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ARTICLE INFO ABSTRACT

Keywords: Balancing supply and demand in free-floating one-way carsharing systems is a critical opera-
Carsharing tional challenge. This paper presents a novel approach that integrates a binary logit model into
Pricing

a mixed integer linear programming framework to optimize short-term pricing and fleet reloca-
tion. Demand modeling, based on a binary logit model, aggregates different trips under a unified
utility model and improves estimation by incorporating information from similar trips. To speed
up the estimation process, a categorizing approach is used, where variables such as location and
time are classified into a few categories based on shared attributes. This is particularly beneficial
for trips with limited observations as information gained from similar trips can be used for these
trips effectively. The modeling framework adopts a dynamic structure where the binary logit
model estimates demand using accumulated observations from past iterations at each decision
point. This continuous learning environment allows for dynamic improvement in estimation
and decision-making. At the core of the framework is a mathematical program that prescribes
optimal levels of promotion and relocation. The framework then includes simulated market
responses to the decisions, allowing for real-time adjustments to effectively balance supply and
demand. Computational experiments demonstrate the effectiveness of the proposed approach
and highlight its potential for real-world applications. The continuous learning environment,
combining demand modeling and operational decisions, opens avenues for future research in
transportation systems.

Fleet relocation
Combinatorial optimization
Discrete choice models

1. Introduction

Balancing the supply and demand dynamics in carsharing systems is a complex task, offering both challenges and opportunities
for effective and innovative management. Carsharing systems are characterized by a centrally owned and managed fleet of vehicles,
which is shared among different users that can rent the cars for a short period. These systems are highly dependent on operational
efficiency to provide a reasonable service level to their users and thus ensure the system’s economic viability. There are different
configurations of carsharing systems, with two key differences being the existence (or not) of previously defined parking areas or
stations and the possibility (or not) of returning the car to the same location from which it was picked up. These configurations are
called station-based systems if the users must pick up and drop off the car at a given station. Within these, we refer to round-trip
systems - where the drop-off point must be the same as the pick-up point - or one-way systems - where the user can choose the
drop-off point. Systems not bounded by previously defined stations are called free-floating one-way systems, and users may pick up
and drop off the car at any point within the system’s operating area, which makes them the most flexible and user-friendly type of
carsharing system (Shaheen et al., 2015). This, unfortunately, also makes them more challenging to operate efficiently.
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Especially in this setting, operational decisions on short-term price promotions and fleet relocations are critical to match supply
and demand. Fleet relocations — also known as operator-based relocations — refer to the process of strategically moving vehicles to
ensure better availability and accessibility for users. Fleet relocations are essential to demand management in carsharing systems
as they involve the strategic adjustment of vehicle distribution to align with varying demand patterns, often from low demand
areas to high demand areas. Carsharing operators use this proactive approach to fleet management to help meet user expectations,
reduce unmet demand, and ultimately contribute to the overall efficiency and effectiveness of the carsharing service. Nevertheless,
relocations come at an economic and environmental cost that should be considered.

Relocation operations in carsharing are notably different from those in other shared mobility modes. For example, in bikesharing
(and similar micro-mobility systems), relocations are decided by the operator and often performed in batches utilizing larger
vehicles. Conversely, in ride-hailing platforms (and other driver-based shared mobility systems), while recent research is also focused
on dynamic pricing and relocation strategies (Chen et al., 2024), drivers are strategic agents who can relocate their vehicles in
anticipation of future demand and prices. In carsharing, relocations are decided for each car individually and they require a staff
member to move the car. However, the operator can also employ other incentive mechanisms, typically price reductions, to give
incentives to the users to drop the car off in convenient locations in order to reduce relocations by hired drivers. These incentives
are sometimes referred to as user-based relocation. The following example illustrates how the two relocation methods available in
carsharing systems are intrinsically connected and also how they relate to the importance of accurately predicting and modeling
demand.

Let us assume that, at a certain period of time, the carsharing operator will need one additional car to fulfill the expected demand
in a given area. The expected revenue from that extra trip is 4 monetary units. The three options for the operator are: (1) to miss
that potential rental and the associated revenue, (2) to have a staff member relocate the car from an area with an oversupply of
vehicles, with an estimated cost (including staff time and fuel cost, as examples) of 3 monetary units, or (3) to offer a discount to
a user that would otherwise drop off its car in a near-by oversupply area. Since the costs to relocate a vehicle are smaller than the
expected revenue of this trip, it is beneficial to balance the system this way. The best relocation method — operator-based (option
2) or user-based (option 3) — will depend on the discount offered. In this example, if a discount of up to 3 monetary units were
enough to incentivize a current user’s change in behavior, which is inherently uncertain, it would be best to select option 3.

While operators of different shared mobility systems have common objectives, face similar challenges, and use pricing incentives
to manipulate the demand and the distribution of assets, they differ significantly at the operational level in terms of the number of
agents, control variables, and decisions to be made. We study an operational problem that considers car movements (either by users
or by operator-based relocations) within a time-space network, where the space dimension covers the operating area and time is
discretized over a given time horizon. Each trip type has specific pick-up and drop-off times, locations, and an associated expected
demand. This is a relevant and challenging problem where multiple products (trips by users) share the same resources (homogeneous
fleet), and the time and space positioning of the vehicles impacts the efficiency of the system and the service provided.

Understanding the underlying choice behavior of the users is critical for operating these systems. As carsharing is competing with
other modes of transportation, even though the price is not the only attribute that impacts the user’s decision, it plays a significant
role (Huang et al., 2018). Discrete Choice Models model the observed and latent relation of price and other relevant attributes
to demand (Ben-Akiva and Bierlaire, 1999), and therefore allow the development of a prescriptive tool that can be used to make
operational decisions to “shape” demand to match the most efficient car relocation patterns. In a nutshell, we demonstrate that a
choice model that is trained by aggregated information from different types of trips, can be embedded in these decision-support
models to improve operational decisions and overall results.

In this problem, we assume that the free-floating one-way carsharing system operates within a city that is divided into smaller
zones. Demand arrives at the time of the trip with no previous reservation. We assume that we know the total potential demand
for a given trip type (i.e., a trip starting in a given pick-up zone and time and ending in a given drop-off zone). This assumption is
based on the fact that typical and aggregated daily movements of people between city zones without modal split can be estimated
from different sources and population surveys (Jorge et al., 2015). We estimate the expected share of the potential demand that uses
the carsharing system using a binary logit model based on the trip attributes. The trip price is charged per minute, depending on
the pick-up area and time. Baseline prices are set and known to the users a priori. Nevertheless, the operator can use promotions in
specific areas and times of the day as a mechanism to encourage a more favorable distribution of cars over the network. Therefore,
users can benefit from time-limited promotions, depending on the pick-up area and time. Additionally, the operator can perform
empty transfers or relocations (i.e., the car is driven by a staff member to another location) at any time, at a given cost. These
assumptions are realistic with the current practice as discussed in Golalikhani et al. (2021). Our modeling framework aims to
maximize the operator’s expected contribution margin (i.e., considering variable revenues and costs) during a given time horizon
(e.g., one week) by identifying the optimal combination of promotions and relocations. This often also helps reducing associated
carbon emissions.

The main contributions of this work are twofold: the first is related to the operational challenges of balancing supply and demand
in free-floating one-way carsharing systems, which is enabled by the second contribution, which is related to the reduced data
requirements on the estimation of the choice model by aggregation of information collected from all trip types. First, we propose
a mixed-integer linear programming (MILP) model for this pricing and operations problem that embeds a binary logit model to
estimate demand for carsharing trips. Even though binary logit models are often used for demand modeling in transportation systems,
they are typically applied in a two-stage process, where estimation precedes (and is independent of) prescription. This is perhaps
because they bring additional complexity to the model and increase the time to solve. We propose to use the binary logit model not
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only for demand estimation but also as a mechanism to shape and manage the demand in an integrated system. The binary logit-
based mathematical programming model proposed obtains reduced optimality gaps within reasonable times, making it applicable
in reality. Second, in the few cases where discrete choice models have been embedded in operational decision-making, they are
often only based on user costs (or price). We propose a utility model where the pick-up time, pick-up area and drop-off area are also
features of the trip, which allows the integration of critical information related to spatial and temporal properties. This information
is acquired from different trip types over the space-time network over time. To avoid a high number of features, we propose a
categorizing strategy for different trip areas and periods. In this context, we demonstrate (i) how integrating multiple trips in a
single binary choice demand model (in which properties of the trip type are features) improves estimation and (ii) how categorizing
strategies allow for reducing computational times while keeping a similar estimation performance. The proposed framework is
further validated by the analysis of a carsharing trip dataset from Milan, Italy. Overall, the proposed modeling framework opens
new avenues of research in improving operational decisions in this context through better demand management.

The remainder of the paper is structured as follows. Section 2 discusses the literature on carsharing pricing and operations, and
demand estimation with discrete choice models, clearly positioning the contributions of this work. The modeling framework and
the corresponding mathematical models are presented in Section 3. Section 4 details and discusses the computational experiments
that show the promising potential of the proposed approach, and, finally, Section 5 summarizes the contributions and limitations of
this work and proposes future research directions opened by this research such as extending the demand modeling to account for
demographics of users and consideration of multi-mode travel systems in which carsharing is one of the modes considered. Beyond
addressing operational challenges in one-way carsharing, the second contribution of this work, which emphasizes reduced data
requirements and utility modeling for demand estimation, has implications for improving decision-making in other transportation
applications like bus ticketing and congestion pricing.

2. Literature review

Research in carsharing pricing and relocation has become active in the past years, due to its connections to societal and
environmental challenges such as reducing carbon emissions, boosting the shared economy, and ensuring economic viability and
environmental sustainability with limited resources. Integrating these two mechanisms — pricing and relocation - is increasingly
recognized as critical to balance supply and demand mismatches in one-way carsharing systems. In addition, demand modeling and
in particular understanding the relationship between price and demand in the presence of other factors such as the locality and
time of the trips play a critical role in these models. In this section, we will focus on recent advances in this field, highlighting their
contributions and identifying the gaps we aim to bridge with our work.

Relocation and pricing are critical for carsharing operations. Designing and operating a carsharing system encompasses several
strategic, tactical, and operational decisions from the operator that often interconnect with the decisions of potential users. The
two main approaches in the literature to tackle these problems are optimization and simulation. Optimization approaches focus on
finding the best solution within feasibility boundaries, while simulation approaches model real-world processes by generating and
analyzing multiple scenarios to assess their performance. We refer to Golalikhani et al. (2021) for a detailed review of the topic of
decision-making for carsharing operators.

Jorge et al. (2014) demonstrate that relocations are critical for the profitability of one-way station-based carsharing systems, even
when pricing is not used for demand management. The authors propose an optimization model and a metaheuristic for its solution,
and validate their impact using real data from Lisbon, Portugal, including potential station locations and average number of trips.
Boyaci et al. (2017) propose integrated optimization-simulation framework for vehicle and staff relocations for one-way electric
carsharing systems (assuming there might be reservations in advance). The approach is validated with a large scale real-world
dataset and different policies for serving requests are investigated. Recently, Hosseini et al. (2024) propose a relocation policy for
carsharing based on a fluid model approximation of the dynamic problem. For a full review of the vehicle relocation problem in
one-way carsharing systems, as well as its assumptions, models and solution methods, we refer to Illgen and Hock (2019). In Jorge
et al. (2015), trip pricing is analyzed as a strategy (independent from relocation) to balance the fleet across the system. Also using
data from Lisbon, the authors demonstrate that optimizing prices is key for profitability, yet this leads to higher prices for users and
lower service levels. Integrating pricing with relocation has potential to overcome this issue.

Even though the literature on decision-support methods for carsharing operations initially focused on relocation and pricing
separately, there are several recent attempts for their integration with promising results including the work of Lu et al. (2021).
The authors propose a bilevel model that maximizes the operator’s profit at the upper level by deciding on pricing and relocations,
while, at the lower level, users select the travel mode, minimizing their cost. Huang et al. (2021) also tackle the carsharing pricing
and relocation simultaneously, considering the additional feature of access trips: when the user walks or rides a bike to pick up
the shared car. The authors propose a two-stage stochastic model where pricing is the first-stage decision (made before demand
uncertainty is realized), and relocations are the recourse decisions to react to the different realizations of demand uncertainty. The
model is validated using data from Suzhou, China, and the results demonstrate the profitability of the integrated approach and the
added value of flexibility due to the availability of access trips in the model. Pantuso (2022) proposes an exact solution method
for the two-stage stochastic carsharing pricing and relocation problem and validates the approach using data from Milan, Italy,
with randomly generated demand. The pricing decision consists of optimizing the drop-off fee for each area. This drop-off fee is
added to a fixed per-minute fee, which is independent of origin or destination and is a given parameter of the model, unlike to
the model we propose. In this context, the concept of user-based relocation arises, where the operator offers incentives to users to
relocate cars. This mechanism is parallel to using pricing as an incentive. Huang et al. (2020) compare the efficiency of user- and
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operator-based relocation methods in a one-way station-based electric carsharing system, showing that the imbalance problem can
be well addressed by both operations.

Banerjee et al. (2021) provide a general approximation framework to optimize shared vehicle systems by addressing spatial
supply—demand externalities using steady-state Markovian models, showing that queueing theory has also been leveraged as a
robust tool for modeling shared mobility systems. In Benjaafar et al. (2023), the importance of a learning component in this setting
is discussed, and the authors propose an online learning algorithm for pricing in on-demand vehicle-sharing networks, ensuring
convergence to optimal static pricing policies. Braverman et al. (2019) explore the issue of (driver-based) relocation in ride-sharing
systems, showing that fluid-based optimizations can effectively manage fleet availability and improve system performance in these
large-scale markets. These studies highlight how demand learning is key to dynamically adjusting pricing and managing supply to
balance the network. By integrating demand learning with car relocations, novel insights can be achieved to improve supply—demand
interactions, ensuring higher vehicle availability and enhanced operational efficiency. To achieve this in the setting analyzed in this
paper, we focus on mathematical models and solution techniques that are fit for analyzing and operating smaller-scale carsharing
systems, where user-based relocation works alongside traditional operator-based relocations to improve the system’s efficiency.

The quality and effectiveness of the proposed operational models are significantly affected by the assumptions used to model the
demand-price relationship. Nevertheless, there is still no consensus in the literature on the best approach in this context. Ren et al.
(2019) develop a trip pricing model for one-way carsharing systems with Electric Vehicles (EV). EV carsharing poses additional
challenges, requiring integration with power systems (vehicle-grid integration). The authors model demand according to a linear
function where a price elasticity for a given price is multiplied by a base demand level. Wang and Ma (2019) propose a pricing
model to influence demand, where the price-demand relationship considers price elasticity and accounts for potential changes in
the origin and destination stations influenced by pick-up and drop-off specific rewards. In the work by Pantuso (2022) described
before, to model demand, a utility function for carsharing is used (linear with the pricing decision variable of the model) where the
unknown part of the utility is stochastic and discretized. Additionally, several other competing modes have a given utility (exogenous
to the model). The demand model assumes each user chooses the alternative with the highest utility. Overall, linear price-demand
models with different levels of detail are frequent in the literature. Linear price-demand models are not designed to capture complex
behavioral patterns such as product substitution and nonlinear relationships between demand and product attributes, and therefore
their applicability is limited in practical applications. On the other hand, discrete choice models (DCMs) (McFadden, 1981) account
for substitution while also being able to use various attributes of the user and the service offered, including but not limited to its
price. These characteristics often make DCMs the preferred method for transportation researchers in other applications, such as
route planning and congestion pricing. See Ben-Akiva and Bierlaire (1999) and Orttizar and Willumsen (2011) for an extensive and
insightful discussion on the use of DCMs for demand estimation in transport.

Huang et al. (2018) tackle an integrated problem for one-way station-based carsharing systems where the proposed model decides
on the strategic location of stations while considering relocations. The authors use the logit DCM for modeling carsharing utility
versus private car utility for each origin and destination. In this model, carsharing utility considers as features the trip’s price (a
parameter in this setting), walking and travel time costs, whereas private car utility considers fixed vehicle costs, parking and
travel time costs. In the linear-in-parameters utility functions, the weights of all cost components (four for each utility function) are
identical. The authors validate their approach using data from Suzhou, China, with randomly generated travel demand. A similar
approach is applied in the bilevel model described above from Lu et al. (2021). Demand also depends on a logit model with two
alternatives — carsharing and private car. In this case, carsharing utility depends only on an alternative-specific coefficient and
the trip’s price. In our work, we build on the previous papers that integrate carsharing pricing and relocation, and propose a
new demand management model to be embedded in the operational/prescriptive framework. In particular, as will be explained
in Section 3.1 we estimate demand with a logit DCM that relies on trip-related features besides cost, such as the trip’s starting
time, allowing for specific trips with little information (due to limited number of observations of trips with identical features) to be
estimated more accurately based on data collected from similar trips. Liu et al. (2022) study an interesting approach to user-based
relocation, where the users’ willingness to relocate (i.e., to accept an incentive to be flexible with their drop-off location) is learned
from a data-driven, dynamic approach, based on a binary logit model. The authors propose some extensions to this approach and
validate it with numerical experiments based on data from Singapore. There are several common elements between our approach
and the methodology of Liu et al. (2022) such as the dynamic learning environment, using relocations and promotions as operational
tools, and building a logit based utility function to capture the stochastic demand. Nevertheless, the two papers differ significantly
in the modeling and solution of each of these elements. In particular, Liu et al. (2022) focus on real-time decisions considering
uncertainties in trip requests and travel time, use an approximate dynamic programming formulation for decision-making, and a
Bayesian framework to update model parameters. In the utility specification, only the characteristics of the users are considered
regardless of the time of the day, and the pick-up and drop-off locations of the trip that is being considered. In our case, we use
an optimization model to make key decisions such as relocations and prices of each trip over the space-time network in which the
demand model is integrated. In the utility specification of the demand model, we take trip characteristics into account and integrate
information gathered from various trips over different time intervals and locations. Our demand estimation model can easily be
extended to include customer characteristics, e.g., using a mixed logit model and customer segmentation. It might also be possible
to add trip characteristics to the model of Liu et al. (2022).

Finally, other relevant and interesting extensions are currently being explored in the carsharing pricing and relocation literature.
The first extension relates to carsharing competition. In several carsharing systems, only one operator offers this mobility service
in the same city or region (or one operator with a substantial market share can act as a monopolist). In other cases, there is
competition between carsharing operators. This setting has a significant impact on pricing strategies. Balac et al. (2019) study this
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Fig. 1. Modeling framework.

problem, analyzing different pricing (and relocation) scenarios for Zurich, Switzerland. Yang et al. (2022) also tackle the pricing and
relocation problem in a competitive market and propose a multi-leader-following game model, validated with data from Quanzhou,
China. Another relevant challenge arises within the carsharing pricing and relocation problem when freelance drivers are hired to
perform the relocations instead of the staff from the carsharing operator (Samie and Rezaee, 2022). This is translated directly into
traditional models by converting the relocation cost into a decision variable (i.e., the freelance driver compensation). The authors
propose a mixed integer model for this setting, showing that combining these strategies benefits the operator. They assume a linear
price-demand relationship. Finally, most literature on one-way carsharing pricing and relocation, even if tackling a free-floating
system, depends on key assumptions adapted from station-based models, namely regarding the discretization of the operating area
and of the considered time period. This could be especially relevant for matching supply and demand, considering, e.g., the walking
distance. Soppert et al. (2023) investigate this issue and demonstrate the advantages of accurately accounting for free-floating flows
in the operator’s profitability. Our work can be adapted for such systems easily by careful selection of relevant features.

As discussed throughout this chapter, the approach proposed in this paper differs from the above-mentioned papers regarding
objectives, scope, and methods, and it complements the previous research. In summary, this work presents an approach where
pricing and relocation are optimized simultaneously in an integrated model. This differs from two-stage approaches, where pricing
is decided before demand uncertainty is revealed, and relocations are the recourse decisions that allow reacting to different demand
levels. The proposed solution approach is thus suited to be applied in practice, iteratively and on-the-fly, using accumulated data.
Additionally, we optimize prices that depend on origin, destination, and starting time, following the complexity observed in practice.
At the same time, we model the uncertain relationship between demand and price using a discrete choice model that is embedded in
the operational framework. This model relies on trip-related features besides cost, allowing for specific trips with a limited number
of observations to be estimated more accurately based on data collected from similar trips.

3. Carsharing pricing and relocation models

This section presents the mathematical models proposed for carsharing pricing and relocation, including the demand estimation
and management components. To tackle the problem presented in this paper, we propose a modeling framework that involves
several relevant components that will be discussed thoroughly in the following sections. Fig. 1 presents this modeling framework,
highlighting the relationship between its components.

Throughout this paper, demand modeling is based on a binary logit model described in Section 3.1. This model is characterized
by aggregating different trips under one utility model (with two alternatives: using or not using the carsharing alternative), thus
allowing for information on similar trips to improve estimation. Additionally, we propose a categorizing approach to reduce the
number of parameters to be estimated. This has two benefits, the number of required data points and the computational time to
fit the demand model are both reduced without compromising the model accuracy. The modeling framework relies on a dynamic
structure where the binary logit model is applied to estimate demand using the accumulated observations of past iterations at the
start of each decision point. Aggregating categorical variables such as location and time into a small number of categories reduces
the number of parameters to be estimated and therefore helps getting accurate models even when the number of observations is
limited such as early in the time horizon. At the core of the modeling framework is a mathematical program that prescribes the
optimal promotion levels to offer users and relocations to match supply and demand (Section 3.2). This modeling framework is based
on a continuous learning environment where the responses of the market to the decisions taken are observed and accumulated to
improve estimation and decision-making dynamically.
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3.1. Logit model for demand estimation

We assume that users of the carsharing system are homogeneous and arrive at the carsharing platform with the intention of
booking one car at a time for a trip type (specified with its destination and starting time) and observe the associated price. At
this point, they effectively choose between two alternatives: using a shared car with the offered price or leaving the platform
without using the shared car (i.e., choosing the outside option). Price is one of several factors that may influence users’ mode
choice decisions, along with other significant factors such as convenience, travel time, and service attributes. Here, we focus on
price as the key demand-influencing factor and use price reductions as incentives. This is in line with the common practice. We
also include attributes corresponding to the time of the day and the location of the demand. Travel time is not included since it
is assumed to be fixed for each pair of locations and captured implicitly in our model. This means that we work with a relatively
simple model, which captures the essential components for our study, but remains to be easy to estimate and interpret. We assume
the users need to take the trip at a specific time and therefore do not change the time of their trip by exploring time-dependent
prices, which is also a common assumption in dynamic pricing literature.

The utility of using a shared car is modeled as in Eq. (1), where z is the deterministic utility and & represents the error term which
follows the standard Gumbel distribution. The deterministic utility z is defined by the sum of an alternative-specific coefficient and
the product of a vector of coefficients by a vector of observable attributes of the trip (see Section 3.1.)

u=z+é& (€D)

The utility of the outside alternative is set to zero; therefore, the carsharing utility assumes a relative value compared with
competing modes of transportation. We assume that users choose the alternative that maximizes their utility, and therefore obtain
the standard binary logit model in which the choice probability of the carsharing option is given by Ii"ez;?z).

We consider that the city is divided into a set of areas A, and the time horizon is discretized in a set of time periods 7. We
estimate demand for each trip type, which is defined as a specific combination of the trip attributes: the pick-up area i € A, drop-off
area j € A, and pick-up period ¢+ € 7 using the logit model described above. We assume that the duration of the trips is fixed
according to the pick-up and drop-off areas, as in Huang et al. (2018).

Assuming no knowledge of the user’s socio-demographic characteristics, we propose using the characteristics of the trip (pick-up
area and period, and drop-off area) and its final price (i.e., after the promotion has been applied) as the relevant attributes that
determine the utility that is given to the carsharing alternative. Note that the input data for these attributes are nominal. Therefore,
we need to employ an appropriate “one-hot-encoding” step when building the linear-in-parameter model of z, resulting in a large
number of model parameters. In order to reduce the number of parameters to be estimated, we assume that the values of these
features can be grouped into categories according to their similar characteristics (e.g., peak vs off-peak periods or high-density vs
low-density areas). The goal is to group time periods that have a similar effect on users’ propensity to use carsharing and areas
that have a similar attractiveness as pick-up or drop-off points. The areas and time periods can be categorized using any common
partitioning technique, as will be shown later in this paper. We introduce the following notation to capture this:

- category of area i: G(i) = {1,..., M} — discrete, non-ordered set of M area categories,
- category of pick-up time 7: B(t) = {1,..., N} — discrete, non-ordered set of N time categories,
- trip final price: price;;, — price per period and promotion depends on pick-up area i and period #; however, the duration of

the trip depends on the drop-off area j, thus influencing the trip’s final price (the calculation of the final price is detailed in
Section 3.2).

Note that M, the number of area categories, should be less than or equal to the cardinality of the set of areas .4 (and the same
relationship holds for N and 7) since the categories aggregate the larger number of specific areas and periods. For representing
the discrete, non-ordered sets of categories, we apply the popular one-hot encoding technique, i.e., auxiliary binary variables are
defined for time categories (m B> pick-up area categories (G and drop-off area categories Ug j)). Table 1 illustrates the use of
these variables. To better understand this, let us focus on the attribute of time. Time is naturally a continuous variable but it is
often discretized for practical reasons. Even though discrete time periods follow a (time) order, since their impact on demand is
not dependent on that order, they may be seen as nominal (rather than ordinal) data. Trip 1 starts at 8 AM and trip 4 starts at 6
PM. These pick-up times are separated (one is in the morning and the other in the afternoon). Nevertheless, they are both peak
periods where demand is the highest in the system. Therefore, in our approach, they fall within the same pick-up time category
(B(8AM) = B(6PM) = Peak). The auxiliary variables needed for the one-hot encoding of these categories are as follows and their
application to the previous example is found in columns 9-14 in Table 1:

mpq, ={0,1},VB(@t) = {1,...,N — 1} =1 if the carsharing trip has its pick-up at a time that belongs to category B(f), = 0 otherwise,
. -1
with my =1- Zg(,>:| mp -
ngo = {0, 1},¥G@i) = {1,... .M - 1} =1 if the carsharing trip has its pick-up at an area that belongs to category G(i), = 0 otherwise,
with ny, =1- Zg'(;l:l G-
lggy =10, 1L, VG() ={1,....M — 1} =1 if the carsharing trip has its drop-off at an area that belongs to category G(j), = 0 otherwise,

: M-1
with [y, = 1= 3600 leg)-

In summary, Eq. (2) describes the deterministic part of the carsharing utility function.

N-1 M-1 M-1
z=a+ Z (ﬁll;(o “mp) + Z (ﬁzzm) “nga) + 2 (ﬁéu) “lgy) + B - price;,, (2)
B(1)=1 G(i)=1 G(j)=1
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Table 1
Example of the deterministic part of the utility function using auxiliary binary variables and categories to aggregate pick-up and drop-off areas and pick-up
periods into two categories each: “Peak” and “Low”.

Attribute variables

Mpr) 0 ey Price
Trip i J ! B(r) G(i) G(j) Mpeak My Mpeak Mpow I peak I ow
1 2 7 8 AM Peak Peak Peak 1 0 1 0 1 0 10
2 5 8 8 AM Peak Peak Low 1 0 1 0 0 1 15
3 5 9 3 PM Low Low Peak 0 1 0 1 1 0 10
4 9 1 6 PM Peak Low Low 1 0 0 1 0 1 5
Related Parameters « Brea Low Bheak Lo Brea Lo #
AreasT
OB OB ONNO O
1 2
Y 1 1/
=1- ® Q00 © 66 O © O O
6
L ! Current | Time
-T Previous 0 T Next time 2T

decision-making

. R horizon
time horizon

time horizon

Fig. 2. Example of how decisions from different time horizons interact, with two areas and three time periods within each decision-making time horizon, and
considering a fleet of 10 cars. The system is a time-space network where the number associated with each area/period is the number of cars available. Solid
lines represent trips by users and dashed lines represent relocations, with the associated number representing the number of cars in each.

where we have dropped one of the binary attributes in each hot-encoded categorical variables to avoid dependency (multicollinear-
ity) between features used in the model as common in practice.

3.2. Mathematical programming model for pricing and relocation

We propose a modeling framework with three main components: the operational setting, mostly related to fleet management
issues; the pricing setting, concerned with the pricing policies and assumptions; and the choice modeling (or demand estimation)
setting, where demand-related assumptions and modeling choices are detailed and explained. We consider a decision-making time
horizon for which the operational decisions (prices and relocations) are under considerations. The parameters for the current
decision-horizon, such as the distribution of available cars at each time slot, naturally depend on decisions made in previous time
horizons. This is exemplified in Fig. 2 for a toy example and discussed below in more detail. The notation used and the modeling
framework, especially for the operational setting, are mostly based on Oliveira et al. (2018).

Operational setting:. As explained before, we consider that a city is divided into a set of areas .4, and the time horizon is discretized
in a set of periods 7. Throughout this work, we refer to trip type as a trip taking place between a pick-up area i € A and drop-off
area j € A, starting at pick-up period ¢ € 7. We assume the duration of the trips depends on the time to drive (denoted as K;;,)
between the pick-up area i and the drop-off area j, which also depends on the pick-up time ¢ to account, e.g., for changing traffic
conditions. We assume relocations take the same time as carsharing trips with the same pick-up and drop-off areas, and same
starting time. Additionally, we consider C;;, to be the cost of relocating a car between areas i and j starting at time ¢. When a
time horizon for optimization starts, the system is already running. Therefore, some cars are idle and waiting to be rented, and
their current deployment results from trips in the previous time horizon. In the example in Fig. 2, area i = 2 starts the current
decision-making horizon with 2 cars available since trips and relocations in the previous time horizon reduced the number of cars
available. Similarly, some ongoing trips and relocations (decided in the previous time horizons) will increase the capacity at a certain
point in the current time horizon (and at a particular location). In Fig. 2, for example, six trips from users starting at area i = 1 in
the previous time horizon are scheduled to arrive to the same area during the current time horizon, increasing the number of cars
available. Previous decisions thus determine the system’s starting state, impacting the optimization of current decisions, which is
limited by these conditions. To acknowledge this, we assume that the system is running at the beginning of the decision horizon with
a given initial number of idle cars (W) at each area i. Throughout the horizon, we acknowledge that some cars that are currently
being relocated (R;,), as well as some cars currently on ongoing user trips (O;,) will arrive at area i at time 7. These parameters
result from decisions made in the previous time horizons and impact the decisions made in this horizon. This leads to the need to
test these models iteratively in a rolling horizon to avoid effects related to the start and end of the horizon.
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Pricing setting:. As mentioned, the final price for carsharing trips depends on a base price per period, the promotion level we decide
to offer, and the trip duration. For increased realism, we assume the base price is calculated step-wise. For example, for the first
10 min, the cost per minute might be higher than the cost for the following minutes of the trip. To model this, we assume the
carsharing operator has established a set of steps S and knows:

- The length (in periods) of each pricing step s € S (L,).

- The last pricing step for a trip starting in area i at period ¢ and ending at j (Q,;,)- This step can be directly derived from the
total time of the trip (K; o)

- The base price (in monetary units) charged per period for trips starting in period ¢ and area i in pricing step s (By;).

- The promotion value (percentage of the full price) associated with promotion level p € P for period  and area i (V}), where
ve=o.

Therefore, the full price (F;;,) depends on the step-wise base price per period and the duration of the trip, such that:
Q,j,—l Q[j,—]
Fj = 2 By L+ By g, - (Kijy = z Ly). 3
s=1 s=1
The full price is a parameter of the mathematical programming model since the decision is on the promotion (or discount) offered
(if any). The final price charged to the user, denoted as price;;, in Eq. (2), depends on F;;, and the promotion decision variables, as
will be detailed in the following paragraph (see Eq. (6)).

jt

Demand modeling:. In this setting, we assume that we know the total potential demand for a trip starting in period ¢ and area i
and ending in area j (denoted as D,;,). Based on the utility function described in Section 3.1 (see Eq. (2)), applying a binary logit
choice model, for a trip starting in area i and time ¢ and ending in area j, we estimate the share of potential demand that selects
the carsharing alternative with the following expression:
exp(z;;,)

share= ———.
exp(z;;) + exp(0)

(€))

To include this expression in the model linearly, we introduce parameter Zl.’;,,, which may be calculated for each promotion level
and trip before running the model. It corresponds to the probability of a representative user choosing carsharing for each promotion
level p € P offered for trips starting at period ¢ in area i going to area j. The parameter is calculated based on the categorizing
approach for areas and periods described in Section 3.1. It is detailed in Eq. (5) and (6), where zfj, represents the value of the
deterministic part of the utility of a given type of trip for a given promotion level offered.

exp(z.)

A — 5)
it exp(zfjt)+exp(0)

N M M
zp=at Y (B meo) + X (B now) + X (Bog) lag) + 8- Fy(1= V) ®
B(n)=1 G(i)=1 G(j)=1

The notation used for indices and parameters is summarized in Appendix A.

Decision variables

» 1, if promotion level p is charged for trips starting at time period ¢ in area i
i 0, otherwise
Vijt Number of cars relocated at time ¢ from area i to area j # i
Auxiliary decision variables:
Xt Number of cars in area i at time ¢
wfjr Number of fulfilled user trips starting in time period 7 and area i and ending in area j, with promotion level p
Fijt Probability of a user selecting the carsharing alternative for a trip from area i to j in period ¢

The objective function of the model will account for the expected revenue, which is the result of multiplying the expected number
of user trips and their final price. Since both of these elements depend on decision variables, to avoid a non-linear objective function,
we add an index for the promotion level (p) in the decision variable that captures the share of the demand for the given trip type
(.e., wfj )- In the model, we constrain these variables so that only one of them takes a non-null value for each trip type, corresponding
to the promotion level selected (i.e., p : g}, = 1). Therefore, the overall expected revenue can be obtained by multiplying the decision
variables wfj , with parameters that describe the final price for the given promotion level: F;,(1 - V).
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Mathematical model

max Y ZZ(Z(%Xﬂw(l-lﬁf))-ymxcf,) @)
i€EA jEAET

PEP
st. xo=W, vie A ®)
-1
Xy =X+ Ry + 0 + 2 < Z z WI;A,-A,/ - 2 wf’j,,l)
peP \aeA =0: o JjEA
r’+Kﬂ4‘_r,:zfl
-1
+ 2D V= 2 Vi vie A1 €T\ {0} 9
acA '=0: jeA
t,+DTII.i,’/ =t—1
z 2 wﬁj’t + Z Viji < Xy VieAteT (10)
PEP jEA JEA
wfjtsr,.j,-D,-j, VpeP,ic A, jeEAtET 11D
wfjrf‘lﬁ'l)m VpeEP,i€c A, jEALET (12)
Y =1 VieAteT (13)
pEP
rp= 220 4 VieAjEALET (14)
PEP
q) €1{0,1} VpeP,i€c AteT
Vi €Ly VieAjEA: j£i,tE€T
rij € Ly VieA,jeEALET
xy €Ly VieAteT
w;’jtezg VpeP,ic A, jeEALET (15)

The objective function (7) maximizes the contribution margin of the carsharing system. It has two main components: the revenue
from the fulfilled trip requests, considering their final price, and the cost of transferring cars to meet demand (relocations). The final
price of the trips depends on the base price per period and duration (known) and the promotion offered (a decision of the model).
The final price is multiplied by the decision variable that represents the number of trips of a given type that are fulfilled for a
given promotion level to obtain the total revenue. As described before, this decision variable can only take a non-null value for the
promotion level that is offered (see Constraints (12)). Maximizing the contribution margin is a fairly general approach: Jorge et al.
(2014), Huang et al. (2021), Liu et al. (2022), as examples, consider the revenue from rentals and the cost from relocations in the
objective function, often in combination with other sources of cost that are relevant for the problems studied in these works. This
allows the translation of relevant practical aspects of operations, where cost-inducing actions (e.g., relocations) are taken when they
lead to additional gains in the overall expected revenue. In Section 4.3, we compare the performance of the model which uses the
proposed objective function to a simpler one with a concave revenue function. We observe that both models perform similarly in
terms of computational times, while the proposed model leads to decisions that are better aligned with environmental considerations
as it leads to a reduced number of operator-based relocations, and consequently to reduced carbon emissions.

Constraints (8) define the initial distribution of the fleet through different areas. Constraints (9) track the fleet levels at each
location and period, considering the previous number of cars in that location, the expected arrivals from relocations and trips from
previous planning horizons (parameters to this model), the cars that arrive and those that left in user trips (decisions), and those
arriving and departing in relocation transfers (decisions). Then, Constraints (10) ensure that the number of user trips and relocations
starting at a given area and period is limited by the stock of available vehicles at that point.

Additionally, the number of fulfilled trips is limited by the demand for a given trip, whose limit is set by the expected share of
the carsharing option, i.e., the probability of the representative user choosing carsharing times the total potential demand for that
trip, as defined by Constraints (11). Constraints (12) ensure that the decision variable representing the number of fulfilled trips for a
given promotion level can only be greater than zero if that promotion level is selected for that specific trip. Constraints (13) ensure
that one and only one promotion level is selected for each combination of pick-up area and pick-up period. Constraints (14) define
the probability of the representative user choosing carsharing for a given trip, depending on the promotion level offered. It should
be noted that Z/.’;., is a parameter pre-calculated for every promotion level and trip type (see Eq. (5)) based on the logit choice model
and the utility function presented before. Finally, Constraints (15) represent the domain of the decision variables.

3.3. Limitations of the proposed models
Non-strategic agents:. We assume that users of the carsharing system arrive at the platform with the intention of booking one car

for a trip type. We do not consider the possibility of iterative decision-making, where users compare the utility value at different
times to optimize their travel decisions. We assume the users need to take the trip at a specific time and therefore do not change
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the time of their trip by exploring time-dependent prices, which is a common assumption in dynamic pricing literature. In reality,
user behavior may indeed be strategic and involve multiple comparisons over time, nevertheless, this is more frequent on occasional
and more prolonged trips, such as those seen in the car rental market. We generalize this case, which is common for typical urban
mobility trips, for all carsharing users in this system. Nevertheless, extending our model to capture more nuanced user behavior
such as comparing prices for different starting times and nearby locations before making a purchasing decision would be interesting
and would increase our model’s applicability to other travel settings.

Homogeneous users assumption:. The model assumes homogeneity among users, not considering socio-demographic characteristics
that can influence mobility needs and preferences. The model might overlook important variations in demand patterns by not
incorporating factors such as age, income, or travel habits. This assumption could limit the model’s applicability in diverse urban
environments where user behavior may be more heterogeneous. In this case, we can use a more complex choice model that accounts
for the existence of latent classes among the customer population. Integrating a different choice model into our framework is
relatively straightforward. Nevertheless, replacing the simple binary logit model with a more complex model, such as the latent
class logit choice model or the more general mixed logit model, would require more data points and longer computational time
when estimating the model parameters. We can train an appropriate choice model by considering the trade-off between prediction
accuracy and computational time as typical in other applications of DCMs in traffic, if a more accurate demand model is desired. To
showcase this possibility, we have applied both the binary logit and a latent class model to a real dataset from Milan. The details
of the choice model and the results are provided in Section 4.4.

Binary choice assumption:. The use of a binary logit model defines the user’s choice as choosing the carsharing service or opting
for an outside alternative, aggregating potential different transportation options in the latter. While this modeling choice does not
fully capture the complexity of real-world decision-making where users might consider multiple modes of transport, it aids in model
tractability and provides a first approach to this problem. Future extensions of the model could incorporate a multinomial choice
framework, allowing for a more comprehensive analysis of user preferences and behaviors.

Time to travel assumption:. The model treats travel time as a deterministic parameter, assuming we know the trip duration depending
on where and when it starts and where it ends, which may not reflect the variability experienced in real-world conditions. Factors
such as traffic congestion, road closures, and varying speeds can introduce significant uncertainty in travel times. This assumption
can be removed by employing appropriate techniques from stochastic or robust optimization literature.

Known total potential demand assumption:. We employed this assumption for the sake of simplicity. There are several ways to relax
this in future work. For example, we can model the arrival of customers as a stochastic process, estimate its parameters using
historical data and study the operational problem in this setting. Alternatively, we can employ stochastic or robust programming
techniques to incorporate the uncertainty in our model directly. In all cases, studying the problem under the fixed potential demand
assumption first, as we have done so here, is relevant and essential.

We have used a relatively simple model to characterize the deterministic component of each alternative that included price,
location of the demand, and the starting time of the trip. There are several other factors, such as convenience and comfort level, that
might affect the choice. Often these attributes are qualitative and hard to measure. Therefore, finding reliable datasets quantifying
these is a challenge. The operator might employ discrete choice experiments or focus groups, if they wish to include these in the
demand model. Below, we work with an empirical dataset that was available to us that included a limited number of attributes.
While this might be a limitation of our empirical observations, the overall framework discussed here is general and free of this
limitation. Including more attributes into binary logit or any other parametric choice model, and even using a fully data-driven
classification model, is possible and relatively straightforward. We discuss the use of a latent class logit model in Section 4 as an
example.

4. Computational experiments

This section starts with a full description of the data and market simulation framework used in our analyses, and a summary of the
experiment’s environment and settings (Section 4.1). Then, the results are analyzed following two perspectives: Section 4.2 focuses
on the demand models and discusses their performance and Section 4.3 focuses on the results that are relevant to the carsharing
application and related insights. Then, in Section 4.4 the proposed approach is applied to carsharing trip data from Milan, Italy.
Finally, Section 4.5 discusses the main managerial insights derived from this work.

4.1. Data, simulation framework, and test environment

This section describes the instances developed to test the proposed models, as well as the algorithms that simulate the responses
of the carsharing market to the pricing and operational decisions. Finally, the test environment is described.

10
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4.1.1. Instances

The data used to validate this approach was randomly generated, considering realistic values and assumptions for one-way
carsharing systems. For the time-space model, we discretized the time horizon of one week into 2-hour slots, resulting in 84
periods, and considered 4 different areas within the carsharing operating system. For the potential demand pattern across time
and areas, we conceptualized typical patterns in this type of mobility and randomly generated potential demand for each time
period following a normal distribution with a peak around the middle of the half day. The potential demand in each period was
distributed among the pick-up and drop-off areas according to a predefined distribution among the areas, characterizing them in
terms of their attractiveness for pick-up and drop-off (which may be different). The total fleet was set at 10% of the average total
potential demand of a half day. The time to travel between two areas depends on the origin and destination areas, as well as the
start time of the trip. If the origin and destination areas are the same, this time is considered to be one period, otherwise it can
vary between 1 and 3, depending on the pick-up time. The relocation costs for different origin and destination areas were randomly
generated between 1 and 6. These costs consist mainly of the staff cost for driving a vehicle. Please note that the relocation costs are
fixed for each pair origin/destination since the time to travel between them is also previously defined. As for prices, we assumed
all base prices per period to be 3, with one price step. The promotion levels are equally distributed and their range can go up
to 20% discount (in a setting of regular promotions) or 100% discount (extended promotions). This full dataset and instances are
available at the following link: https://drive.inesctec.pt/s/MbbX9JZKnZwWEYEW. In summary, although the demand patterns are
based on typical patterns, most of the features are randomly generated (as is often the case in this literature). This allows for a solid
methodological analysis of the proposed approaches in a controlled setting.

4.1.2. Market simulator

As shown in Fig. 1, to validate and assess the proposed binary logit model and the advantages and limitations of the MILP model
for pricing and relocation, we simulate the market response to the promotions offered and the resulting final pricing conditions.
Although the results will depend on the simulated data, the proposed market simulator is crucial to validate the theoretical
advantages of this approach to support an empirical implementation of this type of learning system. The goal of the market simulator
is to provide two types of outputs: (i) the observed demand after the optimized promotion levels (for the estimated demand) are
made public to the users (i.e., with the price as an input), and (ii) the consequently updated values of other system states (regarding,
e.g., fleet levels in different areas). In other words, this component first simulates how the market responds to the prices offered by
the operator (i), then also calculates the consequences of the resulting demand in the system (ii). To obtain the simulated demand
(in the face of the decided prices, which are fixed inputs to the simulation), we assume that the utility of each user for a given trip
depends on the deterministic part of the utility and an error term, as shown in Eq. (1), where we assume that the set of parameters
of the deterministic part is known by the market simulator. This set is different for each trip type (i.e., each combination of pick-
up area i and period 7 and drop-off area j; not considering the categories introduced for one-hot encoding). Eq. (16) represents
the deterministic part of the utility function computed by the market simulator. Comparing Eq. (16) with Eq. (6), the parameters
represented by ’ are those that control the (simulated) market responses (unknown to the remainder of the system).

2=+ BB Ey (1= V) (e

Algorithm 1 Algorithm for the market simulation of a given trip type (combination of pick-up area i and time period ¢ and drop-off
area j) and given promotion level p such that qf, =1.

Require: D = D, > Potential demand for the trip
Require: o/, g’ > “Real/ground truth” parameters
Require: ¥() > Error probability distribution
Require: price > Final price charged (price= F;;, (1 - V"))

0() « Quantile function of ¥()
RealDemand = 0
for n={1,..,D} do
Z=a + ﬁrl + ﬂrz + ﬂl3 + ﬁl4 . price
z/ « standardization (z)
x « Random number in [0, 1]
utility « 2z’ + O(x)
if utility> 0 then
Real Demand = Real Demand +1
end if
end for
return Real Demand

Algorithm 1 presents the pseudo-code for this simulation. To obtain the market response demand, the simulator calculates the
utility each user attributes to carsharing. For this, the simulator receives as inputs: the potential demand for a given trip type and the
parameters o', f] ! ﬂfz, ﬁ/’?’ and #'* (which control the actual market response), a probability distribution to describe the stochastic
error term, and the final price (resulting directly from the promotion levels prescribed by the MILP model). This algorithm is run
independently for each trip type. The potential demand represents the total number of users who might be interested in selecting
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Table 2

Numerical example for a given trip, with potential demand of D =5, resulting in carsharing ‘realized’ demand of 2.
n (User) z' Std (z') x Noise: Q(x) Utility User choice
1 -0.92 —-0.50 0.10 -0.83 -1.33 Outside alternative
2 -0.92 —-0.50 0.02 -1.35 -1.85 Outside alternative
3 —-0.92 -0.50 0.85 1.85 1.35 Carsharing
4 —-0.92 —0.50 0.56 0.55 0.05 Carsharing
5 -0.92 —-0.50 0.40 0.10 —-0.40 Outside alternative

carsharing for this trip type. For each user in the pool of potential demand, the simulator calculates the standardized deterministic
part of the utility and adds a random noise to it. The random noise value is obtained from the probability distribution received as
input. We consider the outside option utility to be zero. Therefore, if the overall carsharing utility is greater than zero, we consider
this specific user to be demanding the carsharing service, thus increasing the simulated real demand by one. This process is repeated
for all users that compose the trip’s potential demand.

Table 2 presents a small numerical example to illustrate the processes in Algorithm 1. This example considers a given trip type
(starting in area i at period ¢ and ending in area j) with D = 5 potential demand. The error is Gumbel-distributed, and the price
charged for this trip is 3.4. The parameters of the utility function are o’ = 1.75, /! = 1.02, "> = 2.05, "> = 1.74, p’* = =2, 2. For each
user n = {1,...,5}, we calculate z/, according to Eq. (16), which will be the same for all users: z/ = 1.75+1.02+2.05+1.74—-2.2x3.4 =
—0.92. We apply the commonly used z-score standardization method for its ability to transform the data to a standard scale
without altering the shape of its distribution, making it suitable for algorithms sensitive to varying scales. Additionally, z-score
standardization simplifies interpretation by centering the data around zero with a standard deviation of one, aiding in easier
comparison and analysis across variables. To calculate the mean and standard deviation, we calculate z’ for all trip types, resulting in
a mean value of —0.87 and a standard deviation of 0.1. For this specific trip type, we standardize z’, resulting in =092-C087) _ _ 50,
Then, a random number between 0 and 1 x is generated for each user (fourth column). The quantile function of the standard Gumbel
distribution leads to the noise considered. For example, for n = 1, 0(0.10) = —log(— log(0.10)) = —0.83. The final utility (sixth column)
is obtained by adding the noise to the deterministic standardized utility. For n = 1, it leads to —0.50 + (—0.83) = —1.33. Since the
outside alternative is set to have a null utility, the user chooses carsharing if the final utility is greater than zero. Therefore, user
n =1 chooses the outside alternative. Overall, this procedure results in a demand of two users (out of five).

The market simulator is run for all trips in the instance. The whole modeling framework, consisting of parameter estimation,
MILP model run, and market simulation (see Fig. 1) is run for the full time horizon and then repeats for a given number of iterations
(in a rolling-horizon approach), as will be described in the following sections. This aims to represent horizons where the demand
function inputs are the same (e.g. weeks), so at each iteration, learning is accumulated.

4.1.3. Test environment setting

Experiments were run on a personal computer with an Intel Core i7 processor (i7-8550U) running at 1.80 GHz with 16 GB of
installed RAM, running 64-bit Windows 10 Pro. All algorithms (except for the binary logit model estimation) were coded in C++.
The mathematical programming solver used was CPLEX 12.8. The binary logit estimation model was run using the Biogeme Python
package (Bierlaire, 2023). Biogeme is a software package distributed under an open-source license designed to estimate discrete
choice models and is widely used in transportation research. It supports a range of discrete choice models, including binary logit
models, allowing users to detail specific utility functions incorporating various attributes and estimate complex models.

4.2. Analyzing the demand estimation model

The MILP model for pricing and relocation proposed in this work embeds a binary logit model to estimate demand, which
is based on an innovative utility function that incorporates both the price and the spatial and temporal features of trips. The
goal of Section 4.2 is to analyze this utility function (or demand model) independently of the MILP under different settings and
configurations. To evaluate the performance of the demand estimation model, this section presents a comprehensive experimental
setting based on an in-sample approach (described in Section 4.2.1). Then, the results are presented and discussed in detail
(Section 4.2.2), followed by an out-sample validation of the overall results (Section 4.2.3).

4.2.1. Experiments
For a preliminary validation of the binary logit model proposed in Section 3.1, as well as of the categorizing approach that allows
accelerating the estimation procedure, we followed an in-sample approach structured as follows.

Types of categorizing strategies:. The categories for areas and periods (presented in Section 3) aim to represent the empirical
knowledge of the carsharing operator regarding different peak and off-peak patterns, as well as high and low demand areas. To
emulate this empirical knowledge and assign each area i € A and period r € 7 to a category, we applied an approach based on
the utility parameters fed to the market simulator, which are specific to each area and time (see Section 4.1). More specially, we
aim to group similar data points together, using the utility that users give to them as criteria for similarity. This means that we
mean to group time periods that have a similar effect on users’ proneness to using carsharing, as well as areas that have a similar
attractiveness to users as pick-up or drop-off points.

12
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Table 3
Types of categorizing strategies analyzed.
Categorizing strategy type Number of area categories Number of time period categories Number of estimated parameters
B1 2 2 5
B2 2 5 8
B3 2 10 13
B4 2 21 24
B5 2 42 45
PDF Noise (Quantile function)
1.4 o . 10 o .
Distribution: Distribution:
1.2 \ — Gumbel(0,1) 8 — Gumbel(0,1)
1 \‘ — Weibull(1,0.5) — Weibull(1,0.5)
( — Weibull(1,3) 6 — Weibull(1,3)
0.8 ( \‘ Uniform(-1,2.5) Uniform(-1,2.5)
4
0.6 |
0.4 “ :
‘ //\ Al
0.2 0
J C =
0 0 5 10 20

(a) Probability distribution (b) Quantile distribution

Fig. 3. Distributions tested for the error term.

Since time periods are associated with a single parameter (§'!), we follow a standard approach for one-dimensional partitioning,
Jenks Natural Breaks (Khamis et al., 2018). This is a one-dimensional partitioning method that aims to minimize variance within
groups and maximize variance between them. It iteratively places breaks (or boundaries) between adjacent data points to create
distinct clusters (or categories), optimizing for homogeneity within categories and heterogeneity between them. To test different
category structures, we enforce a number of classes corresponding to the number of time categories presented in Table 3. The
considered dataset contained 84 time periods. To obtain the number of period categories to test, we progressively divided this
number by two, rounding down as necessary. As the number of categories increases, the number of specific periods in each category
decreases, as expected. However, it should be noted that due to the method chosen, there is always at least one period in each
category. The assignment of each trip to the different types of categories is detailed in the available instances.

To build the categories that aggregate different areas, we used K-means clustering, since these are two-dimensional features
(i.e., they are classified according to their pick-up and drop-off parameters, /> and f’3). K-means clustering is a widely used
technique for multidimensional partitioning. It divides the dataset into K clusters (or categories) by iteratively assigning data points
to the nearest cluster centroid and then updating the centroids based on the mean of the points in each cluster. This process continues
until the centroids stabilize, also optimizing for homogeneity within categories and heterogeneity between them. The number of area
categories shown in Table 3 was also enforced by setting the K parameter of the K-means clustering technique. Since this dataset
included four different areas, we only analyzed models with two area categories, varying the number of time period categories. The
full details of the resulting categories for the different tests presented in Table 3 are reported in Appendix B.

Error term assumption:. The demand model used in this work (binary logit) assumes that the probability distribution of the error
term follows a Gumbel distribution (Train, 2003). Under this condition, the estimation procedure is expected to perform well.
Nonetheless, it is important to validate that this assumption does not limit the model’s applicability. To analyze the impact of the
error assumption on the estimation performance, we run tests feeding the market simulator (see Section 4.1) with five different
probability distributions, whose shapes are shown in Fig. 3. The standard Gumbel distribution is the benchmark distribution, the
assumption behind binary logit models. We then selected two different Weibull distributions: one that is monotonically decreasing
and another that approximates a normal distribution with a non-zero location or mean. We tested a uniform distribution to obtain
a significantly different shape than the Gumbel distribution. The range of the uniform distribution is chosen to match that of a
Gumbel to an extent.

Other assumptions:. We assume that the promotions to be offered can fall within five equally spaced levels, where the first
corresponds to no discount and the last corresponds to a 20% discount (regular promotions). Finally, as mentioned before, we
assume zero utility for the opt-out alternative, so that the carsharing utility represents a relative value.

Methodological approach:. For the in-sample tests, we generate a dataset of trips using the market simulator approach for all trip
types in the instances (see Section 4.1), once for each of the regular promotion levels. Thus, these tests are based on a data set that
simulates the choices of 350,000 users (5 different promotion levels for 1344 trip types, each with its different level of potential
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Table 4
Average accuracy for all trip types, measured as the average number of correct predictions under the binary logit model over the total number
of predictions.

Accuracy
Categorizing strategy Gumbel (0,1) Weibull (1, 0.5) Weibull (1, 3) Uniform (-1, 2.5)
Bl 80.8% 80.5% 81.1% 73.7%
B2 80.9% 80.6% 81.2% 73.8%
B3 80.9% 80.6% 81.2% 73.8%
B4 80.9% 80.6% 81.2% 73.8%
B5 80.9% 80.6% 81.2% 73.7%
avg 80.9% 80.5% 81.2% 73.7%
Table 5
R? metric for all trips, quantifying the correlation between the expected market share under the binary logit model and the real observed market share.
R®> market share R’ market share (D > 4)
Categ. G(0, 1) w(@, 0.5) w(, 3) U(-1, 2.5) G(0, 1) Ww(1, 0.5) w(@a, 3) U(-1, 2.5)
B1 17.9% 16.8% 18.7% —32.6% 65.3% 63.7% 66.4% 23.2%
B2 18.2% 17.1% 19.2% -32.2% 65.9% 64.2% 66.9% 24.2%
B3 18.1% 17.2% 19.4% -32.3% 65.9% 64.3% 67.1% 24.1%
B4 18.1% 17.2% 19.3% —32.3% 65.9% 64.3% 67.1% 24.0%
B5 18.2% 17.2% 19.3% -32.4% 65.8% 64.1% 67.1% 23.9%
avg 18.1% 17.1% 19.2% —32.4% 65.8% 64.1% 66.9% 23.9%

G — Gumbel, W — Weibull, U — Uniform.

demand). We consider the types of categorizing strategies presented in Table 3 and apply different probability distributions (Fig. 3)
to generate the final utility of each user. The parameters of the utility function are estimated based on the simulated choices in
the dataset using maximum likelihood estimation for binary logit model. We structure the following section according to different
questions we will answer to validate the model’s performance.

4.2.2. Results and discussion
Tables 4 and 5 summarize two key performance metrics of the proposed estimation model: accuracy and R? for market share
estimation. We analyze the key findings according to relevant guiding questions.

Is the estimation model sufficiently accurate given different error distributions?

Regarding accuracy, for each trip type (i.e., a trip with a given pick-up area i and period ¢ and drop-off area j), accuracy is
calculated as the number of correct predictions under the binary logit model over the total number of predictions; i.e., D'#
where D is the potential demand for a given trip type, R is the observed demand (given by the market simulator), and E is the
expected demand (calculated by the binary logit model). Table 4 shows that the average accuracy is satisfactory for the assumed
Gumbel distributed error (about 81%).

For different distributions, the average accuracy shows some interesting results. Since the binary logit model is based on the
assumption of Gumbel-distributed errors, it was expected that the performance of the estimation model would be higher for a
dataset where user choices actually follow a Gumbel-distributed error. However, the average accuracy for some other distributions
(namely, both Weibull distributions) is surprisingly good compared to the Gumbel distribution. For the uniform distribution, the
performance drops, possibly due to the shape of the distribution. However, it is interesting to note that even a uniform distribution
(when the parameters are fitted to the Gumbel distribution) can perform with 73.7% accuracy, suggesting that shape is not the only
relevant element. Overall, these results demonstrate that the binary logit model performs well when the underlying distribution
is similar to a Gumbel. This is as expected. When the distribution has a significantly different shape, the accuracy of the demand
distribution decreases, but not too dramatically.

Is the estimation model sufficiently accurate for more aggregated (and thus faster) categorizing strategies?

Table 4 also shows that, interestingly, the number of categories (and therefore the number of trip types in each category) does
not seem to affect accuracy significantly. This suggests that although there are a large number of areas and time intervals in the
original model, several of these share common characteristics and they can be aggregated into a small number of meaningful clusters
when estimating demand. Since, as expected, run time increases with the number of parameters to be estimated, using a reduced
number of categories seems to be a fast and efficient strategy for the estimation procedure.

Does the model accuracy translate into ability to predict market share?

The R? metric (Table 5) aims to quantify the degree to which the binary logit model correctly estimates the market share of
carsharing. The market share for each trip type represents the fraction of potential demand that chooses carsharing. Therefore, this
metric represents the R? value of a linear regression between the expected market share (I—E)) and the observed market share (l—’;) for
all trip types, calculated according to Eq. (17):

Ri=1- SSR_,_(E/D-R/D} a7
SST (R/D — R/D)>
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Fig. 4. Bubble chart for expected and observed market share (market share plots), for categorizing strategy Bl with Gumbel-distributed error. Each circle
represents a type of trip (combination of pick-up area i and time ¢ and drop-off area j), and the circle’s width represents the size of the potential demand for
that trip type. The solid line (in gray) represents a theoretical perfect estimation. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 6
Performance metrics to compare the categorizing approach with the full estimation for the truncated dataset with
Gumbel-distributed errors.

Approach Accuracy R? market share R? market share (D > 4)
Categorizing (B2) 80.6% 23.7% 68.0%
Full estimation 80.6% 23.4% 68.0%

where R/D represents the average of the observed market shares. In terms of trends across categorizing strategies and error
probability distributions, the results for this metric seem to support the conclusions derived from the accuracy metric. However, the
correlation seems to be small even for the Gumbel distributed error (18.1%). This is explained by the impact of some trip types with
very low potential demand, where small absolute deviations in the number of users choosing carsharing translate into significant
changes in market share. Fig. 4 illustrates this effect by showing the trip types as circles whose width is determined by the size of
their potential demand. It can be seen that several smaller trip types influence the correlation line. This figure also allows us to
understand that there is a systematic deviation from what would be a perfect estimate, especially for trips with a higher market
share, which seem to be systematically underestimated.

Is the impact of small trip types (with very few users) significant?

To address this issue, Table 5 also shows the values of this correlation when it is calculated considering only trip types whose
potential demand is more than or equal to 4 users. This corresponds to removing only 0.2% of the potential trips from the correlation
calculation. In this case, the correlation values are substantially better. This suggests that we do not yet have enough information
from the observations in our dataset for a small proportion of trips. If this was a real world application and there were an opportunity
to conduct experiments, gathering more data related to these types of trips would potentially have improved the model accuracy.

Does the categorizing approach have a significant impact on model performance (vs. a non-categorizing approach)?

The results above show that the categorizing strategies perform similarly. However, it is important to understand how the
categorizing strategies compare to a strategy where the areas and time periods are not aggregated into categories. This requires
the estimation of domain and period specific parameters for each origin and destination area, and time period. The software used
(Biogeme) could not handle this dataset with so many parameters due to the high number of time periods (84). Therefore, in order
to have a theoretical exercise to analyze the performance of the categorizing approach, we truncated the dataset to consider the first
half of the time horizon, thus reducing the number of time periods from 84 to 42. We analyzed the results for Gumbel distributed
errors and presented them in Fig. 5. Table 6 also shows that the performance of the two approaches is similar. This supports the
value of the categorizing approach, which allows simplifying and speeding up the estimation models with similar performance.

Does the trip-aggregating approach have a significant impact on model performance (vs. estimating the trips individually)?

The good performance of the abovementioned approaches seems to be due to the integrated overview of carsharing trips. That
is, instead of considering and estimating each trip type independently, we aggregate all trip types under the same utility function,
considering the pick-up and drop-off as features. This allows the information from other trip types that share the pick-up area, for
example, to be used to estimate all trips. The downside is the increased complexity of the utility function, which is mitigated by the
proposed categorizing strategies. As discussed in Section 2, the standard approaches to estimation focus on each trip independently
and do not consider an integrated overview of the entire system in the same utility function. Comparing the aggregated estimation
approach presented earlier with a standard independent approach where the price is the feature considered for each trip allows
for quantifying the gains of the proposed approach. Table 7 presents the performance metrics for the independent trip estimation
approach compared to the proposed aggregated approach. These results demonstrate the value of using an integrated approach
rather than estimating demand for each trip independently, across all performance metrics.

15



B.B. Oliveira and S.D. Ahipasaoglu Transportation Research Part E 195 (2025) 103993

Table 7
Performance metrics to compare the aggregated approach with the independent trip estimation for the full dataset with Gumbel-
distributed errors.

Approach Accuracy R? market share R? market share (D > 4)
Aggregated estimation (Categorizing - B2) 80.8% 17.9% 65.3%
Independent trip estimation 76.1% -4.7% 31.4%
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Fig. 5. Market share plots for categorizing approach vs full estimation for area- and period-specific parameters. Analysis for the truncated dataset under
Gumbel-distributed errors. As in previous plots, the full black line represents perfect estimation.
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Fig. 6. Comparison of aggregated estimation (categorizing approach B2 and full estimation) and independent trip estimation, for the truncated dataset under
Gumbel-distributed errors.

Fig. 6 attempts to show this difference. Fig. 6(a) extends the market share plot in Fig. 5 to include the independent trip estimation
for the truncated dataset. It is possible to understand that there is a systematic deviation from perfect estimation. These results can be
seen from a different perspective in Fig. 6(b). It is possible to see that the quality of the estimation is lower for trip types with lower
observed market share, it increases linearly as the observed market share increases, up to about 40% where it reaches very good
values (in Fig. 6(a) the points intersect the “perfect estimation” lines). Then, as the observed market share increases, it steadily and
linearly decreases to the worst performance values. This systematic deviation seems to be price related, as shown in Fig. 7. However,
due to the price-demand relationship, higher market shares are expected to be associated with lower prices (and vice versa).

4.2.3. Out-sample validation

The estimation model has shown acceptable quality for some of the probability distributions tested that do not conform to the
theoretical assumptions of binary logit models. Nevertheless, for the sake of simplicity, the remainder of the paper assumes that the
error terms follow a Gumbel distribution. Moreover, since the categorizing approaches have shown good and similar performance
in the in-sample tests, we will use the categorizing strategy B2 in the following, with a balanced number of parameters to estimate.

To validate the conclusions of the previous section in an out-sample approach, we divided the full dataset developed for the
in-sample tests into a training set and a test set. Table 8 shows the accuracy values obtained for each set, for different weights of
the training set. Here, the percentage of the dataset assigned to each subset refers to the fraction of trip types randomly assigned to
each subset. The weights of these sets in terms of total trips (users) also correspond to these fractions due to the random assignment
procedure. The results indicate that the binary logit model is still able to provide good quality estimates in an out-sample approach,
as will be discussed in the following sections.
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Fig. 7. Market share plots for independent trip estimation, for the truncated dataset under Gumbel-distributed errors.

Table 8
Average accuracy for training and testing set in an out-sample approach.

Accuracy (avg)

% trip types in training set Training set Testing set
20% 81.80% 80.70%
50% 81.50% 80.30%
80% 81.10% 80.09%

4.3. Analyzing the carsharing operations model

This section aims to analyze the performance of the carsharing operations model with the embedded binary logit estimation
model as presented in Section 3. To do so, we follow the methodological approach in Fig. 1. The utility parameters are estimated
in each iteration based on the information collected so far. Then, these parameters feed the mathematical programming model
that optimizes the promotion levels to offer and the relocations to perform. The market simulator then returns the “real trips” that
materialize in response to the promotion levels and fleet distribution resulting from the optimization model. These observations
of demand and final prices charged accumulate with each iteration, so there is an increasing amount of data on which to run the
estimation.

To start the iteration process, we generate demand for each trip type assuming no discount is offered. We run 5 iterations, with
the market simulator tuned for Gumbel distributed errors and the binary logit estimator considering the categorizing strategy B2 as
described in the previous section. The area and time period categories defined do not change throughout the simulation horizon.
The running time of the MILP model was limited to 600 s.

To understand the impact of this methodology, we compare the results of the model proposed in Section 3 (hereafter referred to
as the binary logit and mixed integer linear program (BL-MILP) approach) with a similar model but with a linear demand assumption
(LD-MILP approach), which is often used in the literature. The LD-MILP model does not exploit the estimation capabilities of the
binary logit model and does not require prior estimation of the parameters. Since the key innovation of the proposed model is
the integrated learning mechanism derived from the embedded binary logit estimation model, comparing its performance with
the existing approaches requires running the same model without the learning mechanism. The linear demand model applied is
explained in Appendix C. In addition, to provide an upper bound on the gains from correctly estimating demand, we also run the
carsharing operations model assuming perfect information about demand in each iteration (PI approach).

Finally, we present the results for two different pricing settings. The first refers to regular promotions, where the maximum
allowed discount value is 20%, using the dataset and methodology described above. Then, we investigate the impact of extending
the range of promotions, including the possibility of offering “free” rides (100% discount).

4.3.1. Regular promotions

Table 9 shows the results of each approach in the MILP run: the estimated profit, the run time (which was equal to the maximum
time allowed for BL-MILP and LD-MILP models), and the resulting MILP gap (which was always less than 1%). In addition, Table 9
also shows the realized profit, i.e., the profit from the actual realized demand (different from the estimated demand that led to
the estimated profit, except in the case of perfect information) that was observed when the promotion levels were offered and the
moves were decided. Table D.1 in Appendix E details the results per iteration.

Overall, the proposed approach (BL-MILP) performs better than using a linear demand (LD-MILP) model, increasing profit by an
average of 2.2%. It should be noted, however, that this is a conservative comparison. We use complete information to calculate the
average demand values that support the LD-MILP model, giving it an advantage that is unlikely to be matched in reality. As will
be discussed below, the proposed approach shows the potential to improve relative performance in more extended pricing settings.
As an aside, the results in the appendix also show that, as expected from the previous analyses, the performance of the proposed
model is relatively constant across weeks. One of the reasons that could explain this behavior is the constancy of the final prices
resulting from the optimization model.
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Table 9
Results for the MILP model and realized profit per iteration and per approach, considering regular
promotions.
BL-MILP LD-MILP PI
Estimated profit 62,057 64,625 -
Time to run (sec) 600 600 5
MILP gap 0.06% 0.32% 0.00%
Realized profit 58,703 57,427 76,598
Profit improvement - +2.2% -23.4%

Table 10
Decisions on pricing (distribution of trip types per promotion level selected) and relocations, and resulting service
level metrics for regular promotions (average for all iterations).

Promotion level BL-MILP LD-MILP PI

% of trip types with promotion level

0 41% 29% 100%
1 16% 30% 0%

2 10% 30% 0%

3 10% 11% 0%

4 23% 0% 0%
Demand 41,812 43,171 39,229
Trips served 13,082 12,958 7,456
Service level 31% 30% 19%
Relocations 952 928 86

The largest difference in performance in Table 9 concerns the PI model. The fact that the proposed BL-MILP approach is still
23.4% below in terms of profit shows the importance of accurately understanding and estimating demand in this context. In fact,
the overall pricing and shifting strategy under PI is substantially different than in an uncertain environment. Table 10 shows the
resulting decisions for the three approaches (regarding pricing and transfers), as well as their impact on demand, trips served, and
the resulting service level. Full knowledge of demand leads the model to decide not to offer discounts. That is, offering discounts
seems to be a good strategy to deal with demand uncertainty by influencing it. When demand is fully known in advance, it is
optimal to charge high prices and save capacity for high revenue trips. However, this strategy has an impact on the service level.
Even though there is less demand in PI (due to the higher prices), it is also optimal for this approach to fulfill fewer trip requests,
resulting in a lower service level compared to the BL-MILP and LD-MILP approaches. Also for transfers, the results shown in Table 10
demonstrate the importance of understanding demand in order to reduce these costly (and polluting) operations.

When comparing BL-MILP and LD-MILP pricing decisions in Table 10, it is interesting to observe how the proposed approach
favors either full prices (the lowest promotion level) or large discounts (the highest promotion level, corresponding to a 20%
discount). On the contrary, LD-MILP pricing decisions tend to be balanced among the first (lowest) promotion levels. Even though
charging high prices seems to be a good strategy when demand is known in advance (as seen with PI), the proposed approach with
higher discounts achieves better results than LD-MILP. To analyze this further and to understand whether the maximum discount of
20% limits the performance of the approach, we decided to extend the promotion levels offered, as mentioned above. These results
are presented in Section 4.3.2, along with a full analysis of the impact on prices and relocations. Before that, we analyze in more
detail the performance of the MILP model when scaling the problem and the impact of the current objective function structure with
regular promotion levels.

MILP performance

Table 9 shows that stopping the solvers at 600 s results in a small MIP gap, smaller than 1%. We stopped the solvers at 600 s
since the optimality gap does not improve much even if we allow the solver to run twice the time, as shown for one of the instances
in Fig. 8. This shows that even though we can obtain very good solutions in a short amount of time, proving optimality requires
much longer computational time. For the application at hand, a 1% optimality gap is acceptable.

To further understand how the model performs when the system scales, Table 11 presents the results of a sensitivity analysis on
the fleet size, a critical parameter influencing the system’s ability to meet demand and manage relocations efficiently. This analysis
highlights the impact of scaling on the model’s performance, showing its ability to respond under varying operational conditions.
When the fleet is substantially reduced, finding the optimal solution might become more difficult, due to the existence of alternative
uses for the reduced fleet. This is shown in the table in the first rows, where the fleet scale is smaller than 1. However, the model
still performs adequately, consistently obtaining MIP gaps under 1%. When the fleet becomes larger, meeting the existing demand
becomes easier, and finding the optimal solution becomes straightforward, even allowing the model to prove optimality in seconds
(for fleet sizes that are three times or more larger than the original size).
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Fig. 8. Optimality-gap evolution for an instance with the BL-MILP and LD-MILP up to 1200 s.

Table 11
MILP performance under varying fleet sizes (with LD-MILP), with a time limit of 600 s. Available fleet
scaled according to the original instances (represented by scale=1).

Fleet scale Best of value Time to run (sec) MIP Gap
0.10 8,198 600 0.02%
0.25 18,139 600 0.03%
0.50 32,433 172 0.00%
0.75 46,184 600 0.05%
0.90 53,217 600 0.16%
1.00 57,421 600 0.35%
1.10 61,528 600 0.30%
1.25 67,432 600 0.17%
1.50 76,857 600 0.06%
2.00 93,143 600 0.03%
3.00 11,4232 27 0.00%
4.00 131,145 14 0.00%
5.00 141,075 4 0.00%

10.00 145,647 4 0.00%

Objective function analysis

In Section 3.2, we discussed that our model maximizes the contribution margin (i.e., considers revenues and variable costs).
In contrast, some studies in the literature on shared mobility consider a simpler alternative and consider maximizing a concave
revenue function. To understand the trade-off between these two alternatives, we solved the same instances as in Tables 9 and 10
using the simpler objective function. In this test, we used the LD-MILP approach for demand modeling in order to isolate the effects
of the model from the learning component. This new run was stopped at 10 min as the others and the average MIP gap reduced
slightly (from 0.32% to 0.18%), suggesting that the complexity of the model was not substantially reduced by this simplification
of the objective function. In fact, as relocation decisions are still embedded in the mathematical model, this presumably results in
a similar resolution process. The results are summarized in Table 12, which shows that pricing decisions are essentially similar,
with slightly fewer discounts and thus slightly less demand, but with similar service levels and revenue. However, the number of
(operator-based) relocations more than doubled. When considering the patterns of relocations with a revenue-maximizing objective
function, they occur in every direction and at any time since there are no controls to limit the use of this balancing lever, increasing
costs, both economic and environmental. While the change in economic terms might not be substantial, the significant increase in
environmental consequences supports the use of the proposed objective function, even if it is slightly more complicated.

4.3.2. Extended promotions

When considering extended promotions, we consider 11 equally spaced promotion levels, where the first level (p = 0) corresponds
to no discount and the last level (p = 10) corresponds to a free trip (100% discount). It should be noted that the results (such as total
profit generated) for regular and extended promotions cannot be compared in absolute terms. Due to the standardization procedure
explained in Section 4.1.2, the market simulator that generates demand considers the defined range of potential prices to standardize
utility. Therefore, the demand response for the same discount is different in the two promotion settings. Nevertheless, the relative
results, especially when comparing approaches, are valid and provide interesting insights into the problem.

Table 13 shows the overall results for each approach (BL-MILP, LD-MILP, and PI) for extended promotions as an average of all
iterations (Table D.2 in Appendix E shows the detailed results per iteration). In this setting, as the MILP model grows with the
addition of discrete promotion levels to choose from, the MILP gap for the 600-second time limit increases slightly for BL-MILP and
LD-MILP (although it is still quite small), while it still quickly proves optimality in PI. As in the previous setting, full knowledge of
demand (PI) leads to significant gains in profit. This shows that the proposed approach still has room for improvement, as it lags the
PI upper bound on profit by 28.2%. Nevertheless, in this setting, the gains over the traditional LD-MILP approach are substantial
(18.5%). This seems to be the impact of improved demand estimation on different decisions.
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Table 12

Decisions on pricing (distribution of trip types per promotion level selected) and relocations, and resulting service level
metrics for regular promotions (average for all iterations) for LD-MILP approach with different objective functions.

Promotion level Revenue-maximizing obj. function Obj. function considering costs

% of trip types with promotion level

0 29% 29%
1 36% 30%
2 29% 30%
3 6% 11%
4 0% 0%
Demand 42,795 43,171
Trips served 12,862 12,958
Service level 30% 30%
Relocations 1,955 928
Revenue 59,040 58,513
Table 13
Results for the MILP model and realized profit per iteration and approach, considering extended
promotions.
BL-MILP LD-MILP PI
Estimated profit 62,057 43,104 -
Time to run (sec) 600 600 20
MILP gap 0.06% 1.08% 0.00%
Realized profit 47,523 40,089 66,192
Profit improvement - +18.5% —28.2%
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Fig. 9. Visualization of the relocation movements resulting from running one iteration of the proposed approach (BL-MILP) and the no-learning approach
(LD-MILP). The arrows indicate the orientation and duration of the relocation of the cars. The width of the arrows indicates the number of relocated cars.

Looking more closely at the pricing decisions (Table 14), it is clear that with full knowledge of demand (PI), it is optimal to charge
full prices for all trips. As before, this leads to a lower level of demand, but also to a much smaller proportion of trips being served,
resulting in a lower level of service. As for the other approaches, discounts are often used, with BL-MILP going up to 50% discount
(p =5) and LD-MILP up to 60% discount (p = 6). Nevertheless, more than 60% of the trips in the BL-MILP approach have at most a
10% discount, while this value drops to 37% in the LD-MILP approach. The lower prices in LD-MILP lead to higher levels of demand
that the system cannot (or does not find it optimal to) fully satisfy, resulting in a low level of service. These higher demand levels may
help explain the high levels of relocations in LD-MILP, which may be necessary or profitable to (potentially) serve upcoming trips.
In terms of relocations, this value is significantly lower for PI, as before and as expected, since with full knowledge of the demand,
any relocation decided by the model is definitely helpful to serve a profitable upcoming trip. Fig. 9 shows, as an example, the
relocation results for one of the iterations of the proposed approach (BL-MILP) and the no-learning approach (LD-MILP). The graph
is built on a space-time network where the nodes represent combinations of locations and time periods. The different locations are
represented in the vertical axis, while the horizontal axis shows the time. An arrow represents a relocation movement, both spatially
and temporally. The width of the arrows is proportional to the number of cars that are relocated. The results of the model allow to
know when and where the relocations start and end, as it is shown in the figure. It is possible to see that the no-learning approach
resorts substantially more to relocations. Moreover, there is a clear trend for moving cars from location 3 to location 0. This shows
that the former is likely a typical “drop-off” location whereas the latter is where demand is concentrated.

Interestingly, even under the assumption of perfect demand information, relocations, which have a significant environmental
impact and are costly to operate, are still used. This is mainly due to the uneven pattern of carsharing demand, which is well known
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Table 14
Decisions on pricing (distribution of trip types per promotion level selected) and relocations, and resulting service
level metrics for extended promotions (average for all iterations)

Promotion level BL-MILP LD-MILP PI

% of trip types with promotion level

0 44% 29% 100%
1 20% 8% 0%

2 3% 24% 0%

3 9% 21% 0%

4 16% 14% 0%

5 8% 2% 0%

6 0% 2% 0%

7 0% 0% 0%

8 0% 0% 0%

9 0% 0% 0%
10 0% 0% 0%
Demand 25,231 33,323 21,761
Trips served 13,275 12,408 6,562
Service level 53% 37% 30%
Relocations 667 1019 180

in the literature. However, the relocation cost parameter also plays a relevant role in this decision. In this context, the relocation
cost was assumed to be dependent on the trip duration. However, in order to understand its full impact on the relocation and
pricing strategies, we performed a sensitivity analysis on this parameter, the results of which are presented in Table 15. For the
three approaches compared, we show the impact of the relocation cost (ranging from 0 — free relocations — to a very large number)
on the total profit, the number of relocations, and the average promotion level (which can range from 0 to 10, where 0 represents
no discount and 10 represents a free trip), as well as the changes in profit and relocations when compared to the original value of
the relocation cost parameter. As expected, free relocations lead to the highest profit and number of relocations for all approaches.
However, the highest number of moves for PI is significantly lower than for the other two approaches. It is also interesting to note
that with full knowledge of the demand, costly relocations (100) are still optimal to perform, since they end up serving more than
one trip (which can be inferred from the maximum revenue of the trips). In BL-MILP and LD-MILP, the average promotion level
has an interesting non-monotonous effect as the cost of relocation increases. While performing relocations is still optimal, discounts
tend to increase as relocation costs increase. This makes sense because discounts can be used as a demand-shaping mechanism to
(only partially) replace relocations. When relocation becomes too costly, the average discount tends to stabilize at a slightly lower
level. In summary, although relocations can be an extremely flexible tool to meet demand, their cost has a significant impact on
profit and (although not directly considered in these models) on the environment. The fact that the proposed approach allows to
reduce the number of relocations (compared to LD-MILP) in the extended promotions setting is a clear advantage. The fact that
the PI bound shows that there is still much room for improvement in terms of relocations, which can be addressed through better
demand estimation and management, is an indication that further research on this topic is worthwhile.

4.4. Application to a carsharing system in milan, Italy

We applied the proposed approach to data from a carsharing system in Milan, Italy, made available in Archetti et al. (2023).
Due to the lack of public data on carsharing (or other shared mobility modes) regarding the prices charged per trip, we used the
real dataset to represent the operational system and demand patterns while the market simulator simulated the user responses to
the prices charged.

Data:. The data available consists of carsharing trips in Milan. We considered trips from one full day of operations (720 min) and
105 locations within the city center. The trips are characterized by the pick-up and drop-off locations and times. We aggregated
the locations into five areas and the rolling-time pick-up datestamps into twenty time periods to build trip types with meaningful
demand values. The observed demand in this dataset for each trip type was used as potential demand. We calculated the driving
time between areas (depending on the start time) based on the average durations of those trips. Fig. 10 represents the demand
flows between areas for different time periods for the Milan carsharing system, showing how they differ depending on the areas and
throughout the day. The data also included the number of cars idle in each location at the beginning of the time horizon, as well
as the number of cars currently in use, and where and when they would become available during the time horizon. This dataset
did not incorporate relocated cars. We held all data related to the pricing setting as in the previous tests due to the lack of real
data. Overall, it should be noted that the real dataset was substantially smaller than the simulated dataset we used to validate the
approach in terms of total demand served. Nevertheless, a substantially higher ratio of cars to demand led to lower utilization and
higher service level metrics, as discussed later.
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Table 15
Sensitivity analysis to the relocation cost — results for profit, relocation and average promotion level. Promotion levels range from 0 (no discount) to 10 (free).
Original cost: in average.

BL-MILP
Relocation cost Profit Relocations Avg promotion level A profit vs original A relocations vs original
0 48,599 2570 1.6 2% 270%
5 45,190 75 1.8 —5% —-89%
10 43,464 50 2.0 -9% -93%
100 40,875 0 1.9 -14% —-100%
10000 40,905 0 1.9 -14% —-100%
LD-MILP
Relocation cost Profit Relocations Avg promotion level Aprofit vs original A relocations vs original
0 48,101 2550 0.8 7% 170%
5 44,038 56 1.1 —2% —94%
10 43,782 50 1.1 —-3% —-95%
100 41,280 0 1.0 —8% -100%
10000 41,280 0 1.0 —8% —-100%
PI
Relocation cost Profit Relocations Avg promotion level A profit vs original A relocations vs original
0 66,622 557 0 0% 259%
5 66,142 50 0 0% —68%
10 65,892 50 0 -1% —68%
100 61,392 50 0 7% —68%
10000 60,695 0 0 -9% -100%
i=1 j=1 i=1 j=1
Oi=2 j=2] =2 j=2
- ; i=5
=8 =3l j=4
i=4 j=4 i=4 j=5
i=5 j=5 j=3
(a) t = 2 (7:36AM-8:12AM) (b) t =9 (11:48AM-12:24PM)

Fig. 10. Demand flows between areas in different time periods. The pick-up areas are represented in the left and the drop-off areas in the right.

Tests:. As in the tests with simulated data presented in the previous sections, we run five iterations of the proposed BL-MILP
approach, as well as the standard LD-MILP approach (where no learning takes place) to compare the results. We estimated the
parameters using Biogeme in each iteration, with increasing amounts of accumulated data. We aggregated the areas and time periods
using the same categorizing method and number of categories. Additionally, two types of promotions were tested as before: regular
promotions (up to 20% discount) and extended promotions (theoretically up to 100% discount).

Results:. Table 16 shows the average results per iteration for the MILP model for both approaches for regular and extended
promotions. Due to the size of the dataset, the model consistently nearly immediately achieves optimality in all situations.
Considering the leading indicator of realized profit, the satisfactory performance of the proposed approach versus an approach with
no learning is validated, with slight improvements for regular promotions and a substantial increase when extended promotions are
considered (as observed with simulated data). Table 17 details the pricing decisions that led to these results, as well as additional
insights on demand levels, demand served, service level and relocations for the setting with regular promotions. When considering
the decisions on pricing under regular promotions, similar to the results with simulated data, the LD-MILP approach settled on lower
prices on average. Although not as clearly, a similar pattern can be observed for extended promotions ( Table E.1 in the Appendix).
Since the number of trips is much smaller in the new dataset, it is more challenging to draw significant conclusions. In the Milan
dataset, there is a very high service level for both approaches (98% vs 30%-53% in the simulated dataset) and very few relocations
(at most 36 relocation trips vs a minimum of 667 in the simulated dataset). This is due to the substantially higher ratio of cars to
potential users. Therefore, it is challenging to assess the value of our approach in these dimensions in the Milan dataset.

Overall, the dataset from Milan confirms the improvements achieved with our approach, especially concerning the system’s
profitability. Since the dataset is small, it is challenging to extrapolate additional insights, namely related to service level or
relocations. Moreover, since these analyses are based on the market simulator proposed in this paper (since real data on prices
is unavailable), there is still room to extend this approach to a real-life setting, requiring real-time price experimentation and
monitoring.
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Table 16
Results for the MILP model and realized profit per iteration and per approach, considering regular and extended promotions, for
the real dataset.

Regular promotions Extended promotions

BL-MILP LD-MILP BL-MILP LD-MILP
Estimated profit 1,235 2,039 518 1,105
Time to run (sec) 1 0 1 0
MILP gap 0% 0% 0% 0%
Realized profit 1,329 1,317 688 610
Profit improvement +1.0% +12.7%

Table 17

Decisions on pricing (distribution of trip types per promotion level
selected) and relocations, and resulting service level metrics for regular
promotions (average for all iterations) for the real dataset.

Promotion level BL-MILP LD-MILP
0 36% 41%

1 0% 0%

2 24% 0%

3 16% 32%

4 25% 26%
Demand 195 193
Trips served 190 189
Service level 98% 98%
Relocations 35 36

Latent class logit model:. Here we explore the adaptation of the general framework to a different choice model. We work with the
latent class binary logit model which allow identifying subgroups (latent classes) within a population based on observed data. Latent
class models are useful when the population is heterogeneous by clustering individuals into distinct classes based on their response
patterns. The model assumes that individuals belong to one of a finite number of latent (unobserved) classes and that their responses
are probabilistically determined by the class to which they belong. For our application, this means that Eq. (6) is adapted to account
for class-dependent f-type parameters, and the deterministic part of the utility of a given trip type is zf.‘j , where k = {1,...,K} is
the latent class (and, consequently, for each price level p, it is given by zf ﬁ). Therefore, Eq. (4) becomes the weighted sum of the
probability of a user selecting carsharing conditional on being in class k, weighted by the class prevalence in the population of class
k, denoted as x;:

K exp(zX.)
share = Z 7y k—”t (18)
=l exp(z,.j ) +exp(0)
and Eq. (5) is modified to:
K pk)

exp(zl.j .

zM =

19)

Ty .
pk

k=1 exp(zl.jt) + exp(0)

We estimated the latent class model with 2 classes on the empirical dataset used in this section using Biogeme. The results were

similar, with the latent class model slightly overperforming, as expected, with an average of 79.5% accuracy (vs 79.2% for the

binary logit). The accuracy is calculated as described in Section 4.2.1, excluding trips with very few potential users (less than 4).
4.5. Managerial insights

This work provides valuable insights for carsharing operators, highlighting the importance of accurate demand modeling,
strategic use of promotions, and integration of advanced mathematical models for more efficient and sustainable operations. The
results suggest that the use of a binary logit model within a mixed-integer linear programming framework provides a powerful
approach for optimizing carsharing systems in the face of dynamic demand and operational challenges. The key managerial insights
are as follows:

Robustness of demand modeling:. The estimation model shows robustness to different error distributions. While it was designed based
on Gumbel distributed errors, it also performs reasonably well for other error distributions. This highlights the model’s adaptability
to different scenarios, which is critical for real-world applications.

Aggregation of trip information:. Aggregating trip information using a unified utility function improves model performance. The pro-
posed approach, which integrates different trips under a single utility model, proves superior to estimating each trip independently.
This aggregation, coupled with the categorizing strategy, streamlines the estimation process without compromising accuracy.
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Value of the proposed BL-MILP approach:. The BL-MILP approach consistently outperforms linear demand models, demonstrating the
value of integrating a binary logit model into operational decision-making. The dynamic interplay between demand estimation and
operational decisions leads to improved profitability and a more efficient supply-demand balance than traditional linear approaches.
Also, the proposed approach shows robust performance in out-sample validation. This demonstrates the framework’s ability to
provide accurate estimates and support operations decisions even in unseen scenarios and reinforces the practicality of the approach
in dynamic and evolving operational environments. These conclusions are supported by the analysis of a carsharing trip dataset from
Milan, Italy.

Impact of promotions:. Regular and extended promotions have a significant impact on operational decisions and profitability. For
regular promotions, the proposed approach increases profits by an average of 2.2% over the traditional linear demand model.
Extended promotions (which can go up to 100%, i.e., offering free rides) reveal the substantial gains of the approach, outperforming
the traditional model by 18.5%. The results demonstrate the importance of using the binary logit model for demand estimation in
designing effective promotion strategies. Although the proposed approach still falls short of the perfect information upper bound
by up to 28.2%, this demonstrates the potential for improved performance in uncertain environments.

Impact of relocations:. Relocation costs have a significant impact on operational decisions and environmental considerations.
Sensitivity analysis shows that while relocation is a flexible tool to meet demand, its cost affects profit and environmental impact.
The proposed BL-MILP approach demonstrates an advantage in reducing relocations compared to the LD-MILP model, highlighting
its potential for more sustainable and cost-effective operations.

5. Conclusions

This work addresses the challenges of balancing supply and demand in free-floating one-way carsharing systems by proposing a
mixed-integer linear programming model incorporating a binary logit model for demand estimation. Unlike traditional approaches,
this integrated model uses the binary logit to both estimate and manage demand efficiently. Innovatively, the utility model uses the
pick-up time, pick-up area, and drop-off area as features of the trip, besides price, which allows the integration of critical information
related to spatial and temporal properties. This information can be acquired from different trip types, leading to enhanced demand
learning. A categorizing strategy is introduced to improve computational efficiency in the face of the number of features considered.
The effectiveness of the proposed approach is validated through extensive computational experiments and sensitivity analyses on
simulated data, as well as actual carsharing trip data from Milan.

This paper’s findings provide actionable insights for carsharing operators and underscore the importance of accurate demand
modeling and dynamic decision-making in achieving sustainable and profitable operations. The proposed model’s adaptability to
different error distributions underscore its effectiveness in dynamic operational environments. The integrated overview of all trips
(instead of considering each trip independently) brings substantial advantages to the estimation process due to the use of trip
characteristics as features besides price. The model’s effectiveness is not only evident in regular promotions, but becomes particularly
pronounced in extended promotions, where the proposed approach consistently outperforms traditional linear demand models. The
increased performance of the proposed approach is validated in this dimension by the analysis of a carsharing trip dataset from
Milan, Italy. Moreover, sensitivity analysis underscores the importance of relocation costs, revealing their significant impact on
profit and environmental considerations. The proposed approach demonstrates an advantage in reducing relocations compared to
traditional models, consistent with sustainability goals and cost-effectiveness.

In conclusion, this study contributes not only methodologically but also practically to the field of carsharing operations. The
findings highlight the critical role of accurate demand modeling and dynamic decision-making in designing effective promotions
and ensuring sustainable and profitable carsharing operations.

Future work should explore extensions of this model to encompass the complexity of heterogeneous customers by incorporating
socio-demographic characteristics. Moreover, scaling up the study to a more realistic and broader context would enhance the
generalizability of the proposed approach. Potential enhancements to this framework can be implemented incrementally, such as
expanding the utility model to include more features, incorporating additional alternatives into the choice model, and exploring
different pricing mechanisms. These extensions can expand the applicability of this approach to more intricate scenarios. Validating
the model’s performance through real-world applications and integrating it into a broader multi-modal transportation system are
avenues worth exploring to further enhance the practical applicability and impact of the developed framework. Overall, extending
this approach to a real-life setting requires real-time price experimentation and monitoring. This can only be achieved by a long-
term collaboration between academia and carsharing practitioners. Currently, opportunities for such a collaboration are limited.
Nevertheless, we hope that this will be possible in the following years as the field matures, similar to what we observed in airline
and retail industries over the last decades.
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Appendix A. Notation table

Indices:
t,t' =1{0,...,T}

ij,a={l,..,A}
p={0.1,.... P}

s={L,...,5}

Parameters:
B(1)
G(3i)

Indices for the set 7 of time periods (e.g. hourly slots per day), where ¢t = 0 represents the initial
conditions of the time horizon (e.g. week) and “overlaps” with t = T for the previous horizon
Indices for the set of areas

Index for the set P of promotion levels allowed, where p = 0 is the index associated with no
promotions being offered

Index for the set S of steps for the base prices

Time category for time period ¢ (e.g., peak, mid-day, off-peak)

Area category for area a (e.g., downtown, mobility hub, suburbs)

Number of categories for time periods

Number of categories for areas

Attribute-independent parameter of the utility function

Parameter of the utility function related with time category BT (¢) of a car’s pick-up time ¢
(independent of the price)

Parameter of the utility function related with area category G(i) of a car’s pick-up area i
(independent of the price)

Parameter of the utility function related with area category G(j) of a car’s drop-off area j
(independent of the price)

Parameter of the utility function related with price

Time to drive from area i to area j starting at time period ¢

Relocation cost per car transferred from area i to area j

Initial number of cars idle at area i, at the beginning of the time horizon (¢ = 0)

Number of cars on on-going relocations (decided on the previous planning horizon), being
transferred to area i, arriving at time ¢

Number of cars on on-going user trips (decided on the previous planning horizon), being
dropped-off in area i at time 7

Length (in time periods) of pricing step s.

Last pricing step for a trip starting in area i at time period ¢ and ending at j. This step can be
directly derived from the total time of the trip (DT; it)

Base price (in monetary units) charged per time period, for trips starting in time period ¢ and
area i in pricing step s

Full price (in monetary units) charged, for trips starting in time period 7 and area i and ending in
area j

Promotion value (percent of the full price) associated with promotion level p for time period ¢
and area i, where V) =0

Total potential demand for trip starting in time period 7 and area i and ending in area j
Parameter pre-calculated for each promotion level and trip to allow linearizing the model.
Represents the probability of a user choosing carsharing for each promotion level p offered for
trips starting at time period ¢ in area i going to area j

Appendix B. Jenks natural breaks and K-means clustering for the categorizing approach

See Tables B.1 and B.2.
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Table B.1
Area categories resulting from K-means Clustering.
Area (a) Pick-up parameter (%) Drop-off parameter (%) Category
0 4.34 2.61 1
1 4.90 2.68 1
2 6.27 2.84 0
3 6.59 2.92 0

Table B.2
Time categories resulting from Jenks Natural Breaks for each categorizing strategy type.

Period (1) Time parameter (§'') Associated category for each categor. strategy

Bl B2 B3 B4 B5S
0 1.06 0 0 0 1 4
1 1.16 0 0 1 2 7
2 2.19 1 3 6 12 30
3 2.34 1 3 7 13 32
4 1.49 0 1 3 6 19
5 1.00 0 0 0 0 0
6 1.52 0 1 3 6 20
7 2.92 1 4 9 19 40
8 2.35 1 3 7 13 32
9 1.27 0 1 1 3 12
10 1.05 0 0 0 1 3
11 1.85 0 2 5 9 25
12 1.09 0 0 0 1 6
13 1.40 0 1 2 5 16
14 2.61 1 3 8 16 36
15 2.39 1 3 7 14 33
16 1.82 0 2 5 9 25
17 1.00 0 0 0 0 0
18 1.43 0 1 2 5 17
19 2.29 1 3 7 13 31
20 2.75 1 4 8 17 37
21 1.45 0 1 3 5 18
22 1.05 0 0 0 1 3
23 1.55 0 1 3 6 21
24 1.06 0 0 0 1 4
25 1.37 0 1 2 4 15
26 2.14 1 3 6 12 29
27 2.83 1 4 9 18 38
28 1.49 0 1 3 6 19
29 1.00 0 0 0 0 0
30 1.59 0 1 3 7 21
31 2.94 1 4 9 19 40
32 2.43 1 3 7 15 33
33 1.40 0 1 2 5 16
34 1.05 0 0 0 1 3
35 1.40 0 1 2 5 16
36 1.09 0 0 0 1 6
37 1.31 0 1 2 3 13
38 1.84 0 2 5 9 25
39 2.85 1 4 9 18 39
40 1.31 0 1 2 3 13
41 1.00 0 0 0 0 0
42 1.78 0 2 4 9 24
43 2.92 1 4 9 19 40
44 2.17 1 3 6 12 30
45 1.19 0 0 1 2 9
46 1.04 0 0 0 1 2
47 1.66 0 2 4 7 22
48 1.07 0 0 0 1 5
49 1.22 0 0 1 2 11
50 1.73 0 2 4 8 23
51 3.00 1 4 9 20 41
52 1.65 0 2 4 7 22
53 1.00 0 0 0 0 0

(continued on next page)
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Table B.2 (continued).

Period (1) Time parameter (§'!) Associated category for each categor. strategy

Bl B2 B3 B4 B5S
54 1.37 0 1 2 4 15
55 1.97 1 2 5 10 26
56 1.95 1 2 5 10 26
57 1.20 0 0 1 2 10
58 1.05 0 0 0 1 3
59 1.77 0 2 4 8 24
60 1.05 0 0 0 1 3
61 1.18 0 0 1 2 8
62 2.38 1 3 7 14 33
63 2.47 1 3 7 15 34
64 1.83 0 2 5 9 25
65 1.00 0 0 0 0 0
66 1.53 0 1 3 6 20
67 2.06 1 2 6 11 28
68 2.55 1 3 8 16 35
69 1.45 0 1 3 5 18
70 1.03 0 0 0 1 1
71 1.44 0 1 2 5 18
72 1.06 0 0 0 1 4
73 1.16 0 0 1 2 7
74 2.03 1 2 6 11 27
75 3.00 1 4 9 20 41
76 1.74 0 2 4 8 23
77 1.00 0 0 0 0 0
78 1.32 0 1 2 4 13
79 2.08 1 2 6 11 28
80 1.81 0 2 5 9 25
81 1.35 0 1 2 4 14
82 1.04 0 0 0 1 2
83 1.65 0 2 4 7 22

Appendix C. Linear demand model

The main feature of the linear demand (LD-MILP) approach is that it does not update prior estimates of demand and assumes that
demand varies linearly with price. This approach is based on the mathematical optimization model (7)-(15), but differs in the way
the demand parameter (D) is defined. The linear demand model used in these experiments is based on a stepwise knowledge of the
demand for the highest and lowest promotion levels. It assumes the same values for all trip types, depending on the promotion level
charged, and is calculated for regular and extended promotions. We consider the highest and lowest demand levels to correspond to
the upper and lower promotion levels, while the middle promotion level is assigned the average demand under perfect information.
For the remaining levels, the demand values result from a linear interpolation between the lower and middle levels or the middle
and upper levels, depending on their bounds. Fig. C.1 shows the values used for regular and extended promotions.
Appendix D. Full results

See Tables D.1 and D.2.

Appendix E. Milan dataset results for extended promotions

See Table E.1

Data availability

The data is shared in a link in the paper.
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Fig. C.1. Linear price-demand model parametrization.

Table D.1
Results for the MILP model and realized profit per iteration and per approach, considering regular promotions.

Iteration Proposed approach

Estimated profit Time to run (sec) MILP gap Realized profit
1 62,139 600 0.05% 58,766
2 62,050 600 0.07% 58,893
3 62,020 600 0.06% 58,566
4 62,042 600 0.06% 58,655
5 62,036 600 0.07% 58,633
average 62,057 600 0.06% 58,703
Iteration Linear demand approach

Estimated profit Time to run (sec) MILP gap Realized profit
1 64,743 600 0.35% 57,421
2 64,547 600 0.36% 57,524
3 64,577 600 0.29% 57,270
4 64,633 600 0.27% 57,493
5 64,625 600 0.32% 57,427
average 64,625 600 0.32% 57,427
Iteration Perfect Information

Time to run (sec) MILP gap Realized profit

1 300 0.00% 76,607
2 315 0.00% 76,677
3 315 0.00% 76,558
4 316 0.00% 76,582
5 316 0.00% 76,566
average 312 0.00% 76,598
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Table D.2
Results for the MILP model and realized profit per iteration and per approach, considering extended promotions.

Iteration Proposed approach

Estimated profit Time to run (sec) MILP gap Realized profit
1 47,768 600 0.09% 47,520
2 47,745 600 0.09% 47,713
3 47,741 600 0.10% 47,523
4 47,758 600 0.09% 47,466
5 47,757 600 0.09% 47,392
average 47,754 600 0.09% 47,523
Iteration Linear demand approach

Estimated profit Time to run (sec) MILP gap Realized profit
1 43,219 600 1.11% 40,079
2 43,066 600 0.97% 40,328
3 43,075 600 1.10% 39,867
4 43,055 600 1.14% 40,084
5 43,104 600 1.08% 40,089
average 43,104 600 1.08% 40,089
Iteration Perfect Information

Time to run (sec) MILP gap Realized profit
1 19 0.00% 66,287
2 19 0.00% 66,297
3 20 0.00% 66,062
4 21 0.00% 66,279
5 21 0.00% 66,036
average 20 0.00% 66,192
Table E.1

Decisions on pricing (distribution of trip types per promotion level
selected) and relocations, and resulting service level metrics for extended
promotions (average for all iterations) for the real dataset.

Promotion level BL-MILP LD-MILP
0 36% 43%
1 0% 0%
2 1% 28%
3 12% 0%
4 5% 2%
5 42% 0%
6 4% 10%
7 0% 16%
8 0% 0%
9 0% 0%
10 0% 0%
Demand 155 174
Trips served 153 171
Service level 98% 99%
Relocations 21 8
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