl differently
402 across three generations of mothers. This is consistent with our findings, as we found a strong
403 non-linear relationship between the likelihood of a girl being cut and the age of her mother in
404 2021 (Figure 8b), with girls from younger (before 20) and older (after 40) mothers more likely to
405 be cut. Further studies could assess the effect of a mother's generation on the likelihood of
406 a daughter being cut, especially as older mothers may be more open to reassessing their social
407 norms and practices, and younger mothers may lack the moral authority to challenge beliefs

408 around FGM ⁴², potentially leading to a tipping point in the way FGM is viewed. In our study,
409 girls were more likely to be cut if their mother was Muslim than if she was Christian, in line
410 with ²⁰. Another significant variable was ethnicity, where in 2021, the likelihood of FGM was
411 lower in all other groups than the Fulani, except for the Yoruba. In contrast, in ²¹, the likelihood
412 of FGM is significantly lower among the Yoruba than the Fulani. However, ethnicity is a
413 significant variable in Nigeria for all survey years considered in ¹⁸.

414 The use of unstructured spatial effects did not improve the quality of the fit compared to the
415 use of structured spatial effects. This means that the spatial distribution of FGM prevalence is
416 explained by spatial autocorrelation between neighbouring states rather than heterogeneity
417 between states. This may be related to the use of some variables in the model, such as
418 ethnicity. Indeed, ethnic groups are highly clustered in space, with some FGM-practising
419 ethnic groups spanning several neighbouring states and using structured spatial effects can
420 account for this spatial distribution (Figure 1). ⁴³ further highlights that the distribution of FGM i
421 n Nigeria mainly follows the distribution of ethnic groups. This may be because FGM is strongly
422 rooted in certain ethnic groups and FGM is passed down generationally through mothers and
423 daughters of the same ethnic group, unless there are social sanctions against women who
424 perform FGM. This suggests that the norm in the mother's ethnic group needs to change
425 before there is a shift from performing FGM to not performing FGM ⁴⁴. This is consistent with
426 the social norm theory, which suggests that households are more likely to practice FGM if it is
427 the norm in their community ³²⁻³⁴. Conversely, in groups where FGM prevalence is low, social
428 pressure is expected to be lower because the reference group is one that does not cut their
429 daughter, leading to even less FGM among daughters ⁴². Apart from ethnicity, another variable
430 that is strongly clustered in space is access to education for children, which is between 95%

431 and 100% in the South-South and South-East geopolitical zones, ultimately affecting school
432 attendance and time spent in safe places (schools) for girls^{45,46}.

433 Limitations

434 This study has a few limitations. Since FGM status is recorded at the time of the survey (DHS
435 or MICS), a girl who has not been cut may still be cut in the future. Survival analysis techniques
436 can account for this by right-censoring girls not yet cut, providing insight into the likelihood of
437 being cut in the future. In addition, the DHS and MICS data contain information on the FGM
438 status of daughters as reported by their mothers. Mothers may also falsely report that their
439 girls have undergone FGM in order to conform to community norms or to avoid repercussions
440³². There may also be differences in reporting between urban and rural areas as a recent study
441 in Ebonyi state showed that urban residents were more likely to report any violence, abuse
442 and exploitation to relevant authorities during the COVID-19 period, compared to rural
443 residents⁴⁷. Also, women in southern Nigeria tend to be more educated, aware of any laws
444 against FGM and have been the focus of anti-FGM interventions, leading to potential under-
445 reporting in these areas, whereas women in the north would be more likely to report the true
446 rate of FGM²¹. Finally, we note that although the DHS and MICS are very similar in terms of
447 sampling strategy and sample composition to ensure sub-national representativeness, and
448 have been used together in previous studies in Nigeria^{18,48}, there may still be some
449 differences. Thus, future studies may focus on examining the differences between these two
450 nationally representative household surveys and how they might affect the accuracy of model
451 parameter estimates.

452 Conclusion

453 The aim of our study was to understand the evolution of the practice of FGM among girls aged
454 0-14 years in Nigeria between the pre-COVID-19 period, 2018, and the post-COVID-19 period,
455 2021. Using a Bayesian spatial model and individual covariates, we were able to generate
456 estimates of FGM prevalence and select significant drivers of FGM among girls in 2018 and
457 2021. Despite the posterior estimates showing a national decline from 19.5% in 2018 to 12.3%
458 in 2021, several states experienced significant increases in prevalence. Thanks to two
459 nationally representative surveys conducted across the country (DHS and MICS), we found
460 that FGM among girls is strongly associated with individual characteristics of mothers, rather
461 than community-level characteristics. Regarding the evolution of the drivers of FGM during
462 the period 2018-2021, we found that while being in the two highest wealth quintiles reduced
463 the likelihood of FGM before the COVID-19 pandemic, this was not the case after the
464 pandemic. We also found that, compared to the Fulani, all other ethnic groups were less likely
465 to practice FGM after COVID-19 in 2021. The study could help achieve SDG 5 on gender
466 equality, which calls for the practice of FGM to be ended by 2030. We encourage further
467 qualitative research on the impact of COVID-19 on FGM practice to understand the influence
468 of confinement and loss of income on girls' FGM status as well as the resurgence of FGM
469 practice in several states of Nigeria.

470 Abbreviations

471 DHS: Demographic and Health Surveys; DIC: Deviance Information Criteria; EFI: ethnic
472 fractionalisation index; FCT: Federal Capital Territory; FGM: Female genital mutilation; iCAR:
473 intrinsic conditional autoregressive; IID: independent and identically distributed; INLA:

474 Integrated Nested Laplace Approximation; MAE: Mean absolute error; MCMC: Markov chain
475 Monte Carlo; MICS: Multiple Indicator Cluster Surveys; POR: posterior odd ratio; RMSE: root
476 mean square error; SD: Standard deviation; SDG: Sustainable Development Goal; VAPP Act:
477 Violence against Persons (Prohibition) Act.

478 Declarations

479 Ethics approval and consent to participate.

480 Permission to use the DHS data for Nigeria (2018) was granted by the DHS Program upon
481 registration and request at https://dhsprogram.com/data/dataset_admin/login_main.cfm.
482 Permission to use MICS data for Nigeria (2021) was granted by the MICS program upon
483 registration and request at <https://mics.unicef.org/visitors/sign-in>.

484 Consent for publication.

485 Not applicable.

486 Authors' contributions

487 Corentin Visée: Investigation, Writing - original draft, Writing - review & editing, Validation,
488 Methodology, Software, Formal analysis, Data curation.

489 Camille Morlighem: Data curation, Visualization, Validation, Methodology, Investigation,
490 Formal analysis, Software.

491 Chibuzor Christopher Nnanatu: Conceptualization, Funding acquisition, Validation, Project
492 administration, Supervision, Resources.

493 **Acknowledgements**

494 Not applicable.

495 **Funding**

496 None.

497 **Conflict of interest statement**

498 The authors declare that they have no conflict of interests.

499 **Availability of data and materials**

500 DHS 2018 and MICS 2021 data for Nigeria can be accessed through the DHS
501 (https://dhsprogram.com/data/dataset_admin/login_main.cfm) and MICS
502 (<https://mics.unicef.org/visitors/sign-in>) programmes respectively.

503 **References**

- 504 1. World Health Organization. Eliminating female genital mutilation: an interagency
505 statement - OHCHR, UNAIDS, UNDP, UNECA, UNESCO, UNFPA, UNHCR, UNICEF,
506 UNIFEM, WHO. Geneva: World Health Organization, 2008.
- 507 2. Andro A, Lesclingand M, Grieve M, et al. Female Genital Mutilation. Overview and
508 Current Knowledge. Population 2016; 71: 217–296.
- 509 3. Libretti A, Bianco G, Corsini C, et al. Female genital mutilation/cutting: going
510 beyond urogyneologic complications and obstetric outcomes. Arch Gynecol
511 Obstet 2023; 308: 1067–1074.
- 512 4. Bertuit J, Luzolo Nzinga A-M, Jaouan ML, et al. Systematic Review of Obstetric and
513 Neonatal Complications Associated With Female Genital Mutilation. Nursing for
514 Women's Health 2023; 27: 152–161.
- 515 5. Obiora OL, Maree JE, Nkosi-Mafutha N. Female genital mutilation in Africa:
516 Scoping the landscape of evidence. International Journal of Africa Nursing
517 Sciences 2020; 12: 100189.

518 6. Mohan V. Navigating Intimate Spaces of Violence: Global Legal Responses on
519 Female Genital Mutilation/Cutting. In: Anurag PM, Dwivedy S (eds) Violence in
520 Intimate Spaces: Law and Beyond. Singapore: Springer Nature, pp. 107–128.

521 7. Farouki L, El-Dirani Z, Abdulrahim S, et al. The global prevalence of female genital
522 mutilation/cutting: A systematic review and meta-analysis of national, regional,
523 facility, and school-based studies. PLoS Med 2022; 19: e1004061.

524 8. Mberu B. Female genital mutilation/cutting in Nigeria: A scoping review. Evidence
525 to End FGM/C: Research to Help Women Thrive. New York: Population Council.
526 Epub ahead of print 2017. DOI: 10.31899/rh7.1023.

527 9. WHO. Female genital mutilation. Female genital mutilation: fact sheet,
528 <https://www.who.int/news-room/fact-sheets/detail/female-genital-mutilation>
529 (2024, accessed 31 March 2024).

530 10. UNICEF. Female genital mutilation / cutting: a global concern. New York: UNICEF,
531 <https://www.unhcr.org/fr-fr/en/media/too-much-pain-female-genital-mutilation-and-asylum-european-union-statistical-overview> (2016).

533 11. Orchid Project. Impacts of COVID-19 on female genital cutting,
534 https://www.orchidproject.org/wp-content/uploads/2020/11/COVID_female_genital_cutting_FGC_policy_briefing_Ori
535 chid_Project_FINAL.pdf (2020).

536 12. Mahlangu P, Gibbs A, Shai N, et al. Impact of COVID-19 lockdown and link to
537 women and children's experiences of violence in the home in South Africa. BMC
538 Public Health 2022; 22: 1029.

540 13. UNICEF. Female genital mutilation and the humanitarian development nexus:
541 practical ways to support programme-level implementation,
542 <https://hdl.handle.net/20.500.14041/3501> (2022, accessed 7 December 2023).

543 14. Mubaiwa O, Bradley T, Meme J. The gendered impact of COVID-19 on FGM.
544 Development in Practice 2022; 32: 840–850.

545 15. Matanda D, Walgwe EL. A research agenda to strengthen evidence generation and
546 utilisation to accelerate the elimination of female genital mutilation.

547 16. Orchid Project. Nigeria: the law and FGM,
548 [https://www.fgmcri.org/media/uploads/Law%20Reports/nigeria_law_report_v3_\(a](https://www.fgmcri.org/media/uploads/Law%20Reports/nigeria_law_report_v3_(august_2022).pdf)
549 ugust_2022).pdf (2018, accessed 18 February 2024).

550 17. UNICEF. UNICEF warns FGM on the rise among young Nigerian girls. UNICEF warns
551 FGM on the rise among young Nigerian girls, <https://www.unicef.org/nigeria/press-releases/unicef-warns-fgm-rise-among-young-nigerian-girls> (2022, accessed 1
552 April 2024).

553

554 18. Nnanatu CC, Atilola G, Komba P, et al. Evaluating changes in the prevalence of
555 female genital mutilation/cutting among 0-14 years old girls in Nigeria using data
556 from multiple surveys: A novel Bayesian hierarchical spatio-temporal model. PLoS
557 ONE 2021; 16: e0246661.

558 19. Poix S, Elmusharaf K. The cost of inaction on preconception health in Nigeria: An
559 economic impact analysis. Global Public Health 2024; 19: 2361782.

560 20. Kandala, Nnanatu, Atilola, et al. A Spatial Analysis of the Prevalence of Female
561 Genital Mutilation/Cutting among 0-14-Year-Old Girls in Kenya. IJERPH 2019; 16:
562 4155.

563 21. Nnanatu CC, Fagbamigbe AF, Afuecheta E, et al. Spatially varying intergenerational
564 changes in the prevalence of female genital mutilation/cutting in Nigeria : lessons
565 learnt from a recent household survey. Applied Spatial Analysis and Policy 2023;
566 16: 703-727.

567 22. Massay EM, Emy Susanti, Sutinah. Impact of COVID-19 on increasing female
568 genital mutilation (FGM) in Africa: A study of Tanzania and Nigeria. Jurnal
569 Masyarakat, Kebudayaan dan Politik 2022; 35: 134-146.

570 23. ICF International. Demographic and Health Survey Sampling and Household
571 Listing Manual. Calverton, Maryland, U.S.A.: ICF International.,
572 https://dhsprogram.com/pubs/pdf/DHSM4/DHS6_Sampling_Manual_Sept2012_DHSM4.pdf (2012, accessed 4 October 2024).

574 24. UNICEF. MICS Tools: Survey design, <https://mics.unicef.org/tools> (2024, accessed
575 4 October 2024).

576 25. National Population Commission - NPC/Nigeria, ICF. Nigeria Demographic and
577 Health Survey 2018. Abuja, Nigeria, and Rockville, Maryland, USA: NPC and ICF,
578 <https://dhsprogram.com/pubs/pdf/FR359/FR359.pdf> (2019, accessed 1
579 September 2023).

580 26. National Bureau of Statistics (NBS), UNICEF. Multiple Indicator Cluster Survey
581 2021, Survey Findings Report. Abuja, Nigeria: National Bureau of Statistics and
582 UNICEF, 2022.

583 27. Kandala N-B, Atilola G, Nnanatu C, et al. Female genital mutilation/cutting in
584 Nigeria: Is the practice declining? A descriptive analysis of successive
585 demographic and health surveys and multiple indicator cluster surveys (2003-
586 2017). Population Council, 2020. Epub ahead of print 2020. DOI:
587 10.31899/rh11.1038.

588 28. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of
589 Observational Studies in Epidemiology (STROBE) statement: guidelines for
590 reporting observational studies. Ann Intern Med 2007; 147: 573-577.

591 29. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian
592 models by using integrated nested Laplace approximations. *Journal of the Royal
593 Statistical Society: Series B (Statistical Methodology)* 2009; 71: 319–392.

594 30. Bakka H, Rue H, Fuglstad G-A, et al. Spatial modelling with R-INLA: A review.
595 *WIREs Comput Stat*; 10:e1443, <https://doi.org/10.1002/wics.1443> (2018).

596 31. Dogucu AAJ Miles Q Ott, Mine. Bayes Rules! An Introduction to Applied Bayesian
597 Modeling, <https://www.bayesrulesbook.com/> (2021, accessed 13 September
598 2023).

599 32. Shell-Duncan B, Wander K, Hernlund Y, et al. Dynamics of change in the practice of
600 female genital cutting in Senegambia: Testing predictions of social convention
601 theory. *Soc Sci Med* 2011; 73: 1275–1283.

602 33. Mackie G. Ending Footbinding and Infibulation: A Convention Account. *American
603 Sociological Review* 1996; 61: 999.

604 34. Mackie G. Social Dynamics of Abandonment of Harmful Practices: A new look at
605 the theory. 2009–06,
606 https://econpapers.repec.org/paper/ucfinwopa/inwopa09_2f61.htm (2009,
607 accessed 7 March 2024).

608 35. Weidmann NB, Rød JK, Cederman L-E. Representing ethnic groups in space: A new
609 dataset. *Journal of Peace Research* 2010; 47: 491–499.

610 36. Besag J, York J, Mollié A. Bayesian image restoration, with two applications in
611 spatial statistics. *Annals of the Institute of Statistical Mathematics* 1991; 43: 1–20.

612 37. Spiegelhalter DJ, Best NG, Carlin BP, et al. Bayesian Measures of Model Complexity
613 and Fit. *Journal of the Royal Statistical Society Series B: Statistical Methodology*
614 2002; 64: 583–639.

615 38. Ibukun CO, Adebayo AA. Household food security and the COVID-19 pandemic in
616 Nigeria. *African Development Review* 2021; 33: S75–S87.

617 39. Josephson A, Kilic T, Michler JD. Socioeconomic impacts of COVID-19 in low-
618 income countries. *Nat Hum Behav* 2021; 5: 557–565.

619 40. Geremew TT, Azage M, Mengesha EW. Hotspots of female genital
620 mutilation/cutting and associated factors among girls in Ethiopia: a spatial and
621 multilevel analysis. *BMC Public Health* 2021; 21: 1–18.

622 41. Anyanwu CE, Torpey K, Abiodun OP, et al. Variations in the Prevalence of Female
623 Genital Mutilation Among Reproductive-aged Women in Nigeria Across Three
624 Generations. *Int J MCH AIDS* 2022; 11: e548.

625 42. Shell-Duncan B, Moreau A, Wander K, et al. The role of older women in contesting
626 norms associated with female genital mutilation/cutting in Senegambia: A factorial
627 focus group analysis. *PLoS One* 2018; 13: e0199217.

628 43. 28 Too Many. Country profile: FGM in Nigeria,
629 [https://www.fgmcri.org/media/uploads/Country%20Research%20and%20Resources/Nigeria/nigeria_country_profile_executive_summary_v2_\(november_2017\).pdf](https://www.fgmcri.org/media/uploads/Country%20Research%20and%20Resources/Nigeria/nigeria_country_profile_executive_summary_v2_(november_2017).pdf)
630 (2016, accessed 4 April 2024).

632 44. Kandala N-B, Shell-Duncan B. Trends in female genital mutilation/cutting in
633 Senegal: what can we learn from successive household surveys in sub-Saharan
634 African countries? *Int J Equity Health* 2019; 18: 1–19.

635 45. Kazeem A, Jensen L, Stokes CS. School Attendance in Nigeria: Understanding the
636 Impact and Intersection of Gender, Urban-Rural Residence, and Socioeconomic
637 Status. *Comparative Education Review* 2010; 54: 295–319.

638 46. Onwuteaka C. Understanding access to education in Nigeria. GRID3,
639 <https://grid3.org/news/using-geospatialdata-to-understand-access-to-education-nigeria> (2020, accessed 4 April 2024).

641 47. Elom NA, Nwimo IO, Elom SO, et al. Emotional impact of COVID-19 lockdown and
642 mitigation options: A cross-sectional survey of households in Ebonyi State, Nigeria.
643 *SAGE Open Medicine*. Epub ahead of print 24 September 2021. DOI:
644 10.1177/20503121211032477.

645 48. Morlighem C, Visée C, Nnanatu CC. Comparison of FGM prevalence among
646 Nigerian women aged 15–49 years using two household surveys conducted before
647 and after the COVID-19 pandemic. *BMC Public Health* 2024; 24: 1866.

648

649