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15Université Paris Nanterre, Laboratoire DysCo, Nanterre, France
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SUMMARY
The diagnosis of autism is currently based on the developmental history, direct observation of behavior, and
reported symptoms, supplemented by rating scales/interviews/structured observational evaluations—which
is influenced by the clinician’s knowledge and experience—with no established diagnostic biomarkers. A
growing body of research has been conducted over the past decades to improve diagnostic accuracy.
Here, we provide an overview of the current diagnostic assessment process as well as of recent and ongoing
developments to support diagnosis in terms of genetic evaluation, telemedicine, digital technologies, use of
machine learning/artificial intelligence, and research on candidate diagnostic biomarkers. Genetic testing
can meaningfully contribute to the assessment process, but caution is required when interpreting negative
results, andmore work is needed to strengthen the transferability of genetic information into clinical practice.
Digital diagnostic and machine-learning-based analyses are emerging as promising approaches, but larger
and more robust studies are needed. To date, there are no available diagnostic biomarkers. Moving forward,
international collaborations may help develop multimodal datasets to identify biomarkers, ensure reproduc-
ibility, and support clinical translation.
INTRODUCTION: DEFINITION AND
CONCEPTUALIZATION OF AUTISM

Autism, characterized by alterations in social interaction/commu-

nication and repetitive behaviors/interests,1 is one of the most

common neurodevelopmental conditions.2 Although meta-ana-
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that the peak age of onset might occur around the early years of
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diagnosis made in childhood persists in adulthood in a sizable

portion of cases.7

The conceptualization of autism has been constantly evolving,

moving from a narrow initial categorization among the childhood

psychoses to its current, broader definition as a ‘‘spectrum’’—

i.e., autism spectrum disorder (ASD).8,9 This evolution reflects ef-

forts to enhance the reliability of the diagnosis while preserving

its validity. However, broadening the construct of autism raises

issues around its boundaries with other neurodevelopmental

conditions and typical development. There have also been con-

cerns that broadening the construct of autism may inflate the

diagnostic rate and hinder the understanding of its causes and

developmental pathways.10

The latest versions of the two most frequently used classifica-

tion systems in mental health, namely the Diagnostic and Statis-

tical Manual of Mental Disorders (DSM)-5-Text Revision (TR)11

and the International Classification of Diseases and Related

Health Problems (ICD)-11,12 classify ASD within the broader

category of ‘‘neurodevelopmental disorders,’’ with onset of

symptoms usually during the early years of life (Table S1). Both

classification systems require persistent alterations in two core

domains, namely (1) social communication/social interactions

(e.g., struggling to engage in reciprocal conversation) and (2)

restricted, stereotyped, and repetitive patterns of behavior/inter-

ests/activities (e.g., pervasive interest in calendars/dates).

While the current classification systems refer to ASD as a cat-

egorical diagnosis, it has been highlighted that the symptoms of

autism lie on the extreme of a continuous distribution of traits (the

dimensional view). The current conceptualization of autism leads

to a substantial range of clinical variability and impairment in

everyday life functioning, which highlights the need for diag-

nostic approaches that capture specific clinical features of

each individual, to inform personalized management strategies.

Recent classifications stress that ASD behaviors/symptoms can

range from overtly manifest to more subtle, thus only becoming

evident when demands of the context exceed the capacity of the

individual. Notably, even though the symptoms of ASD are ex-

pected to emerge typically in early childhood,13 they may not

become fully manifest until later in life, when social demands

exceed an individual’s capacities.11 Therefore, in some cases,

the diagnosis is made for the first time beyond childhood. As

such, it is essential to appreciate that the clinical diagnosis of

ASD is only appropriate when there are significant impairments

associated with the symptoms, and/or when the individual

makes significant efforts to minimize the impairment associated

with the symptoms and meet expected functioning levels.

Subtle yet important differences exist between the DSM-5-TR

and the ICD-11 criteria in their conceptualization of ASD

(Table S1). The DSM-5-TR diagnostic criteria are more oriented

toward amedical model of brain illness, specifying the number of

required observable behavioral symptoms needed to identify the

core symptoms and providing descriptions of severity levels. The

ICD-11 moved toward a social model of disability, giving more

emphasis to the inner experience of ‘‘diversity’’ and to the poor

fit between individual’s characteristics and demands by the envi-

ronment.8 This reflects the ongoing tendency to move beyond a

medical conceptualization of autism, which sees disabilities as

inherent to the individual, toward a social perspective view
2 Cell Reports Medicine 6, 101916, February 18, 2025
(i.e., the disability is caused by barriers imposed to the person

by society). This has been prompted by the neurodiversity move-

ment,14 a social justice and self-representative movement stem-

ming from the disability rights, which challenges a narrow med-

ical conceptualization of autism, considering it as the expression

of human diversity. In our view, rather than viewing the medical

and social models of autism as mutually exclusive, blending

them and acknowledging both differences and disability may

be a promising way forward.

There is a substantial variability in the administrative preva-

lence of ASD (i.e., the one that is determined based on adminis-

trative records such as billing records, or other documents that

include an ICD code) across geographic regions. The global

age-standardized prevalence of ASD across countries has

been reported at 0.37% in the most recent estimate from the

Global Burden of Disease.15 However, for instance, about 1 in

36 children with autism were identified in the USA in 2020 as re-

ported by the Centers for Disease Control and Prevention.16 This

variability is likely accounted for by a plethora of factors,

including the lack of an objective diagnostic test, socio-cultural

factors related to variations in cultural acceptance of mental

health conditions, diseases and disorders, variations in digital

methods that allow for rapid and accurate ascertainment of clin-

ical and service records that document ASD diagnosis (i.e., re-

cordkeeping and digital tracking of diagnoses in medical health

systems in some countries is not consistently available, making

accurate tracking challenging), differences in medical training

and awareness of autism among clinical professionals, and dif-

ferences in economic resources required to diagnose and treat

autism. Despite the complexity of these factors, improving the

diagnostic accuracy itself is key, to increase the chances that in-

dividuals with ASD get the right support. To this end, a growing

body of research has been conducted over the past decades.

Here, we provide an overview of the latest clinical frontiers

related to autism diagnostic strategies, focusing on the current

clinical diagnostic assessment process across the lifespan as

well as on recent and ongoing developments in terms of genetic

evaluation, telemedicine, digital technologies, use of machine

learning (ML)/artificial intelligence (AI), and research on candi-

date diagnostic biomarkers. A review of the literature on current

diagnostic models (e.g., traditional center-based multidisci-

plinary assessment vs. single-discipline mentored community

assessments) is beyond the scope of the present article.

Of note, here we use the term ‘‘ASD’’ in line with the formal

current terminology in classification systems and with the major-

ity of published scientific studies. However, currently, other

terms, such as autism spectrum condition or simply autism,

which reflect the influence of the neurodiversity movement, are

also used. By nomeans does our use of ASD imply that we disre-

gard the needs expressed by this movement.

The present review was not intended as a systematic review

with a pre-specified protocol, including a search strategy and

study quality assessment, but rather as a narrative review. None-

theless, to ensure we did not miss any key studies in the field, we

conductedmultiple searches (up toMarch 28th, 2024) in PubMed

using a combination of terms related to autism (or equivalent

terms such as autism spectrum disorder, Asperger’s, pervasive

developmental disorders), diagnosis (or related terms such as
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assessment), and specific terms related to genetics, telemedi-

cine, digital technologies, artificial intelligence/machine learning,

and biomarkers.

ASSESSMENT OF ASD: CURRENT APPROACHES

The assessment and diagnostic process of ASD can be a com-

plex and challenging clinical task. While a multidisciplinary team

approach is recommended, recent guidance suggests that, in

order not to delay access to interventions, a trained healthcare

provider comfortable with the assessment of autism clinical

criteria can make an initial autism diagnosis, particularly when

the diagnosis appears uncomplicated.17,18

According to the current conceptualization, the specific aim of

the diagnostic process for ASD is to define whether an individual

meets the behavioral diagnostic criteria for a formal diagnosis,

within the context of a broader neurodevelopmental, behavioral,

medical, and psychosocial assessment.19 To achieve this pur-

pose, information is gathered through (1) a detailed develop-

mental, medical, and psychosocial history, typically obtained

from parents/carers; (2) direct observation of behavior, including

social interactions, communications, and repetitive/stereotyped

behaviors in different settings with familiar and unfamiliar individ-

uals; and (3) subjective description—especially for adolescents

and adults—of one’s inner perception of social functioning and

interests.1 A clinical diagnosis of autism could be made by

18–24 months, with early features such as atypicality in (joint)

attention, prelinguistic communication, social engagement,

and sensorimotor processing observable in infancy.20 However,

diagnostic instability has been observed in early life more than at

any other age. For instance, in one study, a diagnosis of ASD es-

tablished at 36 months of age was missed at 18 months in 63%

of cases, while children diagnosed at the age of 18 presented a

stability of diagnosis at 36 months of 93%21—even though, as

that study sample referred to a group of younger siblings who

were followed regardless of clinical concerns/referral, the study

results may not be representative of the general population with

ASD. Notably, a cohort study of 1,269 toddlers reported an over-

all stability of 0.84 for the autism diagnosis formulated between

12 and 36 months of age, higher than in other clinical groups.22

While several guidelines (e.g., those from the National Institute

for Health and Care Excellence19) recommend routine system-

atic monitoring of early development of all children (‘‘develop-

mental surveillance’’), the American Academy of Pediatrics

currently recommends standardized universal autism screening

(in addition to developmental surveillance) at 18 and 24 months

using the parent-reported Modified Checklist for Autism in Tod-

dlers. This tool has adequate meta-analytically pooled sensitivity

(0.83, 95% confidence interval [CI] 0.77–0.88) and specificity

(0.94, 0.89–0.97),23 particularly in children aged 18–30 months.

Beyond the screening of autistic symptoms at early age, the

formal diagnostic process based on a combination of structured

and semi-structured tools can improve diagnostic accuracy for

ASD.24 These tools range from checklist/questionnaires for

screening and rapid ascertainment of symptom severity, such

as the Social Communication Questionnaire, to structured diag-

nostic interviews, including the Autism Diagnostic Interview,

Revised (ADI-R), the Developmental, Dimensional and Diag-
nostic Interview, the Childhood Autism Rating Scale, second

edition (CARS-2), and observational evaluation tools such as

the Autism Diagnostic Observation Schedule, second edition

(ADOS-2) (Table 1). Meta-analytic evidence showed that the

sensitivity and specificity, respectively, of these tools for the

diagnosis of ASD in preschoolers were as follows: ADOS-2:

0.94 (95% CI: 0.89–0.97) and 0.80 (0.68–0.88), CARS: 0.80

(0.61–0.91) and 0.88 (0.64–0.96), and ADI-R: 0.52 (0.32–0.71)

and 0.84 (0.61–0.95).25 Overall, the performance of the

ADOS-2 was superior to that of the ADI-R in children and adoles-

cents (<18 years), although only few studies provided a direct

comparison of the diagnostic accuracy of these instruments.

For the ADOS-2, sensitivity and specificity ranged from 0.89 to

0.92 and 0.81 to 0.85, respectively. Studies comparing the accu-

racy of the ADOS-2 in research and clinical settings reported

mixed evidence. Sensitivity and specificity of the ADI-R were

0.75 and 0.82, respectively, with higher specificity in research

samples (research = 0.85, clinical = 0.72), although sparse clin-

ical studies have been conducted to date.26 These findings indi-

cate that relying solely on these tools for the diagnosis can lead

to false positives and negatives. Additional evidence indicates

that diagnoses made with standardized evaluation are more reli-

able across sites and more valid over time than single-clinician

assessments.27 However, the use of ASD-specific diagnostic

tools is often expensive and time-consuming for mental health

services and requires a formal training of interviewers. Further-

more, even when administered by specifically trained staff, the

various tools have a limited ability to correctly identify individuals

whose diagnosis is more uncertain.28 Crucially, it should be

pointed out that these tools were initially devised to help clini-

cians gather corroborative information, not to replace clinical

judgment or serve as a triage system to determine access to ser-

vices. Indeed, scores on these tools are highly dependent on

how the tools are administered and interpreted, and hence their

administration requires clinical expertise.29

An important challenge in the diagnostic process is delineating

the diagnostic boundaries of ASD. Since autistic traits and/or

features are continuously distributed in the general population,

a fundamental but contentious issue is how the clinical thresh-

olds are established, alongside functional impairment, for the

purpose of a formal diagnosis of ASD.31

Another important aspect in the assessment of ASD relates to

its interplay with additional neurodevelopmental conditions, im-

pacting more globally on developmental trajectories. The differ-

ential diagnosis with global developmental delay and intellectual

disability is particularly relevant, both for their high frequency and

because they require that autistic features be ‘‘weighed’’ relative

to the overall developmental/functional profile. According to the

DSM-5(TR), the presence of global developmental delay or

intellectual disability excludes a formal diagnosis of ASD, unless

‘‘social communication is below that expected for general

developmental level.’’ Hence, if all functional domains are

equally delayed or affected, it is unjustified to specifically under-

score deficits in social communication over other deficits by giv-

ing an ASD diagnosis. However, if social interaction and commu-

nication/language development-related dimensions are more

profoundly affected, compared to motor development and over-

all performance, then an ASD diagnosis may be justified,
Cell Reports Medicine 6, 101916, February 18, 2025 3



Table 1. Examples of standardized instruments for the assessment of autism spectrum disorder

Standardized assessment instruments

Estimate level of verbal and non-verbal development

d Apply at least one verbal and one non-verbal problem-solving

test from a cognitive or developmental assessment

brief screening: WASI, SB5 Routing subtests, KBIT, BINS,

INTER-NDA

more specific screening or comprehensive assessment: WPPSI,

WISC, WAIS, DAS, RPM, MSEL, Bayley, M-P-R, PEP, RNDA

Estimate level of language functioning

d Observe and ask caregivers about complexity of speech

(e.g., few to no words, some words up to simple phrases,

flexible phrases, or fluent)

brief screening: CELF screening test, PLS screening, CDI

more specific screening or comprehensive assessment:

CELF, PLS, OSEL

Assess ASD signs by history and in current daily life

d Gather information from parents or other caregivers

d If possible, gather information from multiple settings

(e.g., home and school)

brief screening: SRS, SCQ, M-CHAT, AQ, CCC, PAAS,

CAST, ASRS, ASSQ, SCDC

more specific screening or comprehensive assessment:

ADI-R, DISCO, 3-di

Assess ASD signs by observational assessment

d Directly observe and interact with the individual in structured

and unstructured interactive activities appropriate to

developmental level

brief screening: STAT, SORF, AOSI, CARS, BOSCC, AMSE,

TIDOS

more specific screening or comprehensive assessment:

ADOS

Estimate level of adaptive functioning

d Ask questions about the individual’s adaptive functioning at

home and in other everyday life settings

brief screening: SDQ impact supplement, WHODAS

more specific screening or comprehensive assessment:

VABS, ABAS

3-di, Developmental, Dimensional and Diagnostic Interview; ABAS, Adaptive Behavior Assessment System; ADI-R, Autism Diagnostic Interview,

Revised; ADOS, Autism Diagnostic Observation Schedule; AMSE, Autism Mental Status Exam; AOSI, Autism Observation Scale for Infants; AQ,

Autism-SpectrumQuotient; ASRS, Autism SpectrumRating Scales; ASSQ, Autism Spectrum Screening Questionnaire; Bayley, Bayley Scales of Infant

and Toddler Development; BINS, Bayley Infant Neurodevelopment Screener; BOSCC, Brief Observation of Social Communication Change; CARS,

Childhood Autism Rating Scale; CAST, Childhood Autism Spectrum Test; CCC, Children’s Communication Checklist; CDI, MacArthur-Bates Commu-

nicative Development Inventories; CELF, Clinical Evaluation of Language Fundamentals; DAS, Differential Ability Scales; DISCO, Diagnostic Interview

for Social and Communication Disorders; INTER-NDA, INTERGROWTH-21st Neurodevelopment Assessment; KBIT, Kaufman Brief Intelligence Test;

M-CHAT, Modified Checklist for Autism in Toddlers; M-P-R, Merrill-Palmer-Revised scales; MSEL, Mullen Scales of Early Learning; OSEL, Observa-

tion of Spontaneous Expressive Language; PAAS, pictorial autism assessment schedule; PEP, Psychoeducational Profile; PLS, Preschool Language

Scales; RNDA, Rapid Neurodevelopmental Assessment; RPM, Raven’s Progressive Matrices; SB5, Stanford-Binet Intelligence Scale, fifth edition;

SCDC, Social and Communication Disorders Checklist; SCQ, Social Communication Questionnaire; SDQ, Strengths and Difficulties Questionnaire;

SORF, Systematic Observation of Red Flags; SRS, Social Responsiveness Scale; STAT, Screening Tool for Autism in Toddlers & Young Children;

TIDOS, Three-item Direct Observation Screen; VABS, Vineland Adaptive Behavior Scales; WAIS, Wechsler Adult Intelligence Scale; WASI, Wechsler

Abbreviated Scale of Intelligence;WHODAS,WHODisability Assessment Schedule;WISC,Wechsler Intelligence Scale for Children; WPPSI,Wechsler

Preschool and Primary Scale of Intelligence. Modified from Lord et al.30
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accompanied by specifiers regarding intellectual and/or lan-

guage impairment. In this case, for the diagnosis, it is especially

valuable to perform a psychometric assessment (using a scale

such as the Mullen,32 the Griffiths,33 or the Bailey34) of the devel-

opmental abilities among the functional domains assessed by

the scale and compare the intra-domain homogeneity.

A topic of increasing interest concerns gender differences in

the clinical presentation of autistic individuals. Growing evidence

suggests gender-dependent and gender-specific mechanisms

contributing to differential phenotypes in ASD, with a consistent

presence of male bias.35 Explanations include the male-refer-

ence conceptualization of ASD as well as the growing evidence

of ‘‘camouflaging’’ behavior in females, masking their autistic

traits by overcompensating in other areas,36–38 at the expense

of requiring a major psychological effort, enhancing the risk of

developing depression in adolescence or adulthood.

The evaluation process should also consider the fact that a

number of medical conditions are associated with autism, such

as seizures, blindness, or gastrointestinal diseases. Identifying

accurately whether the symptoms are secondary to another

medical condition or represent the exacerbation of pre-existing

ASD may have implications for both immediate management
4 Cell Reports Medicine 6, 101916, February 18, 2025
and prognosis.39 Table 2 summarizes the medical evaluation

procedures recommended for ASD.

Beyond diagnostic accuracy, a diagnosis of ASD is certainly a

significant event in any stage of life for individuals and their fam-

ilies; therefore, it is essential that clinicians provide meaningful

information about the diagnosis and prognosis to improve treat-

ment planning and quality of life.

Although clinical heterogeneity remains a critical obstacle in the

development of reliable diagnostic criteria in autism, common ef-

forts in novel areas of investigation may help refine the diagnostic

process and assist in the identification of subsets of autistic indi-

viduals favoring early identification, targeted interventions, and

personalized medicine approaches. These ongoing efforts are

discussed in the next sections.

PERSPECTIVES ON GENETIC ASSESSMENT

Variation in autistic traits is influenced by a combination ofde novo

mutations, rare inherited variants, common inherited variants, and

environmental factors. Genetic variants in different genes can

contribute to ASD (heterogeneity), while variants within the same

gene may be linked to a range of co-occurring symptoms or, in



Table 2. Medical evaluation procedures for autism spectrum

disorder

Purpose Procedures

d Useful to clarify risk

factors, guide future

investigations, and

identify and treat

comorbidities

prenatal, perinatal, and family

medical history

physical examination: growth

parameters (e.g., height, weight,

and head circumference),

skin examination (e.g., for

tuberous sclerosis complex

or neurofibromatosis),

neurological examination, and

assessment of dysmorphisms

d Useful to clarify

differential diagnosis

and provide adequate

support and interventions

hearing and vision assessment

d Useful to assess the

genetic etiology of ASD,

predict recurrence,

treat co-occurring

conditions, and avoid

further unnecessary

testing

genetic testing: depending on

jurisdiction, all individuals with

ASD or only those with intellectual

disability, dysmorphic features,

or congenital anomalies.

d Rule out epilepsy,

Landau-Kleffner syndrome,

and electrical status

epilepticus of sleep

electroencephalography

(prolonged or with sleep

record preferred), especially in

individuals with seizures or late

or atypical regression

d Identify neurological

conditions that provide

etiological insights and

often require monitoring

and treatment

structural brain MRI: individuals

with atypical regression,

dysmorphology, microcephaly,

macrocephaly, seizures, severe

intellectual disability, focal

neurological findings, severe

hypotonia or muscle weakness,

and other relevant clinical

indicators

d Identify metabolic

disorders associated with

autism spectrum disorder

that can be treatable.

Differential diagnosis may

also be indicated

blood and urine metabolic

testing: individuals with cyclic

vomiting, lethargy with minor

illnesses, atypical regression,

seizures, and other relevant

clinical indicators

d Identify pica increases

the risk for lead intoxication

blood levels for lead: individuals

with pica or known exposure to

lead (no evidence in favor of

routine testing of hair, blood, or

urine for environmental toxins

or heavy metals)

Modified from Lord et al.30
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some cases, no symptoms at all (variable expressivity/incomplete

penetrance) (Figure 1).

Genetics ought to be part of the diagnostic assessment of all

individuals with ASD, contingent upon accessibility of technol-

ogy and affordability of costs. The reason behind genetic testing

for ASD is not to provide an ‘‘autism’’ diagnosis, which is based

on formal criteria such as those in the DSM-5-TR or ICD-11, but
rather to provide information on specific etiologic factors or ge-

netic contributions underlying the phenotypic behavioral alter-

ations. The state-of-the-art assessment varies greatly according

to new technological and methodological advances and their

costs. Currently, the genetic assessment in public healthcare

systems commonly includes array-based cytogenetics as first

tier, employing either single-nucleotide polymorphism (SNP) or

comparative genomic hybridization (CGH) arrays, and the explo-

ration of the whole exome based on whole-exome sequencing

(WES) as second tier diagnostic testing (see Figure S1).41 In gen-

eral, themost cost-effective strategy followed by national health-

care systems is to requestWES after SNP array results are nega-

tive.42 Importantly, many pathogenic copy-number variants

(CNVs) associated with ASD are relatively small in size, so array

technology for clinical use in neurodevelopmental disorders

(NDDs), including ASD, needs to have sufficient sensitivity (at

least 50 kb or less). In addition, karyotyping and fragile X testing

also remain highly recommended: the former for large chromo-

somal abnormalities and balanced translocations, as well as

for mosaicism (see below); the latter since the genotype-pheno-

type correlation in fragile X syndrome is rather weak.42More spe-

cific genetic and/or metabolic tests may be sought for autistic in-

dividuals with a medical history suggesting a syndromic form of

NDD. If this general protocol is applied, the probability of detect-

ing ‘‘certainly pathogenic’’ or ‘‘probably pathogenic’’ variants

largely depends on the severity of the clinical picture and on

the presence of co-morbid intellectual disability (ID) or seizures.

Briefly, the yield of pathogenic variants obtained with SNP array

and WES averages 8.1% and 15.0%, respectively, in ASD sam-

ples, but goes up to 13.7% and 37% in samples with ASD and

co-morbid ID.41 Whole-genome sequencing (WGS), which is

mainly used for research purposes, may change this yield to a

significant extent since it more reliably examines genomic re-

gions of the exome that are particularly difficult to sequence us-

ing standardWES (such as ‘‘CG’’-rich regions of SHANK3). If this

genetic diagnostic protocol is followed, ‘‘certainly pathogenic’’

or ‘‘probably pathogenic’’ variants are detected on average in

23.5% of ASD samples and in 52%–53% of samples with ASD

and co-morbid ID.42 To date, this yield is by far the largest pro-

vided by any medical test performed in NDDs.

Despite this sizable percentage of genetic positives, twomajor

drawbacks still remain. First, once a ‘‘certainly pathogenic’’ or

‘‘probably pathogenic’’ variant is detected, only in a minority of

individuals does this information significantly influence clinical

management.43 Putative examples of actionable genomics in

clinical practice include increased prognostic predictive power

conferred by genetic testing, the correct interpretation of the

appearance of an infrequent sign/symptom, a more appropriate

recommendation for medical tests and scans, and possibly even

a specific psychopharmacological or behavioral intervention.44

However, these examples are still limited in clinical practice,

and much more cross-talk is needed between basic neurobi-

ology, genetics, and child psychiatry to transfer the knowledge

derived from genetic testing into better clinical management.

Second, even the most thorough genetic testing strategy yields

negative results in the majority of individuals with ASD.

Somatic mosaicism and abnormal epigenetics are two mech-

anisms that could contribute to these genetically negative cases.
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Figure 1. Heritability, genetic heterogene-

ity, and variable expressivity/incomplete

penetrance in ASD

Abbreviations: BP, bipolar disorder; ID, intellec-

tual disability; NS, no symptoms; SCZ, schizo-

phrenia. Reproduced, with permission, from

Leblond et al.40
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Somatic mosaicism, due to mutations such as single-nucleotide

variants (SNVs) and CNVs, can occur in any tissue, including the

brain.45 Approximately 0.8%–1.3% of autistic probands carry a

mosaic deleterious (i.e., that increases an individual’s suscepti-

bility or predisposition to ASD) SNV/CNV affecting genes poten-

tially related to ASD risk.46 Somatic deleterious SNV/CNV that

occur early enough in development to be detectable in blood-

derived DNA may explain as many as 5% of cases of ASD.47

Otherwise, detection of brain-selective mosaicism may require

deep sequencing of DNA extracted from brain tissue,48 which

further limits the clinical applicability of this approach.

Epigenetic variations can profoundly affect gene expression

by modifying the chromatin structures and can impact the DNA

reading frame of genes associated with ASD.49 Importantly,

epigenetic signatures have been found not only to differentiate

autistic and typically developing individuals following diag-

nosis,50 but also at birth in DNA extracted from cord blood,51

and even prenatally in DNA extracted from the sperm cells of fa-

thers of autistic children.52 This clearly poses major questions on

the functional relevance of these epigenetic variants and, most

importantly, on transgenerational contributions to the patho-

physiology of ASD.53

Finally, common genetic variants increasing ASD risk and

contributing tobuild a ‘‘polygenic risk score’’ (PRS) for ASDappear

especially enriched inmethylation sites, pointing to these common

genetic variants as an unexpected cross-road between genetic
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predisposition and epigenetic mecha-

nisms.54 In the era of genome-wide asso-

ciation studies (GWASs), the translation

of PRS into the clinic raises increasing in-

terest, but currently inter-individual differ-

ences in ASD pathogenesis and inter-

ethnic differences in population structure

(i.e., linkage disequilibrium) represent a

major obstacle to the use of PRS in clinical

setting.54

In conclusion, a complete panel of ge-

netic tests for ASD, including karyotyp-

ing, fragile X, SNP-CGH, and WES

(WGS), provides a positive result in up

to about 50% of cases, depending on

autism severity and comorbidity with ID.

By comparison, brain MRI provides a

positive result in only 7.2% of patients

with ASD and typically produces no ther-

apeutic benefit. By providing etiologic

clues and information on genetic contri-

butions to behavioral symptoms, knowl-

edge derived from genetic testing can
relieve parents from the burden of not knowing what caused

ASD in their children, can unveil genetic syndromes whose char-

acteristics and clinical course may already be well known, and in

some cases can promote better clinical management. At the

same time, genetic contributions represent a conundrum that

is unlikely to provide a satisfactory explanation for ASD in any in-

dividual, if genetics remains the only level of analysis. Instead, a

panel encompassing biomarkers from multiple levels of analysis

and including, but not limited to, genetic variants (pathogenic or

at risk) will more likely be able to capture the complexity of ASD

genetic architecture and to dissect autism into subgroups with

relatively homogeneous pathogenetic underpinnings and, hope-

fully, meaningful clinical implications.55 Overall, genetic informa-

tion is not yet diagnostic but provides valuable background infor-

mation to support clinical care and personalized interventions.

PERSPECTIVES ON TELEMEDICINE

Although most diagnostic assessment procedures, including the

genetic evaluation discussed in the previous section, have been

devised to be carried out face-to-face, the limited availability of

services has prompted the development of remote assessment,

and this trend has been further enhanced by the impact of the

COVID-19pandemic. ASD screening or assessment could involve

telemedicine, namely the use of digital technology to connect pro-

viderswith patients or their caregiverswhen they are separated by
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distance.56 Telemedicine for screening and assessment of ASD

can be classified based on (1) the type of information transmitted

(e.g., text, audio, and video), (2) the device used (e.g., computer,

tablet, and smartphone),57–60 and (3) the different timing of the

information transfer, i.e., synchronous or asynchronous. Synchro-

nous or real-time methods require live interactions and/or obser-

vations conducted via video-conferencing services.61–67 In

contrast, asynchronous or store-and-forward methods involve

questionnaires being completed58,60,68–71 and relevant video re-

cordings of live events of individuals with ASD being collected

by caregivers and then forwarded to a clinician for further evalua-

tion.72,73 There is evidence of high agreement between diagnosis

made via telemedicine and in-person assessments.74

The use of telemedicine has been proven helpful for perform-

ing initial ASD screening, speeding up the assessment process,

reducing the time required for the diagnosis, and ensuring

faster access to appropriate therapies, albeit with some limita-

tions.75,76 In fact, telemedicine makes it possible to reduce

distances, save time and costs, and observe the patient’s spon-

taneous behavior and natural expressions in the home environ-

ment. However, telemedicine requires a few prerequisites that

are not yet evenly distributed across the clinical population,

such as the availability of valid information technology equip-

ment, sufficient familiarity with the technology, and a fast internet

connection. In addition, simply observing individuals with ASD in

a predictable and familiar environment could mask some of their

dysfunctional behaviors. Therefore, although several studies

have investigated the accuracy, validity, and feasibility of tele-

matic assessment for ASD with promising results,77,78 telemedi-

cine is now seen as a complement to traditional face-to-face clin-

ical assessment rather than an exclusive alternative. Table S2

summarizes (when available) the sensitivity, specificity, area un-

der the curve (AUC), positive predictive value (PPV), and negative

predictive value (NPV) of tools delivered via telemedicine that

have been assessed in terms of supporting the diagnostic pro-

cess of ASD.

DIGITAL TECHNOLOGIES IN CLINICAL PRACTICE

Research on digital technologies in ASD is a promising field for

supporting early recognition, precision diagnosis development,

and personalized prognostic and treatment strategies, providing

objective and operator-independent data. Indeed, digital tech-

nologies have the advantage of making clinical decisions more

objective, reliable, and evidence-based, while reducing clinical

resources and waiting times for diagnostic assessment.79 Auto-

mated video analysis, sensors and wearables, and virtual reality

are the most commonly investigated diagnostic digital technolo-

gies for ASD. In addition, mobile apps and software able to inte-

grate information from multiple sources (with or without ques-

tionnaires filled by caregivers or health professionals) have

been studied.80–85

However, currently digital tools are used mainly for research

purposes to detect and study candidate cognitive, behavioral,

and peripheral physiological diagnostic markers of ASD. Within

the cognitive domain, executive functions and attention skills

are the most explored functions, along with other cognitive con-

structs including ‘‘cognitive load in learning complex tasks,’’
such as driving.86 These constructs can be studied using digital

adaption of traditional neuropsychological tests (e.g., Tower of

London test)87 or integrating multiple information (e.g., pupil di-

lations and electroencephalogram [EEG] data to track cognitive

and attentional load).88 In relation to behavioral domains, digital

tools can automatically detect peculiarities in verbal behaviors,

particularly prosody or idiosyncratic utterances,89 as well as vo-

calizations90 or speech and turn-taking parameters,91 and non-

verbal behaviors. For these purposes, eye tracking is the most

used tool, since it allows one to study and measure eye move-

ments and direct gaze non-invasively, making it suitable even

for toddlers or infants with suspected ASD. Indeed, it has been

demonstrated that eye tracking can reveal different gaze pat-

terns associated with ASD, such as pronounced preference to-

ward geometric figures than social images in infants and tod-

dlers with autism,92,93 different fixation patterns on social

stimuli, as well as atypical gaze behaviors related to deficit of

joint attention.94

In addition, reduced abilities in gross and fine motor skills, as

well as atypical motor pattern or lowermotion complexity, can be

identified in children with ASD through video-analysis motion

tracking technologies, motor sensors applied on objects with

which the child interacts, and wearables.95–97 Moreover, as a

new field of research, automated video-analysis technology

has been used to quantify ‘‘social synchrony.’’ This is defined

as the alignment of an individual’s own behaviors (intrapersonal

synchrony) and the reciprocal coordination of others’ behaviors

(interpersonal synchrony). These behaviors are coordinated

either simultaneously or in specific temporal sequence patterns,

demonstrating its reduction in individuals with ASD.98–100 Lastly,

peripheral physiological variations, such as heart rate, EEG

signals, or electrodermal activity, can be revealed by wearables

to categorize the autonomic nervous system responses in indi-

viduals with ASD during various tasks (e.g., joint attention or

emotion recognition tasks).101

Considered as a whole, digital diagnostics (in particular, those

developed to assess behavioral markers) are generally not inva-

sive, and this favors their use with high-sensitive individuals such

as those with autism. Digital tools can capture details that are

otherwise imperceptible to the human eye (e.g., eye tracking

for fixing the gaze on social stimuli has a very high detection fre-

quency) or in any case difficult to detect or moreover quantify.

Data reported in individual studies concerning diagnostic accu-

racy digital tools are promising (Table S2). Although these tools

are not yet used in practice to support the diagnosis of autism,

some of them, such as eye tracking, which has generally fairly

high test-retest reliability (e.g., for attentional bias102), may even-

tually be implemented in clinical practice. However, to date, spe-

cific recommendations for the development and validation of

digital diagnostics are still lacking. Figure 2 summarizes the time-

line of key events in the field of digital autism diagnostics.

ML AND AI

The implementation of digital technologies in the clinic could be

supported by ML and AI, which have recently started to play an

important role in the screening/diagnosis and understanding of

mental and neurodevelopmental conditions including ASD104
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Figure 2. Timeline of critical events for the field of digital autism diagnostics

Abbreviations: ADIR, Autism Diagnostic Interview–Revised; ADOS, Autism Diagnostic Observation Schedule. Reproduced, with permission, from Washington

et al.103
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(Figure 3). ML is a subfield of AI, more specifically an approach

used to simulate intelligent human behavior when analyzing

complex and large datasets to recognize specific patterns. In

brief, ML models develop innovative algorithms and statistical

models by analyzing and getting trained on large sets of data,

from which patterns are recognized and new predictions or de-

cisions are made. Within the discipline of computational psychi-

atry, ML is used to recognize patterns in data (e.g., neuroimaging

or electrophysiological data, large electronic health record data-

sets), classify cases into categories (e.g., investigating if different

clinical groups can be differentiated based on clinical or neuro-

psychological data), and make predictions about prognostic or

interventional outcomes.

In the last few years, the use of ML to support the diagnosis

and understanding of ASD has been extensively investi-

gated.106–112 While ML cannot be used during screening and/

or diagnosis of ASD, it can be used to identify patterns directly

associated with ASD. These patterns—upon proper testing

and validation—could be implemented as objective diagnostic

biomarkers and used to confirm a clinical (but subjective) diag-

nosis of ASD, partly overcoming the limitations of the current

diagnostic procedures.

In relation to early screening and diagnosis of ASD, ML ap-

proaches have been often used to understand if early evalua-

tions of general infant behavior (e.g., parent-rated) predict a

formal diagnosis of ASD at a later age. For example, an ML

model based on parent-rated early learning and adaptive func-

tioning at 14 months was able to predict a formal diagnosis of

ASD at 3 years with moderate accuracy.113 Home video record-

ings can also be used to train ML algorithms to identify behav-

ioral patterns that discriminate between autistic and non-autistic
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individuals.114 Other studies implemented MLmodels to analyze

motor features and development. For example, Crippa et al.115

found that preschoolers with ASD could be distinguished from

their typically developing peers based on differences in goal-ori-

ented movements (e.g., transporting an object to a target area).

ML and computer vision approaches have also been used to

document and quantify signs related to the visual system during

infancy that are associated with ASD diagnosis later in life, such

as atypical visual attention or non-smooth visual tracking116 or

subtle abnormalities in producing and recognizing emotions in

pattern of facial expressions.117 Analysis of eye-tracking data

via ML/AI approaches may be potentially helpful to identify indi-

viduals with ASD with high accuracy, especially in preschool-

aged children.112 Nevertheless, studies that investigated ML

approaches for ASD early diagnosis showed that sensitivity,

specificity, and accuracy varied from 0.50 (poor discrimination

between individuals with and without ASD) to 1.00 (excellent

discrimination),118 highlighting the need for further rigorous and

larger studies.

Other studies have shown that ML can help to simplify the

assessment process, e.g., by identifying the essential items in

questionnaire, interviews, or behavioral assessment that need to

be retained without undermining diagnostic accuracy. For

example, ML-based studies showed that a lower number of activ-

ities/items in the different modules of ADOS and ADI could be

sufficient to diagnose ASD and be as accurate as the full and

time-consuming assessments.119 However, and crucially, many

behavioral studies in the field of ML are hampered by analytic lim-

itations in terms of lack of independent dataset for the external

validation or lack of use of appropriate validation methods such

as k-fold cross-validation.120



Figure 3. Possible implications of artificial

intelligence-based technology for the diag-

nosis and management of mental and neu-

rodevelopmental conditions, including ASD

Reproduced, with permission, from Sun et al.105
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One of themost prominent data modality used inML/AI is neu-

roimaging. ML could help identify subtle brain structural and

functional differences between autistic and non-autistic individ-

uals, integrating information frommultiple sources.107 According

to recent systematic reviews and meta-analyses,121 ML and

deep learning algorithms are relatively accurate in discriminating

between autistic and non-autistic individuals, through neuroi-

maging data. For example, structural and functional MRI-based

ML algorithms showed moderate to good sensitivity and speci-

ficity for discriminating between individuals with and without

ASD, but replication is often lacking.122

Another field of application of ML in supporting ASD diag-

nosis is genomics. Based on widespread shared open-access

genetic datasets, ML could be helpful for identifying new ge-

netic markers of ASD123 or supporting diagnostic screening

for ASD based on genetic variability.111 Furthermore, explora-

tion of large healthcare databases using ML approaches has

enhanced our ability to identify ASD-specific electrophysiolog-

ical124 or blood-based biomarkers,125 allowing an improved un-

derstanding of ASD heterogeneity.126 For example, ML applied

to electroencephalography and magnetoencephalography

data can help classify and predict ASD diagnosis in high-risk

infants at 3 months of age and predict symptom severity,

with high accuracy.108 A recent systematic review retrieved

27 relevant studies to date.108 Indeed, in a meta-analysis of

232 studies using AI based on overall nine modalities, the accu-

racy based on of the EEG data was the best, with AUC = 0.89
Cell Reports M
(95% CI: 0.85–0.93). AUC for other rele-

vant modalities were as follows, in

descending order of magnitude: eye

tracking = 0.83 (0.76–0.93), task-based

functional MRI = 0.79 (0.75–0.83),

resting-state functional MRI = 0.74

(0.72–0.76), diffusion weighted and

tensor imaging = 0.74 (0.69–0.80), struc-

tural MRI = 0.73 (0.65–0.79), and multi-

modal = 0.71 (0.59–0.80).127 Lastly,

ML/AI have been applied to other data

streams such as digitized historical

health records, voice, motion, and other

behavioral features,128 questionnaires,

sociodemographic, familial, and envi-

ronmental data.104

Overall, although ML/AI approaches

represent a promising tool to unveil com-

plex mechanisms underlying behavioral

and emotional patterns in autism, imple-

mentation in clinical practice remains

challenging. First, large datasets are

required to train ML algorithms and test
them. In some cases, this is achieved by combining datasets

from different studies or public repositories, which however in-

creases data heterogeneity. Using large datasets to make spec-

ulations (or conclusions) about the whole population of autistic

individuals also collides with the widely acknowledged idea

that autism is heterogeneous and can present in different individ-

uals with different and wide ranges of symptoms and features.

Furthermore, considering only specific features that are thought

to be associated with ASD can overlook individual features and

needs associated with disorders and conditions that co-occur

with ASD. Finally, in particular for neuroimaging-based tools,

the costs, which still remain too high to be implemented in

publicly funded healthcare systems, and the difficulties in scan-

ning uncooperative children—with the possible exception of

resting-state MRI during sleep—are important challenges.

Despite such limitations, research on ML/AI methods for

screening/diagnosis of ASD has also led to the development of

software and devices that are currently implemented in some

clinical contexts. For instance, the Food andDrug Administration

(FDA)-approved Canvas Dx (https://cognoa.com/) implements

ML algorithms on data received by parents/caregivers (e.g.,

questionnaires and home videos), video analysts, and healthcare

professionals and informs about a possible diagnosis of ASD.

Canvas Dx demonstrated excellent sensitivity (98.4%) and

good specificity (78.9%) among participants for which the tool

was able to make a decision (<50% of the sample).83 This makes

Canvas Dx a good example of promising applications of ML/AI
edicine 6, 101916, February 18, 2025 9
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methods for supporting the diagnostic assessment of ASD.

Table S3 summarizes (when available) the sensitivity, specificity,

AUC, PPV, and NPV of digital/ML tools that have been assessed

in terms of supporting the diagnostic process of ASD.

PUTATIVE CANDIDATE DIAGNOSTIC BIOMARKERS

A biomarker is defined by the FDA National Institute of Health

BiomarkerWorkingGroup (US) as ‘‘an indicator of normal biolog-

ical processes, pathogenic processes, or biological responses

to an exposure or intervention.’’129

A biomarker needs to be sensitive, accurately identifying as

positive those individuals who have the outcome of interest,

and specific, accurately labeling as negative those individuals

who do not have the outcome of interest. Although there are

no established benchmarks for these metrics, quantitative mea-

sures that enable diagnostic accuracy with at least 80% sensi-

tivity and 80% specificity are often considered clinically use-

ful.130 The American Psychiatric Association Work Group on

Neuroimaging Markers of Psychiatric Disorders suggested

that a promising biomarker should have two or more indepen-

dent well-powered studies providing evidence of sensitivity

and specificity at least of 80%.131 In addition, a biomarker

would need to have good PPV, NPV, internal validity, be exter-

nally valid, and be reliable in terms of test-retest reliability and

inter-rater reliability.

The largest systematic review of candidate diagnostic bio-

markers in NDDs, including ASD, assessed a wide range of po-

tential genetic, biochemical, neuroimaging, neurophysiological,

and neuropsychological measures.132 Among these, biochem-

ical markers have been the most investigated, with 300 studies

identified and a total of 1,289 biochemical measures tested.

However, only 73 measures were reported by at least two

studies with at least one positive finding and more than 50%

replications. Among those with only positive replications in the

same direction, the most replicated were coproporphyrin

(a product of heme synthesis, increased), glutamine (decreased),

8-isoprostane (a prostaglandin isomer, increased), cysteine

(decreased), glutathione/oxidized glutathione ratio (decreased),

lead (increased), neurotensin (increased), 4-methylphenol

(a phenol derivative, increased), secreted amyloid precursor pro-

tein alpha (a neurotrophic protein, increased), succinic acid

(increased), and human transforming growth factor b (increased).

Highest specificity and/or sensitivity were achieved by oxytocin

(decreased), vitamin E (decreased), interferon-gamma-inducible

protein-16 (increased), interferon-gamma (increased), and heat

shock protein 70 (increased). However, none of these measures

met the criteria to be identified as a biomarker (all the references

for relevant studies on these compounds are freely available in

supplemental material 1 and supplemental Table 5 accompa-

nying the main text of Cortese et al.,132 https://osf.io/wp4je/?

view_only=8c349f45a9ac441490981acf946c8d9a).

Considering common genetic variants, this systematic review

identified only a GWAS specifically aiming at identifying SNPs in

ASD.133 This included over 18,000 individuals with ASD and

almost 28,000 neurotypical controls and identified five SNPs

significantly associated with ASD. The corresponding candidate

genes have been previously involved in neuronal function and
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neurodevelopment. For instance, these included PTBP2, which

encodes for a splicing regulator; CADPS, encoding a calcium-

binding protein involved in neurotransmission; and KCNN2,

which encodes for a voltage-independent Ca2+-activated

K+ channel and thus is involved in neuronal excitability.

The estimated SNP-based heritability (SNP-h2) for ASD was

11.8%. Overall, this GWAS was well conducted and provided

valuable knowledge on the genetic underpinning of ASD.

However, it did not providemetrics, such as sensitivity and spec-

ificity, needed to assess the identified loci as diagnostic

biomarkers.

Several neuroimaging studies have compared brain charac-

teristics between autistic individuals and controls from the gen-

eral population. However, most of them aimed at investigating

the neurobiology of ASD, rather than identifying potential imag-

ing biomarkers. Among the 115 neuroimaging studies identified

by Cortese et al.,132 47% reported only p values and no other

metrics needed to define a biomarker.

Among neurophysiological measures, only the acoustic eye-

blink startle latency was consistently replicated among three

studies (increased in ASD) (for references, please supplemental

material 1 and supplemental Table 12 accompanying the main

text of Cortese et al.,132 https://osf.io/wp4je/?view_only=8c349

f45a9ac441490981acf946c8d9a). Finally, considering neuro-

psychological tests, only long-term and short-term memory

measures were replicated across a small number of studies

(two and five respectively) (for references, please Supplemental

Material 1 and Supplemental Table 15 accompanying the

main text of Cortese et al.,132 https://osf.io/wp4je/?view_only=

8c349f45a9ac441490981acf946c8d9a). Notably, these mea-

sures obtained 100% replication in both studies in ASD and

ADHD samples, which supports their transdiagnostic nature.

However, both neurophysiological and neuropsychological

studies did not consistently provide metrics necessary to assess

the identified measures as diagnostic biomarkers.

Overall, the systematic review by Cortese et al.132 highlighted

that, despite the large number of studies and measures consid-

ered, to date, there are no metrics that meet the criteria for a

diagnostic biomarker. This lack of replicable findings can be

both explained by challenges inherent in the search for bio-

markers, especially for neurodevelopmental conditions, and by

methodological limitations. Clinical presentation, neuropsycho-

logical profiles, and comorbidities vary greatly in ASD. Most

studies to date included small samples and were thus under-

powered to stratify individuals into more clinically and biologi-

cally homogeneous subgroups, which may help identify suitable

biomarkers. Methodological limitations, such as lack of stan-

dardization, confounding factors, and limited replicability, have

also hampered progress in the field. Heterogeneity in terms of

laboratory procedures, imaging methods, and analysis tech-

niques can also affect comparability among studies for external

validation and replicability. Most studies focused on associa-

tions and reported p values, which are poorly informative. Finally,

once a measure has been identified, the biological significance

often remains to be elucidated. For instance, considering

biochemistry, vitamin E and inflammatory markers were the

most replicated, but may be related to diet or stress response

rather than ASD itself.

https://osf.io/wp4je/?view_only=8c349f45a9ac441490981acf946c8d9a
https://osf.io/wp4je/?view_only=8c349f45a9ac441490981acf946c8d9a
https://osf.io/wp4je/?view_only=8c349f45a9ac441490981acf946c8d9a
https://osf.io/wp4je/?view_only=8c349f45a9ac441490981acf946c8d9a
https://osf.io/wp4je/?view_only=8c349f45a9ac441490981acf946c8d9a
https://osf.io/wp4je/?view_only=8c349f45a9ac441490981acf946c8d9a
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Conclusions
In current clinical practice, the diagnosis of ASD still primarily re-

lies on clinical judgment aided by questionnaires and structured

interviews/observation. The diagnostic process can be complex,

especially in the presence of co-occurring conditions, very

young age, or less typical presentations. It may also be time-

consuming and expensive for clinical services. Thus, in addition

to alternative diagnostic pathways such as those that involve

partnerships with community providers,134 there have been

increasing efforts to identify approaches and tools that can

assist this process by providing more objective and accurate

measures. This may be particularly important for ASD, given its

highly heterogeneous presentation, and may guide the identifi-

cation of the individual needs and thus a more tailored support.

Notably, current diagnostic tools are highly valuable but have

mainly been developed for males and may not fully capture the

nuances of the ASDpresentation in females. Thismay lead to de-

layed recognition and less effective therapeutic interventions for

secondary presentations, such as anxiety or depression in

adolescence. Thus, improving the ability of diagnostic tools to

capture gender differences warrants further investigation.

To date, no tools can replace or promise to replace the clinical

diagnostic assessment. Genetic testing may contribute to the

diagnostic process especially in cases of comorbid ID or seizure.

When a thorough genetic diagnostic protocol is followed, patho-

genic variants can be detected in up to 23.5% of ASD samples

and in 52%–53% of samples with ASD and co-morbid ID. This

is the largest yield provided by a medical test for neurodevelop-

mental disorders to date. Nevertheless, it is important not to

disregard negative results as not all variants associated with

ASD are known or can be accurately detected. Moving forward,

it will be important to strengthen the link between these investi-

gations and clinical practice, especially as they can potentially

guide more tailored management approaches.

Digital diagnostics are emerging as promising tools as they are

generally not invasive and able to capture subtle variations in

behavior, such as in eye movements, that would otherwise be

difficult to capture clinically. Nevertheless, future larger and

more rigorous studies are needed to refine the diagnostic accu-

racy of these approaches and their potential clinical applications.

Similarly, AI/ML approaches have been tested on a range of data,

including behavioral, neuropsychological, and neuroimaging data.

These approaches offer the advantage of combining multi-level

data and may help understand the biological correlates of the

observedphenotypes. However, their applicabilitymay be limited,

especially for neuroimaging, in particular due to the high cost.

Nevertheless, cost-effectiveness, rather than simply costs, may

need to beconsideredmoving forward and shouldbe investigated

when assessing new tools.

Crucially, to date, there are nometrics that meet the criteria for

a diagnostic biomarker. Beyond challenges related to the het-

erogeneity of ASD, progress in the field has been hampered

by methodological limitations, including small samples, lack

of standardization, and limited replicability. Going forward,

further international collaborations may support larger and

more robustly designed studies and help develop multimodal

datasets to combine biomarkers, thus enhancing accuracy and

ensuring reproducibility as well asmeaningful clinical translation.
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