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Abstract: Iterative learning control (ILC) is suitable for high-performance repetitive tasks since
it learns from past trials to improve the tracking performance. Existing ILC designs often require
a model, which can be difficult or expensive to obtain in practice. To address this problem, we
recently developed a data-driven norm optimal ILC using the latest developments from data-
driven control, namely, the Willems’ fundamental lemma. In this paper, we show that the idea
can also be extended to point-to-point ILC tasks that focus on tracking some intermediate
points of the whole trial. We propose a novel data-driven point-to-point norm optimal ILC
algorithm that can achieve the same performance as the model-based algorithm but without
using an analytical model. The design requires the available data to be persistently exciting of
a sufficiently high order. To relax this requirement, a receding horizon based algorithm and a
trial partition based algorithm are further developed with well-defined, but different convergence
properties. Numerical examples are given to illustrate the proposed algorithms’ effectiveness.
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1. INTRODUCTION

High-performance tracking control tasks, which require the
system to work repetitively to track a desired reference tra-
jectory with high precision, have found wide applications.
The recent design applies iterative learning control (ILC)
to achieve high-performance tracking control tasks since
ILC can update the input by learning from its past trials’
input and error information (that implicitly contains the
model information) and hence it does not require a highly
accurate model that can be difficult or expensive to obtain
in practice (Bristow et al., 2006). Till now, it has found
a great number of practical applications, e.g., robotics
(Armstrong et al., 2021), stroke rehabilitation (Freeman
et al., 2012) and additive manufacturing (Lim et al., 2017).

Existing ILC methods can be divided into model-free
and model-based designs. Model-free ILC algorithms do
not need a system model in the design, but parameters
are required to be tuned to guarantee convergence, e.g.,
proportional-integral-derivative type ILC (Arimoto et al.,
1984) and adaptive ILC (Tayebi, 2004). Model-based ILC
algorithms, for example, inverse-based ILC (Harte et al.,
2005), gradient-based ILC (Owens et al., 2009) and norm
optimal ILC (NOILC) (Amann et al., 1996), generally have
better tracking performance than model-free methods, but
a system model which is not always easy to obtain in
practice is required. Comprehensive reviews of ILC can
be found in Bristow et al. (2006) and Owens (2016).

There is research on removing/relaxing the system model
requirement in ILC design while achieving the convergence
performance as that in model-based ILC designs. For
example, Janssens et al. (2012) develops an algorithm to
estimate Markov parameters by the input/output data,

then model-based algorithms can be applied. In Bolder
et al. (2018), online experiments are performed to obtain
the response of the adjoint of the system. In de Rozario
and Oomen (2019), a data-driven iterative inversion based
control design in the frequency domain is proposed. Chi
et al. (2019) estimates a linearised system model iteratively
by an adaptive law. However, existing data-driven ILC
algorithms need to do further analysis or experiments to
explicitly or implicitly estimate the system model, which
can be non-trivial and/or expensive in practice.

Recently, we developed a novel data-driven NOILC frame-
work (Jiang and Chu, 2022) based on some latest de-
velopments in data-driven control, namely, the Willems’
fundamental lemma (Willems et al., 2005), which directly
uses the existing data to design the control input and hence
avoids the use or the estimation of the system model. The
resulting data-driven algorithms show the same conver-
gence performance as the model-based NOILC algorithm,
i.e., monotonic convergence of the tracking error norm to
zero, which is appealing in practice.

Point-to-point tasks have wide applications in practice.
They focus on the tracking behaviour on the intermediate
time instants. For example, the ‘pick’ and ‘place’ tasks
of a gantry robot only concern the perfect tracking at
the points of ‘pick’ and ‘place’, other points are not that
interesting. This feature creates more freedom in input
choices but raises technical challenges for the design, as
there is only error data from points of interest, rather
than error data from an entire trajectory in conventional
ILC design. In this paper, we further extend the data-
driven idea in Jiang and Chu (2022) and design a data-
driven point-to-point NOILC framework. We show that
the proposed algorithm has the same tracking performance
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not need a system model in the design, but parameters
are required to be tuned to guarantee convergence, e.g.,
proportional-integral-derivative type ILC (Arimoto et al.,
1984) and adaptive ILC (Tayebi, 2004). Model-based ILC
algorithms, for example, inverse-based ILC (Harte et al.,
2005), gradient-based ILC (Owens et al., 2009) and norm
optimal ILC (NOILC) (Amann et al., 1996), generally have
better tracking performance than model-free methods, but
a system model which is not always easy to obtain in
practice is required. Comprehensive reviews of ILC can
be found in Bristow et al. (2006) and Owens (2016).

There is research on removing/relaxing the system model
requirement in ILC design while achieving the convergence
performance as that in model-based ILC designs. For
example, Janssens et al. (2012) develops an algorithm to
estimate Markov parameters by the input/output data,

then model-based algorithms can be applied. In Bolder
et al. (2018), online experiments are performed to obtain
the response of the adjoint of the system. In de Rozario
and Oomen (2019), a data-driven iterative inversion based
control design in the frequency domain is proposed. Chi
et al. (2019) estimates a linearised system model iteratively
by an adaptive law. However, existing data-driven ILC
algorithms need to do further analysis or experiments to
explicitly or implicitly estimate the system model, which
can be non-trivial and/or expensive in practice.

Recently, we developed a novel data-driven NOILC frame-
work (Jiang and Chu, 2022) based on some latest de-
velopments in data-driven control, namely, the Willems’
fundamental lemma (Willems et al., 2005), which directly
uses the existing data to design the control input and hence
avoids the use or the estimation of the system model. The
resulting data-driven algorithms show the same conver-
gence performance as the model-based NOILC algorithm,
i.e., monotonic convergence of the tracking error norm to
zero, which is appealing in practice.

Point-to-point tasks have wide applications in practice.
They focus on the tracking behaviour on the intermediate
time instants. For example, the ‘pick’ and ‘place’ tasks
of a gantry robot only concern the perfect tracking at
the points of ‘pick’ and ‘place’, other points are not that
interesting. This feature creates more freedom in input
choices but raises technical challenges for the design, as
there is only error data from points of interest, rather
than error data from an entire trajectory in conventional
ILC design. In this paper, we further extend the data-
driven idea in Jiang and Chu (2022) and design a data-
driven point-to-point NOILC framework. We show that
the proposed algorithm has the same tracking performance
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not need a system model in the design, but parameters
are required to be tuned to guarantee convergence, e.g.,
proportional-integral-derivative type ILC (Arimoto et al.,
1984) and adaptive ILC (Tayebi, 2004). Model-based ILC
algorithms, for example, inverse-based ILC (Harte et al.,
2005), gradient-based ILC (Owens et al., 2009) and norm
optimal ILC (NOILC) (Amann et al., 1996), generally have
better tracking performance than model-free methods, but
a system model which is not always easy to obtain in
practice is required. Comprehensive reviews of ILC can
be found in Bristow et al. (2006) and Owens (2016).

There is research on removing/relaxing the system model
requirement in ILC design while achieving the convergence
performance as that in model-based ILC designs. For
example, Janssens et al. (2012) develops an algorithm to
estimate Markov parameters by the input/output data,

then model-based algorithms can be applied. In Bolder
et al. (2018), online experiments are performed to obtain
the response of the adjoint of the system. In de Rozario
and Oomen (2019), a data-driven iterative inversion based
control design in the frequency domain is proposed. Chi
et al. (2019) estimates a linearised system model iteratively
by an adaptive law. However, existing data-driven ILC
algorithms need to do further analysis or experiments to
explicitly or implicitly estimate the system model, which
can be non-trivial and/or expensive in practice.

Recently, we developed a novel data-driven NOILC frame-
work (Jiang and Chu, 2022) based on some latest de-
velopments in data-driven control, namely, the Willems’
fundamental lemma (Willems et al., 2005), which directly
uses the existing data to design the control input and hence
avoids the use or the estimation of the system model. The
resulting data-driven algorithms show the same conver-
gence performance as the model-based NOILC algorithm,
i.e., monotonic convergence of the tracking error norm to
zero, which is appealing in practice.

Point-to-point tasks have wide applications in practice.
They focus on the tracking behaviour on the intermediate
time instants. For example, the ‘pick’ and ‘place’ tasks
of a gantry robot only concern the perfect tracking at
the points of ‘pick’ and ‘place’, other points are not that
interesting. This feature creates more freedom in input
choices but raises technical challenges for the design, as
there is only error data from points of interest, rather
than error data from an entire trajectory in conventional
ILC design. In this paper, we further extend the data-
driven idea in Jiang and Chu (2022) and design a data-
driven point-to-point NOILC framework. We show that
the proposed algorithm has the same tracking performance
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as the model-based algorithm without using a system
model. The design requires the existing data to be per-
sistently exciting of a sufficiently high order which may
not be easily satisfied in practice. Hence, two algorithms,
i.e., receding horizon based implementation and the trial
partition based implementation are proposed to relax the
data assumption. Convergence properties of the proposed
algorithms are analysed in detail and numerical examples
are presented to illustrate their performance.

The paper is organised as follows. The system dynamics
and the point-to-point NOILC are introduced in Section 2.
The data-driven point-to-point NOILC framework is de-
veloped in Section 3. Two further extensions are proposed
in Sections 4 and 5, respectively. Simulation examples are
given in Section 6, and Section 7 summarises this paper.

Remark 1. The data-driven design approach used in this
paper (i.e., that from Jiang and Chu (2022)) is very gen-
eral. It can also be applied to other ILC design problems,
e.g., for networked dynamical systems (Chen et al., 2023).

2. PROBLEM FORMULATION

This section will describe the system dynamics and formu-
late the point-to-point ILC problem.

2.1 System Dynamics

Consider the following discrete-time single-input single-
output, linear time-invariant system in state-space form

xk(t+ 1) = Axk(t) +Buk(t), xk(0) = x0,

yk(t) = Cxk(t),
(1)

where k is the trial index; t ∈ [0, N ] is time index in
which N denotes the trial length; uk(t) ∈ R, yk(t) ∈ R
and xk(t) ∈ Rn are the system input, output and state
(where n is system order); A, B and C are system matrices
with proper dimensions. For simplicity, we assume the
system (1) is both controllable and observable. The system
(1) is required to work within the time interval [0, N ]
repetitively. At the time N +1, the time t is reset to 0 and
the system state is reset to the identical initial condition
xk(0) = x0, ∀k ∈ N, then the next trial starts.

Assume the relative degree is unity, i.e. CB ̸= 0, the lifted
form system input and output are defined as (Owens, 2016)

uk = [uk(0), uk(1), · · · , uk(N − 1)]
T
,

yk = [yk(1), yk(2), · · · , yk(N)]
T
.

(2)

The system dynamics can then be represented as

yk = Guk + d, (3)

where G is the system matrix defined as

G =




CB 0 0 · · · 0
CAB CB 0 · · · 0

...
...

...
. . .

...
CAN−1B CAN−2B CAN−3B · · · CB


 , (4)

and d is the system initial response given by

d =

CAx0 CA2x0 CA3x0 · · · CANx0

T
. (5)

For traditional tracking problems, the system is required
to track a reference defined at every time instants over the
whole trial. By contrast, point-to-point tracking problems
focus on M intermediate points of the whole trial, i.e.,

the intermediate points (or tracking points) at time t1 to
tM are required to be tracked. Define the point-to-point
reference, output and tracking error as

rP = [r(t1) r(t2) · · · r(tM )]
T
,

yPk = [yk(t1) yk(t2) · · · yk(tM )]
T
, ePk = rP − yPk .

(6)

Note the point-to-point input-output relationship is

yPk = FGuk + Fd, (7)

where F is defined as

F =

fT
t1 fT

t2 · · · fT
tM

T ∈ RM×N , (8)

in which fti ∈ RN (1 ≤ i ≤ M) is the standard basis in
RN where the ti-th element in fti is 1 and the rest are 0.
Without loss of generality, r is replaced by r−d, such that
d = 0. Equations (3) and (7) becomes

yk = Guk & yPk = FGuk. (9)

Then the point-to-point ILC design problem can be stated
as finding a control updating law

uk+1 = f(uk, e
P
k ) (10)

such that the point-to-point error converges to 0, i.e.,
lim
k→∞

ePk = 0. (11)

2.2 Point-to-point Norm Optimal ILC

The point-to-point NOILC was proposed in Owens et al.
(2013) that updates the input at each trial by solving

uk+1 =arg min
uk+1

ePk+1

2
Q
+ ∥uk+1 − uk∥2R ,

s.t. ePk+1 = rP − yPk+1, yPk+1 = FGuk+1 .
(12)

where the associated norms are defined asePk+1


Q
=


ePk+1

T
QePk+1 ,

∥uk+1 − uk∥R =

(uk+1 − uk)TR(uk+1 − uk)

in which Q and R are positive definite weighting matrices.
The solution of (12) is

uk+1 = uk + (GTFTQFG+R)−1GTFTQePk . (13)

The algorithm has some very nice properties, including
monotonic convergence in the tracking error norm to
zero and convergence of input to the minimum energy
solution (Owens et al., 2013). However, the system model
G is needed in (13) that may not be easy to obtain in
practice. In this work, we will propose a novel data-driven
framework to remove this model requirement.

3. DATA-DRIVEN POINT-TO-POINT NOILC

In this section, we will develop the data-driven point-to-
point NOILC algorithm.

3.1 Preliminary Results on Data-driven Control

We first introduce some key results, i.e., the Willems’
fundamental lemma, of the data-driven control. Define the
system trajectory w with J sample length as

w =

uT yT

T
= col(u, y) ∈ R2J . (14)

All trajectories with J sample length generated by (1) form
a subspace GJ , which is defined as

GJ :=


uT yT
T ∈ R2J | ∃x(t) ∈ Rn, such that

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t)}.
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as the model-based algorithm without using a system
model. The design requires the existing data to be per-
sistently exciting of a sufficiently high order which may
not be easily satisfied in practice. Hence, two algorithms,
i.e., receding horizon based implementation and the trial
partition based implementation are proposed to relax the
data assumption. Convergence properties of the proposed
algorithms are analysed in detail and numerical examples
are presented to illustrate their performance.

The paper is organised as follows. The system dynamics
and the point-to-point NOILC are introduced in Section 2.
The data-driven point-to-point NOILC framework is de-
veloped in Section 3. Two further extensions are proposed
in Sections 4 and 5, respectively. Simulation examples are
given in Section 6, and Section 7 summarises this paper.

Remark 1. The data-driven design approach used in this
paper (i.e., that from Jiang and Chu (2022)) is very gen-
eral. It can also be applied to other ILC design problems,
e.g., for networked dynamical systems (Chen et al., 2023).

2. PROBLEM FORMULATION

This section will describe the system dynamics and formu-
late the point-to-point ILC problem.

2.1 System Dynamics

Consider the following discrete-time single-input single-
output, linear time-invariant system in state-space form

xk(t+ 1) = Axk(t) +Buk(t), xk(0) = x0,

yk(t) = Cxk(t),
(1)

where k is the trial index; t ∈ [0, N ] is time index in
which N denotes the trial length; uk(t) ∈ R, yk(t) ∈ R
and xk(t) ∈ Rn are the system input, output and state
(where n is system order); A, B and C are system matrices
with proper dimensions. For simplicity, we assume the
system (1) is both controllable and observable. The system
(1) is required to work within the time interval [0, N ]
repetitively. At the time N +1, the time t is reset to 0 and
the system state is reset to the identical initial condition
xk(0) = x0, ∀k ∈ N, then the next trial starts.

Assume the relative degree is unity, i.e. CB ̸= 0, the lifted
form system input and output are defined as (Owens, 2016)

uk = [uk(0), uk(1), · · · , uk(N − 1)]
T
,

yk = [yk(1), yk(2), · · · , yk(N)]
T
.

(2)

The system dynamics can then be represented as

yk = Guk + d, (3)

where G is the system matrix defined as

G =




CB 0 0 · · · 0
CAB CB 0 · · · 0

...
...

...
. . .

...
CAN−1B CAN−2B CAN−3B · · · CB


 , (4)

and d is the system initial response given by

d =

CAx0 CA2x0 CA3x0 · · · CANx0

T
. (5)

For traditional tracking problems, the system is required
to track a reference defined at every time instants over the
whole trial. By contrast, point-to-point tracking problems
focus on M intermediate points of the whole trial, i.e.,

the intermediate points (or tracking points) at time t1 to
tM are required to be tracked. Define the point-to-point
reference, output and tracking error as

rP = [r(t1) r(t2) · · · r(tM )]
T
,

yPk = [yk(t1) yk(t2) · · · yk(tM )]
T
, ePk = rP − yPk .

(6)

Note the point-to-point input-output relationship is

yPk = FGuk + Fd, (7)

where F is defined as

F =

fT
t1 fT

t2 · · · fT
tM

T ∈ RM×N , (8)

in which fti ∈ RN (1 ≤ i ≤ M) is the standard basis in
RN where the ti-th element in fti is 1 and the rest are 0.
Without loss of generality, r is replaced by r−d, such that
d = 0. Equations (3) and (7) becomes

yk = Guk & yPk = FGuk. (9)

Then the point-to-point ILC design problem can be stated
as finding a control updating law

uk+1 = f(uk, e
P
k ) (10)

such that the point-to-point error converges to 0, i.e.,
lim
k→∞

ePk = 0. (11)

2.2 Point-to-point Norm Optimal ILC

The point-to-point NOILC was proposed in Owens et al.
(2013) that updates the input at each trial by solving

uk+1 =arg min
uk+1

ePk+1

2
Q
+ ∥uk+1 − uk∥2R ,

s.t. ePk+1 = rP − yPk+1, yPk+1 = FGuk+1 .
(12)

where the associated norms are defined asePk+1


Q
=


ePk+1

T
QePk+1 ,

∥uk+1 − uk∥R =

(uk+1 − uk)TR(uk+1 − uk)

in which Q and R are positive definite weighting matrices.
The solution of (12) is

uk+1 = uk + (GTFTQFG+R)−1GTFTQePk . (13)

The algorithm has some very nice properties, including
monotonic convergence in the tracking error norm to
zero and convergence of input to the minimum energy
solution (Owens et al., 2013). However, the system model
G is needed in (13) that may not be easy to obtain in
practice. In this work, we will propose a novel data-driven
framework to remove this model requirement.

3. DATA-DRIVEN POINT-TO-POINT NOILC

In this section, we will develop the data-driven point-to-
point NOILC algorithm.

3.1 Preliminary Results on Data-driven Control

We first introduce some key results, i.e., the Willems’
fundamental lemma, of the data-driven control. Define the
system trajectory w with J sample length as

w =

uT yT

T
= col(u, y) ∈ R2J . (14)

All trajectories with J sample length generated by (1) form
a subspace GJ , which is defined as

GJ :=


uT yT
T ∈ R2J | ∃x(t) ∈ Rn, such that

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t)}.

Given a signal l = [l(0) l(1) · · · l(J−1)]T ∈ RJ , its Hankel
matrix form is given by

Ht(l) =




l(0) l(1) · · · l(J − t)
l(1) l(2) · · · l(J − t+ 1)
...

...
. . .

...
l(t− 1) l(t) · · · l(J − 1)


 . (15)

If rank(Ht(l)) = t, l is persistently exciting of order t.
Next, we present the key result of the data-driven control,
which is known as the Willems’ fundamental lemma.

Theorem 2. (Willems et al., 2005) Consider a controllable
system (1), a J sample long trajectory wd = col(ud, yd)
generated by (1). If the input ud is persistently exciting of
order t+n, then any t samples long trajectory of (1) can be
written as a linear combination of the columns of Ht(wd)
and any linear combination Ht(wd)g, where g ∈ RJ−t+1,
is a trajectory of Gt, i.e.,

col span(Ht(wd)) = Gt, (16)

in which col span(·) denotes the column span of the matrix.

Theorem 2 shows that the system behaviour can be ex-
pressed by the existing data that satisfies the persistently
exciting assumption. An important application of Theo-
rem 2 is the data-driven simulation, which can be stated
as given a system initial trajectory w(1 : n) = col(u(1 :
n), y(1 : n)) and input u(n+1 : n+N), to find the system
output y(n+ 1 : n+N).

We can define the following matrices and their partitions

U = Hn+N (ud) =


Up

Uf


, Y = Hn+N (yd) =


Yp

Yf


. (17)

The blocks Up, Yp ∈ Rn×(J−n−N+1) (p denotes ‘past’)
are used to calculate the initial conditions while the
blocks Uf , Yf ∈ RN×(J−n−N+1) (f denotes ‘future’) are
used to calculate the system response. By the Willems’
fundamental lemma, there exists some g such that


Up

Yp

Uf

Yf


 g =




u(1 : n)
y(1 : n)

u(n+ 1 : n+N)
y(n+ 1 : n+N)


 . (18)

Then, calculate the solution of
Up

Yp

Uf


g =


u(1 : n)
y(1 : n)

u(n+ 1 : n+N)


, (19)

we can get the response y(n+ 1 : n+N) by

y(n+ 1 : n+N) = Yfg. (20)

3.2 A Data-driven Point-to-point NOILC Algorithm

With the above definitions and results, we propose the
following data-driven point-to-point NOILC algorithm:

Algorithm 1. Given a trajectory of the system (1) wd =
col(ud, yd) where ud is persistently exciting of orderN+2n,
a reference rP , weighting matrices Q and R, past input
uk and past error ePk . The input uk+1 is generated by
iteratively solving the following optimisation problem

uk+1 =arg min
uk+1

ePk+1

2
Q
+ ∥uk+1 − uk∥2R

s.t.

UT
p Y T

p UT
f Y T

f

T
g =


01,n 01,n uT

k+1 yTk+1

T
yPk+1 = Fyk+1, ePk+1 = rP − yPk+1

The solution is given by

uk+1 = uk+


I

0N,M

T
F̄W0(W

T
0 F̄TSF̄W0)

†WT
0 F̄TS


0N,1

ePk



where F̄ =

I FT

T
, 0m,n denotes an m×n zero matrix,

† denotes the Moore-Penrose pseudo-inverse, weighting
matrix S = diag(R,Q), the zero initial condition response
matrix W0 can be calculated by the following steps

(1) Calculate the solution g of the following equation
Up

Yp

Uf


g =


0n,T−N+1

0n,T−N+1

HN (ud)


. (21)

(2) The result obtained is then used to calculate

Yfg = Y0. (22)

(3) Combine the input Hankel matrix and the above
equation to get the initial condition response matrix

W0 =


HN (ud)

Y0


. (23)

The derivations of Algorithm 1 and (21) to (23) use the
idea of data-driven linear quadratic tracking that projects
the trajectory on the zero initial condition subbehaviour
(Refer to Markovsky and Rapisarda (2008) for details).

The above algorithm has the following properties:

Theorem 3. The input and the tracking performance of
data-driven point-to-point NOILC are identical to the
model-based point-to-point NOILC. Consequently, Algo-
rithm 1 guarantees monotonic convergence of the tracking
error norm to zero, i.e.,ePk+1


Q
≤

ePk

Q

& lim
k→∞

ePk = 0. (24)

In addition, Algorithm 1 converges to solution u∗
s for the

following optimisation problem

u∗
s = argmin

u


∥u− u0∥2R|rP = FGu


. (25)

Note the minimum input energy is obtained when u0 = 0.

Proof. The proof is omitted here due to space reasons.

Theorem 3 shows that Algorithm 1 has identical tracking
performance to the model-based algorithm without using
the system model. However, the existing input ud is
assumed to be persistently exciting of order N+2n, which
may not easily be satisfied when N is large. In the next
section, we will develop a receding horizon based point-to-
point NOILC algorithm to relax this assumption.

4. DATA-DRIVEN RECEDING HORIZON
POINT-TO-POINT NOILC

This section develops a data-driven receding horizon point-
to-point NOILC algorithm, with its properties analysed.

4.1 Algorithm Description

The idea of the data-driven receding horizon point-to-
point NOILC algorithm is shown in Fig. 1. Instead of
finding the input over the whole interval in one go, the
receding horizon design, at each time instant ih (0 ≤ i ≤
p− 1, where p is the number of intervals), finds the input
over a much smaller prediction horizon h (or the shrunk



1054	 Zheng Jiang  et al. / IFAC PapersOnLine 56-2 (2023) 1051–1056

Fig. 1. Illustration of Algorithm 2

prediction horizon hr = N mod h, where mod denotes the
modulo operator, for the last time interval), for which the
data only need to be persistently exciting of order h+ 2n
instead of N + 2n as in the previous setting.

For the data-driven receding horizon point-to-point NOILC
algorithm, the interval input and output are defined as

uk,i = uk(ih : ih+ h− 1), yk,i = yk(ih+ 1 : ih+ h),

where i denotes the interval index; h denotes the horizon
(or hr on the last interval horizon to prevent the time
ih + hr exceed the trial length N). The point-to-point
interval output is defined as

yPk,i =

yk(ih+ ti1) yk(ih+ ti2) · · · yk(ih+ tiMi

)
T ∈ RMi ,

in which tij (1 ≤ j ≤ Mi) are the intermediate tracking
time points falling into the interval (Mi denotes the
number of intermediate points in the interval i). Point-to-
point reference rPi and error ePk,i are defined in the same

manner. If no points are contained, then yPk,i, e
P
k,i and rPi

are set as 0. The relationship between the interval output
yk,i and point-to-point interval output yPk,i is given by

yPk,i = Fiyk,i, (26)

where Fi ∈ RMi×h is defined similarly as in (8). Then, the
data-driven receding horizon based point-to-point NOILC
algorithm is designed as in Algorithm 2.

Algorithm 2. Given a trajectory of the system (1) wd =
col(ud, yd) where ud is persistently exciting of order h+2n,
reference rP , weighting matrices Q and R, previous trial
input uk, previous trial error ePk , the input uk+1 can be
updated by the following steps.

(1) Set i = 0.

(2) At time t = ih, solve the following problem

uk+1,i =arg min
uk+1,i

ePk+1,i

2
Q
+ ∥uk+1,i − uk,i∥2R

s.t.



Up

Yp

Uh
f

Y h
f


 g =



uini
k+1,i

yinik+1,i

uk+1,i

yk+1,i




yPk+1,i = Fiyk+1,i, ePk+1,i = rPi − yPk+1,i

(27)

where Uh
f , Y h

f ∈ Rn×(T−n−h+1) are defined similarly

as (17). The interval initial sequences directly use the
calculation result of the last interval, which is given by

uini
k+1,i = uk+1(ih−n : ih−1), yinik+1,i = yk+1(ih−n+1 : ih).

(3) Apply uk+1,i to the system from time ih to ih+h− 1.

(4) Set i ← i+1 until the end of the current trial i = p−1.

The derivation of Algorithm 2 uses the similar idea of
Algorithm 1 and the solution of (27) is given by

uk+1,i = uk,i +


I

0h,Mi

T
F̄iW0h(W

T
0hF̄

T
i SF̄iW0h)

†

×WT
0hF̄iS


0h,1

ePk,i + Fi(dk,i − dk+1,i)


,

(28)

where F̄i =

I FT

i

T
, W0h is the interval zero initial con-

dition response matrix. The response dk+1,i is calculated
by (18) to (20) (Set uini

k+1,i, y
ini
k+1,i as the initial trajectory

and zero sequence as the input). If the last time interval’s
horizon is shrunk (i.e., hr ̸= 0), the corresponding W0r

and dk+1,r should be calculated in a similar way.

In Equation (27), the length of uk+1,i is h. Thus the
input ud is assumed to be persistently exciting of order
h + 2n, which has significantly relaxed the assumption in
Algorithm 1 (which is N + 2n as the trial length N is
usually much bigger compared to the system order n).

Remark 2. Algorithm 2 solves the problem every h time
steps and then applies the input uk+1,i (over these h time
steps) to the system (instead of just the first one), which
is different from the conventional receding horizon control.

4.2 Convergence Analysis

The convergence properties of Algorithm 2 are described
in the following theorem.

Theorem 4. Algorithm 2 guarantees the tracking error
norm asymptotically converges to zero, i.e., limk→∞ ePk =
0. If Q and R are scalar weightings, i.e., Q = qI, R = rI,
where q, r > 0 ∈ R, the proposed algorithm achieves
monotonic convergence if and only if

σ((I +
q

r
FGG̃TFT )−1) < 1, (29)

for which a sufficient condition is given by

q

r
>

2

σ(GG̃T )
, (30)

where σ(·) is the minimum singular value, σ(·) denotes the
maximum singular value, G̃ = diag(Gh, Gh, · · · , Gh, Ghr

)
and Gh, Ghr

are defined in a similar way as in (4).

Proof. The proof is omitted here due to space reasons.

Algorithm 2 has relaxed the persistently exciting assump-
tion. It can guarantee the asymptotic convergence of the
tracking error norm, but monotonic convergence is only
achieved under certain conditions. To overcome this issue,
in the next section, we will develop a novel algorithm to
simultaneously relax the persistently exciting assumption
and maintain the monotonic convergence.

5. DATA-DRIVEN TRIAL PARTITION BASED
POINT-TO-POINT NOILC

In this section, we will develop the data-driven trial
partition based point-to-point NOILC algorithm.

5.1 Point-to-point NOILC Based on Trial Partition

The idea of the algorithm is shown in Fig. 2. In this
algorithm, the trial will be partitioned for relaxing the
persistently exciting assumption. The decision variables
wk,i ∈ R2(n+h), i = 1, · · · , p − 1 and wk,p ∈ R2(n+hr)
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Fig. 1. Illustration of Algorithm 2

prediction horizon hr = N mod h, where mod denotes the
modulo operator, for the last time interval), for which the
data only need to be persistently exciting of order h+ 2n
instead of N + 2n as in the previous setting.

For the data-driven receding horizon point-to-point NOILC
algorithm, the interval input and output are defined as

uk,i = uk(ih : ih+ h− 1), yk,i = yk(ih+ 1 : ih+ h),

where i denotes the interval index; h denotes the horizon
(or hr on the last interval horizon to prevent the time
ih + hr exceed the trial length N). The point-to-point
interval output is defined as

yPk,i =

yk(ih+ ti1) yk(ih+ ti2) · · · yk(ih+ tiMi

)
T ∈ RMi ,

in which tij (1 ≤ j ≤ Mi) are the intermediate tracking
time points falling into the interval (Mi denotes the
number of intermediate points in the interval i). Point-to-
point reference rPi and error ePk,i are defined in the same

manner. If no points are contained, then yPk,i, e
P
k,i and rPi

are set as 0. The relationship between the interval output
yk,i and point-to-point interval output yPk,i is given by

yPk,i = Fiyk,i, (26)

where Fi ∈ RMi×h is defined similarly as in (8). Then, the
data-driven receding horizon based point-to-point NOILC
algorithm is designed as in Algorithm 2.

Algorithm 2. Given a trajectory of the system (1) wd =
col(ud, yd) where ud is persistently exciting of order h+2n,
reference rP , weighting matrices Q and R, previous trial
input uk, previous trial error ePk , the input uk+1 can be
updated by the following steps.

(1) Set i = 0.

(2) At time t = ih, solve the following problem

uk+1,i =arg min
uk+1,i

ePk+1,i

2
Q
+ ∥uk+1,i − uk,i∥2R

s.t.



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Y h
f


 g =



uini
k+1,i

yinik+1,i

uk+1,i

yk+1,i




yPk+1,i = Fiyk+1,i, ePk+1,i = rPi − yPk+1,i

(27)

where Uh
f , Y h

f ∈ Rn×(T−n−h+1) are defined similarly

as (17). The interval initial sequences directly use the
calculation result of the last interval, which is given by

uini
k+1,i = uk+1(ih−n : ih−1), yinik+1,i = yk+1(ih−n+1 : ih).

(3) Apply uk+1,i to the system from time ih to ih+h− 1.

(4) Set i ← i+1 until the end of the current trial i = p−1.

The derivation of Algorithm 2 uses the similar idea of
Algorithm 1 and the solution of (27) is given by

uk+1,i = uk,i +


I

0h,Mi

T
F̄iW0h(W

T
0hF̄

T
i SF̄iW0h)

†

×WT
0hF̄iS


0h,1

ePk,i + Fi(dk,i − dk+1,i)


,

(28)

where F̄i =

I FT

i

T
, W0h is the interval zero initial con-

dition response matrix. The response dk+1,i is calculated
by (18) to (20) (Set uini

k+1,i, y
ini
k+1,i as the initial trajectory

and zero sequence as the input). If the last time interval’s
horizon is shrunk (i.e., hr ̸= 0), the corresponding W0r

and dk+1,r should be calculated in a similar way.

In Equation (27), the length of uk+1,i is h. Thus the
input ud is assumed to be persistently exciting of order
h + 2n, which has significantly relaxed the assumption in
Algorithm 1 (which is N + 2n as the trial length N is
usually much bigger compared to the system order n).

Remark 2. Algorithm 2 solves the problem every h time
steps and then applies the input uk+1,i (over these h time
steps) to the system (instead of just the first one), which
is different from the conventional receding horizon control.

4.2 Convergence Analysis

The convergence properties of Algorithm 2 are described
in the following theorem.

Theorem 4. Algorithm 2 guarantees the tracking error
norm asymptotically converges to zero, i.e., limk→∞ ePk =
0. If Q and R are scalar weightings, i.e., Q = qI, R = rI,
where q, r > 0 ∈ R, the proposed algorithm achieves
monotonic convergence if and only if

σ((I +
q

r
FGG̃TFT )−1) < 1, (29)

for which a sufficient condition is given by

q

r
>

2

σ(GG̃T )
, (30)

where σ(·) is the minimum singular value, σ(·) denotes the
maximum singular value, G̃ = diag(Gh, Gh, · · · , Gh, Ghr

)
and Gh, Ghr

are defined in a similar way as in (4).

Proof. The proof is omitted here due to space reasons.

Algorithm 2 has relaxed the persistently exciting assump-
tion. It can guarantee the asymptotic convergence of the
tracking error norm, but monotonic convergence is only
achieved under certain conditions. To overcome this issue,
in the next section, we will develop a novel algorithm to
simultaneously relax the persistently exciting assumption
and maintain the monotonic convergence.

5. DATA-DRIVEN TRIAL PARTITION BASED
POINT-TO-POINT NOILC

In this section, we will develop the data-driven trial
partition based point-to-point NOILC algorithm.

5.1 Point-to-point NOILC Based on Trial Partition

The idea of the algorithm is shown in Fig. 2. In this
algorithm, the trial will be partitioned for relaxing the
persistently exciting assumption. The decision variables
wk,i ∈ R2(n+h), i = 1, · · · , p − 1 and wk,p ∈ R2(n+hr)

Fig. 2. Illustration of Algorithm 3

(where p is the number of intervals, h is the horizon and
hr is the shrunk horizon) of the new formulation contain
both input and output, are defined as

wk+1,i =

[
uk+1(ih− n : ih+ h− 1)
yk+1(ih− n+ 1 : ih+ h)

]
,

wk+1,p =

[
uk+1((p− 1)h− n : N − 1)
yk+1((p− 1)h− n+ 1 : N)

]
,

(31)

and the whole trajectory wk+1 is given by

wk+1 =
[
wT

k+1,1 wT
k+1,2 · · · wT

k+1,p

]T
. (32)

In Algorithm 2, one interval only focuses on its own
optimisation problem and thus the monotonic convergence
is lost. In this section, the trajectory of each interval has to
be ‘considered’ with others by adding constraints and then
the global optimum can be achieved. The idea is formally
presented in the following algorithm.

Algorithm 3. Given a trajectory of the system (1) wd =
col(ud, yd) where ud is persistently exciting of order h+2n,
reference rP , weighting matrices Q and R, past trajectory
wk, the input uk+1 can be obtained by the following steps.

(1) Solving the following optimisation problem for wk+1

minimise
wk+1

∥∥ePk+1

∥∥2
Q
+
∥∥F i(wk+1 −wk)

∥∥2
R

s.t.
[
ICT V T I

]T
wk+1 =

[
0 0 W gTk+1

]T
ePk+1 = rP − yPk+1, yPk+1 = F owk+1

(33)

where F i and F o are the input and output selection
matrix that selects the input and output information from
each interval respectively. IC is used to constrain the
initial trajectory to zero, which defines as

IC =
[
I2n 02n,2(pn+N−n)

]
, (34)

V puts a constraint between two consecutive intervals, i.e.,
the last l samples’ trajectory of the previous interval needs
to be the ‘past’ trajectory of the current interval.

V =

[
02n,2h I2n −I2n 02n,2h 0 · · · · · ·

0 · · · 02n,2h I2n −I2n 02n,2h
. . .

]
,

W gk+1 denotes the data-driven input/output relationship
for wk+1 and W is given by

W = diag(Wdn,Wdn, · · · ,Wdn,Wdnr), (35)

where Wdn = Hn+h(wd) and Wdnr = Hn+hr
(wd).

(2) The input is given by

uk+1 = F iwk+1. (36)

Note the above algorithm has an analytical solution

uk+1 = F iW [I 0]

[
H MT

M 0

]† [−f
0

]
, (37)

where

H = W TF oTQF oW +W TF iTRF iW ,

M =
[
ICW T V W T

]T
,

f = −W TF oTQrP −WF iTRF iwk.

The derivation of Algorithm 3 is omitted here for brevity.

5.2 Convergence Properties

Algorithm 3 has the following properties:

Theorem 5. Algorithm 3 has the same convergence proper-
ties as the model-based point-to-point NOILC algorithm
as given in Theorem 3.

Proof. The proof is omitted here due to space reasons.

By partitioning the trial into small intervals, the data-
driven trial partition based point-to-point NOILC algo-
rithm has relaxed the persistently exciting assumption
on the existing input to the order of h + 2n. Compared
with Algorithm 2, Algorithm 3 maintains the monotonic
convergence properties as well as obtains the minimum
energy solution when u0 = 0.

6. SIMULATION EXAMPLES

In this section, we will perform simulations to verify the
effectiveness of the proposed algorithms. A model of the
gantry robot system (Ratcliffe et al., 2006) is used. The
Z-axis, which is modelled as a 3rd order SISO LTI system,
is used. The transfer function is

H(z) =
3.6482× 10−4(z2 + 0.09791z + 0.005951)

(z − 1)(z2 + 0.005922z + 0.451× 10−4)
. (38)

The initial state is set to zero. The trial length is N = 200.
The reference is given by

rP (t) = 0.005 sin(
1

50
πt− π

2
) + 0.005, t = 1, 75, 125, 150.

The tracking performance of proposed algorithms and the
effect of horizon h are shown in Fig. 3. We fix Q = I and
R = 3 × 10−6I. The horizon is chosen as 3, 20, 200 for
Algorithms 2 and 3. The figure shows that the identical
tracking performance of Algorithm 1 and all choices of
horizon h in Algorithm 3 to the model-based point-to-
point NOILC algorithm which verifies Theorems 3 and 5.
It also shows that all choices of the horizon in Algorithm
2 lead to the perfect tracking which verifies Theorem 4.
Besides, a larger horizon has a faster convergence speed.
When the horizon equals the trial length, i.e., h = 200, it
can recover Algorithm 1.

Next, we compare the input energy cost of each algorithm.
We use the same setting as the previous simulation. As
shown in Fig. 4, the input generated by Algorithms 1 and 3
obtain the minimum energy solution, i.e., ∥u∥R = 0.0050.
On the other hand, for Algorithm 2, the minimum input
energy cost can not be generally achieved except when
horizon h = N , which recovers Algorithm 1.

We conduct simulations to explore the effect of the weight-
ing matrices Q, R of proposed algorithms. The results
indicate that a larger ratio of Q to R will have a faster
convergence speed. This is as expected since the same ob-
servation can be found in the model-based point-to-point
NOILC design (Owens et al., 2013). For space reasons, the
results are omitted.
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Fig. 3. Convergence of tracking error norm for different h

Fig. 4. Input energy cost of different algorithms

7. CONCLUSION

Model-based ILC algorithms tend to have good conver-
gence properties but require a system model, which may be
difficult or expensive to get in practice. To solve this issue,
our previous work has developed a data-driven framework
for high performance tracking tasks. However, it cannot be
applied to point-to-point tasks that have a range of prac-
tical applications. To address this limitation, we develop a
data-driven point-to-point NOILC framework. The iden-
tical performance of the proposed data-driven algorithm
and the model-based algorithm is proved rigorously. To
relax the existing data persistently exciting assumption,
we further develop a receding horizon based and a trial-
partition based point-to-point NOILC algorithms. Simu-
lations are then performed to illustrate the effectiveness
of the proposed designs. Future research needs to consider
the robustness issue and the experimental verification.

REFERENCES

Amann, N., Owens, D.H., and Rogers, E. (1996). Iterative
learning control using optimal feedback and feedforward
actions. International Journal of Control, 65(2), 277–
293.

Arimoto, S., Kawamura, S., and Miyazaki, F. (1984).
Bettering operation of robots by learning. Journal of
Robotic systems, 1(2), 123–140.

Armstrong, A.A., Wagoner Johnson, A.J., and Alleyne,
A.G. (2021). An improved approach to iterative learning
control for uncertain systems. IEEE Transactions on
Control Systems Technology, 29(2), 546–555.

Bolder, J., Kleinendorst, S., and Oomen, T. (2018). Data-
driven multivariable ILC: Enhanced performance by
eliminating L and Q filters. International Journal of
Robust and Nonlinear Control, 28(12), 3728–3751.

Bristow, D.A., Tharayil, M., and Alleyne, A.G. (2006).
A survey of iterative learning control. IEEE Control
Systems Magazine, 26(3), 96–114.

Chen, B., Jiang, Z., and Chu, B. (2023). Distributed data-
driven iterative learning control for consensus tracking.
In IFAC World Congress 2023, to appear 2023. Elsevier.

Chi, R., Hou, Z., Jin, S., and Huang, B. (2019). An im-
proved data-driven point-to-point ILC using additional
on-line control inputs with experimental verification.
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 49(4), 687–696.

de Rozario, R. and Oomen, T. (2019). Data-driven
iterative inversion-based control: Achieving robustness
through nonlinear learning. Automatica, 107, 342–352.

Freeman, C.T., Rogers, E., Hughes, A.M., Burridge, J.H.,
and Meadmore, K.L. (2012). Iterative learning control in
health care: Electrical stimulation and robotic-assisted
upper-limb stroke rehabilitation. IEEE Control Systems
Magazine, 32(1), 18–43.

Harte, T.J., Hätönen, J.J., and Owens, D.H. (2005).
Discrete-time inverse model-based iterative learning
control: Stability, monotonicity and robustness. Inter-
national Journal of Control, 78(8), 577–586.

Janssens, P., Pipeleers, G., and Swevers, J. (2012). A
data-driven constrained norm-optimal iterative learning
control framework for LTI systems. IEEE Transactions
on Control Systems Technology, 21(2), 546–551.

Jiang, Z. and Chu, B. (2022). Norm optimal itera-
tive learning control: A data-driven approach. IFAC-
PapersOnLine, 55(12), 482–487.

Lim, I., Hoelzle, D.J., and Barton, K. (2017). A multi-
objective iterative learning control approach for addi-
tive manufacturing applications. Control Engineering
Practice, 64, 74–87.

Markovsky, I. and Rapisarda, P. (2008). Data-driven sim-
ulation and control. International Journal of Control,
81(12), 1946–1959.

Owens, D.H. (2016). Iterative Learning Control: An
Optimization Paradigm. Springer London.

Owens, D.H., Freeman, C.T., and Van Dinh, T. (2013).
Norm-optimal iterative learning control with intermedi-
ate point weighting: Theory, algorithms, and experimen-
tal evaluation. IEEE Transactions on Control Systems
Technology, 21(3), 999–1007.

Owens, D.H., Hätönen, J.J., and Daley, S. (2009). Robust
monotone gradient-based discrete-time iterative learn-
ing control. International Journal of Robust and Non-
linear Control: IFAC-Affiliated Journal, 19(6), 634–661.

Ratcliffe, J.D., Lewin, P.L., Rogers, E., Hätönen, J.J., and
Owens, D.H. (2006). Norm-optimal iterative learning
control applied to gantry robots for automation appli-
cations. IEEE Transactions on Robotics, 22(6), 1303–
1307.

Tayebi, A. (2004). Adaptive iterative learning control for
robot manipulators. Automatica, 40(7), 1195–1203.

Willems, J.C., Rapisarda, P., Markovsky, I., and De Moor,
B.L. (2005). A note on persistency of excitation.
Systems & Control Letters, 54(4), 325–329.


