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Abstract— This paper presents a new method for automatic identification of the inspiratory and expiratory breathing phases in lung 

sound recordings. Adventitious lung sounds (wheezes and crackles), superimposed on the breath sounds, are generally an early indication 

of the disease, and their timing in the breathing cycle (early/mid/late inspiratory or expiratory) has clinical significance for monitoring 

or diagnosing disease. Therefore, the identification of the phases of the breathing cycle is an essential step for clinical interpretation of 

pulmonary auscultation. The proposed algorithm is designed to be robust in the presence of adventitious lung sounds or where the breath 

sounds may be noisy compared to heathy lung sounds. The algorithm uses the Savitzky & Golay (SG) filter to estimate the second 

derivative of the lung sound signal then calculates its normalized absolute value. A threshold value is used to clip any large amplitude 

peaks and, following low-pas filtering, the breathing phases are visible in the plotted signal. A rule-based approach based on identifying 

peaks and troughs is then used to identify inspirations and expirations. The performance of the method is evaluated using four different 

datasets: (a) a longitudinal dataset recorded from 19 subjects with a diagnosis of idiopathic pulmonary fibrosis (IPF), (b) cross-sectional 

dataset recorded from 55 subjects who were referred for high-resolution computed tomography (HRCT) scan of the chest for various 

clinical indications, (c) a longitudinal dataset recorded from 10 healthy subjects, and (d) an open access lung sounds dataset containing 

recordings from 41 subjects with wheeze (9 with chronic obstructive pulmonary fibrosis  and 32 with asthma ). On average for inspiratory 

phase identification the algorithm had a sensitivity of (mean (standard deviation)) 92.84 (12.88) %, positive predictive value of 90.64 

(15.96) %, and F1-score of 90.67 (12.53) %. For identification of the expiratory phase, the algorithm had an average sensitivity of 92.19 

(13.44) %, an average positive predictive value of 91.55 (15.23) %, and an average F1-score of 90.89 (12.45) %. The method shows good 

potential for automatic identification of breathing phases in recorded lung sounds.   
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1. Introduction 

In this paper we present an algorithm for automatic 

identification of the inspiratory and expiratory phases of the 

breathing cycle from a single-channel acoustic recording of the 

lung sounds. Each complete breathing cycle comprises an 

inspiratory phase followed by an expiratory phase. Within these 

phases lies important information for evaluating the health of 

the respiratory system, which can be located during inspiration 

or expiration [1]. Monitoring breathing patterns has critical 

importance in a wide range of clinical applications, 

including intensive care monitoring, anesthesia 

administration, rehabilitation, physiotherapy sessions and 

monitoring of sleep apnea as well as during cardiac and 

pulmonary examinations [1,2,3,4,5]. Abnormal breathing 

rates and changes in the breathing rate are among the earliest 

indicators of physiological instability.   

Breathing rate (breaths per minute) and breathing phase 

(inspiration and expiration) can easily be identified using 

simple contact transducers [6, 7] and smartphone apps are now 

also available [8]. However, clinicians investigating cardio-

vascular conditions are more used to manual auscultation by 

stethoscope and there are advantages to using adaptations to 

existing, trusted technology in terms of both efficiency during 

consultation and clinicians’ willingness to adopt it [9].  We 

therefore present in this paper an algorithm for identifying the 

phases of the breath cycle from an acoustic recording of the 

lung sound acquired at a single location on the chest wall using 

a digital stethoscope.  

During breathing, the air flowing into and out of the airways 

within the lungs generates sounds which can play an important 

role in assessing and monitoring cardiorespiratory patients [10]. 

These sounds can be divided into two different categories:  

• breathing sounds, related to the flow of air through the 

airways are generally quiet, with expiration quieter than 

inspiration, but can become noisy in the presence of 

pathology [11]; and  

• adventitious sounds of two main types: crackles and 

wheezes related to fluid-structure interactions between the 

airflow and the lung tissue [12].   

These adventitious sounds are superimposed on the breath 

sounds and may alter the absolute or relative acoustic intensity 

of the inspiratory and expiratory breath phases, acting to mask 

the breathing sounds. Thus, classification of breathing phases 

from acoustic signals in the presence of adventitious sounds is 

especially challenging. 

However, clinicians are interested not only in the presence 

or absence of adventitious sounds, but in their location within 

the breathing cycle [10, 13], whether inspiratory or expiratory 

and whether occurring early, mid, or late in that breathing 

phase. These timing factors can indicate the correct diagnosis, 

and changes in timing or an increase in the portion of the phase 

where added sounds are found can indicate disease progression. 

Crackles, generally described as short, explosive, and non-

musical in nature, may occur during inspiration or expiration, 

depending on the respiratory disease [14]. They are 

hypothesized to be due to the rapid opening or closing of small 

airways [15]. Wheezes are continuous (duration > 100 ms), 

more musical sounds [16] and may also occur in either 

breathing phase [17]. In clinical practice. pulmonary 

auscultation using a stethoscope is performed to assess lung 

health. This includes assessment for the presence of added lung 
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Fig. 1. Block diagram of the proposed algorithm for breathing phase identification.

sounds, and their timing within the breathing cycle (inspiratory 

or expiratory; early or late in the phase). The timing of crackles 

within the breathing cycle allows direct estimation of the origin 

of the sound [13]. Smaller airways have been shown to produce 

late inspiratory crackles of higher frequency and shorter 

duration (< 10 ms) known as fine crackles, whereas larger 

airways tend to produce crackles early in the inspiratory or 

expiratory phase with lower frequency and longer duration (> 

10 ms) known as coarse crackles [10]. Fine crackles are 

associated with interstitial lung fibrosis, congestive heart 

failure, and pneumonia [18]; coarse crackles, are associated 

with chronic bronchitis, bronchiectasis, and chronic obstructive 

pulmonary disease (COPD) [19]. Moreover, in people with 

interstitial lung disorders the number of crackles per breath 

cycle (NOC/BC) is associated with the severity of the disease 

[20, 21]. The diseases most associated with wheeze are COPD 

and asthma [19]. Shim and Williams [17] have shown that in 

people with asthma, expiratory or inspiratory wheezing that has 

a combination of high pitch and moderate to severe intensity 

and that lasts the entire breathing phase is associated with a 

lower peak expiratory flow rate (a clinical measurement of 

airflow obstruction). The degree of bronchial obstruction in 

asthma is related to the proportion of the respiratory cycle the 

wheeze occupies [22] and wheezing in both breath phases has 

been associated with lower peak inspiratory flow rate than 

expiratory wheezing alone [17]. 

Lung sounds can be recorded using an electronic stethoscope 

and transferred to a computer for detailed analysis [23]. Many 

methods for detecting, isolating, and characterizing added lung 

sounds can be found in the literature [19] however, less 

emphasis has been given to automatic detection of breathing 

phases. In research studies, direct airflow measurement using a 

pneumotachograph is most common for estimating breathing 

phases [24]. The separate but simultaneous airflow 

measurements are used in conjunction with the sound 

recordings to estimate the timing of added sounds in relation to 

the breath phases. However, this approach demands a complex 

measurement set up, and hence is not suitable for use in clinical 

practice [25]. In the absence of information about flow 

direction, the audio-visual marking of breathing phases on 

recorded lung sound files is both time consuming and 

subjective. Thus, a reliable, objective, and automated method 

for breath phase identification from recorded lung sounds alone. 

without the need for either pneumotachograph or audio-visual 

marking would offer advantages in clinical and research 

evaluation of recorded lung sounds. 

Several studies have been reported which use a transducer at 

the tracheal notch to detect breath phase, with analysis based on 

acoustical means [5,26,27,28]. The breath phase detection 

accuracy of these methods lies in the range of 93 % to 100 %. 

However, although, these methods have high accuracy, they are 

dependent on recording of the tracheal sounds where breath 

sound is loud, and phase can be easily distinguished 

acoustically [29]. In clinical practice tracheal sounds are 

generally used to assess the status of the upper airways [29] 

whereas for cardio-respiratory analysis it is typically the sounds 

measured on the chest wall that are of interest, and simultaneous 

measurement using multi-channel devices in more than one 

location may be impractical. Unlike tracheal sounds, breath 

sounds measured on the chest wall are quieter, especially in the 

expiratory phase. Furthermore, these published methods were 

validated (except [5]) using lung sounds recorded from healthy 

subjects and their detection accuracy was not tested on lung 

sounds recorded from subjects with respiratory diseases. where 

adventitious sounds may dominate [30,31]. Therefore, it is 

possible that these methods may be less accurate when applied 

to lung sounds recorded from subjects with respiratory disease 

[25]. 

More recently, methods have been presented to address some 

of the limitations mentioned above. Messner et al. [32] used a 

bidirectional gated recurrent neural network (BIGRNNs). This 

method was tested on lung sounds recorded from healthy 

subjects and on subjects with IPF and achieved an overall 

performance assessed via the F1-score of 85.5 %. Jacome et al. 

[25] proposed a convolutional neural network with a 

spectrogram-based method. Its performance was validated on 

lung sounds recorded from subjects with and without 

respiratory disease. They found an average sensitivity of 97 % 

and an average specificity of 84 % for identifying the breathing 

phases. Mclane et al. [33] proposed a system, using a collection 

of new methods together with robustness-focused 

improvements on previous methods to estimate breathing cycle 

location and to detect pulmonary crackles. The method was 

validated using simulated lung sounds and a small set of real 

lung sounds (20 recordings) recorded from healthy subjects and 

subjects with cystic fibrosis. For breathing phase detection, this 

method had an average F1-score of 94.43 %. All three methods 

performed well, but it is important to notice that all three 

methods utilize deep learning processes and as mentioned in 

[25] a common problem with machine learning methods is that 

they often work well with a generated dataset with samples 

recorded in an identical manner for both training and testing  
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Fig. 2. Input lung sound signals selected from the longitudinal dataset recorded from IPF subjects; (i): - (a) Input lung sound signal 

(measured on the posterior right lung base (at 5 cm from the paravertebral line and 7 cm below the scapular angle) (b) Estimated 

second derivative of the input lung sound signal. (ii): - (a) Input lung sound signal (recorded on the posterior left chest wall at apex 

(2 cm from the paravertebral line, in one of the first intercostal spaces) (b) Estimated second derivative of the input lung sound 

signal. I: Inspiratory phase; E: Expiratory phase; BC: Breath cycle.  The pink, vertical dotted lines show the boundaries of the 

audio-visually marked breathing phases. 

sets but may not perform as well when applied to new unseen 

datasets. Bandyopadhyaya et al. [34] recently introduced an 

envelope-based approach for detecting breathing phases. This 

method was evaluated using lung sounds from both healthy 

subjects and those with respiratory diseases. The method had an 

average accuracy of 94.61% for normal subjects and 91.98% 

for disease cases. However, the test dataset was fairly small (88 

subjects, each with a single recording) and while four different 

pathological conditions were included, there were fewer than 

40 subjects per condition. Although they report that the 

presence of adventitious sounds may be expected to raise the 

dominant frequency range of the lung sounds to above 200 Hz, 

the authors provide confirmation that adventitious sounds were 

present in the test signals. 

Other methods for detecting breathing phases, such as a 

fuzzy inference system [1] and an adaptive neuro-fuzzy 

inference system [4], have also been proposed. They considered 

both tracheal as well as basal lung sounds. These methods were 

evaluated using a correlation coefficient and the root mean 

square error (RMSE). The fuzzy inference system had a 

correlation coefficients of r = 0.9892 and r = 0.9964 for 

Mamdani- and Sugeno-type fuzzy inference systems, 

respectively, with corresponding RMSE values of RMSE = 

0.0853 for Mamdani and RMSE = 0.0817 for Sugeno. The 

adaptive neuro-fuzzy inference system had a correlation 

coefficient of r = 0.9925 and an RMSE of 0.0069. Despite the 

good results, the dependency of these methods on a supervised 

learning strategy may limit their generalization as these 

methods can be biased towards a specific database [34]. 

Moreover, the computational cost of an adaptive neuro-fuzzy 

inference system is high due to its complex structure and 

gradient learning [35]. 

In this paper, we present a new signal processing algorithm 

for automatic breathing phase identification in recorded lung 

sounds. We aimed to develop a method that is robust for lung 

sounds recorded from subjects with and without respiratory 

disease, therefore the algorithm is validated using four different 

datasets, a longitudinal dataset recorded from IPF subjects, a 

cross-sectional dataset of subjects with a range of suspected 

pulmonary diseases who had been referred for an HRCT scan, 

a longitudinal dataset recorded from healthy subjects, and an 

open access dataset with wheezes recorded from subjects with 

COPD and Asthma [36].  

The rest of the paper is arranged as follows; section 2 

describes the detailed working process of the proposed method. 

Section 3 presents the datasets and the quantitative evaluators 

used to assess the outcome of the method. The experimental 

results are presented in Section 4. Section 5 presents the 

discussion of the results and Section 6 concludes the work.  

2. An automatic algorithm for breathing phase 

identification 

In healthy subjects, the breathing phases are predominantly 

related to the higher intensity parts of the audio signal, which 

will retain large amplitude in the signal’s second derivative, 
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whereas only the residue of coefficients related to quieter parts 

will be preserved. The (absolute) value of the second derivative 

may vary significantly in amplitude between recording 

locations and subjects, therefore in this study, its value is 

normalized to an amplitude range of 0 to 1 for further 

processing. Large amplitude peaks in the signal may be due to 

adventitious sounds such as crackles, movement artefact, heart 

sounds etc, and may confound the automated identification of 

the breathing phases. Therefore, once the normalized absolute 

second derivative is calculated, the large amplitude peaks are 

clipped using a threshold value estimated from the signal 

statistics. The processed signal is then low pass filtered and the 

breathing phases are identified. The algorithm therefore 

consists of five steps: (1) Estimation of second derivative, (2) 

normalization, (3) clipping large peaks, (4) low pass filtering, 

and (5) identification of breathing phases, which are described 

in detail in the following sections. For clarity, the steps of the 

algorithm are shown schematically in Fig. 1. 

2.1. Estimation of second derivative 

The second derivative of the input signal is calculated using 

a Savitzky & Golay (SG) filter [37]. The SG filter parameters 

are degree of fitting polynomial 𝑝𝑓 = 4, number of coefficients 

𝑛𝑐 = 89;  order of derivation 𝑑𝑜 = 0, 1 and 2 for smoothing the 

lung sound signal, and estimating first and second derivative of 

the smoothed lung sound signal respectively [38]. The SG filter 

is used for calculating the second derivative because it 

generates the second derivative from a smoothed version of the 

input signal. As an example: two cases are shown in Fig. 2 (i) 

and Fig. 2 (ii) in which inspiratory phases, expiratory phases, 

and breath cycles have been audio visually marked by an 

experienced pulmonary acoustics researcher using open access 

Audacity software. Fig. 2 (i-a) shows an input lung sound 

signal selected from the longitudinal dataset recorded in IPF 

subjects, the lung sound was measured on the posterior right 

lung base (at 5 cm from the paravertebral line and 7 cm below 

the scapular angle) for which the inspiratory phases have 

slightly higher rms amplitude on average (0.084 normalized 

arbitrary units) than the expiratory phases (0.068). From Fig. 2 

(i-b), it can be seen that the coefficients related to the inspiratory 

phases retain large amplitude in the second derivative, whereas 

the coefficients corresponding to the quieter, expiratory phases 

are smaller in amplitude. In another example, Fig. 2 (ii- a) 

shows an input lung sound signal selected from the longitudinal 

dataset recorded from IPF subjects, recorded on the posterior 

left chest wall at apex (2 cm from the paravertebral line, in one 

of the first intercostal spaces) in which both inspiratory and 

expiratory phases are of similar rms amplitude. On average, the 

RMS amplitude of the inspiratory phases is 0.192, while that of 

the expiratory phases is 0.190. In the second derivative, shown 

in Fig. 2 (ii-b), it is clear that when both phases have similar 

rms amplitude, the coefficients related to both phases also have 

similar rms amplitude in the second derivative.  

The second derivative of an input lung sound signal 

estimated using SG filter may more clearly reveal inspiratory 

and expiratory phases than the raw lung sound recording, but it 

does not alone automatically identify inspiratory and expiratory 

phases. 

2.2. Estimation of absolute value of second derivative and 

normalised absolute value of second derivative 

Next the absolute value of the second derivative signal is 

calculated. The input lung sound signal, its second derivative, 

and the absolute value of its second derivative are shown in 

Figs. 3 (a), (b), and (c), respectively, with the inspiratory 

phases, expiratory phases, and breath cycles marked by arrows. 

The absolute value of the second derivative may vary 

significantly, in amplitude between recording locations and 

subjects, therefore, its value is normalized to an amplitude 

range of 0 to 1 using Eq. 1. Let |𝑠′′(𝑛)| be the absolute value of 

the second derivative of the smoothed lung sound signal with 

respect to time, where n is the sample index. Then the 

normalised absolute value of the second derivative is given by: 

|𝑠′′(𝑛)|𝑛𝑜𝑟𝑚 =
|𝑠′′(𝑛)| − |𝑠′′(𝑛)|𝑚𝑖𝑛

|𝑠′′(𝑛)|𝑚𝑎𝑥 − |𝑠′′(𝑛)|𝑚𝑖𝑛

 
(1) 

where |𝑠′′(𝑛)|𝑚𝑖𝑛 is the minimum of the absolute value of the  

second derivative, and  |𝑠′′(𝑛)|𝑚𝑎𝑥 is its maximum value. The 

normalized absolute second derivative is shown in Fig. 3 (d).  

2.3. Clipping large amplitude peaks from the normalized 

absolute second derivative  

Large amplitude peaks in the lung sound signal may be due 

to adventitious sounds such as crackles, movement artefact, 

heart sounds etc. and may confound the automated 

identification of the breathing phases. Therefore, peaks in the 

normalized absolute second derivative larger than a defined 

threshold are clipped. A suitable threshold value for each signal 

is determined, based on [39], from the frequency histogram plot 

of the normalized absolute second derivative as: the value 

having on its left, 80 % of total area under the curve. The 

frequency histogram plot of the normalized absolute second 

derivative is shown in Fig. 3 (e). Fig. 3 (f) shows the normalized 

absolute second derivative after clipping the large amplitude 

peaks.  

2.4. Low pass filter 

 The clipped normalized absolute second derivative is passed 

through a 3rd order Butterworth low pass filter with cut off 

frequency of either 2.5 Hz or 1 Hz. Usually, a person with 

cardiorespiratory disease breathes faster than a healthy subject. 

Therefore, the higher cut off frequency: 2.5 Hz, is selected for 

the IPF longitudinal, cross-sectional, and the open access 

datasets and the lower cut-off frequency: 1 Hz, is selected for 

healthy subjects. Here, the cut off frequencies 2.5 Hz and 1 Hz 

are empirically selected. Fig. 3 (g) shows the output of the low 

pass filter. 

2.5. Identification of breathing phases 



 

 

 

 

5 

 
(a) 

 
(g) 

 
(m) 

 
(b) 

 
(h) 

 
(n) 

 
(c) 

 
(i) 

 
(o) 

 
(d) 

 
(j) 

 
(p) 

 
(e) 

 
(k) 

 

 
(f) 

 
(l) 

 

Fig. 3: (a) Input lung sound signal with (vertical dotted lines) audio-visually marked breath phases; (b) Second derivative of the 

input lung sound signal; (c) Absolute value of the second derivative; (d) Normalized absolute second derivative; (e) Frequency 

histogram of the normalized absolute second derivative; (f) Clipped normalized absolute second derivative; (g) Low pass filter 

output; (h-m) Low pass filter output with different conditions of the filter (see section 2.5); (n) Low pass filter output with potential 

inspiratory phases and expiratory phases; (o) Low pass filter output with verified breathing phases and breathing cycles; (p) Second 

derivative of the input lung sound signal with verified breathing phases and breath cycles. I: Inspiratory phase; E: Expiratory phase; 

BC: Breath cycle.   

This step is divided into two sub steps: An initial 

identification of breathing phases (potential breathing phases) 

is made using a set of rules defined in section 2.5.1 (i-vi) and 

this is then refined using a calculated threshold (Eq. 2) to give 

a final labelling of the breathing phases as either inspiration or 

expiration.    

2.5.1 Identification of potential breathing phases 

In this step, a set of rules based on the peaks and valleys of 

the low pass filter output are used to search for potential 

breathing phases [40]. Peaks are candidates to be considered as 

points of greatest airflow in or out (approximately the middle 

of a breath phase) and valleys are candidates for the change 

from one phase to the other. Fig. 3 (h) shows all identified peaks 

and valleys of the low pass filter output, where peaks are shown 

using red stars and valleys are displayed using green stars. The 

following set of rules are used in this step:   

 

(i) Peaks of the low pass filter output which are 0.5 

standard deviations above the mean amplitude of the 

low pass filter output are identified (see Fig. 3 (i)).  

(ii) Valleys of the low pass filter output which are less than 

the mean amplitude of the low pass filter output are 

identified (see Fig. 3 (j)).   

(iii) Of the valleys identified in (ii), only the valley 

immediately before and immediately after each peak 

is considered. If there is no identified valley before the 

first peak, then the first sample of the signal is used 

and correspondingly if there is no valley after the final 

peak the last sample of the signal is used.  (See Fig. 3 

(k)).  

(iv) As mentioned in [26], the average duration of a 

breathing phase is approximately 1 s. Therefore, the 

distance between an estimated peak and the closest 

estimated valley, is expected to be of the order of 

500 ms on average and the distance between any two 

estimated valleys is expected to be of the order of 1 s. 

Valleys which are closer to a peak than 200 ms are 

therefore discarded, with the choice of proximity 

measure being made to allow for breath-to-breath 

variation in cycle duration.     

(v) Next, any valley which is less than 500 ms from a 

previous valley, it is discarded from the analysis. As 

an example, see Fig. 3 (l), where the valley just after 2  
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(a) 

 

(b) 

Fig. 4: (a) Data recording sites for the longitudinal dataset recorded from IPF subjects and longitudinal dataset recorded from 

healthy subjects (L1-L6), (b) Cross-sectional dataset lung sounds recording sites (L-L6). 

s in Fig. 3 (k) is discarded (compare with Fig. 3 (l)). 

Note that once any valley is discarded then it is not 

used for comparing with other valleys.  

(vi) If more than one peak exists between two valleys, only 

the biggest peak amongst them is considered, with the 

others being discarded (compare Figs. 3 (l) and (m). 

(vii) Next the remaining valleys are connected together 

using alternating positive and negative cycles of a 

square wave always starting with a positive cycle (see 

Fig. 3 (n)). Complete breathing cycles are typically 

considered to start with inspiration and the assumption 

at this stage of the analysis is that the first cycle 

identified is inspiratory. This can be corrected in the 

next step if the assumption proves to be incorrect. 

Note that the threshold values in rules i) and iv) were selected 

based on the proposals in [26]. 

2.5.2 Breathing phase verification and counting number of 

breath cycles 

 Usually, in lung sounds recorded from posterior chest 

locations, the amplitude of the inspiratory phases is much 

greater than of the expiratory peaks [41,42]. Therefore, as a last 

step, peak values for potential inspiratory phases are compared 

to a threshold, defined by: 

𝜗𝑝 =
𝜇𝑝(𝑘)

2
+  𝜎𝑝(𝑘) 

(2) 

Where 𝜗𝑝 is called the peak threshold, and 𝜇𝑝(𝑘)and 𝜎𝑝(𝑘) are, 

respectively, the average and standard deviation of the 

amplitudes p(n) of the remaining k peaks after step (vi) in 

section 2.5.1. 

 We denote the process of comparing the amplitude of the 

potential inspiratory peaks to the peak threshold as breathing 

phase verification. The verification process starts with the first 

potential inspiratory phase. If the first potential inspiratory 

phase has a peak with an amplitude greater than the peak 

threshold, it is considered as a true inspiratory phase and 

verification moves to the next potential inspiratory phase. 

During the verification process if any potential inspiratory 

phase (including the first potential inspiratory phase) does not 

have a peak or has a peak with an amplitude less than or equal 

to the peak threshold, the first valley before that potential 

inspiratory phase is disregarded. Then, the remaining valleys 

are reconnected with each other using a new square wave 

(starting with a positive cycle) retaining any previously verified 

inspiratory phases and redefining any potential inspiratory 

phases for subsequent verification. Verified expiratory phases 

are indicated by the negative going square wave cycles between 

verified inspirations, negative square wave cycles between 

potential inspiration cycles are potential expirations. Following 

reconnection, the verification process then continues with the 

next potential inspiratory phase.  

The verification process ends when all positive square wave 

cycles contain a peak with amplitude greater than the peak 

threshold. At the end of the process all positive cycles with 

peaks greater than the peak threshold are considered verified 

inspiratory phases and all negative rectangles with or without 

peaks are considered verified expiratory phases.  

 Based on the verified breathing phases the number of 

complete breath cycles is calculated. The combination of two 

phases one identified as inspiratory and one as expiratory 

(starting with an inspiratory phase) makes up one breath cycle 

and the total of all such combinations represents the number of 

breath cycles. 

The verified inspiratory and expiratory phases plotted on the 

low pass filtered signal are shown in Fig. 3 (o) using positive 

and negative square wave cycles respectively. Additionally, 

arrows at the top of the plot indicate the whole breath cycles. 

The same verified inspiratory and expiratory phases together 

with the breath cycles are displayed again in Fig. 3 (p) plotted 

against the second derivative of the input lung sound signal. 

Visual comparison of the automatic identification results (Fig. 

3 (o or p)) with the audio-visual marking (Fig. 3 (a)) shows the 

same number of inspiration and expiration phases in both, with 

closely comparable breath phase boundaries.    

3. Test datasets and performance evaluators 

 

3.1. Datasets Description 

The algorithm is validated using four different lung sound 

datasets: (a) a longitudinal dataset recorded from 19 subjects 

with a clinical diagnosis of IPF, typically characterized by the 
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Fig. 5: (i) (a) Input lung sound signal selected from the longitudinal dataset recorded from IPF subjects ; (b) Normalized absolute 

second derivative; (c) Low pass filter output; (d) Second derivative of the input lung sound signal with verified breathing phases 

and breath cycles; (ii) (a) Input lung sound signal selected from the cross-sectional dataset; (b) Normalized absolute second 

derivative; (c) Low pass filter output; (d) Second derivative of the input lung sound signal with verified breathing phases and breath 

cycles; (iii) (a) Input lung sound signal selected from the longitudinal dataset recorded from healthy subjects; (b) Normalized 

absolute second derivative; (c) Low pass filter output; (d) Second derivative of the input lung sound signal with verified breathing 

phases and breath cycles; and (iv) (a) Input lung sound signal selected from the open access dataset recorded from asthma and 

COPD subjects containing wheezes [36]; (b) Normalized absolute second derivative; (c) Low pass filter output; (d) Second 

derivative of the input lung sound signal with verified breathing phases and breath cycles. I: Inspiratory phase; E: Expiratory phase; 

BC: Breath cycle.   

presence of fine crackles, (b)) a longitudinal dataset recorded 

from 10 healthy subjects, (c) a cross-sectional dataset recorded 

from 55 subjects who were referred for HRCT scan of the chest 

for various clinical indications of possible pulmonary disease, 

including IPF. These are likely to have fine or coarse crackles, 

wheeze or noisy breath sounds (eventual diagnosis for the 

subjects is not known), and (d) an open access lung sound 

dataset containing 41 recordings with wheeze (9 subjects with 

a diagnosis of COPD and 32 subjects with a diagnosis of 

asthma) [36]. The subjects for the longitudinal dataset (IPF and 

healthy groups) were recruited in the University Hospital of 

Southampton, UK between March and September 2015. The 

subjects for the cross-sectional dataset were recruited in the 

Radiology Units of the University Hospitals of Modena in Italy 

[43]. All data used in this study was robustly anonymised and 

no identifying information or personal data was available to the 

researchers. Prior to use of the data, it was confirmed that all 

contributary studies had independent approval by a relevant 

ethics committee, involved the use of appropriate signed, 

informed consent prior to data collection and conformed to the 

Declaration of Helsinki (1964) and its successive revisions. The 

data used was a convenience sample drawn from available 

sources designed to determine how the analysis performed over 

a set of samples that were heterogeneous in terms of subject 

demographics, health status, nature of adventitious sounds, 

recoding environment and recording conditions (e.g., sampling 

frequency, stethoscope filter settings, recording duration etc). 

 In both longitudinal datasets (IPF and healthy subjects), each 

subject’s lung sounds were recorded over 7 visits (each visit 

approximately 2 months apart) over a one-year period. For the 

cross-sectional database a single set of recordings was made for 

each subject. In each of these three datasets the lung sounds 

were recorded at 6 posterior locations using an electronic 

stethoscope (Littmann 3200; 3M, St. Paul, MN, USA). Fig. 4 

(a) shows the 6 posteriors lung sound recording locations for 

the two longitudinal datasets and Fig. 4 (b) indicates the 6 

posterior locations (L1-L6) of the cross-sectional dataset. The 

open access dataset was recorded, also using the model 3200 

3M Littmann Electronic stethoscope, at the King Abdullah 

University Hospital, Jordan [36] at a single chest location per 

subject. This dataset was predominantly recorded from 

posterior locations on the chest wall (14 at the base, 11 over the 

upper lung and 11 midway between upper and lower), with five 

recordings on the anterior chest wall (2 at the base, 2 over the 

upper lung and 1 midway between upper and lower). Note that 

to test the breathing phase identification of our method in the 

presence of wheezes, we included in this study only the 

recordings with identified wheeze from the larger dataset 

available. The selected recordings were made using the 

extended mode filtration of the 3M Littmann Electronic 

Stethoscope Model 3200. We refer readers to [36] for a more 

detailed description of the open access dataset.  

In the IPF longitudinal dataset out of 19 IPF subjects 13 

completed the total 7 visits with one lung sound recording per 

visit at each of 6 posterior locations. 2 subjects withdrew from 

the study due to poor health and 3 subjects died during the 
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observation period [43]. One subject completed the total 7 visits 

but missed one lung sound recording at location L1 (see Fig. 4 

(a)) in one of the 7 visits. Therefore, in the IPF longitudinal 

dataset, in total 689 lung sound files were analysed. In the 

healthy subject longitudinal dataset, out of 10 subjects 7 

completed the study. 3 withdrew from the study at some point 

due to personal or otherwise non-specified reasons [43]. From 

7 subjects, 6 completed the total 7 visits and 1 skipped a visit 

during the observation period. Therefore, in the healthy subject 

longitudinal dataset, out of 336 lung sound files, 282 lung sound 

files were analysed. 54 lung sound files were excluded from the 

study due to inaudibility of breathing phases or breath cycles 

which prevented reliable audio-visual marking of the breathing 

cycles. In the cross-sectional dataset out of 300 available lung 

sound samples recorded from 55 subjects, 258 lung sound files 

were analysed. 42 lung sound files were excluded, again due to 

inaudible recordings preventing manual file mark-up. In the 

open access dataset out of 41 recordings from 41 subjects with 

wheezes 34 lung sounds files were used for the analysis. 7 lung 

sound files were excluded due to the inaudibility of breathing 

phases or breath cycles.   

In all four datasets, each lung sound file was marked audio-

visually by an experienced pulmonary acoustics researcher 

using open access Audacity software to indicate the number of 

inspiratory phases, number of expiratory phases, and number of 

breathing cycles. These marked up signals served as a reference 

for the evaluation of the algorithm. In each lung sound file only 

full breathing cycles (inspiratory phase followed by an 

expiratory phase) were counted. In a smaller number of files, 

the location of the start and end of each breathing phase was 

also marked using audio-visual prompts and these landmarks 

are indicated by the horizontal arrows in Fig. 5. However, this 

more detailed process was time-consuming, and the start and 

end of a breathing phase is hard to define systematically, so it 

was undertaken only for a subset of the files likely to be used in 

figures. In general, therefore, evaluation determines the 

frequency with which the correct number of inspirations and 

expirations are identified in a sample, but the accuracy of 

prediction of the start and end of each cycle has not been 

systematically tested in this study and hence nor has an estimate 

of breathing cycle duration. The different lung sound datasets 

used for evaluating the performance of the algorithm are shown 

Table 1  

Lung sound datasets used for evaluating the algorithm. 

Dataset Number of 

lung sound 

files 

Number of 

complete breath 

cycles marked 

audio-visually 

IPF longitudinal 

dataset 

689 2416 

Healthy 

subjects’ 

longitudinal 

dataset 

282 905 

Cross-sectional 

dataset 

258 741 

Open access 

dataset 

34 197 

in Table 1. 

3.2. Performance evaluators 

Three metrics are used for evaluating the breathing phase 

identification performance of the algorithm: sensitivity (SE), 

positive predictive value (PPV), and F1-score (F1). These 

metrics compare the automatic method results with audio-visual 

marking by an experienced pulmonary acoustic researcher 

(ground truth) in terms of the number of occurrences of each 

breathing phase. SE is  the fraction of  true (i.e. audio-visually 

marked) inspiratory (or expiratory) phases identified by the 

algorithm; PPV is the fraction of cycles assigned as inspiratory 

(or expiratory) by the algorithm which are true inspiratory (or 

expiratory) cycles, and F1-score is the harmonic mean of SE and 

PPV [44], commonly interpreted as a measure of the overall 

performance of a classification system, which ranges from 0 to 

1 with higher values indicating better performance. 

𝑆𝐸 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑖𝑛𝑠. (𝑜𝑟 𝑒𝑥𝑝. ) 𝑝ℎ𝑎𝑠𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑖𝑛𝑠. (𝑜𝑟 𝑒𝑥𝑝. ) 𝑝ℎ𝑎𝑠𝑒𝑠
    (3) 

𝑃𝑃𝑉 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑖𝑛𝑠. (𝑜𝑟 𝑒𝑥𝑝. ) 𝑝ℎ𝑎𝑠𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠. (𝑜𝑟 𝑒𝑥𝑝. ) 𝑝ℎ𝑎𝑠𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
(4)  

𝐹1 = 2 ×
𝑆𝐸 × 𝑃𝑃𝑉

𝑆𝐸 + 𝑃𝑃𝑉
                                                                       (5) 

These three metrics were also used for evaluating the 

performance of the algorithm when calculating the number of 

entire breath cycles identified.  

4. Experimental results 

The performance of the algorithm for identifying breathing 

phases, and for calculating the number of breath cycles in each 

recording is presented in Tables 2 and 3, respectively in terms 

of the SE, PPV, and F1-score for each data set (results are 

reported as mean (standard deviation) of the SE, PPV, and F1-

score presented as a percentage).  

To illustrate the performance of the algorithm on each 

dataset, Fig. 5 shows one example from each of the four 

datasets. Plots labelled (a) show the input lung sound signal 

with breathing phases and number of breath cycles audio-

visually marked, plots labelled (b) show curves for the 

normalized absolute second derivative signals, plots labelled (c) 

show curves for the low pass filter outputs, plots labelled (d) 

show curves for the second derivative of the input lung sound 

signals with verified breathing phases and number of breath  

cycles where positive square wave cycles show the verified 

inspiratory phases, negative square wave cycles indicate the 

verified expiratory phases, and the combination of one 

inspiratory phase followed by one expiratory phase represents 

a breath cycle. Comparison of the number of each type of 

breathing phase and the number of breath cycles identified 

using the algorithm (plots labelled (d)) with those marked 

audio-visually on the input lung sound signal (plots labelled (a)) 

shows that the number of breathing phases and the number of 
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Table 2   

Sensitivity, Positive predictive value, and F1-score for number of inspiratory phases, expiratory phases, and both phases (results 

are reported as mean (standard deviation) of the percentage of SE, PPV, and 𝐹1). 

 Inspiratory phases Expiratory phases Both inspiratory and expiratory 

phases 

Dataset SE % PPV % 𝐹1 % SE % PPV % 𝐹1 % SE % PPV % 𝐹1 % 

IPF longitudinal 

dataset 

93.31 

(12.73) 

91.11 

(15.63) 

91.27 

(12.53) 

92.93 

(13.14) 

91.74 

(15.07) 

91.45 

(12.44) 

93.12 

(12.79) 

91.43 

(15.23) 

91.36 

(12.43) 

Cross-sectional 

dataset 

96.61 

(9.71) 

90.13 

(17.73) 

92.28 

(13.18) 

95.38 

(11.31) 

91.45 

(16.64) 

92.59 

(13.21) 

95.99 

(9.97) 

90.79 

(16.90) 

92.43 

(12.99) 

Healthy subjects’ 

longitudinal dataset 

88.96 

(14.35) 

90.29 

(15.12) 

88.19 

(11.33) 

88.22 

(14.71) 

91.32 

(14.43) 

88.37 

(11.27) 

88.59 

(14.30) 

90.80 

(14.62) 

88.28 

(11.13) 

Open access 

dataset [36] 

86.78 

(14.18) 

87.90 

(15.40) 

86.94 

(13.70) 

85.80 

(14.34) 

90.17 

(14.02) 

87.46 

(12.78) 

86.29 

(14.07) 

89.03 

(14.39) 

87.20 

(13.06) 

Average 92.84 

(12.88) 

90.64 

(15.96) 

90.67 

(12.53) 

92.19 

(13.44) 

91.55 

(15.23) 

90.89 

(12.45) 

92.51 

(12.93) 

91.09 

(15.42) 

90.78 

(12.37) 

Table 3   

Sensitivity, Positive predictive value, and F1-score for number 

of breath cycles (results are reported as mean (standard 

deviation) of the percentage of SE, PPV, and 𝐹1). 

Dataset SE % PPV % 𝐹1 % 

IPF longitudinal dataset 95.95 

(10.35) 

94.52 

(12.68) 

94.27 

(9.27) 

Cross-sectional dataset 98.47 

(6.16) 

94.50 

(14.11) 

95.63 

(9.56) 

Healthy subjects’ 

longitudinal dataset 

91.23 

(13.82) 

94.36 

(12.95) 

91.37 

(9.99) 

Open access dataset [36] 92.95 

(10.46) 

97.39 

(6.68) 

94.59 

(6.17) 

Average 95.33 

(10.85) 

94.56 

(12.92) 

93.91 

(9.53) 

breath cycles are correctly identified by the algorithm. 

In most of the files in the datasets only a count of the number 

of each type of breathing phase was made. However, the files 

used for comparison in the plots in Fig. 5 are taken from the 

small sample where the location of start and end of each 

breathing phase was also systemically identified by audio-

visual means. For this sub-set of the data, it was verified that 

the automatic detection of the start and end of the breathing 

phase by the algorithm was within 0.5 s of the locations found 

by audio-visual marking. This error tolerance is the same as the 

criterion used in [33] suggesting that the algorithm could also 

be valid if used to estimate the duration of each phase and its 

beginning and end points, but this remains to be tested. 

5. Discussion  

We have presented a novel breathing phase identification 

algorithm based on the second derivative of lung sounds 

recorded on the chest wall with an electronic stethoscope. Lung 

sound characteristics may vary with the health status of the 

subject and the location on the chest where the recording is 

made. Jacome et al. [25], note that systems designed to detect 

breathing phases should be tested using lung sounds recorded 

at different chest locations and on large datasets recorded from 

subjects with and without cardiorespiratory disease. Therefore, 

in this study we have validated our method on lung sounds 

recorded from both healthy and cardiorespiratory subjects with 

a range of different clinical indicators conditions. Our 

longitudinal data sets include subjects at different stages of 

disease progression.   

Table 4 compares the performance of the new method with 

previously published methods. We note that our system can 

identify breathing phases from breathing sounds only, whereas 

[26], [5], [27], and [28] all use recordings of tracheal sounds not 

normally acquired during clinical auscultation. Breathing 

sounds are generally quieter than tracheal sounds, especially 

during expiration, are more variable and more prone to masking 

by noise, The primary focus of our performance comparison is 

therefore on systems using breathing sounds only [25, 32, 33, 

34]. The performance of our signal processing-based method is 

compared with two deep learning methods: In comparison with 

the bidirectional gated recurrent neural networks (BIGRNNs) 

method [32] (F1-score (mean) = 85.5 %), the proposed method 

showed higher overall performance (F1-score (mean (standard 

deviation)) = 90.78 (12.37) %). The convolutional neural 

network with a spectrogram-based method [25] showed high 

average SE (97 %) but at the cost of low average specificity 

(84 %), whereas our method has demonstrated overall balanced 

results (SE = 92.51 (12.93) %, PPV = 91.09 (15.42) %, and F1-

score = 90.78 (12.37) %; where results are shown as mean 

(standard deviation)). We also compare with the robustness 

focused system presented by Mclane et al. [33] which uses a 

neural network to denoise the signals but adopts a signal 

processing approach for breath cycle detection.  Their system 

has slightly higher performance than our method, though we 

note that their validation was largely based on simulated lung 

sounds, with a real subject test set of only 20 recordings (14 

subjects of which 5 were healthy, 140 breathing cycles). 

Additionally, their primary interest was signals containing 

crackles, with no wheeze samples reported in their test data set. 

In comparison our method is validated on 1263 real lung sound 

recordings obtained in a clinical setting. In vivo recordings have 

different characteristics to simulated recordings [33], therefore 

the system introduced by Mclane et al. [33] remains to be fully 

tested on a large, heterogeneous dataset recorded from real 
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Table 4 

Summary of the proposed and established methods breathing phase detection results with their real lung sounds evaluation settings. 

 Subjects for evaluation Real lung 

sound 

recordings 

(number) 

Results in terms of SE, PPV or Specificity, F1-score, 

or Accuracy 

(Values are displayed as mean (standard deviation)/ 

Where standard deviation is not available only the 

mean value is shown) 

Healthy 

(number) 

Respiratory 

condition 

(number) 

Breathing sounds (recorded from various chest locations) dependent methods 

Proposed method 10 115 1263 SE=92.51 (12.93) %, PPV= 91.09 (15.42) %, and F1-

score= 90.78 (12.37) % 

Mclane et al. [33] 5 9 20 SE= 94.4 %, PPV= 97.7 %, and F1-score= 96.1 % 

Jacome et al. [25] 6 14 >1200 SE= 97 % and Specificity= 84 % 

Messner et al. [32] 10 5 480 F1-score= 85.5 % 

Bandyopadhyaya et al. 

[34] 

32 90 - Accuracy = 94.61 % (for normal subjects) 

Accuracy= 91.98 % (for subjects with respiratory 

condition) 

Tracheal sounds dependent methods 

Reyes et al. [28] 13 Not used - Accuracy= 100 % 

Huq & Moussavi [27] 93 Not Used - SE= 95.5%, Accuracy= 95.6%, and Specificity= 95.6 

% 

Kulkas et al. [5] Not Used 6 - SE= 98 %, PPV= 100 %, and F1-score= 98.9 % 

Chuah & Moussavi [26] 11 Not used 17 Accuracy= 93 % 

 

subjects. Moreover, as mentioned in [33], all three methods [25, 

32, 33] are computationally expensive since they utilize deep 

learning processes, whereas the proposed method utilizes 

simple signal processing steps which makes it an ideal 

candidate for the clinical setting where fast processing may be 

helpful to support clinical decision-making. Additionally, our 

method achieved comparable results to the envelope-based 

method introduced by Bandyopadhyaya et al. [34]. However, 

our method has been tested on a larger and more heterogeneous 

dataset which includes longitudinal data where lung sound or 

breathing patterns may change with time or disease progression. 

Indeed, as can be seen from Table 4, our study involves the 

largest number of subjects for evaluating the performance of the 

algorithm (125 with 10 healthy subjects and 115 respiratory 

disease subjects) of any other published study 

[25,26,5,27,28,32,33,34]. 

Moreover, in terms of clinical applicability, our method can 

be used in conjunction with methods to detect and classify 

crackles and wheezes without the need for additional, 

synchronized recording channels or additional devices. For 

example, we plan to integrate it with our crackle separation 

technique, the iterative envelope mean fractal dimension filter 

[38]. This integration can provide an automatic means of: i) 

calculating the number of crackles per breath cycle, which can 

be used to monitor the severity of the disease in patients with 

interstitial lung disorders, ii) calculating the number of crackles 

per inspiratory or expiratory phase, which has demonstrated 

potential as a novel metric for evaluating the effectiveness of 

breathing therapy interventions [45]; and iii) determining the 

timing of crackles within the breathing cycle (whether they 

occur during inspiration or expiration, and whether they are 

early. mid or late in the phase), as this information could hold 

clinical importance in evaluating a patient's breathing condition 

and in distinguishing between various cardiorespiratory 

disorders [25]. Integration with signal processing-based wheeze 

detection systems [e.g., 46] should also be feasible. 

The identification of breathing phases is a difficult problem 

because the signals we are interested in are not just breath 

sounds, they may have added sounds (crackles and wheezes) 

and perhaps noise and movement artefacts, also. These non-

breathing sounds may work to confound the automatic 

identification of the breath phases by, for example, making the 

expiratory phase louder than the inspiratory. The most 

challenging added sounds are crackles as the signal to noise 

ratio (SNR) can be high throughout a phase of the breath cycle 

and because they are broad-band sounds, which overlap with 

the frequency of the breathing sounds. Therefore, in this study, 

the breathing phase identification of the algorithm in the 

presence of crackles was tested using two datasets (IPF 

longitudinal and cross sectional). Additionally, the performance 

of the proposed algorithm was tested on a limited sample 

without any adventitious sounds (10 healthy subjects) and a 

limited sample with wheezes (41 subjects, 9 with COPD and 32 

with asthma) [36].  

   Although the method showed good results in terms of 

identifying the breathing phases, it has several limitations. First, 

as noted in [47], the Savitzky–Golay (SG) filter provides poor 

noise suppression at frequencies above the cutoff. This 

limitation of the SG filter, combined with the non-adaptive SG 

filter parameters used in this study, may result masking of the 

inspiratory and expiratory phases in the second derivative of the 

input signal, especially in the presence of high-frequency noise. 

In future research, lung sound denoising techniques (e.g., [48, 

49]) could be added as an additional pre-processing step in the 

proposed algorithm if needed. Additionally, there is potential 

for further improvement by exploring automated methods for 

selecting SG filter parameters based on the characteristics of the 

lung sounds dataset. Second, the method has a dependency on 

the selection of the cut-off frequency of the low pass filter, 

which is not adaptive to the data. It is important to notice that 



 

 

 

 

11 

in our analysis we used two different user-selected cut-off 

frequencies. A subject with cardiorespiratory disease generally 

breathes faster than a healthy subject therefore a 2.5 Hz cut-off 

frequency was used for the IPF longitudinal, cross-sectional, 

and open access datasets, and a 1 Hz cut-off frequency was used 

for the healthy subject longitudinal dataset. The higher cut-off 

frequency may generate too many false peaks and valleys which 

increases the chance of identifying too many breathing phases. 

On the other hand, the lower cut-off frequency may smooth out 

the true peaks and valleys of the breathing phases (especially in 

the case of fast breathing) which may increase the chances of 

under-identification. A facility for automatic selection of the 

low pass filter cut-off frequency according to the breathing 

pattern is an area for further exploration. Third, this study did 

not explore the effect of lung sound recording devices on the 

performance of the proposed algorithm, since all three of our 

datasets (IPF longitudinal dataset, Healthy subject longitudinal 

dataset, and Cross-sectional dataset), as well as the open-access 

dataset, were recorded using the 3M Littmann Electronic 

stethoscope (model 3200). As highlighted in [50], different 

recording devices use different acquisition preprocessing. 

Moreover, different recording devices may generate different 

levels of signal distortion in lung sounds. Therefore, future 

evaluation of the algorithm on lung sounds recorded from a 

range of recording devices would provide valuable insights into 

the generalizability of the algorithm across different hardware 

platforms. Fourth, the algorithm was evaluated against an 

audio-visual assessment made by a single pulmonary acoustics 

researcher. As mentioned by Pinho et al. [51], human 

assessment is associated with high levels of subjectivity. 

Therefore, future research should consider comparing the 

performance of the algorithm against a multi-annotator’ gold 

standard.  

We note also that when selecting test samples for the study, 

16 % of healthy subject files, 14 % of IPF cross-section files 

and 17 % of open access database files were excluded prior to 

the analysis due to complete inaudibility of the breathing 

sounds, which meant that the audio-visual mark-up could not 

be carried out. These very quiet recordings may be due to lack 

of subject compliance with the instruction to breathe deeply, 

poor stethoscope-subject contact, or subject’s body 

morphology, but absence of breath sounds can also be related 

to pathologies such as airway obstruction, hyperinflation, 

pneumothorax or pleural effusion. This highlights the 

importance of recording quality and suggests that for a system 

in clinical use, an important aspect of functionality would be 

real time assessment of recording quality. 

6. Conclusions 

This work presented a novel method for breathing phase 

identification in recorded lung sounds. Key points of the study 

were: (1) the method was tested on a large, heterogeneous data 

set of real lung sounds (1263 recordings) recorded from 125 

subjects (with and without respiratory disease) at different chest 

locations including recordings with both crackles and wheezes; 

(2) the method showed very good and well-balanced 

performance, with  SE (92.51 (12.93) %), PPV (91.09 (15.42) 

%), and F1-score (90.78 (12.37)%); (3) the method utilizes fast, 

time domain signal processing steps that make it 

computationally efficient compared to  recently published deep 

learning methods; (4) the method is applicable to recordings 

made directly on the chest wall with no requirement for 

simultaneous recording of tracheal sounds;  The method 

automatically classifies the breathing phases within a recording, 

which can help clinicians when using recordings to diagnose or 

monitor disease. Future research will (1) seek to automate the 

low pass filtering threshold based on the initial breath phase 

identification outputs, (2) explore the performance of the 

method on a yet more diverse dataset to be recorded at different 

clinical settings from different age populations (children, young 

adults, older people) with a wider range of cardiorespiratory 

diseases to evaluate its ability to identify breathing phases in 

different breathing patterns and (3) test the validity of the 

algorithm to detect the beginning and end of each breath phase 

and hence its potential for measuring breath phase duration. 
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