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Abstract. Deep learning models such as convolutional neural networks
and transformers have been widely applied to solve 3D object detection
problems in the domain of autonomous driving. While existing mod-
els have achieved outstanding performance on most open benchmarks,
the generalization ability of these deep networks is still in doubt. To
adapt models to other domains including different cities, countries, and
weather, retraining with the target domain data is currently necessary,
which hinders the wide application of autonomous driving. In this paper,
we deeply analyze the cross-domain performance of the state-of-the-art
models. We observe that most models will overfit the training domains
and it is challenging to adapt them to other domains directly. Existing
domain adaptation methods for 3D object detection problems are actu-
ally shifting the models’ knowledge domain instead of improving their
generalization ability. We then propose additional evaluation metrics –
the side-view and front-view AP – to better analyze the core issues of the
methods’ heavy drops in accuracy levels. By using the proposed metrics
and further evaluating the cross-domain performance in each dimension,
we conclude that the overfitting problem happens more obviously on
the front-view surface and the width dimension which usually faces the
sensor and has more 3D points surrounding it. Meanwhile, our experi-
ments indicate that the density of the point cloud data also significantly
influences the models’ cross-domain performance.

Keywords: 3D object detection · Cross domain · LiDAR point cloud ·
Deep learning · Generalization.

1 Introduction

3D object detection aims to localize and categorize different types of objects
in specific 3D space described by 3D sensor data (e.g., LiDAR point clouds).
Recently, the application of this technology has achieved significant improve-
ment due to the development of deep neural networks, especially in the field
of autonomous driving. Current 3D object detection methods mainly focus on
specific datasets, i.e., models will be trained and tested independently on a spe-
cific dataset. In doing so, a number of models achieved high performances on
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Fig. 1. LiDAR point cloud and image data from three datasets: KITTI [7], Waymo [17]
and nuScenes [2]. Point cloud density and image shapes are different due to different
sensor equipment. For the car objects close to the sensors, a large number of points are
collected and most shapes are clearly visible. While for those away from the sensors,
only a few points are collected and it is difficult to estimate the dimensions.

public benchmarks including nuScenes [2], Waymo [17], and KITTI [7] (see e.g.,
Figure 1). However, if the evaluation on a new dataset is needed, in most cases,
the training on the new dataset as well as modifications of some training hyper-
parameters are necessary. In other words, it is hard for models trained on one
dataset to adapt directly to another. These domain shifts may arise from differ-
ent sensor types, weather conditions [21] and object sizes [26] between different
datasets or domains. This domain adaptation problem is therefore a big chal-
lenge for real-world applications of existing 3D object detection methods, whose
retraining steps can be very slow and resource-consuming. It is thus significant
to understand the reasons for this cross-domain performance drop and propose
efficient methods to raise the cross-domain performance to the same level as
within-domain tasks.

The main factors influencing cross-domain performance can be divided into
the models and the domains (datasets). How the domains influence cross-domain
performances has been investigated in [21]. By comparing the performance of two
models [14,25] on several different datasets, the work in [21] has proved that the
difference in car size across geographic locations is one of the main challenges for
domain adaptation problems. It is then natural to ask: Will there also be any
crucial factors influencing the cross-domain performance on the side of mod-
els? Therefore, in this paper, our first goal is to investigate the cross-domain
performance of existing 3D object detection models with different inputs and
structures. We select representative LiDAR-only and multi-modal (i.e., LiDAR
+ RGB Image) methods including PV-RCNN [13], SECOND [24] and TransFu-
sion [1], some of which are based on 3D convolutional neural networks (CNNs)
and the others are based on transformers. Based on our results on three dif-
ferent datasets, i.e., KITTI [7], Waymo [17] and nuScenes [2], we find that all
the tested methods similarly fail on the cross-domain tasks, no matter they are
based on CNNs or transformers. A more interesting fact is that multi-modal
methods achieve poorer performance on some tasks than LiDAR-only methods,
even though more data information is taken.
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There have been some generic training methods trying to overcome the do-
main adaptation problem, which can also be considered explorations on the side
of models. By reproducing and analyzing one of the state-of-the-art (SOTA)
methods, ST3D [26], we surprisingly find that ideas in this field have still limited
performance, and more deep ideas are still needed to better solve this problem.

Meanwhile, we notice that current evaluation metrics mainly focus on the
average precision (AP) of 3D detection predictions and bird’s-eye view (BEV)
predictions, which sometimes are not sufficient to evaluate the performance dif-
ference between methods especially when different domains are involved. There-
fore, we propose two additional evaluation metrics – side-view AP and front-
view AP – to make fairer and more comprehensive comparisons. Inspired by
the conclusion in [21] that car size difference is the core reason for failure in
cross-domain tasks, we evaluate the side-view AP and front-view AP of existing
methods, as well as the overlaps between predictions and ground truth in every
single dimension.

Our experiments show that the performance under the side-view and front-
view metrics is similar, and the prediction accuracy in object length (i.e., depth)
is even higher than that in width. By further analyzing the absolute error in
each dimension, we prove that the higher overlap accuracy in length is actually
because length is usually much higher than width, and the absolute error in
length and width are similar. This conclusion might be contradictory to our
common sense at first glance, since when we look at the LiDAR point cloud
data such as shown in Figure 1, for most objects, only sides facing or close to
the LiDAR sensor can be completely captured. The results also illustrate that
the overfitting problem of models makes them not care about the completeness
of objects’ point cloud data in the target domain, but instead make similar
predictions as in the source domain where they are trained.

We, therefore, also suggest more investigations in the evaluation methods for
3D object detection, especially in cross-domain tasks, where the current mea-
surements usually focus on the overall overlap of the entire bounding boxes and
ignore the different degrees of influence by different dimensions. To summarize,
our main contributions are threefold:

– We analyze the cross-domain performance of representative models of dif-
ferent structures. Our results show that most existing models overfit to the
source domain and cannot directly perform well on other domains, no matter
whether based on CNNs or transformers. We also suggest that multi-modal
methods are harder to be adapted to new domains due to the inconsistency
of data and calibrations.

– We analyze one of the SOTA self-training methods ST3D for domain adap-
tation. Our results reveal a serious problem, i.e., the self-training method
ST3D actually shifts the knowledge distribution contained in the model to
the new domain, which cannot improve the models’ generalization ability,
but instead reduces the models’ detection ability on the source domain.

– We propose two additional evaluation metrics – the side-view AP and front-
view AP – to evaluate the models’ cross-domain performance more com-
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prehensively and locate the errors more accurately. Our results illustrate a
surprising phenomenon, i.e., although the incomplete point cloud data occurs
more in the length dimension than the width dimension of objects due to
occlusion, the cross-domain performance under the side-view and front-view
metrics is similar. This suggests that the poor cross-domain detection ability
of existing models/methods is not directly related to the objects’ incomplete
point cloud data, but more related to the overfitting problem caused by the
model structures and training strategy.

2 Related Work

3D object detection with point clouds. The common way of representing
real-world 3D space is using LiDAR point cloud data, which uses 3D points to
record the 3D environment. Although it benefits from accurate point locations,
the main challenge for LiDAR-based 3D object detection methods is finding the
best way to process the point cloud data. CNNs have been widely used in 2D
object detection problems; however, due to the sparsity and spatial disorder of
the point cloud data, they cannot be directly fed into the CNNs. Therefore,
current LiDAR-based methods either transform the point clouds into spatial
invariant formats to use CNN models or propose new methods that can learn
features directly from the 3D points. VoxelNet [28] and SECOND [24] encoded
point clouds into voxels so that features can be extracted by CNNs designed for
3D inputs. MV3D [4] projected point clouds into 2D spaces (i.e., the front view
and bird’s-eye view) and used 2D CNNs to extract features. PointRCNN [14]
applied PointNet++ [11] to obtain 3D point-wise features and directly learn the
3D proposals from the points. PV-RCNN [13] voxelized the point cloud data first
and then used key-point-wise features to keep more semantic features, in which
the combination of point-based and voxel-based methods greatly improves the
performance with acceptable computation cost.
3D object detection with images. While using 3D data (e.g., point clouds)
to detect 3D objects is a reasonable way, there is still a lot of interest in directly
adapting 2D methods to 3D fields, which mainly take 2D images as the input
data. The main challenge of applying 2D models to 3D problems is how to
estimate the depth information of the relevant 3D scene, which cannot be directly
obtained from the image data. In [15], the physical and visual height of objects
was used to estimate the depth. The work in [12] estimated the depth of every
pixel from the images to get 3D voxel features and projects the voxel features
into the bird’s-eye view for the final 3D detection. Although there have been
many trials on image-only 3D object detection problems, the lack of rich spatial
information still results in a large gap in the performance compared with that
predicted by models using the point cloud data.
3D object detection with multi-modal inputs. Since images contain richer
semantic information and point clouds contain more spatial information, it is
natural to explore the possibility of fusing these two types of data. Based on
the position of the fusion step in models, existing works on multi-modal inputs
can be divided into three categories. Earlier works [10,16] mainly focused on
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proposal-level and result-level fusions, in which the models fused the proposals
or final predictions obtained from the point cloud channel and the image channel
separately. Since the proposals or predictions are based only on one type of data
for each channel, both of them suffer from the disadvantages of specific data types
and therefore the fusions cannot achieve significantly better results than just
using the point cloud data. Afterward, the proposal of PointPainting [19] proved
that fusing these two data types in an early step, i.e., the point-level fusion, can
greatly improve performance. TransFusion [1] pointed out the limitations of hard
association in previous fusion models and proposed a soft association between
image features and point cloud features, which greatly increases the performance
to a higher level than point-cloud-only methods. In this paper, we will focus on
both the LiDAR-only methods and the multi-modal methods.
Domain adaptation. Domain adaptation has been widely used in 2D object
detection [9,20] and 2D semantic segmentation [5,8]. However, there are only
a few approaches specifically designed for 3D object detection. ST3D [26] and
ST3D++ [27] used self-training algorithms to generate pseudo labels and train
models on the target domain without ground truth. In [22], distillation methods
were proposed for LiDAR point clouds to overcome the beam difference between
datasets. The work in [21] normalized the object size of different datasets based
on additional prior knowledge. Our experiments below show that these existing
domain adaptation methods still have limited and unstable performance.

3 Datasets

KITTI. The KITTI object detection dataset [7] is one of the most popular
datasets in outdoor 3D object detection tasks. It contains 7,481 training samples
and 7,518 test samples. For each sample, KITTI provides its point cloud data
with a 64-beam Velodyne LiDAR sensor and its image data with stereo cameras.
Following existing works [3,13], the training set is further separated into 3,712
and 3,769 samples as the training and validation sets, respectively.
nuScenes. The nuScenes dataset [2] contains 28,130 training samples and 6,019
validation samples. Following [21], we treat the validation set as the test set and
re-split the training set into the training and validation sets. Furthermore, since
our experiments mainly focus on car detection, we filter out the samples that do
not contain any car objects. Finally, there are 8,614 training samples and 2,395
validation samples. For each sample, nuScenes provides its point cloud data with
a 32-beam LiDAR and its image data with five cameras for different angles.
Waymo. The Waymo open dataset [17] contains 122,000 training, 30,407 val-
idation, and 40,077 test samples. It is much larger than the other two above-
mentioned datasets. Following existing works, we sub-sample the training and
validation sets into 7,905 and 2,000 samples. It should be noted that subsampling
the dataset by such ratios will not significantly influence the final performance,
since Waymo collects the data as continuous frames and models in our experi-
ments do not consider this time-related information.
Data integration. Since most existing 3D object detection methods focus on
the performance within each specific domain/dataset, they often fine-tune the
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models for different datasets independently and ignore the influence of gaps
between them. However, to investigate the cross-domain performance of these
models, we must find a way to merge these datasets. We note that the fol-
lowing differences between datasets have a significant influence on the cross-
domain experiments: (i) the point cloud range; (ii) the origin of coordinates;
and (iii) the unit for preprocessing the point cloud data, such as voxel sizes in
voxel-based methods. Following the ideas in [21,26], some preprocessing meth-
ods are therefore adopted. For all datasets, we set the point cloud range to
[−75.2,−75.2,−2, 75.2, 75.2, 4] m and shift the whole point cloud space of differ-
ent datasets so that the X-Y plane always coincides with the horizontal plane;
following [26], we set the voxel size of all voxel-based methods to (0.1, 0.1, 0.15) m.

4 Setup and Metrics

4.1 Setup of 3D Object Detection Methods

To better investigate the influence of model structures on cross-domain perfor-
mance, we train and test the following models on KITTI, Waymo, and nuScenes
datasets. We first evaluate two representative LiDAR-only methods, i.e., PV-
RCNN [13] and SECOND [24], which are based on 3D CNNs. Afterward, we
test the performance of TransFusion [23], a transformer-based method that can
take both the LiDAR point clouds and RGB images as the input, to analyze the
influence of adding images in cross-domain tasks. We also compare the results
of TransFusion-L (i.e., the Transfusion that only takes LiDAR point clouds as
the input) with PV-RCNN and SECOND. Last, we apply ST3D [26], a SOTA
self-training method for domain adaptation problems in 3D object detection,
to PV-RCNN. Following the experiments in ST3D [26], we equip the SECOND
model with an extra IoU head for better performance. We first train PV-RCNN,
SECOND-IoU, and TransFusion-L using the OpenPCDet [18] toolbox with sug-
gested numbers of epochs and learning rates. Since OpenPCDet only supports
LiDAR-only models, we use another toolbox, MMDetection3D [6], for the com-
parison of TransFusion-L and TransFusion-LC.

We train the LiDAR-only model for 40 epochs with learning rate 5 × 10−5

and batch size 8, and further train with images for 20 epochs with the same
learning rate and batch size. We train ST3D with PV-RCNN using the Open-
PCDet [18] toolbox. As guided by the original work, we first train the model
on the source domain and adapt random object scaling (ROS) to it. Afterward,
we train the model with the ST3D method and evaluate the performance on
the target domain. Following other works [23,26] based on MMDetection3D and
OpenPCDet, we adopt random horizontal flip, rotation and scale transforms
during the training process. All the models are trained on RTX 8000.

4.2 Metrics

Most existing methods follow KITTI to evaluate the detection performance in 3D
and the BEV by the AP. As concluded in [21], the car size difference is one of the
main idiosyncrasies that account for the performance gap between within-domain
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Table 1. Performance of 3D object detection models within and across multiple
datasets (evaluated on the validation set). Three representative models are selected
for CNN (point-based [14] & voxel-based [24]) and transformer methods [1]. We report
the AP (average precision) of the Car category objects in the format of BEV / 3D
with IoU threshold set to 0.7 following the KITTI benchmark. Following [21], we re-
place the 40, 25, 25 pixel thresholds on 2D box height with 30, 70, 70 meters on object
depth to better evaluate the performance on Waymo and nuScenes. Results of three
within-domain and cross-domain tasks are reported. The results show significant drops
when directly adapting models to new domains.

Tasks Metrics PV-RCNN SECOND-IoU TransFusion-L

KITTI → KITTI
Easy 95.0 / 91.2 94.0 / 89.4 90.9 / 82.6

Moderate 81.7 / 70.5 76.5 / 64.5 73.7 / 59.6
Hard 81.4 / 69.0 76.2 / 62.7 73.0 / 57.6

nuScenes → nuScenes
Easy 57.0 / 41.3 55.0 / 37.3 54.0 / 33.0

Moderate 51.7 / 37.3 49.9 / 32.9 48.8 / 29.3
Hard 51.7 / 37.3 49.9 / 32.9 48.8 / 29.3

nuScenes → KITTI
Easy 80.9 / 38.1 56.4 / 14.7 54.6 / 14.7

Moderate 63.0 / 25.3 37.2 / 8.5 38.2 / 9.9
Hard 62.0 / 24.6 36.3 / 7.5 38.4 / 10.0

Waymo → Waymo
Easy 70.6 / 62.5 68.2 / 59.3 68.7 / 57.1

Moderate 64.5 / 53.9 62.3 / 50.3 62.8 / 50.3
Hard 64.5 / 53.9 62.3 / 50.3 62.8 / 50.3

Waymo → nuScenes
Easy 37.0 / 24.5 32.6 / 20.7 34.9 / 19.1

Moderate 32.7 / 21.2 29.2 / 18.4 31.4 / 16.9
Hard 32.7 / 21.2 29.2 / 18.4 31.4 / 16.9

Waymo → KITTI
Easy 75.4 / 25.1 66.3 / 25.6 73.6 / 35.3

Moderate 55.9 / 18.9 48.1 / 17.3 55.6 / 26.9
Hard 53.2 / 17.8 45.2 / 15.0 54.7 / 26.0

and cross-domain tasks. We therefore further ask the following question: Does
the gap fairly come from the three dimensions or are there specific dimensions
responsible for the majority of the gap? To explore this problem, we propose two
additional evaluation metrics, i.e., the side-view AP and the front-view AP, and
combine them with the 3D and BEV AP to understand the prediction results
better.

As shown in Figure 2, we project the 3D prediction boxes of the objects into
the side-view and front-view planes, i.e., the X-Z plane and the Y-Z plane. Figure
2 shows the calculation methods of these two metrics. Given a 3D bounding box
with size (2l, 2w, h), center (x, y, z) and rotation angle θ, then the projected
length lp and width wp respectively to the front-view plane and side-view plane
are given by

lp = 2(w sin θ + l cos θ), wp = 2(w cos θ + l sin θ). (1)

Note that there is no need to project the height since the bottom side of the
bounding box is parallel to the horizontal plane. We then calculate the related
2D AP with the intersection over union (IoU) thresholds at 0.7. In other words,
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we mark an object as being correctly detected if the IoU between the prediction
box and the ground-truth box is larger than 0.7.

We focus on the performance of the Car category – the main focus in most
existing works and datasets. KITTI evaluates three cases: Easy, Moderate, and
Hard. Following [21], we replace the constraints of box height with object location
depth as the criteria for difficulties to better evaluate the performance on other
datasets. In detail, we replace the constraints of “larger than 40, 25, 25 pixels”
by “within 30, 70, 70 meters” for Easy, Moderate, and Hard difficulties.

Fig. 2. Definition of the side-view and
the front-view AP. The red and blue
boxes denote the ground truth and pre-
dictions. We project not only the related
side to the front/side 2D plane but also
consider the other sides that actually
can be seen in the related view. For ex-
ample, the left side is also considered
when making a projection into the front
view.

Fig. 3. Performance comparison of the
source-only, ROS and the best ST3D
(Waymo–KITTI) models on the source
domain (Waymo). The results indicate
that, with the improvement of the de-
tection ability on the target domain,
the performance of ST3D models on the
source domain drops significantly.

5 Experiments and Analysis

5.1 Results of LiDAR-only Methods

We first evaluate the cross-domain performance of existing LiDAR-only meth-
ods. We summarize the results in Table 1. Three models are evaluated on three
datasets: KITTI, Waymo, and nuScenes (Nusc). We report the results of three
within-domain tasks and three cross-domain tasks. Since KITTI only provides
the annotations in the front view while Waymo and nuScenes annotate the ring
view point clouds, we adapt the models trained on Waymo and nuScenes and
only use KITTI as the target domain. Table 1 shows the results of the BEV and
3D AP. For the results of side-view and front-view AP, we defer the discussion
in Section 5.4.

We see that both PV-RCNN and SECOND-IoU work well on most within-
domain tasks. Since nuScenes uses LiDAR sensors with fewer beams and the
point cloud data of it is sparser than the others, the Nusc-Nusc task is harder
and these results have already been close to the SOTA methods although they
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Table 2. Performance of TransFusion with images. For within-domain tasks,
TransFusion-LC (trained with LiDAR point clouds and images) achieves worse results
than TransFusion-L (trained with LiDAR only). The results indicate that it is harder
to adapt multi-modal methods to new domains without further training.

Models Nusc-Nusc Nusc-KITTI

Easy Moderate Hard Easy Moderate Hard

TransFusion-L 77.9 / 42.2 45.7 / 23.5 42.9 / 22.4 59.6 / 25.0 48.9 / 17.4 48.5 / 17.0
TransFusion-LC 77.4 / 46.4 42.9 / 23.8 42.5 / 22.9 29.6 / 0.1 24.4 / 0.5 25.7 / 0.5

are slightly lower than the other two within-domain tasks. Based on the con-
clusion that both the point-based and voxel-based methods can achieve fairly
good results in within-domain tasks, we see heavy drops when evaluating the
same models on cross-domain tasks. When trained on nuScenes and evaluated
on KITTI, Table 1 shows that the BEV AP of PV-RCNN is even higher than
within-domain results (i.e., nuScenes → nuScenes) for the Moderate and Hard
difficulties, but the 3D AP drops by 3.2%–12.7%; and the 3D AP of SECOND-
IoU drops by 22.6%–25.4%. Similar performance gaps are observed when the
models are trained on Waymo. No matter designed with point-based or voxel-
based structures, both models fail on all cross-domain tasks with large gaps
compared with their within-domain performance if trained on target domains.

Similar to SECOND-IoU, TransFusion is also a voxel-based model. However,
it uses a transformer decoder layer to learn from the LiDAR point cloud data
and predict the bounding boxes instead of using pre-determined anchors. Fur-
thermore, another transformer decoder is used to combine the image features
with predictions from the LiDAR-only channel. We note that the first trans-
former decoder layer of TransFusion (TransFusion-L) can be independently used
as a LiDAR-only detector. We first evaluate and compare it with the above
LiDAR-only models. As shown in Table 1, although TransFusion-L replaces the
traditional 3D CNNs with transformer decoders, it still achieves similar results
as PV-RCNN and SECOND-IoU on different cross-domain tasks.

The results show that most methods fail to obtain acceptable performance
when trained and evaluated on different domains without domain transfer train-
ing. The cross-domain performance will be poorer when there is a big gap be-
tween the distributions of the source and target domains, indicating that the
models have overfitted to the source domain. We hypothesize that the poor
adaptation ability is not highly related to specific model types such as CNNs or
transformers, but results from deeper structural problems.

5.2 Results of LiDAR+RGB Methods

We then analyze the cross-domain performance of TransFusion-LC, i.e., the
multi-modal version of TransFusion taking both the LiDAR point clouds and
RGB images as the input. The second decoder layer is the key point of TransFusion-
LC, which helps build a soft association between the features of the point clouds
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Table 3. Performance of ST3D from Waymo to KITTI in the format of BEV/3D
AP. Different proportions of KITTI data are used for the self-training step of ST3D
for comparison. When using 50% or fewer data, we randomly sub-sample the dataset
twice and report the worst and the best results of each for ST3D. In particular, as an
example, ‘A - Epoch 13 & 17’ means that this is the first randomization with e.g. 50%
of KITTI, where the worst and the best results obtained at epochs 13 and 17 are shown
in the middle three columns and the last three columns, respectively. The results of
the source only and ROS are only shown once (in the middle three columns) since they
are unique. The best results of ST3D for all three difficulties are indicated in bold.

Data Worst & Best Easy Moderate Hard Easy Moderate Hard

100%
Source only 75.4 / 25.1 55.9 / 18.9 53.2 / 17.8 - - -

ROS 88.5 / 46.6 67.7 / 35.6 68.3 / 36.8 - - -
ST3D (w/ ROS) 88.4 / 50.9 66.0 / 38.2 66.4 / 39.0 91.0 / 67.3 72.3 / 50.2 72.6 / 50.8

50% A - Epoch 13 & 17 88.8 / 57.7 80.6 / 52.8 78.9 / 52.2 90.6 / 74.5 81.6 / 64.1 79.7 / 62.3
B - Epoch 01 & 05 90.0 / 59.7 80.4 / 53.6 78.7 / 52.9 91.5 / 75.3 82.5 / 65.0 80.5 / 63.3

25% A - Epoch 21 & 07 77.7 / 27.9 69.6 / 28.3 70.0 / 28.5 89.7 / 60.9 79.1 / 54.8 77.1 / 53.8
B - Epoch 10 & 20 85.3 / 46.6 77.3 / 42.6 75.7 / 43.6 85.4 / 66.2 76.4 / 59.6 76.3 / 59.7

10% A - Epoch 17 & 15 84.2 / 44.5 74.7 / 41.7 74.9 / 41.6 89.9 / 64.1 79.6 / 56.7 79.5 / 55.3
B - Epoch 02 & 21 86.8 / 52.4 77.8 / 48.3 76.1 / 48.0 91.8 / 77.4 81.1 / 68.2 81.0 / 66.5

and images instead of heavily relying on the calibration files. Therefore, the in-
fluence of images can be better observed without the interference of calibration
files. Since OpenPCDet only supports LiDAR-only models, we use another code
base, MMDetection3D [6], to compare the performance of TransFusion-L and
TransFusion-LC.

We must note that it is much harder to adapt multi-modal models to dif-
ferent domains than LiDAR-only models. Besides ensuring the preprocessing
settings are the same or similar, we also need to make the images consistent.
Unfortunately, existing datasets use different RGB cameras to collect the image
data, which raises a challenge in making the models able to take different sizes
of images as the input, during the training and evaluation stages. For exam-
ple, nuScenes collects images of size 1600 × 900, while KITTI collects images
of size around 1280 × 384. When adapting the models trained on nuScenes to
KITTI, we can either simply pad the KITTI images to the nuScenes size during
evaluation or downsample the nuScenes image size during training to keep the
image size consistent. We also try to use an equally small image size of 400 ×
224 or 192 × 640 to focus on the center contents of the images. Surprisingly, all
methods failed to obtain reasonable results on nuScenes to KITTI tasks.

We report the best results in Table 2, with the third strategy using an image
size of 400 × 224. TransFusion-LC performs similarly to TransFusion-L when
trained and evaluated on nuScenes, but the performance drops heavily when
evaluated on KITTI. We hypothesize that this drop comes from the large gap
of images in nuScenes and KITTI. Although we have tried different methods
to overcome the size difference, the pixel distribution and semantic knowledge
of images are still very different in these two datasets, which makes it hard to
extract useful features from KITTI images using a model trained on nuScenes. As
a result, the image features become noise in the second decoder layer and lead
to a heavy drop in the final detection performance. Approaches to combining
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the two modal data consistently and better camera-only 3D object detection
methods are both necessary to reduce the noise.

5.3 Results of Self-training Methods

The performance of a self-training algorithm, ST3D, is analyzed. We focus on
applying ST3D on PVRCNN, from Waymo to KITTI. As a self-training method,
ST3D learns from the target domain without requiring ground truth annotations.
Following the original work, it takes three steps in the model training process: (i)
training the model normally in the source domain; (ii) using the ROS method to
improve the generalization ability of the model; and (iii) training the model with
the ST3D self-training algorithm by using the target data without annotations.
Since self-training models are hard to converge, selecting the epoch with the best
evaluation results is required [26]. We argue that this operation should not be
used; otherwise this implies the information from the annotations is used and
ST3D will no longer be a self-training model. Therefore, we select the worst and
the best epochs for a fairer comparison. Note that a random epoch selection may
be more reasonable when applying ST3D in practice.

Table 3 (first row) shows that the cross-domain performance improves by
a surprising degree benefiting from the additional prior knowledge about the
target domain, compared with the source-only (i.e., directly adapt models from
the source domain to the target domain) results. ROS improves the results by
over 37% and ST3D improves the results by over 48% on average for the 3D
AP. However, we notice two problems with ST3D. The first is that the ROS
method has already boosted the performance, which means further self-training
is not necessary. The second is that ST3D requires all the training data from
the target domain although the annotations are not needed. This leads to the
following question: Is the performance of ST3D related to the number of data
samples from the target domain? We, therefore, train ST3D with fewer samples
from KITTI and evaluate the models on the full KITTI dataset. We sample
50%, 25% and 10% of the KITTI training data and randomize the procedure
twice. We observe huge fluctuations in the results of ST3D as shown in Table 3.
It indicates that when trained with the full KITTI dataset, the result of the
worst epoch is even lower than that of the ROS model, while the best result is
around 12% better than ROS. When trained with 25% of KITTI, the results of
the first randomization fluctuate between 27.9% and 60.9%, while the results of
the second randomization fluctuate between 46.6% and 66.2%, for the 3D AP
of the Easy difficulty case. When trained with just 10% of KITTI, the results
become even better with a smaller fluctuation, showing the instability of ST3D
regarding different data sizes from the target domain.

It is also worth investigating whether the final ST3D model can still work
well on the source domain. In Figure 3, we compare the results of the source-only,
ROS and the best ST3D models on Waymo. We see that with better performance
on the target domain, the detection ability on the source domain becomes worse.
In other words, ST3D actually shifts the knowledge domain learned by the model,
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Table 4. Performance of 3D object detection models within and across multiple
datasets in side-view, front-view and BEV AP with the IoU threshold set to 0.7. Results
are reported in Easy / Moderate / Hard difficulties. Results show that the side-view
AP is much lower than the front-view and BEV AP for most tasks, which attributes
the problem to length (depth) and height errors.

Tasks Metrics PV-RCNN SECOND-IoU TransFusion-L

KITTI → KITTI
Side-view 95.3 / 84.0 / 82.6 94.8 / 81.1 / 79.6 91.2 / 77.4 / 76.0
Front-view 98.1 / 85.0 / 84.7 97.7 / 82.5 / 80.5 95.0 / 77.7 / 76.6

BEV 95.0 / 81.7 / 81.4 94.0 / 76.5 / 76.2 90.9 / 73.7 / 73.0

nuScenes → nuScenes
Side-view 54.9 / 49.5 / 49.5 53.5 / 48.2 / 48.2 48.5 / 43.6 / 43.6
Front-view 56.1 / 50.4 / 50.4 53.9 / 48.4 / 48.4 49.3 / 45.0 / 45.0

BEV 57.0 / 51.7 / 51.7 55.0 / 49.9 / 49.9 54.0 / 48.8 / 48.8

nuScenes → KITTI
Side-view 82.0 / 60.9 / 61.1 61.9 / 39.4 / 38.1 57.9 / 35.9 / 36.7
Front-view 80.9 / 58.3 / 57.6 49.3 / 30.0 / 29.6 42.2 / 27.4 / 27.9

BEV 80.9 / 63.0 / 62.0 56.4 / 37.2 / 36.3 54.6 / 38.2 / 38.4

Waymo → nuScenes
Side-view 33.2 / 29.6 / 29.6 31.0 / 27.2 / 27.2 31.4 / 28.0 / 28.0
Front-view 34.7 / 30.5 / 30.5 32.6 / 28.9 / 28.9 34.3 / 30.2 / 30.2

BEV 37.0 / 32.7 / 32.7 32.6 / 29.2 / 29.2 34.9 / 31.4 / 31.4

Waymo → KITTI
Side-view 89.7 / 72.8 / 72.4 77.9 / 62.5 / 59.4 86.4 / 70.5 / 69.7
Front-view 72.1 / 59.4 / 60.1 57.2 / 46.0 / 44.5 78.3 / 61.8 / 63.0

BEV 75.4 / 55.9 / 53.2 66.3 / 48.1 / 45.2 73.6 / 55.6 / 54.7

rather than preserving the generalization ability. We thus reach three below
arguments.

(I) ST3D learns the data distribution from the target domain and its perfor-
mance highly relies on the quality of the available target domain data. In
other words, if the sampled 10% of KITTI has a similar distribution to the
full KITTI, ST3D can achieve good performance (e.g., 77.4% of 3D AP in the
Easy difficulty); otherwise, ST3D’s performance may degrade (e.g., 27.9% of
3D AP in the Easy difficulty).

(II) The performance of ST3D is unstable due to its self-supervised algorithm.
Even if the sampled data has a close distribution to the full target domain,
it may still achieve poor results if models from bad epochs are selected.

(III) Models trained with ST3D can only work well on the target domain but
cannot work well on the source domain anymore, which means the general-
ization ability of the models is still at a low level and the cost of generalizing
the models would still be an open problem.

5.4 Analysis with Additional Evaluation Metrics

To analyze the cross-domain problem more deeply as discussed in Section 4.2,
we use the two proposed AP metrics, i.e., the side-view and the front-view AP,
to evaluate the models’ cross-domain performance more comprehensively.

We evaluate the previous models on the same tasks and report the results of
the side-view, front-view, and BEV AP in Table 4. We see that the AP under
these three metrics are similar in within-domain tasks and the cross-domain
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Table 5. Performance of 3D object detection models within and across multiple
datasets in different dimensions with the IoU threshold set to 0.85. We report the
overlaps of the ground truth and the predictions in length (depth), width, and height
in the format of Easy / Moderate / Hard difficulties.

Tasks Metrics PV-RCNN SECOND-IoU TransFusion-L

KITTI → KITTI
Length 91.0 / 77.6 / 75.9 89.0 / 71.8 / 70.1 83.2 / 69.9 / 66.9
Width 92.8 / 75.5 / 75.1 92.1 / 72.2 / 70.2 84.3 / 65.8 / 64.1
Height 94.2 / 78.5 / 78.6 93.2 / 77.1 / 75.7 88.0 / 72.0 / 70.6

nuScenes → nuScenes
Length 50.9 / 46.9 / 46.9 46.8 / 42.9 / 42.9 43.6 / 40.2 / 40.2
Width 52.7 / 47.4 / 47.4 49.3 / 44.3 / 44.3 47.1 / 42.2 / 42.2
Height 45.9 / 40.9 / 40.9 43.7 / 38.9 / 38.9 38.2 / 33.9 / 33.9

nuScenes → KITTI
Length 57.8 / 45.7 / 45.2 40.1 / 28.0 / 26.5 28.9 / 22.8 / 23.7
Width 53.4 / 42.0 / 41.5 18.7 / 13.7 / 14.1 15.6 / 12.4 / 14.0
Height 61.8 / 44.8 / 46.3 45.8 / 28.6 / 28.7 41.3 / 25.8 / 27.3

Waymo → nuScenes
Length 26.8 / 23.9 / 23.9 22.5 / 19.7 / 19.7 22.3 / 20.0 / 20.0
Width 32.2 / 28.9 / 28.9 29.6 / 26.4 / 26.4 31.1 / 27.4 / 27.4
Height 27.1 / 24.2 / 24.2 26.5 / 23.6 / 23.6 26.0 / 22.9 / 22.9

Waymo → KITTI
Length 73.9 / 54.2 / 50.5 58.9 / 43.0 / 39.4 65.3 / 50.0 / 47.8
Width 12.1 / 13.3 / 14.3 10.5 / 10.9 / 11.4 15.7 / 15.7 / 17.4
Height 89.0 / 73.2 / 74.1 66.9 / 55.3 / 54.2 86.8 / 70.7 / 72.2

Table 6. The average size (meters) of 3D ground-truth bounding boxes of the five
datasets and percentage differences between selected datasets.

Metric KITTI Argoverse nuScenes Lyft Waymo W → K N → K W → N

Width (m) 1.62 1.96 1.96 1.91 2.11 +30.2% +21.0% +7.7%
Height (m) 1.53 1.69 1.73 1.71 1.79 +17.0% +13.1% +3.5%
Length (m) 3.89 4.51 4.64 4.73 4.80 +23.4% +19.3% +3.4%

Waymo → nuScenes task; however, in the cross-domain Waymo → KITTI and
nuScenes → KITTI tasks, the front-view AP is obviously lower than the side-
view and BEV AP. We thus further calculate the AP of the single-dimension
IoU of the length (depth), width, and height below.

Since it is easier for the single-dimension IoU to reach 0.7, we set the thresh-
old as 0.85 instead of 0.7, and the threshold 0.85 is a more equivalent threshold
against the threshold 0.7 of 2D IoUs (i.e., side-view, front-view, and BEV) for a
single dimension. As shown in Table 5, the length AP is much higher than the
width AP for the cross-domain tasks where KITTI is the target domain, which
contradicts our common sense that width might be easier to predict since it will
face us in most cases and therefore has more points surrounding it. By analyz-
ing the difference in average object size between different datasets as shown in
Table 6, we find that the surprising results are actually due to the degree of
size difference. Specifically, for Waymo → KITTI and nuScenes → KITTI tasks,
the object size differences in width (i.e., 30.2% and 21.0%) are bigger than that
in length (i.e., 23.4% and 19.3%). Meanwhile, since more points surround the
front-view surfaces consisting of width and height, it is easier for models to get
sufficient information from the point clouds to predict the width based on the
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knowledge obtained from their training domains, which, together with the larger
gap in width, results in bigger errors in predicting the width.

We also notice that for the cross-domain Waymo → nuScenes task in Table 5,
the width AP is higher than the length AP and height AP. Since the point
cloud data in nuScenes is much sparser than that in Waymo, the results indicate
that the sparsity of the dataset has a larger influence on the correctness of size
prediction. In detail, since there are only a few points surrounding the front-
view surface of the object, and the number of points in the Z-axis is limited by
the LiDAR beams, the models can thus predict the width a bit better than the
length and height.

6 Conclusion

Deep investigations on domain adaptation for 3D object detection are under-
taken in this paper. Since researchers are currently focusing on achieving higher
performance on a specific dataset, it is unsurprising that existing models actu-
ally overfit the training domain and cannot be directly adapted to other domains
with different data distributions. It is however worth pointing out that better
domain adaptation approaches are still waiting to be explored to improve the
generalization ability of models instead of shifting the knowledge domain. Mean-
while, we propose two new evaluation metrics – the side-view and the front-view
AP – to provide a more comprehensive measurement of models’ cross-domain
performance. By using the proposed metrics and further analyzing the perfor-
mance in each dimension, we notice that the poor cross-domain performance
mainly results from the width dimension when the source and target domain
have similar point cloud densities, which further indicates the severe overfitting
problem of existing model structures and training strategies. Our results also
show that the original evaluation metrics are sometimes insufficient to analyze
and guide the learning situation of models. We hope that the new side-view and
front-view metrics proposed in this paper can be widely applied in the design
of new 3D object detection models and the evaluation on different datasets for
within-domain and cross-domain tasks.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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