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ABSTRACT
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In the UK, an estimated 88,000 people have a brain tumour, and typically are unaware

of its presence until symptoms occur. Currently there is no mass screening available

due to limitations in diagnostic techniques. Measuring changes in intracranial pressure

could be revolutionary for diagnosing many cerebral pathologies. A strong link between

intracranial and inner ear pressure is known to exist. Thus the indirect measurement

of intracranial pressure, via tympanic membrane displacement, is a potential low-cost,

accessible solution. However, natural physiological pressure fluctuations distort this as-

sociation. Forced expiration during tympanic membrane displacement has the potential

of reducing this distortion.

Lung pressure profiling is a recognised procedure in which a person generates specific

lung pressures at specific times. These pressures are measured by using a hand-held

breathing apparatus. A lung pressure profile reference is provided for a person to track

during forced expiration. The pressures, and changes in pressures, when tracking the

reference should result in corresponding changes in intracranial pressure. These in-

tracranial pressure changes would be observed in tympanic membrane displacement.

However, a person may not be able to accurately track the reference using the current

clinical research breathing apparatus.

This thesis develops a solution to the tracking problem by assisting participants to

precisely track pressure profile references, achieved by controlling airflow during forced

expiration. This stabilises intrathoracic pressure, significantly reducing the physiological

pressure fluctuations. The thesis develops and evaluates the first model to replicate a

person’s lung pressure profile tracking response. The airflow controller uses a novel model

predictive control framework to adjust a model parameter in order to assist the person’s

tracking response. A clinically-feasible identification approach is then derived. Results

with 10 participants confirm that lung pressure profile reference tracking is improved by

an average of 22% compared to the current clinical research approach.
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Chapter 1

Introduction

Pressures in various parts of the human body can be measured and provide useful indi-

cators of health. One of the most common is blood pressure, but other examples include

the eye, bladder, middle ear, and the thoracic cavity. There is a dynamic interplay

between these various body pressures, for example, both respiratory and circulatory

pressures can impact intracranial pressure (ICP), i.e. the pressure within the skull. A

simple example to demonstrate how respiratory, circulatory, and brain pressures are

linked is the action of standing up quickly from sitting or lying down, which may briefly

cause lightheadedness. This sensation quickly subsides as the dynamic pressures and

blood flow to the brain readjust to the new body position.

The smooth functioning of such homeostatic mechanisms are compromised by patholo-

gies such as tumours or haemorrhages. In the case of intracranial pathologies the effects

on normal ICP can be catastrophic due to the rigid nature of the skull.

ICP must remain in a balanced state: too high a pressure and the brain tissue, blood

vessels, and nerves will be dangerously compressed; too low a pressure and cells and

capillaries may collapse. High and low cranial pressures have similar symptoms in that

the person can experience headaches, dizziness and in some cases visual problems and

nausea. Both, in more extreme cases, can lead to a stroke/ischemic event, where blood

supply is cut off to parts of the brain causing permanent tissue damage if not dealt with

quickly.

ICP is able to remain consistent due to physical mechanisms that alter the pressure

dynamics of the intracranial space. This is facilitated by blood flow regulation both

in and out of the brain as well as volume control of the cerebrospinal fluid (CSF).

These are controlled to maintain pressure balance whilst still providing adequate oxygen,

electrolytes, and protection for the brain to function optimally. If, for example, a brain

tumour is small, these mechanisms are able to maintain normal ICP by expelling blood

and CSF from the intracranial cavity. However, when the tumour becomes too large

1



2 Chapter 1 Introduction

these mechanisms break down and ICP rises (see Figure 1.1).

(a)

(b)

Figure 1.1: (a) Diagram showing how an intracranial mass (such as a tumour)
causes CSF and blood to drain into the lymphatic or venous systems respectively
due to auto-regulatory mechanisms
(b) Graph showing how ICP changes with intracranial volume (i.e. intracranial
mass size) [4].

Between 2001 and 2014 there were 366,728 deaths reported in people aged 20 and over,

with a neurological condition stated as a cause of death [5]. The number of deaths

steadily increased year on year, from 23,051 in 2001 to 31,925 in 2014. The trend in

deaths related to neurological conditions is counter to the trend for all-cause deaths,

which have fallen by 6%. Neurological deaths in 2014 accounted for 7% of overall deaths

in England. Of the 366,728 deaths recorded, 74,725 deaths were related specifically

to cranial tumours. Figures 1.2 and 1.3 show the statistical graphs of all neurological
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conditions in the time period of 2001 and 2014. These data show that neurological

conditions are a significant cause of death in the UK.

Figure 1.2: Recorded deaths, persons aged 20 and over, England, 2001 to 2014
[5].

Figure 1.3: Proportion and number of all deaths associated with a neurological
conditions groups, persons aged 20 and over, England, 2001 to 2014.
Note: Some people can have more than one neurological condition mentioned;
they will therefore be counted in more than one of the presented groups [5].

Research is constantly revolutionising medicine in areas such as diagnostics. In 1971

the first computed tomography (CT) imaging scan of a patient’s brain was performed
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resulting in a huge step forward in medicine and diagnostics. It provided the first images

of the brain without the need to perform invasive surgery. In the early 1980s magnetic

resonance imaging (MRI) scans were introduced. MRI scans provide better observation

of soft tissue and do not use ionising radiation like CT scans, so are considered safer.

Diagnostic tools and procedures are constantly evolving, but very few of these have easy

patient accessibility and still require a referral from a general practitioner (GP).

So, the next step in medical diagnostics technology for brain pathologies would be to

develop more accessible and user-friendly tools. Methods to measure ICP are very ac-

curate but are mostly invasive such as cranial bolt, intraventricular catheter and subdu-

ral/epidural sensors. These methods are highly accurate because they directly measure

intracranial pressure. Non-invasive methods (indirect) include Transcranial Doppler Ul-

trasonography (TCD), MRI/CT scans and Ultrasound-Guided Eyeball Compression.

TCD measures blood flow velocities, changes in the velocity can indicate changes in

ICP; MRI/CT scans can provide indirect measurements/estimates of ICP based on the

intracranial compliance; and eye compression applies gentle pressure to the eye and

measures the response using ultrasound to estimate ICP. However, these techniques can

only provide estimates for ICP, or have lower patient accessibility. The more accessible

tools have to be used in conjunction with other tools in order to diagnose intracranial

pathologies.

Tympanic membrane displacement (TMD) was first proposed in 1980 as a procedure that

could be used to indirectly measure ICP by a team at University Hospital Southampton

(UHS). TMD measures very small movements of the eardrum caused by an audio stim-

ulus. The magnitude and direction of these movements are influenced by the pressure in

the middle ear, which in turn reflects the pressure in the intracranial space (i.e. ICP), as

the middle ear and intracranial space are connected via the cochlear aqueduct and other

pathways. Over the last 40 years research has looked at how different criteria affect

TMD measurements, from sitting posture to respiration and blood pressure (see Section

2.4). These natural variations in body pressure, although observable and identifiable in

TMD, lower the precision to be able to directly relate the displacement to ICP.

Blood pressure varies in response to cardiac output (i.e. the volume of blood the heart

pumps through the circulatory system) and can change based on oxygen supply. This

means breathing and airway pressures alter cardiac output. During inhalation, airway

pressure builds up and cardiac output increases in response to the renewal of oxygen in

the lungs. Similarly, during exhalation, cardiac output decreases. Venous blood from

the brain has very little resistance during its return to the heart. This means cerebral

venous blood pressure (i.e. the venous blood pressure in the brain) and corresponding

venous pressures in the neck down to the superior vena cava and the heart, can be used

as a determining factor for ICP. Specific lung pressure and sitting postures can have a

significant affect on venous blood pressure and thus ICP. This leads to the possibility
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of measuring specific lung pressures to study venous return from the brain and, more

significantly, ICP.

This programme of research has been carried out under the supervision of a team at UHS

whose research has focused on venous return, ICP, and lung pressure measurements. One

of their current projects is looking into measuring TMD using a cerebral and cochlear

fluid pressure (CCFP) analyser whilst also measuring specific lung pressures. Lung

pressure profile (LPP) tests require a patient to accurately follow a pressure reference

by forced expiration through a breathing tube. The aim of this dual approach is to clarify

the causal link between changes in lung pressure and changes in inner ear pressure, and

thus ICP.

The current clinical research setup used for LPP testing is shown in Figure 1.4. The red

cap has an orifice for consistent air leakage to prevent patient glottis closure. The cap

can be completely removed to assist the patient in attaining a rapid pressure drop at

the end of a LPP test.

(a)

(b)

Figure 1.4: (a) Clinical research apparatus for lung pressure profile testing
(b) Image showing the setup to measure lung pressure while patient follows a
pressure reference.
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1.1 Research Aims and Objectives

It is not possible for a patient to always achieve accurate pressure reference tracking with

the currently available clinical research breathing apparatus. It is therefore the aim

of this thesis to develop and evaluate an improved system to control airway pressure

during LPP testing. This will enable more accurate tracking of pressure references,

thereby improving analysis of TMD measurements. This will be achieved by replacing

the manual cap removal method with a proportional valve to precisely control air flowing

from the tube. An automatic control method is required to actuate the valve to facilitate

tracking. Since maximum accuracy is crucial in this application, the control scheme

requires a model of the underlying system. Lung modelling techniques must therefore

be developed to replicate the human response during LPP reference tracking. Finally,

identification methods are required to find the associated parameters, and must be

suitable for clinical deployment.

The main objectives for this research can therefore be summarised as follows:

• To determine a mathematical model that can accurately replicate a human re-

sponse - this allows a controller to be designed that is capable of prediction to

improve LPP reference tracking accuracy. A simpler model means fewer parame-

ters and thus reduces the possibility of over-fitting during identification;

• To establish an identification technique that calculates the model parameters using

data sets collected before experimental application - each patient will naturally

have different model parameters and so will require a bespoke controller to provide

optimal assistance;

• To create a controller that can regulate the resistance of the system - most con-

trollers provide an input to a system in order to influence the output. However,

the resistance of the system is a direct parameter of the system model meaning a

novel method of control must be developed.

1.2 Contributions and Publications

The contributions of this programme of research are as follows:

• A model of the human respiratory system during forced expiration incorporating

the physiological parameters of the lungs and airways (i.e. resistance, inertance,

and compliance), the diaphragm and intercostal muscle dynamics, and voluntary

motor control feedback;
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• A control methodology, using a model predictive control framework, which ma-

nipulates the resistance of a proportional valve in order to assist a patient during

LPP reference tracking;

• An identification procedure that is efficient and easy to use for clinical application

which identifies the model parameters that best fit a set of measured input and

output data.

In this thesis, two attempts are made, for the first time, at modelling human respiratory

pressure control:

• The first provides a mathematical model that solely relies on the assumption that

passive electrical equivalent circuit components could be used to replicate a per-

son’s response to a LPP. This showed excellent reproducibility in simulation to

identify parameters of a noiseless tracking response but struggled when process

noise was added;

• The second adapts the above model with the addition of a variable driving force

(variable voltage equivalent to human respiratory muscle control) with internal

control components that could be identified from measured data. This shows

promising results with both a noiseless and a noisy tracking response and as such

was used in a controlled practical environment on 10 participants.

Technical results from this thesis will appear in the following publications:

• M. C. Thompson, C. T. Freeman, N. O’Brien, A.-M. Hughes, T. Birch and R.

Marchbanks, “Model predictive valve control of lung pressure profile tracking,”

in 2022 Australian & New Zealand Control Conference (ANZCC), pp. 132–137,

IEEE, 2022.[1]

• M. C. Thompson, C. T. Freeman, N. O’Brien, A.-M. Hughes, R. Marchbanks,

and A. Birch, “Model predictive valve control for lung pressure profile tracking

assistance,” in 2024 IEEE Conference on Control Technology and Applications

(CCTA), pp. 624–630, IEEE, 2024.[2]

• M. C. Thompson, C. T. Freeman, N. O’Brien, A.-M. Hughes, T. Birch and R.

Marchbanks, “Model Predictive Valve Control to Assist Lung Pressure Profile

Tracking,” in IEEE Transactions on Control Systems Technology, 2025. (accepted

for publication).[3]

1.3 Thesis Structure

Chapter 2 reviews literature confirming a correlation between ICP and lung pressure,

suggesting that measuring lung pressure could provide useful data and its effects on
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TMD. Chapter 3 reviews literature applying control methods that have been employed

for medical ventilation and compares their strengths and weaknesses. It then reviews

literature related to modelling of lung dynamics and compares the different models

proposed and how and why they were used based on their key features.

Motivated by the paucity of research investigating the effects of controlling airflow during

LPP tests, Chapter 4 discusses the current setup used for clinical research and the ways

in which this thesis adapts it to improve the quality of patient LPP reference tracking.

Chapter 5 presents a novel model concept which combines lung physiology, voluntary

muscle dynamics and feedback to replicate a human response to a LPP test whilst inte-

grating a variable resistance valve. This model relies on the passive electrical equivalent

circuit component dynamics to form a basic model of respiratory control. A control

concept is presented applying model predictive control (MPC) of airflow by actuating a

proportional valve. An identification technique is proposed to accurately and efficiently

produce valid parameters for the controller based on initial reference tracking data. It

compares the tracking ability of the controlled system model to an non-assisted system

in simulation.

Chapter 6 modifies the model with the addition of a variable driving force (i.e. dynamic

human respiratory pressure control). The controller is adapted to rely more on the

pressure control of the person during LPP tests and only assists at significant points.

The identification is modified to a more general solution which does not assume any

form of the noise. Simulation results validate the model, controller, and identification

procedure. Experimental studies were performed with 10 healthy participants. The

ability of each of the following is demonstrated:

• the model to replicate a human response to a LPP test;

• the identification procedure to provide accurate model parameters;

• the controller to improve the tracking abilities of the participants.

Chapter 7 outlines the key findings from a more holistic point of view and discusses the

challenges and considerations for future work to expand upon this research.



Chapter 2

Biological Background

This chapter introduces the biological background that underpins this thesis and moti-

vates the research. It introduces intracranial pressure (ICP) and explains why it is an

important biological indicator and how it is influenced by some of the body’s key pro-

cesses. In particular, it is closely associated with pulmonary pressure generated during

forced expiration. The challenges of measuring ICP are investigated and the paucity of

non-invasive methods is highlighted. A potential solution is described and it is shown

how control of lung pressure holds the key for a future non-invasive solution.

2.1 Introduction to Intracranial Pressure

The neurocranium is the part of the skull that encases and protects the brain; by the

very nature of its rigidity, its capacity is fixed. The neurocranial constituents comprise

the parenchyma, cerebrospinal fluid (CSF), and intracerebral blood (roughly 80%, 8%

and 12% respectively). Parenchyma, in this case, refers to all of the brain tissue includ-

ing grey and white matter, dura mater, and blood vessel tissue. The CSF surrounds

the brain and provides protection and cushioning, as well as providing and removing

metabolites.

The Monro-Kellie doctrine [6, 7] states that the total volume of these constituents is

homeostatically regulated. The fixed capacity of the skull means that if the volume in-

creases or decreases, the pressure (i.e. ICP) will also increase or decrease concomitantly.

The ability to adjust neurocranial constituent volume is known as cerebral compliance.

This is achieved using homeostatic mechanisms which maintain ICP within a physio-

logically safe range (7-15 mmHg [8]). These mechanisms drain CSF and blood from

the neurocranium to ensure the brain tissue does not get compressed [9]. ICP must

remain consistent, as high or low pressures (possibly caused by a significant change in

the physiology of the brain, such as a tumour or haemorrhage) can be life-threatening

if untreated (see Figure 2.1).

9
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Figure 2.1a is a simple depiction of how blood and CSF can be displaced from the neu-

rocranium in response to the emergence of an abnormal intracranial mass (e.g. tumour).

The blood and CSF are drained via the venous system and the spinal cord respectively.

The drainage means that ICP is minimally affected thus avoiding possible issues from

hypertension. Figure 2.1b shows how these drainage mechanisms help to maintain a

consistent ICP; compensatory reserve refers to the volume of blood and CSF that can

be safely drained without consequences. As the tumour increases in volume, more blood

and CSF are drained. At a certain point, no more blood/CSF can be drained without

causing damage to the brain due to lack of oxygen supply. The remaining non-fluid con-

tents of the neurocranium cannot be drained (i.e. the parenchyma and the tumour) and

therefore ICP will increase (as the tumour grows). Eventually, a high enough pressure

can cause herniation, strokes, etc.

(a) (b)

Figure 2.1: (a) Diagram showing how an intracranial mass (such as a tumour)
causes CSF and blood to drain into the lymphatic or venous systems respectively
due to auto-regulatory mechanisms
(b) Graph showing how ICP changes with intracranial volume (repeat of Figure
1.1).

There is roughly the same volume of blood in the intracranial cavity as there is CSF

(∼100-130ml). CSF can be relatively quickly moved around and, in the case of increased

ICP, is diverted from the brain and into the spinal cord. Over time it is reabsorbed to

relieve the CSF pressure. Reducing blood volume in the brain can be a quick response

but there still needs to be an adequate supply to ensure the brain gets enough oxygen.

A main focus of this chapter will be to review the different effects of arterial and venous

flow to and from the brain.

Cerebral blood flow (CBF) refers to the amount of blood travelling through the brain

per unit time. CBF regulation refers to the control of blood flow both in and out of

the brain. To illustrate, when a healthy human stands up quickly, the change in body

position causes a sudden drainage of blood from the cerebral veins, thus causing a drop

in ICP. This causes a lightheaded feeling (dizziness). However, the sensation quickly

subsides due to two CBF regulatory mechanisms. First, the large internal jugular veins
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collapse to rapidly decrease blood flow from the brain to the heart; second, the arteries

from the aorta dilate to increase blood flow from the heart to the brain.

2.2 Intracranial Pressure, Blood Pressure and Lung Pres-

sure Correlation

Physiologically, circulation is affected by respiration and therefore, indirectly, so is ICP.

This section introduces the effects that lung pressure and corresponding arterial and

venous pressures have on ICP. Both the arterial and venous flow are discussed and how

differing physiological conditions affect ICP regulatory mechanisms.

The Valsalva Manoeuvre (VM) is a recognised breathing technique in which a person

closes their glottis, or pinches their nose and closes their mouth, and attempts to force-

fully exhale without releasing any air (a similar sensation to lung pressure build-up

before coughing but held for a longer period of time). The sensation of increased head

pressure in response to raised pulmonary pressure (such as coughing) is well recognised

in the literature. The physiological inference is that there is a correlation between lung

pressure and cerebral pressure via blood flow pathways. A simple example is when a

person inhales, more blood is pumped from the heart to oxygenate it, this leads to a

higher blood pressure to the brain as well; when a person exhales, the opposite occurs

and blood pressure drops.

Figure 2.2 presents the main blood vessels and flow between the lungs, heart, brain, and

body, and how lung pressure affects the maximum volume of blood the heart holds before

contraction. The carotid arteries are the main pathways of blood flow from the heart to

the brain; the jugular veins are the main pathways for venous drainage from the brain

to the heart. Figure 2.2b shows the effect thoracic pressure has on heart compliance.

Heart compliance is a measure of how easily the heart can expand, thus how much blood

it can hold before contraction. The heart compliance is analogously represented by the

flexible membrane between the thoracic cavity and the heart in Figure 2.2b. During

inspiration, the respiratory muscles contract which reduces the pressure in the thoracic

cavity. This causes the lungs to inflate and the heart compliance to increase allowing a

larger volume of blood to flow into the heart per beat. During expiration, the respiratory

muscles relax, increasing pressure in the thoracic cavity, causing the lungs to deflate and

heart compliance to decrease.

The rest of this section reviews the arterial and venous contributions to ICP regulation

and discusses whether observations of specific blood flows to/from/around the brain

could be used for identifying cranial pathologies.
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(a) (b)

Figure 2.2: (a) Primary blood vessels of the circulatory system [10]
(b) How thoracic and lung pressure affects heart compliance.

2.2.1 Afferent (Arterial) Flow

The VM has been studied to better understand the effect the lungs have on cerebral

pressure and specifically on autoregulation (i.e. the regulation of arterial flow to the

brain) [11–13]. Tiecks et al [11] assessed the effects of impaired carotid blood flow

on autoregulation by monitoring CBF using a Transcranial Doppler (TCD) recording

system. Two key measures that they used were CBF and cerebral perfusion pressure

(CPP). CPP is the pressure gradient that drives blood flow to the brain; if this value is

too low, not enough oxygen will be delivered to the brain causing an ischemic event (i.e. a

stroke). They found that autoregulatory measures were significantly different in patients

with impaired carotid blood flow compared to patients with normal vascular activity.

This shows that the carotid arteries are a key component of autoregulatory processes in

response to increased ICP from raised lung pressure. However, the carotids are not part

of the brain anatomy, therefore their impairment will not provide an indication of brain

abnormalities.

Zhang et al [12] evaluated the differences between the mechanical and nervous effects of

the VM on CBF, by use of a nerve block agent. They discovered that autoregulation

was unable to prevent a substantial fall in CBF due to a reduction in blood pressure

during the VM. It is clear from these results that the nervous system is an integral

part of normal cerebral autoregulatory function. Both these papers highlight the fact

that raised ICP can be caused by pathologies external to the brain such as blood clots,
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blocked blood vessels, and nerve damage. However, these papers studied conditions

which, under normal circumstances, would show other symptoms unrelated to brain

physiology.

The effects of arterial pressures on autoregulation, specifically when cranial pathologies

were present, were studied by Prabhakar et al [13]. They analysed the effects of the VM

on ICP, CPP, and mean arterial pressure (MAP) (MAP = CPP + ICP) on anaesthetised

patients with cerebral pathologies. A passive VM was carried out by squeezing a bag

in a closed breathing circuit to maintain an airway pressure of 20 cmH2O above peak

inspiratory airway pressure for 10 seconds. They found that ICP increased and MAP

decreased during the VM, creating a considerable decrease in CPP. This shows that

the reduction of MAP in order to reduce ICP, which would be effective in a healthy

individual, is not sufficient when a cranial tumour is present. The research also shows

that specific patient-generated lung pressures could be utilised when measuring ICP in

order to determine the size of a cranial tumour.

These papers highlight the significance of arterial blood flow/pressure and its relation to

ICP. Prabhakar et al [13] showed that a rise in ICP caused a decrease in MAP, proving

that an inverse relation exists. However, MAP is affected by multiple variables including

lung pressure, heart rate, stroke volume, and oxygen requirements from all parts of the

body. This means that although MAP can be used as an indicator to the possibility of

a cranial pathology, it is not a guarantee.

Venous drainage is another regulatory process which ensures that ICP would remain

stable in the case of an intracranial mass being present. To avoid ICP rising, excess

deoxygenated blood can be drained from the brain (Figure 2.1a). This shows that

venous flow from the brain is as important as arterial flow to the brain. As such, research

studying how lung pressure affects venous flow (and thus ICP) is reviewed next.

2.2.2 Efferent (Venous) Flow

The above papers have revealed the effects of lung pressure on afferent cerebral blood

flow and ICP. Research has also studied the importance of efferent cerebral blood flow

via venous drainage. In 1896, Hill [14] established that both arterial and venous pressure

affect ICP but “the venous side to a far greater degree than the arterial side, because it

is on the arterial side that the resistance lies”. Hill is referring to the fact that cerebral

veins do not contain any valves or muscle tissue whereas cerebral arteries contain muscle

to control the blood pressure and flow to the brain. This leads to his further observation

that “The intracranial pressure in all physiological conditions is the same as the cerebral

venous pressure”.

In the previous subsection it was shown that an increase in lung pressure caused an in-

crease in ICP due to cranial compliance and autoregulation. Lung pressure has also been
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studied for its effects on venous return and corresponding ICP changes. Hansen et al [15]

attempted two methods to reduce ICP by reducing central venous pressure (CVP). This

research was proposed in an attempt to address the risk of spaceflight-associated neuro-

ocular syndrome. This is a condition that can affect astronauts during long missions

due to natural drainage of blood from the brain being disrupted in the microgravity en-

vironment (gravity helps in venous drainage from the brain). The two research methods

involved were: bilateral thigh cuffing, and breathing through an impedance threshold

device (ITD). An ITD creates a higher resistance during the inhalation phase to generate

a higher negative intrathoracic pressure. ICP was measured in four healthy participants

through Ommaya Reservoirs (these implants had been used to successfully treat pre-

vious medical conditions). Additionally, CVP was measured by a PICC (peripherally

inserted central catheter). The research showed that breathing through an ITD for

five minutes reduced both CVP (6 ± 2 vs. 3 ± 1 mmHg) and ICP (16 ± 2 vs. 12 ± 1

mmHg) compared to no observed change during free-breathing conditions. Inflating the

thigh cuffs to 30mmHg for two minutes caused no significant change in CVP (5 ± 4 vs.

5 ± 4mmHg) or ICP (15 ± 3 vs. 14 ± 4 mmHg). This study confirms that thoracic

pressure has a significant effect on CVP and thus ICP. It also shows that changes in

blood pressure/flow in the legs do not have a significant impact on CVP or ICP.

As stated above, gravity impacts the drainage of blood from the brain. In a similar

way, posture (e.g. sitting upright or lying down) affects blood drainage. A very simple

example is to observe the distribution of water in a half-filled bottle when it is upright

compared to on its side. Gisolf et al [16] studied the influence of posture and CVP on

the distribution of cerebral venous outflow using a mathematical model. They measured

the cerebral blood flow velocity and CVP of 10 healthy subjects. Measurements were

taken during rest to use as a baseline and during a VM in both supine and standing

positions. They found that the physical data correlated with the model simulation (R2

= 0.97). In supine position the internal jugular veins (IJV) are the primary pathway

from brain to vena cava. In standing position the IJV collapse and flow is shunted via

other venous routes. However, a marked increase in CVP while standing (caused by

performing the VM) completely re-opens the jugular veins.

This study demonstrates that blood pressure control mechanisms from the brain to

the heart respond to pressure gradients. The greater the gradient, the higher the blood

velocity. During the VM, CVP is high due to high thoracic pressure. This in turn reduces

the pressure gradient between the vena cava and the brain’s venous return pathways.

To counter this, the IJV re-open to facilitate gravitational flow from the brain to the

vena cava. The implications of this research are threefold: first, posture determines

natural venous flow from the brain; second, high thoracic pressure reopens the venous

pathways from the brain that naturally collapse when upright; and third, lung pressure

has a direct effect on ICP via venous flow.
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Similarly, Holmlund et al [17] performed a more focused study looking at how IJV

collapse helps to regulate ICP in an upright seated position. They measured ICP, venous

pressure and IJV cross-sectional area in 11 healthy subjects in 7 positions from supine

to sitting (0-69◦). They established that their model accurately replicated postural ICP

changes with no difference between predicted and measured values for all angles. This

confirmed that postural ICP changes are dependent on both CVP and IJV collapse.

This section has reviewed the effects of lung and intrathoracic pressure changes on blood

flow to and from the brain and the corresponding impact on ICP. The next section

provides a summary of the above reviewed papers linking the relationship between lung

pressure and ICP. The research mainly used invasive techniques for the findings so a

summary of the drawbacks of invasive and the advantages of non-invasive diagnostics

are also presented in the next section.

2.3 Link between ICP and Lung Pressure

It is clear from the above studies that lung pressure has an effect on ICP. Both Gisolf

[16] and Holmlund [17] showed that posture and lung pressure have a significant effect

on cranial venous return and its pathways, and therefore on flow resistance. Higher lung

pressures close off natural pathways thus the IJV re-open to ensure continuous blood

flow from the brain.

Additionally, lung pressure has a cascade effect on stroke volume (i.e. the volume

pumped from the ventricle per heart beat) as follows:

- stroke volume is dependent on cardiac pre-load (amount of blood in the ventricle

before contraction);

- cardiac pre-load is affected by the volume of blood in the atria before atrial con-

traction;

- the volume of blood that fills the right atrium is dependent on the volume and

pressure in the vena cava;

- the blood volume and pressure in the vena cava are dependent on venous pressure

gradients to the vena cava as well as thoracic chamber pressure;

- an increase in lung pressure causes an increase in thoracic chamber pressure and

vice versa thus lung pressure has an effect on stroke volume.

This has a two-fold effect on ICP:
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• Afferent flow - higher thoracic chamber pressure reduces stroke volume and thus

blood flow to the brain as well as the rest of the body. To ensure the brain receives

an adequate oxygen supply, the arteries to the brain dilate causing more blood to

flow to the region. Higher blood flow creates a higher blood volume, thus pressure,

causing ICP to increase.

• Efferent flow - higher thoracic chamber pressure creates a higher pressure in the

vena cava by compressing it, thus constricting it. This lowers the pressure gradient

between vena cava and natural venous return pathways from the brain. If the

IJV are collapsed a build-up of blood volume, thus pressure, occurs in the brain,

increasing ICP.

In a healthy human, both mechanical and electrical cerebral blood flow regulatory mech-

anisms (such as IJV collapse/reopening and vasoconstriction/vasodilation respectively)

ensure that thoracic chamber pressure has a limited effect on ICP.

All the research studies cited above have shown that lung pressure plays a significant

role in cerebral blood flow regulation (both afferent and efferent) and ICP. However,

many of them have either used invasive techniques to measure ICP, such as catheters

and Ommaya Reservoirs, or have studied anaesthetised patients with known pathologies.

Invasive techniques can come with complications. Patients may experience pain, bleed-

ing, infection and possibly permanent tissue damage. To minimise these risks, invasive

procedures become very resource-intensive: specialised equipment must be manufactured

to a strict standard; professional personnel have to perform the procedures; patients may

also take a long time to recover and even longer if any problems occurred during/after

the procedure.

Modern medicine is moving towards non-invasive diagnostic techniques which have many

advantages including:

- no recovery time

- do not necessarily need to be performed in a clinical/sterile environment;

- do not necessarily need a professional to perform them thus wider accessibility;

- less patient discomfort;

- shorter overall procedure time-frames thus greater ease of access (e.g. could be

performed in an appointment);

- improved patient safety;

- earlier detection via screening programmes;

- continuous monitoring.
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Accurate non-invasive measurement of ICP would greatly improve the possibility of early

detection of cerebral pathologies. For example, screening appointments would allow for

wider patient accessibility.

The following section reviews research that used tympanic membrane displacement

(TMD) as a non-invasive technique to indirectly measure ICP. It discusses the effect

of cochlear fluid pressure on TMD and how that can be related to ICP and the current

issues with TMD measurements due to physiological factors.

2.4 Non-invasive Diagnostics using Tympanic Membrane

Displacement

Non-invasive techniques for diagnosing intracranial pathologies include imaging, elec-

troencephalography, magnetoencephalography, and TCD. Most techniques are either

expensive or time-consuming and are therefore less accessible or provide limited infor-

mation. However, the possibility of accurately measuring ICP non-invasively would be

a significant step forward in the diagnosis of intracranial pathologies. TMD appears to

provide a way of indirectly measuring ICP due to the relation between inner ear pressure

and and ICP [18, 19].

Techniques have been developed to diagnose cranial pathologies non-invasively in con-

scious patients. Marchbanks et al [18] demonstrated that TMD was highly sensitive and

revealed that changes in ICP brought about changes in cochlear fluid pressure. The same

research group (Reid et al [19]) then went on to compare the effects of abnormal ICP on

cochlear fluid pressure. The TMD data of patients with known neurological conditions

(including hydrocephalus and intracranial tumours) associated with abnormal ICP were

compared with healthy subjects. They showed that there were significant differences in

the TMD between patients with raised ICP and normal ICP, thus confirming that TMD

is a useful non-invasive technique for the diagnosis of cerebral pathologies.

Campbell-Bell et al [20] studied the effect of sitting posture angle on evoked TMD

measurements finding that the pressure in the ears was significantly different in the

supine position compared to the sitting position. They recruited 191 subjects aged

between 20 and 80 years old (with a mean age of 43.8 years) and used a cerebral cochlear

fluid pressure (CCFP) analyser to measure TMD in both sitting and supine positions.

They found that in a seated position, the mean TMD was 132 nl in the left ear and 97

nl in the right; whereas in a supine position the mean TMD was 37 nl in the left ear

and -15 nl in the right. The lower the numerical value, the greater the pressure in the

middle ear. These data show there is a distinct relation between TMD and ICP.

El-Bouri et al [21] examined the frequency domain of spontaneous TMD measurements

(i.e. those unrelated to auditory input) and specifically the power spectral densities.
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They took data from 11 patients and measured spontaneous TMD, ICP and arterial

blood pressure. Their data showed that the most common frequencies of tympanic mem-

brane oscillations coincided with the respiratory and circulatory cycles, i.e. breathing

and heart rate have an observable effect on ICP.

2.5 Summary

This chapter has highlighted research that shows lung pressure changes have a direct

dynamic influence on ICP and CBF regulation. Section 2.4 has shown that TMD mea-

surements have determined a clear correlation between inner ear pressure and ICP.

However, due to disturbance factors such as respiratory and circulatory changes, cur-

rently TMD alone is not yet precise enough to be used as a diagnostic tool for cerebral

abnormalities which affect ICP. Additional measurements, such as blood pressure and

flow and lung pressure, could improve the precision of TMD.

Many of the above papers used techniques which involved lung pressure changes to

induce ICP changes [11–13, 15–17]. If, for example, specific lung pressures could be

measured during the VM, this would have a twofold effect on TMD measurements.

First, the respiratory cycle component of the measured TMD signal would be non-

existent as breathing rate is not involved. Second, CBF regulatory effects could be

observed - specifically, at what lung pressure an increase in ICP can be observed in

the TMD signal. The best way to do this is by taking lung pressure profile (LPP)

tests during TMD measurements. LPP tests require a patient to accurately follow a

predetermined pressure reference by forced expiration through a breathing tube. The

specific pressures and changes in pressure excite the blood flow regulatory mechanisms

of the brain. However, the accuracy of profile tracking relies on the individual patient’s

ability. In other words, there will be discrepancy between the desired pressures and

changes and the human tracking response.
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Chapter 2 showed that measuring TMD over a range of specific lung pressures could be

used to determine the size of an intracranial mass (e.g. tumour). The problem is then

how to achieve this range of lung pressures. The current solution used in hospitals is

for the patient to follow a lung pressure profile (LPP). The standard apparatus used for

LPP testing is shown in Figure 3.1a. The red cap has a hole to prevent glottis closure

and can be removed by the clinician to quickly drop the lung pressure as necessary.

Figure 3.1b shows an example of a patient’s experience. They are seated and given the

apparatus and asked to track the pressure profile reference on a screen by blowing into

the apparatus. It is a very simplistic setup and accurate tracking of the reference by the

patient is difficult to perform when precise pressure changes are required.

Introducing a controller that can adjust pressure would help reduce reference track-

ing error, therefore providing more accurate data for concomitant TMD measurements.

Currently, there is no work that applies any form of control during reference tracking

of a LPP. However, the basic principles of control techniques may be viable from other

similar applications. For example, a situation that utilises external control with breath-

ing, whilst also applying strict constraints for safety, is medical ventilation (can also be

called artificial respiration/ventilation). The following section reviews control of medi-

cal ventilation in order to ascertain suitable approaches that may be utilised to assist

tracking of LPPs.

3.1 Medical Ventilation

Medical ventilation attempts to replicate the process of conscious breathing. This in-

volves using physiological parameters such as airway resistance and lung compliance as

well as employing safety constraints such as levels of inflation or blood oxygen satu-

ration. During natural respiration, chemoreceptors respond to changes in oxygen and

19



20 Chapter 3 Respiratory Control Background

(a)

(b)

Figure 3.1: (a) Apparatus used to measure lung pressure
(b) The setup used to measure lung pressure while a patient follows a pressure
reference (repeat of Figure 1.4).

carbon dioxide levels in the blood and transmit this information to the central nervous

system. The central nervous system then triggers a response in the body to breathe

in/out in order to return the oxygen/carbon dioxide levels to a homeostatic state.

Where natural respiration is compromised, for example under general anaesthesia, res-

piratory assistance can be provided in the form of medical ventilation. A flexible tube is

inserted into the trachea (via the mouth) and the other end is attached to the ventila-

tor. The ventilator provides adequate air supply to the patient whilst avoiding hypoxia

(lack of oxygen) or over-inflation which, if not dealt with quickly, can cause permanent

tissue damage. A variety of control systems are utilised in medical ventilation to assist

in maintaining normal airflow to the lungs. These controllers are chosen based on their

implementation. For example, if a fast response is required, then the controller needs

a significant gain factor; or if the system has constraints and needs to include the hu-

man breathing instinct, then the controller needs to be able to respond appropriately to

remain within the system limits.
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3.2 Control Methods

Many types of controllers have been applied in medical ventilation research. This section

provides an overview of the different approaches that have been taken in order to improve

the control task. Medical/mechanical ventilation can be observed in literature as far back

as 1907 with the ‘Pulmotor’ [22] and 1928 by use of the ‘iron lung’ [23]. Over the last

100+ years many methods of improving this system have been researched. In more

recent years the emphasis has been on applying controllers that ensure patient comfort,

safety and oxygen requirements are met. The most common control types and their

application to medical ventilation are reviewed next.

3.2.1 Proportional-Integral-Differential Control

Proportional-integral-differential (PID) is one of the most common types of control sys-

tem due to its simplicity and wide applicability [24], including in medically-assisted

ventilation [25–31]. PID control uses the process output signal reference error (differ-

ence between desired reference and measured output of the system) and corrects it based

on proportional, integral and derivative calculations.

Tehrani et al [25] used the principals of natural breathing (i.e. levels of O2/CO2) to de-

velop a closed-loop medical ventilation system that mimics a natural pattern of breath-

ing. They used a dual control system: the first system used inputs of O2/CO2 levels

and respiratory compliance and airway resistance to allow for effective emptying of the

lungs during expiration; the second system used PID to automatically adjust oxygen

concentration in the patient’s inspired gas and used arterial oxygen saturation as feed-

back. Testing was performed using mechanical lung studies, computer simulations and

animals as test subjects. The results showed that the controller adjusted breathing fre-

quency and tidal volume in a clinically-appropriate manner in response to changes in

respiratory mechanics. The controller was also able to return blood gases to the normal

physiological range within 25s after an induced disturbance. This shows that PID can

provide appropriate ventilatory control even with induced disturbance. However, this

application has a relatively slow feedback loop due to changes in oxygen levels.

Lua et al [26] presented a proportional assist ventilation method using a proportional

solenoid valve to control air supply to patients suffering from respiratory disabilities.

They developed a proportional control scheme which adjusted flow rate according to

pressure in the lungs and airways in order to provide adequate oxygen supply. This

was compared to the conventional method at the time (in 2001) which supplied either

a preset amount of air or a given air pressure to the patient. They simulated applying

both methods in vitro and compared the pressure and flow parameters. They showed

that applying proportional assisted ventilation normalised the flow patterns of patients
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with abnormal physiological parameters, and the controller could adjust its input in pro-

portion to inspired volume/flow caused by the respiratory muscles. This demonstrates

that proportional control of a valve can be used as a method to assist in pressure/flow

adjustments and adapt to patient respiratory action. However, this could still be con-

sidered a linear single-input-single-output (SISO) (i.e. supplied air and airway pressure)

system with a disturbance (inhaled air). It does however show that the PID parameters

can be tuned to a faster feedback system with induced disturbance.

3.2.2 Fuzzy Logic Control

Fuzzy logic control is used to handle uncertainty/non-linearities in a system by using

measured parameters to apply a specific input condition created by the parameters. The

parameters are sorted into groups according to their value and the controller therefore

does not need any form of model to handle varying conditions.

Nemoto et al [32] developed a Fuzzy logic algorithm to improve the weaning process

from mechanical ventilation to natural respiration for ICU patients. The controller used

physiological measurements of heart rate, tidal volume, breathing rate/frequency, and

arterial oxygen saturation. They applied the controller retrospectively to 13 patients

and compared its decision to the one made by the attending clinician. On average,

the controller recommendations were within 2cmH2O for 76% of the time, and within

4cmH2O for 88% of the time. The clinicians also tended to be more aggressive in reducing

the support level compared to the fuzzy controller’s decisions. This shows that Fuzzy

logic could be used to provide a smooth transition of control between pressure levels.

3.2.3 Adaptive Control

Traditional PID is a relatively simple form of control, has been applied in many different

areas, is fast acting, and is highly effective on linear time-invariant systems. However,

medical ventilation is inherently non-linear due to varying factors such as patient oxygen

requirement, spontaneous breathing, and pressure stability. A linear PID controller

cannot adapt to these changing conditions if they go beyond expected limits. More

recent research has often implemented PID in conjunction with adaptive controllers for

medical ventilation to improve performance and adapt to non-linearities of a system

[27–29].

Reinders et al [27] introduced an adaptive controller to improve pressure support during

mechanical ventilation. They presented a control strategy which estimated the hose

resistance of a mathematical model of a patient-hose system to control the pressure

supplied. This would avoid the need for calibration by hospital staff which would re-

duce setup time. The control approach was compared to two state-of-practice control
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strategies; the first applied the same pressure as the target pressure; the second was an

integral feedback controller. They applied all controllers in simulation across varying

patient conditions as well as in an experimental case study. The data showed that the

adaptive control significantly improved pressure tracking performance compared to the

state-of-practice schemes.

Yan et al [28] compared traditional PID with fuzzy adaptive PID control of mechanical

ventilation pressure. Fuzzy adaptive control uses Boolean logic to assign a value between

0 and 1 to the current conditions and boundaries are set based on previous data. They

developed a fuzzy controller which adjusted the PID gains based on the error and the

change in error. They then compared data from a traditional PID and the fuzzy adaptive

PID controller by simulating their function based on a dual-lung model. The data showed

that the response time of a traditional PID was faster but that the overshoot was also

larger. The data also showed that a traditional PID became unstable if the system state

suddenly changed which would become unsafe for a patient. In other words, traditional

PID struggles to adapt to non-linear systems with varying conditions, but fuzzy PID

control of airflow is smoother, so providing a safer and more comfortable ventilatory

procedure.

Mehedi et al [29] developed an adaptive fuzzy sliding mode control system for pressure-

controlled artificial ventilators. Their aim was to improve the accuracy and stability of

airway pressure control. The control was based on two components: the first based on

Fuzzy logic approximation of ideal feedback linearisation control; the second based on

the sliding mode principle to minimize estimation error between the fuzzy control action

and perfect feedback linearisation control. They applied the controller to a simulated

ventilator system consisting of a blower-hose-patient setup and patient lung model with

non-linear lung compliance. They compared the controller to traditional PID and sliding

mode controllers. The fuzzy controller demonstrated significant improvement in tracking

target airway pressure with faster convergence, less overshoot, and smaller tracking error.

The cyclical nature of respiration indicates that a learning controller could be introduced

with a basic setup to work from. This would be similar to an adaptive control system

in the sense that its parameters can be set at the start of applying control, and the

learning aspect then adjusts these parameters over time to provide a more adequate

control scheme with minimal tuning.

3.2.4 Iterative Learning Control

Iterative learning control (ILC) is a scheme normally used to improve control during a

repetitive task. When used for mechanical ventilation it uses a baseline to then adapt

the control. This baseline can take the form of: initial/end conditions (e.g. positive

end-expiratory pressure or inspiratory positive airway pressure); initial parameters such
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as breathing frequency/period; a patient model; or an initial control scheme such as PID

(see Section 3.2.7).

Scheel et al [33] presented an ILC application to improve the performance of medical

ventilation. The algorithm would adjust its control input based on previous iterations

to attain reference values of positive end-expiratory pressure during expiration and in-

spiratory positive airway pressure (IPAP) during inspiration. The ILC algorithm was

compared to a proportional-integral (PI) controller both in simulation and applied to a

mechanical lung. They showed that ILC sequentially reduced the control error for every

breathing period, and was able to provide the desired control accuracy which the PI

could not. The ILC had a smaller overshoot and faster convergence speed.

De Castro and Tôrres [34] studied the use of ILC applied to tracking pressure profiles

associated with a commonly-used ventilatory mode. The approach aimed to control

airflow and pressure based on patient-specific requirements. They compared the results

to the PI and a hybrid PI/ILC when applied to a simulation model of a mechanical

ventilator. They concluded that although performance would improve with iterations,

ILC was not suitable for their application due to tracking error in steady state and

sizeable error in initial iterations. However, when ILC was combined with PI feedback

control, the results showed great improvement in tracking and convergence, compared to

both PI and ILC separately, including adjustment to a spontaneous shift in the model.

The possibility of using ILC with an initial controller baseline of PID is similar to an

adaptive control scheme. The benefit would be that with ILC tuning the parameters

could provide more adaptability to the varying conditions as shown by De Castro and

Tôrres. The use of a model is also commonplace when applying control. Models can

take many forms including collected and categorised data, mathematical equations, and

analogous system equations. A model provides necessary information to the controller

of how a system will most likely respond to tracking a reference.

3.2.5 Machine Learning Control

Machine learning control relies on previously collected large data sets to determine an

optimised control input.

Neural networks is an area of machine learning that attempts to mimic the way a hu-

man brain would process information. The network receives a set of input data and

makes step-by-step computations by chronologically applying functions to the data be-

fore creating an output. The functions and output are generated based on previous

data given to the network. Perchiazzi et al [35] looked into the application of artificial

neural networks to estimate the total positive airway pressure exerted on the alveolar

walls at the end of expiration. An end-expiratory hold manoeuvre is normally used to

measure this value. The hold means that the cyclic process of ventilation is disturbed for
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an arbitrary length of time. This can be dangerous for patients with acute respiratory

distress if performed too often. The study used pigs as models for human respiratory

behaviour. It had two phases applied to 10 mechanically ventilated pigs: the first phase

measured pressure and flow at the airway opening with different conditions to calculate

parameters for the artificial neural network; the second phase trained and tested the

neural network to estimate the positive end-expiratory pressure from the recorded data.

The estimation data showed good concurrence with the measured values.

Reinforcement learning is another area of machine learning that has an ‘agent’. This

agent learns to make decisions based on a reward system when interacting with its envi-

ronment. Peine et al [36] presented a reinforcement learning algorithm which optimised

ventilator settings for critically ill patients to improve patient outcome. The algorithm

attempted to optimise settings for positive end-expiratory pressure, fraction of inspired

oxygen, and ideal body weight-adjusted tidal volume. The algorithm was tested on

11,943 volume-controlled mechanical ventilation events from 61,532 ICU admissions,

and further validated on a secondary dataset of 200,859 ICU stays. The results showed

that the algorithm had a better performance return compared to clinicians’ standard

care and provided a more patient-tailored approach to ventilatory care.

3.2.6 Model Predictive Control

The purpose of applying a controller to a system is typically to improve aspects such

as: stability; performance; robustness; error correction; safety; and energy efficiency.

A specific objective of many tracking controllers is to minimise the tracking error with

respect to a reference using the least control input - this is termed optimal control and

many of the above papers have implicitly utilised this principle. By assigning a weight to

either tracking error or control input, a cost function can be established. For example,

if reducing tracking error is more important, then a greater weighting coefficient can be

applied to it. Optimal control is a method that seeks to minimise this cost function.

Model predictive control (MPC) specifically uses a model and cost function within its

design structure to optimise its control input. Männel et al [37] presented a hierarchical

control structure that implemented MPC to achieve adequate gas exchange by adjusting

the minute volume ventilation within safe physiological limits. They used a physiological

non-linear two-compartment patient model to assess the ability of the controller. The

controller was assessed on its ability to track a minute volume reference in response to

an increased metabolic production and its handling of patient respiratory activity. The

data showed that MPC handled hard constraints on minute volume while still providing

close to optimal support for the patient based on their breathing activity.

Acharya et al [38] developed an explicit model predictive controller to improve the air-

way pressure profile of a mechanical ventilator. The use of a Taylor series avoided the
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application of an iterative method by linearising a non-linear system around a specific

operating point. Simulations were performed to observe the pressure and flow responses

in the patient’s lungs as well as the ventilator response. The simulations tested the re-

sponses based on differing lung resistances and compliances to model different age/health

factors in the respiratory system. The response was compared to a traditional PID con-

troller. They found that explicit MPC was able to adapt to these changes without any

further tuning of the control parameters.

3.2.7 Hybrid Control

Medical ventilation is a relatively consistent/iterative procedure and as such many types

of controllers can be applied in a simple format. However, this can also limit the abil-

ity of the controller if conditions were to change, i.e. spontaneous breathing, oxygen

supply/carbon dioxide removal, pressure/flow/volume variations or even a change in de-

pendency e.g. the weaning process from mechanical to natural respiration. This has led

to the development of hybrid control schemes. Recent research on medical ventilation

spiked in response to the COVID-19 pandemic and therefore produced novel applica-

tions of control during medical ventilation. Hybrid control combines different modes of

ventilation to improve patient care, comfort and safety. It can be used to adapt the

control prioritisation (i.e. volume control, pressure control etc.) and can make dynamic

adjustments based on the patient’s condition such as variation in airway resistance or

lung compliance to maintain adequate supply.

Hazarika and Swarup [30] studied the application of ILC and a hybridisation of ILC with

PID to control flow rate of a ventilator during inspiration. ILC updates a control signal

in order to correct for errors recorded in previous attempts. The researchers used an

analogous electrical circuit to model a mechanical ventilator and applied ILC followed

by the ILC-PID hybrid controller. The ILC provided successive reduced tracking error

in every cycle. The application of ILC-PID reduced control effort, number of necessary

iterations, and initial tracking error. Application of PID meant that the controller could

withstand 15% parameter changes of the system, but also slowed the response compared

to ILC alone.

Sakthiya Ram et al [31] used hybrid PID controllers to maintain oxygen levels in COVID-

19 patients. Their aim was to assess the most efficient and safe feedback system to

find the best controller for an automatic respiration system. They presented multiple

algorithms to tune the parameters of a PID controller that regulated airway pressure

to supply adequate oxygen. The PID control was hybridised with: genetic algorithm-

based fractional order; Fmincon-pattern search algorithm; and MPC. They compared

the effectiveness of these algorithms in MATLAB simulations incorporating possible

conditions encountered during artificial respiration. All algorithms showed validity of
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application, particularly the genetic algorithm, but exposed the limitations of inadequate

patient data which potentially would lead to an imperfect respiration model.

3.2.8 Application of Controllers to Lung Pressure Profile Testing

PID utilises three basic principles of the reference tracking error to adjust pressure in

the lungs during medical ventilation. A subset of these principles could be applied to

LPP tests. Fuzzy logic control could be used for assistance during LPP tests, however

the parameters of the controller still need to be tuned, and as such may struggle to

provide adequate control if there is a larger disturbance in the system beyond what is

expected.

Adaptive control can utilise basic models and provide accurate estimates of resistance to

improve pressure tracking performance during medical ventilation. This means adaptive

control could be used to assist during LPP tests. Hybrid controllers are able to provide

control based on a hierarchical approach. For LPP tests, the controller would select

the best type of control to provide assistance based on current requirements. Section

3.2.5 showed that machine learning algorithms can be used to estimate an output based

on basic pressure and flow measurements when provided with an initial data set. Fur-

thermore, they have been shown to improve control actions compared to a clinician’s

decision-making. This means a machine learning approach could be used for control

during LPP tests if given a large enough data set to train the learning models.

The cost function used for MPC could be beneficial in assisting LPP reference tracking

during forced expiration. The reliance of control and tracking ability could then be biased

towards the patient. This would mean the controller performs small (or no) changes most

of the time and only provides a large control input when there is a concomitant large

reference error. Table 3.1 provides a brief summary of the advantages and disadvantages

of each control method discussed and compatibility with regards to application to LPP

testing.
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Table 3.1: Comparison of control methods

Control

Method

Advantages Disadvantages Conclusions

PID Simple control

method with wide

applicability.

Quickly reacts

to disturbance in the

system response.

Can struggle with

non-linearities in the

system if outside the

range of expected

function.

May not be able

to consider multiple

constraints if they

are interdependent.

Use for LPP testing is

possible due to the sim-

ple pressure tracking task.

Wide applicability means

parameters could be tuned

to patient requirements.

However, minimum time

and maximum airflow con-

straints may not always be

adhered to.

Fuzzy

logic

Can handle varying

conditions.

Non-linearities

and numerous con-

straints can be

considered.

Selecting correct

boundaries for the

logic system can be

difficult and time

consuming which

can affect stability.

Adaptability of Fuzzy

logic could allow for bet-

ter tracking in LPP tests

based on the required

pressures and patient con-

dition. Uncertainty would

arise if the controller

needed tuning for each

patient.

Adaptive Improvement upon

PID as the param-

eters can be tuned

during measure-

ments.

Tuning difficulties

similar to Fuzzy logic

can affect stability.

Complexity of

control/system can

create large compu-

tational load.

Adaptive control could

handle non-linearities and

disturbances. Complexity

of the control scheme

would require a large

computational load which

leads to increased costs of

hardware.

Iterative

learning

Can use a basic

initial model/control

scheme to develop

algorithm.

Constant adaptation

during testing would

improve tracking

ability while reduc-

ing control input.

Relies on the repeti-

tive nature of a task.

Basic model still

needs good accuracy

for best control

implementation.

Use of ILC for LPP track-

ing would require the

tracking task(s) to be

repetitive in nature. It

is also unknown as to

how long it would take to

tune the ILC model and

whether it would be uni-

versally applicable to any

patient.
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Machine

learning

Predictive abilities

with a large enough

data set.

Would be able

to adapt to different

patients without

parameter changes

made by program

user.

Requires large data

sets for best results.

Larger data sets

have a higher pro-

cessing requirement.

Machine learning could

be used for clinical LPP

tests given a large enough

data set which would give

it universal applicability.

However, this could in-

crease costs due to the

complexity of the con-

troller and amount of

data.

MPC Predictive capabili-

ties.

Low processing

requirement if pre-

diction horizon is

small.

Better predictive

ability as prediction

horizon extends.

High processing

requirement if pre-

diction horizon is

large.

Optimal perfor-

mance depends on

model accuracy.

Predictive abilities of

MPC could allow for im-

proved control compared

to PID on step changes in

pressure and balance the

control input compared to

the patient input. Model

accuracy and computa-

tional load need to be

high priority in order to

provide adequate control

and keep costs low.

Hybrid Multiple control

schemes can be

considered and so

optimal performance

is more likely as well

as better resource us-

age and more robust

to disturbance/noise.

Complexity can

affect computational

load, costs, and

tuning challenges.

The ability to be able

to switch between control

schemes allows for adapt-

ability to different circum-

stances/conditions. How-

ever, the complexity of

the system and number of

different control schemes

available can affect the

cost, and the performance

if not tuned correctly.

This section has reviewed literature that used approaches to controlling airflow/pressure

provided by a medical ventilator applied in simulation, mechanical lung and clinical en-

vironments. Each controller was assigned a specific task based on a range of specific

parameters such as adequate pressure or oxygen supply whilst adhering to strict con-

straints. Many of the controllers used some type of model to help optimise their control

schemes. Models use a set of parameters/variables to allow a controller to mathemati-

cally predict possible future system outputs based on its possible inputs. For assistance
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control in LPP testing, a suitable model could similarly provide benefit to achieve the

intended objective. To aid in future construction of such a model, the next section

reviews existing models of respiration.

3.3 Human Breathing Models

As stated, many of the previous medical ventilation controllers use some form of model

to design the controller. The system model comprises the lung dynamics, i.e. the

interaction between airway flow and alveoli pressure, and depends on the characteristics

of the lungs (compliance, resistance etc.). No form of muscle/voluntary motor control

was needed due to the patients being unconscious. During lung pressure profile testing,

however, modelling the patient’s voluntary control of the pressure will be necessary. Any

model therefore will need to incorporate their muscle dynamics and voluntary control

(i.e. conscious decision input). To date, there is little research into modelling the human

respiratory system during forced expiration, thus most of the models examined next are

related to medical ventilation.

Lung dynamics are a crucial part of the model needed in this research. Respiration

provides a mechanism to deliver oxygen to the vascular system. During respiration the

diaphragm/intercostal muscles contract to draw air through the trachea and bronchi

and into the lungs. Gaseous exchange of oxygen and carbon dioxide occurs between the

alveoli and surrounding blood vessels before the diaphragm/intercostal muscles relax and

air is exhaled. In order to determine a suitable model to develop for forced expiration

during lung pressure profile reference tracking, different types of lung models must be

reviewed.

The rest of this section reviews human lung models. These models have been devel-

oped to study the various functions of the respiratory system. They fall in three main

categories: imaging, gas exchange and analogous pressure-flow relationships.

3.3.1 Medical Imaging

Imaging models help to study the movement of lung tissue and air during respiration.

This can help determine the overall health of the lungs and their dynamics as well

as determine movement of a tissue mass, such as a tumour, to help in radiotherapy

procedures.

Fuerst et al [39] used anatomical image models to estimate lung deformation during

radiotherapy. Computed tomography (CT) scans produced images of the anatomical

components of the thoracic cavity (e.g. diaphragm, lungs and intercostal muscles) at

end-expiration and end-inspiration. These images had two purposes: 1 - to determine
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the size of a tumour, 2 - to determine the shape of the lungs at minimum/maximum

capacity and the position of the tumour at these stages of the respiratory cycle. The

images were automatically segmented and combined with concurrent data from devices

such as spirometers or abdominal pressure belts to create an anatomical model. The

model was then used to predict the motion of the lungs and tumour during breathing

thus improving the affect of radiotherapy whilst reducing treatment time.

Lin et al [40] used computational fluid dynamics and quantifiable regional features from

imaging to model gas flow and particle transport in human lungs. They used this

model to study three aspects of the lungs: airway structure; lung function; and flow

characteristics. They reviewed their model by comparing it against images, airflow

simulations and known physiological behaviour of lung function in different conditions.

They concluded that the model offered an improved understanding of structure-function

relations in the lungs by combining mathematical modelling with imaging techniques. It

also allowed for subject-specific modelling which would lead to more bespoke diagnostics

and treatments.

Imaging models are most commonly used for diagnostic and treatment procedures and as

such do not have any explicit input/output variables. They could be used for determining

muscle dynamics and strength, for control purposes, but this would require a lot of initial

data from many patients to create a generalised model.

3.3.2 Gas Exchange

An alternative approach to studying respiratory processes is via a gas exchange model.

Männel et al [37] used a gas exchange model to control the minute volume supply (i.e.

the volume of air flowing in/out of the lungs per minute) of a medical ventilator. They

achieved this by designing a controller that could adapt to patient disturbance (such

as reflex breathing) and adjust minute volume accordingly within safe physiological

limits. The controller would analyse and adjust model parameters such as respiratory

rate, pressures, and amount of inspired oxygen to maintain sufficient oxygen supply and

patient safety.

Ben-Tal [41] provided a mathematical framework to link between previously developed

models with varying degrees of complexity. They also highlighted that simple models

are easier to understand and provide insight to the system while detailed models provide

more accurate quantitative information. These models are described below and shown

in Figure 3.2.

Inflexible lung : this model assumes a rigid container such that airflow has some resis-

tance flowing from the mouth to the lungs, and airflow in proportionally increases the

pressure in the lungs. This model provides basic knowledge of lung function in that the
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(a) Inflexible Lung (b) Flexible Lung

(c) Flexible Lung with gas exchange
(d) Flexible Lung with gas exchange
and gas transport

Figure 3.2: Mechanical models of the lungs taken from [41].

trachea/bronchi create air resistance and that there is a pressure-airflow-volume relation

in the lungs.

Flexible lung : this model assumes a piston instead of a rigid container to model the lungs.

The thoracic cavity is modelled as a container in which the pleural pressure changes due

to movement of the respiratory muscles. The piston is connected to a spring that moves

the piston with the pleural cavity. The other end of the spring is attached to the thoracic

cavity. Spring compression represents lung expansion. This model expands upon the

pressure-airflow-volume relation of the inflexible lung as it introduces an elasticity which

moves air in and out of the lungs based on the pleural pressure.

Flexible lung with gas exchange : this model introduces gaseous exchange and partial

pressures of oxygen and carbon dioxide. This uses an assumption of constant partial
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pressures in the blood to calculate the rate of change of gas concentrations. These values

are then used to determine the net flux of gas into the alveoli.

Flexible lung with gas exchange and gas transport : this model allows blood partial pres-

sures to be variable. It presents a small container which represents dissolved gas, and a

large container that represents the principal means by which oxygen and carbon dioxide

are transported. The balance between the amount of oxygen that enters the capillaries

from the lung and the amount of oxygen that binds to haemoglobin yields the rate of

change in the partial pressure of oxygen. A similar equation is used for the reverse

movement of carbon dioxide.

All of the above models were applied in numerical simulations. The results were used to

validate the models, illustrate the advantage of moving between models, or provide new

insights to the physiological system. The simulations were consistent with published

experimental observations proving that each model provided the necessary information

and expected output for their application.

In conclusion, gas exchange models are mainly used to study the expected changes in

flow/pressure, partial pressures and volumes of the gases in the lungs. These models

can be used to study how different environments/conditions can affect respiration. They

can also be used as a diagnostic tool by comparing expected values given by the model

and measured values from patients.

3.3.3 Modelling using System Analogues

Ben-Tal’s flexible lung model presented a mechanical setup that related pressures, vol-

umes, flows and a compressible chamber to represent the lungs, respiratory muscles and

compliances. Other models have been used or developed to represent the relationship

between external pressure and lung pressure [26, 28, 42–47]. These capture the dynamics

of airflow using differential equations which embed the underlying physical relationships

between key variables. The models are constructed using lumped parameter represen-

tations of the major components of lung function described as:

• compliance - the elasticity of the lung tissue (how much the lungs can expand and

contract with air volume)

• resistance - the air resistance of the lungs and airways

• inertance - oscillatory motion of air due to differences in pressure

Models of lung dynamics are often represented in terms of an equivalent system such

as is shown in Figures 3.2 and 3.3. Table 3.2 provides a summary of the equivalent

characteristics between fluidic (i.e. the lungs), mechanical, and electrical systems.
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Figure 3.3: Left and Centre - Simple fluidic dual lung model and mechanical
model of lungs respectively showing air inertance, air resistance and and lung
compliance. Right - Electrical model of lungs showing inductance, resistance
and capacitance.

Table 3.2: Generalised system properties example. System resistance can be
generalised to ψ = Rζ

System type ψ(effort) R (resistance) ζ (flow)

Fluidic
(Poiseuille’s law)

Pressure
difference

Fluid mechanical
resistance

Volumetric
flow

Mechanical Force Mechanical
resistance

Velocity

Electrical Potential
difference

Electrical
resistance

Current

3.3.3.1 Mechanical

Ben-Tal presented two common forms of mechanical lung model that have been used in

artificial respiration. These models are often used in commercial simulators to observe

and compare dynamics to patient data or as a means to study, for example, how a

controller would work in a clinical environment. Lua et al [26] utilised a commercial

breathing simulator to mimic human spontaneous breathing for use during simulation

testing. This simulator used the ‘two main lung model parameters ’ of airway resistance

and elastance (reciprocal of compliance). Their work focused on the application of

control methods and is discussed in Section 3.2.1. The simulator itself is not analysed
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as it is a commercial unit but it shows that basic parameters can be used to provide

relatively accurate representations of human lungs.

Yan et al [28] described a dual lung model to determine the feasibility of their control

schemes discussed in Section 3.2.3. The lung model used lung resistance and compliance,

similar to Lua et al. Resistance is mainly caused by airway friction and was represented

by throttle valves for each pipe to each model lung. The model lungs were considered as

two variable-volume containers, thus the compliance was reflected by the volume change

of these containers. This further validates the use of simplistic models to replicate the

dynamics of the lungs.

Hunnekens et al [42] derived a dynamical model of lungs to demonstrate the use of

linear control and variable-gain control for mechanical ventilation. They derived the

relationships between pressures and flows using the resistance and compliance dynamics

of the lungs and tubing. The model provided the necessary data to validate the use of a

variable-gain controller in medical ventilation as an improvement on linear controllers.

3.3.3.2 Electrical

Using Table 3.2, lung properties can be symbolised as electrical circuit components where

voltage is analogous to pressure and current is analogous to airflow. More specifically, the

pressure in the alveoli is analogous to the voltage across a capacitor, and the pressure at

the airway entrance is analogous to the input voltage. Transfer functions and/or state-

space equations can be derived from the electrical properties by relating the output to the

input. The more detailed the model, the more complex its transfer function/state-space

equations.

Diong et al [45] presented the most common models (see Figure 3.4) and compared their

accuracies to establish how different pathologies affect airway resistance. The papers

discussed below presented, used, and analysed the RC circuit as well as the models

shown in Figure 3.4.

Schmidt et al [46] used the resistor-capacitor (RC) model (also presented in [28, 41, 42])

as well as the resistor-inductor-capacitor (RLC) model (Figure 3.4a) to determine lung

mechanics (resistance, inertance and compliance). They stated that the RC model is

commonly used for both tidal breathing and medical ventilation due to the low frequency

of breathing. They then discussed the RLC model, which is beneficial in studying higher

frequency dynamics. However, the one-compartment model cannot be used to examine

differences in pulmonary dynamics between the left and right lung. They followed this

with a description of the two-compartment RLC model where there is a central resistance

as well as peripheral resistances with two compliances to represent each of the lungs.

Finally they presented the Mead model shown in Figure 3.4f. This model gives further

consideration of compliances of the airways, chest wall and extrathoracic components



36 Chapter 3 Respiratory Control Background

(a) RLC model (b) Extended RLC model

(c) Augmented RLC model (d) Mead 1969 model

(e) DuBois model (f) Mead model

Figure 3.4: Example electrical equivalent models replicating the mechanical
function of natural breathing [45].

(such as the mouth). This allows for observation of different influences on flow-pressure

dynamics in the lungs. A more detailed model allows for different physiological factors,

development, and diseases to be simulated in order to better understand the impact on

lung function.

Diong et al analysed the extended RLC model (Figure 3.4b), and Rajagiri and Diong

[48] analysed the augmented RLC model (Figure 3.4c). The extended RLC model adds

peripheral resistance to the RLC model which allowed for frequency dependence ob-

served in typical real impedance data. It provided a good fit in terms of model accuracy

with a small error in reactance. However, even though the DuBois model had a larger

error in reactance, it provided a better overall model fit to real data. The augmented

RLC attempts an improvement upon the extended model by introducing an extratho-

racic compliance. This attempts to increase the real part of the respiratory system’s

impedance at higher frequencies. It provided the best fit for compliance parameters
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which benefited the research that they were performing. However, it only provided a

good overall fit (like the extended RLC model) but was again outperformed by models

such as Mead and DuBois.

To summarise the models discussed and shown in Figure 3.4:

• the RC model is the most simple model possible to reproduce the dynamics of the

human lungs;

• the RLC model helps in simulating lung dynamics at higher frequencies where the

RC model is less accurate;

• the extended RLC, augmented RLC, and Mead 1969 models provide additional

components of compliance and resistance to provide a more accurate impedance

of the respiratory system at higher frequencies;

• the DuBois and Mead models provide a high accuracy model of the respiratory

system by introducing components external to the lungs such as thoracic cavity

compliance (also added in augmented RLC) as well as peripheral inertance or

extrathoracic compliance.

These models can be used to study the effects of many different aspects of the lungs

including physical properties and pathologies across a range of frequencies.

A spirometry test is a commonly used procedure to study pulmonary function. The test

involves taking a deep breath in and then exhaling forcefully into a small tube (called a

spirometer, See Figure 3.5). The data from this can be used to:

• measure vital capacity (i.e. the maximum volume of air a patient can exhale);

• assess the force and speed a patient can exhale air. This can be used to monitor

and diagnose respiratory conditions such as asthma, chronic obstructive pulmonary

disease (COPD), cystic fibrosis and pulmonary fibrosis;

• assess the general health of a patient and their lungs before surgery [49].

Juroszek and Stanis lawski [47] attempted to synthesise dynamic models to simulate

experimental measurement data. The main idea was to replicate how a person might

respond to a spirometry test to investigate the maximum change in air flow, referred

to by the authors as the “pressure pulse excitation”. They achieved this by reverse

engineering experimental pressure data during forced expiration, using a “black box”

analogy, to generate duplicate simulation data. This allowed the excitation pulse to

be determined. In their work they used a combination of RLC model components in

differing configurations. Spirometry test modelling has a very similar application to
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Figure 3.5: Example of patient using a spirometer taken from the NHS
website[49].

lung pressure profiling as it involves forced expiration after a deep breath. However lung

pressure profiling requires patients to track a pressure reference and can last longer than

20 seconds, whereas spirometry breathing apparautus has minimal resistive component

and so each test lasts for only one or two seconds. This means that no pressure reference

tracking is necessary.

A comprehensive search has found that no research has attempted to model the process of

voluntarily tracking a lung pressure reference signal. This section has presented the most

common models used for respiration. These basic lung models consider the underlying

dynamics of the system such as resistance, compliance, and inertance. However, in order

to model the entire closed-loop reference tracking system for LPP testing, additional

components such as muscle dynamics and voluntary motor control of the lungs must be

included. These will be discussed in subsequent chapters.

3.3.4 Application of Models to Lung Pressure Profile Testing

Section 3.3 has introduced human respiratory models commonly used in modern medicine.

The models are used to help diagnose conditions that may affect respiration, replicate

motion of the thoracic region during respiration to improve treatment, and determine

how conditions affect different aspects of respiration such as airflow resistance or lung

tissue compliance. Table 3.3 provides a brief summary of the strengths and weaknesses

of each model and their applicability to LPP tests.
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Table 3.3: Comparison of lung models

Model Advantages Disadvantages Conclusions

Imaging Can be used to

study the movement

of the lungs and thus

flow of air during

respiration.

Can help deter-

mine what may

affect the respiratory

dynamics.

High costs.

Specialised equip-

ment.

Doesn’t help deter-

mine the dynamics

only what might

affect them.

Imaging is very useful tool

when analysing respira-

tory dynamics and what

may affect them but does

not have any explicit in-

put/output variables.

Gas Ex-

change

Use multiple param-

eters such as minute

volume, flow rate,

pressure, partial

pressures in the

lungs.

Can be used to

predict upcoming

changes in dynamics

based on current

conditions.

Higher accuracy

leads to higher

complexity and as

such computational

requirements.

Predictions may

not always be accu-

rate.

Gas exchange models pro-

vide all the necessary vari-

ables for pressure control

during LPP tests and how

varying conditions can af-

fect respiration. How-

ever, they are more of-

ten used for diagnostics or

to ensure adequate oxygen

supply and as such have

higher complexity than

necessary for LPP testing.

System

Ana-

logues

Models can be de-

veloped to be as

simple or complex as

necessary to model

required parameters.

Can be used to

predict future re-

sponses.

Simpler models can

reduce accuracy.

Higher complex-

ity creates more

variables to identify

which can increase

computational load.

Analogous models allow

for highly complex sys-

tems to be represented

in lumped parameter

form. More complex

models provide more

accurate replication of a

system but also increase

computational load.

3.4 Summary

Chapter 2 reviewed the unequivocal link between changes in lung pressure and ICP. Some

of the reviewed work focused on the effects of the Valsalva Manoeuvre (i.e. short periods

of high lung pressure) and required invasive methods. It discussed that TMD is not yet
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precise enough, but measurements taken coincidentally with specific lung pressures and

changes in lung pressures may provide necessary data to improve this precision.

Humans cannot perfectly generate requested lung pressures and pressure changes for

LPP testing, so some form of assistive controller will be needed. The review of con-

trol methods in this chapter has shown that focus has been on controllers for medical

ventilation. The key purpose of these controllers is to adjust flow rates and pressures

to supply adequate gas exchange in a physiologically safe manner. This means that

the controllers have to handle system constraints and be able to adjust to patient re-

quirements and circumstances (i.e. the non-linearity of the process model). However,

to date, no research has been published that attempts to manipulate airflow in order to

control lung pressure during voluntary forced expiration. Such a controller would need

to be designed for a system that includes human breathing dynamics, muscle actuation

properties and the voluntary control component.

The review of respiration models has shown that research has also focused on replicating

natural breathing for use in medical ventilation. There are varying model types which

are used based on their application. For example imaging is more useful for radiotherapy

and electrical/mechanical equivalent models are more useful for ventilation. However,

there are currently no models of voluntary lung pressure reference tracking. Replicating

natural breathing means that multiple processes can be ignored such as muscle and

motor control. These processes would need to be considered if voluntary respiratory

changes in airflow or pressure (e.g. spirometry) were to be modelled. Such models

would combine passive lung dynamics with muscle actuation and voluntary control of

the central nervous system.

The next chapter will discuss how the controllers and models presented in this chapter

could be applied to lung pressure profile reference tracking. It introduces exactly how

and why LPP testing could be used alongside TMD in order to determine the size of an

intracranial mass (such as a tumour). It also presents some of the specifications that

LPPs would need to adhere to in order to be applied in a clinical setting.



Chapter 4

Problem Specification

Chapter 2 motivated improving the accuracy of lung pressure profile (LPP) testing. This

in turn improves the accuracy of intracranial pressure (ICP) measurements via tympanic

membrane displacement (TMD). Chapter 3 reviewed control schemes and models that

could be applied to LPP testing. These controllers and models were mostly applied in

medical ventilation as very little research has been conducted to control or model forced

expiration. This chapter presents how TMD and concurrent LPP tests could be used to

determine if a cranial mass (tumour) is present and its possible size. It also presents how

LPP tests are currently performed and the inaccuracies that occur. It discusses relevant

controllers and models that could be applied to LPP tests and provides constraints that

must be applied to the selected controller(s).

4.1 Tympanic Membrane Displacement and Lung Pres-

sure Measurements

LPP testing could provide critical data that would improve analysis of both evoked

and spontaneous TMD data. The desired pressures and pressure changes would cause

excitation of the blood flow regulatory mechanisms of the brain. This excitation would

be observable in the TMD measurements. A simple lung pressure profile may comprise

a step-change increase in lung pressure (e.g. from 0 to 50 cmH2O), a hold of the pressure

for a few seconds, and a release of that pressure (i.e. a step change from 50 to 0 cmH2O).

Tracking this profile would result in the following process in a healthy individual.

- Generating a pressure of 40-60 cmH2O (high pressure sensation similar to the

Valsalva Manoeuvre (VM)) in the lungs causes constriction of the vena cava thus

increasing venous pressure up into the intracranial cavity;

41
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- the ICP regulatory mechanisms adapt CSF volumes and blood flow to and from

the brain to decrease ICP to a safe value;

- quickly dropping lung pressure to 0 cmH2O causes an excess volume of venous

blood to drain from the brain;

- the pressure regulatory mechanisms redirects blood and CSF back to the brain.

For an individual with a significant intracranial mass the following process would occur.

- Generating a pressure of 40-60 cmH2O (high pressure) in the lungs causes con-

striction of the vena cava thus increasing venous pressure up into the intracranial

cavity;

- the ICP regulatory mechanisms adapt CSF volumes and blood flow to and from

the brain to decrease ICP - however, ICP may not fall within a safe range;

- quickly dropping lung pressure to 0 cmH2O causes an excess volume of venous

blood to drain from the brain;

- the pressure regulatory mechanisms redirect blood and CSF back to the brain.

The difference between a healthy individual and an individual with a intracranial mass

is that ICP may not be considered a safe value during the high lung pressure stage. This

would be detectable in the TMD measurements. The specific lung pressure at which

high ICP can be detected in the TMD measurements could determine the relative size

of the intracranial mass. The lower the lung pressure at which a high/raised ICP is

detected at, the larger the intracranial mass.

4.2 Control During Lung Pressure Profile Testing

The control of airflow during LPP testing should assist a patient to track the pressure

reference. The current approach when used for LPP testing in a clinical research set-

ting does not allow for any assistance control. However, it does comply with multiple

specifications that are required of it such as particular airflow and pressure ranges. This

section introduces some of the key specifications for the setup and how they may be ap-

plied as constraints in a control setting. Examples of LPPs are presented and discussed

to show how a patient can track a reference, and how implementing airflow/pressure

control would help them improve their tracking ability.
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4.2.1 Specifications

Appendix A presents the key specifications that must be met for an apparatus setup to

be used for clinical LPP testing. Some of the specification points will be used as limits,

constraints and/or objectives of the control schemes applied in this thesis as presented

in Table 4.1.

Table 4.1: Table of specifications

Specification Reason Constraint

The measurements
should be near real-
time

Target profiles are mea-
sured ideally at 100Hz -
this ensures the patient is
shown the exact pressure
that they are generating

The pressure sensor must be ac-
curate and not have an observable
delay, the controller must be effi-
cient enough to be able to provide
adequate control whilst not slow-
ing down the rest of the software

An ideal minimum
flow rate of around
5 ml/s

To ensure the glottis re-
mains open and the mea-
sured oral pressure is the
same as in the lungs

Upper limit on valve resistance

Profiles should last
at least 20 seconds

To coincide with TMD
measurement profiles

Lower limit on measurement time
period (relies on average airflow
over measurement period)

Achievable pres-
sures up to 60
cmH2O

Patient should be able to
generate pressures in a rel-
atively comfortable man-
ner

Upper limit on pressure reference
and possible increase in lower lim-
its of valve resistance at higher
pressures

Lower pressure
limit of 0 cmH2O

The research objective
is to model and control
forced expiration

Lower limit on pressure reference

Lower limit on
valve resistance

Fully open valve still has
resistance

Lower limit on resistance of 20
cmH2O/L/s

Maximum exhaled
volume limit

Patients have a limited
lung capacity and should
not over-exert during
forced expiration

Volume limit around 1 litre less
than their vital capacity

4.2.2 Lung Pressure Profile Tests

Before LPP tests begin, the patient is seated and shown a pressure waveform chart on

a computer display. The x-axis displays time and the y-axis displays pressure. Two

signals are plotted on the graph; one showing a reference pressure and one showing the

measured pressure in the apparatus. When a patient blows into the apparatus, they will

observe a corresponding change in the apparatus pressure signal.

The aim is for the patient to generate the same pressure in the apparatus as the ref-

erence; this is called LPP reference tracking. To reduce the impact of learning on the
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response, the patient is only shown the current reference pressure in order to prevent

them anticipating the future response. Patients can be requested to generate a constant

pressure or follow sinusoidal/square wave or step-change pressure references for over 20

seconds, with values ranging between 0 and 60 cmH2O (coinciding with the specifications

in Table 4.1).

The red cap (as seen on the end of the breathing tube in Figure 4.1) provides consistent

air leakage to prevent patient glottis closure. It can be removed manually during LPP

testing to create a sudden drop in lung pressure. This terminates the measurement

period since the test only involves forced expiration.

Figure 4.1: Repeat of Figure 1.4a).

Figure 4.2 shows examples of data, collected for this thesis, of how a person can track

a pressure reference of a lung pressure profile. These data sets were all taken using the

new setup with the valve shown in Figure 4.3 but replicating the current clinical setup

with the red cap shown in Figure 4.1.

Figure 4.2a shows an example of moderate tracking ability where the participant has

struggled to follow the reference changes, and also struggled to generate a pressure

higher than 20 cmH2O. This could be resolved by providing a higher airflow resistance

in order to generate higher pressures. Figure 4.2b shows an example of good steady state

tracking but with large overshoots on pressure reference changes. These overshoots could

be minimised if the airflow resistance was adjusted. Figure 4.2c shows an example of

what is considered good pressure reference tracking. There is very little overshoot or

undershoot and the steady state error mostly remains within 2-3 cmH2O. However, if

airflow control was introduced, the ‘reaction time’ to each step change could be reduced,

i.e. the resistance could change when the reference changed to initiate a more immediate

response. The addition of the variable resistance valve would address all the issues above:

providing higher resistances; reducing overshoot; reducing reaction time.

The timing of the red cap removal is neither consistent nor reliable, therefore, it moti-

vates the approach taken in this thesis to replace the cap with a proportional valve. The
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(a) (b)

(c)

Figure 4.2: Examples of:
(a) Moderate/poor tracking but struggling to reach higher pressures
(b) Very good steady state tracking but significant overshoot on step changes
(c) Very good overall tracking with small overshoot and good steady state track-
ing.

selected proportional valve must adhere to the same constraints as the original setup.

The valve must have a fast input signal response and be able to create a large range of

resistances.

4.2.3 Modified Experimental Setup

Figure 4.3 shows the modified setup. Compared to the standard clinical research setup

shown in Figure 4.1, the flextube has been removed to reduce compliance. The modified

setup has retained the mouthpiece, filter, and pressure monitoring tube as in Figure

4.1. To apply any form of control, the modified setup must have an airflow sensor

and a variable valve. The airflow sensor must be added to enable accurate resistance

calculations (using the linear relationship, R = P/Q), and the valve must be added
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in order to control airflow. The modifications in this thesis have been chosen with a

universal applicability of different control types in mind.

The airflow sensor needs to be able to precisely measure airflow between a range of 0 to

2.5 L/s. This airflow range covers all necessary valve resistances and pressure ranges of

20-1000 cmH2O/L/s and 0-60 cmH2O respectively. The selected sensor is a Sensirion

SFM3020 series which has a flow range of -0.167 to 2.67 L/s with a typical accuracy

±3% of the measured value.

A variable pulse-width modulation (PWM) valve has been added to control airflow

resistance. The valve needs to be able to precisely produce resistances between 20 and

1000 cmH2O. The selected valve is a Burkert 6024 series (12mm) which can produce

these resistances with a typical hysteresis value of <7%.

The pressure sensor is a Panasonic PS-A series (6KPa). Its full range of pressure values

is -5 to 65 cmH2O. The measurement hardware and software are National Instruments

myRIO-1900 series and Labview 2019 respectively. All identification, control design,

and analysis computations were performed in MATLAB R2020b.

Figure 4.3: Breathing tube, pressure sensor, airflow sensor and variable valve
used to measure lung pressure.

4.3 Controller and Model

The application of control of a parameter in a parameter-varying system is a complex

endeavour. The control schemes presented in Section 3.2 can be adapted to be applied

to pressure control during LPP testing. Controllers usually apply an additional input

to the system in order to improve the output. When considering this for LPP reference

tracking, this would be equivalent to an additional pump attached to the apparatus. A

pump is not viable for this application for multiple reasons but mainly due to safety,

response time, and practicality (a large pump would be needed to generate the pressures

which limits its portability).
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From the research findings in Chapter 3 and summary of advantages and disadvantages

in Table 3.1, it is apparent that there are multiple controllers that could be implemented

in LPP tracking assistance. Machine learning has many advantages for its use in LPP

tracking assistance from a clinical perspective as it would be able to use large datasets

in order to provide the best control. It would possibly not need tuning from patient to

patient and only require basic metrics such as age, sex, and health status. However, for

initial application and research it is not viable due to the necessity of collecting enough

data in order to train the controller. This thesis is attempting to minimise costs for

wider application, so the complexity and the storage necessary would increase costs. As

a corollary, the complexity of adaptive control and hybrid control are also non-viable for

the thesis due to storage/computing demands. Hybrid control also uses multiple control

methods using data collected for each control type. As no data have been collected on

any controller for application in LPP tracking assistance hybrid control is not considered

in this thesis.

In clinical application, LPPs can be repetitive tasks such as maintaining a consistent

pressure or square wave pressure profiles. However, some profiles are more randomised

to elicit different responses. Iterative learning control (ILC) would not be viable as not

all the reference profiles are repetitive tasks. Additionally, ILC would need a baseline

control technique to start with in order to adapt the controller to improve its ability to

assist the patient. ILC would be a viable next step once an initial baseline control method

has been validated and the ILC can improve its performance by tuning the controllers

parameters. As with machine learning and adaptive control, fuzzy-logic would require

a large amount of data in order to tune the controller parameters for best performance.

Fuzzy-logic is therefore not a viable control option for this thesis.

Proportional-integral-derivative (PID) control and its variations/combinations would be

a viable option to use for this thesis due to the assistive nature of the control task. It is

not a complex method and as such does not have significant storage or computational

requirements. Proportional control would adjust the valve in such a way that it would

increase valve resistance the lower the pressure the patient is generating below the target,

and decrease the resistance the higher the generated pressure is above the target. PI

control would be similar except with the pressure being over or under but the increase or

decrease in resistance would accumulate over time until the target pressure is reached.

Model predictive control (MPC) is another viable option for application to assist during

LPP tracking. The predictive capabilities of MPC means that, with an accurate model,

it can provide appropriate control given that it knows the future target pressure and

the expected response from the patient. A balance can be found which allows for a

prediction horizon large enough to predict far enough ahead while minimising compu-

tational load thus the cost of hardware. MPC can also be developed to function within

hard constraints and can adapt to changes in system dynamics. Based on this section’s

analyses of controllers, MPC is the main focus of controller development in this thesis.
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As MPC is the chosen control approach, an appropriate model is required. Section

3.3 presented three key models that are commonly used in medicine to present lung

dynamics. Table 3.3 presented the advantages and disadvantages of their applicability

to LPP testing. Imaging models are overly complex for this application as they would

produce data that do not provide any benefit to pressure control. Further reasons to

not use imaging are that: it uses highly specialised equipment which leads to high costs

and maintenance; it must be performed in a controlled environment; and it mostly uses

X-rays for imaging purposes which therefore means that it cannot be used continually

without causing significant harm to the patient.

Similarly to imaging models, gaseous exchange models would use/produce some data

that would not be beneficial for control of lung pressure. The higher complexity of the

model would also create larger computational loads in order to process accurate predic-

tion. This leads to the conclusion that imaging and gaseous exchange models would not

be adequate for use in MPC for LPP testing. System analogues such as mechanical and

electrical models can provide a great benefit for MPC as the model can be as simple or as

complex as is necessary. They can also be used to represent the most common dynamics

of the lungs. Mechanical models of the lungs would also require analysis of fluid dynam-

ics which would provide high model accuracy but also increase complexity. Assumptions

can be made to mitigate this which are already intrinsic in electronic models such as

laminar flow and no flow disturbance/turbulence. This motivates the use of electrical

analogous modelling as it can provide linear pressure-flow-resistance correlations.

In order to provide adequate pressure assistance control during LPP testing, there must

be a focus on the trade-off between model accuracy and ease of identification. The main

components of resistance, inertance, and compliance are necessary to model the lung

dynamics. However, even though additional components would provide more detail of

lung airway branching (i.e. resistance of bronchi or compliance of alveoli), they also

produce additional variables to be identified. This leads to the conclusion that the best

model for this research is the basic RLC model shown in Figure 3.4.

4.3.1 Nested Loops

The application of control to human lung dynamics in medical ventilation is relatively

simple in a sense that the only input of pressure or airflow is the ventilator itself as the

patient is unconscious during the procedure. The considerations that must be made for

LPP tracking tasks is that the patient is responsible for making pressure changes. The

primary form of control for the tracking task is therefore the patient’s cognitive ability

and respiratory muscle strength. The role of the implemented MPC in this thesis is to

act as a secondary internal control loop. This is to assist the patient in achieving the

required pressures without compromising the patient’s own control.
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To ensure that the MPC applied to the valve does not have an adverse affect on the

tracking task, constraints on valve resistance and flow can be implemented to ensure that

the reliance of the tracking still remains on the patient. Both the patient and controller

are provided with the reference pressure to adjust the valve resistance accordingly. The

controller needs to be fast-acting, with a quicker response than the patient, in order to

adjust the resistance of the valve based on the patient’s control action. This also allows

for the MPC to complement rather than compete with the patient’s control action. The

most important consideration for the controller to provide assistance is to use a model

that accurately replicates the patient’s response while minimising model complexity, in

order to maximise performance.

An additional issue is the valve hysteresis mentioned in Section 4.2.3. The valve’s re-

sistance is based on a PWM signal which determines the current supplied. In order to

provide assistive control the valve resistance selection of the MPC controller must be

accurately provided by the valve itself. There are two ways to ensure this occurs, the

first is to develop an algorithm which perfectly maps how the valve resistance will change

based on its previous position, which could produce a near perfect resistance every time

but would be time consuming to develop and could be computationally expensive. The

second would be to develop an additional controller which adjusts the PWM signal to

adapt the current supplied, thus the resistance can be constantly tuned by a further

internal control loop to the MPC. This would need the same basic principles of function

as the MPC to the patient’s control in that the ’inner loop’ would have to be faster

acting whilst also being undetectable by the patient.

This highlights the necessary complexity of the developed system in order to provide

assistive control to a patient during LPP testing. The next step would be to determine

appropriate timings for each control loop in order to provide the best control.

4.4 Summary

This chapter has stated how specific lung pressures and pressure changes can be observed

in TMD measurements. It has presented how a person may track a LPP. It has addressed

the issues that result in imperfect LPP tracking and how control of airflow could mitigate

these. Section 4.3 discussed the reviewed controllers from Section 3.2 with regards to

their suitability for application to this research. It was decided that MPC was the

most appropriate controller to use with comparative PID methods. The next step is

to formulate the MPC control problem and develop a suitable model. Modelling would

require an appropriate level of complexity in order to analysis the appropriate dynamics

of the system, whilst maintaining simplicity to minimise unnecessary excess data and

computational load. Electrical analogous models would provide the necessary data for

MPC to predict the expected patient response to a LPP tracking task.





Chapter 5

Model Predictive Valve Control

using RLC Model Structure

The last chapter motivated applying MPC and defined the basic objectives of the track-

ing task. This chapter formulates the MPC objective and develops a suitable model.

The focus will be on a straightforward approach that yields a computationally efficient

solution. As described in Chapter 4, the objective is to control the valve resistance as

part of a linear parameter-varying system.

This chapter introduces a system model that comprises the underlying dynamics of the

respiratory system. A control approach is then developed to minimise an objective cost

function. Simulations of the system model and controller are analysed to determine its

applicability. An identification technique is then presented using linear regression to

provide parameters for the controller.

Recall that during lung pressure profile (LPP) testing, the pressure in the breathing

tube will be sampled using a pressure monitoring tube connected to a pressure sensor.

The pressure will then be displayed to the patient and operator (e.g. a clinician). A

dual-user interface will be employed so the operator can create parameters for a pressure

profile whilst also observing the measurements. The patient can only observe their LPP

reference tracking up to the current time. Based on the measured pressure and target

pressure, the controller will actuate the valve connected to the breathing tube.

5.1 Problem Description

Figure 5.1 shows a block diagram of how valve aperture would be manipulated where the

system represents the patient using the device (i.e. having been given a reference they

generate a pressure). The pressure reference is r and the measured output of the patient

model is y. The controller uses the reference and measured pressures to determine the

51
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best aperture of the valve, V , in order to assist in increasing or reducing the pressure

produced by the person. Subscript k denotes the discrete-time sample instant.

Figure 5.1: Block diagram of control process where the system corresponds
to the human tracking the pressure reference, and the controller adjusts valve
resistance V accordingly.

There are a variety of models of voluntary human sensorimotor control available (see,

e.g. [50]). The most basic form of human motor control always involves feedback.

For example, standing does not involve any form of preliminary motor input, however,

balance mechanisms (proprioception) provide continuous feedback in order to remain

upright. To model walking, a forward planning component must be added in order to

actuate the appropriate muscles (i.e. for leg movement).

A forced expiration breathing model must incorporate muscle actuation and motor con-

trol. The feedback component represents the patient’s attempts to mitigate the error

between the desired and measured pressure. The feed-forward component represents

voluntary motor control dynamics of the respiratory muscles during LPP tests. These

components are shown in Figure 5.2, where:

• G is the dynamics of the respiratory tract and breathing apparatus;

• K(q) is the diaphragm and intercostal muscle dynamics;

• H(q) is the motor control feedback;

• F (q) is the noise filter.

Additionally, q is the sample shift operator and external noise is denoted by the signal

w. The filter F (q) reduces the noise component using assumed system dynamics in order

to improve the model identification procedure.

To expand on the above bullet points, G represents the effects on airflow due to the

structure of the lungs. This corresponds to:
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Figure 5.2: Voluntary pressure reference tracking system with valve resistance
Vk. This depicts the ‘System’ in Figure 5.1.

- resistance to airflow - caused by physiology such as cilia or undulation from differ-

ing tissues and cartilage;

- compliance of the lungs - i.e. how the lungs have elastance during expansion and

shrinkage while breathing;

- inertance - caused by the volume and pressure/density of the air in the lungs.

K represents the force from the musculature surrounding the thoracic cavity generating

the pressure in the lungs during exhalation. H refers to the feedback the patient receives

such as visual feedback from reference to generated pressures and tactile feedback from

the valve resistance and their respiratory muscle contraction.

The derivation of K and H is dependent on the ability of a theoretical patient. The

necessity of their own actions by contracting their respiratory muscles to generate the

required pressure creates a controlled input. The contraction of muscles together with

visual feedback to the patient as to whether the required pressure is being generated is

a simple control loop (as shown in Figure 5.2). This loop comprises an observed input

(the reference pressure), a generated pressure (depending on the patient control action

and strength K and dynamics G), and an observed feedback that is acted upon (H gives

a scaled error).

A model for system G is shown in Figure 5.3 and represents the physiology of the human

lungs, where current source Q represents the effect of diaphragm movement (L/s), and P

is the pressure difference (cmH2O) measured across the variable valve resistance V . This

builds on the RLC medical ventilation model presented in Section 3.3 by incorporating

valve resistance into G as part of the conditions that air will experience when flowing

from the lungs. The unit, cmH2O, is conventionally used to measure pressure in med-

ical ventilation. This model assumes laminar flow, with the Hagen-Poiseuille equation

enabling valve resistance V to be related directly to the valve aperture. Components R,
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Figure 5.3: Left diagram - lung model showing air inertance L, air resistance R,
valve resistance V and lung compliance C. Right diagram - equivalent electrical
analogue.

L, and C (henceforth labelled Ca) are lumped parameter representations of airway re-

sistance, inertance and compliance. These values are constants based on the physiology

of the patient.

More complex lung representations that model downstream branching of the airways

(i.e. bronchi resistance and alveoli compliance) are possible as reviewed in Section 3.3,

and will all result in the same overall form. Having defined G as an analogue system,

it is now possible to convert it into a difference equation form that is needed in later

development. This is described below.

Definition 5.1 (System Description). The system has the form of Figure 5.2 where

K(q), H(q), and F (q) have linear time-invariant (LTI) dynamics and G takes the form

of a lumped parameter lung model with valve resistance Vk at sample k. The transfer

function of system G can be represented in the linear time-varying (LTV) form

Pk

(
p0 +

p̄0
Vk

)
+ Pk−1

(
p1 +

p̄1
Vk−1

)
+ Pk−2

(
p2 +

p̄2
Vk−2

)
= Qk (5.1)

Proof. The differential equation of the mesh in Figure 5.4 is

(V +R)Q2 + L
dQ2

dt
+

1

Ca

∫
Q2 =

1

Ca

∫
Q1 (5.2)

Using analogous voltage and pressure equations the relation between pressure, airflow,

and valve resistance is P = Q2V . Substituting that into the derivative of (5.2) gives

dP

dt
+R

dQ2

dt
+ L

d2Q2

dt2
+

1

Ca
× P

V
=

1

Ca
Q1 (5.3)
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Figure 5.4: Mesh analysis diagram of electrical equivalent circuit in Figure 5.3.

given Ts is the sampling time and the Euler backward finite difference approximations

dP

dt
=
Pk − Pk−1

Ts

dQ2

dt
=

1

Ts

(
Pk

Vk
− Pk−1

Vk−1

)
d2Q2

dt2
=

1

T 2
s

(
Pk

Vk
− 2

Pk−1

Vk−1
+
Pk−2

Vk−2

)
,

(5.3) can present the relation between P , V and Qk (where Qk is the value of Q1 at each

time instant k) in the form

Qk = Ca

(
Pk − Pk−1

Ts

)
+
RCa

Ts

(
Pk

Vk
− Pk−1

Vk−1

)
+
LCa

T 2
s

(
Pk

Vk
− 2

Pk−1

Vk−1
+
Pk−2

Vk−2

)
+
Pk

Vk

Expanding and collating Pk coefficients gives

Qk = Pk

(
Ca

Ts
+

1 + RCa
Ts

+ LCa
T 2
s

Vk

)
+ Pk−1

(
−Ca

Ts
−

RCa
Ts

+ 2LCa
T 2
s

Vk−1

)
+ Pk−2

( LCa
T 2
s

Vk−2

)

The G dynamics can therefore be represented in the LTV form of (5.1)

Pk

(
p0 +

p̄0
Vk

)
+ Pk−1

(
p1 +

p̄1
Vk−1

)
+ Pk−2

(
p2 +

p̄2
Vk−2

)
= Qk,

where

p0 =
Ca

Ts
, p̄0 = 1 +

RCa

Ts
+
LCa

T 2
s

, p1 = −Ca

Ts
,

p̄1 = −
(
RCa

Ts
+

2LCa

T 2
s

)
, p2 = 0, p̄2 =

LCa

T 2
s
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For simplicity of later computation, system K(q) is assumed to have the general LTI

dynamics

Qk = c0ek + c1ek−1 + c2ek−2 + · · · + cnek−n (5.4)

and similarly system H(q) is assumed to have the LTI dynamics

uk = h0Pk + h1Pk−1 + h2Pk−2 + · · · + hnPk−n (5.5)

where {ci, hi} are fixed scalar coefficients.

The assumption of LTI dynamics of K and H means that the model is simpler for control

application and parameter identification. Note that assuming finite impulse response

(FIR) forms for K(q) and H(q) does not limit generality since both are assumed to be

stable (and hence an infinite impulse response (IIR) form can be converted to an FIR

form). Using Definition 5.1, the closed-loop assisted pressure tracking system in Figure

5.2 can be represented by the following minimum parameter LTV form.

Definition 5.2 (Closed-loop Dynamics). By substituting the G, K and H dynamics

(5.1)-(5.5) into the signal relationships of Figure 5.2, the closed-loop system can be

represented by the LTV dynamics

n∑
i=0

birk−i = yk

(
a0 +

ā0
Vk

)
+yk−1

(
a1 +

ā1
Vk−1

)
+yk−2

(
a2 +

ā2
Vk−2

)
+

n∑
i=3

aiyk−i (5.6)

Proof. From Figure 5.2, ek = rk − uk, substituting into 5.4 gives

Qk = c0(rk − uk) + c1(rk−1 − uk−1) + c2(rk−2 − uk−2) + · · · + cn(rk−n − uk−n)

Substituting 5.5 into this and equating to 5.1 gives

Pk

(
p0 +

p̄0
Vk

)
+ Pk−1

(
p1 +

p̄1
Vk−1

)
+ Pk−2

(
p2 +

p̄2
Vk−2

)
= c0rk + c1rk−1 + c2rk−2 + · · · + cnrk−n

− c0(h0Pk + h1Pk−1 + · · · + hnPk−n)

− c1(h0Pk−1 + h1Pk−2 + · · · + hnPk−n−1)

− c2(h0Pk−2 + h1Pk−3 + · · · + hnPk−n−2)

− · · · − cn(h0Pk−n + h1Pk−1−n + · · · + hnPk−2n) (5.7)
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Assuming no external disturbance (w = 0), yk can substitute Pk. Collating coefficients

of 5.7 gives

n∑
i=0

cirk−i = yk

(
p0 +

p̄0
Vk

+ c0h0

)
+ yk−1

(
p1 +

p̄1
Vk−1

+ c0h1 + c1h0

)
+ yk−2

(
p2 +

p̄2
Vk−2

+ c0h2 + c1h1 + c2h0

)
+ yk−3 (c0h3 + c1h2 + c2h1 + c3h0) + · · · + yk−2n(cnhn)

The closed-loop system in Figure 5.2 can therefore be represented by the LTV dynamics

n∑
i=0

birk−i = yk

(
a0 +

ā0
Vk

)
+ yk−1

(
a1 +

ā1
Vk−1

)
+ yk−2

(
a2 +

ā2
Vk−2

)
+

n∑
i=3

aiyk−i

where {ai, āi, bi} are the fixed coefficients

ai =


pi +

i∑
j=0

cjhi−j , i ≤ 2,

i∑
j=0

cjhi−j , i ≥ 3,

āi = p̄i, i ≤ 2, bi = ci, i ≥ 0,

The next step is to develop a control scheme which can provide an assistance to the

action of the control loop in Figure 5.2. As stated in Section 4.3.1, the addition of

assistive control introduces the structure of nested loops, i.e. a control loop within a

control loop. The control of the inner loop must be designed such that it does not hinder

the main generated action and must have a faster response compared to the external

loop. The adjustment of valve resistance should be able to be large enough to create

an observable improvement in LPP tracking ability, whilst maintaining a dependence

on the overall control of the patient and the pressure they generate. This leads to the

assistive approach which can now be defined.

Definition 5.3 (Valve Assistance Problem). Consider the system shown in Figure 5.2

computed over a finite time period, k = 1, 2, · · · , N . The control problem is to select

the sequence of valve resistance values V = (V1, V2, · · · , VN ) such that the 2-norm of the

tracking error is minimised, i.e.

argmin J(V ), J(V ) :=

N∑
i=1

(ri − yi)
2 (5.8)
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As previously noted, this is fundamentally different to a conventional control problem

since it involves changing a parameter within the system dynamics (i.e. the valve resis-

tance V ), rather than a control signal.

The control input could take on differing forms such as voltage to the valve or current

through the valve solenoid coil. However, these are external variables to the system and

are affected by factors such as hysteresis. Considerations must be made that take these

factors into account and the possible development of a further nested loop. However,

the direct impact of the valve is that a change in its resistance has a direct effect on the

system dynamics in Figure 5.2.

5.1.1 Model Summary

Modelling human control requires underlying knowledge of how decisions are made dur-

ing a control task. The fundamentals of human control are involved in, for example,

movement and balance. First, muscles need to be activated to initiate movement or

to correct target error (i.e. to prevent falling). Similarly, during LPP testing patients

have to contract their respiratory muscles to generate the target pressure, this is rep-

resented by K in Figure 5.2. Second, feedback is provided by proprioceptors in order

to remain balanced after initial muscle activation. In LPP testing, both visual and sen-

sory feedback help a patient to maintain or change the pressure. This proprioception is

represented by H in Figure 5.2

The model presented in this section incorporates multiple factors in LPP tracking that

are essential to consider when providing assistive control in order to improve the tracking

ability. Understanding how each control loop (i.e. human control and valve control)

functions within the overall system helps to identify where a change in valve resistance

would most benefit the patient. For example, a patient is more likely to have good steady

state/pressure control but may not be so good when tracking a pressure reference change.

It is important to produce an appropriate model so the valve resistance control assists

at appropriate times during measurements.

5.2 Development of Model Predictive Valve Control

Conventional MPC actuates a control input signal in order to force the system output

to attain a set-point or reference. Definition 5.3 requires reducing the difference between

patient-generated lung pressure and the reference pressure. However, treating this as the

only goal is not ideal as it does not consider the control input on the valve. In practice,

this means that the valve resistance could rapidly oscillate which would distract the

test subject and possibly impair their tracking ability. The following definition therefore
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provides a practical control implementation, where the tracking error and control input

must be appropriately balanced.

Definition 5.4 (Model Predictive Valve Control (MPVC)). Let cost function (5.8) be

generalised to penalise the sample-to-sample change in valve resistance, giving

argmin J(V ), J(V ) :=
N∑
i=1

(ri − yi)
2Qi + (Vi−1 − Vi)

2Ri (5.9)

subject to dynamics (5.6), where Qi and Ri are positive definite and positive semi-

definite weights respectively. In addition, each Vk ∈ V with V being a set of appropriate

valve apertures.

The purpose of set V is to simplify the control problem by providing a selection of

discrete values rather than a continuous range. The objective of MPVC is therefore to

compute the sequence of valve resistances V1, V2, · · · , VN that minimise finite horizon

cost (5.9). To make the computation tractable, MPVC replaces (5.9) with the receding

horizon approximation (i.e. stage cost)

argmin J(V̄k), J(V̄k) :=

k+m−1∑
i=k

(ri − yi)
2Qi + (Vi−1 − Vi)

2Ri (5.10)

where m is the predictive horizon, and the stage valve resistance sequence on sample k

is V̄k = (Vk, Vk+1, · · · , Vk+m−1). Vk is then applied to the current time index k and the

computation is then repeated on the next sample index k = k + 1.

5.2.1 State-Space Model

Solving (5.10) requires computing closed-loop dynamics (5.6) which, in the absence of

noise (w = 0), can be represented as the discrete time-varying state-space system

xk+1 = Akxk +Bkrk

yk = Ckxk +Dkrk, x0 = 0
(5.11)

To determine the state-space matrices A−D, closed-loop dynamics (5.6) must first be

written in its shift operator (q) form

rk

n∑
i=0

biq
−i = yk

((
a0 +

ā0
Vk

)
+

(
a1 +

ā1
Vk−1

)
q−1 +

(
a2 +

ā2
Vk−2

)
q−2 +

n∑
i=3

aiq
−i

)
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dividing both sides by
(
a0 + ā0

Vk

)
gives

rk

n∑
i=0

ϖiq
−i = yk

(
1 +

n∑
i=1

σiq
−i

)
(5.12)

where

σi =


ai + āi

Vk−i

a0 + ā0
Vk

, i = {1, 2},

ai
a0 + ā0

Vk

, i ≥ 3,

ϖi =
bi

a0 + ā0
Vk

, i ≥ 0.

Introducing the system state vector parameter χ such that

χk

(
1 +

n∑
i=1

σiq
−i

)
= rk

and substituting into 5.12 gives

χk

n∑
i=0

ϖiq
−i = yk

These can be rearranged to

χk = rk − σ1χk−1 − σ2χk−2 − · · · − σnχk−n (5.13)

and

yk = ϖ0χk +ϖ1χk−1 +ϖ2χk−2 + · · · +ϖnχk−n (5.14)

respectively. Finally, substituting (5.13) into (5.14) gives

yk = ϖ0(rk − σ1χk−1 − σ2χk−2 − · · · − σnχk−n) +ϖ1χk−1 + · · · +ϖnχk−n

= ϖ0rk + (ϖ1 − σ1ϖ0)χk−1 + (ϖ2 − σ2ϖ0)χk−2 + · · · + (ϖn − σnϖ0)χk−n

(5.15)

If the state vector is xn = [χk−1 χk−2 · · · χk−n]⊤, the state-space matrices, Ak and Bk,

in (5.11) can be determined from (5.13), and Ck and Dk from (5.15) such that:

Ak =



−σ1 −σ2 −σ3 · · · −σn−1 −σn
1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

. . . 0 0

0 · · · 0 · · · 1 0


Bk =

[
1 0 · · · 0

]⊤
Ck =

[
(ϖ1 − σ1ϖ0) · · · (ϖn−1 − σn−1ϖ0) (ϖn − σnϖ0)

]
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Dk = ϖ0

Solving cost function minimisation (5.10) on each sample k is a non-convex problem and

therefore requires calculating the cost for all possible sequences of V̄k and selecting the

lowest. This solution, V̄ ∗
k , then yields the applied valve resistance on sample k of

Vk = [1, 0, · · · , 0]V̄ ∗
k

5.2.2 State Estimation

Computing cost (5.10) requires simulating state-space system (5.11) starting from the

current state xk. In practical application, the system states will be unknown during

measurements and therefore will need to be estimated. A Kalman Filter is used to ap-

proximate the state vectors of a system throughout the measurement period. It collates

current system data with respective noise components (namely the input reference r,

output y and the previous state vector estimate x̂k). The filter then uses this data to

optimise its gain matrix (Mk) to reduce the noise components. The filtered data are

used to adjust the system’s state vector estimate. Using the state vector and other

current system conditions, the estimator then predicts the next state vector. The time-

variant nature of the system means a Time-Varying Kalman Filter is required. The

equations presented in (5.16) show the function of the Time-Varying Kalman Filter and

are adapted from Rhudy et al [51] using the state-space representation (5.11).

Mk = SkC
⊤(CSkC

⊤ +Rm)−1,

x̂k = x̂k +Mk(yk − Cx̂k),

Sk = (I −MkC)Sk,

x̂k+1 = Akx̂k +Bkrk,

Sk+1 = AkSkA
⊤
k +BkQpB

⊤
k ,

(5.16)

with initial values x̂0 = 0 and S0 = B0QpB
⊤
0 . Here Sk is the state error covariance

matrix, Rm is the measurement noise covariance matrix, and Qp is the process noise

covariance matrix.

The overall MPVC system is shown in Figure 5.5. In practice, the computed valve

resistance Vk is converted to the required valve aperture via the Hagen-Poiseuille equa-

tion
(

∆p = 8µLQ
πR4

)
, and signal yk is the measured airway pressure.
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Figure 5.5: Block diagram of the MPVC system where rk is the reference input
and x̂k is the estimated system state.

5.2.3 Summary of Controller

The development of MPVC is to attempt to mitigate the tracking error during LPP

testing. The controller uses a range of model parameters and variables to provide im-

provement in the tracking task whilst maintaining the primary reliance on the tracking

ability of the patient. The black box modelling of the patient and the changing of a

parameter within the system (i.e. the valve resistance) means that the states of the

system must be estimated via a Kalman Filter with time-varying applicability. The

controller then uses Equations 5.10, 5.11, and 5.16 in order to predict the current and

future states to provide assistance control within the prediction horizon time frame. In

order to provide adequate control, the model parameters must be identified using a pro-

cedure that can both handle noise in the system data and efficiently mimic the response

of the patient if the procedure were to be used in a practical environment.

5.3 Model Parameter Identification

Before experimental data collection, an identification procedure must be performed that

is efficient. The controller is implemented using (5.10) and (5.16), both of which depend

on state-space model (5.11). The model parameters in (5.11) must therefore be identified.

A standard way of identifying a model is to assume an auto-regressive moving average

with exogenous input (ARMAX) model form which includes a representation of the

external disturbance [52]. The model coefficients are chosen to minimise the disturbance,

given a set of input and output data. Since the model is linear, this yields a global

optimum solution. This approach will be applied to the current identification problem.

Definition 5.5 (Identification Problem). Consider the time-varying discrete closed-loop

system shown in Figure 5.2 with components (5.1) - (5.5), and assume the ARMAX
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disturbance form for filter F (q) of

wk = vk

(
a0 +

ā0
Vk

)
+ vk−1

(
a1 +

ā1
Vk−1

)
+ vk−2

(
a2 +

ā2
Vk−2

)
+

n∑
i=3

aivk−i (5.17)

where v = y−P . Then, given a set of sampled experimental input-output data {r̃k, ỹk},

k = 1, · · · , N , and corresponding valve resistance sequence V = (V1, V2, · · · , VN ), the

identification problem is to compute the parameter vector

θ̂ = [ᾱ0, α1, ᾱ1, α2, ᾱ2, α3 · · · , αn, β0, β1, · · · , βn]⊤

where ᾱi = āi
a0

, αi = ai
a0

and βi = bi
a0

, such that the disturbance norm

||w||22 =

N∑
k=1

w2
k (5.18)

where w = [w1 w2 w3 · · · wN ]⊤, is minimised.

Since all the resistance values, Vi, are known and (5.17) is linear in parameters {ai, āi},

the solution can be computed using the method of least squares.

Theorem 5.6. The solution to the Identification Problem is

θ̂ = ([Ỹ , R̃]⊤[Ỹ , R̃])−1[Ỹ , R̃]⊤ỹ (5.19)

in which

Ỹ =



−ỹ1/V1 0 0 0 0 0 · · · 0

−ỹ2/V2 −ỹ1 −ỹ1/V1 0 0 0 · · · 0

−ỹ3/V3 −ỹ2 −ỹ2/V2 −ỹ1 −ỹ1/V1 0 · · · 0

−ỹ4/V4 −ỹ3 −ỹ3/V3 −ỹ2 −ỹ2/V2 0 · · · 0

−ỹ5/V5 −ỹ4 −ỹ4/V4 −ỹ3 −ỹ3/V3 −ỹ2 · · · 0
...

...
...

...
...

...
. . .

...

−ỹN/VN −ỹN−1 −ỹN−1/VN−1 −ỹN−2 · · · · · · · · · −ỹN−n



R̃ =


r̃1 0 · · · 0

r̃2 r̃1 · · ·
...

...
. . .

...

r̃N · · · · · · r̃N−n


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Proof. Substitute (5.17) into (5.6) to give

n∑
i=0

birk−i = (yk − vk)

(
a0 +

ā0
Vk

)
+ (yk−1 − vk−1)

(
a1 +

ā1
Vk−1

)

+ (yk−2 − vk−2)

(
a2 +

ā2
Vk−2

)
+

n∑
i=3

ai(yk−i − vk−i)

divide by a0 and rearrange to give

wk = yk

(
1 +

ā0/a0
Vk

)
+ yk−1

(
a1
a0

+
ā1/a0
Vk−1

)
+ yk−2

(
a2
a0

+
ā2
Vk−2

)
+

n∑
i=3

ai
a0
yk−i −

n∑
i=0

bi
a0
rk−i

which can be simplified to

wk = yk +

n∑
i=0

ᾱi

Vk−i
yk−i +

n∑
i=1

αiyk−i −
n∑

i=0

βirk−i (5.20)

Computing for each time index k = 1, 2, 3, · · · , N ,

w1 = y1 + y1
ᾱ0

V1
− β0r1

w2 = y2 + y2
ᾱ0

V2
+ y1α1 + y1

ᾱ1

V1
− β0r2 − β1r1

w3 = y3 + y3
ᾱ0

V3
+ y2α1 + y2

ᾱ1

V2
+ y1α2 + y1

ᾱ2

V1
− β0r3 − β1r2 − β2r1

... =
...

wN = yN + yN
ᾱ0

VN
+ · · · + yN−nαn − β0rN − β1rN−1 − · · · − βnrN−n

(5.20) can be presented in matrix form as



w1

w2

w3

...

wN


=



ỹ1

ỹ2

ỹ3
...

ỹN


+



ỹ1/V1 0 · · · 0

ỹ2/V2 ỹ1 · · · 0

ỹ3/V3 ỹ2 · · · 0
...

...
...

...

ỹN/VN · · · · · · ỹN−n





ᾱ0

α1

ᾱ1

...

αn


−



r̃1 0 0 · · · 0

r̃2 r̃1 0 · · ·
...

r̃3 r̃2 r̃1 · · ·
...

...
...

...
. . .

...

r̃N · · · · · · · · · r̃N−n





β0

β1

β2
...

βn


where r̃ and ỹ are measured inputs and outputs respectively. Therefore, the minimisation

of the cost norm (5.18) can be written as

min
θa,θb

∥ỹ − [Ỹ , R̃][θa, θb]
⊤∥
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where θa = [ᾱ0, α1, ᾱ1, α2, ᾱ2, · · · , αn], θb = [β0, β1, · · · , βn]. This has solution (5.19)

since θ = [θa, θb].

If r̃ is chosen such that R̃ or Ỹ are full rank, then the solution (5.19) will be a global

minimiser. In practice, both r̃ and valve resistance sequence V must be chosen as

sufficiently exciting to activate all the closed-loop dynamics of interest.

Sections 5.1-5.3 have presented the mathematical approach for the model, controller and

identification procedure. The next step is to simulate: the model and its response to

a pressure reference; the controller and its ability to improve model tracking perfor-

mance; and the identification procedure to validate its ability to determine the model

parameters.

5.4 Simulation Results and Discussion

This section presents simulations of the lung model, controller and identification proce-

dure to provide an insight into the feasibility of practical application.

5.4.1 Model Parameter Selection and Simulation

Model parameters for the closed-loop system of Figure 5.3 have been chosen to reproduce

a person’s tracking response to a LPP reference. The values L = 18 cmH2O/L/s2, R

= 34 cmH2O/L/s, Ca = 0.1 L/cmH2O, K(q) = 36, and H(q) = 1 were calculated to

mimic the experimental data in Figure 4.2b.

The range of valve resistance values for V were computed using Hagen-Poiseuille equa-

tion. These values produce the G dynamics coefficients in (5.1) as follows

p0 =
1

10Ts
, p̄0 = 1 +

3.4

Ts
+

1.8

T 2
s

, p1 = − 1

10Ts
,

p̄1 = −3.4

Ts
− 3.6

T 2
s

, p2 = 0, p̄2 =
1.8

T 2
s

These generate the overall closed-loop coefficients within the time-varying discrete sys-

tem transfer function (5.6) of

a0 = 36 + p0, ā0 = p̄0, a1 = p1, ā1 = p̄1, a2 = p2,

ā2 = p̄2, ai = 0, i ≥ 3, b0 = 36, bi = 0, i ≥ 1,

Figure 5.6 shows the results of the fixed valve resistance system (|V| = 1), which mimics

a real human response to a pressure reference (cf. Figure 4.2b). This has a tracking



66 Chapter 5 Model Predictive Valve Control using RLC Model Structure

error norm of ∥e∥ = 71.7, where ∥ · ∥ denotes the 1-norm

||e|| =

kmax∑
k=0

|rk − yk|

Figure 5.6: Simulated tracking response with no valve assistance.

5.4.2 Control

In order to maintain an adequate speed of MPVC computation, the solution must be

calculated within the sampling time frame Ts. Additionally, an appropriate sampling

time must be chosen such that a suitable number of calculations can be made. For

example, a value of Ts = 1ms is not useful if only one or a few computations can be

made in that time period, and a value of Ts = 1s is also not useful if many calculations

can be made to provide the best control input but the valve control frequency is longer

than the patient control frequency (as discussed in Section 4.3.1). A value of Ts = 0.1s

ensures both criteria are met. Following this, the prediction horizon m was limited to 10,

i.e. predicting one second ahead (Ts × 10 = 1s), and the number of possible resistance

values to 11. This gives the permissible set of resistance values V = {0, 10, · · · , 100}.

Solving the non-convex MPC problem (5.9) then requires evaluating the stage cost J

for all |V|m−1 possible valve resistance sequences. The controller then selects the lowest

stage cost and applies the initial resistance value for the current time index k.
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Smaller sets of resistance ranges were also investigated, and are denoted by their size,

|V|. Smaller prediction horizons were likewise investigated, with a minimum of m = 2.

The choice of |V| = 1 corresponds to a fixed valve resistance and is used to denote the

simulated non-assisted human response. To give an example of the MPVC computational

load: if m = 3 and |V| = 3, the controller would have to simulate the system response to

three possible valve resistances over two time indices ahead, thus giving nine (32) stage

costs to evaluate per sample.

MPVC is applied using the control structure of Figure 5.5 where Vk is computed using

(5.10). Figure 5.7 shows simulation results for MPVC (m = 4 and |V| = 2) when

tracking a step reference. This illustrates the improved effect on the tracking ability of

the patient compared to the non-assisted case. The tracking error norm ∥e∥ is 42.7.

Figure 5.7: Simulated step tracking response comparing MPVC with no valve
assistance.

Figures 5.8 and 5.9 show the impact of changing m and |V| on tracking capabilities

of the resistance-controlled system. Cost function (5.10) is utilised by the controller

to balance the minimisation of reference tracking error and control input. Figure 5.8a

shows that tracking error is reduced even with the most basic form of MPVC. The

overshoot is reduced and the system reaches a steady state before a step-change unlike

the non-controlled system. Figure 5.8b shows further reduction in overshoot but takes

the same time to reach steady state. This is due to the size of the prediction horizon.

Figure 5.8c shows a significant reduction in both overshoot and settling time. However,

a long prediction horizon and only two possible valve resistances results in use of either

a high or low value of V . In practical application this would most likely lead to the

patient running out of breath very quickly in order to reduce their overshoot error due

to high airflow from a low valve resistance.

Figure 5.9 shows that increasing the prediction horizon past m = 5 has very limited

effect on further improving tracking error. This is due to the MPVC being part of a
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(a) (b)

(c)

Figure 5.8: Simulated tracking response to a square wave reference with:
(a) a prediction horizon of m = 2, and resistance set size of |V| = 2
(b) a prediction horizon of m = 2, and resistance set size of |V| = 10
(c) a prediction horizon of m = 10, and resistance set size of |V| = 2

nested loop control scheme where the outer loop (i.e. the patient or, in this case, the

simulation model) still provides the main form of control and the MPVC is providing

assistance. The results show the inevitable compromise between tracking performance

and computational load. However the selection of m = 5 and |V| = 5 is seen to provide

a suitable balance between tracking accuracy and computational load.

Figure 5.10 shows the result of controlling system resistance with m = 5 and |V| = 5.

The system has a similar tracking error to Figure 5.8c but a balance between prediction

horizon and permissible valve resistance would be more useful in practical application.

The slightly larger overshoot at the beginning is due to the smaller prediction horizon

but the larger set of valve resistances would make pressure assistance more viable in

terms of longevity of measurement period. Figure 5.10 highlights the effect of MPVC on

the patient’s reference tracking abilities compared to the non-assisted case in Figure 5.6.

The tracking-error norm of the non-assisted system is 71.7 cmH2O whereas the tracking

error norm of the controlled system is 40.4 cmH2O, corresponding to a 44% reduction.
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Figure 5.9: Colour map showing tracking error norm as a function of prediction
horizon and number of possible resistance values.

Figure 5.10: Simulation of MPVC compared to non-assisted system tracking of
a square wave reference with a prediction horizon of m = 5, and resistance set
size of |V| = 5.

The result shown in Figure 5.10 demonstrates that MPVC can be used to significantly

improve a human’s tracking ability during lung pressure profiling. A key feature is

that the assisted valve system has a much smaller overshoot compared to the non-

assisted system. This improved tracking capability is expected to result in better TMD

measurements from the patient when implemented in practical application.
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5.4.3 Identification

The simulation results above show that the model produced a response similar to that

of a person. Furthermore, the control results show that MPVC should be valid for use

in practical application. The identification procedure initially shows encouraging results

as seen by the perfect model replication of the simulated response in Figure 5.11. The

identification initially validates the mathematical theory of the procedure as presented

in Section 5.3 and proves that if r̃ and V are suitably selected, then the parameter vector

θ will be correctly identified. This was effective across a range of values of R, Ca, L,

and K where the model was simulated to track varying references with varying valve

resistances. The data were then used to reverse engineer the model parameters in θ.

The addition of Gaussian noise was used to simulate variation in human response as

well as measurement noise from the pressure sensor. Figure 5.12a presents the simulated

system output (red) which incorporates a small magnitude (≤ 0.1cmH2O) of noise. The

model output (blue) was simulated using the parameters resulting from the identification

procedure. It is clear that the effectiveness of the identification procedure is not as good

as the original noiseless data shown in Figure 5.11. The identified model in Figure 5.12a

has a smaller overshoot and reaches a stable pressure much more quickly compared to

the original model output. Recall that F (q) is applied to the external Gaussian noise,

and filters it using part of the system dynamics. This leads to an assumption that the

noise in the system is dependent on the system dynamics and not random like Gaussian

noise. However, in real-life even a predeterminable action (such as walking, for example)

still has variation from step to step that is unpredictable. The identification was further

compromised when a greater magnitude (≤ 0.3cmH2O) of Gaussian noise was applied.

Additional simulations showed that this was a compound effect that occurred from the

model design but was undetected due to the perfectly noiseless simulated data. Another

inaccuracy that was discovered was changing the sample frequency from 10Hz to 100Hz

(i.e. Ts = 0.1s to Ts = 0.01s) changed the overshoot and oscillatory response. This

shows a sensitivity to sampling time which may have been caused by higher frequency

components due to the large inertance value in the model.

5.5 Summary

Control of lung and airway pressure is a crucial component of research into ICP and

is needed to develop improved measurement and diagnostic approaches. The current

clinical apparatus used for LPP testing provides limited pressure control (i.e. removal

of the red cap). This chapter outlined specifications to improve the current setup. It

developed a new model of lung dynamics which incorporated the physiological compo-

nents, muscle actuation, and voluntary feedback control. Section 5.2, proposed a novel
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(a) (b)

(c)

Figure 5.11: (a) Simulated tracking response with no valve assistance (Repeat
of Figure 5.6)
(b) Tracking response of identified model using Figure 5.11a data
(c) Combined overlay of simulated and model response. Green line represents
the output noise (equal to zero) applied to simulated response before identifica-
tion process.

type of control which manipulated a valve’s resistance to control airflow. Simulation

results showed a significant reduction in tracking error when MPVC was applied com-

pared to a non-controlled system. The parameters of the model need to be tailored to

each individual to provide optimised control. Section 5.3 presented an ARMAX noise

model to minimise disturbance thus optimising a least squares identification procedure.

The results showed that the identification procedure functioned correctly when the dis-

turbance fitted the filtered form of the model. However, it did not handle more general

disturbance data. Further testing showed that the resistance selections made during

the control application shown in Figure 5.10 would not be suitable for use in practical

application (low resistances would lead to very short measurement periods). The initial

results showed promise for the model, controller and identification procedure. This leads
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(a) (b)

Figure 5.12: (a) Identified model (blue) compared to simulated data with minor
Gaussian noise (red)
(b) Identified model (blue) compared to simulated data with moderate Gaussian
noise (red).

to the justification that an updated version of the model, control, and identification pro-

cedure is needed. Chapter 6 will develop a model structure that does not rely on a

distinct form of disturbance.



Chapter 6

Model Predictive Valve Control

with Modified Model Structure

In Chapter 5 a model was developed to mimic a person’s lung pressure profile (LPP)

tracking ability. This model used the most basic principles of inertance, resistance,

compliance, and numerical gain to achieve this. Results were promising but showed that

model modification was needed to make the parameter identification less sensitive to

system disturbance.

The modifications developed in this chapter include the removal of the noise filter,

and adaption of the K and G dynamics to more closely match real-life values. Delay

components are also added to the model in order to incorporate human reaction time.

6.1 Problem Description

The LPP tracking problem described in Chapter 4 remains, but the model is redefined

to avoid the assumption that the noise is dependent system dynamics as in (5.17) and

modify the respiratory muscle actuation dynamics.

Recall that during each clinical pressure tracking experiment, the pressure reference,

r(t), is displayed to the patient on a screen from time t = 0 up until the present time

t. The screen also shows the pressure P (t) measured in the breathing tube (N.B. the

variable y in Chapter 5 has been reassigned as the variable P in this chapter as y referred

only to pressure output, whereas P is a more encompassing approach). Each test runs

over the interval t ∈ [0, T ], where T is the overall duration. The target pressure is higher

than ambient pressure, so the participant must always be exhaling to maintain a positive

pressure gradient. The valve’s resistance, V (t), is controlled to adjust airflow out of the

tube. The aim of this work is to control V (t) such that P (t) tracks r(t) as closely as

possible.

73



74 Chapter 6 Model Predictive Valve Control with Modified Model Structure

6.1.1 Forced Respiration Dynamics

Figure 6.1a shows the original equivalent circuit (used in Chapter 5) with variable current

source (i.e. airflow) Q. This original model proposed that the person controlled the

airflow out of their lungs. This would be the equivalent of the person controlling their

glottis; with hindsight, this was not the case as the glottis remains fully open. Figure 6.1b

shows the modified equivalent circuit introducing variable voltage supply (i.e. pressure),

Pl, and corresponding flow variable Q. This modification proposes a more realistic

scenario where the person controls the pressure within the lungs, rather than controlling

the glottis (i.e. controlling the airflow out of their lungs).

The variable valve resistance is included in the form of a variable resistor V (t). Here

laminar flow is assumed, so that the Hagen-Poiseuille equation enables valve resistance

V (t) to be related directly to the valve position (which is the controlled variable). The

voltage, P (t), is the pressure difference measured across the valve, and corresponds to the

pressure at the entrance to the participant’s airway. The exhaled airflow rate corresponds

to the current Q(t). As mentioned above, the pressure source signal Pl(t) has been added

to represent the effect of respiratory muscle movement under the participant’s voluntary

control (i.e. the pressure in the lungs).

To determine how Pl(t) is generated, there are a variety of models of voluntary human

sensorimotor control available as mentioned in Section 5.1. It highlights the necessity of

incorporating a feed-forward component (K) and feedback component (H) into a model

of forced expiration during LPP tests. A further feature of human motor control, which

was not considered necessary in Section 5.1, is a feed-forward predictive component.

This is analogous to being able to see an object whilst making appropriate movements

to touch it.

Figure 6.2a shows the original closed-loop system (used in Chapter 5) with respiratory

muscle actuation component K(q), lung and valve dynamics G, feedback component

H(q), and filter F (q). The original closed-loop system assumed a disturbance form with

system dynamics. However, the identification procedure could not handle the addition

of a general form of noise (e.g. Gaussian). Figure 6.2b shows the modified closed-loop

system which removes the filter F (q) to assume a more general disturbance and adds the

feed-forward predictive component FP . The predictive component assumes a person can

see the entire pressure reference r during LPP testing. Figure 6.2a shows the closed-loop

system in discrete-time with shift operator q, whereas Figure 6.2b shows the closed-loop

system in continuous-time.

Recall from Chapter 4 that it is also necessary to specify some constraints: limits on

the maximum airway pressure, and the total exhaled volume (vital capacity)
∫ T
t=0Q(t),

ensure that a test subject does not overexert during LPP testing. A maximum resis-

tance Vmax ensures the glottis remains open throughout measurements, and a minimum
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(a)

(b)

Figure 6.1: (a) Original equivalent circuit with controllable current source (air-
flow) Q (repeat of Figure 5.3)
(b) Modified equivalent circuit with controllable voltage supply (pressure) Pl.
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(a)

(b)

Figure 6.2: (a) Original voluntary pressure reference tracking system with valve
resistance Vk (repeat of Figure 5.2)
(b) Modified voluntary pressure reference tracking system with valve resistance
Vk.

resistance Vmin is a physical apparatus limitation. A minimum profile length of T = 20

seconds aligns with TMD measurement profiles.

The overall updated system is now described below.

Definition 6.1 (System Description). The assistive pressure tracking system takes the

form of Figure 6.2b where operators K and H model voluntary sensorimotor control

of the diaphragm and intercostal muscles, and feedback respectively. The LTI discrete

time dynamics are represented by the state-space quadruples (AK , BK , CK , DK) and

(AH , BH , CH , DH) respectively. Operator FP models the feed-forward predictive com-

ponent of sensorimotor control by the state-space quadruple (AFP , BFP , CFP , DFP ).

The assisted respiration dynamics G, (Pl, V ) 7→ P are shown in Figure 6.1b, where valve

resistance, V , is a controlled parameter. The dynamics of G are represented by the
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linear parameter-varying (LPV) continuous time state-space system

ẋG(t) =

[
0 1

Ca

− 1
L − (R+V (t))

L

]
︸ ︷︷ ︸

AG(V (t))

xG(t) +

[
0

− 1
L

]
︸ ︷︷ ︸

BG

Pl(t),

P (t) = [0 V (t)]︸ ︷︷ ︸
CG(V (t))

xG(t), t ∈ [0, T ] (6.1)

which converts to the discrete time state-space system

xG,k+1 = eAG(V (kTs))Ts︸ ︷︷ ︸
AG(Vk)

xG,k+

A−1
G (V (kTs))(e

AG(V (kTs))Ts − I)BG︸ ︷︷ ︸
BG(Vk)

Pl,k

Pk = [0 CG(V (kTs))]︸ ︷︷ ︸
CG(Vk)

xG,k, k = 1, · · · , N (6.2)

with sample period Ts. The subscript k denotes the sample index, i.e. Pk = P (kTs)

and N = T/Ts. The composite G and K dynamics e 7→ P can then be written as the

discrete time state-space triple (AKG(Vk), BKG(Vk), CKG(Vk)) where

AKG(Vk) =

[
AK 0

BG(Vk)CK AG(Vk)

]
, (6.3)

BKG(Vk) =

[
BK

BG(Vk)DK

]
, CKG(Vk) =

[
0 CG(Vk)

]
which then enables the closed-loop system rFP 7→ P to be represented as the state-space

triple

Acl(Vk) =

[
AKG(Vk) −BKG(Vk)DHCKG(Vk) −BKG(Vk)CH

BHCKG(Vk) AH

]
,

Bcl(Vk) =

[
BKG(Vk)

0

]
, Ccl(Vk) =

[
0 CKG(Vk)

]
(6.4)

Incorporating FP then means the overall system r 7→ P can be represented by the

system

xk+1 =

[
AFP 0

Bcl(Vk)CFP Acl(Vk)

]
︸ ︷︷ ︸

A(Vk)

xk +

[
BFP

Bcl(Vk)DFP

]
︸ ︷︷ ︸

B(Vk)

rk

Pk =
[

0 Ccl(Vk)
]

︸ ︷︷ ︸
C(Vk)

xk, k = 1, · · · , N, x0 = 0 (6.5)
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Note that the G dynamics still use the main passive components of the equivalent circuit

in Figure 6.1 of inertance, compliance, and the airway and valve resistance as in (5.2),

and The K and H components maintain a general LTI form as in (5.4) and (5.5). Having

defined the voluntary pressure reference tracking system dynamics, the control problem

can now be defined.

Definition 6.2 (Valve Assistance Problem). Consider the system shown in Figure 6.2b

with discrete state-space matrices (6.5) computed over samples k = 1, 2, · · · , N . The

control problem is to select the sequence of valve resistance values V̄ = (V1, V2, · · · , VN )

such that the 2-norm of the tracking error is minimised, i.e.

arg min J(V̄ ), J(V̄ ) :=
N∑
i=1

(ri − Pi)
2. (6.6)

subject to dynamics (6.5) and constraints

0 ≤ Pk ≤ Pmax, (6.7a)

Vmin ≤ Vk ≤ Vmax, k = 1, · · · , N (6.7b)

N∑
k=0

Qk ≤ vc (6.7c)

N = T/Ts, T ≥ 20 seconds (6.7d)

where Qk is the airflow at time index k, given by Qk = Pk/Vk and vc is the vital capacity.

The Valve Assistance Problem cost function (6.6) remains the same as cost function

(5.8), however, (6.6) is bound by the hard constraints in (6.7). Recall that the Valve

Assistance Problem is fundamentally different to a conventional control problem since it

involves changing a parameter within the plant dynamics (i.e. the valve resistance Vk),

rather than controlling a secondary input signal (i.e. a pump).

6.2 Modified Model Predictive Valve Control (MPVC)

Section 5.2 introduced the concept of MPVC. To reduce computational load, the set of

valve resistances was reduced to a discrete set, V. The controller used a cost function us-

ing the error between reference and measured pressure, and the sample-to-sample change

in valve resistance. However, this approach was not optimal as there was a possibility

that the resistance could remain low for a period of time. This would be unacceptable

for TMD measurements which may be longer than 20 seconds, i.e. constraint (6.7d)

would not be adhered to. The modified MPVC adjusts the original sample-to-sample

change in resistance, to one that restricts changes from a maximum value.
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Definition 6.3 (Model Predictive Valve Control). The Valve Assistance Problem (6.6)

with constraints (6.7) is solved by computing the sequence of valve resistances V̄ =

(V1, V2, · · · , VN ) that minimise the finite horizon cost function

arg min J(V̄ ), J(V̄ ) :=
N∑
i=1

(ri − Pi)
2Φi + (Vmax − Vi)

2Ψi (6.8)

where Φi and Ψi are positive definite and positive semi-definite scalar weights respec-

tively. This is subject to dynamics (6.1)-(6.5), the constraint that Vi is taken from a set

of pre-defined valve resistances, i.e.

Vi ∈ V , V = {v1, , v2, · · · , vn}, Vmin ≤ vi ≤ Vmax, (6.9)

and the remaining constraint (6.7a).

To solve (6.8), MPVC replaces it with the receding horizon approximation (i.e. stage

cost)

arg min J(V̄k), J(V̄k) :=

k+m−1∑
i=k

(ri − Pi)
2Φi + (Vmax − Vi)

2Ψi (6.10)

subject to dynamics (6.1)-(6.5) and constraints (6.7a), (6.9). This is computed at each

sample k. Here m is the prediction horizon, and the stage valve resistance sequence

on sample k is V̄k = (Vk, Vk+1, · · · , Vk+m). The first element of V̄k is then applied:

Vk = [1 0 · · · 0]V̄k.

The cost function (5.10) used in the first approach in Chapter 5 is shown below

argmin J(V̄k), J(V̄k) :=
k+m−1∑
i=k

(ri − yi)
2Qi + (Vi−1 − Vi)

2Ri

Comparing this to the updated version in (6.10), the update still considers the minimi-

sation of the tracking error as part of the cost. However, the cost no longer penalises

sample-to-sample changes in valve resistance, but penalises the difference in valve re-

sistance from a maximum. The original sample-to-sample change penalisation led to a

low resistance being selected for longer periods of time than would be necessary during

simulation. This was acceptable in simulation, but if applied in practice, a person would

run out of breath within a few seconds. This would make the control efforts non-viable

for use during concurrent LPP and TMD measurements.

The overall updated MPVC system is shown in Figure 6.3. Computing cost function

(6.10) requires the current state xk within system (6.5). This is not measurable, but

an approximation, x̂k, can be computed using the Time-Varying Kalman Filter system
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Figure 6.3: Block diagram of the MPVC system where r is the pressure profile
input and x̂ is the estimated plant state.

[51], given by

Mk = SkC
⊤(Vk)(C(Vk)SkC

⊤(Vk) + λm)−1,

x̂k = x̂k +Mk(Pk − C(Vk)x̂k),

Sk = (I −MkC(Vk))Sk,

x̂k+1 = A(Vk)x̂k +B(Vk)rk,

Sk+1 = A(Vk)SkA
⊤(Vk) +B(Vk)µpB

⊤(Vk),

(6.11)

with initial values x̂0 = 0 and S0 = BVmaxµpB
⊤
Vmax

. Here Mk is the Kalman gain matrix,

Sk is the state error covariance matrix, λm is the measurement noise covariance matrix,

and µp is the process noise covariance matrix. Within system (6.11), Pk is the measured

pressure, rk is the known reference profile value, and Vk is the valve resistance value at

sample k.

The Kalman Filter equations shown in (6.11) have the same functionality as the equa-

tions in (5.16). The differences are purely notational. In order not to confuse Rm and

Qp (i.e. the measurement noise and process noise covariance matrices), with R and Q

(i.e. the airway resistance and airflow), the matrix notations have been changed to λm

and µp respectively. Additionally, state-space matrices A, B, and C have been changed

to A(Vk), B(Vk), and C(Vk) to show their sample-to-sample variability.

Solving (6.10) (subject to dynamics (6.5), constraints (6.7), and Vk ∈ V) on each sample

k is a non-convex problem and can be addressed using an exhaustive search (specialist

solvers such as non-linear or integer programming can also be used).

The cost (6.10) can be written in matrix form as

J(V̄k) = (r⃗k − P⃗k)⊤Φ̄(r⃗k − P⃗k)

+ (Vmax − V̄k)⊤Ψ̄(Vmax − V̄k)
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where r⃗k = [rk, rk+1, · · · , rk+m]⊤, P⃗k = [Pk, Pk+1, · · · , Pk+m]⊤, V̄max = [Vmax, · · · , Vmax]⊤,

Φ̄ = diag{Φ, · · · ,Φ}, Ψ̄ = diag{Ψ, · · · ,Ψ}, and

P⃗k = Γ(V̄k)r⃗k + Ξ(V̄k)x̂k (6.12)

with

Γ(V̄k) =



0 0 · · · 0 0

γ(1, 0) 0 · · · 0 0

γ(2, 0) γ(2, 1) · · · 0 0
...

...
. . .

...
...

γ(m, 0) γ(m, 1) · · · γ(m,m− 1) 0


Ξ(V̄k) = [ξ(0), ξ(1), · · · , ξ(m)]⊤

where

γ(a, b) := C(Vk+a)A(Vk+a−1) × · · · × A(Vk+b+1)B(Vk+b)

and

ξ(a) :=

{
C(Vk), for a = 0

C(Vk+a)A(Vk+a−1) · · ·A(Vk), otherwise.

This is the same matrix form as the conventional MPC tracking solution shown in

Appendix B but in this instance incorporates the parameter-varying component of the

system.

6.3 Modified Parameter Identification

The system parameters within (6.1)-(6.5) must be identified using a procedure suitable

for clinical research application. The initial attempt in Chapter 5 using the ARMAX

solution created a restrictive form of assumed external disturbance. Therefore, a more

general procedure is proposed below that removes assumptions on the system distur-

bances.

Definition 6.4 (Identification Problem). Consider the parameter-varying discrete closed-

loop system shown in Figure 6.2b with dynamics (6.1)-(6.5). Given a set of sampled

experimental input-output data {r̃i, P̃i}i=1,··· ,N , and corresponding valve resistance se-

quence Ṽ = (Ṽ1, Ṽ2, · · · , ṼN ), the identification problem is to compute the parameter

vector θ̂ containing all the unknown parameters within K, G, and H. This corresponds
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to the minimisation problem

min
θ̂

N∑
k=1

(P̃k − Pk)2 (6.13)

where θ contains all unknown coefficients of FP , K, G, and H, subject to dynamics

(6.1)-(6.5) with input r̃ and valve sequence vector Ṽ .

The system parameters can then be identified by simulating the model across an ap-

propriate range of parameters and finding the minimum of (6.13). For example, an

appropriate range of resistance, R, would be between 1 and 20. There is always flow

resistance in the airways meaning it is not possible for R to be 0, and values above 20

would mean respiratory pathologies are present in which case the person should not be

performing the tests.

6.4 Simulation Results and Discussion

6.4.1 Model Structure Selection and Simulation

Since the tracking task is reactive (i.e. the participant cannot see the upcoming reference

and possible changes), the predictive component FP can be set equal to a perception

delay of 0.2s, corresponding to the average human response time to a sensory stimulus

[53]. Based on established models of human motor control [50] K and H are chosen

to realise a proportional-integral feedback controller (with respective gains Kp and Ki).

An additional delay is incorporated into K to account for the decision delay of 0.1s.

This selection leads to the forms:

AFP =



0 0 · · · 0

1 0
. . .

. . .
...

0 1
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


, BFP =



1

0

0
...

0


,

CFP =
[
0 0 0 · · · 1

]
(6.14)
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and

AK =



0 0 · · · 0 0

1 0
. . .

. . .
...

...

0 1
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...

0 · · · 0 1 0
...

0 · · · · · · · · · Ts 1


, BK =



1

0

0
...

0


,

CK =
[
0 · · · 0 Kp Ki

]
. (6.15)

Accepted values of L fall between 0.001 and 0.01 and have negligible effect on the tracking

response, therefore will be omitted from the G dynamics. Additionally, the review of

models in Chapter 3.3 made it clear that inertance is a respiratory component that is

more prominent in high frequency oscillatory airflow between 5-20 Hz. During forced

expiration in this research, the dominant frequencies of the oscillations and pressure

changes are lower than 5Hz.

Therefore the overall closed-loop dynamics are given by state-space system (6.5) with

A(Vk) =



0 0 · · · · · · · · · 0 −Vk
R+Vk

1 0
. . .

. . .
. . .

. . . 0

0 1
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
... · · · 0 1 0

. . .
...

... · · · · · · 0 Ts 1 0

0 · · · · · · 0 KpTs KiTs exp
(

−Ts
(R+Vk)Ca

)


B(Vk) =

[
1 0 · · · 0

]⊤
, C(Vk) =

[
0 · · · 0 Vk

R+Vk

]
(6.16)

Lung compliance, Ca is set to 0.1 L/cmH2O as this value accurately fits all healthy sub-

jects [45]. The search parameter vector within (6.13) therefore becomes θ̂ = (R,Kp,Ki).

Chapter 5 presented the simplest model which relied on the RLC circuit dynamics in

G and linear gain in K to produce the model response. This led to values of L, R,

and V that were less realistic. The introduction of a proportional-integral (PI) feedback

controller allows for more realistic values of L, R and V . For simulation, the parameters

in θ̂ are selected to be R = 5 cmH2O, Kp = 7, and Ki = 3 based on the data in Figure

4.2b. Figure 6.4 shows simulations of the model’s response to a reference change at

different valve resistances. These responses are scalable, i.e. if the reference change

was larger the overshoot would be proportionally larger. For example, if the reference

changes from 0 to 10 cmH2O, the peak pressures in Figure 6.4 would be (a) 11 cmH2O,

(b) 12 cmH2O, and (c) 13 cmH2O. The responses are are also translatable, i.e. the
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(a) (b)

(c)

Figure 6.4: Simulated responses to a reference unit step change with a valve
resistance of:
(a) 20 cmH2O/L/s
(b) 80 cmH2O/L/s
(c) 1000 cmH2O/L/s.

overshoot would be the same for a reference change from 0 to 10 cmH2O as it would be

for a reference change from 10 to 20 cmH2O.

Figure 6.5 shows the simulated response to a valve resistance step-change when tracking

a constant pressure reference. These responses are proportional to the reference that is

being tracked. So a resistance step-change from 1000 to 80 cmH2O would reduce the

generated pressure by ≈6% while a resistance step-change from 1000 to 20 cmH2O would

reduce the the generated pressure by ≈20%. This is dependent on the airway resistance

parameter, R, in the closed-loop state-space matrices in (6.16).

6.4.2 Control

The MPVC scheme was tested in simulation alongside in vivo preliminary tests. The

measurement sampling frequency was set at 100Hz (Ts = 0.01s) to match that of clinical
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(a) (b)

Figure 6.5: Simulated responses at a constant pressure reference to a valve
resistance change of:
(a) 1000 cmH2O/L/s to 20 cmH2O/L/s
(b) 1000 cmH2O/L/s to 80 cmH2O/L/s.

TMD measurements and to adhere to the specification presented in Section 4.2.1. The in

vivo application indicated that a maximum of 2 computations could be performed in the

0.01s time period. This would not be sufficient for practical application of the controller.

The control frequency was therefore set to 10Hz i.e. applying a new control input every

0.1s. A maximum of 100 control computations could be performed in the control-time

sampling period. To ensure the maximum number of MPVC computations could be per-

formed, the prediction horizon was set to 5 (including the current control-time sample)

and number of possible valve resistances set to 3 to allow 81 control computations per

sample (35−1).

Based on the in vivo testing, the selected valve resistance values were determined to

comprise: a value to release pressure; a value to assist the participant in decreasing lung

pressure; a maximum value of resistance which does not allow glottal closure. Based on

the testing, this resulted in the permissible set of valve resistances V := {80, 160, 1000}.

Solving the non-convex MPVC problem (6.10) is then achieved by evaluating the stage

cost J for all |V|m possible valve resistance sequences. The controller then selects the

lowest stage cost and applies the first element of solution V̄k.

Simulations showed a 3-6% improvement in tracking error with no noise and a 3-10%

improvement with additional Gaussian noise. Figure 6.6 shows how the valve resistance

changes during the measurement period and the corresponding response of the model

to the reference and resistance changes. The key observation to note is when the valve

resistance changes from the maximum resistance (1000 cmH2O/L/s). The drop in resis-

tances mostly correspond to the necessity to reduce pressure during an overshoot and

during a pressure reference drop. The drop in resistance before the 8-second mark is

an attempt from the controller to increase the pressure when the reference changes at 8

seconds.
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Figure 6.6: Graph showing the model’s tracking response (blue) of the reference
(left y-axis), with the corresponding resistance values (green, right y-axis).

6.4.3 Identification

The identification procedure was presented in Section 6.3 attempting to minimise cost

function (6.13). The search space must have a suitable range for each parameter in θ̂

to ensure all plausible model iterations are explored. Therefore, for both simulation

and practical application, the cost function (6.13) is minimised over the search space of

suitable parameters

θ̂ ∈ {(R,Kp,Ki) | R ∈ {1, 2, · · · , 20},Kp ∈ {1, 2, · · · , 20},

Ki ∈ {0, 1, · · · , 20}}. (6.17)

Figure 6.7 shows the simulated response with no noise and the identified model’s re-

sponse. Figures 6.8 and 6.9 show the same simulated response as in Figure 6.7 but with

minor and moderate Gaussian noise respectively added to the output. The simulated

data is filtered to reduce measurement noise before the identification procedure is per-

formed. The ARMAX identification process in Section 5.3 proved to be unsuccessful

when a randomised Gaussian noise was added to the output of the simulated response.

This is due to the assumption that the measured noise has a structure similar to the sys-

tem dynamics and therefore has an implicit solution. As Gaussian noise is randomised,

the solution is not implicit and makes the identification non-convex. However, the sim-

plified search algorithm in Section 6.3 can be used to compute an average cost across

multiple data sets. This means that the cost function is taken for each model output

across all data sets and the minimum of the combined cost functions (i.e. one for each

data set) is computed. The more general approach allows for all possibilities of model
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to be explored and the best fit model across the data sets is selected. A benefit of this

is that measurement noise (the remnants after filtering) has a lower impact than if the

identification process was performed on singular data sets.

(a) (b)

Figure 6.7: Identified model (blue) compared to simulated data (red).

(a) (b)

Figure 6.8: Identified model (blue) compared to simulated data with minor
Gaussian noise (red).

Figures 6.7, 6.8, and 6.9 demonstrate that the identification procedure is viable for

practical application as it can adjust to the noisy data. The procedure was performed

on multiple simulated responses (i.e. across a significant range of θ̂ parameters) and

the identification procedure correctly identified the θ̂ parameters with an accuracy of

≈70%. However, the incorrectly identified models had parameters within three units of

the correct value a further ≈73% of the time (i.e. 73% of the remaining 30%). This means

that an appropriate model was identified ≈92% of the time. The remaining inaccurate

models were due to poor data with excessive noise that would not be considered viable

for use in the identification procedure if taken during practical application.
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(a) (b)

Figure 6.9: Identified model (blue) compared to simulated data with moderate
Gaussian noise (red).

6.5 Experimental Application

The simulation results in Section 6.4 showed that the modified model structure could

produce similar overshoot and tracking dynamics to the real data in Figure 4.2b. The

controller application showed that the resistance of the valve only changed at necessary

points such as to reduce pressure or to encourage an increase in pressure. The use

of a search identification procedure removed assumptions of the noise dynamics made

in Chapter 5 and therefore improved the accuracy of the procedure when noise was

present in the identification data. This section applies the model, controller and iden-

tification procedure in practical experimentation on 10 healthy participants following

approval from the University of Southampton ethical standards committee (ERGO/F-

PSE/62619). The controller developed in Section 6.2 is compared against comparative

proportional and integral forms of control. Additionally, two versions of the Kalman

Filter are used for MPVC to observe differences in control dependent on assumptions

made about the measurement data.

6.5.1 Comparative Control Methods

MPVC provides a highly accurate solution to the Valve Assistance Problem (Definition

6.2), however, simpler methods may also provide potential solutions. Based on the review

in Section 3.2 and following summary in Section 4.3, traditional controllers cannot be

directly applied to this parameter control problem, since the controller is adjusting

an internal parameter of the system (V ) rather than an input signal. However, they

motivate simple structure approaches such as PID. To establish its applicability, consider
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the dynamics shown in Figure 6.1b

Pl(t) = L
dQ(t)

dt
+ (R+ V (t))Q(t) +

1

Ca

∫
Q(t), (6.18)

P (t) = Q(t)V (t) (6.19)

which, assuming the rate of change of airflow is small, simplify to

Pl(t) −
1

Ca

∫
Q(t) = RP (t)/V (t) + P (t) (6.20)

⇒ P (t) =
aV (t)

R+ V (t)
(6.21)

around an operating point a = Pl− 1
Ca

∫
Q(t). Since a and R are positive, the dynamics

V (t) 7→ P (t) comprise a smooth, monotonically increasing function that passes through

(0, 0), with an amplitude that depends on the flow volume. This monotone relationship

suggests that a PID-type control action would effectively reduce the error ek = rk −Pk.

This motivates implementing a proportional controller of the form

Vk = Ve0 −Kpeek (6.22)

where Ve0 is a resistance offset that moves the system to a pressure operating point

concurrent to the r operating point. Kpe is set such that constraint (6.7b) is adhered

to. A drawback to proportional control is possible valve resistance oscillation due to

rapid pressure changes. For example, when the reference pressure has a step decrease,

the error will be significantly negative. This will cause the valve to open in order to

drop the generated pressure quickly. However, this pressure drop will cause the valve to

close up to increase the resistance. This can happen multiple times in a time frame of

≈ 0.5 − 1s which is the cause of the oscillations. Large pressure drops may also cause

a significant drop in valve resistance creating a high airflow, causing the participant to

run out of air in their lungs more quickly.

These issues can be addressed using integral control, which amalgamates valve resistance

over time depending on error ek, taking the form

Vk = Ve0 −Kie

k∑
i=kec

ei (6.23)

with limits Vmin and Vmax. Here Kie is the integral coefficient of the error and kec is

the time index when the error most recently changed sign.
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6.5.2 Valve Control System

In the preceding sections it has been assumed that the valve resistance, Vk, can be

directly set at each time instant k by the controller. However, in reality, the controlled

variable is a pulse-width modulation (PWM) duty cycle sent to the valve, which affects

the airflow through the valve (thus the valve resistance) in the following indirect manner:

- the PWM signal, ρ, dictates the magnitude of a proportional current (gain κ) that

is applied to the valve;

- the resultant current, κρ, changes the flow coefficient, Kv, of the valve by actuating

the valve position. These two variables are related by a static non-linear function,

Kv = η(κρ), which includes hysteresis;

- the value of Kv relates the pressure and flow via Kv = Q/
√
P .

A resistance-tuning controller is therefore needed to continually adjust the PWM duty

cycle signal, ρ, such that the required valve resistance, Vk, is achieved. This is done by

measuring the pressure value Pk, and computing the necessary flow rate, denoted Qr,k,

that achieves Vk at every sample. Then a proportional control loop (gain Kρ) is applied

to force Qk to track this Qr,k. The resulting controller is shown in Figure 6.10.

Figure 6.10: Block diagram of the resistance-tuning controller.

The resistance-tuning controller is applied at the same frequency as the measurement

sampling frequency of 100Hz. No results were collected to show this controller’s function.

However, observations were made by the author in which the tuning controller adjusted

the resistance to within 5% of the required valve resistance in ≤ 4 sampling periods (i.e.

≤ 0.04 seconds).

6.5.3 Procedure

During testing, all participants were seated in an upright position and used the same

equipment (apart from the disposable mouthpieces and filters) in a standardised position.

Prior to testing, the pressure and airflow sensors were calibrated by placing them on a

flat surface as shown in Figure 4.3 and applying an offset to produce zero-readings.
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6.5.4 Identification Data Collection

The next step is to capture the dynamics of the system using the identification procedure

in Section 6.3. This requires that the pressure sequences {r̃i}i=1,··· ,N and corresponding

valve resistance sequences {Ṽ }i=1,··· ,N are sufficiently exciting yet short enough to be

practically feasible.

The identification data set is constructed by amalgamating 24 separate identification

tests, each lasting at least 2 seconds. The first set of 12 tests capture the participant’s

response to a step reduction in valve resistance, while they attempt to track a constant

reference pressure (such as in Figure 6.5). The reference value rid, is taken from the set

{10, 20, 30} with units cmH2O. The valve is initially closed (V = ∞), and the participant

is required to reach the value of rid. The valve is then opened to a specified resistance

Vid taken from the set {20, 40, 60, 80} with units cmH2O/L/s. Measurements begin and

the participant is required to get the pressure back up to rid as quickly as possible (see

Figure 6.12a).

The second set of 12 tests capture the participant’s response to a step increase in pres-

sure, starting at a pressure of P = 0 cmH2O (such as in Figure 6.4). Once the valve

opens, they have to reach the reference pressure rid as quickly as possible and settle (see

Figure 6.12b). The tests are performed with the same combination of references (rid)

and resistances (Vid) as the first procedure.

The 24 sets of data are then grouped according to the test procedure and valve resistance

applied. For each test and resistance level the data are normalised across the three

reference pressures and an average is taken. This produces eight groups (two tests

types, four resistance values of Vid each). These eight data sets are used for identification

purposes.

This normalisation is possible since the same change in Vk occurs at each pressure

reference r, the dynamics (6.16) remain the same thus superposition applies. Therefore

the output can be scaled by dividing by the pressure reference level. Taking an average

of each of the eight groups reduces the number of sets used to compare against during

identification.

The eight averaged data sets are combined to form the overall set {r̃i, P̃i}i=1,··· ,N ,

{Ṽ }i=1,··· ,N . Then cost function (6.13) is minimised over the same search space of

suitable parameters in Section 6.4.3

θ̂ ∈ {(R,Kp,Ki) | R ∈ {1, 2, · · · , 20},Kp ∈ {1, 2, · · · , 20},

Ki ∈ {0, 1, · · · , 20}}. (6.24)
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To assess how closely the resulting model fits a measured data set {r̃, P̃ , Ṽ }, the per-

centage accuracy is computed as(
1 −

∑N
i=1(P̃i − Pi)

2∑N
i=1 P̃

2
i

)
× 100 (6.25)

where P̃ is the measured pressure, and P is the output of model (6.1)-(6.5) with input

{r̃, Ṽ }. This will be termed the fitting accuracy when using identification data, and

prediction accuracy when using any other data.

6.5.5 Control Application

Five control schemes were tested with each participant. The first approach employs a

constant valve resistance. This replicates the resistance of the red cap in the original

clinical research setup, and is therefore the standard experimental approach. This is the

baseline approach to LPP tracking.

The second approach is the discrete integral controller presented in Section 6.5.1. This

takes the form (6.23) but the gains Ve0 and Kie are adapted such that

Vk =


Vk−1 − 20, ek < −2,

160, −2 ≤ ek ≤ 2,

Vk−1 + 20, ek > 2.

The third approach is the discrete proportional controller (6.22), whose gains Ve0 and

Kpe are adapted such that

Vk =



20, ek ≤ −10,

40, −10 < ek ≤ −8,

60, −8 < ek ≤ −5,

80, −5 < ek ≤ −3,

160, −3 < ek ≤ 5,

300, 5 < ek ≤ 10,

1000, ek > 10.

The choice of gains effectively limits the control action to prevent valve oscillation or

high airflow.

The fourth and fifth approaches use MPVC with different Kalman Filter covariance

scalar parameters, λm and µp, within (6.11).
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As the ratio µp/λm increases, the process noise assumes more variance compared to the

measurement noise. This has the effect of placing more reliance on the measurement

data compared to the model in computing the estimated state. Modifying the ratio has

a significant effect on the overall control action.

Both MPVC control approaches use a covariance of λm = 1. However, the fourth and

fifth control approaches use µp = 0.1 and µp = 1 respectively.

6.5.6 Pressure Profiles

Participants were required to perform 30 pressure tracking tests in total. These com-

prised six pressure profiles (cmH2O), repeated five times (each with a different con-

troller). The six profiles were composed of random steps. Each step size was a multiple

of a fixed amplitude ∆r, and had a duration of 3 seconds. The profile had to be con-

tained within an overall pressure range (based on constraint (6.7a)). The parameters

used to construct each profile type are as follows:

a) 10 ≤ r ≤ 30, ∆r = 5

b) 10 ≤ r ≤ 30, ∆r = 10

c) 10 ≤ r ≤ 40, ∆r = 5

d) 10 ≤ r ≤ 40, ∆r = 10

e) 10 ≤ r ≤ 50, ∆r = 5

f) 10 ≤ r ≤ 50, ∆r = 10

In application, the step sizes are randomised so that participants cannot predict them.

Similarly, the order of the controllers is randomised to provide an unbiased assessment of

the ability of each controller. Figure 6.11 shows an example of a participant’s response

to a pressure profile. N.B. The profiles used in this research do not correspond to the

profiles that would be used alongside TMD measurements. The profiles for this research

have been chosen to avoid participant prediction, and to test the controllers across the

full range of pressures and pressure changes.

Two safety protocols are employed to identify the lung vital capacity and pressure con-

straints in (6.7). The vital capacity is measured for each participant 3 times and an

average is taken. The limit vc is then set around 1 litre less than their vital capacity.

There is an in-built automatic cut-off when this limit is reached. Participants are also

asked to exhale until they reach a maximum pressure that they feel is exerting but still

comfortable.
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Figure 6.11: Example tracking response (profile type (e)) with constant valve
resistance. Black points represent the first point where the reference has been
reached after a step change. Green points represent peak overshoot/undershoot.

6.6 Practical Results and Discussion

Following University of Southampton ethics approval (ERGO/FPSE/62619), 10 healthy

participants (7 men and 3 women, age range 20-56) with no underlying health conditions

were recruited onto this study. The participants will be referred to as P1-P10.

6.6.1 Model Identification

Each participant completed the identification and control tests described in Section 6.5.

Figures 6.12a and 6.12b show examples of the measured tracking responses and the

model tracking responses for the two types of identification test. Figure 6.13 presents

the model identification results in the form of box and whisker plots showing the data

fitting accuracy for each participant. Three measures of model fitting accuracy (MFA)

are shown:

MFA1: Fitting accuracy of the model to the averaged identification data (8 data sets,

2 second measurement period, see Section 6.5.4);

MFA2: Prediction accuracy of the model to all identification data (24 data sets, 2

second measurement period);

MFA3: Prediction accuracy of the model to all control data (30 data sets, 10-50 second

measurement period).
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(a) (b)

Figure 6.12: (a) Sample tracking response of first identification procedure (rid =
30, Vid = 20)
(b) Sample tracking response of second identification procedure (rid = 10, Vid =
60).
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Figure 6.13: Box and whisker plots of model fitting and prediction accuracies of identification and control data corresponding to each
participant. Columns labelled: 1 represent MFA1; 2 represent MFA2; 3 represent MFA3. The central line of the boxes represents the
median and the ‘×’ mark represents the mean.
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For MFA1, the average of the medians, means, and IQRs over all participants are 92.3%,

91.8%, and 4.0% respectively. This shows that the participants had good consistency

after a short practice period, it also shows that the model and identification process

is effective for practical use. MFA1 is highest as these data were used to identify the

model.

For MFA2, the combined average of the medians, means and IQRs over all participants

are 87.6%, 87.0% and 6.8% respectively. This not only shows that the model is accurate

but also that the participants are relatively consistent in their pressure reference tracking

and response to specific resistance changes.

MFA3 measures the model accuracy during the participants’ controlled tracking results.

Figure 6.14a shows the same data as in Figure 6.11 but with the predicted output of

the identified model overlaid in blue. The combined average of the medians, means and

IQRs over all participants are 84.9%, 84.6% and 5.3% respectively. This further confirms

the validity of the model and identification procedure.

6.6.2 Control

For control application, eight of the ten participants were comfortable generating a

pressure above 50 cmH2O, the other two participants generated maximums of 40 and

45 cmH2O. In these cases the pressure profile ranges in Section 6.5.6 were adjusted to

5-25, 10-30, and 5-35 cmH2O and 10-30, 5-35, and 10-40 cmH2O respectively.

Figure 6.14a shows an example of the identified model’s ability to reproduce the mea-

sured pressure generated by a participant during a LPP test with a constant valve

resistance. Figure 6.14b shows an example of a participant’s LPP tracking ability with

MPVC assistance.

The following metrics were computed for each profile tracking test: average airflow;

2-norm of profile tracking error; time taken to reach the profile pressure after a step-

down (labelled ‘fall time’); 2-norm of profile tracking error after a step-up or step-down;

absolute value of overshoot/undershoot to a step change in proportion to the magnitude

of the step change. These metrics are defined in more detail below.

Figures 6.15a - 6.15e show box and whisker plots of each metric. Each box and whisker

corresponds to the pooled data from all participants for a particular control type and is

labelled on the plots as follows:

1) Constant valve resistance

2) Proportional-integral (PI)
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3) Proportional

4) MPVC with Kalman parameters λm = 1, µp = 0.1 (MPVC1)

5) MPVC with Kalman parameters λm = 1, µp = 1 (MPVC2).

As previously described, Control Type 1 (constant valve resistance) is the baseline ap-

proach against which Control Types 2-5 are compared below.

(a) (b)

Figure 6.14: (a) Sample tracking response with constant valve resistance (Figure
6.11, profile type (e)) with predicted model output overlaid
(b) Sample tracking response with MPVC assistance (profile type (e)).
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(a) (b)

(c) (d)

(e)

Figure 6.15: Box and whisker plots of combined:
(a) average airflow data;
(b) error norm data;
(c) fall time data;
(d) rise/fall 2-norm error data;
(e) absolute proportional overshoot/undershoot data,
for each control type. Control types are defined in Section 6.6.2.
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Table 6.1: Table of medians and means from the metrics in Figures 6.15a-6.15e

Control Combined Statistical Data
Method Average Airflow (L/s) 2-Norm Error Fall Time (s) R/F2-NE* APO/U**

Median Mean Median Mean Median Mean Median Mean Median Mean
Constant Resistance 0.1307 0.1378 0.2730 0.2677 0.6600 0.7301 0.3791 0.5155 0.2285 0.3596
Proportional-Integral 0.0988 0.1007 0.2647 0.2681 0.6400 0.6620 0.3999 0.5364 0.2340 0.3765

Proportional 0.1488 0.1543 0.2347 0.2395 0.5500 0.6204 0.3355 0.4378 0.2400 0.3445
MPVC1 0.0471 0.0498 0.2130 0.2260 0.5200 0.5660 0.3115 0.4277 0.1935 0.3073
MPVC2 0.0495 0.0512 0.2251 0.2259 0.5600 0.6088 0.3168 0.4309 0.1780 0.2729

* R/F2-NE refers to Rise/Fall 2-Norm Error
** APO/U refers to Absolute Proportional Over/Undershoot
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Table 6.2: Table of ranges and number of data points, with outliers in brackets, from the metrics in Figures 6.15a-6.15e

Control Combined Statistical Data
Method Average Airflow (L/s) 2-Norm Error Fall Time (s) R/F2-NE* APO/U**

Range
Constant Resistance 0.0530-0.2368 0.1320-0.4641 0-2.55 0.0110-3.0386 0-2.3860
Proportional-Integral 0.0339-0.2189 0.1656-0.4206 0-2.63 0.0106-3.1497 0.0003-4.9780

Proportional 0.0656-0.2886 0.1351-0.3607 0-2.55 0.0020-1.4428 0.0023-2.5640
MPVC1 0.0176-0.1026 0.1466-0.3636 0-1.71 0.0081-3.2357 0-2.5720
MPVC2 0.0172-0.0838 0.1089-0.3435 0-1.87 0.0022-2.2928 0.0015-3.3800

Number of Data Points
Constant Resistance 60(0) 60(3) 151(15) 422(18) 422(24)
Proportional-Integral 60(0) 60(0) 187(16) 461(21) 461(30)

Proportional 60(2) 60(0) 143(13) 384(11) 384(17)
MPVC1 60(1) 60(0) 200(11) 506(23) 506(27)
MPVC2 60(0) 60(0) 197(14) 517(25) 517(31)

* R/F2-NE refers to Rise/Fall 2-Norm Error
** APO/U refers to Absolute Proportional Over/Undershoot
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Table 6.1 shows the medians and means and Table 6.2 presents the ranges and number

of data points from Figures 6.15a-6.15e. In Table 6.1, the highlighted values are the

most desirable values.

To ensure the vital capacity constraint (6.7c) and time constraint (6.7d) are both met,

average airflow must be less than 0.15 L/s (assuming a minimum vital capacity of 3

litres). PI control shows a small reduction in airflow, proportional control shows a slight

increase and both MPVC approaches show a significant decrease as well as a smaller

range. Lower average airflow corresponds to longer measurement periods, therefore

MPVC is the best approach for this metric, providing a 64% decrease in average airflow.

The 2-norm of the tracking error indicates how well the participants are able to track

the profile; the lower the 2-norm, the better the tracking. PI control shows similar levels

of tracking error to the constant valve resistance case, but both proportional and MPVC

show a reduction in tracking error with the greatest reduction of 22% shown in MPVC1.

Fall time refers to the time it takes for a participant to reach the new pressure reference

value after a step-down change (e.g. black points in Figure 6.11). PI control shows a

similar fall time to constant valve resistance, proportional and MPVC2 show a significant

decrease by about 0.1s, while MPVC1 shows the biggest improvement with a decrease

of 0.15s (22% reduction).

The 2-norm of the rise/fall error refers to the 2-norm tracking error in the time window

between a step change in reference and when the pressure reference is reached (i.e.

same time window as rise/fall time). PI control shows an increase in the error, whilst

proportional control and both MPVC approaches decrease the error. MPVC1 shows the

most significant reduction (18%) in rise/fall error.

Absolute proportional overshoot/undershoot refers to the maximum error between pro-

file and measured pressure for one second after the reference has initially been reached

(green points in Figure 6.11). PI and proportional control show a similar overshoot/un-

dershoot metric while both MPVC approaches show a reduction with MPVC2 showing

the greatest reduction (24%).

6.7 Summary

The high median and mean values of MFA1-3 show that the model and the identification

process can accurately model the healthy adult human response to pressure profiles

whilst maintaining simplicity in design and efficiency in identification.

Inspection of the data revealed that most of the percentage accuracies below 75% were

associated with reaction time (the combined perception and decision delays discussed

in Section 6.4.1) to a step increase in the reference profile. The model assumed a
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0.3 second reaction time, and although most of the reaction delays were between 0.25

and 0.35, some were longer than 0.45 seconds. These longer reactions create a large

error between measured and predicted output thus significantly reducing the prediction

accuracy (e.g. note the red crosses for P5 MFA3 and P7/P8 MFA2). This is an issue

that could be satisfactorily resolved in future work by adding these delays into the

identification process. Reaction time was not incorporated into the identification vector

θ̂ in this research as the computational load would have been greatly increased, thus

extending the identification time making it impractical with current hardware.

Across all metrics shown in Figures 6.15a-6.15e, MPVC demonstrates a clear improve-

ment in performance and reduction in tracking error when compared to not only the

existing clinical research setup, but also proportional control and PI control of the valve.

Most significantly, it reduces the 2-norm of the tracking error by 22% and the absolute

proportional overshoot/undershoot by 24%. This shows that the accuracy of the partici-

pants tracking ability both across the profile and in pressure changes is notably improved

with assistance from MPVC. This confirms that the model, identification, and control

method could be a viable approach to assist LPP tracking during TMD measurements

in a clinical research environment.

An important positive aspect of this study was the usability of the setup. The prevailing

feedback received from the participants after testing was that with initial instructions

the setup was easy to use and they understood what to do; they were mostly able to

perform the intended actions (except those mentioned at the start of Section 6.6.2);

they found it easier to attain pressures (particularly higher pressures) with MPVC. This

shows that the new setup and MPVC are successful both from a technical perspective

as well as patient experience perspective.





Chapter 7

Conclusions and Future Work

Control of lung and airway pressure is a crucial component of research into intracra-

nial pressure (ICP). The use of lung pressure profile (LPP) testing alongside tympanic

membrane displacement (TMD) measurements could provide a useful means of early

diagnosis of brain pathologies (e.g. tumours). LPP tests involve a patient tracking a

given lung pressure reference. However, currently the patient’s ability may fall short of

the tracking accuracy required.

The addition of pressure control assistance should improve this tracking ability. This

thesis has presented the first control approach to assist airway pressure tracking. It

employs a novel form of model predictive control (MPC) which manipulates an internal

parameter of a model rather than a control input. It controls the airflow out of a hand-

held clinical research breathing setup, via actuation of an integrated valve, during LPP

reference tracking.

This thesis has attempted to develop three novel concepts. The first is the the develop-

ment of a model which can mimic the tracking response of a patient to a LPP reference.

The second is a controller which can actuate a model parameter to improve the track-

ing response. The third is a model identification procedure which can incorporate the

parameter-varying nature of the system to produce an appropriate model.

A simple model was developed which assumed the tracking response relied on the dy-

namics of the model with linear gain of respiratory muscle force. This was unsuccessful

in simulation as the parameters were not realistic values of resistance and inertance.

The model was modified to use more realistic values and used a proportional-integral

gain of respiratory muscle control. Simulation results proved applicability, and practical

experimentation results showed that controlling airflow improves profile tracking by 22%

compared to the original clinical research setup. Model predictive valve control (MPVC)

provided improved assistance across all metrics compared to the baseline and model-free

control methods. Participants stated that MPVC was user-friendly.

105
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This thesis has demonstrated that MPVC improves a person’s tracking ability of a LPP

reference. Future work will expand upon the number of test subjects to further validate

the use of MPVC, with the aim of transferring to a clinical research setting. Additionally,

the diversity of test subjects will also be expanded to include a wider age range and a

range of health conditions, both related to and unrelated to lung, circulatory and brain

physiology.

The analysis of the results showed great promise for the application of MPVC in a

clinical research environment. However, it also indicated that there were some short-

comings to the approach taken in this thesis - the model identification procedure used in

practical experimentation was adequate but could be improved. Future work will incor-

porate reaction time (i.e. delays) into the set of identified parameters. Additionally, the

model could be expanded to incorporate human learning. Participants stated that as

they progressed through the test procedure, they became more confident at generating

the specific lung pressures required of them, even though they could not observe any

upcoming pressure changes.

With regards to control, given the limitation that a pump cannot be used to actively

increase pressure, future work will focus on further reducing overshoot/undershoot. If

the average value for overshoot/undershoot could be reduced to ≈3 cmH2O (or less) of

the reference pressure, then MPVC would be appropriate in a clinical research setting for

LPP tests alongside TMD measurements. Mechanisms to achieve this include: increasing

the prediction horizon; increasing the number of valve resistances; incorporating reaction

time (i.e. delays) into the set of identified parameters; and developing a multiple model

adaptive control strategy to modify the model, based on the reference pressure change.

Future work could also research the possibility of use in other medical disciplines. As

this is a respiratory control setup, applications may include, for example, spirometry in

order to detect pathologies such as asthma or bronchitis. There could also be potential

for use in assessments of physical fitness.

The progression of this research provides a solid foundation for controlling lung pressure

during forced expiration. The aim is that it will eventually be used to develop an

accessible form of non-invasive diagnostics for cranial pathologies.
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Specification Document
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Appendix B

Conventional MPC Framework

A general transfer function takes the form:

y(s)

u(s)
=
bn−1s

n−1 + bn−2s
n−2 + · · · + b1s+ b0

sn + an−1sn−1 + · · · + a1s+ a0
(B.1)

where y is the output and u is the control input.

The transfer function can also be represented as a continuous-time state space model

which takes the form:
ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t) +Dcu(t)
(B.2)

where x is the system state with initial conditions x(t0) = x0, ẋ(t) is the next system

state and Ac, Bc, Cc, Dc are the controller-canonical matrices:

Ac =


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

−a0 −a1 −a2 · · · −an−2 −an−1



Bc =



0

0
...

0

1



Cc =
[
b0 b1 b2 · · · bn−2 bn−1

]
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Dc =
[
0
]

The states space model can also be in discrete-time in the form

xk+1 = Axk +Buk

yk = Cxk +Duk
(B.3)

where k = 0,1,2,... denotes the sample index.

MPC manipulates the control input u. The objective of MPC is to compute the sequence

of control inputs u0, u1, · · · , utmax that minimise the infinite horizon cost equation:

J =
∞∑
k=0

(∆uTk Q̂∆uk + (xk − dk)T R̂(xk − dk)) (B.4)

However, to handle to constraints and non-linear systems, MPC uses a finite horizon

approximation (i.e. stage cost) equation:

J =

k0+N−1∑
k=k0

(∆uTk Q̂∆uk + (xk − dk)T R̂(xk − dk)) (B.5)

where N is the prediction horizon (index value), ∆uk = uk − uk−1 (i.e. the change in

control input variable), xk−dk is the state error norm, and Q̂ and R̂ are the control and

state error weighting coefficients respectively. The prediction horizon is the number of

time indices ahead of the current time index that the controller can predict the system’s

tracking trajectory.

The state predictions can also take the matrix form

x⃗t0 = Gu⃗t0 +Hxt0 (B.6)

with
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G =



0 0 · · · 0 0

B 0 · · · 0 0

AB B · · · 0 0
...

...
. . .

...
...

AN−2B AN−3B · · · B 0


H = [I, A,A2, · · · , AN−1]⊤

Similarly, the output tracking predictions take the matrix form

y⃗t0 = GC u⃗t0 +HCxt0 (B.7)

with

G =



0 0 · · · 0 0

CB 0 · · · 0 0

CAB B · · · 0 0
...

...
. . .

...
...

CAN−2B CAN−3B · · · CB 0


H = [C,CA,CA2, · · · , CAN−1]⊤
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[22] J. H. Dräger and B. Dräger, “The pulmotor: A device for positive pressure venti-

lation,” 1907. Historical documentation.

[23] P. Drinker and L. A. Shaw, “An apparatus for the prolonged administration of

artificial respiration: I. a design for adults and children,” Journal of Clinical Inves-

tigation, vol. 7, no. 2, pp. 229–247, 1929.

[24] G. Goodwin, S. Graebe, and M. Salgado, “Classical pid control,” Control system

design, vol. 240, pp. 157–177, 2001.

[25] F. Tehrani, M. Rogers, T. Lo, T. Malinowski, S. Afuwape, M. Lum, B. Grundl, and

M. Terry, “A dual closed-loop control system for mechanical ventilation,” Journal

of clinical monitoring and computing, vol. 18, pp. 111–129, 2004.

[26] A. C. Lua, K. C. Shi, and L. P. Chua, “Proportional assist ventilation system based

on proportional solenoid valve control,” Medical engineering & physics, vol. 23,

no. 6, pp. 381–389, 2001.

[27] J. Reinders, B. Hunnekens, F. Heck, T. Oomen, and N. van de Wouw, “Adaptive

control for mechanical ventilation for improved pressure support,” IEEE Transac-

tions on Control Systems Technology, vol. 29, no. 1, pp. 180–193, 2020.

[28] S. Yan, H. ZHANG, and L. Zihao, “Mechanical ventilation intelligent control tech-

nology based on fuzzy adaptive pid,” in 2019 IEEE 8th International Conference

on Fluid Power and Mechatronics (FPM), pp. 156–163, IEEE, 2019.

[29] I. M. Mehedi, H. S. Shah, U. M. Al-Saggaf, R. Mansouri, and M. Bettayeb, “Adap-

tive fuzzy sliding mode control of a pressure-controlled artificial ventilator,” Journal

of Healthcare Engineering, vol. 2021, no. 1, p. 1926711, 2021.

[30] H. Hazarika and A. Swarup, “Application of an optimal ilc algorithm for flow rate

tracking of a ventilator system,” in 2020 First IEEE International Conference

on Measurement, Instrumentation, Control and Automation (ICMICA), pp. 1–6,

IEEE, 2020.

[31] S. Sakthiya Ram, C. Kumar, A. Ramesh Kumar, and T. Rajesh, “Hybrid optimiza-

tion techniques based automatic artificial respiration system for corona patient,”

Automatika, vol. 63, no. 2, pp. 226–243, 2022.

[32] T. Nemoto, G. E. Hatzakis, C. W. Thorpe, R. Olivenstein, S. Dial, and J. H.

Bates, “Automatic control of pressure support mechanical ventilation using fuzzy

logic,” American journal of respiratory and critical care medicine, vol. 160, no. 2,

pp. 550–556, 1999.

[33] M. Scheel, A. Berndt, and O. Simanski, “Iterative learning control: An example for

mechanical ventilated patients,” IFAC-PapersOnLine, vol. 48, no. 20, pp. 523–527,

2015.



118 REFERENCES
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