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ABSTRACT 

We report on the first investigations into parametric solitary-wave formation in 2D nonlinear photonic crystals 

and present experimental results obtained in an hexagonally poled LiNbO3 waveguide designed for twin-beam 

second harmonic generation at telecom wavelengths. 
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1. INTRODUCTION 

Self-guiding filaments of light or optical spatial solitons, resulting from the balance between nonlinearity and 

diffraction, hold promise for the development of novel, reconfigurable photonic architectures for switching and 

routing. They have been predicted and demonstrated in a variety of physical settings [1], including quadratic 

media. In the latter case, diffractive beam spreading is counteracted by the parametric interplay of three 

wavelength components, resulting in the mutual trapping and locking of multi-frequency waves (i. e. multicolour 

solitons). The original predictions on soliton formation via three-wave mixing [2] were confirmed nearly a 

decade ago by the first experiments carried out in KTP and LiNbO3 [3-4]. Since then, the development of Quasi-

Phase-Matching (QPM) materials such as Periodically Poled LiNbO3 (PPLN) has opened up new possibilities for 

quadratic soliton science and engineering [5-6].QPM has also recently been extended to higher-dimensionalities, 

to demonstrate 2D PPLN Nonlinear Photonic Crystals (NPC), i.e. 2D lattices in the second-order susceptibility 

χ(2)
, enabling novel and more versatile geometries for parametric interactions [7-8]. 

Here we report the first experimental and theoretical investigations on soliton formation in two-dimensional 

NPCs, using hexagonal lattices in lithium niobate. The study was performed in a (1+1)D configuration, using 

buried planar waveguides embedded in the NPC structure for maximum efficiency [9]. The results unveil an 

excitingly rich scenario for soliton physics and optical processing, arising as a result of multiple spatial - as well 

as spectral - nonlinear resonances in the 2D nonlinear lattice. 

2. THE QPM CONFIGURATION 

The structure of the two-dimensional NPC used for the experiments is schematically shown in Fig.1a. An 

hexagonal modulation of the nonlinear susceptibility χ(2) (period Λ=16.4 µm) in the X-Y crystal plane (Fig. 1b) 

translates into the availability of multiple reciprocal lattice vectors for QPM (Fig. 1c, Fourier plane). In 

particular, our HexLN (Hexagonally poled LiNbO3) lattice was designed to allow efficient twin-beam second 

harmonic generation (SHG) from λω ∼ 1.55 µm, involving the fundamental order (TM0) modes of a high-

efficiency planar waveguide embedded in the crystal [9]. 

Figure 1. a) Sketch of the 2D NPC waveguide enabling twin-beam second harmonic generation; b) its 2D χ(2)
 

modulation in real space (X-Y plane of LiNbO3); c) the lattice in Fourier space (Gmn=reciprocal lattice vectors). 

The 2D QPM configuration used for twin-beam SHG in the nonlinear lattice is illustrated in Fig.2. A 

fundamental beam (ω) propagating along the X axis (Fig. 2a: symmetric case), or at a small angle (θω) with 

respect to it (Fig. 2b: asymmetric case), excites two SHG resonances, on either side, quasi-phase-matched by two 

low-order reciprocal lattice vectors (G10 and G01, respectively). The twin-beam QPM configuration allows SHG 
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tuning from degeneracy for coincident resonances: λ1=λ2=λ0 (fig. 2a) to fully decoupled SHG processes λ1≠λ2 

(fig. 2b) through adjustments in the propagation angle of the fundamental beam in the crystal (fig. 2c). 

Figure 2. QPM configuration for twin-beam SHG in the HexLN waveguide. a) symmetric (θω=0); b) asymmetric 

(θω≠0) SHG. c) tuning of the two SHG resonances with the fundamental (FF) incidence angle. 

3. THE MODEL 

With reference to the direction ζ along which the pump (FF) beam is launched and an orthogonal axis ξ (i.e. 

ζζζζ=ββββωωωω/|ββββωωωω|; ζζζζ ⊥ ξξξξ), the twin-beam SHG process can be modeled through the following coupled-mode equations: 
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    (1) 

where A and B
+
 are the slowly-varying envelopes of the FF and SH waves. ζ=x/LD and ξ = y/w0 are the 

longitudinal and the transverse coordinates, normalized to the FF diffraction length (LD= βω wo
2
/2) and the input 

beam waist (w0), respectively. Equations (1) account for diffraction at the FF and at the SH (σ = 1/4 and 

 σ+ ∼ 1/8, respectively), as well as for in-plane angular deviations of the SH beams due to noncollinear QPM 

( ρ+ ∼ + 1.5). The two SHG processes are characterized by normalized coupling coefficients: Γ+ 
 and mismatches: 

δβ+
 = [β2ω

+
 −2βω− G01] LD and δβ−

 = [β2ω
−  −2βω− G10] LD. As Γ+  ≅ Γ−

, the nonlinear wave dynamics is 

essentially determined by the interplay between δβ+
 and δβ−

. Maps such as the ones shown in Fig. 3, obtained by 

solving equations (1) with a split-step beam propagation algorithm, can be used to analyse the effect of the SHG 

parameters on the FF response, here characterised in terms of the width (Fig. 3a) and the lateral shift (fig. 3b) of 

the FF emerging from the 2D NPC. From the simulation results it is apparent that the additional degrees of 

freedom associated to the double resonance can yield substantially different results from the 1D SHG soliton 

regime, with an enhanced range for FF wave confinement (regions of δβ∼0+
, Fig. 3a) and opposite beam 

displacements with respect to the input direction (Fig. 3b). 

Figure 3. Contour plots showing the output FF beam lateral width and displacement (in units of w0) as a 

function of the two SHG phase-mismatches (δβ+
 and δβ−

). 
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4. THE EXPERIMENTS 

For the nonlinear optical experiments, the HexLN waveguide was mounted on a piezo-electrically controlled 

stage and kept at ~ 85oC to prevent photorefractive damage. The FF propagation angle (θω) was adjusted by 

rotating the crystal. We pumped the HexLN waveguide at wavelengths in the 1.1−1.6 µm range, with narrow 

line-width (< 0.2 cm-1) 20 ps pulses delivered by an optical parametric generator operating at 10 Hz. The FF 

input Gaussian transverse profile (TEM00) was shaped into a cylindrical spot (lateral and vertical beam waists: 

w0=27.5 µm and v0=3.4 µm, respectively) and end-fire coupled to excite the TM0 mode of the planar waveguide. 

Its propagation in the HexLN device (18 mm-long) amounted to ~5.4 diffraction lengths (LD). The FF (SH) 

energies and lateral beam profiles were monitored with time-gated photodiodes, or imaged on a Vidicon (Si-

CCD) camera. The experimental setup is schematically shown in Fig. 4. 

Figure 4. Setup for soliton experiments in the 2D nonlinear photonic crystal (HexLN) waveguide. 

For a quantitative study of self-confinement associated to twin-beam SHG, we systematically monitored the 

evolution of the FF response, i.e. spot-size and lateral displacement at the output, as a function of the main 

control parameters, i.e.: input wavelength (λω), launch peak-power (Pω) and angle of propagation (θω) of the FF 

pump. In the model of equations (1), Pω affects the coupling coefficients (Γ+ ∝ √Pω), while λω and θω determine 

the values of the mismatches [through the empirical formula: δβ(±) = −0.51π (λω−λ0)|nm ±  4.06π⋅θω|deg]. 

In the experiments we could observe an extremely rich wave dynamics. In general, for pump wavelengths close 

to the SHG resonances, i.e. λω = λ1+δλ or λω = λ2+δλ, with δλ>0, we could observe FF self-confinement to 

lateral widths comparable to the input for Pω > 20kW. 

The soliton response to increasing pumping levels (external peak powers) is presented in Figure 5. The plot in 

Fig. 5a shows experimental results obtained close to degeneracy, while those in Fig. 5b-c refer to the case of 

spectrally distinct SHG resonances, i.e. asymmetric twin-beam SHG (θω = 0.54
o
), at λω = λ1+δλ  (Fig.5b) and 

λω = λ2+δλ (Fig.5c). In the symmetric configuration, corresponding to frequency-degenerate SHG (λ1=λ2=λ0 and 

δβ+=δβ−), the FF beam progressively narrows as Pω increases, becoming double-humped in the interval 

30<Pω<60 kW (see insets above Fig. 5a). The appearance of two peaks matches the predictions from equations 

(1) and suggests the formation of compound soliton states. In the non-symmetric case, the FF beam progressively 

narrows until saturation is reached, while still remaining single-humped throughout the explored power range. At 

the same time, it is displaced in the transverse direction, towards either positive or negative values of ξ (cf Fig. 

2), depending on the predominant “pulling” action of either SH beam. Hence the trend towards a negative shift in 

Fig. 5b (when λω ∼ λ1, with δβ−
 ∼ 0+) and the positive displacement observed in Fig. 5c (when λω ∼λ2, with 

δβ+
 ∼ 0+). 

Figure 5. FF power response for: a) θω~0
o
, λω ∼ λ0 + 1.5 nm, θω~0.54

o
: b) λω ∼ λ1

 + 1.5 nm; b) λω ∼ λ2
 + 0.5 nm 
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The effect of the input wavelength in the solitonic regime is illustrated by Figure 6. For symmetric SHG (Fig. 6a) 

we could observe an enhanced spectral range for FF beam confinement (almost twice the range for conventional 

1D SHG). As the “pulling” actions of the two SH beams tend to balance each other, the FF tends to maintain its 

original direction of propagation (i.e. FF shift ~0). On the other hand, when the two SHG resonances are brought 

apart (by increasing |θω|), two distinct spectral regions for FF confinement appear in the response, each of them 

corresponding to opposite displacements, as seen in Fig. 6b. This entails light routing by acting on the input 

wavelength (λω), an entirely new approach to soliton steering, not possible for conventional, single-resonance 

SHG solitons. 
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Figure 6. FF beam waist and lateral shift measured at the 2D NPC output (dots) as a function of the input 

wavelength for a) θω~0
o
, Pω= 25 kW and b) θω~0.58

o
, Pω= 22 kW. The solid lines are predictions from eq. 1. 

5. CONCLUSIONS 

In conclusion, we have presented the first results on a novel class of parametric solitary waves, sustained by 

multiple quadratic resonances in a 2D nonlinear photonic crystal. By implementing a twin-beam SHG 

configuration in a HexLN planar waveguide we demonstrated the existence of two spectral regions for beam 

confinement and opposite displacements controllable with the input FF wavelength, angle and power. These 

findings open up an exciting new scenario in the field of quadratic solitons, paving the way towards multicolor 

solitary wave engineering with higher dimensionality nonlinear photonic crystals, aperiodic lattices and quasi-

crystals in ferroelectric materials.  

REFERENCES 
 

[1] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: from fibres to photonic crystals, Academic, New York, 

2003. 

[2] Y. N. Karamzin and A. P. Sukhorukov, Mutual focusing of high-power light beams in media with quadratic 

nonlinearity, Sov. Phys. JETP, vol. 41, pp. 414-420, 1976.  

[3] W. E. Torruellas et al., Observation of two-dimensional spatial solitary waves in a quadratic medium, Phys. 

Rev. Lett., vol. 74, pp. 5036-5039, 1995. 

[4] R. Schiek, Y. Baek, G. I. Stegeman, One-dimensional spatial solitary waves due to cascaded second-order 

nonlinearities in planar waveguides, Phys. Rev. E, vol. 53, pp. 1138-1141, 1996. 

[5] B. Bourliaguet et al., Observation of quadratic spatial solitons in periodically poled lithium niobate, Opt. Lett. 

vol. 24, pp. 1410-1412, 1999.  

[6] R. Schiek et al., One-dimensional spatial soliton families in optimally engineered quasi-phase-matched 

lithium niobate waveguides, Opt. Lett. vol. 29, pp. 596-598, 2004. 

[7] V. Berger, Nonlinear Photonic Crystals, Phys. Rev. Lett., vol. 81, pp. 4136-4139, 1998. 

[8] N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, Hexagonally poled lithium 

niobate: a two-dimensional nonlinear photonic crystal, Phys. Rev. Lett., vol. 84, pp. 4345-4348, 2000.  

[9] K. Gallo et al., Guided-wave second harmonic generation in a LiNbO3 nonlinear photonic crystal, Opt. Lett. 

vol. 31, pp. 1232-1234, 2006. 


