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Abstract

Large tensors are frequently encountered in various fields such as computer

vision, scientific simulations, sensor networks, and data mining. However, these

tensors are often too large for convenient processing, transfer, or storage. Fortu-

nately, they typically exhibit a low-rank structure that can be leveraged through

tensor decomposition. However, performing large-scale tensor decomposition can

be time-consuming. Sketching is a useful technique to reduce the dimensional-

ity of the data. In this paper, we propose a novel two-sided sketching method

based on the ⋆L-product decomposition and transformed domains like the dis-

crete cosine transformation. A rigorous theoretical analysis is also conducted to

assess the approximation error of the proposed method. Specifically, we improve

our method with power iteration to achieve more precise approximate solutions.

Extensive numerical experiments and comparisons on low-rank approximation of

synthetic large tensors and real-world data like color images and grayscale videos

illustrate the efficiency and effectiveness of the proposed approach in terms of

both CPU time and approximation accuracy.
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1 Introduction

Multidimensional arrays, known as tensors, are often used to represent real-world high-

dimensional data, such as videos [1, 2], hyperspectral images [3, 4, 5, 6], multilinear

signals [7, 8], and communication networks [9, 10]. In most cases, these tensor data

usually have a low-rank structure and can be approximated by tensor decomposition.

Nevertheless, computing the tensor decomposition of these large-scale data is usually

computationally demanding, and thus finding an accurate approximation of large-scale

data with great efficiency plays a key role in tensor data analysis. Sketching is a

useful technique for data compression, utilizing random projections or sampling to ap-

proximate the original data. Although the sketching technique may slightly reduce

the accuracy of the approximation, it can significantly reduce the computational and

storage complexity [11]. As a result, sketching is commonly used in low-rank tensor ap-

proximation, and many researchers have proposed various tensor sketching algorithms

[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. They have also been successfully applied

to a variety of tasks, such as Kronecker product regression, polynomial approximation,

the construction of deep convolutional neural networks [25, 26, 27, 28, 29, 30], etc.

Recently, extensive research has been carried out on the application of sketching

algorithms for the low-rank matrix approximation [31, 32, 33, 34]. Woodruff et al. [32]

examined the numerical linear algebra algorithms of linear sketching techniques and

identified their limitations. Tropp et al. [33] developed a two-sided matrix sketching

algorithm, which can maintain the structural properties of the input matrix and gen-

erate a low-rank matrix approximation with a given rank. Furthermore, Tropp et al.

[34] proposed a new matrix sketching algorithm to construct a low-rank approximation

matrix from streaming data. These matrix sketching algorithms are very effective in

reducing storage and computational costs when computing low-rank approximations

of large-scale matrices. Subsequently, many researchers have applied matrix sketching

algorithms to tensor decomposition and developed various low-rank tensor approxima-

tion algorithms. The followings are some low-rank tensor approximation algorithms

based on different decompositions [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Li et al. [13] introduced a random algorithm for CANDECOMP/PARAFAC (CP)

tensor decomposition in least-squares regression, aiming to achieve reduced dimension-

ality and sparsity in randomized linear mapping. Wang et al. [14] developed innovative

techniques for performing randomized tensor contractions using the fast Fourier trans-

form (FFT), avoiding explicit formation of tensors. The robust tensor power method

based on the tensor sketch (TS-RTPM) can quickly explore the potential features of

the tensor, but in some cases its approximation performance is limited. Cao et al. [12]

proposed a data-driven framework called TS-RTPM-Net, which improves the accuracy

of the estimation of TS-RTPM by jointly training the TS value matrices with the initial
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RTPM.

Numerous studies have also been conducted based on Tucker decomposition [15,

16, 17, 18, 19, 20, 23, 24]. For example, Che et al. [15] devised an adaptive random-

ized approach to approximate Tucker decomposition. Malik et al. [18] proposed two

randomized algorithms for low-rank Tucker decomposition, which entail a single pass

of the input tensor by integrating sketching. Ravishankar et al. [19] introduced the

hybrid Tucker TensorSketch vector quantization (HTTSVQ) algorithm for dynamic

light fields. Sun et al. [20] developed a randomized method for Tucker decomposition,

which can provide a satisfactory approximation without a second pass on the origi-

nal tensor data. Minster et al. [23] devised randomized adaptations of the THOSVD

and STHOSVD algorithms. Dong et al. [24] presented two practical randomized al-

gorithms for low-rank Tucker approximation of large tensors based on sketching and

power scheme, with a rigorous error-bound analysis.

The work based on tensor-train (TT) decomposition can be found in [15, 21, 35, 36].

In particular, Che et al. [15] designed an adaptive random algorithm to calculate the

tensor column approximation. Hur et al. [21] introduced a sketching algorithm to

construct a TT representation of a probability density from its samples, which can

avoid the curse of dimensionality and sample complexities of the recovery problem. Qi

and Yu [22] proposed a tensor sketching method based on the t-product, which can

quickly obtain a low tubal rank tensor approximation. As pointed out by Kernfeld

et al. [37], the t-product has a disadvantage in that, for real tensors, implementation

of the t-product and factorizations using the t-product require intermediate complex

arithmetic, which, even taking advantage of complex symmetry in the Fourier domain,

is more expensive than real arithmetic.

In this paper, based on the ⋆L-product decomposition [37], we investigate two-sided

sketching algorithms for low tubal rank tensor approximation. The main contributions

of this paper are as follows. Firstly, we propose a new two-sided sketching method

based on transformed domains, which can significantly improve the computational

efficiency of the T-Sketch and rt-SVD methods, for low tubal rank approximation.

Secondly, we establish a low tubal rank tensor approximation model based on the ⋆L-

product factorization, extending the two-sided matrix sketching algorithm proposed

by Tropp et al. [34] with subspace power iteration. Thirdly, a rigorous theoretical

analysis is conducted to evaluate the approximation error of the proposed two-sided

sketching method. Finally, extensive numerical experiments and comparisons on low-

rank approximation of large tensors in different modelities (e.g. synthetic large tensors,

color images, and grayscale videos) illustrate the efficiency and effectiveness of the

proposed approach in terms of both CPU time and approximation accuracy.

The rest of this paper is organized as follows. Section 2 introduces some common

notations and preliminary. Our two-sided sketching algorithms (i.e., Algorithms 1
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and 2) based on transformed domains are proposed in Section 3. Section 4 provides

strict theoretical guarantees for the approximation error of the proposed algorithms.

Section 5 presents detailed numerical experiments and comparisons, demonstrating

the efficiency and effectiveness of the proposed algorithms. We conclude in Section 6.

Appendix A presents three matrix sketching techniques served as preliminary of the

introduction of tensor sketching operators in Section 2.2. Further detailed theoretical

guarantees for our proposed algorithms are provided in Appendix B.

2 Notation and Preliminary

In this paper, matrices and tensors are represented by capital letters (e.g. A,B, . . . )

and curly letters (e.g. A,B, . . . ), respectively. The Matlab command A′ can be used to

represent the conjugate transpose of the matrix A. R and C represent the real number

space and the complex number space, respectively. For matrix A ∈ Cn1×n2 , its (i, j)-th

element is represented by ai,j. For the third-order tensor A ∈ Cn1×n2×n3 , its (i, j, k)-th

element is represented by ai,j,k. The Matlab notations A(i, :, :), A(:, i, :) and A(:, :, i)
are used to represent the i-th horizontal, lateral and frontal slices of A, respectively.
The facial slice A(:, :, i) is also represented by A(i). The Frobenius norm of a tensor A
is defined as the square root of the sum of the squares of its elements, i.e.,

∥A∥F := ∥A(:)∥2 =
√
⟨A,A⟩ =

√∑
ijk

|aijk|2 . (2.1)

AH and A† represent the conjugate transpose and pseudo-inverse of A, respectively.
This paper focuses on the low tubal rank tensor approximation that meets the

desired accuracy in an efficient manner. For tensor A ∈ Rn1×n2×n3 , the mathematical

model for finding the low-rank approximation Â of A can be expressed as

∥A − Â∥F = min
rankL(B)≤l

∥A − B∥F , (2.2)

where l ≪ min{n1, n2} is the target rank, L represents an arbitrary invertible linear

transform, and rankL(B) denotes the transformed tubal rank of tensor B.

2.1 Transformed Tensor SVD

We below briefly recall the transformed tensor SVD of third-order tensors; more details

can be found in [37].

For any third-order tensor A ∈ Rn1×n2×n3 , let ĀL represent a third-order tensor

obtained via being multiplied by L (an arbitrary invertible linear transform) on all
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tubes along the third-dimension of A, i.e.,

ĀL(i, j, :) = L(A(i, j, :)), i = 1, . . . , n1, j = 1, . . . , n2. (2.3)

Here we write ĀL = L[A]. Moreover, one can get A from ĀL by using L−1 along the

third-dimension of ĀL, i.e., A = L−1[ĀL]. The ⋆L-product is defined in Definition 2.1

below.

Definition 2.1 [37] For any two tensors X ∈ Cn1×n2×n3 and Y ∈ Cn2×n4×n3, and

an arbitrary invertible linear transform L, the ⋆L-product of X and Y is a tensor

Z ∈ Cn1×n4×n3 given by

Z = X ⋆ LY = LH [fold(block(X̄L)block(ȲL))], (2.4)

where fold(block(X̄L)) = X̄L and X̄L = block(X̄L) =


X̄ (1)

L

X̄ (2)
L

. . .

X̄ (n3)
L

.

Definition 2.2 The Kronecker product of matrices A ∈ Cm×l and B ∈ Cp×r is

A⊗B =


a11B a12B . . . a1lB

a21B a22B . . . a2lB
...

...
. . .

...

am1B am2B . . . amlB

 .

The t-product [38] of A ∈ Cn1×n2×n3 and B ∈ Cn2×n4×n3 is a tensor C ∈ Cn1×n4×n3

given by

C = A ∗ B = foldvec(circ(A)× vec(B)), (2.5)

where

vec(B) =


B(1)

B(2)

...

B(n3)

 ∈ Rn2n3×n4 , foldvec(vec(B)) = B,

circ(A) =


A(1) A(n3) A(n3−1) . . . A(2)

A(2) A(1) A(n3) . . . A(3)

...
...

...
. . .

...

A(n3) A(n3−1) A(n3−2) . . . A(1)

 .
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Let Fn3 and C represent the discrete Fourier transform (DFT) matrix and the

discrete cosine transform (DCT) matrix, respectively. The t-product in Eq. (2.5) can

be seen as a special case of Definition 2.1. Recall that the block circulant matrix

circ(A) can be diagonalized by the fast Fourier transform matrix Fn3 , and the block

diagonal matrices are the frontal slices of ĀFn3
, i.e.,

ĀFn3
= block(ĀFn3

) = (Fn3 ⊗ In1)× circ(A)× (FH
n3
⊗ In2). (2.6)

It follows that

A ∗ B = foldvec(circ(A)× vec(B))
= foldvec((F

H
n3
⊗ In1)× block(ĀFn3

)× (Fn3 ⊗ In2)× vec(B))
= fold((FH

n3
⊗ In1)× block(ĀFn3

)× block(B̄Fn3
))

= FH
n3
[fold(block(ĀFn3

)block(B̄Fn3
))]

= FH
n3
[fold(ĀFn3

B̄Fn3
)]

= A ⋆Fn3
B.

The definitions of the conjugate transpose of tensor, the identity tensor, the unitary

tensor, the invertible tensor, and the diagonal tensor related to the ⋆L-product are given

as follows.

• [39] The conjugate transpose of A ∈ Cn1×n2×n3 with respect to L is the tensor

AH ∈ Cn1×n2×n3 obtained by AH = LH [fold(block(ĀL)
H)] = LH [fold(ĀH

L )].

• [37] The identity tensor IL ∈ Cn×n×n3 (with respect to L) is defined to be a

tensor such that IL = LH [I], where each frontal slice of I is the n × n identity

matrix.

• [37] A tensor Q ∈ Cn×n×n3 is unitary with respect to ⋆L-product if it satisfies

QH ⋆ LQ = Q ⋆ LQH = IL, where IL is the identity tensor.

• [37] For tensors A ∈ Cn×n×n3 and B ∈ Cn×n×n3 , if A ⋆ LB = B ⋆ LA = IL, then
tensor B is the invertible tensor under the ⋆L-product of tensor A.

• [38] A tensor is a diagonal tensor if each frontal slice of the tensor is a diagonal

matrix. For a third-order tensor, if all of its frontal slices are upper or lower

triangles, then the tensor is called f-upper or f-lower.

Lemma 2.3 [37, 38] Suppose that A ∈ Rm×k×p and B ∈ Rk×n×p are two arbitrary

tensors. Let Z = A ⋆ LB. Then the following properties hold:

(1) ∥A∥2F = 1
p
∥ĀFn3

∥2
F
= 1

p
∥ĀL∥

2

F = 1
p

∑p
i=1 ∥Ā

(i)
L ∥

2

F .
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(2) Z = A ⋆ LB is equivalent to block(Z̄L) = block(ĀL)block(B̄L), i.e., Z̄L = ĀLB̄L.

Definition 2.4 (Gaussian Random Tensor) [40] A tensor G ∈ Rm×n×p is called a

Gaussian random tensor if the elements of G(1) satisfy the standard normal distribution

(i.e., Gaussian with mean zero and variance one) and the other frontal slices are all

zero.

Based on the above definitions, we have the following tensor SVD with respect to

L.

Theorem 2.5 [37] ∀A ∈ Cm×n×p, the transformed tensor SVD is given by

A = U ⋆ LS ⋆ LVH , (2.7)

where U ∈ Cm×m×p and V ∈ Cn×n×p are unitary tensors with respect to the ⋆L-product,

and S ∈ Cm×n×p is a diagonal tensor.

The transformed tubal rank, denoted as rankL(A), is defined as the number of

nonzero singular tubes of S, i.e.,

rankL(A) = #{i : S(i, i, :) ̸= 0}, (2.8)

where # denotes the cardinality of a set. The transformed tensor SVD could be

implemented efficiently by the SVDs of the frontal slices in the transformed domain.

We also refer the readers to [39] for more details on the computation of the transformed

tensor SVD. For the Kernfeld-Kilmer transformed tensor SVD (i.e., Eq. (2.7)), by

[37, 38, 41], we have

p∑
k=1

S(1, 1, k)2 ≥
p∑

k=1

S(2, 2, k)2 ≥ · · · ≥
p∑

k=1

S(min{m,n},min{m,n}, k)2. (2.9)

Definition 2.6 (Transformed Tensor Singular Values) Suppose A ∈ Rm×n×p with a

Kernfeld-Kilmer transformed tensor SVD such that Eq. (2.9) is satisfied. The i-th

largest transformed tensor singular value of A is defined as

σi =

√√√√ p∑
k=1

S(i, i, k)2, for i = 1, 2, . . . ,min{m,n}. (2.10)

Similarly to the definition of the matrix tail energy, the tail energy of tensor is

defined below.
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Definition 2.7 (Tail Energy) For tensor A ∈ Rm×n×p, the i-th largest transformed

tensor singular value is σi, i = 1, . . . ,min{m,n}. Then the j-th tail energy of A is

defined as

τj
2(A) := min

rankL(B)<j
∥A − B∥2F =

∑
i≥j

σ2
i (A). (2.11)

According to the above definition and using Lemma 2.3 and the linearity, we can

obtain the following proposition.

Proposition 2.8 Suppose A ∈ Rm×n×p and ĀL represents a third-order tensor ob-

tained via being multiplied by L on all tubes along the third-dimension of A. Let j be

a positive integer satisfying j ≤ min{m,n}. Then

τj
2(A) = 1

p

p∑
i=1

τj
2(Ā(i)

L ). (2.12)

2.2 Tensor Sketching Operator

Using the three matrix sketching techniques (i.e., Gaussian projection, subsampled ran-

domized Hadamard transform (SRHT), and count sketch [43]) with their pseudocodes

(i.e., GaussianProjection, SRHT, and CountSketch) introduced in Appendix A, three

corresponding tensor sketching operators can be generated. As for an efficient two-sided

sketching algorithm, we need to generate four random linear dimension reduction maps,

i.e.,

Υ ∈ Rk×m×p, Ω ∈ Rk×n×p, Φ ∈ Rs×m×p, and Ψ ∈ Rs×n×p. (2.13)

Different ways of generating tensor sketch operators regarding A ∈ Rm×n×p are shown

below.

• Gaussian tensor sketching operator. Set

Υ = zeros(k,m, p); Υ(:, :, 1) = GaussianProjection(A(:, :, 1), k)′;
Ω = zeros(k, n, p); Ω(:, :, 1) = GaussianProjection(A(:, :, 1)′, k)′;
Φ = zeros(s,m, p); Φ(:, :, 1) = GaussianProjection(A(:, :, 1), s)′;
Ψ = zeros(s, n, p); Ψ(:, :, 1) = GaussianProjection(A(:, :, 1)′, s)′.
Then Υ, Ω, Φ and Ψ are said to be the Gaussian tensor sketching operators.

• SRHT tensor sketching operator. Set

Υ = zeros(k,m, p); Υ(:, :, 1) = SRHT(A(:, :, 1), k)′;
Ω = zeros(k, n, p); Ω(:, :, 1) = SRHT(A(:, :, 1)′, k)′;
Φ = zeros(s,m, p); Φ(:, :, 1) = SRHT(A(:, :, 1), s)′;
Ψ = zeros(s, n, p); Ψ(:, :, 1) = SRHT(A(:, :, 1)′, s)′.
Then Υ, Ω, Φ and Ψ are said to be the SRHT tensor sketching operators.
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• Count tensor sketching operator. For i = 1, 2, . . . , p, set

Υ = zeros(k,m, p); Υ(:, :, i) = CountSketch(A(:, :, 1), k)′;
Ω = zeros(k, n, p); Ω(:, :, i) = CountSketch(A(:, :, 1)′, k)′;
Φ = zeros(s,m, p); Φ(:, :, i) = CountSketch(A(:, :, 1), s)′;
Ψ = zeros(s, n, p); Ψ(:, :, i) = CountSketch(A(:, :, 1)′, s)′.
Then Υ, Ω, Φ and Ψ are said to be the count tensor sketching operators.

3 The Proposed Two-Sided Sketching Algorithms

The two-sided tensor sketching algorithm proposed by Qi and Yu [22] only considers

the range and co-range of the input tensor. On this basis, we here also consider the

core sketch. The core sketch contains new information that improves our estimates

of the transformed tensor singular values and the transformed tensor singular vectors

of the input tensor, and is responsible for the superior performance of the algorithms.

We below firstly present the framework of our efficient two-sided sketching method

based on the transformed domains for low tubal rank tensor approximation, followed

by the principle interpreting its rationale and its extension by using the power iteration

technique.

3.1 Method

Given the input tensor A ∈ Rm×n×p and the objective tubal rank k, using the ap-

propriate tensor sketching operators Υ,Ω,Φ and Ψ in Eq. (2.13), we can realize the

randomized sketches (X ,Y ,Z) such as

X := Υ ⋆ LA ∈ Rk×n×p, (3.14)

Y := A ⋆ LΩ
H ∈ Rm×k×p, (3.15)

Z := Φ ⋆ LA ⋆ LΨ
H ∈ Rs×s×p. (3.16)

The first two tensor sketches X and Y respectively capture the co-range and range

of A, and the core sketch Z, as we mentioned before, contains new information that

improves our estimates of the transformed tensor singular values and vectors of A and

is also responsible for further method performance enhancement.

Once the sketches (X ,Y ,Z) of the input tensor A are obtained by Eq. (3.14)–

(3.16), we can find the low-rank approximation Â by following the below proposed

three-step process.

(I) Form an L-orthogonal-triangular factorization

XH := P ⋆ LR1, Y := Q ⋆ LR2, (3.17)
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where P ∈ Rn×k×p and Q ∈ Rm×k×p are partially orthogonal tensors, and R1 ∈
Rk×k×p and R2 ∈ Rk×k×p are f-upper triangular tensors, in the sense of the ⋆L-

product operation.

(II) Using the known P ,Q,Φ,Ψ, and Z, calculate

C := (Φ ⋆ LQ)† ⋆ LZ ⋆ L((Ψ ⋆ LP)†)H ∈ Rk×k×p . (3.18)

The above formula of calculating C is equivalent to solving the below least-squares

problem based on the ⋆L-product, i.e.,

min
C

1

2
∥G ⋆ LC ⋆ LMH −Z∥2F , (3.19)

where G = Φ⋆LQ andM = Ψ⋆LP . According to Lemma 2.3, the above problem

(3.19) can be reformulated as

min
C̄L

1

2p
∥ḠLC̄LM̄H

L − Z̄L∥
2

F , (3.20)

whose solution is C̄(i)L = (Ḡ(i)L )†Z̄(i)
L ((M̄(i)

L )†)H for i = 1, . . . , p.

(III) Construct the transformed tensor tubal rank k approximation

Â := Q ⋆ LC ⋆ LPH . (3.21)

Algorithm 1 L Transformed Randomized Projection Sketching Algorithm

1: Input: Input tensor A ∈ Rm×n×p and sketch size parameters k, s with k ≤ s.

2: function L-TRP-SKETCH(A, k)
3: Select the appropriate tensor sketching operators from Eq. (2.13), i.e.,

Υ ∈ Rk×m×p,Ω ∈ Rk×n×p,Φ ∈ Rs×m×p,Ψ ∈ Rs×n×p;

4: ĀL = L[A], ῩL = L[Υ], Ω̄L = L[Ω], Φ̄L = L[Φ], Ψ̄L = L[Ψ];

5: for i← 1 to p

6: X̄ (i)
L = Ῡ

(i)
L Ā

(i)
L , Ȳ(i)

L = Ā(i)
L (Ω̄

(i)
L )H , Z̄(i)

L = Φ̄
(i)
L (Ā(i)

L )(Ψ̄
(i)
L )H ;

7: [P̄(i)
L , R̄(i)

L ] = qr((X̄ (i)
L )H , 0), [Q̄(i)

L ,M̄(i)
L ] = qr(Ȳ(i)

L , 0);

8: C̄(i)L = (Φ̄
(i)
L Q̄

(i)
L )†Z̄(i)

L ((Ψ̄
(i)
L P̄

(i)
L )†)H ;

9: Ã(i)
L = Q̄(i)

L C̄
(i)
L (P̄(i)

L )
H
;

10: end

11: return ÂL = LH [ÃL] and (Q̄L, C̄L, P̄L).

We call the above three-step process our proposed two-sided sketching method, i.e.,

L transformed randomized projection sketching (L-TRP-SKETCH) algorithm. The
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pseudocode of our L-TRP-SKETCH algorithm is given in Algorithm 1. The storage

cost for the sketches (X ,Y ,Z) is p(nk+mk+ s2) floating point numbers. The storage

complexity of Algorithm 3.1 for the original data A ∈ Rm×n×p is O(mkp + nkp +

kkp) floating point numbers. Regarding the selection of the invertible transformation

operator L, in addition to the DFT matrix Fn3 (here n3 = p) and the DCT matrix C,

we can also choose the U transformation matrix as in [39]. In this case, the original

data A ∈ Rm×n×p modulo-3 is expanded into a matrix W ∈ Rp×mn, and then SVD is

applied on W to obtain the unitary transformation matrix U ∈ Rp×p.

Naming. When, based on the U transformed domain, linear dimensionality reduc-

tion mappings are chosen as the count tensor sketching operator, the Gaussian tensor

sketching operator, and the SRHT tensor sketching operator, Algorithm 1 is then

referred to as the U-Count-Sketch, the U-Gaussian-Sketch, and the U-SRHT-Sketch

algorithms, respectively. When, based on the DFT transformed domain, linear dimen-

sionality reduction mappings are chosen as the count tensor sketching operator, the

Gaussian tensor sketching operator, and the SRHT tensor sketching operator, Algo-

rithm 1 is then referred to as the DFT-Count-Sketch, the DFT-Gaussian-Sketch, and

the DFT-SRHT-Sketch algorithms, respectively. Similarly, when, based on the DCT

transformed domain, linear dimensionality reduction mappings are chosen as the count

tensor sketching operator, the Gaussian tensor sketching operator, and the SRHT ten-

sor sketching operator, Algorithm 1 is then referred to as the DCT-Count-Sketch, the

DCT-Gaussian-Sketch, and the DCT-SRHT-Sketch algorithms, respectively. Finally, if

the transformed domain is not specified, we just use L in the names of these algorithms;

e.g., U-Gaussian-Sketch will be called L-Gaussian-Sketch.

3.2 Principle

For

A ≈ Q ⋆L (QH ⋆L A ⋆L P) ⋆L PH , (3.22)

the core tensor QH ⋆LA ⋆LP cannot be calculated directly from the linear sketch since

P and Q are functions of A. Using the representation in Eq. (3.22), the core sketch Z
estimating the core tensor can be achieved by

Z = Φ ⋆L A ⋆L ΨH ≈ (Φ ⋆L Q) ⋆L (QH ⋆L A ⋆L P) ⋆L (PH ⋆L ΨH). (3.23)

Transferring the external matrix to the left-hand side, the core approximation C defined
in Eq. (3.18) is found to satisfy

C = (Φ ⋆L Q)† ⋆L Z ⋆L ((Ψ ⋆L P)†)H ≈ QH ⋆L A ⋆L P . (3.24)

Given Eq. (3.21), (3.22) and (3.24), we have

A ≈ Q ⋆L (QH ⋆L A ⋆L P) ⋆L PH ≈ Q ⋆L C ⋆L PH = Â. (3.25)
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The error in the last relation depends on the error in the best transformed tubal rank

k approximation of A.

Algorithm 2 DCT-Gaussian-Sketch-PI

1: Input: Input tensor A ∈ Rm×n×p and sketch size parameters k, s, q with k ≤ s.

2: function DCT-Gaussian-Sketch-PI(A, k, q)
3: Select the Gaussian tensor sketching operators from Eq. (2.13), i.e.,

Υ ∈ Rk×m×p,Ω ∈ Rk×n×p,Φ ∈ Rs×m×p,Ψ ∈ Rs×n×p;

4: ĀC = C[A]; ῩC = C[Υ]; Ω̄C = C[Ω]; Φ̄C = C[Φ]; Ψ̄C = C[Ψ];

5: for i← 1 to p

6: X̄ (i)
C = Ῡ

(i)
C Ā

(i)
C ; Ȳ(i)

C = Ā(i)
C (Ω̄

(i)
C )H ; Z̄(i)

C = Φ̄
(i)
C (Ā(i)

C )(Ψ̄
(i)
C )H ;

7: [P̄(i)
C , R̄(i)

C ] = qr((X̄ (i)
C )H , 0), [Q̄(i)

C ,M̄(i)
C ] = qr(Ȳ(i)

C , 0);

8: for j ← 1 to q

9: Ỹ(i)
C = (Ā(i)

C )HQ̄(i)
C , [Q̃(i)

C ,∼] = qr(Ỹ(i)
C , 0);

10: Ŷ(i)
C = Ā(i)

C Q̃
(i)
C , [Q̂(i)

C ,∼] = qr(Ŷ(i)
C , 0);

11: X̃ (i)
C = Ā(i)

C P̄
(i)
C , [P̃(i)

C ,∼] = qr(X̃ (i)
C , 0);

12: X̂ (i)
C = (Ā(i)

C )HP̃(i)
C , [P̂(i)

C ,∼] = qr(X̂ (i)
C , 0);

13: Q̄(i)
C = Q̂(i)

C , P̄(i)
C = P̂(i)

C ;

14: end

15: C̄(i)C = (Φ̄
(i)
C Q̄

(i)
C )†Z̄(i)

C ((Ψ̄
(i)
C P̄

(i)
C )†)H ;

16: Ã(i)
C = Q̄(i)

C C̄
(i)
C (P̄(i)

C )
H
;

17: end

18: return Â = CH [ÃC ] and (Q̄C , C̄C , P̄C).

3.3 Extension

We now showcase one extension of the proposed two-sided sketching algorithms by ex-

ploiting the power iteration technique. As shown in [42], the power iteration technique

is useful to improve sketching algorithms for low-rank matrix approximation. Here, as

an example, we can combine the power iteration technique with the DCT-Gaussian-

Sketch algorithm, in which we exploit the third order tensor say B = (A ⋆ LAH)q ⋆ LA
(where q is a nonnegative integer) instead of the original tensor A; and the DCT-

Gaussian-Sketch algorithm is applied to the new tensor B. According to the trans-

formed tensor SVD, i.e., A = U ⋆ LS ⋆ LVH , we have

B = U ⋆ L(S)2q+1 ⋆ LVH . (3.26)

Therefore, the transformed tensor singular values of B have a faster decay rate. This

way can improve the solution obtained by the DCT-Gaussian-Sketch algorithm. The

12



scheme of the proposed algorithm DCT-Gaussian-Sketch with power iteration, named

DCT-Gaussian-Sketch-PI, is summarized in Algorithm 2.

4 Theoretical Analysis

The error bound of the proposed two-sided sketching algorithms is given in Theorems

4.1 and 4.2 below. The detailed proofs used in the proof of Theorems 4.1 and 4.2 can

be found in Appendix B.

Theorem 4.1 Assume that the sketch parameters satisfy s ≥ 2k+1 and Â is the trans-

formed tensor tubal rank-k approximation of A defined by the L-Gaussian-Sketch algo-

rithm (i.e., Algorithm 1 with the Gaussian tensor sketching operator selected). Then

E∥A − Â∥
2

F ≤ (1 + f(k, s))(1 +
2ϱ

k − ϱ− 1
)τ 2ϱ+1(A ⋆ LAH), (4.27)

where ϱ is a natural number less than k − 1, f(ϱ, k) := ϱ/(k − ϱ− 1), and the tail

energy τ 2ϱ+1 is defined by Definition 2.7.

proof We have

E∥A − Â∥
2

F

= EΥEΩ∥A −Q ⋆ LQH ⋆ LA ∗ P ⋆ LPH∥2F + E∥C − QH ⋆ LA ⋆ LP∥
2

F

= (1 + f(k, s))EΥEΩ∥A −Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH∥2F

+
k(2k + 1− s)

(s− k − 1)2
E∥QH

⊥ ⋆ LA ⋆ LP⊥∥
2

F

≤ (1 + f(k, s))(1 +
2ϱ

k − ϱ− 1
)τ 2ϱ+1(A ⋆ LAH)

+
k(2k + 1− s)

(s− k − 1)2
E∥QH

⊥ ⋆ LA ⋆ LP⊥∥
2

F

≤ (1 + f(k, s))(1 +
2ϱ

k − ϱ− 1
)τ 2ϱ+1(A ⋆ LAH).

In particular, the first equation is known by Proposition 6.3 in Appendix B; the second

is known by Lemma 6.6 in Appendix B; the first inequality is known by Theorem 6.4

in Appendix B; and the last inequality is because we require s ≥ 2k + 1, and thus the

missing item k(2k+1−s)
(s−k−1)2

E∥QH
⊥ ⋆ LA ⋆ LP⊥∥

2

F is negative. This completes the proof.

Theorem 4.2 Assume that the sketch parameters satisfy s ≥ 2k + 1 and Â is the

transformed tensor tubal rank-k approximation of A defined by Algorithm 2. Then

E∥A − Â∥
2

F ≤ (1 + f(k, s))(1 +
2ϱ

k − ϱ− 1
)τ 2ϱ+1((A ⋆ LAH)(2q+1)), (4.28)
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where q is a nonnegative integer, ϱ is a natural number less than k − 1, f(ϱ, k) :=

ϱ/(k − ϱ− 1), the tail energy τ 2ϱ+1 is defined by Definition 2.7, and L here is C in

Algorithm 2.

proof We exploit the third order tensor (A⋆LAH)q ⋆LA instead of the original tensor

A. Following the proof in Theorem 4.1, we have

E∥A − Â∥
2

F

= EΥEΩ∥A −Q ⋆ LQH ⋆ L(A ⋆ LAH)q ⋆ LA ⋆ LP ⋆ LPH∥2F
+ E∥C − QH ⋆ L(A ⋆ LAH)q ⋆ LA ⋆ LP∥

2

F

= (1 + f(k, s))EΥEΩ∥A −Q ⋆ LQH ⋆ L(A ⋆ LAH)q ⋆ LA ⋆ LP ⋆ LPH∥2F

+
k(2k + 1− s)

(s− k − 1)2
E∥QH

⊥ ⋆ L(A ⋆ LAH)q ⋆ LA ⋆ LP⊥∥
2

F

≤ (1 + f(k, s))(1 +
2ϱ

k − ϱ− 1
)τ 2ϱ+1

(
(A ⋆ LAH)q ⋆ LA ⋆ L((A ⋆ LAH)q ⋆ LA)H

)
+

k(2k + 1− s)

(s− k − 1)2
E∥QH

⊥ ⋆ L(A ⋆ LAH)q ⋆ LA ⋆ LP⊥∥
2

F

≤ (1 + f(k, s))(1 +
2ϱ

k − ϱ− 1
)τ 2ϱ+1((A ⋆ LAH)2q+1).

This completes the proof.

5 Numerical Experiments

This section showcases numerical experiments validating the efficiency and effectiveness

of the proposed two-sided sketching algorithms, in comparison with the state-of-the-art

algorithms including the T-Sketch algorithm [22, Algorithm 2], T-Sketch-PI algorithm

(q = 1) [22], truncated-t-SVD algorithm [38], and rt-SVD algorithm (i.e., a one-sided

randomized algorithm based on t-SVD in [40, Algorithm 6]). The sketch size parame-

ters are set to s = 2k+1. The following relative error ϵerr and the peak signal-to-noise

ratio (PSNR) ρpsnr are used as metrics of the low-rank approximation Â to the input

tensor data A, i.e.,

ϵerr := ||A − Â||
2

F/||A||
2
F , ρpsnr := 10 log10

n1n2n3||A||2∞
||A − Â||2F

. (5.29)

5.1 Synthetic Experiments

We firstly conduct numerical tests on some synthetic input tensors A ∈ R103×103×10

with decaying spectrum.
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Polynomial decay: These tensors are f-diagonal tensors. Considering their j-th

frontal slices with the form

A(j) = diag
(
1, . . . , 1︸ ︷︷ ︸
min(r,j)

, 2−p, 3−p, 4−p, . . . , (n−min(r, j) + 1)−p
)
∈ Rn×n, (5.30)

we study two examples, i.e., PolyDecaySlow (p = 0.5) and PolyDecayFast (p = 2).

Figures 1–3 give the results of the algorithms compared in terms of the relative

error, CPU time, and PSNR, as the size of the sketch parameter k varies; see more

details below.

5.1.1 Experiments Regarding the Transformed Domains

We first examine the performance of different transformed domains in our two-sided

sketching method. Figure 1 shows the results of different methods and our method

via different transformed domains (specifically, U-Gaussian-Sketch, DCT-Gaussian-

Sketch, and DFT-Gaussian-Sketch algorithms) in terms of the relative error, CPU

time, and PSNR. Figure 1 illustrates that among our two-sided Gaussian sketching

algorithms with different transformed domains, they all perform similarly in terms

of the relative error and PSNR. Regarding the CPU time, our DCT-Gaussian-Sketch

and U-Gaussian-Sketch algorithms outperform all other methods including the rt-SVD,

truncated-t-SVD, and T-Sketch algorithms. This means, regarding the two-sided Gaus-

sian sketching algorithms employing various transformation operators, the DCT and

U transforms emerge as the most efficient.

As shown in the second row of Figure 1, our two-sided sketching method with

different transformed domains all surpasses the accuracy of the rt-SVD and T-Sketch

algorithms for input tensors exhibiting a fast decay spectrum. Consequently, with

reduced storage requirements and manipulation, our two-sided sketching method with

different transformed domains provides superior accuracy in low-rank approximations.

It is worth highlighting that, for input tensors exhibiting a fast decay spectrum, our

method is the second only to the truncated-t-SVD algorithm in terms of accuracy, but

our method offers a significant speed advantage, i.e, the truncated-t-SVD is far slower

than our method (see the middle plot of the second column of Figure 1).

5.1.2 Experiments Regarding the Tensor Sketching Operators

We now examine the performance of different tensor sketching operators in our two-

sided sketching method. As an example, our method here is adopted with the DCT

transformed domain. Figure 2 shows the results of different methods and our method

via different tensor sketching operators (specifically, DCT-Gaussian-Sketch, DCT-SRHT-

Sketch, DCT-Count-Sketch algorithms) in terms of the relative error, CPU time, and
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Figure 1: Performance of different methods and our method via different transformed

domains (i.e., U, DCT, and DFT transforms) in terms of the relative error (left column),

CPU time (middle column), and PSNR (right column). In particular, the first row is

for tensor data (PolyDecaySlow) with slow decaying spectrum and the second row is

for tensor data (PolyDecayFast) with fast decaying spectrum.
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Figure 2: Performance of different methods and our method based on the DCT trans-

formed domain and via different tensor sketching operators (i.e., Gaussian, SRHT, and

count sketching operators) in terms of the relative error (left column), CPU time (mid-

dle column), and PSNR (right column). In particular, the first row is for tensor data

(PolyDecaySlow) with slow decaying spectrum and the second row is for tensor data

(PolyDecayFast) with fast decaying spectrum.
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Figure 3: Performance of different methods and our method based on the DCT trans-

formed domain and the Gaussian tensor sketching operator with and without the power

iteration technique in terms of the relative error (left column), CPU time (middle

column), and PSNR (right column). In particular, the first row is for tensor data

(PolyDecaySlow) with slow decaying spectrum and the second row is for tensor data

(PolyDecayFast) with fast decaying spectrum.
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PSNR. Figure 2 illustrates that among our two-sided sketching algorithms based on

the DCT transformed domain, the DCT-Gaussian-Sketch algorithm outperforms the

other two in terms of accuracy, indicating the better effectiveness of the Gaussian

tensor sketching operator. Regarding the CPU time, our DCT-Gaussian-Sketch and

DCT-Count-Sketch algorithms outperform all other methods including the rt-SVD,

truncated-t-SVD, and T-Sketch algorithms. This means, regarding the two-sided

sketching algorithms (based on the DCT transformed domain) employing various ten-

sor sketching operators, the Gaussian and count sketching operators emerge as the

most efficient. Considering both the accuracy and speed, the DCT-Gaussian-Sketch

algorithm is the best among our method with different tensor sketching operators.

As shown in the second row of Figure 2, consistent results are obtained for our

DCT-Gaussian-Sketch algorithm as that in Figure 1. It is worth highlighting that, for

input tensors exhibiting a fast decay spectrum, our DCT-Gaussian-Sketch algorithm

is the second only to the truncated-t-SVD algorithm in terms of accuracy, but it offers

a significant speed advantage, i.e., the truncated-t-SVD is far slower than our DCT-

Gaussian-Sketch algorithm (see the middle plot of the second column of Figure 2).

5.1.3 Experiments Regarding the Power Iteration Technique

Figure 3 shows the results of different methods and our method based on the DCT

transformed domain and the Gaussian tensor sketching operator with and without the

power iteration technique (i.e., DCT-Gaussian-Sketch and DCT-Gaussian-Sketch-PI

(q = 1)) in terms of the relative error, CPU time, and PSNR. For the input ten-

sors exhibiting both slow and fast decay spectra, Figure 3 shows that DCT-Gaussian-

Sketch-PI can indeed outperform DCT-Gaussian-Sketch in terms of accuracy, with a

litter sacrifice of speed, indicating the effectiveness of the power iteration technique

in approximation quality enhancement. Moreover, for the comparison between our

DCT-Gaussian-Sketch-PI algorithm, the T-Sketch algorithm with the power iteration

technique (i.e., T-Sketch-PI), and the rt-SVD algorithm, our method is superior in all

metrics.

With reduced storage requirements and manipulation, as shown in the second row of

Figure 3 for input tensors exhibiting a fast decay spectrum, our DCT-Gaussian-Sketch-

PI algorithm is the second only to the truncated-t-SVD algorithm in terms of accuracy,

but our algorithm again offers a significant speed advantage, i.e, the truncated-t-SVD

is far slower than our DCT-Gaussian-Sketch-PI algorithm (see the middle plot of the

second column of Figure 3).
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(a) HDU image (size: 1, 200× 1, 800) (b) London image (size: 4, 775× 7, 155)

(c) Transformed tensor singular values of (a) (d) Transformed tensor singular values of (b)

Figure 4: Test real-world color images and the DCT transformed tensor singular values

in terms of their decaying spectrum. Row one: the original color images. Row two:

the transformed tensor singular values of the power iteration (q = 0) and (q = 1) for

the given color images.

5.2 Real-world Data

We now conduct experiments on real-world data including color images and grayscale

videos. For our method, we select the DCT-Gaussian-Sketch and DCT-Gaussian-

Sketch-PI (q = 1) algorithms, given their great performance demonstrated in the

previous section.

5.2.1 Color Images

Two large size color images, i.e., HDU picture1 with size of 1, 200 × 1, 800 × 3 and

London picture with size of 4, 775×7, 155×3, are employed, see the first row of Figure

1https://www.hdu.edu.cn/landscape
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Figure 5: Low-rank approximation performance of different methods on the HDU

image (first row) and the London image (second row) in terms of the relative error (left

column), CPU time (middle column), and PSNR (right column).
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4.

The second row of Figure 4 gives the ordered transformed tensor singular values

(indicating the decaying spectrum) using the DCT transformed tensor singular values

decomposition on the two original color images. It clearly shows that the one with

power iteration achieves a faster decaying spectrum compared to that without power

iteration, demonstrating the great effectiveness of the power iteration technique.

(a1) T-Sketch (b1) T-Sketch-PI (c1) DCT-Gaussian-Sketch

CPU:0.84; PSNR: 29.44 CPU:1.17; PSNR: 33.77 CPU: 0.84; PSNR: 31.91

(d1) DCT-Gaussian-Sketch-PI (e1) truncated-t-SVD (f1) rt-SVD

CPU: 1.24; PSNR: 34.82 CPU: 3.29; PSNR: 37.51 CPU: 1.32; PSNR: 32.49

(a2) T-Sketch (b2) T-Sketch-PI (c2) DCT-Gaussian-Sketch

CPU:11.55; PSNR: 30.20 CPU:17.32; PSNR: 34.67 CPU: 11.12; PSNR: 33.67

(d2) DCT-Gaussian-Sketch-PI (e2) truncated-t-SVD (f2) rt-SVD

CPU: 17.06; PSNR: 36.38 CPU: 252.40; PSNR: 38.38 CPU: 38.81; PSNR: 33.26

Figure 6: Qualitative results of the low-rank approximation performance of different

methods on the HDU image (rows 1 and 2) with the sketch size k = 300 and the

London image (rows 3 and 4) with the sketch size k = 600 in terms of the CPU time

and PSNR.

Figures 5 and 6 respectively give the quantitative and qualitative results of the
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low-rank approximation performance of different methods on the test color images in

terms of different metrics. It is evident that as the sketch parameter size k increases, the

low-rank approximation performance of all the methods improves. Consistent results

are obtained as that obtained from the previous section for synthetic tensors. Regard-

ing the CPU time, our DCT-Gaussian-Sketch algorithm and the T-Sketch algorithm

outperform all others. In particular, the second row of Figure 5 (results for the Lon-

don image) shows that the DCT-Gaussian-Sketch algorithm surpasses both the rt-SVD

and T-Sketch algorithms in terms of accuracy, with reduced storage and manipulation

requirements. The DCT-Gaussian-Sketch-PI algorithm achieves better accuracy com-

pared to the T-Sketch-PI algorithm with similar speed. The DCT-Gaussian-Sketch-PI

algorithm is only second to the truncated-t-SVD algorithm in accuracy, but it is re-

markably faster than the truncated-t-SVD algorithm.

5.2.2 Color Image with Gaussian White Noise
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Figure 7: Low-rank approximation performance of different methods on the HDU 2D

code image with Gaussian white noise in terms of the relative error (left column),

CPU time (middle column), and PSNR (right column). In particular, the yellow line

named ‘image with noise’ is utilized to plot the PSNR of the HDU 2D code image with

Gaussian white noise.

We now inspect the impact of noise on the performance of different methods. Specifi-

cally, the input tensor is randomly generated as

A ← A+ σ · E ,
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(a) Image with noise (b) T-Sketch (c) T-Sketch-PI

PSNR: 10.11 CPU:0.13; PSNR: 11.19 CPU: 0.17; PSNR: 12.78

(d) DCT-Gaussian-Sketch (e) DCT-Gaussian-Sketch-PI (f) rt-SVD

CPU: 0.08; PSNR: 13.03 CPU: 0.17; PSNR: 14.17 CPU: 0.21; PSNR: 13.68

Figure 8: Qualitative results of the low-rank approximation performance of different

methods on the HDU 2D code image with Gaussian white noise and the sketch size k

= 50 in terms of the CPU time and PSNR.

where E represents the Gaussian noise tensor following the standard Gaussian distri-

bution, and σ controls the noise level and is set to 5 here.

Figures 7 and 8 respectively give the quantitative and qualitative results of the low-

rank approximation performance of different methods on the HDU 2D code image (with

size of 800×800×3) with Gaussian white noise in terms of different metrics. It is again

evident that as the sketch parameter size k increases, the low-rank approximation per-

formance of all the methods improves. Regarding the CPU time, our DCT-Gaussian-

Sketch algorithm outperforms all others. The DCT-Gaussian-Sketch algorithm also

surpasses the T-Sketch algorithm in terms of accuracy, with reduced storage and ma-

nipulation requirements. The DCT-Gaussian-Sketch-PI algorithm achieves better ac-

curacy by a large margin compared to the T-Sketch-PI algorithm with faster speed.

Moreover, the DCT-Gaussian-Sketch-PI algorithm is only second to the truncated-t-

SVD algorithm in accuracy, but it is remarkably faster than the truncated-t-SVD algo-

rithm. In addition, from the right column of Figure 7, it can be seen that when k ≥ 10,

the PSNR obtained by the DCT-Gaussian-Sketch and the DCT-Gaussian-Sketch-PI al-

gorithms is higher than the original image with Gaussian white noise, indicating the

effectiveness of our method both in tensor approximation and the denoising capacity.

24



0 10 20 30 40 50

Sketch size parameter k

-8

-7

-6

-5

-4

-3

-2
R

e
la

tiv
e

 e
rr

o
r 

in
 a

 lo
g

 s
ca

le
T-Sketch

T-Sketch-PI

DCT-Gaussian-Sketch

DCT-Gaussian-Sketch-PI

truncated-t-SVD

rt-SVD

0 10 20 30 40 50

Sketch size parameter k

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

C
P

U
 t

im
e

0 10 20 30 40 50

Sketch size parameter k

0

5

10

15

20

25

30

P
S

N
R

Figure 9: Low-rank approximation performance of different methods on the ‘hall moni-

tor’ grayscale video clip (size: 144×176×30) in terms of the relative error (left column),

CPU time (middle column), and PSNR (right column).
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Figure 10: Qualitative results of the low-rank approximation performance of different

methods on the first frame of the ‘hall monitor’ grayscale video clip with the sketch

size k = 40 in terms of the CPU time and PSNR.
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5.2.3 Grayscale Video

We ultimately assess the proposed sketching algorithms and the peers using the ex-

tensively adopted YUV Video Sequences2. As an example, we utilize the ‘hall mon-

itor’ video clip and its first 30 frames to create a three-order tensor with dimensions

144× 176× 30 for this experiment.

Figures 9 and 10 respectively give the quantitative and qualitative results of the low-

rank approximation performance of different methods on the ‘hall monitor’ graysc-ale

video clip in terms of different metrics. Consistent results are obtained as that obtained

from the previous section for synthetic tensors and real-world images. For example,

regarding the CPU time, our DCT-Gaussian-Sketch algorithm again outperforms all

others. Moreover, it also clearly surpasses the T-Sketch algorithm in terms of accuracy,

with reduced storage and manipulation requirements. The DCT-Gaussian-Sketch-PI

algorithm achieves better accuracy compared to the T-Sketch-PI algorithm with faster

speed. The DCT-Gaussian-Sketch-PI algorithm is only second to the truncated-t-SVD

algorithm in accuracy, but it is faster than the truncated-t-SVD algorithm.

6 Conclusion

In this paper, we focused on large-scale tensor decomposition and proposed a novel

two-sided sketching method based on the ⋆L-product decomposition and transformed

domains. Different transformed domains including the U, DCT, and DFT domains

were investigated, together with different tensor sketching operators and the extension

with the power iteration technique. A rigorous theoretical analysis was also conducted

to assess the approximation error of the proposed method, particularly for the case of

using the DCT transformation and the Gaussian tensor sketching operator with and

without power iteration. Extensive numerical experiments and comparisons on low-

rank approximation of synthetic large tensors and real-world data like color images and

grayscale videos demonstrated the efficiency and effectiveness of the proposed approach

in terms of both CPU time and low-rank approximation effects.

Appendix A

This appendix is about random projection. Three matrix sketching techniques, i.e.,

Gaussian projection, subsampled randomized Hadamard transform (SRHT), and count

sketch [43], are introduced below.

2http://trace.eas.asu.edu/yuv/index.html
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A.1. Gaussian Projection

The Gaussian random projection matrix S ∈ Rn×s is a matrix formed by S = G/
√
s,

where each entry of G is sampled i.i.d. from N (0, 1). For matrix A ∈ Rm×n, the

time complexity of Gaussian projection is O(mns). Algorithm 3 presents the Gaussian

projection process.

Algorithm 3 Gaussian Projection

1: Input: A ∈ Rm×n, and parameter s.

2: function GaussianProjection(A, s)

3: Generate Gaussian random matrix G ∈ Rn×s;

4: S = 1√
s
G;

5: C = AS;

6: return C ∈ Rm×s.

A.2. Subsampled Randomized Hadamard Transform

The SRHT matrix is defined by S = DHnP/
√
sn ∈ Rn×s, where

• D ∈ Rn×n is a diagonal matrix with diagonal entries sampled uniformly from

{+1, 1}.

• Hn ∈ Rn×n is the Hadamard matrix defined recursively by

Hn =

(
Hn

2
Hn

2

Hn
2
−Hn

2

)
and H2 =

(
+1 +1

+1 −1

)
.

Note that the order of the Hadamard matrix is usually a power of 2. ∀y ∈ Rn,

the matrix vector product yHHn can be performed in O(n log n) by the fast

Walsh-Hadamard transform algorithm in a divide-and-conquer fashion.

• P ∈ Rn×s is a matrix that essentially samples s columns from DHn.

Algorithm 4 presents the SRHT process.

A.3. Count Sketch

There are two approaches, namely “map-reduce fashion” and “streaming fashion”, to

implement count sketch. Both approaches are equivalent, and we will focus on the

streaming fashion here. The streaming fashion involves two steps: (i) the m×s matrix

C is initialized to zero; and (ii) for each column of A, its sign is randomly flipped with
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Algorithm 4 Subsampled Randomized Hadamard Transform (SRHT)

1: Input: A ∈ Rm×n, and parameter s.

2: function SRHT(A, s)

3: Generate matrices D ∈ Rn×n, Hn ∈ Rn×n and P ∈ Rn×s;

4: S = 1√
sn
DHnP ;

5: C = AS;

6: return C ∈ Rm×s.

a probability of 0.5 and the flipped column is then added to a randomly chosen column

of C.

The count sketch process in the streaming fashion is detailed in Algorithm 5. The

streaming fashion keeps matrix C in memory and processes the data A in a single

pass. When A does not fit into memory, this approach is more efficient than the map-

reduce fashion because it processes columns sequentially. Furthermore, if A is a sparse

matrix, sequentially accessing columns can be more efficient than random access. It

is noticed that the count sketch does not explicitly form the sketching matrix S like

the Gaussian projection and the SHRT processes. In fact, S for count sketch is such

a matrix that its each row has only one nonzero entry. The time complexity of count

sketch is O(nnz(A)), where nnz(A) represents the number of nonzeros of matrix A.

Algorithm 5 Count Sketch in the Streaming Fashion

1: Input: A ∈ Rm×n, and parameter s.

2: function CountSketch(A, s)

3: Initialize C to be an m× s all-zero matrix;

4: for i = 1 to n do

5: sample l from the set [s] uniformly at random;

6: sample g from the set {+1,−1} uniformly at random;

7: update the l-th column of C by C(:, l)← C(:, l) + gA(:, i);

8: end

9: return C ∈ Rm×s.

Appendix B

In this appendix, we provide the proofs which are used to derive the error bound of

the proposed two-sided sketching algorithms in Theorems 4.1 and 4.2.
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B.1. Facts about Random Tensors

First, let us state a useful formula below that allows us to compute some expectations

involving a Gaussian random tensor.

Proposition 6.1 Assume t > q + 1. Let G1 ∈ Rt×q×p and G2 ∈ Rt×l×p be Gaussian

random tensors. For any tensor B with conforming dimensions,

E∥ G†1 ⋆ LG2 ⋆ LB ∥
2

F =
q

t− q − 1
∥ B ∥2F .

proof By Lemma 2.3 and the linearity of the expectation, we have

E∥ G†1 ⋆ LG2 ⋆ LB ∥
2

F =
1

p

(
p∑

i=1

E
∥∥ ¯G†1(i)Ḡ2(i)B̄(i)

∥∥2
F

)
.

By using [34, A.1], we have

E
∥∥ ¯G†1(i)Ḡ2(i)B̄(i)

∥∥2
F
=

q

t− q − 1
∥ B̄(i) ∥2F ,

which yields

E∥ G†1 ⋆ LG2 ⋆ LB ∥
2

F =
q

t− q − 1
∥ B ∥2F .

This completes the proof.

B.2. Results from Randomized Linear Algebra

Proposition 6.2 Fix A ∈ Rm×n×p, let ϱ < k be a natural number, and f(ϱ, k) =

ϱ/(k − ϱ− 1). Then the tensor Q ∈ Rm×k×p calculated by Eq. (3.17) satisfies

EΩ∥A −Q ⋆ LQH ⋆ LA∥
2

F ≤ (1 + f(ϱ, k))τ 2ϱ+1(A ⋆ LAH) . (6.31)

An analogous result holds for the tensor P ∈ Rn×k×p computed by Eq. (3.17), i.e.,

EΥ∥A −A ⋆ LP ⋆ LPH∥2F ≤ (1 + f(ϱ, k))τ 2ϱ+1(A ⋆ LAH) . (6.32)

proof By Lemma 2.3 and the linearity of the expectation, we have

EΩ∥A −QL ⋆ LQH
L ⋆ LA∥2F =

1

p

(
p∑

i=1

E
∥∥∥∥Ā(i)

L − Q̄
(i)
L

(
Q̄(i)

L

)H
Ā(i)

L

∥∥∥∥2
F

)
.

By [42, Theorem 10.5], we have

E∥Ā(i)
Fn3
− Q̄(i)

Fn3
(Q̄(i)

Fn3
)HĀ(i)

Fn3
∥
2

F
≤ (1 + f(ϱ, k)) · τ 2ϱ+1(Ā

(i)
Fn3

(Ā(i)
Fn3

)H) .
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Similarly, we know from [37] that multiplying by a unitary matrix will not change the

Frobenius norm, i.e., the Frobenius norm keeps the unitary matrix unchanged. Thus

we have

E∥Ā(i)
L − Q̄

(i)
L (Q̄(i)

L )HĀ(i)
L ∥

2

F ≤ (1 + f(ϱ, k)) · τ 2ϱ+1(Ā
(i)
L (Ā(i)

L )H)

and

EΩ∥A −QL ⋆ LQH
L ⋆ LA∥2F ≤

1

p
(1 + f(ϱ, k)) ·

( p∑
i=1

τ 2ϱ+1(Ā
(i)
L (Ā(i)

L )H)
)

= (1 + f(ϱ, k)) · τ 2ϱ+1(A ⋆ LAH) .

Similarly, there is

EΥ∥A −A ⋆ LP ⋆ LPH∥2F ≤ (1 + f(ϱ, k))τ 2ϱ+1(A ⋆ LAH) , (6.33)

which completes the proof.

Let Â be the tubal rank k approximation of A obtained by the L-Gaussian-Sketch

algorithm. We now split the error ∥A − Â∥
2

F into two parts by Proposition 6.3 below.

Proposition 6.3 Let Â be the tubal rank k approximation of A ∈ Rm×n×p obtained

by the L-Gaussian-Sketch algorithm, with Q, C and P being the intermediate tensors

obtained by the L-Gaussian-Sketch algorithm satisfying QH ⋆LQ = Ikkp and P ⋆LPH =

Innp. Then

∥A − Â∥
2

F = ∥A −Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH∥2F + ∥C − QH ⋆ LA ⋆ LP∥
2

F . (6.34)

proof Since Â = Q ⋆ LC ⋆ LPH , we have

∥A − Â∥2F

=
1

p

p∑
i=1

∥ĀL − ¯̂AL∥
2

F

=
1

p

p∑
i=1

(∥ĀL − Q̄LQ̄H
L ĀLP̄LP̄H∥2F + ∥C̄L − Q̄H

L ĀLP̄L∥
2

F )

= ∥A −Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH∥2F + ∥C − QH ⋆ LA ⋆ LP∥
2

F .

The first and last equations are known by Lemma 2.3, and the second equation is

known by [34, A.6]. This completes the proof.

The error of the first part of Eq. (6.34) can be given in the below Theorem 6.4.

Theorem 6.4 For any natural number ϱ < k − 1, it holds that

EΥEΩ∥A −Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH∥2F ≤ (1 +
2ϱ

k − ϱ− 1
)τ 2ϱ+1(A ⋆ LAH) . (6.35)
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proof We have

EΥEΩ∥A −Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH∥2F

=
1

p

p∑
i=1

EΥEΩ∥ĀL − Q̄LQ̄H
L ĀLP̄LP̄H∥2F

≤ (1 +
2ϱ

k − ϱ− 1
)τ 2ϱ+1(A ⋆ LAH) .

The first equation is known by Lemma 2.3, and the inequality is known by [34, A.5].

This completes the proof.

B.3. Decomposition of the Core Tensor Approximation Error

We now obtain a formula for the error in the approximation (C −QH ⋆ LA ⋆ LP) (i.e.,
the second part of Eq. (6.34)).

Note that the core tensor C ∈ Rk×k×p is defined in Eq. (3.18), and the orthonormal

tensors P ∈ Rn×k×p and Q ∈ Rm×k×p are constructed in Eq. (3.17). Let us introduce

tensors P⊥ ∈ Rn×(n−k)×p and Q⊥ ∈ Rm×(m−k)×p whose ranges are complementary to

those of P and Q, respectively, i.e.,

P⊥ ⋆ LPH
⊥ = Immp − P ⋆ LPH , (6.36)

Q⊥ ⋆ LQH
⊥ = Immp −Q ⋆ LQH , (6.37)

where the columns of P⊥ and Q⊥ are orthonormal, separately. Next, we introduce the

subtensors, i.e.,

Φ1 := Φ ⋆ LQ ∈ Rs×k×p, Φ2 := Φ ⋆ LQ⊥ ∈ Rs×(m−k)×p,

ΨH
1 := PH ⋆ LΨ

H ∈ Rk×s×p, ΨH
2 := PH

⊥ ⋆ LΨ
H ∈ R(n−k)×s×p.

(6.38)

With these notations at hand, we can state and prove Lemma 6.5 below.

Lemma 6.5 (Decomposition of the Core Tensor Approximation) Assume the tub- al

rank of Φ1 and Ψ1 is k and s, respectively. Then

C − QH ⋆ LA ⋆ LP
= Φ†

1 ⋆ LΦ2 ⋆ L(QH
⊥ ⋆ LA ⋆ LP) + (QH ⋆ LA ⋆ LP⊥) ⋆ LΨ

†
2 ⋆ L(Ψ

†
1)

H

+ Φ†
1 ⋆ LΦ2 ⋆ L(QH

⊥ ⋆ LA ⋆ LP⊥) ⋆ LΨ
†
2 ⋆ L(Ψ

†
1)

H .

proof Adding and subtracting terms, we write the core sketch Z as

Z = Φ ⋆ LA ⋆ LΨ
H

= Φ ⋆ L(A−Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH) ⋆ LΨ
H

+ (Φ ⋆ LQ) ⋆ L(QH ⋆ LA ⋆ LP) ⋆ L(PH ⋆ LΨ
H).
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Using Eq. (6.38), we identify the tensors Φ1 and Ψ1. For the above Z, after left-

multiplying it by Φ†
1 and right-multiplying it by (Ψ†

1)
H , we have

C = Φ†
1 ⋆ LZ ⋆ L(Ψ

†
1)

H

= Φ†
1 ⋆ LΦ ⋆ L(A−Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH) ⋆ LΨ

H ⋆ L(Ψ
†
1)

H

+QH ⋆ LA ⋆ LP ,

which identifies the core tensor C defined in (3.18). For the above representation of C,
moving the term QH ⋆ LA ⋆ LP to the left-hand side will give the approximation error.

Using Eq. (6.38) again, we have

Φ†
1 ⋆ LΦ = Φ†

1 ⋆ LΦ ⋆ LQ ⋆ LQH + Φ†
1 ⋆ LΦ ⋆ LQ⊥ ⋆ LQH

⊥

= QH + Φ†
1 ⋆ LΦ2 ⋆ LQH

⊥ ,

and

ΨH ⋆ L(Ψ
†
1)

H = P ⋆ LPH ⋆ LΨ
H ⋆ L(Ψ

†
1)

H + P⊥ ⋆ LPH
⊥ ⋆ LΨ

H ⋆ L(Ψ
†
1)

H

= P + P⊥ ⋆ LΨ
H
2 ⋆ L(Ψ

†
1)

H .

Combining the last three displays, we have

C − QH ⋆ LA ⋆ LP
= (QH + Φ†

1 ⋆ LΦ2 ⋆ LQH
⊥ ) ⋆ L(A−Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH) ⋆ L(P

+ P⊥ ⋆ LΨ
H
2 ⋆ L(Ψ

†
1)

H).

Expanding the expression and using the orthogonality relations QH ⋆ LQ = Ikkp, QH
⊥ ⋆

LQ = O, PH ⋆ LP = Ikkp, and PH
⊥ ⋆ LP = O, we complete the proof.

B.4. Probabilistic Analysis of the Core Tensor

We can then study the probabilistic behavior of the error (C−QH⋆LA⋆LP), conditional
on Q and P .

Lemma 6.6 (Probabilistic Analysis of the Core Tensor) Assume that the dimension

reduction tensors Φ and Ψ are Gaussian linear sketching operators. When s ≥ k, it

holds that

EΦ,Ψ[C − QH ⋆ LA ⋆ LP ] = O. (6.39)

When s > k + 1, the error can be expressed as

EΦ,Ψ∥C − QT ⋆ LA ⋆ LP∥
2

F =
k

s− k − 1
∥A −Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH∥2F

+
k(2k + 1− s)

(s− k − 1)2
∥QH

⊥ ⋆ LA ⋆ LP⊥∥
2

F .
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In particular, when s < 2k+1, the last term is nonnegative; and when s ≥ 2k+1, the

last term is nonpositive.

proof Since Φ is a Gaussian linear sketching operator, the orthogonal subtensors

Φ1 and Φ2 are also Gaussian linear sketching operators because of the marginal prop-

erty of the normal distribution. Likewise, Ψ1 and Ψ2 are Gaussian linear sketching

operators. Provided that s ≥ k, the tensor transformed tubal rank of Φ1 and Ψ1 is k.

Using the decomposition of the approximation error from Lemma 6.5, we have

EΦ,Ψ[C − QH ⋆ LA ⋆ LP ] = EΦ1EΦ2 [Φ
†
1 ⋆ LΦ2 ⋆ L(QH

⊥ ⋆ LA ⋆ LP)]
+ EΨ1EΨ2 [(QH ⋆ LA ⋆ LP⊥) ⋆ LΨ

H
2 ⋆ L(Ψ

†
1)

H ]

+ E[Φ†
1 ⋆ LΦ2 ⋆ L(QH

⊥ ⋆ LA ⋆ LP⊥) ⋆ LΨ
H
2 ⋆ L(Ψ

†
1)

H ] .

Then we invoke independence to write the expectations as iterated expectations. Since

Φ2 and Ψ2 have mean zero. This formula makes it clear that the approximation error

has mean zero.

To study the fluctuations, applying the independence and zero-mean property of

Φ2 and Ψ2, we have

EΦ,Ψ∥C − QH ⋆ LA ⋆ LP∥
2

F

= EΦ∥Φ†
1 ⋆ LΦ2 ⋆ L(QH

⊥ ⋆ LA ⋆ LP)∥
2

F

+ EΨ∥(QH ⋆ LA ⋆ LP⊥) ⋆ LΨ
H
2 ⋆ L(Ψ

†
1)

H∥2F
+ EΦEΨ∥Φ†

1 ⋆ LΦ2 ⋆ L(QH
⊥ ⋆ LA ⋆ LP⊥) ⋆ LΨ

H
2 ⋆ L(Ψ

†
1)

H∥2F .

Invoking Proposition 6.1 yields

EΦ,Ψ∥C − QH ⋆ LA ⋆ LP∥
2

F

=
k

s− k − 1

[
∥QH

⊥ ⋆ LA ⋆ LP∥
2

F + ∥QH ⋆ LA ⋆ LP⊥∥
2

F

+
k

s− k − 1
∥QH

⊥ ⋆ LA ⋆ LP⊥∥
2

F

]
=

k

s− k − 1

[
∥QH

⊥ ⋆ LA ⋆ LP∥
2

F + ∥QH ⋆ LA ⋆ LP⊥∥
2

F + ∥QH
⊥ ⋆ LA ⋆ LP⊥∥

2

F

+
2k + 1− s

s− k − 1
∥QH

⊥ ⋆ LA ⋆ LP⊥∥
2

F

]
.

Using the Pythagorean Theorem to combine the terms in the above equation, we have

EΦ,Ψ∥C − QH ⋆ LA ⋆ LP∥
2

F

=
k

s− k − 1
∥A −Q ⋆ LQH ⋆ LA ⋆ LP ⋆ LPH∥2F

+
k(2k + 1− s)

(s− k − 1)2
∥QH

⊥ ⋆ LA ⋆ LP⊥∥
2

F .
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This completes the proof.
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