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Abstract

Point clouds are popular 3D representations for real-life objects (such as in LiDAR
and Kinect) due to their detailed and compact representation of surface-based
geometry. Recent approaches characterise the geometry of point clouds by bringing
deep learning based techniques together with geometric fidelity metrics such as
optimal transportation costs (e.g., Chamfer and Wasserstein metrics). In this paper,
we propose a new surface geometry characterisation within this realm, namely a
neural varifold representation of point clouds. Here the surface is represented as a
measure/distribution over both point positions and tangent spaces of point clouds.
The varifold representation quantifies not only the surface geometry of point clouds
through the manifold-based discrimination, but also subtle geometric consistencies
on the surface due to the combined product space. This study proposes neural
varifold algorithms to compute the varifold norm between two point clouds using
neural networks on point clouds and their neural tangent kernel representations.
The proposed neural varifold is evaluated on three different sought-after tasks –
shape matching, few-shot shape classification and shape reconstruction. Detailed
evaluation and comparison to the state-of-the-art methods demonstrate that the
proposed versatile neural varifold is superior in shape matching and few-shot shape
classification, and is competitive for shape reconstruction.

1 Introduction

Point clouds are preferred in more and more applications including computer graphics, autonomous
driving, robotics and augmented reality. However, manipulating/editing point clouds data in its
raw form is rather cumbersome. Neural networks have made breakthroughs in a wide variety of
fields ranging from natural language processing to computer vision. Point cloud data in general
lack underlying grid structures. As a result, convolution operations on point cloud data require
special techniques including voxelisation [1, 2, 3], graph representations [4, 5, 6] or point-wise
convolutions [7, 8, 9]. Geometric deep learning and its variants have addressed technical problems
of translating neural networks on point cloud data [5]. With advanced graph theory and harmonic
analysis, convolutions on point cloud data can be defined in the context of spectral [4, 10] or spatial
[11, 6] domains. Although geometric deep learning on point clouds has successfully achieved top
performance in shape classification and segmentation tasks, capturing subtle changes in 3D surface
remains challenging due to the unstructured and non-smooth nature of point clouds. A possible
direction to learn subtle changes on 3D surface adopts some concepts developed in the field of
theoretical geometric analysis. In other words, deep learning architectures might be improved by
incorporating theoretical knowledge from geometric analysis. In this work, we introduce concepts
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borrowed from geometric measure theory, where representing shapes as measures or distributions has
been instrumental.

Geometric measure theory has been actively investigated by mathematicians; however, its technicality
may have hindered its popularity and its use in many applications. Geometric measure-theoretic
concepts have recently been introduced to measure shape correspondence in non-rigid shape matching
[12, 13, 14] and curvature estimation [15, 16]. We introduce the theory of varifolds to improve
learning representation of 3D point clouds. An oriented d-varifold is a measure over point positions
and oriented tangent k-planes, i.e., a measure on the Cartesian product space of Rn and the oriented
Grassmannian manifold G̃(d, n). Varifolds can be viewed as generalisations of d-dimensional smooth
shapes in Euclidean space Rn. The varifold structure not only helps to better differentiate the macro-
geometry of the surface through the manifold-based discrimination, but also the subtle singularities in
the surface due to the combined product space. Varifolds provide representations of general surfaces
without parameterization. They not only can represent consistently point clouds that approximate
surfaces in 3D, but are also scalable to arbitrary surface discretisation (e.g., meshes). In this study,
we use varifolds to analyse and quantify the geometry of point clouds.

Our contributions:

• Introduce the notion of neural varifold as a learning representation of point clouds. Varifold
representation of 3D point clouds coupling space position and tangent planes can provide both
theoretical and practical analyses of the surface geometry.

• Propose two algorithms to compute the varifold norm between two point clouds using neural
networks on point clouds and their neural tangent kernel representations. The reproducing kernel
Hilbert space of the varifold is computed by the product of two neural tangent kernels of positional
and Grassmannian features of point clouds. The neural varifold can take advantage of the expressive
power of neural networks as well as the varifold representation of point clouds.

• Apply the usage of neural varifold in evaluating shape similarity between point clouds on various
tasks including shape matching, few-shot shape classification and shape reconstruction.

2 Related works

Geometric deep learning on point clouds. PointNet is the first pioneering work on point clouds.
It consists of a set of fully connected layers followed by symmetric functions to aggregate feature
representations. In other words, PointNet is neural networks on a graph without edge connections. In
order to incorporate local neighbourhood information with PointNet, PointNet++ [8] applied PointNet
to individual patches of the local neighbourhood, and then stacked them together. PointCNN [17]
further refined the PointNet framework with hierarchical X -Conv which calculates inner products of
X -transformation and convolution filters of point clouds. Dynamic graph CNN (DGCNN) [6] adopted
the graph neural network framework to incorporate local neighbourhood information by applying
convolutions over the graph edges and dynamically updating graph for each layer. Furthermore, the
tangent convolution architecture [18] incorporated 3D surface geometry by projecting point clouds
on local tangent plane, and then applying convolution filters.

Varifolds. Geometric measure theory provides various tools for understanding, characterising and
analysing surface geometry in various contexts, e.g., currents [12], varifolds [13, 15, 16] or normal
cycles [19]. Despite their potential use for many applications, few studies have explored real-world
applications of varifolds in the context of non-rigid surface registration [13].

3 Varifold representations for point clouds

The notion of varifold arises in geometric measure theory in the context of finding a minimal surface
spanning a given closed curve in R3, which is known as Plateau’s problem [20]. Intuitively, the
concept of a varifold extends the idea of a differentiable manifold by replacing the requirement for
differentiability with the condition of rectifiability [21]. This modification enables the representation
of more complex surfaces, including those with singularities. For instance, Figure 1 in [21] presents
straightforward examples of varifolds. Let Ω ⊂ Rn be an open set. A general oriented d-varifold V
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on Ω is a non-negative Radon measure on the product space of Ω with the oriented Grassmannian
G̃(d, n). In this study, we focus on a specific class of varifolds, the rectifiable varifolds, which are
concentrated on d-rectifiable sets and can represent non-smooth surfaces such as 3D cubes.
Definition 3.1 (Rectifiable oriented d-varifolds). Let Ω ⊂ Rn be an open set, X be an oriented
d-rectifiable set, and θ be a non-negative measurable function with θ > 0 Hd-almost everywhere
in X . The rectifiable oriented d-varifold V = v(θ,X) in Ω is the Radon measure on Ω × G̃(d, n)
defined by V = θHd

X∩Ω ⊗ δTxX , i.e.,∫
Ω×G̃(d,n)

ϕ(x, T )dµ(x, T ) =

∫
X

ϕ(x, TxX)θ(x)dHd(x), ∀ϕ ∈ C0(Ω× G̃(d, n)),

where C0 denotes the class of continuous functions vanishing at infinity.

The mass of a d-rectifiable varifold V = v(θ,X) is the measure ∥V ∥ = θHd
X . The non-negative

function θ is usually called multiplicity. We assume in the rest of the paper that θ = 1 for simplicity.

Various metrics and topologies can be defined on the space of varifolds. The mass distance defined as
follows is a possible choice for a metric:

dmass(µ, ν) = sup
{∣∣∣ ∫

Ω× G̃(d,n)

ϕdµ−
∫
Ω×G̃(d,n)

ϕdν
∣∣∣, ϕ ∈ C0(Ω× G̃(d, n)), ∥ϕ∥∞ ≤ 1

}
. (1)

However, the mass distance is not well suited for point clouds. For example, given two varifolds
associated with Dirac masses δε and δ0, their distance remains bounded away from 0 as it is always
possible to find a test function ϕ such that |ϕ(0)− ϕ(ε)| = 2, regardless of how close the two points
are. The 1-Wasserstein distance is not a more suitable choice in our context since it cannot compare
two varifold measures with different mass. For example, given two Dirac masses (1 + ε)δ0 and δ0,
the 1-Wasserstein distance between them goes to infinity as ε|ϕ(0)| → ∞.
Definition 3.2 (Bounded Lipschitz distance). Being µ and ν two varifolds on a locally compact
metric space (X, d), we define

dBL(µ, ν) = sup
{∣∣∣∫

Ω×G̃(d,n)

ϕdµ−
∫
Ω×G̃(d,n)

ϕdν
∣∣∣,

ϕ ∈ C1
0 (Ω× G̃(d, n)), ∥ϕ∥Lip ≤ 1, ∥ϕ∥∞ ≤ 1

}
. (2)

The bounded Lipschitz distance (flat distance) can handle both problems, we refer for more details to
[22] and the references therein. Although the bounded Lipschitz distance dBL can provide theoretical
properties for comparing varifolds, in practice, there is no straightforward way to numerically evaluate
it. Instead, the kernel approach has been used to evaluate and compare varifolds numerically [13, 14].

Proposition 3.3. [14]. Let kpos and kG be continuous positive definite kernels on Rn and G̃(d, n),
respectively. Assume in addition that for any x ∈ Rn, kpos(x, ·) ∈ C0(Rn). Then kpos ⊗ kG is
a positive definite kernel on Rn × G̃(d, n), and the reproducing kernel Hilbert space (RKHS) W
associated with kpos ⊗ kG is continuously embedded in C0(Rn × G̃(d, n)), i.e., there exists cW > 0
such that for any ϕ ∈W , we have ∥ϕ∥∞ < cW ∥ϕ∥W .

Let τW : W 7→ C0(Rn × G̃(d, n)) be the continuous embedding given by Proposition 3.3 and τW∗

be its adjoint. Then varifolds can be viewed as elements of the dual RKHS W ∗. Let µ and ν be two
varifolds. By the Hilbert norm of W ∗, the pseudo-metric can be induced as follows

dW∗(µ, ν)2 = ∥µ− ν∥2W∗

= ∥µ∥2W∗− 2⟨µ, ν⟩W∗ + ∥ν∥2W∗ . (3)

The above pseudo-metric (since τW∗ is not injective in general) is associated with the RKHS W ,
and it provides an efficient way to compute varifold by separating the positional and Grassmannian
components. Indeed, one can derive a bound with respect to dBL if we further assume that RKHS W
is continuously embedded into C1

0 (Rn × G̃(d, n)) [13], i.e.,

∥µ− ν∥W∗ = sup
ϕ∈W,∥ϕ∥W≤1

∫
Rn×G̃(d,n)

ϕ d(µ− ν) ≤ cW dBL(µ, ν).
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Neural tangent kernel. The recent advances of neural network theory finds a link between kernel
theory and over-parameterised neural networks [23, 24]. If a neural network has a large but finite
width, the weights at each layer remain close to its initialisation. Given training data pairs {xi, yi}Mi=1,
where xi ∈ Rd0 and yi ∈ R, let f(θ;xi) be a fully connected neural network with L-hidden layers
with inputs xi and parameters θ = {W (0), b(0), · · · ,W (L), b(L)}. Let dh be the width of the neural
network for each layer h. The neural network function f can be written recursively as

f (h)(x) = W (h)g(h)(x) + b(h), g(h+1)(x) = φ(f (h)(x)), h = 0, . . . , L, (4)

where g(0)(x) = x and φ is a non-linear activation function.

Assume the weights W (h) ∈ Rdh+1×dh and bias b(h) ∈ Rdh at each layer h are initialised with
Gaussian distribution W (h) ∼ N (0, σ2

ω/dh) and b(h) ∼ N (0, σ2
b ), respectively. Consider training a

neural network by minimising the least square loss function

l(θ) =
1

2

M∑
i=1

(f(θ;xi)− yi)
2. (5)

Suppose the least square loss l(θ) is minimised with an infinitesimally small learning rate, i.e.,
dθ
dt = −∇l(θ(t)). Let u(t) = (f(θ(t);xi))i∈[M ] ∈ RM be the neural network outputs on all xi at
time t, and y = (yi)i∈[M ] be the desired output. Then u(t) follows the evolution

du

dt
= −H(t)(u(t)− y), (6)

where

H(t)ij =

〈
∂f(θ(t);xi)

∂θ
,
∂f(θ(t);xj)

∂θ

〉
. (7)

If the width of the neural network at each layer goes to infinity, i.e., dh →∞, with a fixed training set,
then H(t) remains unchanged. Under random initialisation of the parameters θ, H(0) converges in
probability to a deterministic kernel H∗ – the “neural tangent kernel” (i.e., NTK) [23]. Indeed, with
few known activation functions φ (e.g., ReLU), the neural tangent kernel H∗ can be computed by a
closed-form solution recursively using Gaussian process [25, 24]. For each layer h, the corresponding
covariance function is defined as

Σ(0)(xi,xj) = σ2
b +

σ2
ω

d0
xix

⊤
j , (8)

Λ(h)(xi,xj) =

[
Σ(h−1)(xi,xi) Σ(h−1)(xi,xj)

Σ(h−1)(xi,xj) Σ(h−1)(xj ,xj)

]
∈ R2×2, (9)

Σ(h)(xi,xj) = σ2
b + σ2

ωE(u,v)∼N (0,Λ(h)) [φ(u)φ(v)] . (10)

In order to compute the neural tangent kernel, derivative covariance is defined as

Σ̇
(h)

(xi,xj) = σ2
ωE(u,v)∼N (0,Λ(h)) [φ̇(u)φ̇(v)] . (11)

Then, with Θ(0)(xi,xj) = Σ(0)(xi,xj), the neural tangent kernel at each layer Θ(h) can be
computed as follows

Θ(h)(xi,xj) = Σ(h)(xi,xj) +Θ(h−1)Σ̇
(h−1)

(xi,xj). (12)

The convergence of Θ(L)(xi,xj) to H∗
ij is proven in Theorem 3.1 in [24].

3.1 Neural varifold computation

In this section, we present the kernel representation of varifold on point clouds via neural tangent
kernel. We first introduce the neural tangent kernel representation of popular neural networks on point
clouds [7, 24] by computing the neural tangent kernel for position and Grassmannian components,
individually.
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Given the set of n̂ point clouds S = {s1, s2, · · · , sn̂}, where each point cloud si = {p1, p2, · · · , pm̂}
is a set of points, and n̂, m̂ are respectively the number of point clouds and the number of points in
each point cloud. Note that the number of points in each point cloud needs not be the same (e.g.,
|s1| ̸= |s2|). For simplicity, we below assume different point clouds have the same number of points.
Consider PointNet-like architecture that consists of L-hidden layers fully connected neural network
shared by all points. For (̂i, ĵ) ∈ [m̂]× [m̂], the covariance matrix Σ(h)(pî, pĵ) and neural tangent
kernel Θ(h)(pî, pĵ) at layer h are defined and computed in the same way of Equations (10) and (12).
Assuming each point pî consists of positional information and surface normal direction such that
pî ∈ R3 × S2, the varifold representation can be defined with neural tangent kernel theory in two
different ways. One way is to follow the Charon-Trouvé approach [13] by computing the position
and Grassmannian kernels separately. While the original Charon-Trouvé approach uses the radial
basis kernel for the positional elements and a Cauchy-Binet kernel for the Grassmannian parts, in
our cases, we use the neural tangent kernel representation for both the positional and Grassmannian
parts. Let pî = {xî, zî} ∈ R3 × S2 be a pair of position xî ∈ R3 and its surface normal zî ∈ S2,
î = 1, . . . , m̂. The neural varifold representation is defined as

Θvarifold(pî, pĵ) = Θpos(xî, xĵ) ·Θ
G(zî, zĵ). (13)

We refer the above representation as PointNet-NTK1. As shown in Corollary 3.4 below, PointNet-
NTK1 is a valid Charon-Trouvé type kernel. From the neural tangent theory of view, PointNet-NTK1
in Equation (13) has two infinite-width neural networks on positional and Grassmannian components
separately, and then aggregates information from the neural networks by element-wise product of the
two neural tangent kernels.

Corollary 3.4. In the limit of resolution going to infinity, neural tangent kernels Θpos and ΘG are
continuous positive definite kernels on positions and tangent planes, respectively. The varifold kernel
Θvarifold = Θpos ⊙ΘG is a positive definite kernel on Rn × G̃(d, n) and the associated RKHS W

is continuously embedded into C0(Rn × G̃(d, n)).

The other way to define a varifold representation is by treating each point as a 6-dimensional feature
pî = {xî, zî} ∈ R6. In this case, a single neural tangent kernel corresponding to an infinite-width
neural network can be used, i.e.,

Θvarifold(pî, pĵ) = Θ({xî, zî}, {xĵ , zĵ}). (14)

We refer it as PointNet-NTK2. Since PointNet-NTK2 does not compute the positional and Grassman-
nian kernels separately, it is computationally cheaper than PointNet-NTK1. It cannot be associated
in the limit with a Charon-Trouvé type kernel, in contrast with PointNet-NTK1, but it remains
theoretically well grounded because the explicit coupling of positions and normals is a key aspect of
the theory of varifolds that provides strong theoretical guarantees (e.g., convergence, compactness,
weak regularity, second-order information, etc.). Furthermore, PointNet-NTK2 falls into the category
of neural networks proposed for point clouds [7, 8] that treat point positions and surface normals as
6-feature vectors, and thus PointNet-NTK2 is a natural extension of current neural networks practices
for point clouds.

PointNet-NTK1 and PointNet-NTK2 in Equations (13) and (14) are computing NTK values between
two points pî and pĵ . The above forms can compute only pointwise-relationship in a single point
cloud. However, in many point cloud applications, two or more point clouds need to be evaluated.
Given the set of point clouds S , one needs to compute a Gram matrix of size n̂× n̂×m̂×m̂, which is
computationally prohibitive in general. In order to reduce the size of the Gram matrix, we aggregate
information by summation/average in all elements of Θvarifold, thus forming an n̂× n̂ matrix, i.e.,

Θvarifold(si, sj) =
∑
î≤m̂

∑
ĵ≤m̂

Θvarifold(pî ∈ si, pĵ ∈ sj). (15)

Analogous to Equation (3), the varifold representation Θvarifold can be used as a shape similarity
metric between two sets of point clouds si and sj . The varifold metric can be computed as follows

∥si − sj∥2varifold =Θvarifold(si, sj)− 2Θvarifold(si, sj) +Θvarifold(si, sj). (16)
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Source Target CD EMD CT NTK1 NTK2

Figure 1: Shape matching examples with different shape similarity metrics, i.e., CD, EMD, CT,
NTK1 and NTK2. Hippo is a shortened term referring to the hippocampus.

Furthermore, the varifold representation can be used for shape classification or any regression
with the labels on point clouds data. Given training and test point cloud sets and their label pairs
(χtrain,Y train) = {(s1, y1), · · · , (sl, yl)} and (χtest,Y test) = {(sl+1, yl+1), · · · , (sn̂, yn̂)}, then neu-
ral varifold and its norm can be reformulated to predict labels using kernel ridge regression, i.e.,

Y test = Θvarifold
test (χtest,χtrain)(Θ

varifold
train (χtrain,χtrain) + λI)−1Y train, (17)

where λ is the regularisation parameter.

4 Experiments

Dataset and experimental setting. We evaluate the varifold kernel representations and conduct
comparisons on three different sought-after tasks: point cloud based shape matching between two
different 3D meshes, point cloud based few-shot shape classification, and point cloud based 3D
shape reconstruction. The details of each experiment setup are available at Appendix A.1, and the
high-level pseudo-codes for each task are available at Appendex A.4. For ease of reference, we below
shorten PointNet-NTK1, PointNet-NTK2, Chamfer distance, Charon-Trouvé varifold norm and Earth
Mover’s distance as NTK1, NTK2, CD, CT and EMD, respectively.

4.1 Shape matching

To evaluate the surface representation using neural varifolds and make comparison with existing shape
similarity metrics, synthetic shape matching experiments are conducted. We train MLP networks
with 2 hidden layers with width of 64 and 128 units respectively. These networks use various shape
similarity metrics as loss functions to deform the given source shape into the target shape (more
details are available at Appendix A.1.1).

Figure 1 shows five examples of shape matching based on various shape similarity metric losses.
The neural network trained with CD captures geometric details well, except for the airplane. For
hippocampi, CD over smoothes sharp edges; and for the bunny, it over smoothes the ears. While
CD matches airplane wing shapes, it is noisier than CT, NTK1, and NTK2 methods. The EMD-
trained network performs well on the dolphin shape but struggles with geometric details and surface
consistency for other shapes, likely due to insufficient parameters for the transportation plan. More
iterations and a lower convergence threshold make training inefficient. Networks trained with NTK1
and NTK2 metrics penalise broken meshes and surface noise, resulting in better mesh quality. NTK2
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over smoothes high-frequency features on the dolphin, while NTK1 achieves good results. NTK1 and
NTK2 show superior shape matching for airplane fuselage and wings. The network trained with CT
gives acceptable results except for the airplane; however, one main disadvantage is that CT’s radial
basis kernel is sensitive to point cloud density, requiring hyperparameter σ adjustments for each pair
of point clouds to avoid poor results.

Table 1: Results of shape matching deforming the given source
shapes into the target shapes using a neural network trained
with various shape similarity metrics. Metrics used in columns
and rows are to train the neural network and for quantita-
tive evaluation, respectively. Every value indicates the shape
matching distance. In particular, the lowest and second lowest
values (i.e., the best and the second best) in each row are
highlighted in bold and underscored, respectively.

Metric CD EMD CT NTK1 NTK2

D
ol

ph
in

CD 2.49E-4 3.39E-4 2.90E-4 2.84E-4 3.04E-4
EMD 7.56E0 3.87E0 4.15E0 4.13E0 4.27E0
CT 3.76E-2 2.94E-2 1.22E-2 1.63E-2 1.95E-2
NTK1 6.56E-3 1.89E-3 2.93E-3 4.82E-4 6.34E-4
NTK2 1.72E-2 4.33E-3 9.99E-3 1.34E-3 1.25E-3

C
up

CD 4.55E-3 9.74E-3 4.13E-3 3.26E-3 3.36E-3
EMD 2.03E1 3.53E1 2.06E1 1.85E1 1.79E1
CT 6.90E-1 2.85E0 4.07E-1 3.29E-1 3.20E-1
NTK1 1.72E-2 7.27E-1 1.97E-2 6.07E-3 6.50E-3
NTK2 3.14E-2 3.29E0 4.53E-2 1.34E-2 1.21E-2

H
ip

po
ca

m
pu

s CD 3.49E-1 3.2E-1 2.43E-1 2.67E-1 2.65-1
EMD 2.80E5 2.10E5 2.25E5 2.09E5 1.96E5
CT 2.27E3 2.92E5 2.32E3 2.19E3 2.15E3
NTK1 1.84E5 1.01E9 59.7E5 4.93E3 9.98E3
NTK2 6.37E4 3.09E9 1.56E6 1.54E3 1.54E3

B
un

ny

CD 9.32E-3 5.12E-3 3.60E-3 4.40E-3 4.32E-3
EMD 2.31E4 4.74E3 3.72E3 3.13E3 3.52E3
CT 2.40E-1 1.25E0 7.51E-2 1.28E-1 1.23E-1
NTK1 2.57E-2 1.32E-2 1.83E-3 2.22E-4 2.94E-4
NTK2 3.85E-2 2.68E-2 3.33E-3 8.85E-4 6.43E-4

A
ir

pl
an

e CD 1.36E-3 4.07E-4 3.72 E-3 3.81E-3 5.90E-3
EMD 1.16E4 4.12E2 3.38E2 3.43E2 7.50E2
CT 8.71E-2 3.62E0 -3.58E-4 1.67E-3 3.68E-3
NTK1 2.27E-3 1.80E-1 0.41E-6 0.31E-6 0.72E-6
NTK2 6.14E-2 5.13E0 8.69E-6 3.17E-6 2.42E-6

Table 1 presents the quantitative eval-
uation of the shape matching task.
Each column indicates that the shape
matching neural network is trained
with a specific shape similarity met-
ric as the loss function. In the case of
dolphin, when the evaluation metric
is the same as the loss function used
to train the network, the network
trained with the same evaluation met-
ric achieves the best results. This
is natural as the neural network is
trained to minimise the loss function.
It is worth highlighting that the shape
matching network trained with the
NTK1 loss achieves the second best
score for all evaluation metrics ex-
cept for itself. In other words, NTK1
can capture common characteristics
of all shape similarity metrics used
to train the network. Furthermore,
in the case of shape matching be-
tween two different cups, our neural
varifold metrics (NTK1 and NTK2)
achieve either the best or second best
results regardless which shape eval-
uation metric is used. This indicates
that the neural varifold metrics can
capture better geometric details as
well as surface smoothness for the
cup shape than other metrics. In the
case of shape matching between the source hippocampus and the target hippocampus, the network
trained with CT excels in the CD metric, while the network trained with NTK1 achieves superior
results with respect to NTK1 and NTK2 metrics. The shape matching network trained with NTK2
outperforms in the EMD, CT and NTK2 metrics. In the case of the bunny, CT shows the best results
with respect to CD and CT, while NTK1 shows the best matching results with respect to EMD and
NTK1. NTK2, on the other hand, shows the second best results with respect to all metrics except for
itself. In the case of airplane, CT shows the best matching results with respect to CD, EMD and CT.
However, the CT metric itself shows the negative value, i.e. unstable. This is mainly because the
RBF kernel used in CT is badly scaled. NTK1 shows the second best shape matching results with
respect to all metrics except for itself. The detailed analysis for the role of the NTK layers on shape
matching is available at Appendix A.5.2.

4.2 Few-shot shape classification

In this section, the proposed NTKs are firstly compared with the current state-of-the-art few-shot
classification methods on the ModelNet40-FS benchmark [26]. ModelNet40-FS benchmark [26]
divided different shape categories in ModelNet40 datasets for pre-training the network with 30 classes
and then evaluated few-shot shape classification on 10 classes. The experiment was conducted in
the standard few-shot learning setup, i.e. N-way K-shot Q-query. The definition of N-way K-shot
Q-query is available at Appendix A.1. Table 2 shows the shape classification results on two different
few-shot classification setups, i.e., 5way-1shot-15query and 5way-5shot-15query. In the case of
the 5way-1shot classification, the current state-of-the-art method PCIA achieves the best results by
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around 7% margin in comparison to the second best method NTK2 (pre-trained). In the case of
the 5way-5shot classification, NTK2 outperforms PCIA by around 0.8% margin. Note that PCIA
requires to train backbone networks with PCIA modules and needs to fix the size of query. NTKs,
on the other hand, can directly use the extracted backbone network features without further training
the few-shot layer weights and do meta-learning in any arbitrary N-way K-shot Q-query settings.
If NTKs are used without pre-trained backbone features, i.e., directly using positional and normal
coordinates, then the results are subpar in comparison to other meta-learning approaches. This is
understandable as few-shot architectures built on top of the backbone features, while NTKs without a
pre-trained model, can only access the raw features, and thus cannot take advantages of the powerful
feature learning capability of the neural networks. Interestingly, NTK1 outperforms NTK2 without
pre-trained features, while NTK2 (DGCNN) outperforms NTK1 (DGCNN). This is because we use
the pre-trained DGCNN on point clouds with spatial coordinates (x,y,z) as a backbone network for
extracting both positional and normal features. Relatively low performance on NTK1 (DGCNN) is
mainly because there is no appropriate architecture treating position and normal features separately.

Table 2: Few-shot shape classification comparison
on the ModelNet40-FS classification benchmark in
terms of two setups, i.e., 5way-1shot and 5way-
5shot. Every value indicates the mean shape classifi-
cation accuracy with 95% confidence interval. NTK1
(DGCNN) and NTK2 (DGCNN) imply that, instead
of point clouds positions and their normals, point-
wise features from the pre-trained DGCNN are used
for our NTK1 and NTK2.

ModelNet40-FS
Methods 5way-1shot 5way-5shot
Prototypical Net 69.96 ± 0.67 85.51 ± 0.52
Relation Net 68.57 ± 0.73 82.01 ± 0.53
PointBERT 69.41 ± 3.16 86.83 ± 2.03
PCIA∗ 82.21 ± 0.76 89.42 ± 0.53
NTK1 64.94 ± 0.84 83.42 ± 0.59
NTK2 62.67 ± 0.81 81.53 ± 0.59
NTK1 (DGCNN) 69.30 ± 0.76 86.75 ± 0.51
NTK2 (DGCNN) 75.23 ± 0.71 90.20 ± 0.49

∗ Point cloud inputs are positions and unit normal vectors, i.e., 6-feature vectors. Note
that the original paper’s reported accuracy for 5way-1shot and 5way-5shot is 81.19%
and 89.30%, respectively.

Small-data tasks are common when data is
limited. In the shape classification experiment,
we restrict data availability and assume no pre-
trained models, requiring training with 1, 5,
10, or 50 samples. Table 3 shows ModelNet
classification accuracy with limited samples.
Kernel-based approaches excel in small-data
tasks. In particular, with only one sample, ker-
nel methods outperform finite-width neural
networks like PointNet and DGCNN on both
ModelNet10 and ModelNet40, with NTK2
and NTK1 achieving the best results, respec-
tively. Interestingly, the CT kernel performs
as well as NTK1 and NTK2 on ModelNet10
but drops significantly on ModelNet40. Sim-
ilar results occur with five samples: NTK1
and NTK2 achieve 81.3% and 81.7% on Mod-
elNet10, while CT, PointNet, and DGCNN
lag by 3.1%, 5.1%, and 5.9%, respectively.
On ModelNet40, NTK1 outperforms all other
methods more significantly than on Model-
Net10. As the number of training samples
increases, finite-width neural networks significantly improve their performance on both ModelNet10
and ModelNet40. With ten samples, NTK1 and NTK2 achieve around 86.1% accuracy, outper-
forming other methods on ModelNet10 by 2–3%, although DGCNN surpasses NTK and PointNet
on ModelNet40. With 50 samples, PointNet and DGCNN outperform NTK approaches by about
1% on ModelNet10 and 3–5% on ModelNet40. NTK1 and NTK2 show similar performance on
ModelNet10 (with 0.3% difference), while NTK1 slightly outperforms NTK2 on ModelNet40 by
0.6–1.6%. Notably, NTK1 and NTK2 consistently outperform the CT varifold kernel.

Table 3: ModelNet classification with limited training samples se-
lected randomly. Every value indicates the average classification
accuracy with standard deviation from 20 times iterations.

Methods 1-sample 5-sample 10-sample 50-sample
ModelNet10

PointNet 38.84 ± 6.41 76.57 ± 2.28 84.14 ± 1.43 91.42 ± 0.89
DGCNN 33.56 ± 4.60 75.81 ± 2.40 83.90 ± 1.70 91.54 ± 0.68
CT 59.06 ± 4.76 78.64 ± 2.90 83.35 ± 1.57 87.98 ± 0.79
NTK1 59.49 ± 4.80 81.34 ± 2.78 86.07 ± 1.62 90.18 ± 0.93
NTK2 59.64 ± 5.50 81.74 ± 3.15 86.12 ± 1.56 90.10 ± 0.73

ModelNet40
PointNet 33.11 ± 3.28 63.30 ± 2.12 73.63 ± 1.06 85.43 ± 0.31
DGCNN 36.04 ± 3.22 67.49 ± 1.80 77.04 ± 0.81 88.17 ± 0.57
CT 37.71 ± 3.42 60.43 ± 1.51 67.13 ± 1.11 77.20 ± 0.54
NTK1 44.03 ± 3.51 69.30 ± 1.48 75.81 ± 1.23 83.88 ± 0.53
NTK2 42.85 ± 3.51 67.81 ± 1.47 74.62 ± 1.00 83.26 ± 0.42

Kernel-based learning is known
for its quadratic computational
complexity. However, NTK1 and
NTK2 are computationally com-
petitive in both few-shot learning
and limited data scenarios. For in-
stance, training NTK1 and NTK2
on ModelNet10 with 5 samples
takes 47 and 18 seconds, respec-
tively, compared to 254 and 502
seconds for training PointNet and
DGCNN for 250 epochs on a sin-
gle 3090 GPU. The shape classi-
fication performance on the full
ModelNet data is available at Ap-
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pendix A.3. Ablation study regarding the criteria used to choose the number of layers and different
layer width for NTKs is available at Appendix A.5.

4.3 Shape reconstruction

Shape reconstruction from point clouds is tested for NTK1, SIREN, neural splines, and NKSR.
NTK2 is excluded as it is unsuitable for this task. Implementation details are in Appendix A.2.
Reconstruction quality is evaluated with CD and EMD metrics. Figure 2 shows examples (e.g.,
airplane and cabinet) with 2048 points. NTK1 performs better in surface completion and smoothness.
Additional visualizations are in Appendix A.6.
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Ground Truth SIREN Neural Splines NKSR NTK1

Figure 2: Examples of the shape reconstruction comparison.

Quantitatively, Table 4 shows the
mean and median of using the
CD and EMD for 20 shapes ran-
domly selected from each of the
13 different shape categories in
the ShapeNet dataset. For the
CD, NTK1 shows the best aver-
age reconstruction results for the
airplane, cabinet, car and vessel
categories; SIREN shows the best
reconstruction results for the chair,
display and phone categories; and
the neural splines method shows

the best reconstruction results for the rest 6 categories. NTK1 based reconstruction achieves the
lowest mean EMD for vessel and cabinet, while neural splines and SIREN achieve the lowest mean
EMD for 7 and 5 categories, respectively. NKSR does not achieve the lowest mean CD and EMD for
all the categories. In addition, the shape reconstruction results with different number of points (i.e.,
512 and 1024) are available at Appendix A.5.4.

SIREN shows the lowest distance for both CD and EMD followed by NTK1. Surprisingly, the neural
splines method underperforms in both the CD and EMD when we consider all the 13 categories.
The performance of NTK1 on shape reconstruction is clearly comparable with these state-of-the-
art methods. This might be counter-intuitive as it regularises the kernel with additional normal
information, this is probably because there is no straightforward way to assign normals on the regular
grid coordinates, where the signed distance values are estimated by the kernel regression.

Table 4: ShapeNet 3D mesh reconstruction with 2048 points (mean/median values ×1E3). NS: Neural Splines.
Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 1.501 1.624 2.430 2.725 1.556 2.193 1.392 7.906 1.212 1.734 1.856 1.478 2.557
NS 4.145 1.304 1.969 2.131 1.828 4.577 1.062 2.798 0.400 1.650 1.576 10.058 2.210
NKSR 1.141 2.000 2.423 2.198 2.520 17.720 5.477 3.622 0.414 1.848 2.493 1.547 1.093
NTK1 0.644 1.314 1.991 2.107 1.734 4.666 1.134 2.806 0.425 1.654 1.586 10.397 1.079

CD
(median)

SIREN 0.733 1.384 2.153 2.134 1.230 1.469 0.661 3.304 0.581 1.706 1.670 1.424 1.112
NS 0.947 1.289 1.799 1.640 1.160 1.413 0.479 2.749 0.347 1.586 1.372 1.600 0.788
NKSR 1.205 1.426 1.797 1.830 1.236 1.565 1.579 2.945 0.326 1.638 1.637 1.305 0.894
NTK1 0.621 1.259 1.828 1.836 1.237 1.499 0.566 2.794 0.352 1.578 1.350 1.558 0.797

EMD
(mean)

SIREN 2.990 3.763 4.983 5.208 4.649 4.658 24.068 13.292 2.418 3.688 8.745 3.237 4.500
NS 22.004 3.571 4.420 4.694 7.916 9.205 16.786 5.857 1.503 3.706 4.194 17.846 5.957
NKSR 7.153 8.456 8.018 8.190 16.824 31.182 21.182 9.984 2.329 5.871 13.658 4.152 4.581
NTK1 3.120 4.153 4.420 4.767 7.350 9.653 23.381 6.236 1.592 3.888 5.259 24.101 3.534

EMD
(median)

SIREN 2.690 2.938 4.520 3.803 4.411 3.314 2.279 6.240 1.605 3.653 3.782 3.060 2.576
NS 6.873 3.068 4.154 3.999 4.740 4.053 3.802 5.123 1.216 3.543 3.695 3.838 2.210
NKSR 5.732 5.119 4.440 5.313 5.683 3.777 4.927 5.975 1.227 3.641 6.375 3.088 2.771
NTK1 2.864 3.319 4.284 3.947 5.293 3.875 3.288 5.795 1.271 3.738 3.980 3.380 2.074

5 Limitations

While the proposed neural varifold has advantages over standard baselines, it has limitations. First,
it is based on the simpler PointNet architecture. Future research should explore its performance
with more advanced architectures like graph convolutions or voxelised point clouds. Second, the
quadratic computational complexity of the kernel regime poses a challenge for large datasets. Kernel
approximation methods, such as Nystrom approximation, could reduce this complexity, and their
performance compared to exact kernels should be evaluated.
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A Appendix

A.1 Experimental setup

A.1.1 Shape matching

For point cloud based shape matching, MLP networks consisting of 2 hidden layers (with width size
of 64 and 128, respectively) were trained for computing displacement between two shapes, such that
one can deform the source shape to the target shape. The neural networks were trained with different
shape similarity metric losses including neural varifold. Point clouds of the given shapes were
extracted by collecting the centre of triangular meshes of the given shapes, and the corresponding
normals were computed by cross product of two edges of the meshes. The first example is deforming
the source unit sphere into the target dolphin shape; the second is matching two different cup designs;
the third is matching between two hippocampi; the fourth is the shape matching bewteen sphere
and Stanford bunny; and the fifth is the shape matching between two different designs of airplane.
The data is acquired from the PyTorch3D, SRNFmatch and KeOps GitHub repositories [27, 28, 29].
This experiment evaluates how well the source shape can be deformed based on the chosen shape
similarity measure as the loss function. A simple 3-layer MLP network was solely trained with a
single shape similarity measure loss, with the learning rate fixed to 1E-3 and the Adam optimiser. The
network was trained with popular shape similarity measures including the CD (Chamfer distance),
EMD (Earth Mover’s distance), CT (Charon-Trouvé varifold norm), and the proposed neural varifold
norms (NTK1 and NTK2). In the case of CD and EMD, we followed the same method used for
shape reconstruction. For varifold metrics, we used Equation (16); note that it is a squared distance
commonly used for optimisation. For the numerical evaluation as a metric in Table 1, the square-root
of Equation (16) was used. To be consistent with shape classification experiments, we chose the
5-layer NTK1 and 9-layer NTK2 to train and evaluate the similarity between two shapes. The detailed
analysis for the role of the neural network layers on shape matching is available at Appendix A.5.2.
The final outputs from the networks were evaluated with all of the shape similarity measures used in
the experiments.

A.1.2 Few-shot shape classification

The ModelNet40-FS dataset [26] was used in the case of evaluating few-shot learning capability
of neural varifold kernels (NTK1 and NTK2) with popular few-shot learning methods including
Prototypical Net [30], Relation Net [31], PointBERT [32], and PCIA [26]. The ModelNet40-FS
dataset [26] consists of 30 training and 10 unseen classes for training the backbone network and
evaluating few-shot shape classification. The implementation of the baseline methods and backbone
networks is based on [26]. The computation of the neural varifold kernels (NTK1 and NTK2) is
based on the neural tangent library [33]. In this experiment there are two different versions of NTK1
and NTK2s used. First of all, NTK1 and NTK2 are directly computed from the original point cloud
features (i.e., positions and their normals). As few-shot learning is usually based on pre-trained neural
networks, NTK1 (DGCNN) and NTK2 (DGCNN) are computed from point-wise feature extracted
from the backbone Dynamic graph convolutional neural network (DGCNN). DGCNN [6], used in
the experiments, consists of 4 EdgeConv layers [26]. The point-wise features are defined as the
concatenation of the convolutional features extracted from all 4 EdgeConv layers of the DGCNN.
Furthermore, global features are defined as the max-pooling of the point-wise features.

The evaluation was conducted using the standard few-shot classification setup: N-way K-shot Q-query.
In this setup, N-way refers to the number of classes used for training and evaluation; K-shot indicates
the number of samples per class used for training; and Q-query specifies the number of samples
per class used for evaluating the classification accuracy. All methods are evaluated in two different
few-shot learning scenarios: 5way-1shot-15query and 5way-5shot-15query. It is important to note
that the reported accuracy in Table 2 represents the average accuracy and its 95% confidence intervals
for 700 test cases (i.e., 700 test cases of N-way K-shot 15query).

In addition, we evaluate the scenario when pre-training data/models are not available. In this
experimental setup, each method was also trained with a varying number of training samples per
class, ranging from 1 to 50, and we evaluated their performance on the full ModelNet10/40 validation
datasets. The number of 1024 points and their corresponding normals for each object were sampled
from the original meshes of the Princeton ModelNet benchmark [34]. The proposed neural varifold
methods are compared with popular neural networks on point clouds including PointNet [7], DGCNN
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[6], as well as the kernel method [13]. The computation of the neural varifold kernels (NTK1 and
NTK2) is based on the neural tangent library [33]. To make the results more consistent, samples
were randomly chosen and iterated 20 times with different seeds. Both NTK1 and NTK2 are required
to fix the number of layers corresponding to the equivalent finite-width neural networks. NTK1 uses
5 fully connected neural network layers while NTK2 adopts 9 fully connected neural network layers.
Each layer consists of MLP, layer normalisation and ReLU activation for both NTK1 and NTK2. The
shape classification performance on the full ModelNet data is available at Appendix A.3. The criteria
used to choose the number of layers and different layer width for both NTK1 and NTK2 are available
at Appendix A.5.

A.1.3 Shape reconstruction

Lastly, for shape reconstruction from point clouds, ShapeNet dataset [35] was used. In particular,
we followed the data processing and shape reconstruction experiments from [36], i.e., 20 objects
from the individual 13 classes were randomly chosen and used for evaluating the shape reconstruc-
tion performance. For each shape, 2048 points were sampled from the surface and used for the
reconstruction. Our approach was compared with the state-of-the-art shape reconstruction methods
including Neural Splines [36], SIREN [37] and neural kernel surface reconstruction (NKSR) [38]. To
be consistent with existing point cloud based shape reconstruction literature, CD and EMD were used
to evaluate each method. Unlike CD, EMD has a number of different implementations for solving
a sub-optimisation problem about the transportation of mass. In this study, we borrowed the EMD
implementation code from [39]. In the experiment, we fixed the number of NTK1 network layers
as 1. This is because there is no significant performance change when different number of network
layers is used. The shape reconstruction using neural varifold is heavily influenced by the approaches
from kernel interpolation [40] and neural splines [36]. The implementation details are available at
Appendix A.2. In addition, the shape reconstruction results with different number of points (i.e.,
512 and 1024) are available at Appendix A.5.4. The visualisation of the ShapeNet reconstruction
performance by all the methods compared is available at Appendix A.6.

A.2 Kernel based shape reconstruction

Consider a set of surface points X = {x1, · · · , xk} and their corresponding normals Z =
{z1, · · · , zk} sampled on an unknown surface M, i.e., X ⊂ M. Using an implicit surface rep-
resentation, all x inM satisfy f(x) = 0 for some suitable function f . The best way to approxi-
mate the function f is to generate off-surface points and to interpolate the zero iso-surface. Given
Y = {y1, · · · , yk}, ∀yî = 0 and the distance parameter δ, we defineX−

δ = {x1−δz1, · · · , xk−δzk},
X+

δ = {x1 + δz1, · · · , xk + δzk}, Y−
δ = {−δ, · · · ,−δ}, and Y+

δ = {δ, · · · , δ} in a similar manner.
Taking the set unions X̂ = X ∪ X−

δ ∪ X
+
δ , Ẑ = Z ∪ Z ∪ Z and Ŷ = Y ∪ Y−

δ ∪ Y
+
δ , the training

data tuple (Xtrain,Ytrain) = ({X̂ , Ẑ}, Ŷ) (cf. symbols X train and Ytest are used for multi point
clouds) can be used to obtain the implicit representation of the surface.

Let us define regular voxel grids Xgrid on which all the extended point clouds X̂ lie. Note that there
is no straightforward way to define normal vectors on the regular voxel grids, which are required
for PointNet-NTK1 computation. Here, we assign their normals Zgrid as the unit normal vector to
z-axis. Then the signed distance corresponding to the regular grid Xtest = {Xgrid,Zgrid} can be
computed by kernel regression with neural splines or PointNet-NTK1 kernels K(Xtrain,Xtrain) and
K(Xtest,Xtrain), i.e.,

Ytest = K(Xtest,Xtrain)[K(Xtrain,Xtrain) + λI]−1Ytrain, (18)

where Ytrain and Ytest are the signed distances for the extended point clouds and the regular grids,
respectively. With the marching cube algorithm in [41, 42], the implicit signed distance values on the
regular grid with any resolution can be reformulated to the mesh representation.

A.3 Shape classification with the full ModelNet dataset

The overall shape classification accuracy with neural varifold and the comparison with state-of-the-art
methods on both ModelNet10 and ModelNet40 are given in Table 5, where the entire training data is
used. The table shows that the finite-width neural network based shape classification methods (i.e.,
PointNet, PointNet++ and DGCNN) in general outperform the kernel based approaches, i.e., CT,
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Table 5: ModelNet classification.
Methods ModelNet10 ModelNet40
PointNet∗[1] 94.4 90.5
PointNet++[2] 94.1 91.9
DGCNN [3] 95.0 92.2
CT 89.0 80.5
NTK1 92.2 87.4
NTK2 92.2 86.5

∗Point cloud inputs are positions and unit normal vectors – 6-feature vectors; note that the original paper’s reported accuracy for ModelNet40 is
89.2% with only positions forming 3-feature vectors as inputs.

NTK1 and NTK2. DGCNN shows the best accuracy on both ModelNet10 and ModelNet40 amongst
the methods compared. In the case of kernel based methods, NTK1 outperforms both NTK2 and CT.
The results are largely expected since the infinite-width neural networks with either NTK or NNGP
kernel representations underperform in comparison with the equivalent finite-width neural networks
[43] when sufficient training sampes are available. The computational complexity of kernel-based
approaches is quadratic. With the ModelNet10 dataset containing 4899 samples, NTK1 and NTK2
respectively require approximately 12 hours and 6 hours of training time, whereas PointNet and
DGCNN achieve similar accuracy with nearly 1 hour of training time using the entire dataset.

Table 6: Shape classification performance of NTK1 and NTK2 with different number of neural
network layers adopted in MLP and Conv1D on ModelNet40.

Number of Layers PointNet-NTK1 (5-sample) PointNet-NTK2 (5-sample)
1-layer MLP 67.70 ± 1.66 64.70 ± 1.34
3-layer MLP 69.06 ± 1.57 66.79 ± 1.50
5-layer MLP 69.29 ± 1.48 67.34 ± 1.45
7-layer MLP 69.29 ± 1.43 67.64 ± 1.47
9-layer MLP 69.21 ± 1.48 67.81 ± 1.47

1-layer Conv1D 66.06 ± 1.71 63.20 ± 1.30
3-layer Conv1D 68.82 ± 1.62 66.88 ± 1.52
5-layer Conv1D 69.09 ± 1.51 67.42 ± 1.45
7-layer Conv1D 68.87 ± 1.53 67.77 ± 1.41
9-layer Conv1D 68.68 ± 1.46 67.89 ± 1.47

A.4 Pseudo-code for PointNet-NTK Computation and Its Applications in Shape Matching,
Classification, and Reconstruction

Algorithm 1 PointNet-NTK Computations
Require: si = {{x1, z1}, · · · , {xm̂, zm̂}}, sj = {{x̂1, ẑ1}, · · · , {x̂m̂, ẑm̂}}, N > 0

if PointNet-NTK1 then
X, X̂ ← {x1, x2, · · · , xm̂}, {x̂1, x̂2, · · · , x̂m̂}
Z, Ẑ ← {z1, z2, · · · , zm̂}, {ẑ1, ẑ2, · · · , ẑm̂}
Θpos ← Algorithm 2 (X, X̂, N)

Θnor ← Algorithm 2 (Z, Ẑ, N)

Θvarifold ← Θpos ⊙Θnor

else if PointNet-NTK2 then
P ← {CONCAT(x1, z1), · · · ,CONCAT(xm̂, zm̂)}
P̂ ← {CONCAT(x̂1, ẑ1), · · · ,CONCAT(x̂m̂, ẑm̂)}
Θvarifold ← Algorithm 2 (P , P̂ , N)

end if
return Θvarifold

Remark: As an example, X ∈ Rm̂×3 is formed by concatenating all xî ∈ {x1, x2, · · · , xm̂}.
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Algorithm 2 NTK Corresponding to N -layer Infinite-width MLP with ReLU Activation∗

Require: X, X̂, N > 0

Initialise Θ(0) = Σ(0) = XX̂
⊤
, dX

(0) = (d
(0)
1 , d

(0)
2 , · · · ) = diag(XX⊤),

d̂X̂

(0)
= (d̂

(0)
1 , d̂

(0)
2 , · · · ) = diag(X̂X̂

⊤
)

for h← 1 to N do
ω

(h−1)

î,ĵ
← Σ

(h−1)

î,ĵ
/
√

d
(h−1)

î
d̂
(h−1)

ĵ
, î, ĵ = 1, 2, . . . , length(dX

(h−1))

Σ̇
(h−1) ← F 0(Σ

(h−1),d
(h−1)
X , d̂

(h−1)

X̂ ), where (F 0)î,ĵ = 1− 1
π
arccosω

(h−1)

î,ĵ

Σ(h) ← F 1(Σ
(h−1),d

(h−1)
X , d̂

(h−1)

X̂ ), where

(F 1)î,ĵ = 1
2π

√
d
(h−1)

î
d̂
(h−1)

ĵ
(
√

1− (ω
(h−1)

î,ĵ
)2 + (π − arccosω

(h−1)

î,ĵ
)ω

(h−1)

î,ĵ
)

Θ(h) ← Σ(h) +Θ(h−1)Σ̇
(h−1)

d
(h)
X , d̂

(h)

X̂ ← 1
2d

(h−1)
X , 1

2 d̂
(h−1)

X̂
end for
return Θ(h)

∗Although Algorithm 2 assumes the NTK representation corresponding to N -layer MLP with ReLU activation
[44, 45, 33], several popular neural network layers have their corresponding closed-form NTK representations
[33, 43, 46].

Algorithm 3 Shape Matching
Require: f(·;θ) , S, T , nmax > 0, niter = 0

while nmax > niter do
vS ∈ R|S|×3 vertices of S
dS ← f(vS ;θ) displacements between S and T
Ŝ ← new source shape with deformed vertices vS + dS
xŜ , zŜ ← sample surface points and corresponding normals from Ŝ
xT , zT ← sample surface points and corresponding normals from T
ŝŜ ← {xŜ , zŜ}
ŝT ← {xT , zT }
Compute ∥sŜ − sT ∥2varifold in Equation (16) using Algorithm 1
Backpropagate and update θ

S ← Ŝ
niter ← niter + 1

end while
Remark: Here f(·;θ) is a 2-layer MLP neural network, θ is the weights of the neural network f . S and T are
the source and target shapes, respectively.

Algorithm 4 Shape Classification
Require: X train = {s1, s2, · · · , sl}, Ytrain = {y1, y2, · · · , yl}, X test = {sl+1, sl+2, · · · , sn̂},
N > 0, where si = {p1, p2, · · · , pm̂}, i = 1, 2, . . . , n̂
for i← 1 to l do

for j ← 1 to l do
Θvarifold(si, sj)← Algorithm 1 (si, sj , N)

Aggregate points Θvarifold
train(i,j)

←
∑

î≤m̂

∑
ĵ≤m̂ Θvarifold(pî ∈ si, pĵ ∈ sj)

end for
end for
for i← l + 1 to n̂ do

for j ← l + 1 to n̂ do
Θvarifold(si, sj)← Algorithm 1 (si, sj , N)

Aggregate points Θvarifold
test(i,j)

←
∑

î≤m̂

∑
ĵ≤m̂ Θvarifold(pî ∈ si, pĵ ∈ sj)

end for
end for
Ypred

test ← Θvarifold
test (X test,X train)(Θ

varifold
train (X train,X train) + λI)−1Ytrain
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Algorithm 5 Shape Reconstruction†

Require: X = {x1, · · · , xk},Z = {z1, · · · , zk},Y = {y1, · · · , yk}, δ, Xgrid,Zgrid, N > 0
Ensure: ∀yî = 0 and δ > 0

X−
δ ,X+

δ ← {x1 − δz1, · · · , xk − δzk}, {x1 + δz1, · · · , xk + δzk}
Y−
δ ,Y+

δ ← {−δ, · · · ,−δ}, {δ, · · · , δ}
X̂ , Ẑ, Ŷ ← X ∪ X−

δ ∪ X
+
δ ,Z ∪ Z ∪ Z,Y ∪ Y−

δ ∪ Y
+
δ

Xtrain,Ytrain ← {X̂ , Ẑ}, Ŷ
Θvarifold(Xtrain,Xtrain)← Algorithm 1(Xtrain,Xtrain, N)
Xtest ← {Xgrid,Zgrid}
Θvarifold(Xtest,Xtrain)← Algorithm 1 (Xtest,Xtrain, N)

Ypred
test = Θvarifold(Xtest,Xtrain)[Θ

varifold(Xtrain,Xtrain) + λI]−1Ytrain
Srecon ←Marching cube algorithm [42] (Xtest,Ypred

test )
†Please refer to a more detailed explanation of terms and equations in Appendix A.2.

A.5 Ablation analysis

A.5.1 Neural varifolds with different number of neural network layers

This section shows the shape classification results based on different number of neural network layers.
In this experiment, we randomly choose 5 samples per class on the training set of ModelNet40
and evaluate on its validation set. As shown in Section 4, we iterate the experiments 20 times with
different random seeds. The key concept of the PointNet [7] is the permutation invariant convolution
operations on point clouds. For example, MLP or Conv1D with 1 width convolution window is
permutation invariance. In this experiment, we choose different number of either MLP or Conv1D
layers, and check how it performs on the ModelNet40 dataset. As shown in Table 6, the classification
accuracy of NTK1 with Conv1D operation is lower in comparison with the ones with MLP layers.
In particular, 5-layer and 7-layer MLPs show similar performance with the NTK1 architecture, i.e.,
69.29% classification accuracy. In order to reduce the computational cost, we recommend fixing
the number of layers in NTK1 to 5. In the case of NTK2, its performance increases as more layers
are being added for it with both MLP and Conv1D operations. Furthermore, NTK2 with Conv1D
operation shows slightly higher classification accuracy in comparison with the ones with MLP layers.
The percentage of the performance improvement becomes lower as the number of layers increases. In
particular, 9-layer MLP versus 7-layer MLP for NTK2 only brings 0.2% improvement; therefore, it is
computationally inefficient to increase the number of layers anymore. Although NTK2 with 9-layer
Conv1D achieves 0.08% higher accuracy than the one with 9-layer MLP, NTK2 with 9-layer MLP
rather than Conv1D is used for the rest of the experiments in order to make the architecture consistent
with the NTK1.

A.5.2 Shape matching with different number of neural network layers

Table 7: Ablation analysis for shape matching with respect to different number of neural network
layers within NTK psueo-metrics. The number inside of the brackets (·) indicates the number of
layers used for computing the NTK pseudo-metrics.

Metric NTK1 (1) NTK1 (5) NTK1 (9)
CD 2.82E-1 2.67E-1 2.99E-1
EMD 2.43E5 2.09E5 2.46E5
CT 2.19E3 2.17E3 2.17E3
NTK1 7.74E3 4.93E3 4.90E3
NTK2 2.56E3 1.54E3 1.92E3
Metric NTK2 (1) NTK2 (5) NTK2 (9)
CD 2.59E-1 2.61E-1 2.64E-1
EMD 2.14E5 2.32E5 1.93E5
CT 2.15E3 2.17E3 2.15E3
NTK1 9.57E3 8.70E3 9.98E3
NTK2 1.28E3 1.41E3 1.53E3
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In this section, the behavior of the NTK pseudo-metrics with respect to different number of layers is
evaluated. Note that the neural network width is not considered in this scenario as all pseudo-metrics
are computed analytically (i.e., infinite-width). In this study, simple shape matching networks were
trained solely by NTK psuedo-metrics with different number of layers. Table 7 shows that the shape
matching network trained with the 5-layer NTK1 metric achieves the best score with respect to
CD, EMD, CT and NTK2 metrics, while the one with the 9-layer NTK1 metric achieves the best
score with respect to CT and NTK1 metrics. This is in accordance with the ablation analysis for
shape classification, where 5-layer NTK1 achieves the best classification accuracy in the ModelNet10
dataset. In comparison, NTK2 shows a mixed signal. The shape matching network trained with the
1-layer NTK2 metric achieves the best outcome with respect to Chamfer, CT and NTK2 metrics,
while the one trained with the 9-layer NTK2 achieves the best results with respect to EMD and CT
metrics. The network trained with 5-layer NTK2 shows the best result with respect to the NTK1
metric. This is not exactly in accordance with respect to shape classification with the NTK2 metric,
where the shape classification accuracy improves as the number of layers increases. However, training
a neural network always involves some non-deterministic nature; therefore, it is yet difficult to
conclude whether the number of neural network layers is important for improving the shape matching
quality or not.

A.5.3 Shape classification with different neural network width

In this section, we analyse how the neural network width can impact on shape classification using the
9-layer MLP-based NTK2 by varying the width settings from 128, 512, 1024 and 2048 to infinite-
width configurations. We trained the model on 5 randomly sampled point clouds per class from the
ModelNet10 training set. The evaluation was carried out on the ModelNet10 validation set. This
process was repeated five times with different random seeds, and the average shape classification
accuracy was computed. Notably, NTK1 was excluded from this experiment due to the absence of
a finite-width neural network layer corresponding to the elementwise product between two neural
tangent kernels of infinite-width neural networks. The results presented in Table 8 demonstrate
that the analytical NTK (infinite-width NTK) outperforms the empirical NTK computed from the
corresponding finite-width neural network with a fixed width size. Furthermore, computing empirical
NTK with respect to different length of parameters is known to be expensive as the empirical NTK is
expressed as the outer product of the Jacobians of the output of the neural network with respect to the
parameters. The details of the computational complexity and potential acceleration have been studied
in [47]. However, if the finite-width neural networks are trained with the standard way instead of
using empirical NTKs on a large dataset (e.g., CIFAR-10), then finite-wdith neural networks can
outperform the neural tangent regime with performance significant margins [43, 24]. In other words,
there is still a large gap understanding regarding training dynamics between the finite-width neural
networks and their empirical neural kernel representations.

Table 8: Shape classification performance of 9-layer NTK2 with different neural network width.

Width for each layer NTK2 (5-sample)
128-width 78.74 ± 3.30
512-width 80.08 ± 3.02

1024-width 79.97 ± 3.24
2048-width 80.46 ± 3.13

infinite-width 81.74 ± 3.16

A.5.4 Shape reconstruction with different point cloud sizes

In this section, we compare shape reconstruction results with different point cloud sizes, i.e., 512,
1024 and 2048 points. As indicated in Tables 4, 9 and 10, NTK1 and neural splines show that
the quality of the reconstructions is degraded as the number of points decreases. For NKSR, its
reconstruction quality becomes worse as the number of point clouds decreases for most categories,
but few categories (i.e., cabinet and vessel) show the opposite trend. In the case of SIREN, the
convergence of the SIREN network plays more important role for the shape reconstruction quality.
For example, the shape reconstruction results by SIREN on the airplane category show that the
shape reconstruction with 1024 points is better than that with 2048 points. This is due to the non-
deterministic nature of DNN libraries, i.e., it is difficult to control the convergence of the SIREN
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Table 9: ShapeNet 3D mesh reconstruction with 1024 points (mean/median values ×1E3).

Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 0.936 1.499 3.134 5.363 2.492 3.635 2.536 4.109 2.134 3.660 2.264 1.674 1.339
Neural Splines 11.640 1.905 2.264 2.440 2.983 4.770 1.418 3.437 0.439 1.924 3.936 9.026 2.255
NKSR 1.898 3.506 6.224 2.286 3.584 46.997 9.229 4.138 0.665 2.029 3.213 2.243 1.285
PointNet-NTK1 1.584 1.742 2.274 2.494 2.655 5.337 1.465 3.947 0.456 1.870 2.029 12.138 1.341

CD
(median)

SIREN 0.756 1.272 2.466 2.305 1.281 1.385 1.156 3.411 0.487 1.706 1.601 1.390 1.040
Neural Splines 8.171 1.562 1.830 2.058 2.152 1.548 0.698 3.071 0.359 1.657 1.715 1.594 0.879
NKSR 1.900 2.245 1.799 2.190 2.116 1.880 2.347 3.488 0.407 1.697 1.695 1.345 0.956
PointNet-NTK1 0.820 1.701 1.933 1.995 1.522 1.719 0.733 3.045 0.366 1.719 1.643 1.658 1.016

EMD
(mean)

SIREN 2.183 3.679 6.385 10.712 5.932 7.527 12.850 8.714 3.164 7.633 4.992 3.645 3.265
Neural Splines 60.566 6.540 5.338 5.380 15.935 8.882 22.745 6.457 1.878 4.335 11.733 18.019 6.367
NKSR 12.939 11.990 16.684 7.571 21.706 44.190 32.236 12.486 3.613 4.930 14.917 6.609 6.715
PointNet-NTK1 6.704 5.984 5.301 5.907 14.868 11.507 29.595 8.070 1.773 4.596 11.606 24.903 3.841

EMD
(median)

SIREN 1.982 3.211 5.232 4.699 5.678 3.567 2.916 5.548 1.351 3.804 3.122 3.415 2.552
Neural Splines 35.458 4.713 4.745 4.779 11.570 3.915 5.719 4.575 1.334 3.650 5.041 4.828 2.276
NKSR 11.317 6.933 5.035 5.432 9.807 8.597 7.871 8.397 1.765 3.524 8.140 3.400 2.354
PointNet-NTK1 3.716 4.659 5.050 4.598 7.613 4.062 9.168 5.456 1.364 4.105 4.257 4.710 2.209

Table 10: ShapeNet 3D mesh reconstruction with 512 points (mean/median values ×1E3).

Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 1.385 1.992 14.975 4.323 2.813 3.094 7.874 5.426 3.731 3.582 10.423 2.524 2.278
Neural Splines 21.410 3.752 2.818 2.985 5.217 5.089 2.050 4.393 0.565 2.228 5.953 8.721 2.699
NKSR 3.974 6.265 3.545 2.594 5.348 NA 9.859 5.259 17.419 2.059 6.636 1.677 1.540
PointNet-NTK1 2.454 2.674 2.565 3.233 3.793 6.087 2.193 4.045 0.550 2.252 2.702 14.349 2.090

CD
(median)

SIREN 0.715 1.678 3.635 3.122 1.914 1.672 1.540 4.707 1.156 2.256 1.746 1.497 1.130
Neural Splines 21.040 2.466 1.935 2.369 3.347 2.058 1.023 3.361 0.385 1.918 2.411 1.717 1.226
NKSR 2.627 3.336 1.894 2.015 3.752 NA 4.427 3.753 0.906 1.833 3.555 1.411 0.856
PointNet-NTK1 1.243 2.246 2.106 2.316 2.473 1.968 1.346 3.330 0.387 1.890 1.963 2.013 1.309

EMD
(mean)

SIREN 3.411 5.833 24.404 9.460 7.366 6.558 26.828 13.584 5.224 6.457 16.578 4.764 4.831
Neural Splines 120.415 11.749 7.478 6.057 26.382 11.486 30.216 8.686 3.048 5.128 25.433 19.087 8.431
NKSR 24.959 21.190 11.433 9.346 30.485 NA 36.050 18.147 13.115 5.226 24.257 4.701 8.605
PointNet-NTK1 13.826 9.217 5.614 11.548 16.465 13.501 35.540 8.334 2.436 6.010 15.663 27.025 5.897

EMD
(median)

SIREN 1.964 5.036 8.656 6.643 5.553 3.650 14.281 14.499 2.296 4.682 3.735 3.779 3.012
Neural Splines 115.527 9.698 4.679 4.863 20.006 4.476 10.834 5.405 1.548 4.234 8.205 4.742 3.147
NKSR 25.234 14.795 4.405 6.669 16.082 NA 10.727 8.655 3.132 4.147 9.839 3.595 2.650
PointNet-NTK1 9.863 6.122 4.758 7.171 6.822 5.076 9.296 5.683 1.626 4.497 7.455 6.658 3.313

NA indicates that the method fails to reconstruct few shapes in the given class.

network with our current experimental setting 104 epochs. Note that the SIREN reconstruction is
computationally much more expensive (around 20∼30 minutes) than either the NTK1, neural splines
or the NKSR approach (around 1∼5 seconds).

A.6 Visualisation of ShapeNet reconstruction results

In this section, we present additional visualisations of shape reconstruction outcomes obtained
through three baseline methods (i.e., SIREN, neural splines, and NKSR), along with the proposed
NTK1 method, across 13 categories of ShapeNet benchmarks. Five shape reconstruction results are
illustrated for each category. Specifically, Figure 3 showcases examples from the Airplane, Bench,
and Cabinet categories. Figure 4 exhibits five instances of shape reconstruction outcomes for the Car,
Chair, and Display categories. Moving on to Figure 5, it displays examples from the Lamp, Speaker,
and Rifle categories. Similarly, Figure 6 demonstrates five instances of shape reconstruction results
for the Sofa, Table, and Phone categories. Finally, Figure 7 focuses on the shape reconstruction
results for the Vessel category.
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Figure 3: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Airplane, Bench and Cabinet categories.
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Figure 4: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Car, Chair and Display categories.
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Figure 5: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Lamp, Speaker and Rifle categories.
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Figure 6: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Sofa, Table and Phone categories.

23



V
es

se
l

Ground Truth SIREN Neural Splines NKSR NTK1

Figure 7: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Vessel category.
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