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SUMMARY

The diagnosis of autism is currently based on the developmental history, direct observation of behavior, and
reported symptoms, supplemented by rating scales/interviews/structured observational evaluations—which
is influenced by the clinician’s knowledge and experience—with no established diagnostic biomarkers. A
growing body of research has been conducted over the past decades to improve diagnostic accuracy.
Here, we provide an overview of the current diagnostic assessment process as well as of recent and ongoing
developments to support diagnosis in terms of genetic evaluation, telemedicine, digital technologies, use of
machine learning/artificial intelligence, and research on candidate diagnostic biomarkers. Genetic testing
can meaningfully contribute to the assessment process, but caution is required when interpreting negative
results, and more work is needed to strengthen the transferability of genetic information into clinical practice.
Digital diagnostic and machine-learning-based analyses are emerging as promising approaches, but larger
and more robust studies are needed. To date, there are no available diagnostic biomarkers. Moving forward,
international collaborations may help develop multimodal datasets to identify biomarkers, ensure reproduc-
ibility, and support clinical translation.

INTRODUCTION: DEFINITION AND
CONCEPTUALIZATION OF AUTISM

lytic evidence based on a limited number of studies indicates
that the peak age of onset might occur around the early years of
life,® autism begins much earlier, potentially during prenatal devel-

Autism, characterized by alterations in social interaction/commu-
nication and repetitive behaviors/interes’ts,1 is one of the most
common neurodevelopmental conditions.” Although meta-ana-

opment.** The average age of first diagnosis varies across coun-
tries, with the most recent estimates of median age at the earliest
known diagnosis being 49 months in the United States.® An autism
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diagnosis made in childhood persists in adulthood in a sizable
portion of cases.’

The conceptualization of autism has been constantly evolving,
moving from a narrow initial categorization among the childhood
psychoses to its current, broader definition as a “spectrum” —
i.e., autism spectrum disorder (ASD).%° This evolution reflects ef-
forts to enhance the reliability of the diagnosis while preserving
its validity. However, broadening the construct of autism raises
issues around its boundaries with other neurodevelopmental
conditions and typical development. There have also been con-
cerns that broadening the construct of autism may inflate the
diagnostic rate and hinder the understanding of its causes and
developmental pathways.'°

The latest versions of the two most frequently used classifica-
tion systems in mental health, namely the Diagnostic and Statis-
tical Manual of Mental Disorders (DSM)-5-Text Revision (TR)""
and the International Classification of Diseases and Related
Health Problems (ICD)-11,'? classify ASD within the broader
category of “neurodevelopmental disorders,” with onset of
symptoms usually during the early years of life (Table S1). Both
classification systems require persistent alterations in two core
domains, namely (1) social communication/social interactions
(e.g., struggling to engage in reciprocal conversation) and (2)
restricted, stereotyped, and repetitive patterns of behavior/inter-
ests/activities (e.g., pervasive interest in calendars/dates).

While the current classification systems refer to ASD as a cat-
egorical diagnosis, it has been highlighted that the symptoms of
autism lie on the extreme of a continuous distribution of traits (the
dimensional view). The current conceptualization of autism leads
to a substantial range of clinical variability and impairment in
everyday life functioning, which highlights the need for diag-
nostic approaches that capture specific clinical features of
each individual, to inform personalized management strategies.
Recent classifications stress that ASD behaviors/symptoms can
range from overtly manifest to more subtle, thus only becoming
evident when demands of the context exceed the capacity of the
individual. Notably, even though the symptoms of ASD are ex-
pected to emerge typically in early childhood,'® they may not
become fully manifest until later in life, when social demands
exceed an individual’s capacities.11 Therefore, in some cases,
the diagnosis is made for the first time beyond childhood. As
such, it is essential to appreciate that the clinical diagnosis of
ASD is only appropriate when there are significant impairments
associated with the symptoms, and/or when the individual
makes significant efforts to minimize the impairment associated
with the symptoms and meet expected functioning levels.

Subtle yet important differences exist between the DSM-5-TR
and the ICD-11 criteria in their conceptualization of ASD
(Table S1). The DSM-5-TR diagnostic criteria are more oriented
toward a medical model of brain iliness, specifying the number of
required observable behavioral symptoms needed to identify the
core symptoms and providing descriptions of severity levels. The
ICD-11 moved toward a social model of disability, giving more
emphasis to the inner experience of “diversity” and to the poor
fit between individual’s characteristics and demands by the envi-
ronment.® This reflects the ongoing tendency to move beyond a
medical conceptualization of autism, which sees disabilities as
inherent to the individual, toward a social perspective view
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(i.e., the disability is caused by barriers imposed to the person
by society). This has been prompted by the neurodiversity move-
ment,’? a social justice and self-representative movement stem-
ming from the disability rights, which challenges a narrow med-
ical conceptualization of autism, considering it as the expression
of human diversity. In our view, rather than viewing the medical
and social models of autism as mutually exclusive, blending
them and acknowledging both differences and disability may
be a promising way forward.

There is a substantial variability in the administrative preva-
lence of ASD (i.e., the one that is determined based on adminis-
trative records such as billing records, or other documents that
include an ICD code) across geographic regions. The global
age-standardized prevalence of ASD across countries has
been reported at 0.37% in the most recent estimate from the
Global Burden of Disease.'® However, for instance, about 1 in
36 children with autism were identified in the USA in 2020 as re-
ported by the Centers for Disease Control and Prevention.'® This
variability is likely accounted for by a plethora of factors,
including the lack of an objective diagnostic test, socio-cultural
factors related to variations in cultural acceptance of mental
health conditions, diseases and disorders, variations in digital
methods that allow for rapid and accurate ascertainment of clin-
ical and service records that document ASD diagnosis (i.e., re-
cordkeeping and digital tracking of diagnoses in medical health
systems in some countries is not consistently available, making
accurate tracking challenging), differences in medical training
and awareness of autism among clinical professionals, and dif-
ferences in economic resources required to diagnose and treat
autism. Despite the complexity of these factors, improving the
diagnostic accuracy itself is key, to increase the chances that in-
dividuals with ASD get the right support. To this end, a growing
body of research has been conducted over the past decades.

Here, we provide an overview of the latest clinical frontiers
related to autism diagnostic strategies, focusing on the current
clinical diagnostic assessment process across the lifespan as
well as on recent and ongoing developments in terms of genetic
evaluation, telemedicine, digital technologies, use of machine
learning (ML)/artificial intelligence (Al), and research on candi-
date diagnostic biomarkers. A review of the literature on current
diagnostic models (e.g., traditional center-based multidisci-
plinary assessment vs. single-discipline mentored community
assessments) is beyond the scope of the present article.

Of note, here we use the term “ASD” in line with the formal
current terminology in classification systems and with the major-
ity of published scientific studies. However, currently, other
terms, such as autism spectrum condition or simply autism,
which reflect the influence of the neurodiversity movement, are
also used. By no means does our use of ASD imply that we disre-
gard the needs expressed by this movement.

The present review was not intended as a systematic review
with a pre-specified protocol, including a search strategy and
study quality assessment, but rather as a narrative review. None-
theless, to ensure we did not miss any key studies in the field, we
conducted multiple searches (up to March 28", 2024) in PubMed
using a combination of terms related to autism (or equivalent
terms such as autism spectrum disorder, Asperger’s, pervasive
developmental disorders), diagnosis (or related terms such as
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assessment), and specific terms related to genetics, telemedi-
cine, digital technologies, artificial intelligence/machine learning,
and biomarkers.

ASSESSMENT OF ASD: CURRENT APPROACHES

The assessment and diagnostic process of ASD can be a com-
plex and challenging clinical task. While a multidisciplinary team
approach is recommended, recent guidance suggests that, in
order not to delay access to interventions, a trained healthcare
provider comfortable with the assessment of autism clinical
criteria can make an initial autism diagnosis, particularly when
the diagnosis appears uncomplicated.'”"'®

According to the current conceptualization, the specific aim of
the diagnostic process for ASD is to define whether an individual
meets the behavioral diagnostic criteria for a formal diagnosis,
within the context of a broader neurodevelopmental, behavioral,
medical, and psychosocial assessment.'® To achieve this pur-
pose, information is gathered through (1) a detailed develop-
mental, medical, and psychosocial history, typically obtained
from parents/carers; (2) direct observation of behavior, including
social interactions, communications, and repetitive/stereotyped
behaviors in different settings with familiar and unfamiliar individ-
uals; and (3) subjective description—especially for adolescents
and adults—of one’s inner perception of social functioning and
interests.” A clinical diagnosis of autism could be made by
18-24 months, with early features such as atypicality in (joint)
attention, prelinguistic communication, social engagement,
and sensorimotor processing observable in infancy.?® However,
diagnostic instability has been observed in early life more than at
any other age. For instance, in one study, a diagnosis of ASD es-
tablished at 36 months of age was missed at 18 months in 63%
of cases, while children diagnosed at the age of 18 presented a
stability of diagnosis at 36 months of 93%”' —even though, as
that study sample referred to a group of younger siblings who
were followed regardless of clinical concerns/referral, the study
results may not be representative of the general population with
ASD. Notably, a cohort study of 1,269 toddlers reported an over-
all stability of 0.84 for the autism diagnosis formulated between
12 and 36 months of age, higher than in other clinical groups.®?

While several guidelines (e.g., those from the National Institute
for Health and Care Excellence'®) recommend routine system-
atic monitoring of early development of all children (“develop-
mental surveillance”), the American Academy of Pediatrics
currently recommends standardized universal autism screening
(in addition to developmental surveillance) at 18 and 24 months
using the parent-reported Modified Checklist for Autism in Tod-
dlers. This tool has adequate meta-analytically pooled sensitivity
(0.83, 95% confidence interval [CI] 0.77-0.88) and specificity
(0.94, 0.89-0.97),%° particularly in children aged 18-30 months.

Beyond the screening of autistic symptoms at early age, the
formal diagnostic process based on a combination of structured
and semi-structured tools can improve diagnostic accuracy for
ASD.?* These tools range from checklist/questionnaires for
screening and rapid ascertainment of symptom severity, such
as the Social Communication Questionnaire, to structured diag-
nostic interviews, including the Autism Diagnostic Interview,
Revised (ADI-R), the Developmental, Dimensional and Diag-
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nostic Interview, the Childhood Autism Rating Scale, second
edition (CARS-2), and observational evaluation tools such as
the Autism Diagnostic Observation Schedule, second edition
(ADOS-2) (Table 1). Meta-analytic evidence showed that the
sensitivity and specificity, respectively, of these tools for the
diagnosis of ASD in preschoolers were as follows: ADOS-2:
0.94 (95% CI: 0.89-0.97) and 0.80 (0.68-0.88), CARS: 0.80
(0.61-0.91) and 0.88 (0.64-0.96), and ADI-R: 0.52 (0.32-0.71)
and 0.84 (0.61-0.95).° Overall, the performance of the
ADOS-2 was superior to that of the ADI-R in children and adoles-
cents (<18 years), although only few studies provided a direct
comparison of the diagnostic accuracy of these instruments.
For the ADOS-2, sensitivity and specificity ranged from 0.89 to
0.92 and 0.81 to 0.85, respectively. Studies comparing the accu-
racy of the ADOS-2 in research and clinical settings reported
mixed evidence. Sensitivity and specificity of the ADI-R were
0.75 and 0.82, respectively, with higher specificity in research
samples (research = 0.85, clinical = 0.72), although sparse clin-
ical studies have been conducted to date.?® These findings indi-
cate that relying solely on these tools for the diagnosis can lead
to false positives and negatives. Additional evidence indicates
that diagnoses made with standardized evaluation are more reli-
able across sites and more valid over time than single-clinician
assessments.”’ However, the use of ASD-specific diagnostic
tools is often expensive and time-consuming for mental health
services and requires a formal training of interviewers. Further-
more, even when administered by specifically trained staff, the
various tools have a limited ability to correctly identify individuals
whose diagnosis is more uncertain.?® Crucially, it should be
pointed out that these tools were initially devised to help clini-
cians gather corroborative information, not to replace clinical
judgment or serve as a triage system to determine access to ser-
vices. Indeed, scores on these tools are highly dependent on
how the tools are administered and interpreted, and hence their
administration requires clinical expertise.”®

Animportant challenge in the diagnostic process is delineating
the diagnostic boundaries of ASD. Since autistic traits and/or
features are continuously distributed in the general population,
a fundamental but contentious issue is how the clinical thresh-
olds are established, alongside functional impairment, for the
purpose of a formal diagnosis of ASD.*"

Another important aspect in the assessment of ASD relates to
its interplay with additional neurodevelopmental conditions, im-
pacting more globally on developmental trajectories. The differ-
ential diagnosis with global developmental delay and intellectual
disability is particularly relevant, both for their high frequency and
because they require that autistic features be “weighed” relative
to the overall developmental/functional profile. According to the
DSM-5(TR), the presence of global developmental delay or
intellectual disability excludes a formal diagnosis of ASD, unless
“social communication is below that expected for general
developmental level.” Hence, if all functional domains are
equally delayed or affected, it is unjustified to specifically under-
score deficits in social communication over other deficits by giv-
ing an ASD diagnosis. However, if social interaction and commu-
nication/language development-related dimensions are more
profoundly affected, compared to motor development and over-
all performance, then an ASD diagnosis may be justified,
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Table 1. Examples of standardized instruments for the assessment of autism spectrum disorder

Standardized assessment instruments

Estimate level of verbal and non-verbal development
e Apply at least one verbal and one non-verbal problem-solving
test from a cognitive or developmental assessment

Estimate level of language functioning
o Observe and ask caregivers about complexity of speech
(e.g., few to no words, some words up to simple phrases,
flexible phrases, or fluent)

Assess ASD signs by history and in current daily life
e Gather information from parents or other caregivers
e |f possible, gather information from multiple settings
(e.g., home and school)
Assess ASD signs by observational assessment
e Directly observe and interact with the individual in structured
and unstructured interactive activities appropriate to
developmental level
Estimate level of adaptive functioning
® Ask questions about the individual’s adaptive functioning at
home and in other everyday life settings

brief screening: WASI, SB5 Routing subtests, KBIT, BINS,
INTER-NDA

more specific screening or comprehensive assessment: WPPSI,
WISC, WAIS, DAS, RPM, MSEL, Bayley, M-P-R, PEP, RNDA
brief screening: CELF screening test, PLS screening, CDI

more specific screening or comprehensive assessment:

CELF, PLS, OSEL

brief screening: SRS, SCQ, M-CHAT, AQ, CCC, PAAS,
CAST, ASRS, ASSQ, SCDC

more specific screening or comprehensive assessment:
ADI-R, DISCO, 3-di

brief screening: STAT, SORF, AOSI, CARS, BOSCC, AMSE,
TIDOS

more specific screening or comprehensive assessment:
ADOS

brief screening: SDQ impact supplement, WHODAS
more specific screening or comprehensive assessment:
VABS, ABAS

3-di, Developmental, Dimensional and Diagnostic Interview; ABAS, Adaptive Behavior Assessment System; ADI-R, Autism Diagnostic Interview,
Revised; ADOS, Autism Diagnostic Observation Schedule; AMSE, Autism Mental Status Exam; AOSI, Autism Observation Scale for Infants; AQ,
Autism-Spectrum Quotient; ASRS, Autism Spectrum Rating Scales; ASSQ, Autism Spectrum Screening Questionnaire; Bayley, Bayley Scales of Infant
and Toddler Development; BINS, Bayley Infant Neurodevelopment Screener; BOSCC, Brief Observation of Social Communication Change; CARS,
Childhood Autism Rating Scale; CAST, Childhood Autism Spectrum Test; CCC, Children’s Communication Checklist; CDI, MacArthur-Bates Commu-
nicative Development Inventories; CELF, Clinical Evaluation of Language Fundamentals; DAS, Differential Ability Scales; DISCO, Diagnostic Interview
for Social and Communication Disorders; INTER-NDA, INTERGROWTH-215t Neurodevelopment Assessment; KBIT, Kaufman Brief Intelligence Test;
M-CHAT, Modified Checklist for Autism in Toddlers; M-P-R, Merrill-Palmer-Revised scales; MSEL, Mullen Scales of Early Learning; OSEL, Observa-
tion of Spontaneous Expressive Language; PAAS, pictorial autism assessment schedule; PEP, Psychoeducational Profile; PLS, Preschool Language
Scales; RNDA, Rapid Neurodevelopmental Assessment; RPM, Raven’s Progressive Matrices; SB5, Stanford-Binet Intelligence Scale, fifth edition;
SCDC, Social and Communication Disorders Checklist; SCQ, Social Communication Questionnaire; SDQ, Strengths and Difficulties Questionnaire;
SORF, Systematic Observation of Red Flags; SRS, Social Responsiveness Scale; STAT, Screening Tool for Autism in Toddlers & Young Children;
TIDOS, Three-item Direct Observation Screen; VABS, Vineland Adaptive Behavior Scales; WAIS, Wechsler Adult Intelligence Scale; WASI, Wechsler
Abbreviated Scale of Intelligence; WHODAS, WHO Disability Assessment Schedule; WISC, Wechsler Intelligence Scale for Children; WPPSI, Wechsler

Preschool and Primary Scale of Intelligence. Modified from Lord et al.*°

accompanied by specifiers regarding intellectual and/or lan-
guage impairment. In this case, for the diagnosis, it is especially
valuable to perform a psychometric assessment (using a scale
such as the Mullen,* the Griffiths,>* or the Bailey>*) of the devel-
opmental abilities among the functional domains assessed by
the scale and compare the intra-domain homogeneity.

A topic of increasing interest concerns gender differences in
the clinical presentation of autistic individuals. Growing evidence
suggests gender-dependent and gender-specific mechanisms
contributing to differential phenotypes in ASD, with a consistent
presence of male bias.®>® Explanations include the male-refer-
ence conceptualization of ASD as well as the growing evidence
of “camouflaging” behavior in females, masking their autistic
traits by overcompensating in other areas,*®°® at the expense
of requiring a major psychological effort, enhancing the risk of
developing depression in adolescence or adulthood.

The evaluation process should also consider the fact that a
number of medical conditions are associated with autism, such
as seizures, blindness, or gastrointestinal diseases. Identifying
accurately whether the symptoms are secondary to another
medical condition or represent the exacerbation of pre-existing
ASD may have implications for both immediate management
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and prognosis.®® Table 2 summarizes the medical evaluation
procedures recommended for ASD.

Beyond diagnostic accuracy, a diagnosis of ASD is certainly a
significant event in any stage of life for individuals and their fam-
ilies; therefore, it is essential that clinicians provide meaningful
information about the diagnosis and prognosis to improve treat-
ment planning and quality of life.

Although clinical heterogeneity remains a critical obstacle in the
development of reliable diagnostic criteria in autism, common ef-
forts in novel areas of investigation may help refine the diagnostic
process and assist in the identification of subsets of autistic indi-
viduals favoring early identification, targeted interventions, and
personalized medicine approaches. These ongoing efforts are
discussed in the next sections.

PERSPECTIVES ON GENETIC ASSESSMENT

Variation in autistic traits is influenced by a combination of de novo
mutations, rare inherited variants, common inherited variants, and
environmental factors. Genetic variants in different genes can
contribute to ASD (heterogeneity), while variants within the same
gene may be linked to a range of co-occurring symptoms or, in
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Table 2. Medical evaluation procedures for autism spectrum

disorder

Purpose

Procedures

o Useful to clarify risk
factors, guide future
investigations, and
identify and treat
comorbidities

o Useful to clarify
differential diagnosis
and provide adequate
support and interventions

o Useful to assess the
genetic etiology of ASD,
predict recurrence,
treat co-occurring
conditions, and avoid
further unnecessary
testing

e Rule out epilepsy,
Landau-Kleffner syndrome,
and electrical status
epilepticus of sleep

e |dentify neurological
conditions that provide
etiological insights and
often require monitoring
and treatment

e Identify metabolic
disorders associated with
autism spectrum disorder
that can be treatable.
Differential diagnosis may
also be indicated

e |dentify pica increases
the risk for lead intoxication

prenatal, perinatal, and family
medical history

physical examination: growth
parameters (e.g., height, weight,
and head circumference),

skin examination (e.g., for
tuberous sclerosis complex

or neurofibromatosis),
neurological examination, and
assessment of dysmorphisms

hearing and vision assessment

genetic testing: depending on
jurisdiction, all individuals with
ASD or only those with intellectual
disability, dysmorphic features,

or congenital anomalies.

electroencephalography
(prolonged or with sleep
record preferred), especially in
individuals with seizures or late
or atypical regression

structural brain MRI: individuals
with atypical regression,
dysmorphology, microcephaly,
macrocephaly, seizures, severe
intellectual disability, focal
neurological findings, severe
hypotonia or muscle weakness,
and other relevant clinical
indicators

blood and urine metabolic
testing: individuals with cyclic
vomiting, lethargy with minor
illnesses, atypical regression,
seizures, and other relevant
clinical indicators

blood levels for lead: individuals
with pica or known exposure to
lead (no evidence in favor of
routine testing of hair, blood, or
urine for environmental toxins
or heavy metals)

Modified from Lord et al.*°

some cases, no symptoms at all (variable expressivity/incomplete
penetrance) (Figure 1).

Genetics ought to be part of the diagnostic assessment of all
individuals with ASD, contingent upon accessibility of technol-
ogy and affordability of costs. The reason behind genetic testing
for ASD is not to provide an “autism” diagnosis, which is based
on formal criteria such as those in the DSM-5-TR or ICD-11, but
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rather to provide information on specific etiologic factors or ge-
netic contributions underlying the phenotypic behavioral alter-
ations. The state-of-the-art assessment varies greatly according
to new technological and methodological advances and their
costs. Currently, the genetic assessment in public healthcare
systems commonly includes array-based cytogenetics as first
tier, employing either single-nucleotide polymorphism (SNP) or
comparative genomic hybridization (CGH) arrays, and the explo-
ration of the whole exome based on whole-exome sequencing
(WES) as second tier diagnostic testing (see Figure S1).*" In gen-
eral, the most cost-effective strategy followed by national health-
care systems is to request WES after SNP array results are nega-
tive.*” Importantly, many pathogenic copy-number variants
(CNVs) associated with ASD are relatively small in size, so array
technology for clinical use in neurodevelopmental disorders
(NDDs), including ASD, needs to have sufficient sensitivity (at
least 50 kb or less). In addition, karyotyping and fragile X testing
also remain highly recommended: the former for large chromo-
somal abnormalities and balanced translocations, as well as
for mosaicism (see below); the latter since the genotype-pheno-
type correlation in fragile X syndrome is rather weak.*> More spe-
cific genetic and/or metabolic tests may be sought for autistic in-
dividuals with a medical history suggesting a syndromic form of
NDD. If this general protocol is applied, the probability of detect-
ing “certainly pathogenic” or “probably pathogenic” variants
largely depends on the severity of the clinical picture and on
the presence of co-morbid intellectual disability (ID) or seizures.
Briefly, the yield of pathogenic variants obtained with SNP array
and WES averages 8.1% and 15.0%, respectively, in ASD sam-
ples, but goes up to 13.7% and 37% in samples with ASD and
co-morbid ID.*" Whole-genome sequencing (WGS), which is
mainly used for research purposes, may change this yield to a
significant extent since it more reliably examines genomic re-
gions of the exome that are particularly difficult to sequence us-
ing standard WES (such as “CG”-rich regions of SHANKS3). If this
genetic diagnostic protocol is followed, “certainly pathogenic”
or “probably pathogenic” variants are detected on average in
23.5% of ASD samples and in 52%-53% of samples with ASD
and co-morbid ID.** To date, this yield is by far the largest pro-
vided by any medical test performed in NDDs.

Despite this sizable percentage of genetic positives, two major
drawbacks still remain. First, once a “certainly pathogenic” or
“probably pathogenic” variant is detected, only in a minority of
individuals does this information significantly influence clinical
management.”® Putative examples of actionable genomics in
clinical practice include increased prognostic predictive power
conferred by genetic testing, the correct interpretation of the
appearance of an infrequent sign/symptom, a more appropriate
recommendation for medical tests and scans, and possibly even
a specific psychopharmacological or behavioral intervention.**
However, these examples are still limited in clinical practice,
and much more cross-talk is needed between basic neurobi-
ology, genetics, and child psychiatry to transfer the knowledge
derived from genetic testing into better clinical management.
Second, even the most thorough genetic testing strategy yields
negative results in the majority of individuals with ASD.

Somatic mosaicism and abnormal epigenetics are two mech-
anisms that could contribute to these genetically negative cases.
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Figure 1. Heritability, genetic heterogene-
ity, and variable expressivity/incomplete
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Somatic mosaicism, due to mutations such as single-nucleotide
variants (SNVs) and CNVs, can occur in any tissue, including the
brain.*® Approximately 0.8%-1.3% of autistic probands carry a
mosaic deleterious (i.e., that increases an individual’s suscepti-
bility or predisposition to ASD) SNV/CNV affecting genes poten-
tially related to ASD risk.*® Somatic deleterious SNV/CNV that
occur early enough in development to be detectable in blood-
derived DNA may explain as many as 5% of cases of ASD.*’
Otherwise, detection of brain-selective mosaicism may require
deep sequencing of DNA extracted from brain tissue,*® which
further limits the clinical applicability of this approach.

Epigenetic variations can profoundly affect gene expression
by modifying the chromatin structures and can impact the DNA
reading frame of genes associated with ASD.*® Importantly,
epigenetic signatures have been found not only to differentiate
autistic and typically developing individuals following diag-
nosis,”® but also at birth in DNA extracted from cord blood,®’
and even prenatally in DNA extracted from the sperm cells of fa-
thers of autistic children.®? This clearly poses major questions on
the functional relevance of these epigenetic variants and, most
importantly, on transgenerational contributions to the patho-
physiology of ASD.*®

Finally, common genetic variants increasing ASD risk and
contributing to build a “polygenic risk score” (PRS) for ASD appear
especially enriched in methylation sites, pointing to these common
genetic variants as an unexpected cross-road between genetic
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of PRS into the clinic raises increasing in-
terest, but currently inter-individual differ-
ences in ASD pathogenesis and inter-
ethnic differences in population structure
(i.e., linkage disequilibrium) represent a
major obstacle to the use of PRS in clinical
setting.

In conclusion, a complete panel of ge-
netic tests for ASD, including karyotyp-
ing, fragile X, SNP-CGH, and WES
(WGS), provides a positive result in up
to about 50% of cases, depending on
autism severity and comorbidity with ID.
By comparison, brain MRI provides a
positive result in only 7.2% of patients
with ASD and typically produces no ther-
apeutic benefit. By providing etiologic
clues and information on genetic contri-
butions to behavioral symptoms, knowl-
edge derived from genetic testing can
relieve parents from the burden of not knowing what caused
ASD in their children, can unveil genetic syndromes whose char-
acteristics and clinical course may already be well known, and in
some cases can promote better clinical management. At the
same time, genetic contributions represent a conundrum that
is unlikely to provide a satisfactory explanation for ASD in any in-
dividual, if genetics remains the only level of analysis. Instead, a
panel encompassing biomarkers from multiple levels of analysis
and including, but not limited to, genetic variants (pathogenic or
at risk) will more likely be able to capture the complexity of ASD
genetic architecture and to dissect autism into subgroups with
relatively homogeneous pathogenetic underpinnings and, hope-
fully, meaningful clinical implications.*® Overall, genetic informa-
tion is not yet diagnostic but provides valuable background infor-
mation to support clinical care and personalized interventions.

T penetrance in ASD
-g Abbreviations: BP, bipolar disorder; ID, intellec-
8 Rare genetic Common genetic  Environmental|  tual disability; NS, no symptoms; SCZ, schizo-
2 variations variations factors phrenia. Reproduced, with permission, from
: Leblond et al.*®
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PERSPECTIVES ON TELEMEDICINE

Although most diagnostic assessment procedures, including the
genetic evaluation discussed in the previous section, have been
devised to be carried out face-to-face, the limited availability of
services has prompted the development of remote assessment,
and this trend has been further enhanced by the impact of the
COVID-19 pandemic. ASD screening or assessment could involve
telemedicine, namely the use of digital technology to connect pro-
viders with patients or their caregivers when they are separated by
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distance.*® Telemedicine for screening and assessment of ASD
can be classified based on (1) the type of information transmitted
(e.g., text, audio, and video), (2) the device used (e.g., computer,
tablet, and smartphone),®’°° and (3) the different timing of the
information transfer, i.e., synchronous or asynchronous. Synchro-
nous or real-time methods require live interactions and/or obser-
vations conducted via video-conferencing services.®’ ™’ In
contrast, asynchronous or store-and-forward methods involve
questionnaires being completed®®%¢~"" and relevant video re-
cordings of live events of individuals with ASD being collected
by caregivers and then forwarded to a clinician for further evalua-
tion.”>"® There is evidence of high agreement between diagnosis
made via telemedicine and in-person assessments.”*

The use of telemedicine has been proven helpful for perform-
ing initial ASD screening, speeding up the assessment process,
reducing the time required for the diagnosis, and ensuring
faster access to appropriate therapies, albeit with some limita-
tions.”>’® In fact, telemedicine makes it possible to reduce
distances, save time and costs, and observe the patient’s spon-
taneous behavior and natural expressions in the home environ-
ment. However, telemedicine requires a few prerequisites that
are not yet evenly distributed across the clinical population,
such as the availability of valid information technology equip-
ment, sufficient familiarity with the technology, and a fast internet
connection. In addition, simply observing individuals with ASD in
a predictable and familiar environment could mask some of their
dysfunctional behaviors. Therefore, although several studies
have investigated the accuracy, validity, and feasibility of tele-
matic assessment for ASD with promising results,””:"® telemedi-
cine is now seen as a complement to traditional face-to-face clin-
ical assessment rather than an exclusive alternative. Table S2
summarizes (when available) the sensitivity, specificity, area un-
der the curve (AUC), positive predictive value (PPV), and negative
predictive value (NPV) of tools delivered via telemedicine that
have been assessed in terms of supporting the diagnostic pro-
cess of ASD.

DIGITAL TECHNOLOGIES IN CLINICAL PRACTICE

Research on digital technologies in ASD is a promising field for
supporting early recognition, precision diagnosis development,
and personalized prognostic and treatment strategies, providing
objective and operator-independent data. Indeed, digital tech-
nologies have the advantage of making clinical decisions more
objective, reliable, and evidence-based, while reducing clinical
resources and waiting times for diagnostic assessment.”® Auto-
mated video analysis, sensors and wearables, and virtual reality
are the most commonly investigated diagnostic digital technolo-
gies for ASD. In addition, mobile apps and software able to inte-
grate information from multiple sources (with or without ques-
tionnaires filled by caregivers or health professionals) have
been studied.®"%°

However, currently digital tools are used mainly for research
purposes to detect and study candidate cognitive, behavioral,
and peripheral physiological diagnostic markers of ASD. Within
the cognitive domain, executive functions and attention skills
are the most explored functions, along with other cognitive con-
structs including “cognitive load in learning complex tasks,”
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such as driving.®® These constructs can be studied using digital
adaption of traditional neuropsychological tests (e.g., Tower of
London test)®” or integrating multiple information (e.g., pupil di-
lations and electroencephalogram [EEG] data to track cognitive
and attentional load).®® In relation to behavioral domains, digital
tools can automatically detect peculiarities in verbal behaviors,
particularly prosody or idiosyncratic utterances,®® as well as vo-
calizations™ or speech and turn-taking parameters,’’ and non-
verbal behaviors. For these purposes, eye tracking is the most
used tool, since it allows one to study and measure eye move-
ments and direct gaze non-invasively, making it suitable even
for toddlers or infants with suspected ASD. Indeed, it has been
demonstrated that eye tracking can reveal different gaze pat-
terns associated with ASD, such as pronounced preference to-
ward geometric figures than social images in infants and tod-
dlers with autism,”>%° different fixation patterns on social
stimuli, as well as atypical gaze behaviors related to deficit of
joint attention.®*

In addition, reduced abilities in gross and fine motor skills, as
well as atypical motor pattern or lower motion complexity, can be
identified in children with ASD through video-analysis motion
tracking technologies, motor sensors applied on objects with
which the child interacts, and wearables.?>°" Moreover, as a
new field of research, automated video-analysis technology
has been used to quantify “social synchrony.” This is defined
as the alignment of an individual’s own behaviors (intrapersonal
synchrony) and the reciprocal coordination of others’ behaviors
(interpersonal synchrony). These behaviors are coordinated
either simultaneously or in specific temporal sequence patterns,
demonstrating its reduction in individuals with ASD.®"'°° Lastly,
peripheral physiological variations, such as heart rate, EEG
signals, or electrodermal activity, can be revealed by wearables
to categorize the autonomic nervous system responses in indi-
viduals with ASD during various tasks (e.g., joint attention or
emotion recognition tasks).'""

Considered as a whole, digital diagnostics (in particular, those
developed to assess behavioral markers) are generally not inva-
sive, and this favors their use with high-sensitive individuals such
as those with autism. Digital tools can capture details that are
otherwise imperceptible to the human eye (e.g., eye tracking
for fixing the gaze on social stimuli has a very high detection fre-
quency) or in any case difficult to detect or moreover quantify.
Data reported in individual studies concerning diagnostic accu-
racy digital tools are promising (Table S2). Although these tools
are not yet used in practice to support the diagnosis of autism,
some of them, such as eye tracking, which has generally fairly
high test-retest reliability (e.g., for attentional bias'®?), may even-
tually be implemented in clinical practice. However, to date, spe-
cific recommendations for the development and validation of
digital diagnostics are still lacking. Figure 2 summarizes the time-
line of key events in the field of digital autism diagnostics.

ML AND Al
The implementation of digital technologies in the clinic could be
supported by ML and Al, which have recently started to play an

important role in the screening/diagnosis and understanding of
mental and neurodevelopmental conditions including ASD'%*
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Figure 2. Timeline of critical events for the field of digital autism diagnostics
Abbreviations: ADIR, Autism Diagnostic Interview—Revised; ADOS, Autism Diagnostic Observation Schedule. Reproduced, with permission, from Washington

et al.’®®

(Figure 3). ML is a subfield of Al, more specifically an approach
used to simulate intelligent human behavior when analyzing
complex and large datasets to recognize specific patterns. In
brief, ML models develop innovative algorithms and statistical
models by analyzing and getting trained on large sets of data,
from which patterns are recognized and new predictions or de-
cisions are made. Within the discipline of computational psychi-
atry, ML is used to recognize patterns in data (e.g., neuroimaging
or electrophysiological data, large electronic health record data-
sets), classify cases into categories (e.g., investigating if different
clinical groups can be differentiated based on clinical or neuro-
psychological data), and make predictions about prognostic or
interventional outcomes.

In the last few years, the use of ML to support the diagnosis
and understanding of ASD has been extensively investi-
gated.'®"""2 While ML cannot be used during screening and/
or diagnosis of ASD, it can be used to identify patterns directly
associated with ASD. These patterns—upon proper testing
and validation—could be implemented as objective diagnostic
biomarkers and used to confirm a clinical (but subjective) diag-
nosis of ASD, partly overcoming the limitations of the current
diagnostic procedures.

In relation to early screening and diagnosis of ASD, ML ap-
proaches have been often used to understand if early evalua-
tions of general infant behavior (e.g., parent-rated) predict a
formal diagnosis of ASD at a later age. For example, an ML
model based on parent-rated early learning and adaptive func-
tioning at 14 months was able to predict a formal diagnosis of
ASD at 3 years with moderate accuracy.''® Home video record-
ings can also be used to train ML algorithms to identify behav-
ioral patterns that discriminate between autistic and non-autistic
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individuals."'* Other studies implemented ML models to analyze
motor features and development. For example, Crippa et al.’'®
found that preschoolers with ASD could be distinguished from
their typically developing peers based on differences in goal-ori-
ented movements (e.g., transporting an object to a target area).

ML and computer vision approaches have also been used to
document and quantify signs related to the visual system during
infancy that are associated with ASD diagnosis later in life, such
as atypical visual attention or non-smooth visual tracking''® or
subtle abnormalities in producing and recognizing emotions in
pattern of facial expressions.''” Analysis of eye-tracking data
via ML/AI approaches may be potentially helpful to identify indi-
viduals with ASD with high accuracy, especially in preschool-
aged children."'? Nevertheless, studies that investigated ML
approaches for ASD early diagnosis showed that sensitivity,
specificity, and accuracy varied from 0.50 (poor discrimination
between individuals with and without ASD) to 1.00 (excellent
discrimination),’"® highlighting the need for further rigorous and
larger studies.

Other studies have shown that ML can help to simplify the
assessment process, e.g., by identifying the essential items in
questionnaire, interviews, or behavioral assessment that need to
be retained without undermining diagnostic accuracy. For
example, ML-based studies showed that a lower number of activ-
ities/items in the different modules of ADOS and ADI could be
sufficient to diagnose ASD and be as accurate as the full and
time-consuming assessments."'® However, and crucially, many
behavioral studies in the field of ML are hampered by analytic lim-
itations in terms of lack of independent dataset for the external
validation or lack of use of appropriate validation methods such
as k-fold cross-validation.'?°
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Figure 3. Possible implications of artificial
intelligence-based technology for the diag-
nosis and management of mental and neu-
rodevelopmental conditions, including ASD
Reproduced, with permission, from Sun et al.'®®
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One of the most prominent data modality used in ML/Al is neu-
roimaging. ML could help identify subtle brain structural and
functional differences between autistic and non-autistic individ-
uals, integrating information from multiple sources.®” According
to recent systematic reviews and meta-analyses,’>’ ML and
deep learning algorithms are relatively accurate in discriminating
between autistic and non-autistic individuals, through neuroi-
maging data. For example, structural and functional MRI-based
ML algorithms showed moderate to good sensitivity and speci-
ficity for discriminating between individuals with and without
ASD, but replication is often lacking.'

Another field of application of ML in supporting ASD diag-
nosis is genomics. Based on widespread shared open-access
genetic datasets, ML could be helpful for identifying new ge-
netic markers of ASD'?® or supporting diagnostic screening
for ASD based on genetic variability.""" Furthermore, explora-
tion of large healthcare databases using ML approaches has
enhanced our ability to identify ASD-specific electrophysiolog-
ical'?* or blood-based biomarkers, '?° allowing an improved un-
derstanding of ASD heterogeneity.'*® For example, ML applied
to electroencephalography and magnetoencephalography
data can help classify and predict ASD diagnosis in high-risk
infants at 3 months of age and predict symptom severity,
with high accuracy.'®® A recent systematic review retrieved
27 relevant studies to date.'® Indeed, in a meta-analysis of
232 studies using Al based on overall nine modalities, the accu-
racy based on of the EEG data was the best, with AUC = 0.89

ronmental data.'%*

Overall, although ML/Al approaches
represent a promising tool to unveil com-
plex mechanisms underlying behavioral
and emotional patterns in autism, imple-
mentation in clinical practice remains
challenging. First, large datasets are
required to train ML algorithms and test

them. In some cases, this is achieved by combining datasets
from different studies or public repositories, which however in-
creases data heterogeneity. Using large datasets to make spec-
ulations (or conclusions) about the whole population of autistic
individuals also collides with the widely acknowledged idea
that autism is heterogeneous and can present in different individ-
uals with different and wide ranges of symptoms and features.
Furthermore, considering only specific features that are thought
to be associated with ASD can overlook individual features and
needs associated with disorders and conditions that co-occur
with ASD. Finally, in particular for neuroimaging-based tools,
the costs, which still remain too high to be implemented in
publicly funded healthcare systems, and the difficulties in scan-
ning uncooperative children—with the possible exception of
resting-state MRI during sleep—are important challenges.
Despite such limitations, research on ML/AlI methods for
screening/diagnosis of ASD has also led to the development of
software and devices that are currently implemented in some
clinical contexts. For instance, the Food and Drug Administration
(FDA)-approved Canvas Dx (https://cognoa.com/) implements
ML algorithms on data received by parents/caregivers (e.g.,
questionnaires and home videos), video analysts, and healthcare
professionals and informs about a possible diagnosis of ASD.
Canvas Dx demonstrated excellent sensitivity (98.4%) and
good specificity (78.9%) among participants for which the tool
was able to make a decision (<50% of the sample).®® This makes
Canvas Dx a good example of promising applications of ML/AI

Cell Reports Medicine 6, 101916, February 18, 2025 9



https://cognoa.com/

doi.org/10.1016/j.xcrm.2024.101916

Please cite this article in press as: Cortese et al., Latest clinical frontiers related to autism diagnostic strategies, Cell Reports Medicine (2024), https://

¢ CellPress

OPEN ACCESS

methods for supporting the diagnostic assessment of ASD.
Table S3 summarizes (when available) the sensitivity, specificity,
AUC, PPV, and NPV of digital/ML tools that have been assessed
in terms of supporting the diagnostic process of ASD.

PUTATIVE CANDIDATE DIAGNOSTIC BIOMARKERS

A biomarker is defined by the FDA National Institute of Health
Biomarker Working Group (US) as “an indicator of normal biolog-
ical processes, pathogenic processes, or biological responses
to an exposure or intervention.”'2°

A biomarker needs to be sensitive, accurately identifying as
positive those individuals who have the outcome of interest,
and specific, accurately labeling as negative those individuals
who do not have the outcome of interest. Although there are
no established benchmarks for these metrics, quantitative mea-
sures that enable diagnostic accuracy with at least 80% sensi-
tivity and 80% specificity are often considered clinically use-
ful.’® The American Psychiatric Association Work Group on
Neuroimaging Markers of Psychiatric Disorders suggested
that a promising biomarker should have two or more indepen-
dent well-powered studies providing evidence of sensitivity
and specificity at least of 80%.'%" In addition, a biomarker
would need to have good PPV, NPV, internal validity, be exter-
nally valid, and be reliable in terms of test-retest reliability and
inter-rater reliability.

The largest systematic review of candidate diagnostic bio-
markers in NDDs, including ASD, assessed a wide range of po-
tential genetic, biochemical, neuroimaging, neurophysiological,
and neuropsychological measures.'*”> Among these, biochem-
ical markers have been the most investigated, with 300 studies
identified and a total of 1,289 biochemical measures tested.
However, only 73 measures were reported by at least two
studies with at least one positive finding and more than 50%
replications. Among those with only positive replications in the
same direction, the most replicated were coproporphyrin
(a product of heme synthesis, increased), glutamine (decreased),
8-isoprostane (a prostaglandin isomer, increased), cysteine
(decreased), glutathione/oxidized glutathione ratio (decreased),
lead (increased), neurotensin (increased), 4-methylphenol
(a phenol derivative, increased), secreted amyloid precursor pro-
tein alpha (a neurotrophic protein, increased), succinic acid
(increased), and human transforming growth factor f (increased).
Highest specificity and/or sensitivity were achieved by oxytocin
(decreased), vitamin E (decreased), interferon-gamma-inducible
protein-16 (increased), interferon-gamma (increased), and heat
shock protein 70 (increased). However, none of these measures
met the criteria to be identified as a biomarker (all the references
for relevant studies on these compounds are freely available in
supplemental material 1 and supplemental Table 5 accompa-
nying the main text of Cortese et al.,'® https://osf.io/wp4je/?
view_only=8c349f45a9ac441490981acf946c8d9a).

Considering common genetic variants, this systematic review
identified only a GWAS specifically aiming at identifying SNPs in
ASD."®® This included over 18,000 individuals with ASD and
almost 28,000 neurotypical controls and identified five SNPs
significantly associated with ASD. The corresponding candidate
genes have been previously involved in neuronal function and
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neurodevelopment. For instance, these included PTBP2, which
encodes for a splicing regulator; CADPS, encoding a calcium-
binding protein involved in neurotransmission; and KCNN2,
which encodes for a voltage-independent Ca®*-activated
K* channel and thus is involved in neuronal excitability.
The estimated SNP-based heritability (SNP-h?) for ASD was
11.8%. Overall, this GWAS was well conducted and provided
valuable knowledge on the genetic underpinning of ASD.
However, it did not provide metrics, such as sensitivity and spec-
ificity, needed to assess the identified loci as diagnostic
biomarkers.

Several neuroimaging studies have compared brain charac-
teristics between autistic individuals and controls from the gen-
eral population. However, most of them aimed at investigating
the neurobiology of ASD, rather than identifying potential imag-
ing biomarkers. Among the 115 neuroimaging studies identified
by Cortese et al.,'®® 47% reported only p values and no other
metrics needed to define a biomarker.

Among neurophysiological measures, only the acoustic eye-
blink startle latency was consistently replicated among three
studies (increased in ASD) (for references, please supplemental
material 1 and supplemental Table 12 accompanying the main
text of Cortese et al.,'? https://osf.io/wp4je/?view_only=8c349
f45a9ac441490981acf946c8d9a). Finally, considering neuro-
psychological tests, only long-term and short-term memory
measures were replicated across a small number of studies
(two and five respectively) (for references, please Supplemental
Material 1 and Supplemental Table 15 accompanying the
main text of Cortese et al.,'® https:/osf.io/wp4je/?view_only=
8c349f45a9ac441490981acf946¢c8d9a). Notably, these mea-
sures obtained 100% replication in both studies in ASD and
ADHD samples, which supports their transdiagnostic nature.
However, both neurophysiological and neuropsychological
studies did not consistently provide metrics necessary to assess
the identified measures as diagnostic biomarkers.

Overall, the systematic review by Cortese et al.’*? highlighted
that, despite the large number of studies and measures consid-
ered, to date, there are no metrics that meet the criteria for a
diagnostic biomarker. This lack of replicable findings can be
both explained by challenges inherent in the search for bio-
markers, especially for neurodevelopmental conditions, and by
methodological limitations. Clinical presentation, neuropsycho-
logical profiles, and comorbidities vary greatly in ASD. Most
studies to date included small samples and were thus under-
powered to stratify individuals into more clinically and biologi-
cally homogeneous subgroups, which may help identify suitable
biomarkers. Methodological limitations, such as lack of stan-
dardization, confounding factors, and limited replicability, have
also hampered progress in the field. Heterogeneity in terms of
laboratory procedures, imaging methods, and analysis tech-
niques can also affect comparability among studies for external
validation and replicability. Most studies focused on associa-
tions and reported p values, which are poorly informative. Finally,
once a measure has been identified, the biological significance
often remains to be elucidated. For instance, considering
biochemistry, vitamin E and inflammatory markers were the
most replicated, but may be related to diet or stress response
rather than ASD itself.
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Conclusions

In current clinical practice, the diagnosis of ASD still primarily re-
lies on clinical judgment aided by questionnaires and structured
interviews/observation. The diagnostic process can be complex,
especially in the presence of co-occurring conditions, very
young age, or less typical presentations. It may also be time-
consuming and expensive for clinical services. Thus, in addition
to alternative diagnostic pathways such as those that involve
partnerships with community providers,'* there have been
increasing efforts to identify approaches and tools that can
assist this process by providing more objective and accurate
measures. This may be particularly important for ASD, given its
highly heterogeneous presentation, and may guide the identifi-
cation of the individual needs and thus a more tailored support.
Notably, current diagnostic tools are highly valuable but have
mainly been developed for males and may not fully capture the
nuances of the ASD presentation in females. This may lead to de-
layed recognition and less effective therapeutic interventions for
secondary presentations, such as anxiety or depression in
adolescence. Thus, improving the ability of diagnostic tools to
capture gender differences warrants further investigation.

To date, no tools can replace or promise to replace the clinical
diagnostic assessment. Genetic testing may contribute to the
diagnostic process especially in cases of comorbid ID or seizure.
When a thorough genetic diagnostic protocol is followed, patho-
genic variants can be detected in up to 23.5% of ASD samples
and in 52%-53% of samples with ASD and co-morbid ID. This
is the largest yield provided by a medical test for neurodevelop-
mental disorders to date. Nevertheless, it is important not to
disregard negative results as not all variants associated with
ASD are known or can be accurately detected. Moving forward,
it will be important to strengthen the link between these investi-
gations and clinical practice, especially as they can potentially
guide more tailored management approaches.

Digital diagnostics are emerging as promising tools as they are
generally not invasive and able to capture subtle variations in
behavior, such as in eye movements, that would otherwise be
difficult to capture clinically. Nevertheless, future larger and
more rigorous studies are needed to refine the diagnostic accu-
racy of these approaches and their potential clinical applications.
Similarly, Al/ML approaches have been tested on a range of data,
including behavioral, neuropsychological, and neuroimaging data.
These approaches offer the advantage of combining multi-level
data and may help understand the biological correlates of the
observed phenotypes. However, their applicability may be limited,
especially for neuroimaging, in particular due to the high cost.
Nevertheless, cost-effectiveness, rather than simply costs, may
need to be considered moving forward and should be investigated
when assessing new tools.

Crucially, to date, there are no metrics that meet the criteria for
a diagnostic biomarker. Beyond challenges related to the het-
erogeneity of ASD, progress in the field has been hampered
by methodological limitations, including small samples, lack
of standardization, and limited replicability. Going forward,
further international collaborations may support larger and
more robustly designed studies and help develop multimodal
datasets to combine biomarkers, thus enhancing accuracy and
ensuring reproducibility as well as meaningful clinical translation.
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