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Key Points:

e 1B and [B] in diatom frustules reveal a surface water increase of 0.3 to 0.5 pH units in
the subarctic Pacific Ocean over the INHG.

e These changes would have lowered atmospheric pCO2 and contributed to the long-term
expansion of Northern Hemisphere ice-sheets.
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Abstract

The intensification of Northern Hemisphere glaciation (iNHG) at 2.73 Ma is associated with a
reorganization of the subarctic Pacific Ocean and abrupt drop in opal mass accumulation rates.
Uncertainty, however, remains around the extent to which these changes altered carbon
dynamics and contributed to a reduction in atmospheric pCO2 and global temperatures. These
issues are addressed here using the boron isotope (811B) proxy in diatom frustules to reconstruct
past changes in the pH and pCO2 of ambient seawater. Diatom !B and [B] indicate a subarctic
Pacific surface water increase of 0.3 to 0.5 pH units over the iINHG. This confirms that delivery
of carbon and nutrients into surface waters was reduced at this time, explaining the drop in opal
productivity and limiting CO2 outgassing from the ocean interior. We consider two hypotheses to
explain this based on potential changes in circulation from the late Pliocene to early Pleistocene:
“ventilation to stratification” or “stratification to ventilation”. The ventilation to stratification
hypothesis, which posits a switch from vigorous PMOC in the Pliocene to stratification over
INHG, has received more attention in the literature. The stratification to ventilation hypothesis,
which posits a modest increase in ventilation, is more consistent with modern and late
Pleistocene analogues, the majority of models and 8*3C data. These late Pliocene changes in the
subarctic Pacific, in conjunction with other external and internal processes including those in the
Southern Ocean, would have contributed to a lowering of atmospheric pCO2 and the long-term
expansion of ice-sheets across the Northern Hemisphere.

1 Introduction

Under current shared socio-economic pathways (SSP), atmospheric CO2 concentrations
(pCO2(atm)) by 2100 CE will range from 393 ppm (SSP1-1.9) to 1,135 ppm (SSP5-8.5)
(Meinshausen et al. 2020). Due to the absence of comparable intervals within the observational
record, the geological record becomes crucial in efforts to constrain how the Earth system might
respond to increased CO: forcing, including the reorganizations of ocean-atmospheric processes
(Tierney et al 2020). Of equal importance is the need to consider future tipping points under a
warmer climate state (Wunderling et al 2021), the detection of which can be achieved through
the study of natural ("paleo”) archives (Thomas, 2016). One of the most significant of these in
the recent geological past is the intensification of Northern Hemisphere Glaciation (iNHG) from
2.73 Ma, when the Earth system transitioned from a relatively warm and climatological stable
Pliocene to the unstable Quaternary characterized by orbitally-paced oscillations between glacial
and interglacial states (McClymont et al., 2023). Coincident with the iINHG and the appearance
of large continental ice sheets over northern Eurasia and North America (Kleiven et al 2002; Tan
et al., 2018) are a series of step-like transitions across both atmospheric and oceanic meridional
temperature gradients (Brierley and Fedorov, 2010; McClymont et al., 2023) and circulation
patterns (Sato et al 2015; Abell et al., 2021). These includes a series of changes associated with
the reorganization of the subarctic Pacific Ocean, which may have sufficiently altered regional
carbon dynamics to impact the long-term global climatic cooling that occurred over this interval
(Haug et al., 1999).

Key changes observed in proxy data from the subarctic Pacific at 2.73 Ma include a drop
in sediment opal (Haug et al., 1999) and calcium carbonate content (Haug et al., 1995; Burls et
al., 2017), accompanied by an increase in nitrogen isotope ratios (Haug et al., 1999; Sigman et
al., 2004; Studer et al., 2012). Together, these signals imply a reduction in the supply of nutrients
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to the surface ocean. As oceanic nutrient and carbon concentrations are largely coupled, these
changes have been interpreted to imply a reduction in CO2 outgassing from the subarctic Pacific
around the iINHG, potentially helping to lower atmospheric CO2 and contributing to global
cooling and ice sheet growth (Haug et al., 1999, 2005). However, several potential uncertainties
remain. For instance, nitrogen isotopes can be influenced by water column denitrification, in
addition to nutrient utilization, potentially complicating the interpretation of North Pacific 6°N
signals (e.g. Galbraith et al., 2008), while COz2 is not always straightforwardly coupled with
nutrients, for instance due to changes in air sea gas exchange. More direct records of surface
ocean COz2 chemistry could help address these issues and improve our understanding of what
happened to the subarctic Pacific Ocean CO2 system during the INHG.

Over the past decade significant information on atmospheric CO2 and the oceanic carbon
system has been obtained using boron isotopes (6'!B) in foraminifera (e.g. Foster and Rae, 2016;
Honisch et al., 2019; Rae et al. 2021; CenCO2PIP Consortium, 2023). However, due to the rarity
of carbonate microfossils in subarctic Pacific Ocean sediments, such analyses are not possible in
this region. Building on recent method development and culturing calibrations (Donald et al.
2020), we provide here the first diatom 3B (5'!Bdiatom) and B concentration ([B]diatom)
paleoceanographic record to constraint how surface pH, carbon dynamics and hence air-sea CO2
flux in the subarctic Pacific Ocean responded to changing oceanographic conditions over the
iINHG.

2 Materials and Methods

2.1 ODP Site 882

ODP Site 882 is situated at the western section of the Detroit Seamounts (50°220N,
167°360E) in the open waters of the northwest Pacific Ocean at a water depth of 3,244 m (Fig.
1). The modern water column around ODP Site 882 is characterized by a highly stable year-
round halocline stratification at ca. 100 — 150 m water depth, with surface waters of ca. 32.8 psu
(Zweng et al., 2018). From June to October, this stratification is then strengthened by a
thermocline at ca. 50 m with sea surface temperatures (SST) of ca. 8-11°C (Locarnini et al.,
2018). Modern values of surface water CO2 concentrations (pCOz(ag)) in the region (50°-50.5°N
and 167°-168°E) over the past two decades and across different seasons range from 331-408
uatm (Takahashi et al., 2016). Monthly differences between pCO2(ag) and pCO2(atm) 0f overlying
air (ApCOz) range from —50 to +44 patm, whilst modern annual mean and preindustrial mean
ApCO:z are close to 0 patm (Takahashi et al., 2009; Japan Agency for Marine-Earth Science and
Technology et al., 2013). When compared to the North Atlantic, the North Pacific shows higher
pCO2(aq) and lower pH (Fig. 1).

8.1
| 8.15
60°N
8.2
| 8.25
40°N 83

120°E  150°E 180°W 150°W 120°W  90°W | 60°W  30°W 0°
Figure 1. Location of ODP Site 882 (50°220N, 167°360E) in the northwest subarctic Pacific
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Ocean. Colors indicate annual modern gridded surface water pH from GLODAP, corrected for
the influence of anthropogenic carbon (Olsen et al., 2020). Map created using Ocean Data View
(https://odv.awi.de). Upwelling of carbon-rich deep waters in the modern stratified North Pacific
Ocean creates relatively acidic surface waters, rich in CO2. Conversely, the North Atlantic Ocean
is fed by carbon and nutrient-depleted waters from the subtropics, which are then flushed to
depth via an active overturning circulation.

2.2 Boron in diatoms

Boron is bound to oxygen in either a tetrahedral (e.g. borate ion such as B(OH)4") or a
trigonal (e.g. boric acid such as B(OHs) complex, with the concentration of boron in seawater
[B]sw:

[Blsw = [B(OH)z] + [B(OH)3] (1)
The abundance of individual boron species are then linked by the acid-base equilibrium:
[B(OH);] + H* <=> [B(OH);] + H,0 (2)

Boron has two stable isotopes 1°B (~20%) and !B (~80%), the isotope ratio of which is
expressed as 61'B:

11 10
B/ Bsample
11 10
B/ Bstandard

where B/*Bstandard is the boron isotopic composition of National Institute of Standards
and Technology (NIST) Standard Reference Material (SRM) 951 boric acid (*B/*°B=4.04367;
Catanzaro et al. 1970). Due to boron’s long residence time (10-20 Myr; Lemarchand et al.
2002), boron is well mixed in the ocean with the isotopic composition of seawater (§1'Bsw) being
39.61 + 0.04%o (Foster et al. 2010). There is then an isotopic fractionation between B(OH)s and
B(OH)s4 of ~27 %o (Klochko et al. 2006; Nir et al 2015) with 1'B preferentially incorporated into
the more strongly bonded trigonal molecule B(OH)s:

'°[B(OH);] + "*[B(OH)3] <=>"! [B(OH);3] + °[B(OH);] (4

Since the concentration and isotopic ratios of boron species are altered by pH (Equation
2) but must sum to [B]sw and 6'!Bsw, the isotopic composition of B(OH)s and B(OH)4 (expressed
as 8'B) also varies with pH. Given that it is predominantly the charged B(OH)4 species that is
incorporated into growing CaCOs, the 5!'B of marine carbonates can be used to constrain past
changes in pH and so marine/global carbon dynamics (Fig. 2; Hemming and Hanson, 1992;
Zeebe and Wolf-Gladrow, 2001; Foster and Rae, 2016). For example, 1B has been widely used
in foraminiferal carbonates to reconstruct ocean pH and atmospheric pCO:2 across a variety of
timescales (e.g. Hemming and Hanson, 1992; Pearson and Palmer, 2000; Honisch and Hemming,
2005; Foster, 2008; Henehan et al., 2013; Chalk et al., 2017; CenCO2PIP Consortium, 2023).

§'1B(%o) = < - 1) <1000  (3)
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Figure 2. Variation in seawater concentrations (a) and isotopic composition (b) of B(OH)4") and
B(OHs) with pH using surface seawater conditions of 25°C and 34.7 psu.

Earlier work on biogenic silica sediment samples from the equatorial and North Pacific
Ocean demonstrated relatively high [B] concentrations (70-80 ppm) and low 3*'B values
(diatoms = —1.1%o, radiolaria = +4.5%o [Ishikawa and Nakamura, 1993]; cherts = —9.3%o to +8%o
[Kolodny and Chaussidon, 2004]). However, diagenetic processes may have altered cherts 5B
whilst low diatom and radiolaria 3*'B values may indicate clay contamination (Ishikawa and
Nakamura, 1993). More recent work on diatom cultures (Thalassiosira pseudonana and
Thalassiosira weissflogii) have shown [B]diatom 0f 1-10 ppm, with [B]diatom increasing and
811 Budiatom decreasing as pH increased from 7.5 to 8.7 (Mejia et al., 2013; Donald et al., 2020).
This relationship was interpreted to suggest the seawater tetrahydroxyborate anion (borate;
B(OH)4) is predominantly incorporated into the diatom frustule via leakage through bicarbonate
transporters during active carbon uptake, rather than boric acid (B(OH)s; Donald et al. 2020;
Mejia et al. 2013). In a more recent study, Saldi et al. (2021) identified a large negative isotopic
fractionation and the occurrence of both trigonal and tetrahedral boron absorbed onto the
amorphous silica surface. If these features are preserved on incorporation of B into opal, they
offer at least a partial explanation of the opal !B and B data to date (i.e. Donald et al., 2020),
including potentially contributing to the weaker and reversed pH dependency (with respect to
expectations based on the aqueous system). While more work is needed to fully understand the
mechanisms controlling the boron isotopic signature of siliceous organisms, the negative 6''B-
pH relationship shown by Donald et al. (2020) and the positive [B] to pH relationship shown by
Mejia et al (2013) and Donald et al. (2020) suggests that 3''Bdiatom and [B]diatom represent
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potentially useful tracers of paleo-pH and pCOz2(q) in high-latitude marine sediments that have,
until now, eluded study due to the lack of suitable carbonate material.

2.3 Diatom sample preparation

The thirty-one samples analyzed in this study for 5'Bdiatom and [B]diatom cOVer the
Quaternary/Pliocene boundary from 2.85 - 2.52 Ma and were dated using an age model derived
from the astronomical calibration of high-resolution GRAPE density and magnetic susceptibility
measurements (Tiedemann & Haug, 1995). All samples are from a 75-150 pum fraction that has
previously been extracted for diatom isotopes (see Swann et al., 2006, for full details). In
summary, samples were initially wet sieved at 75 um and 150 um to both minimize diatom
species diversity and remove clays, silts and other non-diatom material. Samples were then
immersed in 30% H202 for up to a week at 80°C to remove organic matter attached to the diatom
frustule and later placed overnight in 5% HCI to remove carbonate material. Following
centrifuge washing, samples were re-sieved at 75 pm and 150 um to remove any remaining
contamination and smaller diatom, with some samples also requiring the use of a vortex mixer to
separate diatoms from contaminants prior to the final sieving stage. Subsamples of the final
purified material were mounted on a coverslip using a Naphrax mounting media and visually
checked for both contamination and dissolution under a light microscope at 1000 times
magnification, with additional checking performed using a scanning electron microscope. These
samples have previously been analyzed for diatom 8*3C (8*3Cdiatom), *80 (8*¥Odiatom) and 5%°Si
(8%°Sigiatom) (Haug et al., 2005; Swann et al., 2006, 2018; Swann, 2010; Bailey et al., 2011),
whilst other work at ODP Site 882 has separately analyzed diatom 6'°N (§'°Ngiatom - Studer et al.,
2012) and 6°°Sigiatom (Reynolds et al., 2008) over the same interval.

2.4 3" Bdiatom and [B]diatom analysis

Sample preparation and analysis for both 8 Bgiatom and [B]diatom followed the
methodology described in Donald et al. (2020), with an additional set of sample purification
steps beyond what was performed when the same samples were analyzed for 6*3Cdiatom, 6*®Odiatom
and 8% Sidiatom (Swann et al., 2006, 2018; Bailey et al., 2011; Haug et al., 2005; Swann, 2010).
This additional stage involved samples being acidified (H2SO4), with trace organics then
oxidized using a two-step process involving potassium permanganate and oxalic acid (following
Horn et al., 2011, and Mejia et al., 2013). Samples were then rinsed using Milli-Q water via
centrifugation and transferred to acid-cleaned Teflon beakers. A secondary oxidation was then
completed under heat using perchloric acid with organic-free samples rinsed thoroughly with
Milli-Q via filtration.

In the boron-free HEPA-filtered class 100 clean laboratory at the University of
Southampton, each sample was dissolved completely in a gravimetrically known amount of
NaOH (0.5 M from 10 M concentrated stock supplied by Fluka) at 140 -C for 48-72 hours.
Samples were then briefly centrifuged prior to boron separation to ensure no insoluble particles
were loaded onto the boron column. Dissolved samples were passed through an anion exchange
column containing Amberlite IRA 743 resin to separate the matrix from the boron fraction
following Foster (2008). Samples were loaded directly onto the column without buffering and
the matrix removed with 9 x 200 puL washes of Milli-Q. The pure boron fraction was then eluted
and collected in 550 pL of 0.5 M HNOs acid and a matrix fraction (collected in 1800 puL MilliQ).
Potential contamination was monitored using total procedural blanks (TPB) comprising an
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equivalent volume of NaOH (0.5 M) and analyzed following the sample analysis protocols
detailed below. Typically, the TPBs contained less than 40 pg of boron, equating to a typical
blank contribution of ca. 0.015 %. This results in a negligible correction and is therefore not
considered further in this work.

Si concentrations of the matrix fraction were determined by having dissolved each opal
sample in a known concentration and mass of NaOH and by measuring the Si/Na ratio using a
Thermo Scientific X-Series 2 ICP-MS (as detailed in Donald et al., 2020). The Al concentration
was also measured on the matrix fraction as a tracer of clay contamination. Prior to isotope
analysis, but after column separation, an aliquot (c. 4%) of the boron fraction was diluted 25-fold
with 0.5 M HNOs and analyzed using a Thermo Fisher Scientific Element 2XR ICP-MS to
determine solution [B]. Combining these two sets of analyses ([B] and [Si] of the dissolved
sample), and by assuming a chemical formula of SiO2.H20 with an H20 content of 8% (Hendry
and Anderson, 2013), the B content of the opal in ppm can be estimated (see Donald et al.,
2020). 3" Budiatom Was measured on a Thermo Scientific Neptune MC-ICP-MS, also situated in a
boron-free HEPA-filtered laboratory at the University of Southampton, following Foster (2008).
Instrument-induced fractionation of the 1'B/*°B ratio was corrected using a sample-standard
sequence with NIST SRM 951 boric acid, allowing direct determination of §*'B. The reported
5B is the mean of the two analyses measured at around 50 ppb [B], with each representing a
fully independent measurement. Machine stability and accuracy was monitored using repeats of
NIST SRM 951, as well as boric acid reference materials AE120, AE121 and AE122 (also at 50
ppb [B]) that gave 5!!B (+2SD) of —20.19 + 0.20%o, 19.60 + 0.28%o and 39.31 + 0.28%o, which
are within the error of the gravimetric values from Vogl and Rosner (2012). Sample
reproducibility was assessed by repeat measurements of an in-house Southern Ocean diatom
reference material (TC460) used to develop a method for measuring 3'*Bdiatom and [B]diatom in
Donald et al., (2020). Over the course of this study, on dissolution of TC460 was separated and
measured 18 times giving a 8''B and [B] reproducibility of + 0.28%o and + 20% at 95%
confidence, respectively. Through standard addition, Donald et al. (2020) showed that the
511 Bdiatom is accurate to + 0.29%o, and following that study we take the reproducibility of TC460
to be indicative of our accuracy and precision here.

3 Results

3.1 6''Bdiatom and [B]diatom

In addition to previous work involving light microscopy and scanning electron
microscopy (Swann et al., 2006), a lack of correlation between matrix Al concentrations and
511 Budiatom OF [B]diatom confirms the purity of the analyzed diatom samples and the absence of
contamination that might alter §*Bdiatom Or [B]diatom (Fig. S1). Diatoms in the analyzed 75-150
um fraction are dominated by two taxa, Coscinodiscus marginatus (Ehrenb.) and Coscinodiscus
radiatus (Ehrenb.). C. marginatus dominates (approximately >90% relative biovolume
abundance) until 2.73 Ma, after which C. radiatus becomes dominant (Swann et al., 2006;
Swann, 2010). Today both C. marginatus and C. radiatus bloom throughout the year with
elevated fluxes in autumn/early winter (Onodera et al., 2005; Takahashi, 1986; Takahashi et al.,
1996). Based on this, the previously generated diatom isotope records as well as those obtained
in this study are interpreted as reflecting annually averaged conditions with a slight bias toward
autumn/early winter months.
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Over the analyzed interval, diatom §'B ranges from 4.68%o to 7.20%o, but shifts from a
mean of 6.47 £ 0.58 %o (£ 26) between 2.85 - 2.73 Ma, to a mean of 5.58 £ 1.39%o (£ 20)
between 2.73 - 2.39 Ma (p < 0.001) (Fig. 3a). Whilst §'!Bdiatom exhibits little variation pre-2.73
Ma, increased variability characterizes the data post-2.73 Ma. [B]diatom ranges from 0.1 ppm to
4.5 ppm and exhibit a marked increase after 2.73 Ma, shifting from a mean of 0.6 + 1.0 ppm (
206) pre-iNHG, to 2.3 = 2.1 ppm (£ 20) post-INHG (p < 0.001) (Fig. 3b). Over the analyzed
interval 6''Bdiatom and [B]diatom have a negative linear relationship between each other (adjusted
R2=0.41, p<0.001).
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Figure 3. Diatom boron data at ODP Site 882 showing changes in a) 6'Bdiatom; b) [B]diatom; pH
relative to a pH of 0 at 2.85 Ma using ¢) 5'Budiatom (81!B-ApH) and d) [Bldiatom ([B]- ApH) as
well as e) diatom species relative biovolume abundance in the analyzed samples (Swann et al.,
2006; Swann, 2010). Shaded regions show the 95% confidence intervals of a generalized
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additive models (GAM) fitted to each time series, calculated with restricted maximum likelihood
(REML) smoothness selection using the mgcv package in R (Wood 2011, 2017; R Core Team,
2024). Red/blue lines at the top of the Figure denote the transition from a pre-iNHG to post-
INHG climate state at 2.73 Ma.3.2 pH reconstruction

A caveat of existing diatom 8'B-pH and [B]-pH calibrations are that they are based on T.
pseudonana and T. weissflogii, rather than the C. marginatus and C. radiatus taxa found at ODP
Site 882. With 3 Buiatom Values for the cultured T. weissflogii (ca. —2%o to —6%o) lower than both
our bulk diatom in-house standard TC460 and the C. marginatus/C. radiatus dominated samples
in this study (ca. 5%o to 7%o), further calibrations for different diatom species are required before
the diatom &'B-pH proxy can be rigorously applied. This is particularly important as no study
has yet quantified the isotope vital effect (i.e., non-equilibrium isotope fractionation) that may
exist between individual taxa. Despite this, 5*Bdiatom in both cultured diatom (Donald et al., 2020
- adjusted R? = 0.27, p = 0.26)) and fossilized C. marginatus/C. radiatus (this study - adjusted R?
= 0.41, p = <0.01)) show a negative, albeit uncertain, relationship with [B] (Fig. 4), suggesting a
similar mechanism of boron uptake and 8*'B-pH relationship for all taxa. For the relationship
between [B]diatom and pH, Mejia et al (2013) showed that two species of the same genus also
displayed similar [B]diatom cOncentration in culture. Whilst a direct quantitative reconstruction of
pH at ODP Site 882 using the boron based proxies is precluded by the absence of further species-
specific calibrations, insights into temporal changes in pH can still be gained by calculating
changes relative to the oldest sample at 2.85 Ma (ApH) and by assuming that the sensitivity of
8 Bdiatom and [B]diatom to pH at ODP Site 882 are the same as those of cultured diatoms of
different species (Donald et al., 2020). We elect to not use the [B]-pH calibration of Mejia et al
(2013) as, although it is based on two species (T. weissflogii and T. pseudonana) that are of the
same genus to those analyzed in Donald et al. (2020), boron concentrations are 2-3 times higher
in Mejia et al (2013). The reasons for this are unknown, but could be due to (i) differences in
analytical methods; (ii) differences in cleaning methods; and/or (iii) differences in culturing
methodology. By using the Donald et al. (2020) calibration we ensure that there is analytical
consistency between the fossilised diatoms and diatoms that form the calibration to reconstruct
pH in this study.
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Figure 4. Relationship between 8B and [B] in cultured (T. weissflogii blue - Donald et al.,
2020) and ODP Site 882 (red - this study) diatoms. Black line and shaded regions shows an
ordinary least squares linear regression model and associated 95% confidence intervals fitted to
each dataset.

Applying the relationship between 6B and pH of T. weissflogii from Donald et al.
(2020), which shows a negative relationship between 8''Bdiatom and pH, reveals a trend towards
an increase in pH from 2.85 to 2.52 Ma, with a significant increase in both pH and pH variability
after 2.73 Ma (p < 0.001) (Fig. 3c). This is supported by [B]-ApH calculated from the T.
weissflogii relationship in Donald et al. (2020), in which a significant increase in pH is also
observed from 2.73 Ma (p < 0.001) (Fig. 3d). Changes in the diatom relative biovolume
abundance in the analyzed samples are not strongly associated with either 3''B-ApH (adjusted R?
=0.19, p =0.02) or [B]-ApH (adjusted R? = 0.22, p = 0.01) (Fig. 3¢; Fig. S2). The weak
association that does exist is driven by the major change in C. marginatus/C. radiatus
biovolumes at 2.73 Ma (Fig. 3e), which coincides with broader shifts in the diatom community
linked to the cessation of nutrient rich conditions at ODP Site 882 (Shimada et al., 2009).
Consequently, we suggest that any apparent link between pH and diatom biovolumes reflects the
common response of the diatom community and pH to regional paleoceanographic changes
rather than an inter-species vital effect.
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4 Discussion

4.1 Carbon dynamics over the INHG

A reduction in pCOz(atm) is believed to be critical in driving the INHG (Lunt et al., 2008)
with proxy records indicating that concentrations decreased by 40-90 patm from 2.9-2.7 Ma
(Martinez-Boti et al., 2015). Past work has focused on the role of the Southern Ocean in reducing
pCO2@m) over the INHG, a region which also played a key role in lowering pCOz@m) by ca. 80-
100 ppm over Late Pleistocene glacial-interglacial cycles (Sigman et al., 2021). Key Southern
Ocean processes for pCOz(m) reduction over the iNHG include reduced upwelling of carbon-rich
waters, increased Fe fertilization, and reduction in outgassing via sea ice expansion and/or
changes in surface ocean circulation (Hodell & Venz-Curtis, 2006; McKay et al., 2012; Naish et
al., 2009; Waddell et al., 2009; Martinez-Garcia et al., 2011). The North Pacific has been thought
to play a supporting role in the pCO2@m) decline, via reduced delivery of carbon to the ocean
surface (Haug et al., 1999), yet to date such inferences have been based primarily on nutrient
proxies (e.g. Sigman et al. 2004).

Based on the mean ApH of samples before and after 2.73 Ma, the magnitude of pH
change at ODP Site 882 over the iNHG is 0.31 pH units for §*'Bdiatom and 0.47 pH units for
[B]aiatom (Fig. 5). Evidence of a large increase in pH at ODP Site 882 over the INHG agrees with
the hypothesis that the subarctic Pacific Ocean also contributed to global climatic change
through this interval by isolating COz2 in the deep ocean (Haug et al., 1999). The increase in pH
at 2.73 Ma is also consistent with 'Caiatom data, which indicate a decrease in surface water
pCO:2 (Fig. 5) (Swann et al., 2018), though we note the need for further calibrations and better
understanding of diatom carbon concentrating mechanisms to refine 6*3Cudiatom reconstructions of
pCO:2 (Swann et al., 2018; see Supporting Information).

The pH increase of 0.3-0.5 pH units at ODP Site 882 is considerably greater than that
seen in foraminiferal 3''B from subtropical regions in equilibrium with the atmosphere over the
iINHG (Martinez-Boti et al., 2015). This suggests that the subarctic Pacific experienced
substantial regional changes in the circulation and biogeochemical processes that govern carbon
and nutrient delivery into surface waters, over and above the corresponding global decline in
pCO2am). It also indicates the ability for oceanographic, nutrient and carbon cycle changes in the
subarctic Pacific to have a global impact across a range of timescales, reinforced by evidence
that dynamic changes in circulation over the last deglaciation also led to substantial changes in
surface water pH and pCO:2 (Gray et al., 2018). Since the 1970s CE pCO2(aq) in the subarctic
Pacific has risen broadly in line with pCO2(tm), with annual mean ApCOz2 close to 0 patm
(Takahashi et al., 2006, 2009, 2014). If conditions in the Pliocene prior to the INHG are
analogous to those in the future in a warmer climate system (Tierney et al 2019; McClymont et
al., 2020), a state with lower pH and higher pCOz(q) is a plausible mode of 21t Century future
variability, with the subarctic Pacific Ocean becoming an increasing net source of atmospheric
CO:2 (or weaker COz sink).
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al., 2006; Swann 2010); and g) planktonic foraminifera §'80 from Globigerina bulloides (green)
and Neogloboquadrina pachyderma (dextral) (yellow) respectively (Maslin et al., 1996, 1998).
Shaded regions show the 95% confidence intervals of GAMs fitted to each time series,
calculated with restricted maximum likelihood (REML) smoothness selection using the mgcv
package in R (Wood 2011, 2017; R Core Team, 2024). Red/blue lines at the top of the Figure
denote the transition from a pre-iNHG to post-iNHG climate state at 2.73 Ma.

4.2 Mechanisms for reduced carbon and nutrient delivery

The nature of the circulation and biogeochemical changes in the North Pacific that are
recorded by shifts in nutrient and carbon proxies over the iINHG — and also during the
Pleistocene — has been a topic of substantial recent discussion (e.g. Burls et al., 2017; Rae et al.,
2020; Ford et al., 2022; Abell et al., 2023; Abell and Winckler 2023). The dominant paradigm
for the decrease in nutrient delivery over the iINHG has been a regime shift from one with an
active Pacific Meridional Overturning Circulation (PMOC), to a more stratified basin with a
pronounced, permanent halocline, as seen in the North Pacific today (e.g. Haug et al., 1999,
2005; Burls et al. 2017). Following this paradigm, one interpretation of the pH increase recorded
by our data would be that the establishment of stratification at the iNHG reduces carbon delivery
to surface waters, increasing pH. A key challenge to this interpretation is that pH today is
substantially lower in the stratified subarctic Pacific Ocean than in the vigorously ventilated
North Atlantic Ocean (Figure 1), due to the importance of subsurface carbon and nutrient content
in controlling carbon and nutrient delivery into surface waters. Although there is substantial
convective mixing in the modern North Atlantic Ocean, the subsurface waters brought to the
surface by this process have low carbon and nutrient concentrations, due to the flushing of low
carbon and nutrient waters from the subtropical gyre through the high latitudes and to depth by
an active overturning circulation; this net downwelling means that the North Atlantic is well
ventilated and carbon and nutrient poor. In contrast, the lack of overturning circulation in the
modern North Pacific allows for the accumulation of extremely carbon- and nutrient-rich waters
in the subsurface, and although convective mixing is limited, these waters are still upwelled to
the surface by Ekman suction and also delivered via mixing from tidal processes and winter
storms (e.g. Sarmiento et al., 2004). The net result is that carbon delivery is higher - and pH
lower - in the surface of the subarctic Pacific, which is highly stratified, than in the North
Atlantic, which has an active overturning circulation. These observable modern dynamics
suggest that stratification alone may not be sufficient to drive the pH change we observe.

Given this modern framework, the increase in pH and decrease in nutrients in the
subarctic Pacific Ocean from the INHG onwards could instead be interpreted as the result of
increased ventilation (i.e. a more Atlantic-like regime with net downwelling), where a more
active overturning circulation flushes low carbon and nutrient water from the subtropics through
the upper water column and to depth, analogous to that proposed for subarctic Pacific Ocean
during the Last Glacial Maximum (LGM) by Rae et al. (2020). Prior to the iINHG, the higher
than modern opal and excess barium mass accumulation rates could then potentially be explained
by the combination of a modern-like state, with potent nutrient and carbon concentrations in the
subsurface, and a shift in wind stress (e.g. Abell et al., 2021) which could more efficiently
upwell this water into the surface. This is conceptually similar to the model proposed by Gray et
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al. (2018) for the Bolling-Allerod period of the last deglaciation, which has comparable opal
mass accumulation rates to the pre-iNHG Pliocene, resulting from a stratified water column and
enhanced wind-driven upwelling.

A useful test of these interpretations would be reconstructions of ocean ventilation in the
upper water column. These are relatively abundant for the LGM, where radiocarbon, redox, and
513C data suggest better ventilation of the top 2,000 m of the North Pacific compared to the
modern stratified state (e.g. Keigwin, 1998; Rae et al., 2020; Rafter et al., 2022); this ventilated
mode is associated with lower nutrient supply to the surface, as outlined above. Ventilation
tracers from the INHG are less abundant. Ford et al. (2022) increased the spatial and depth
resolution of carbon isotope data in the Pacific in the Pliocene prior to the iINHG, but there is
only one North Pacific site in the upper 2000 m of the water column (which would be most
sensitive to changes in North Pacific derived ventilation), and this shows a minor decrease in
513C compared to core top values, the opposite of what is predicted in model simulations with an
active PMOC (Rae et al., 2020; Ford et al., 2022). Additional data exist at sites below 2,200 m
(Burls et al., 2017; Ford et al., 2022), but these may be influenced by deep waters sourced from
the Southern Ocean and so their signals cannot be unambiguously attributed to changes in North
Pacific ventilation.

Recently, Novak et al. (2024) increased the spatial and temporal resolution of 5!3C data
in the pre-iINHG North Pacific. These data show that the mid Pliocene Pacific Ocean is
characterized by a systematic decrease in §'3C from south to north and deep to mid-depth waters.
This pattern indicates a mid-Pliocene circulation pattern similar to modern, with waters
accumulating respired carbon as they flow from south to north and gradually upwell to shallower
depths. This is the opposite of the pattern expected from model simulations with an active deep
PMOC (Burls et al., 2017; Ford et al., 2022), leading Novak et al. (2024) to suggest that this
mode of circulation is unlikely to have characterized the pre-iNHG North Pacific, thereby
arguing against the ventilation to stratification hypothesis, although increased data coverage from
shallower depths and over the iNHG itself would allow improved testing of this.

Tracers of surface ocean hydrography may also inform the interpretation of changes in
Pacific circulation at the INHG. Haug et al. (2005) showed that the INHG is associated with
warming SST in the subarctic Pacific, which they attribute to increased seasonality in a more
stratified water column (Fig. 5). Alternatively, this could be interpreted as the result of enhanced
overturning circulation, consistent with the interpretation of warming in the LGM North Pacific
being the result of enhanced glacial PMOC (Rae et al., 2020). Diatom &80 shows a decrease
over the INHG (Swann et al., 2006; Swann 2010), implying a reduced salinity, but this signal is
not seen in 680 in planktic foraminifera from the same core (Maslin et al., 1996, 1998) (Fig. 5).

Finally, model simulations can guide interpretations. In the PlioMIP2 ensemble, the pre
INHG North Pacific experiences consistently higher P-E (precipitation minus evaporation) (Han
et al., 2021), leading to surface freshening and a more enhanced halocline compared to modern
conditions (Weiffenbach et al., 2023). This is consistent with an enhanced North Pacific
halocline under future warming scenarios, and at odds with an enhanced pre-iNHG PMOC. A
notable exception to the PlioMIP2 ensemble are the simulations of Burls et al. (2017), in which
modification of cloud albedo induces changes in meridional temperature gradients and moisture
transport, which lead to increased salinity and enhanced PMOC before the iINHG.
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In summary, there are two alternative explanations for North Pacific proxy signals over
the INHG through which the increase in surface ocean pH recorded by our data may be
interpreted. The “ventilation to stratification” paradigm for the iNHG has a substantial body of
literature support, but would be opposite in sense to modern analogues in the North Atlantic and
Pacific Ocean and to the coupled change in circulation and nutrients in the North Pacific at the
LGM (Rae et al., 2020). It is also opposite to results from the majority of climate models, which
tend to freshen the North Pacific under warmer, Pliocene-like, conditions (Weiffenbach et al.,
2023), and recent carbon isotope data (Novak et al., 2024), which argue against PMOC
conditions in the Pliocene. The alternative “stratification to ventilation” hypothesis would be
consistent with modern analogues, modes of oceanographic variability in the Pleistocene, and
better aligned with climate models and new *3C data (Novak et al., 2024), but has not yet been
much explored in the literature, and may require additional changes in wind-driven upwelling to
explain the very high export fluxes of the pre-iNHG Pliocene (see discussion in Abell et al., 2023
and Gray et al., 2018). We encourage future paleo data reconstructions and modelling to try and
resolve the nature of these major changes in biogeochemistry and ocean circulation, which our
new boron-based data show had significant impact on the carbon cycle.

5 Conclusions

Results from this first down-core record of $!'Bdiatom and [B]diatom reveal a major increase
in the pH of the subarctic Pacific Ocean over the INHG, coinciding with a decrease in
atmospheric pCO2 (Martinez-Boti et al., 2015). Based on the magnitude of the increase (0.3 to
0.5 pH units) our findings indicate that this change in the North Pacific may have contributed to
the atmospheric CO2 drawdown, and in turn the global cooling and expansion of large ice-sheets
across the Northern Hemisphere through this interval.

Work in this current study and others cited within has shown that profound shifts in
regional biogeochemistry are possible under altered climate conditions, with the potential to
significantly alter carbon dynamics including ApCOz2 and the outgassing of COz2 to the
atmosphere. If Pliocene pre-iINHG conditions are an analogue of future climate change, then
increased regional acidification and outgassing may occur over the course of the 21% century.
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