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The P2X7 purinoceptor in pathogenesis and treatment
of dystrophino- and sarcoglycanopathies
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Abstract

Dystrophinopathy and sarcoglycanopathies are incurable dis-
eases caused by mutations in the genes encoding dystrophin
or members of the dystrophin associated protein complex
(DAPC). Restoration of the missing dystrophin or sarcoglycans
via genetic approaches is complicated by the downsides of
personalised medicines and immune responses against re-
expressed proteins. Thus, the targeting of disease mecha-
nisms downstream from the mutant protein has a strong
translational potential. Acute muscle damage causes release
of large quantities of ATP, which activates P2X7 purinoceptors,
resulting in inflammation that clears dead tissues and triggers
regeneration. However, in dystrophic muscles, loss of a-
sarcoglycan ecto-ATPase activity further elevates extracellular
ATP (eATP) levels, exacerbating the pathology. Moreover,
seemingly compensatory P2X7 upregulation in dystrophic
muscle cells, combined with high eATP leads to further
damage. Accordingly, P2X7 blockade alleviated dystrophic
damage in mouse models of both dystrophinopathy and
sarcoglycanopathy. Existing P2X7 blockers could be re-
purposed for the treatment of these highly debilitating
diseases.
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Muscular dystrophies are a group of inherited neuro-
muscular diseases. The most common of these is
Duchenne muscular dystrophy (DMD) in which loss of
full-length dystrophin (dystrophinopathy) is associated
with disruption of the membrane dystrophin-associated
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protein complex (DAPC), comprising of dystroglycans
and sarcoglycans. DMD shares molecular abnormalities
with Limb Girdle Muscular Dystrophies (LGMD).
LGMD type 2C to LGMD type 2F are sarcoglycano-
pathies caused by mutations in the v, o, B and 0 sarco-
glycan genes respectively, which cause the loss of the
tetrameric sarcoglycan sub-complex of DAPC [1e]. The
absence of dystrophin/DAPC affects muscle develop-
ment [2ee] and these abnormalities are later recapitu-
lated in a pathological vicious cycle in adult dystrophic
muscle, with altered asymmetric division of dystrophic
satellite cells [3ee], affecting myoblast functions
indispensable for muscle regeneration [4ee], and where
the lack of dystrophin in differentiating myotubes re-
sults in dysfunctional myofibers unable to resist physi-
ological contraction-induced stress [5e]. These defects
lead to progressive muscle wasting, disability and death
of young men [6]. Sarcoglycanopathies also lead to
muscle damage, albeit heterogeneous in onset and
severity [1e]. In both DMD and LGMDs, the cycles of
muscle degeneration and regeneration are aggravated by
sterile inflammation. There is no disease-modifying
treatment for any of these debilitating diseases.

Aberrant purinergic signalling in dystrophic
muscle

Both DMD and LGMD are associated with abnormal-
ities in purinergic signalling. Skeletal muscle (SM) re-
quires ATP to function, indeed there is a particularly
high intracellular concentration of ATP within muscle
[7]. In physiological conditions, only small amounts of
ATP are released [8] and such extracellular ATP (eATP)
becomes a signalling molecule acting iz a family of
purinergic receptors. Activation of either the ionotropic
(P2X) or metabotropic (P2Y) purinoceptors results in
increased intracellular Ca®" and a range of downstream
effects (reviewed in Burnstock 2020 [9e]).

Muscle damage results in millimolar concentrations of
eATP being released, whereupon its function changes.
High eATP becomes a key danger/damage associated
molecular pattern (DAMP) molecule. It activates a
specific receptor, P2X7, that only fully responds to high
eATP concentrations, suggesting that it works primarily
in pathological conditions. Hence, P2X7 is dubbed the
danger/damage receptor and expressed by all immune
cell types, responsible for triggering the inflammatory
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response [10]. Upon prolonged activation by high eATP,
P2X7 can form a large pore and plasma membrane
permeabilization [11].

In acute muscle damage, inflammation contributes to
the removal of dead cells and prepares tissue for repair.
The excessive accumulation of eATP is prevented by
extracellular hydrolysing enzymes (nucleotidases). In
healthy muscle tissue, the key membrane-bound ATP
hydrolase responsible for 25% of eATP degradation is o-
sarcoglycan [12ee,13e]. Being a DAPC member, o-
sarcoglycan is lost from the sarcolemma in DMD and
LGMDs. Therefore, in these dystrophies, the imbalance
between ATP release and degradation worsens dramat-
ically. The resulting high eATP over-activates purino-
ceptors on muscle cells and can contribute to abnormal
intracellular Ca®" homeostasis found in dystrophic
muscle [14] and also triggers chronic inflammatory re-
sponses, which exacerbate disease symptoms.

Inflammation and immune responses in dystrophino-
and sarcoglycanopathies

Chronic muscle inflammation is an important factor in
the pathogenesis of both DMD and LGMD. In DMD
muscle, inflammatory changes precede the dystrophic
muscle damage [15,16ee] and muscles of the Dmd o
mouse model of DMD contain 20 times more macro-
phages and 7 times more dendritic cells than are found
in healthy individuals [17]. In some sarcoglycano-
pathies, inflammation can exceed that in dystrophin-
deficient muscles [18]. Concurrently, treatments that
reduced dystrophic muscle inflammation, significantly
improved the dystrophic phenotype in patients and
mouse models of dystrophino- and sarcoglycanopathies
[19—25]. Yet, while targeting infiltrating immune cells
alleviated symptoms, total ablation exacerbated the
phenotype [20], in agreement with the role these cells
play in muscle repair, where specific inflammatory cy-
tokines activate muscle stem cells and ultimately
regeneration [26,27]. Therefore, there is a need for
more targeted approaches to quell these inflammatory
responses. Given that the mechanism underlying
dystrophic inflammation involves P2X7 expression by all
muscle-infiltrating immune cells, this purinoceptor is an
attractive therapeutic target to diminish damaging
inflammation and promote muscle repair.

Therapeutic effects of P2X7 blockade in dystrophino-
and sarcoglycanopathies

Indeed, the therapeutic impact of genetic ablation and
pharmacological blockade of P2X7 was clearly demon-
strated in mouse models of dystrophino- and sarcogl}r-
canopathy. Ablation of P2x7 in Dmd " mice (Dmd "™/
P2rx77) resulted in a significant attenuation of
dystrophic symptoms including reduced inflammatory
and pro-fibrotic molecular signatures. There was a shift
in immune cell populations, with an overall decrease in
macrophage infiltration and a significantly lower ratio of

pro-inflammatory to pro-regenerative macrophages in
muscle from Dmd "I P2rx7~"~ mice to Dmd ™™ controls.
Moreover, there was a shift towards T regulatory (Ti,)
cells denoted by significantly increased Foxp3 and IL-
120, expression in Dmd "1 P2ry 7/~ muscles [28es].
Thus, P2x7 ablation not only ameliorated tissue
inflammation but also promoted T, cell expansion,
known to suppress dystrophic muscle damage [29].
These improvements were evident at the peak of dis-
case severity and also at 20 months in leg, diaphragm
and cardiac muscles, the latter effect having particular
importance as patients who survive longer eventually die
of cardiac failure. Notably, reduced inflammatory pa-
rameters corresponded with improved muscle structure
and increased muscle strength  vivo [28ee].

Moreover, pharmacological blockade with P2X antago-
nists such as Coomassie Brilliant Blue G (CBB) and
oxidised ATP (oATP) [28°°] [30], produced improve-
ments, even following a short-term treatment of Dmd "™
mice. This therapeutic effect also included reduced
tissue inflammation and increased number of 'Tieg cells
[30]. Also, in o-sarcoglycan null mice, i vivo treatment
with a broad-spectrum P2X receptor antagonist reduced
inflammation and promoted TReg €xpansion in muscles.
Again, this dampening of the inflammatory response,
and alteration of the adaptive immune component of
muscle infiltrating cells, was associated with reduced
necrosis and fibrosis and increased muscle strength
[31e]. While in this study using a broad spectrum P2X
blocker oATP, these effects could also be attributed to
the P2X4 purinoceptor blockade, highly significant im-
provements were subsequently reported with the se-
lective P2X7 purinoreceptor antagonist A438079. After a
long-term treatment, muscle strength recovered to
almost wild type levels [32e].

These data identify P2X7 purinoceptor blockade as an
attractive target for translational approaches in dystro-
phino- and sarcoglycanopathies. Importantly, selective
P2X7 inhibitors have been developed (e.g.
GSK1482160; CE-224,535 and AZD9056) and proven
safe in clinical trials in inflammatory pain, rheumatoid
arthritis and Crohn’s disease [33—35]. Such drugs would
offer the most specific treatment effect, but none have
been approved as medicines yet and none tested in
children. Therefore, identification and repurposing of
existing drugs blocking P2X7 activity may be closer to
the clinics. Indeed, Zidovudine (azidothymidine, AZT),
the well-known nucleoside reverse transcriptase inhib-
itor (NRTT), was found to bind to the same allosteric
site [36] as the “big pharma” P2X7 compounds [37ee]
and to be a potent P2X7 blocker [38]. Even a short-term
treatment of Dmd " mice with AZT attenuated key
disease abnormalities, including decreased inflamma-
tion in leg and heart muscle and reduced sarcolemma
permeability. It also increased muscle strength and the
treatments did not cause any detectable side effects
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[37ee]. Given these results in dystrophy combined with
findings that this drug can reduce age-related macular
degeneration via a P2X7-dependent mechanism [39],
AZ'T" with its established pharmacological profile,
particularly in the paediatric population, appears to be a
prime candidate for rapid re-purposing for the treatment
of these debilitating and still incurable diseases. It is
also a very low-cost treatment, which is not insignificant
given that the cost effectiveness was a reason behind the
recent NICE recommendation to no longer provide the
Translarna (Ataluren) treatment.

P2X7 blockade might have an additional, potentially
important application. Dystrophin replacement using
genetic approaches is the main, currently pursued
treatment. However, dystrophin re-expressed in genet-
ically deficient skeletal muscle, an immunogenic loca-
tion per se, further enhanced by dystrophic
inflammation, triggers immune responses. These nega-
tively affect treatment efficacy [40ee], therefore pre-
vention or suppression of immune responses should be
considered. Induction of tolerance to dystrophin would
maximize the treatment impact whilst minimizing the
risks associated with immunosuppression. Interestingly,
a few cases of spontaneous longer-term re-expression of
dystrophin were associated with increased numbers of
Treg cells in treated muscles [41—43]. This agrees with
Treg upregulation being an established immune toler-
ance mechanism. As mentioned, P2X7 blockade
induced Treg cells in dystrophic muscles [28ee, 30] and
it was found to prolong transplant survival [44—48], also
by expanding TRegs [44,49]. Therefore, P2X7 blockade
during dystrophin re-expression could combine direct
beneficial effects against dystrophic pathology with
improved transgene expression viz Treg expansion. This
could be a very significant advantage.

Altered P2X7 expression and function in dystrophic
cells

Importantly, the role of P2X7 in dystrophic muscles
extends beyond the activation of inflammation due to
high eATP levels. Studies have revealed a purinergic
phenotype in a range of dystrophic cells with upregu-
lated expression of this receptor in muscle biopsy sam-
ples from DMD patients [30,50] and in muscle from
mouse models of dystrophinopathy [50,51] and o-
sarcoglycanopathy [31°]. In addition to muscle cells,
significant functional abnormalities of this receptor have
also been described in DMD lymphoblasts [52]. This
might indicate a DMD-evoked purinergic abnormality
being common across species and also cell types.

Dystrophic Dmd s myoblasts exposed to high levels of
eATP in vitro, responded with increased cytosolic Ca**
influx [35], whereas treatment with apyrase, an eATP
degrading enzyme, reduced intracellular Ca*" levels in
madx cells [53]. The P2X7 dependency of this effect was
confirmed by the response being evoked by BzATP, an
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agonist preferentially activating P2X7 and conversely,
lost in the presence of its blockers. ERK phosphorylation
and the opening of the large pore, further confirmed
P2X7 activation [50]. Moreover, under some conditions,
P2X7 activation in cultured dystrophic muscle cells led
to cell death w7z necrosis or even a unique mechanism of
autopha;ic cell death [54]. Interestingly, exposure of
Dmd " myoblasts to high eATP concentrations
dramatically increased cell migration [55°], even though
dystrophic myoblast chemotaxis is generally reduced
compared to unaffected cells [4ee]. The impact of
e¢ATP on myoblast migration differs depending on their
muscle of origin and is further confounded by the co-
expression of other purinoceptors (submitted).

Thus, large amounts of eATP released from damaged
dystrophic muscle cells, combined with reduced
degradation of eATP due to loss of ecto-ATPase activity
of a-sarcoglycan and the increased expression of P2X7 in
dystrophic cells result in an environment consistent
with over-activation of ATP receptors. Such a strong and
prolonged activation of P2X7, with its large pore open-
ing, can further increase permeability of the dystrophic
sarcolemma, contributing to the death of dystrophic
myofibers, while death and abnormal migration of
dystrophic myoblasts can further reduce the repair of
dystrophic muscles and therefore contribute to ineffi-
cient regeneration [4ee].

There is some evidence that ATP-mediated Ca** entry
through the P2X4 receptor may modulate skeletal
muscle contractility [56]. Given the common co-
expression and cooperation of P2X7 with P2X4 in
different cells [57—59], the question of their functional
interactions and even heteromerization leading to a
specific P2X receptor phenotype in the dystrophic
muscles could arise. However, complex molecular,
biochemical, pharmacological and electrophysiological
analyses revealed that P2X4 and P2X7 subunits can only
form functional homomers. Although P2X4 and P2X7
may form heterotrimeric P2X4/P2X7 receptors, these do
not possess specific, discernible properties [60,61].
Furthermore, analysis revealed that while there is
increased P2X4 expression within Duchenne muscle,
this is a result of P2X4 presence on infiltrating macro-
phages [62] rather than an upregulation in dystrophic
muscle cells, as is the case for P2X7 [51]. Thus, P2X4 in
dystrophic muscle appears to be just another feature of
the dystrophic inflammatory response.

P2X7 upregulation: dysfunction or compensation?

An interesting but unanswered question relates to the
mechanism of P2X7 upregulation in dystrophic cells.
The obvious one, based on the well-established role of
dystrophin, is that the loss of dystrophin and/or DAPC
scaffolding affects P2X7 localization and this triggers its
overexpression and affects function. Yet, myoblasts (and
also lymphoblasts [52]) that show P2X7 upregulation do
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not express significant levels of dystrophin and DAPC,
and abnormalities found in myoblasts are likely to be
epigenetic [4ee]. Furthermore, there is no evidence of
an interaction between P2X7 and dystrophin and DAPC
members. So, the alternative may be that this purino-
ceptor is upregulated not as a result of the dystrophic
pathology but as a compensatory mechanism in adapta-
tion to unfavorable conditions: reactive oxygen species,
inflammation and metabolic abnormalities, which are
present in dystrophic muscles. It may resemble the
seemingly paradoxical overexpression of P2X7 on cancer
cells, where its high levels also coincide with the
elevated levels of eATP, with the combined effect that
should lead to death of cancer cells. Instead, different
tumours seem able to take advantage of the low-level
tonic stimulation that provides significant benefits
such as increases in growth, the Warburg effect, migra-
tion and invasion (reviewed in [63]), without triggering

Figure 1

the P2X7 cell death cascade. Also, stimulation of P2X7
enhances proliferation/differentiation of satellite cells
and improves myofiber metabolism and the metabolic
mechanism in DMD may be analogous to that found in
SOD1 mice, whereby P2X7 signaling was found to
inhibit glycogen synthesis in favor of glucose consump-
tion and also improve mitochondrial respiration in
muscle fibers [64]. Indeed, the impacts of DMD on
muscle cell energetics have been described [400,65,60]
and given that there are questions about whether
mitochondrial alterations in DMD are a causative
metabolic defect or adaptive reprogramming (Reviewed
in [67]), P2X7 modulation might be one of the mech-
anisms compensating for dystrophic abnormalities.
Another indication that the P2X7 purinoceptor may
have a protective role, is that it is required to prevent
ectopic calcification, which is another pathological
feature of muscle pathology in DMD. Yet, in this case it
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P2X7 purinoceptor in the dystrophic pathology. Absence of dystrophin and/or sarcoglycans affects functional development of the myofibers, which

become damaged (1). Damaged muscle cells release DAMPs, including large quantities of eATP (2). The indirect (dystrophinopathy) or direct (sarco-
glycanopathy) loss of ecto-ATPase activity of a-sarcoglycan leads to reduced eATP hydrolysis (3). High DAMP levels and eATP acting on P2X7 trigger
inflammation, with infiltrating cells including macrophages (M¢) and cytotoxic T-lymphocytes (Tc) contributing to muscle damage (4). Chronically elevated
levels of inflammatory mediators released into the bloodstream and crossing the impaired dystrophic blood-brain barrier can affect brain functions (not
shown). eATP also activates P2X7 receptors upregulated on dystrophic muscle cells (5). P2X7 activation can have a trophic effect supporting the
dystrophic muscle (6) and release of active MMP-2 cleaving P2X7 (7) is one of the mechanisms preventing P2X7 overactivation. The toxic effect, if it
occurs, can further damage dystrophic muscle cells (8). Inflammatory mediators are also required to induce muscle regeneration by activating satellite
cells (9), subsequent myoblast proliferation (10), migration to damaged sites and repair (11). However, high eATP levels combined with P2X7 over-
expression on dystrophic myoblasts can cause dystrophic myoblast dysfunction and even death and thus reduce muscle regeneration. Therefore,
pharmacological blockade of P2X7 with specific antagonists or repurposed drugs such as AZT alleviates the dystrophic pathology by eliminating the
chronic inflammation, improving repair of dystrophic muscle by promoting the TReg and M2 pro-regenerative over the M1 macrophages and by improving
myogenic cell functions (12).
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was P2X7 present on infiltrating inflammatory cells
rather than in dystrophic muscle [68,69].

Furthermore, although prolonged activation of P2X7
can contribute to the death of dystrophic myofibers and
reduce their repair potential, hyperactivation of P2X7
was found to increase both expression and release of
active matrix metalloprotease-2 (MMP-2) in dystrophic
muscle cells [55e]. MMP-2 activity was shown to be an
important P2X7 regulatory mechanism, functionally
inhibiting this purinoceptor by cleaving it [55e]. It is
therefore unlikely that all the P2X7-evoked mecha-
nisms found in dystrophic muscle cells 7z vitro are active
in the same way in dystrophic muscles /z vivo. Further
studies are needed to identify processes that are
contributing to the dysregulated homeostasis in
dystrophic muscles, as they could become good thera-
peutic targets complementing the established benefi-
cial impact of P2X7 blockade.

Finally, in relation to neuropsychological impairment
associated with DMD [6], the impact of P2X7 has also
been noted. Ablation of P2X7 in Dmd "™/ P2rx7~'~ mice
corrected the cognitive impairment [28ee], and this is
currently the only clinically-viable treatment for this
debilitating DMD abnormality. Further studies illus-
trated the complex nature of P2X7 involvement in this
still poorly understood dystrophic brain defect. P2rx7
expression was not altered in Dmd ™ samples and, in
fact, it was found decreased in dystrophin-null brain
tissue [70]. Intriguingly, loss of all dystrophins is asso-
ciated with more severe CNS phenotype compared to
classical DMD and Dmd "®, which only lack the full-
length dystrophin [71]. Therefore, the role of P2X7 in
dystrophin-null brain appears to be very different to that
in dystrophic muscle and may be a function of the
damaging impact of inflammatory mediators crossing the
blood-brain barrier, which is, in fact, permeable in
dystrophic brains [72ee]. Understanding this mecha-
nism should help in developing effective treatments for
this neuropsychological condition. This is essential
given that severe impairment affects one-third of pa-
tients, further reducing the quality of life of sufferers
and their families and it is not tackled by any of the
currently developed DMD treatments.

Thus, P2X7 blockade reduces damaging inflammation
while promoting the pro-regenerative arm of the in-
flammatory response, it concomitantly reduces damage
to myofibres, and supports the regenerative potential of
dystrophic myoblasts (Figure 1). P2X7 inhibition also
alleviates cognitive and behavioural impairments in
DMD and even improves the dystrophic bone defect
[28ee,73]. These wide-ranging therapeutic effects
reflect the involvement of P2X7 activation in various
disease processes. While the mechanisms continue to be
studied, a therapeutic strategy that modifies both
muscle and non-muscle symptoms and applies across
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DMD and LGMD types 2C-E the two most common
and debilitating groups of muscular dystrophies, is
unique and clinically-relevant. In view of the multi-
prong effects by which this purinoceptor impacts
these dystrophic pathologies, P2X7 is an attractive
therapeutic target with at least one established medi-
cine (AZT) that is ready for re-purposing in the clin-
ical setting.

Conclusions

The dystrophic muscle microenvironment involves
clevated levels of eATP leading to P2X7 purinoceptor
activity, triggering chronic inflammation that exacer-
bates dystrophic muscle pathology. Studies in mouse
models of dystrophino- and sarcoglycanopathies have
demonstrated that P2X7 blockers are good candidates
for rapid re-purposing for the treatment of these highly
debilitating diseases. Importantly, in both DMD and
LGMDs, P2X7 therapy is not constrained by causative
mutations and therefore is suitable for all patients.
Moreover, it appears effective in alleviating both muscle
and non-muscle abnormalities of DMD, which is
currently exceptional. Finally, targeting of specific in-
flammatory/immune functions via P2X7 blockade could
not only reduce the dystrophic muscle damage but also
prevent immunization by dystrophin re-expressed
through molecular therapies.
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