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Abstract

The distinction between de re (of the thing) and de dicto (of what is said) readings of sentences has long been the
topic of studies in logic and philosophy of language. The article proposes to apply these concepts to anonymity.
It argues that, in the proposed setting, de dicto knowledge preserves anonymity, while de re knowledge does not.
The article also considers a third, “overt,” form of knowledge. The main technical result is a sound and complete
logical system that captures the interplay between a data traceability expression and the de re, de dicto, and overt
knowledge modalities. The article also shows that the three knowledge modalities are not definable through each

other even in the presence of the traceability expression.
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Introduction

Imagine that you have a nice neighbor whom you really like as a per-
son. At the same time, you happen to hate rich people. Your neighbor
is rich, but you do not know this. Thus, you like your neighbor and
you hate him at the same time. However, you have these feelings in
two distinct senses. You like him as an individual, but you hate the
designator (“rich person”) that applies to him. In the philosophy of
language, this distinction is often called de re/de dicto distinction [1-
6]. You like the neighbor de e (of the thing) and hate him de dicto (of
what is said). The de re/de dicto distinction is an umbrella term that
is understood differently by different scholars and applies not only
to preferences. As another example, imagine that you are travelling
on a train and a fellow passenger starts giving you surprising medical
advice. You most likely will not trust the stranger de re. However, you
might be the type of person who trusts all doctors. If the passenger,
unknown to you, happened to be a doctor, then you would trust her
de dicto despite not trusting de re.

In addition to our examples of preferences and trust, de re/de
dicto distinction also manifests itself in knowledge. Imagine a young
woman Ann who is walking through a park. Ann was given up for
adoption as a baby and she has never met her mom. Ann is curious
about who her mom might be, so she has asked a close friend to

look for the mom. While walking through the park, Ann sees an old
woman sitting on a bench. Unknown to both of them, the woman
is Ann’s mother. Let us now consider two possible scenarios of what
might happen next. In the first scenario, the woman tells Ann that
she, the woman, is sick. In this case, Ann knows that the woman is
sick, the woman is Ann’s mother, thus, Ann de re knows that her
mom is sick. In the second scenario, while chatting with the woman
on the bench about the weather, Ann gets a text from her friend. The
text tells her that the friend was able to trace Ann’s mother and has
learned that the mom is sick. In this case, Ann knows de dicto that
her mom is sick. Note that these two forms of knowledge are very
different. Under the first scenario, Ann might tell the woman that
Ann is sorry that she, the woman, is sick. She might recommend a
doctor. It would be strange for Ann to recommend a doctor under
the second scenario.

As our final example, imagine that Ann is your neighbor and that
you are working as a technician at a health clinic. Ann visits the clinic,
and a nurse there draws Ann’s blood sample and sends it to you with
a doctor’s order to test if “the patient” is pregnant. You conduct
the test and learn that the patient indeed is pregnant. The patient
is your neighbor Ann, but you don’t know this. In spite of this, you
now de dicto know that Ann is pregnant. Because you know this de
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dicto, your knowledge is really about the designator “patient,” not
about Ann as a human being. This knowledge, as long as it stays de
dicto, does not violate Ann’s anonymity. However, if you can trace
the blood sample to your neighbor Ann, then you will know de re that
she is pregnant. This knowledge will break Ann’s anonymity and vi-
olate her privacy. As this example shows, de re/de dicto distinction,
when applied to knowledge based on data (such as test results), gives
a way to characterize anonymity. Of course, privacy/anonymity is a
broad term whose different aspects might be captured by different
formal approaches. We are not suggesting here that de re/de dicto
distinction can replace other, already existing, approaches to defin-
ing anonymity. But we think it can complement them in a meaningful
way.

In this article, we propose a formal logical system that describes
the interaction between de re (non-anonymized) knowledge based on
data and de dicto (anonymized) forms of such knowledge. In addi-
tion to modalities representing those two forms of knowledge, the
system also includes data tracability expression and a third, overt,
knowledge modality. To define a formal semantics of this logical sys-
tem, we combine two previously independent research areas: two-
dimensional egocentric logic and data-informed epistemic logic. The
main technical results of this work are the undefinability of the pro-
posed modalities through each other and a completeness theorem for
the logical system describing their interplay.

The rest of the article is organized as follows. First, we discuss
egocentric logics and data-informed knowledge. Then, we give sev-
eral more formal examples illustrating the difference between de re,
de dicto, and overt knowledge. In the “Syntax and semantics” section,
we introduce the language of our system and its formal semantics. In
the “Undefinability results” section, we show that the modalities cap-
turing these three forms of knowledge are not definable through each
other. In the “Axioms” section, we state the axioms and the inference
rules of our logical system. We prove their soundness and complete-
ness in the next two sections. In the “Future work” section, we discuss
k-anonimyty and how it can be captured in our setting.

Preliminaries

Egocentric logic

Traditionally, the semantics of modal logics is defined in terms of
a satisfaction relation w Ik ¢ between a possible world w and a
formula ¢. Under such semantics, the formula ¢ captures a prop-
erty of the world w. Prior proposed to consider egocentric log-
ics that capture the properties of agents rather than the proper-
ties of possible worlds [7]. The semantics of such logics can be
defined in terms of a satisfaction relation a I ¢ between an agent
a and a formula ¢. For example, to express the fact that agent a
is pregnant, we can write a |- “is pregnant”. In the egocentric set-
ting, the Boolean connectives can be used in the standard way.
The statement a IF “is pregnant” A “lives in Bath” means that agent
a is pregnant and lives in Bath. Seligman, Liu, and Girard sug-
gested to consider friendship modality F (read “for each friend”)
in the egocentric setting [8,9]. For example, they read the state-
ment a I F “lives in Bath” as “each friend of agent a lives in Bath”.
As usual, modalities can be combined with Boolean connectives.
For instance, the statement a IF F—(“is pregnant” A “lives in Bath”)
means that agent a does not have a pregnant friend who lives in
Bath. At the same time, a IF =F—(“is pregnant” A “lives in Bath”)
means that agent a does have such a friend. Modality F is also
used in [10,11]. We previously introduced modality L, which
stands for “likes those who” [12]. For example, the statement a I+

L “lives in Bath” means that agent a likes those who live in Bath.
Modalities can be nested. For instance, the following statement a I+
LL “lives in Bath” means that agent a likes those who like people liv-
ing in Bath.

Independently from the works on egocentric logics, a new class
of two-dimensional semantics have been proposed in the philoso-
phy of language [13]. Under such semantics, the truth value of a sen-
tence depends not only on the current world but on some other pa-
rameter sometimes called indexical. Stalnaker suggested visualizing
world/indexical combinations as cells in a two-dimensional matrix
[14]. Grove and Halpern combined the egocentric logic and two-
dimensional semantics ideas by considering a formal logical system
where the role of an indexical is played by an agent [15-17]. The for-
mal semantics of their logical system is defined in terms of a ternary
satisfaction relation w, a I+ . For example, the following statement:
w, a I “is pregnant” means that agent a is pregnant in world w (but
might not be in some other worlds). In this setting, one can define the
“knows about herself” modality K. Using such a modality, for exam-
ple, one can say that, in world w, agent @ knows that she is pregnant:
w, a IF K*“is pregnant”. In this article, we refer to the Grove-Halpern
class of semantics as (two-dimensional) egocentric semantics. Such
semantics has been used to define “know-who” [18,19] and “know
how to tell apart” [20] modalities. Besides the introduction of a new
modality, an important contribution of [20] is a new technique for
proving completeness technique for two-dimensional semantics. The
technique builds on Stalnaker [14] matrices to recursively define the
canonical model as a limit of an infinite chain of matrices of maximal
consistent sets of formulae. In the current article, we further develop
this construction by specifying tree structures on the cells of the ma-
trices.

Data-informed knowledge

Imagine that there is a digital clock on a wall. We use ¢ to denote the
time shown by the clock. Suppose that in world w the clock shows
13:24. Thus, anyone who sees the clock would conclude that it is
afternoon now. This conclusion can be made by any agent as long as
the agent has access to the value of z. We say that this knowledge is
informed by data variable t and write it as

w Ik K, “It is afternoon”.

This type of knowledge in the setting where ¢ is a Boolean variable has
been proposed by Grossi, Lorini, and Schwarzentruber [21]. For ar-
bitrary variables, it was introduced by Baltag and van Benthem [22].
The term “data-informed knowledge” is suggested by us [23,24]. We
also considered data-informed beliefs [25,26]. In this work, we con-
sider data-informed knowledge in two-dimensional egocentric set-
tings.

De re/de dicto data-informed knowledge

Imagine a hypothetical Family Planning survey that asks participants
just three questions: their age, sex, and if they expect a child. To keep
the example simple, let us assume that the survey has been conducted
only among four people, agents a, b, ¢, and d. Suppose that it is com-
mon knowledge that agent d is 25 and the rest are 23. Also, it is
common knowledge that agents @ and ¢ are female and agents b and
d are male. Assuming only women can be pregnant, there are 4 pos-
sible ways the survey can be answered. We call such combinations
“possible worlds” and depict them in Fig. 1 as worlds wy, w,, w3,
and wy. The figure also shows that @ and b as well as ¢ and d are
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Figure 1. Possible worlds in a Family Planning survey. Reply + means that the participant is expecting a child.

married couples, but this becomes important only later in our story.
Finally, suppose now that the real world is . In other words, only
a is expecting a child.

If somebody has access only to the anonymized results of agent a’s
answers, (23, F, +), then that person would know that the respondent
is pregnant. Since the respondent, in this case, is agent a, one can say
that the a’s survey data informs the knowledge that a is pregnant:

w1, a b Kyge sex,reply 18 pregnant”. (1)

At the same time, the observer of the anonymized survey data
(23, F, +) would not be able to distinguish this a’s data in world
from the ¢’s data in world w>, see Fig. 1. Thus, one can argue, that
the a’s survey data does not inform the knowledge that a is pregnant:

wy,akt Kage,sex,reply “is pregnant”. (2)

The inconsistency between statements (1) and (2) comes from the fact
that they refer to two different types of knowledge. In statement (1),
modality K captures the knowledge about the name “participant,”
which, in the current world, happens to refer to agent a. In statement
(2), modality K captures the knowledge about the actual participant.
As we discussed in the introduction, in the philosophy of language,
this distinction between a statement about the name of an object and
an actual object is known as de dicto/de re distinction. De dicto (“of
what is said”) specifies that a statement refers to the name (such as
“participant” in our case) and de re (“of the thing”) specifies that a
statement refers to the actual object. In this article, instead of a single
knowledge modality K, we use modalities D and R for de dicto and
de re knowledge, respectively. Thus, in our example,

w1, @l Dyge gexreply 18 pregnant”,

« »
w1, a k¥ Rage sex,reply IS pregnant”.

Because de re data-informed knowledge of a formula ¢ reveals that
@ is true about the actual person, it does not preserve the anonymity
of the participant and potentially violates her privacy. At the same
time, if personal data only informs de dicto knowledge, it reveals ¢
about “the participant,” not an actual person. As a result, generally
speaking, it preserves the anonymity of the participant.

At this point, the reader might think that de re data-informed
knowledge is stronger than de dicto one. In other words, knowing
something de re implies knowing de dicto. Perhaps surprisingly, this
is not true.

Indeed, let us modify our Family Planning survey as shown in
Fig. 2. Here, the agents a, b, ¢, and d are the same two couples of

the same age as in the previous example. They are again the only
participants in a family planning survey. Let us suppose that instead
of sex, the survey asks about the city in which the participant lives. As
one can see from the figure, agents @ and b live in Bath and agents ¢
and d live in York. We assume that the city in which each couple lives,
just as their ages, is public information. In addition, instead of “Are
you expecting a child?,” the survey asks “Is your family expecting a
child?”. The four possible worlds in this new setting are depicted in
Fig. 2. Just like before, we assume that only agent a is pregnant. In
other words, the current world is w; .

Note that by looking at agent a’s anonymized survey data,
(23, Bath, +), one would not be able to conclude that “the partic-
ipant” is pregnant because @’s data is indistinguishable from the sur-
vey data for agent b in the very same world w; and agent b is not
pregnant:

w1, a k¥ Dyge ciyreply “Is pregnant”. (3)
At the same time, it is easy to see that in any possible world, if the
survey data for any agentis (23, Bath, +), then the agent a is pregnant
in that world, see Fig. 2. Thus, any observer of the anonymized survey
data (23, Bath, +) would know that agent a is pregnant. In other
words, any observer of agent @’s anonymized survey data in world
w1 would de re know that agent a is pregnant:

w1, a Ik Ryge city, “is pregnant”. (4)

reply

Overt data-informed knowledge and traceability

In the previous section, we introduced two forms of knowledge that
can be informed by anonymized data. As we have seen from the two
examples, neither of these two forms is stronger than the other in the
sense that knowing something de dicto does not imply knowing de re
and vice versa. In this section, we consider the knowledge informed
by non-anonymized data. That is, we consider what can be concluded
from personal data when not only the data is given, but it is also
explicitly stated about which agent this data is. We refer to this third
form of knowledge as overt data-informed knowledge and represent
it by modality O.

To illustrate the difference between the three forms of data-
informed knowledge, consider yet another variation of our Family
Planning survey depicted in Fig. 3. The only difference from Fig. 2
is that ¢ had to relocate to Bath while still being married to agent d
who remains in York. Using the same argument as we gave for state-
ment (3), we can see that agent a’s anonymized personal data does
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Figure 2. Possible worlds in a survey. Reply + means that the participant’s family is expecting a child.
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Figure 3. Possible worlds in a survey. Reply + means that the participant’s family is expecting a child.

not inform de dicto knowledge that she is pregnant:

wy,akt Dage,city,reply “is pregnant”. (5)

At the same time, in world w, any observer looking only at a’s
anonymized data, (23, Bath, +), will also not be able to infer de re
that agent a is pregnant:

wi,a ¥ Rage,city,reply “Is pregnant”. (6)

This is because the personal data of agent a in world w is the same
as the personal data of agent ¢ in world w,, where agent a is not
pregnant. Thus, by relocating agent ¢ to Bath we made statement (4)
false.

Observe now that anyone who, in world w1, has access to agent
a’s personal data (23, Bath, +) and is also told that this data belongs
to a, knows that she is pregnant:

w1, a b Oyge cityreply 1S Pregnant”. (7)

This is because agent a is pregnant in each world where her personal
data is (23, Bath, +).

In this article, we investigate the dependencies between de re, de
dicto, and overt forms of knowledge. To understand the relation be-
tween them, it is also important to consider the notion of traceability.
We say that a set of data variables X is traceable to agent a in world
w if knowing the values of data variables for agent a in world w in-
forms the knowledge of which agent the data belongs to. We denote
this by w, a IF1X. For example, w1, b IF!{age,sex,reply} in the exam-

ple depicted in Fig. 1. Indeed, in that example, there is only one agent
of age 23 who is male. At the same time, w1, a ¥!{age,sex,reply} for
the same example, because data (23, F, +) could come from agent a
in world wy or, for instance, from agent ¢ in world w;.

Syntax and semantics

We start by defining the class of models that will be used to give
formal semantics of our logical system. Throughout the rest of the
article, we assume a fixed set of data variables V and a fixed set of
atomic propositions. Examples of data variables from the two previ-
ous sections are age, sex, city, and reply. Examples of atomic propo-
sitions are “is pregnant” and “lives in Bath.” By a dataset we mean
any subset of V.

Intuitively, we assume that data variables have certain values that
depend on the world and the agent. In the example depicted in Fig. 3,
in world w for agent a, the value of data variable reply is + and the
value of data variable age is 23. As we will see in Definition 2, the
actual values of data variables are not important for our semantics.
The only important thing is if the data variable has the same or dif-
ferent values for any two given world-agent combinations. Hence,
formally, it is more convenient to view a data variable as an equiva-
lence relation on such pairs. We adopt this approach in the definition
below.

Definition 1.
A model is a tuple (W, A, {~x}xev, 7), where
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(1) W is a (possibly empty) set of worlds,

(2) Ais a (possibly empty) set of agents,

(3) ~y is an equivalence relation on W x A for each data variable
xeV,

(4) m(p) € W x A for each atomic proposition p.

We write (u#1, ay) ~x (#2,a2) if (41, ay) ~x (u2, ay) for each data
variable x € X. In particular, observe that the following statement is
always true: (uq1,ay) ~g (12, a2).

Note that, unlike the traditional approach in modal logic, val-
uation 7 (p) is a set of pairs rather than a set of possible worlds.
For example, if “is pregnant” is one of the atomic propositions, then
(u, a) € w(“is pregnant”) means that agent a is pregnant in world #.

The language @ of our logical system is defined by the following
grammar:

p:=p|'X[—-¢leoVe]|Oxe|Dxe|Rxe,

where p is an atomic proposition and X C V is a dataset. We read !X
as “dataset X is traceable,” Ox ¢ as “dataset X informs overt knowl-
edge of ,” Dx¢ as “dataset X informs de dicto knowledge of ¢,” and
Rx¢ as “dataset X informs de re knowledge of ¢.” We assume that
implication — and biconditional <> as well as the Boolean constants
true T and false L are defined through negation and disjunction in
the usual way.

Definition 2.
For any model (W, A, {~x}xev, ), world w € W, agent a € A, and
formula ¢ € @, the satisfaction relation w, a I+ ¢ is defined as follows:

(1) wal p,if (w.a) e x(p),

(2) w,al-'X,if a = b for each world u € W and each agent b € A
such that (w, a) ~x (u, b),

(3) w,alk—g,if w,al¥ ¢,

(4) w,alk @V, ifeitherw,alt ¢ or w,al- ¥,

(5) w,alFOxgp, if u,alk ¢ for each world u € W such that
(w, a) ~x (u,a),

(6) w,al-Dxg,if u, bl ¢ for each world # € W and each agent
b € A such that (w, a) ~x (u, b),

(7) w,alkRxe, if u,alk ¢ for each world # € W and each agent
b € Asuch that (w, a) ~x (u, b).

Recall that, informally, the relation (w, a) ~x (#, b) means that
all variables in dataset X have the same values for agent a in world
w as for agent b in world . Thus, item 2 above captures the fact that
in world w dataset X about agent a uniquely identifies the agent.

Item 5 of the above definition assumes that the identity of agent a
is revealed, so it only considers worlds # in which dataset X for this
agent have the same values as in world w.

Item 6 and item 7 do not assume that the identity is revealed.
Thus, they consider all possible world-agent combinations (u, b) for
which the value of dataset X is the same as for (w, a).

Undefinability results

In this section, we show that none of the three modalities is definable
through the two others even if the traceability expression is used.
We use the “truth sets algebra” technique for proving undefinability,
which has been proposed in [27] and used in [24,28,29]. Unlike the
more traditional “bisimulation” method, this technique uses a single
model. The results in this section use the two definitions below:
Definition 3.

For any given model, the truth set [¢] of a formula ¢ € @ is the set
{(w, a) | w,al- ¢}.

Definition 4.
Formulae ¢, ¥ € ® are semantically equivalent if [¢] = [¢] in each
model.

Without loss of generality, in this section, we suppose that lan-
guage ® contains a single atomic proposition p and a single data
variable x. Alternatively, in the models we construct below, the val-
uation of all atomic propositions could defined the same way as for
p. Similarly, equivalence relations for other data variables can be de-
fined the same as for data variable x.

Undefinability of R through !, O, and D

Consider a model that contains three worlds: w, #, and v, and two
agents a and b. Suppose that equivalence relation ~, divides set
{w, u, v} x {a, b} into two equivalence classes: {(w, a), (w, b), (u, b)}
and {(#, a), (v, a), (v, b)}. Informally, it means that data variable x has
one value, say +, for each pair in the first class and another value, say
—, for each pair in the second class. We depict these values in the left-
most diagram in Fig. 4. Let 7 (p) = {(w, a), (w, b), (u, b)}.

We visualize the truth sets of various formulae as 3 x 2 tables
whose rows are indexed with worlds and whose columns are indexed
with agents. A cell (w, a) in such a table is colored gray if the pair
(w, a) belongs to the truth set. The four diagrams in the center of
Fig. 4 visualize the truth sets [p], [L], [=p], and [T].

The idea behind the truth set algebra technique is to show that
any formula that does not use modality R has a truth set equal to one
of the sets [p], [L], [~p], and [T]. At the same time, a formula that
uses modality R can have a different truth set.

Lemma 1.

[Oz¢l. [Dz¢l. [Ox¢l, [Dxe]e{lp]. [L]. [=p]. [T]} for any for-
mula ¢ € @ such that [¢] € {[p], [L], [—=2], [T]}-

Proof.

Suppose that [¢] = [p]. First, we show that [Og¢] = [L] = @. In-
deed, assume the opposite. Thus, there is a world w' € {w, u, v} and
an agent ' € {a, b} such that (', a’) € [Og¢]. Hence, ', a’ IF Ogg
by Definition 3. Then, v,4’ I ¢ by item 5 of Definition 2 because
(w',d') ~z (v,d"). Thus, (v,d") € [¢] by Definition 3. Hence, by the
assumption [¢] = [p], we have (v, a’) € [p]. Observe in Fig. 4 that
the truth set [p] does not contain any single pair (x, y), where x = v.
This is a contradiction. Therefore, [Oz¢] = [L].

The proof that [Dg¢]] = [L] is similar, but it uses item 6 of Def-
inition 2 instead of item 5. In Fig. 4, we visualize both results by a
directed edge from diagram [p] to diagram [ L] labeled with Og, Dg.

Next, we show that [Ox¢] = [p].

(<): Let us consider any world ' € {w, u,v} and any agent
a' € {a, b} such that (w', a’) € [Ox¢]. Thus, &', a’ IF Or¢ by Defini-
tion 3. Note that (w', ') ~x (W', a’). Hence, w', @’ I ¢ by item § of
Definition 2. Then, (', a’) € [¢] again by Definition 3. Therefore,
(w',a') € [p] by the assumption [¢] = [p].

(2): Consider any w' € {w, u,v} and any agent a’ € {a, b} such
that

(w',d') e [p]. (8)

By Definition 3, it suffices to show that w/, @’ I O,¢. Toward this
proof, consider any w” € {w, u, v} such that (w/,d’) ~, (w”,d’). By
item 5 of Definition 2, it suffices to establish that w”, a’ I ¢.

Observe that the assumption (', d’) ~y (w”,a’) implies that
(w',a') e [p] iff (w”,a’) € [p], see Fig. 4. Then, (w”,a’) € [p] by
statement (8). Thus, by the assumption [¢] = [p] it follows that
(w”,d') € [¢]. Therefore, w”, a" I ¢ by Definition 3.
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Figure 4. Toward the proof of Theorem 1.

The proof that [D.¢] = [p] is similar, but it uses item 6 of Def-
inition 2 instead of item 5. In Fig. 4, we visualize both results by a
directed loop edge from diagram [p] back to the same diagram [p]
labeled with O, D,.

The proofs in the remaining three cases, [¢] = [L], [¢] = [-?],
and [¢] = [T], are similar. We show the corresponding directed
edges in Fig. 4. O
Lemma 2.
le] € {Ipl, [LD, [=2], [T} for any formula ¢ € ® that does not con-
tain modality R.

Proof.
We prove the statement of the lemma by induction on the structural
complexity of formula ¢.

If ¢ is an atomic proposition p, then [¢] € {[p]. [L]. [=2]. [T]}
because truth set [p] is an element of the set {[p]. [L], [=2]. [T]}-

Suppose that formula ¢ has the form !X, where dataset X is ei-
ther @ or {x}. Observe from the left-most diagram in Fig. 4 that for
any w' € {w, u,v} and any @’ € {a, b} there is w” € {w, u, v} and an
agent a” € {a, b} such that (w/,a’) ~x (w”’,a") and @’ # a”. Thus,
by item 2 of Definition 2, it follows that w/, a’ ¥ !X for each world
w' € {w,u, v} and each agent da’ € {a, b}. Hence, truth set [!X] is
empty by Definition 2. Then, [!X] = [L], see Fig. 4. Therefore,
[X] e {lpl. [L0. T-p0. IT1}-

Suppose that formula ¢ has the form =y. Thus, the truth set [¢] is
the complement of the truth set [] by Definition 3 and item 3 of Def-
inition 2. By the induction hypothesis, [¥] € {[p], [L], [—=2]. [ T]}-
Observe in Fig. 4 that the complement of each truth sets in the
family {[p], [.L]. [—=p]. [T]} belongs to the same family. Therefore,
lel € {Tol. [L1. [-21. [T

Suppose that formula ¢ has the form ¢ Vv ¥,. Thus, the truth
set [¢] is the union of the truth sets [y1] and [¢] by Definition 3
and item 4 of Definition 2. Observe in Fig. 4 that the union of
any two truth sets in the family {[p]. [L]. [=p]. [T]} belongs to
the same family. For example, [p] U [-p] = [T]. Note that, by the
induction hypothesis, [y1], [v2] € {[p], [L]. [=2], [T]}. Therefore,
o] € (el [L1, 2], [TD)-

If formula ¢ has either the form Ox v or the form Dy, then the
statement of the lemma follows from the induction hypothesis and
Lemma 1. O

Next, let us make an auxiliary observation based on the left-most
diagram in Fig. 4.
Lemma 3.
For any world ' € {w, u, v} and any agent a’ € {a, b}, if data variable
x has value + at («/, a’), then data variable x has value + at («/, b).

Lemma 4.

[R«p] ¢ {[p]. [L], [=20. [T}

D’z Ox’ Dx Ow Dw Ox' Dx
~J ()
[-pI [Tl [R,pI

Proof.
It suffices to prove that the truth set [Ryp] is the one depicted by the
right-most diagram in Fig. 4. In other words it is enough to show
that for any cell («/, a’) of that diagram, «/', @’ I+ Ry p iff cell (', a")
is gray.

(=) : Suppose that the cell (x/, @) is white at the right-most dia-
gram in Fig. 4. We consider the following two cases separately:

Case 1: (w',d’) = (w, a). Note that (u,a) ¢ 7 (p) by the choice
of valuation function w#. Hence, (u,a) ¥ p by item 1 of Defi-
nition 2. Additionally, (w,a) ~x (u, b), see the left-most diagram
in Fig. 4. Thus, (w,a) ¥ Ryp by item 7 of Definition 2. There-
fore, (w',a’) ¥ Ryp by the assumption (w',d’) = (w,a) of the
case.

Case 2: (W',d’) # (w,a). Thus, the assumption that the cell
(', ') is white at the right-most diagram in Fig. 4 implies that the
same cell (1, ") is white at the second-from-left diagram in Fig. 4.
Hence, (', d’) ¢ [p]. Then, (', a’) ¥ p by Definition 3. Therefore,
it follows that (', @’) ¥ Ryp by item 7 of Definition 2 and because
W', a') ~ W', d).

(<) : Suppose that the cell (', a’) is gray at the right-most dia-
gram in Fig. 4. Thus ¢’ = b and the value of data variable x is +, see
Fig. 4. Consider any world w” € {w, u, v} and any agent a” € {a, b}
such that (w/, b) ~, (w”,a"). By item 7 of Definition 2, it suffices to
show that (", b) I p.

Indeed, the assumption («/, b) ~, (w”, a”) means that the value
of data variable x at cell («”, a”) is the same as its value at cell («/, b),
which is +. Hence, the value of data variable x at cell (2", b) is also +
by Lemma 3. Hence, (", b) € [p], see Fig. 4. Therefore, (2", b) I+ p
by Definition 3. O

The next result follows from Lemma 2 and Lemma 4.
Theorem 1 (undefinability).
Formula R,p is not semantically equivalent to any formula in lan-
guage @ that does not contain modality R.

Undefinability of O and D
The proof of the next theorem is similar to the proof of Theorem 1
except that instead of Fig. 4 it uses Fig. 5.

Theorem 2 (undefinability).
Formula O, p is not semantically equivalent to any formula in lan-
guage @ that does not contain modality O.

The proof of the next theorem is also similar to the proofs of the
two previous theorems except that it uses Fig. 6. Note that, in this
case, data variable x has three possible values that we denote by —,
1, and 2, see Fig. 6.
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Figure 5. Toward the proof of Theorem 2.
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Figure 6. Toward the proof of Theorem 3.

Theorem 3 (undefinability).
Formula D, p is not semantically equivalent to any formula in lan-
guage ® that does not contain modality D.

Axioms

In addition to propositional tautologies in language ®, our logical
system contains the following axioms:

(1) Truth: Ox¢ — o,
(2) Introspection of De Re Knowledge: Rx¢ — OxRxo,
(3) Negative Introspection:
—Ox¢ — Ox—Oxg, where O € {O, D},
(4) Distributivity:
Ox(p = ¥) — (Oxe — Ox¥), where O € {O, D, R},
(5) Monotonicity:
Ox¢ — Oyg and !X —!Y, where X € Y and O € {O, D, R},

(6) Overt Knowledge: Ox¢ — Oxg¢, where O € {D, R},

(7) Introspection of Traceability: !X — Dx!X,

(8) Data-Free Knowledge: Og¢ — Rge, where O € {O, D},
(9) Traceable Data: !X — (Ox¢ — Ox¢), where O € {D, R}.

The Truth, the Negative Introspection, and the Distributivity ax-
ioms are the standard axioms of the epistemic logic. The Truth ax-
iom is valid for all three modalities, O, D, and R. We list it only for
modality O because this principle for the other two modalities can be
derived from using the Overt Knowledge axiom. At the same time,
the Negative Introspection axiom is not universally valid for modal-
ity R. As usual in epistemic logic, the positive introspection principle
is provable from the Negative Introspection and some other axioms.
We show this in Lemma 6. The positive introspection principle is also

not universally valid for modality R. However, a weaker form of it,
expressed by the Introspection of De Re Knowledge axiom, holds.

The Introspection of Traceability axiom states that if the data
uniquely identifies the agent, then the data informs the de dicto
knowledge of this. We state this axiom for modality D, the same prop-
erty for modality O and R is derivable.

The Data-Free Knowledge axiom, when combined with the Overt
Knowledge axiom, implies that the formulae Og¢ and Rge are
equivalent. Note that the formula Dg¢ is not equivalent to the two
formulae above. Indeed, w, a IF Ogz¢ means that u,a I+ ¢ for each
world u, see Definition 2. At the same time, w, a IF Dg¢ means that
u, b I ¢ is true for each world # and each agent b.

Finally, the Traceable Data axiom, when combined with the Overt
Knowledge axiom, implies that there is no difference between the
three forms of knowledge if the data is traceable.

We write - ¢ and say that formula ¢ € ® is a theorem of our
logical system if this formula is derivable from our axioms using the
Necessitation and the Modus Ponens inference rules:

% v, ¢—>Y
Dx¢ ¥

We omit the Nesessitation inference rules for modalities O and R be-
cause these rules are derivable in our system. In addition to unary
relation = ¢, we also consider binary relation I' - ¢ between a (pos-
sibly infinite) set of formulae I' € ® and a formula ¢ € ®. We say that
I I ¢ is true if formula ¢ is derivable from the theorems of our log-
ical system and an additional set of assumptions I" using the Modus
Ponens inference rule only. Note that statements & - ¢ and F ¢ are
equivalent. We say that a set of formulae I' C @ is consistent if ' ¥ L.

We conclude this section with a few technical observations that
will be used in the proof of the completeness.
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Lemma 5.
 Ox¢ — ¢, where O € {D, R}.

Proof.

Note that - Ox¢ — Oxg¢ by the Overt Knowledge axiom. At the
same time, = Ox ¢ — ¢ by the Truth axiom. Therefore, - Ox¢ — ¢
by propositional reasoning. O

The next lemma states a well-known observation that the posi-
tive introspection principle is derivable from S5 axioms. To keep the
article self-contained, we give its proof in the appendix.

Lemma 6.
- Ox¢ — OxOxe, where O € {0, D}.
Lemma 7.
= Oxe < OxOxe, where O € {D, R}.

Proof.

Note that the formula OxOx¢ — Oxg is an instance of the Truth ax-
iom. Thus, it suffices to show that - Ox¢ — OxOxe. If O is modal-
ity R, then the last formula is an instance of the Introspection of De
Re Knowledge axiom.

Finally, let us prove = Dx¢ — OxDxe. It follows from Lemma 6
that - Dx¢ — DxDxg. At the same time, the following formula is an
instance of the Overt Knowledge axiom:DxDx¢ — OxDx¢. There-
fore, - Dx¢p — OxDx¢ by propositional reasoning. |

The proof of the next standard lemma is also in the appendix.

Lemma 8.

If 91, ..., ¢u =V, then Oxey, ..., Oxe, E Ox ¥, for any modality
o€ {0,D,R}.

Lemma 9 (Lindenbaum).

Any consistent set of formulae can be extended to a maximal consis-
tent set of formulae.

Proof.

The standard proof of Lindenbaum’s lemma [30, Proposition 2.14]
applies here.

Soundness
Theorem 4 (soundness).

If - ¢, then w, a IF ¢ for any world w and any agent a of any model
(W, A {~xheev, ).

Proof.

The soundness of the Truth, the Negative Introspection, the Distribu-
tivity, the Monotonicity, and Overt Knowledge axioms as well as of
the Necessitation and the Modus Ponens inference rules is straight-
forward. Below, we prove the soundness of each of the remaining
axioms as a separate claim.

Claim 1.
If w, a IF Rxo, then w, a IF OxRxo.

Proof of Claim.

Let us consider any world # € W such that (w, a) ~x (u, a). By item 5
of Definition 2, it suffices to show that #, a IF Rx¢. Toward this proof,
consider any world v € W and any agent b € A such that (u, a) ~x
(v, b). By item 7 of Definition 2, it suffices to prove that v, a I ¢.
Note that (w, a) ~x (v, b) by the assumptions (w, a) ~x (u, a) and
(u,a) ~x (v, b). Thus, v, a I ¢ by the assumption w, a |- Rx¢ of the
claim and item 7 of Definition 2. O
Claim 2.

If w,a IF!X, then w, a IF Dx!X.

Proof of Claim.

Consider any world # € W and any agent b € A such that
(w, a) ~x (u,b). 9)

By item 6 of Definition 2, it suffices to prove that u, b I-!X. Toward
this proof, consider any world v € W and any agent ¢ € A such that
(u, b) ~x (v, ¢). By item 2 of Definition 2, it suffices to show that
b=c.

Note that statement (9) and the assumption (u, b) ~x (v, ¢) imply
that (w, a) ~x (v, ¢). Thus, a = ¢ by the assumption w, a IF !X of the
claim and item 2 of Definition 2. Similarly, a = b by statement (9).
Therefore, b = c. O

Claim 3.
If w,a IF Oge, then w, a - Ry, where O € {O, D}.

Proof of Claim.

Note that the statement (w, a) ~g (u, b) is true for any world u € W
and any agent b € A. Thus, by item 5 (or item 6) of Definition 2 the
assumption w, a I- Oge implies that u, a I~ ¢ for any world u € W.
Hence, w, a I Rz ¢ by item 7 of Definition 2. O

Claim 4.
If w,al-!X and w, a I Oxg, then w, a IF Ox¢, where O € {D, R}.

Proof of Claim.

First, assume that O = D. Consider any world # € W and any agent
b € Asuch that (w, a) ~x (u, b). By item 6 of Definition 2, it suffices
to show that u, b I ¢.

Note that the assumption w, a I+ !X of the claim implies thata = b
by the assumption (w, a) ~x (u, b) and item 2 of Definition 2. Thus,
(w, a) ~x (u,a) again by the assumption (w, a) ~x (u, b). Hence,
u,alk ¢ by the assumption w, a IF Ox¢ of the claim and item 5 of
Definition 2. Therefore, u, b |- ¢ because a = b.

The proof in the case O = R is similar. (|
This concludes the proof of the theorem. O
Completeness

As usual, the proof of completeness for our logical system consists
of a canonical model construction and a proof of a “truth” lemma
that connects the satisfaction relation of the canonical model with
the provability in our logical system. Traditionally, the worlds of the
canonical model are defined as the maximal consistent sets of for-
mulae. This approach works for modal logic with a few exceptions.
One such exception is the epistemic logic of distributed knowledge.
To prove the completeness of this system, Fagin, Halpern, and Vardi
use a tree construction in which nodes of the tree are labeled with
maximal consistent sets [31]. Note that although our logical system
does not have distributed knowledge explicitly, it has it implicitly.
Indeed, for each agent a, one can consider a variable x, that repre-
sents all information known to agent a. In such a setting, knowledge
informed by a dataset {x,},c¢ is the distributed knowledge of group
G.

The maximal consistent set construction also needs to be adjusted
for the egocentric setting when the semantics is defined in terms of a
world-agent pair positioned on the left side of the satisfaction relation
IF. In such a setting, a maximal consistent set captures the properties
of a world-agent pair rather than just of a possible world. As a result,
it is not, generally speaking, possible to define possible worlds sim-
ply as maximal consistent sets of formulae. One of the approaches
to deal with this is suggested by Naumov and Tao [20]. They use a
“matrix” technique in which the canonical model is recursively con-
structed as an infinite matrix whose cells are maximal consistent sets
of formulae. The rows and columns of such a matrix correspond to
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Figure 7. A Cartesian tree.

possible worlds and agents, respectively. The maximal consistent set
Swa in the w-th row and a-th column captures the properties that
agent a has in world w.

In this article, we combine tree and matrix techniques to prove the
completeness of our logical system. At the center of our construction
is a tree structure on the cells of a matrix. Because the position of
each cell in a matrix could be described by an element of the Carte-
sian product of the set of rows and the set of columns, we call such
structure a Cartesian tree.

Cartesian trees

Figure 7 depicts an example of a Cartesian tree. The nodes of this
tree are the cells in 2 x 3 matrix. As shown in the figure, we index
rows and columns starting from 0. The nodes and the undirected
edges between them form a tree (graph without cycles). As shown
in the figure, edges in a Cartesian tree are labeled with datasets. The
Cartesian tree depicted in Fig. 7 has a finite number of rows and
columns. Our proof of completeness requires us to consider infinite
matrices whose rows and columns can be indexed by the whole set
of integer numbers (ordinal w). To achieve this, we define cells of
the matrix as elements of the Cartesian product « x 3, where ¢ < w
and B < w are two ordinals. For the example shown in Fig. 7, we
have « =2 ={0,1} and f = 3 = {0, 1, 2}. The formal definition of
a Cartesian tree is below.

Definition 5.

A Cartesian tree is a tuple (o, B, E, €), where

(1) o, B < w are two ordinals,

(2) E C (o x B)? is an symmetric adjacency relation on o x f that
forms an (undirected) tree structure,

(3) €isalabeling function that to each edge e € E assigns a dataset
lle) S V.

By (n1,7,) we denote the edge in the Cartesian tree between
nodes 71,71, € « x . We use corner brackets to differentiate un-
ordered pairs from ordered pairs that we continue to denote by
parentheses. We say that an edge (171, 1;) € E is labeled with a vari-
able x € V if x € €(ny,n;). By a simple path, we mean a path in the
tree without repeating nodes. We allow trivial paths that start and
end at the same node. Recall that for any two nodes in a tree, there
is a unique simple path between these two nodes.

Definition 6.

For any nodes 71,75 € a x  and any X C V, let 1y o ny if all
edges along the simple path connecting nodes 7 and 7, are labeled
with each data variable in set X.

As an example, (1, 0) &y (0, 1) for the Cartesian tree depicted in

Fig. 7. Also, (1,0) & (0,2) and (1,1) 5% (1, 1). In fact, # o 7 is
true for each dataset X € V and each node 7 in any Cartesian tree.

Complete loaded Cartesian trees
Cartesian trees provide a framework on which we construct the
canonical model by “loading” a maximal consistent set of formu-

lae at each node of the tree. We expect there to be some correlation
between maximal consistent sets and the tree structure. The formal
definition of a loaded Cartesian tree is below.

Definition 7.

A loaded Cartesian tree is a tuple («, B, E, £, §) such that

(1) (x, B, E, ) is a Certesian tree,

(2) S is a node labeling function that maps each node (w, a) in set
a x f3 into a maximal consistent set of formulae S(zw, a), which
we denote by S,,,, such that
(a) if!X € S, and (w, a) o (u, b), then a = b,

(b)

(c) if (1w, a) o (u, b), then Dx € Sy iff Dx € Sy,

(d)

if (10, a) o (1, a), then Oxg € Su iff Ox@ € Suas

if Ry € Swa and (w, a) o (u, b), then ¢ € Sua.

Informally, we say that one loaded Cartesian tree is an extension
of another if the extended tree adds new nodes while preserving the
edges, labels, and loads in the original tree. The formal definition is
given below.

Definition 8.
A loaded Cartesian tree («, ', E’, ¢/, S') is an extension of a loaded
Cartesian tree (o, B, E, ¢, S) if

(1) <o,

2) p=p,

(3) E=E'Nn(axp),

(4) €' (e) = (e) for each edge e € E,

(5) S.,, = Swa for each node (w, a) € o x B.

In order to be able to convert a loaded Cartesian tree into a
canonical model, the tree must be “complete.” Below, we give the
formal definition of what “complete” means. In the next subsection,
we prove that any finite loaded Cartesian tree can be extended to a
(possibly infinite) complete loaded Cartesian tree. This result is stated
at the end of the next subsection as Theorem 5. The non-trivial proof
of this theorem constitutes the bulk of the proof of the completeness
theorem.

Definition 9.
A loaded Cartesian tree («, B, E, £, S) is complete when for each or-
dinal # < &, ordinal b < B, formula ¢ € ®, and dataset X C V,

(1) if !X ¢S, then there is a node (w,a) € o x B such that
(u, b) o (w, a) and b # a,

(2) if Oxg ¢ S,,, then there is a node (w, b) € « x B such that
(u, b) oo (w,b)and ¢ ¢ S,

(3) if Dx¢ ¢ S, then there is a node (w,a) € « x p such that
(u, b) & (w,a) and ¢ ¢ S,4,

(4) if Rxe ¢ S,p, then there is a node (w,a) € @ x § such that

(u, b) o (w,a)and ¢ ¢ S,,,,.

Extension theorem

A loaded Cartesian tree («, B, E, ¢, S) is finite if &, B < w. As men-
tioned above, in this subsection we show that each finite loaded
Cartesian tree can be extended to a complete loaded Cartesian
tree. To be complete, the tree must satisfy conditions 1-4 of Def-
inition 9 for each dataset X, each formula ¢, each row w, and
each column a. Instead of constructing the complete tree at once,
we define it as a limit of an infinite chain of extensions. Each
of these extensions makes one (or more) of conditions 1-4 sat-
isfied for some specific values of X, ¢, w, and a. The existence
of these single-step extensions is shown in the next two lem-
mas.
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Figure 8. Cartesian tree («+ 1, 3, E', ¢).

Lemma 10.

For any finite loaded Cartesian tree T = («, B, E, £, S), any node
(u,b) € & x B, and any formula Ox¢ ¢ S,,, there is an extension
T =(x+1,B,E,¢,8) of tree T such that («, b) o (e, b) in tree
T'andgp ¢S ,.

Proof.

To define the loaded Cartesian tree T = (o« + 1, 3, E’, £/, §'), we first
construct Cartesian tree (a+ 1, B, E’, £’) and then specify the load
§'. The tree («+ 1, B, E’, £’) is obtained from tree (e, B, E, £) by an
addition of a new row o. Each node in this new row is connected by
an edge to the cell (u, b). All of the newly added edges are labeled
with the empty set except the edge between nodes (#, b) and («, b),
which is labeled with set X, see Fig. 8. Formally, relation E’ on the
set (a+ 1) x B is defined as:

E' = EU{{(u,b), (ot,a)) | a < B}. (10)
and the labeling function ¢’ defined as:

X, ife=((u, b), (x, b)),
ife=((u, ), («, a)), where a # b, (11)

l(e), otherwise.

Note that (o« + 1, B, E’, ¢') is a Cartesian tree by Definition 5.
Next, we proceed to define function §'. First, let us consider the
set of formulae

O™ ={~p} U{y | Ox¥ € S} (12)
Claim 5.
O~ is a consistent set of formulae.
Proof of Claim.

Suppose the opposite. Then, there are formulae

Ox¥r1,....Ox¥m €Sy (13)

such that ¥q,..., ¥, F¢. Hence, Ox¥ry,...,Ox¥, - Oxgp, by
Lemma 8. Thus, S,;, - Ox¢ by assumption (13). Then, Ox¢ € S,,;,
because S, is a maximal consistent set, which contradicts the as-
sumption Ox¢ ¢ S, of the lemma. ]

By Lemma 9, set O~ can be extended to a maximal consistent set

To finish the construction of the loaded Cartesian tree, we need to
define the labeling function S’ that maps pairs from Cartesian prod-
uct (oc + 1) x 3 into maximal consistent sets. The values of this func-
tion §),, are given by the matrix of size @ + 1 by p shown in below

equation:
r S0 Sot - Sos—1 Sob Sopsr .- Sop-1 ]
Sto St Ste-r o S Sipsr o Sipt
Swa) =] S St - Supt S Subsr1r -+ Sup-i

Sa=1,0 Sa=1,1 -+ Sg—1,6-1 Sa—1.6 Sa—1,b41 -+ Sa—1,8-1

LSw  Sut o Sup1 Q0 Suppr oo Sup-1

Matrix (S,,,) toward the proof of Lemma 10.

Although the visual definition of §),, through a matrix is easier to
understand intuitively, in proofs, it is more convenient to refer to an
equivalent definition in a more traditional form:

Sua, ifw=oanda#b,
S=10, ifw=oaanda=05, (14)
Swa, otherwise.

This concludes the definition of the tuple T' = («+ 1, B, E/, ¢, §').

Claim 6.

Y . . Y .
(wq,a1) oo (w1, ay) in tree T iff (wq, ay) oo (w1, ay) in tree T', for
each dataset Y € V, each wy,w; < «, and each ay,a, < B.

To show that T” is a loaded Cartesian tree, we need to verify con-
ditions (a)—(d) of item 2 of Definition 7.

We verify these conditions in Claim 8, Claim 10, Claim 11, and
Claim 13 below. First, let us prove an auxiliary statement used in the
proof of Claim 8.

Claim 7.

Oyy €8, iff Oyyr € Q, for each dataset Y € X and each formula
e d.

Proof of Claim.

(=) : By Lemma 6 and the Modus Ponens rule, the assumption
Oy € S, implies that S,, = OyOy . Hence, S,;, = OxOy v by the
Monotonicity axiom, the Modus Ponens inference rule, and the as-
sumption Y € X. Thus, OxOyy € S,,;, because S,,;, is a maximal con-
sistent set. Then, Oyyr € O~ by equation (12). Therefore, Oyyr € O
because O~ < Q.

(<) : Suppose that Oyy ¢ S,;,. Thus, =Oyy € S, because S,,;,
is a maximal consistent set. Then, S,, - Oy—Oyy by the Neg-
ative Introspection axiom and the Modus Ponens inference rule.
Hence, S,;, - Ox—Oyv¢ by the Monotonicity axiom, the Modus
Ponens inference rule, and the assumption Y € X of the claim.
Thus, Ox—=Oyy € S, because S,,;, is a maximal consistent set. Then,
=0y € O~ by equation (12). Hence, =Oy v € QO because O~ C Q.
Therefore, Oyyr ¢ O because set Q is consistent. U

We are now ready to prove condition 2(b) of Definition 7.

Claim 8.
Oyl// es iff Oyl// es

wia wya» for each wy,wy < a+1, each a < B,
and each Y € V such that (wq, a) oo (wy,a)in T'.

Proof of Claim.

We consider the following three cases separately.

Case 1: wy = wy. Then, Oyy € S, , iff Oyy €5,

Case 2: wy,w, < «. Then, (wq, a) oo (w2,a) in T by Claim 6
and the assumption (w1, a) R (wy,a) in T’ of the current claim.
Hence, Oy € Sy,4iff Oyyr € Sy,4 by condition 2(b) of Definition 7.
Therefore, Oy € Stora iff Oyyr € Stora by equation (14).

Cuase 3: Exactly one of w1y, w; is equal to a. Without loss of gen-
erality, suppose that

wy <o and wy = «. (15)
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Then, the assumption (w1, a) oo (wy,a) in T of the claim implies
that (wyq, a) R (o, @) in T'. In other words, in tree T’, the unique
path from node (w1, a) to node («, a) is labeled with each data vari-
able from set Y. Note, see Fig. 8, that this path must go through the
node (u, b) and contain the edge ((u, b), («, a)). Thus,

Y S O(((u, b), («,a))) (16)

and (w1, a) oo (u, b) in tree T'. The last statement, by Claim 6, im-
plies

(w1, a) oo (,b) in T. (17)

We further split this case into two subcases:
Case 3A: a = b. Then, ¢'(((u, b), (o, a))) = X by equation (11).
Hence, by statement (16),

Y C X. (18)

In addition, statement (17) and the assumption a =b of Case
3A imply that Oyy € Sy 4 iff Oyy € S, by item 2(b) of Defini-
tion 7. Hence, Oyy € Sy, iff Oyy € O by Claim 7 and statement
(18). Then, Oy € S, , iff Oyy € S’ by equation (14). Therefore,
Oyy €8,,,,iff Oyy €S, , because of the part w, = o of statement
(15) and the assumption a = b of Case 3A.

Case 3B: a # b. Then, €' (((u, b), («x,a))) = @ by equation (11).
Hence, by statement (16),

Y =o. (19)

By the assumption of the lemma # < «. Thus, the node (u, a) also
belongs to the tree T. Hence, vacuously, all edges along the unique
simple path between the nodes (w1, a) and (u, a) are labeled with
each element of the empty set. In other words, (w1, a) Lo (#,a)inT.
Thus, (w4, a) oo (u,a) in T by statement (19). Then, Oy € Sy4
iff Oyv € Sy, by item 2(b) of Definition 7. Hence, Oy € S;U]a iff
Oyy € S, by equation (14), the part w; < o of statement (15), and
the assumption a # b of Case 3B. Therefore, Oy € Siora iff Oyyr €
S, . by the part w; = « of statement (15). O

wha

Claim 10 verifies condition 2(c) of Definition 7. The next claim is
an auxiliary statement toward proving Claim 10.
Claim 9.
Dyy € Sy, iff Dyyr € S, for each formula ¢ € @, each ordinal a <
B, and each dataset Y C ¢/({(«, a), (u, b))).
Proof of Claim.
We consider the following two cases separately:

Case 1: a # b. Then the assumption Y C ¢'(((«, a), (u, b))) of the
claim implies, see Fig. 8,

Y = 0. (20)

The assumption (u#,b) € o x  of the lemma implies that # < «.
Thus, nodes (u#, b) and (u, a) both belong to the tree T. Vacuously,
all edges along the simple path connecting these nodes in tree T are
labeled with each element of the empty set. Hence, (u, b) o (u,a)
in tree T. Then, Dgy € S, iff Dgy € Sy, by item 2(c) of Defini-
tion 7. Thus, Dy € S/, iff Dy € S}, by equation (14) and the
assumption a # b of the claim. Therefore, Dyy € S/, iff Dyy € S,
by equation (20).

Case 2: a = b. Then, the assumption Y C ¢/({(cx, a), (u, b))) of
the claim imply that («, a) oo (u,a) in T'. Thus, OyDyy € S,
ift OyDyvy € §,,, by Claim 8. Hence, Dyy € S, iff Dyy € S,,, by
Lemma 7 because S/, and S, are maximal consistent sets. There-

fore, Dyy € S, iff Dyy €S, by the assumption a =b of the
case. [l

Claim 10.
Dyy €8,,,, iff Dyy €S, ,, for each formula ¢ € @, each

wy,wy <+ 1, each aj,ap <P, and each Y €V such that
(w1, ay) oo (). ay) in T".

Proof of Claim.

We prove the claim by induction on the length of the simple path
between the nodes (w1, a) and (w;, ay) in tree T".

Base Case. (wy,a1) = (wy,a). Then, wy =w, and a; = a;.
Therefore, Dyy € S, ,, it Dyy €5, ,,.
Induction Step. Consider the following two cases separately:

Case 1: wy,w) < «. Then, (wq,ay) oo (wy,ay) in T by Claim 6
and the assumption (w1, ay) oo (wy, ap) in T’ of the current claim.
Thus, Dyy € Sy,q4, iff Dyy € S,4, by item 2(c) of Definition 7.
Therefore, Dy € Si,ay iff Dyy € Stoyay
assumption wq, w, < o of the case.

Case 2: At least one of wq and w; is equal to o. Without loss of

by equation (14) and the

generality, let 1 = «. Consider the simple path between the nodes
(wq,a1) = («,ay) and (w;, ap) in tree T'. Because we consider the
induction step, this path has more than one node. Observe that the
node (&, ay) in tree T’ is only connected to node (u, b), see Fig. 8.
Thus, the path has the form: («, ay), (u, b), ..., (w3, ay). Then, by

. Y . .
the assumption (wy, a1) o— (w3, a;) in T’ of the claim,

Y € ¢ (((o ar), (u, ), (21)

(1, b) oo (wy,ay) in T (22)

Thus, Dyy € St iff Dyy € S/, by Claim 9 and statement (21). Ad-
ditionally, by the induction hypothesis, statement (22) implies that
Dyy € S;b iff Dyy € §, Hence, Dy € S, iff Dyy € S/

wax* wiay wra
because w; = «.

The next claim verifies condition 2(d) of Definition 7.

Claim 11. ;
If Ryy € S:‘/lal and (wq,ay) oo (wy,ay) in T’ then ¥ € S;”Zal’
each wy,w, < o+ 1,each ay, a, < B, each dataset Y € V, and each

formula ¢ € ®.

for

Proof of Claim.
One of the following four cases must take place, see Fig. 8:

Case 1: either Y = @ or ay = a;. In the former case, all edges
along the simple path between nodes (wq,ay) and (w;, ay) are la-

. . Y
beled with all data variables from set Y. Hence, (w1, a1) o— (w,, ay)
in T'. In the latter case, the same statement is true by the assump-

tion of the claim that (wq, a1) R (wy,ap)in T'. Thus, Oyy € S,

wia
itf Oyy € S,,,, by Claim 8. Note also that Oyy € S, ,, by the ;151—
sumption Ryy € 5, of the claim, the Overt Knowledge axiom, the
Modus Ponens inference rule, and the maximality of the set S;,, ;. .
Hence, Oy ¢ € S;jzal. Therefore, ¥ € S;jzal by the Truth axiom, the
Modus Ponens inference rule, and the maximality of the set S}, ;..
Case 2: wy,w; < a. Then, Ryy €S,,4, by the assump-

tion Ryy € S,

01ay of the claim and equation (14). Additionally,
(w1, aq) o (t2,a3) in T by the assumption (w1, ay) oo (wy,ay) in
T’ of the current claim and Claim 6. Hence, ¥ € Sy,4, by item 2(d)
of Definition 7. Therefore, ¥ € S;, ,, by equation (14).

Case 3: ay # az, one of the nodes (w1, a1) and (w>, ay) belongs to
tree T and the other is the node («, b). Then, the simple path between

the nodes (w1, a1) and (w;, a;) must go through the node (u, b), see

. . Y
Fig. 8. Furthermore, note that the assumption (w1, ay) oo (w5, a;)
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in T’ of the claim implies that

(w1, a1) o (u,b) in T, (23)

(1, b) o (ws,ay) in T (24)

We further split this case into two subcases:
Case 3A: wi < « and (w3, ay) = («, b). Then, Ryy € S,,4, by

4

the assumption Ry € Sioray of the claim and equation (14). Note

also that (wq,ay) oo (u,b) in T by statement (23) and Claim 6.
Thus, ¥ € S,4, by item 2(d) of Definition 7. Then, ¢ € S/M1 by equa-
tion (14) and the assumption a; # a, of Case 3. Therefore, ' € S;ffzﬂl
by the assumption (w,, ;) = («, b) of Case 3A.

Case 3B: wy < o and (w1, ay) = («, b). By the Introspection of
De Re Knowledge axiom and the Modus Ponens inference rule, the
assumption Ry € S, ; of the claim implies S, , F OyRyv. Then,
OyRyy €S, because §;, , is a maximal consistent set. Thus,
OyRyy € S;b by statement (23) and Claim 8. Hence, S;b ~ Ry
by the Truth axiom and the Modus Ponens inference rule. Then,
Ryy €S, because S/, is a maximal consistent set. Thus, by equa-

tion (14) and the assumption (#, b) € « x B of the lemma,
Ry ¥ € S, (25)

At the same time, statement (24), by Claim 6, the assumption («, b) €
a x B of the lemma, and the assumption w; < « of Case 3B, implies
that (1, b) oo (15, a) in T. Thus, ¥ € S, by item 2(d) of Defini-
tion 7 and statement (25). Hence, ¥ € S,,4, because b = a; by the
assumption (w1, a1) = («, b) of Case 3B. Therefore, ¥ €S, , by
equation (14) and the assumption w, < « of Case 3B. O

The condition 2(a) of Definition 7 is verified in Claim 13. The
next claim is an auxiliary statement used in the proof of Claim 13.
Note that we have chosen to delay the verification of condition 2(a)
because the proof of Claim 12 is using Claim 10.

Claim 12.
Y e S ifflY € 8/

wiay wﬂz,foreachYgV,eachwl,wz < a+1,and
Y .

each a1, ay < B such that (wq,ay) oo (w;p,a;) in T'.

Proof of Claim.

It suffices to show that if 'Y € S, , , Indeed, by
the Introspection of Traceability axiom and the Modus Ponens in-
/wml implies that S;‘,]al = Dy(Y).
because §;, , is a maximal consistent set.

then Y €5, . .
ference rule, the assumption 'Y € §
Hence, Dy(!Y) € S,

wiay
Thus, Dy('Y) € S;jzaz by Claim 10 and the assumption (w1, a) R
(wy, ap) in T’ of the current claim. Hence, S;vzaz ~!Y by Lemma 5.

, , ;. ! .
Therefore, 1Y € S}, ,, because S, ,, is a maximal consistent set. (]

Claim 13.
If!Y Stoyay and (wq,ay) oo (wy,ap) in T’, then a; = a,, for each
dataset Y € V, each wy,w; < a+ 1, and each ay, a, < B.

Proof of Claim.

We prove the statement of the claim by induction on the length of
the simple path between the nodes (w1, a1) and (w5, a3 ) in tree T'.

Base Case: if the length of the path is zero, then (wq,a;) =
(wy, ap). Therefore, a; = aj.

Induction Step: we further split the induction step into the fol-
lowing three cases:

Case 1: wy, w;y < o Then, 'Y € S, 4, by equation (14). Also, by
Claim 6 and the assumption (w1, a) oo (wy, ap) in T’ of the current
claim, (wq, ay) o (w3, ay) in T. Therefore, a; = a; by item 2(a) of
Definition 7.

0o 1 b-1 b b+ g1 B
O @pE#®

1
o IR

Figure 9. Toward a proof of Lemma 11.

Case 2: at least one of w1, w, is equal to «. By Claim 12, without
loss of generality, we can suppose that w, = «. Note that (w1, ay) #
(w2, ay) because we consider the induction step of the proof. Thus,
the assumption w, = « implies that the simple path in tree T” from
the node (w1, a1) to the node (w, ay) = («, ay) must go through the
node (u, b), see Fig. 8. Then, the simple path from the node (w1, a1) to
the node (u, b) is shorter than the simple path from the node (w1, a)
to the node (w5, a>). In addition,

(w1, a1) o (u,b) in T, (26)

Y € O({(u, b), (e, a2))) (27)

by the assumption (w1, ay) R (w>, ay) in T of the claim. We further
split the proof into the following two subcases:

Case 2A: a; = b. Note that a; = b by the induction hypothesis,
wya, of the claim and statement (26). There-
fore, a1 = ay by the assumption a; = b of Case 2A.

Case 2B: ay # b. Then, €/ ({(u, b), («, a2))) = @, see Fig. 8. Thus,
Y = & by statement (27). Then, vacuously, all edges along the simple
path between the nodes (u#, b) and (u, a,) in tree T are labeled with
all elements of the set Y. In other words,

the assumption 'Y € §

(,b) oo (,a3) in T. (28)
At the same time, the assumption Y € S, , of the claim implies that
'Y € 8/, by Claim 12 and statement (26). Thus, !Y € §,;, by equa-
tion (14) and because # < « due to the assumption (u, b) € («, B) of
the lemma. Therefore, a; = b by item 2(a) of Definition 7 and state-

ment (28), which contradicts the assumption of Case 2B. O
This concludes the proof of the lemma. ]
Lemma 11.

For any finite loaded Cartesian tree T = («, 3, E, ¢, S), any node
(u,b) € a x B, and any formulae Dx¢ ¢ S,;, and Rxy ¢ S, such
that !X ¢ S, there is an extension T = («+ 1,3+ 1, E’, ¢, §') of

tree T such that (u, b) o (o, B) intree T, ¢ ¢ S’“B, and ¥ ¢ S/“b.

Proof.

Following the general structure of the proof of Lemma 10, we first
define the Cartesian tree (o« + 1, 3 + 1, E’, ¢/). This tree is obtained
by connecting all newly added nodes to the node (u, b) of the original
tree (o, B, E, £), see Fig. 9. Formally, relation E’ on the set (o« + 1) x
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(B + 1) is defined as follows:
E' = EU{((u,b), (x, B))} U {((, b), (x,a)) | a < B}
U {((s, b), (w, B)) | w < o} (29)

We label all newly added edges with the empty set except for the edge
((n, b), («, B)), which is labeled with set X, see Fig. 9. Formally, we
define edge labeling function ¢ as follows:

X, ife=((ub), (« B)),
ooy )o.  ife=((ub), (« a)), wherea < B,
tle)= a, ife= ((u, b), (w, B)), where w < «, (30)

L(e), otherwise.

The above equation concludes the definition of the Cartesian tree
(c+ 1,3+ 1, E, ). Toward the definition of the labeling function
S, let us first consider the following two sets of formulae:

H™ ={—¢p}U{x € ®|Dxx €S}, (31)

G ={—v}U{x € ®|Rxx €S} (32)
The proof of the next claim is the same as the proof of Claim 5 except
that it uses modalities D and R instead of modality O. [l
Claim 14.

H~ and G~ are consistent sets of formulae.

By Lemma 9, sets H~ and G~ can be extended to maximal con-
sistent sets H and G, respectively. We are now ready to define the la-
beling function §'. The values of the labelling function S,,,, are given
by the (o« + 1) x (B + 1) matrix shown in below equation:

S0  Sot -+ Sob-1 Sob Sob+1 - Sop-1 H
S0 St Sip1 Sip o Siper - Sip1 H
(Sia) = Su0 Sul o Sup-1 Sub Szn/ﬂrl Su,ﬂ—l HY.

Sa=1,0 Su—1.1 - Sam1,b-1 Sa-1.b Sa—1,6+1 - Sa-1,-1 H
Su0 Sul o Sub-1 G Szn/ﬂrl Su,ﬂ—l H
Matrix (S,,,) towards the proof of Lemma 11.
In other words, let

Sua, fw=oa,a+#b,and a # B,
G, ifw=wxanda=>b,

we T \H, ifa=8,
S.wa, otherwise.

(33)

The tuple T" = (ax+1,B + 1,E’, ¢, S') is now defined. Next, we
show that T” is a loaded Cartesian tree through verifying conditions
2(a)—(d) of Definition 7. We start with the following equivalent of
Claim 6.

Claim 15.

(wy,ay) oo (wy, ap) in tree T iff (wq, ay) oo (wy, ap) in tree T, for
each dataset Y C V, each wq, w; < «, and each a1, a, < f.

Claim 17 verifies condition 2(b) of Definition 7. Claim 16 is an
auxiliary statement used in the proof of Claim 17.

Claim 16.
Ogx €8S, iff Oz x € G, for each formula x € .

Proof of Claim.

(=) : Suppose that Ogx € S,;. Then, by Lemma 6 and the
Modus Ponens inference rule, S,;, - OzO0g x. Hence, S,, F RgzO0g x
by the Data-Free Knowledge axiom and the Modus Ponens infer-
ence rule. Then, S,;, - RxOg x by the Monotonicity axiom and the
Modus Ponens inference rule. Thus, RxOg x € S, because S, is a

maximal consistent set of formulae. Therefore, Ogx € G~ C G by
equation (32).

(<) : Suppose that Og x ¢ S,;,. Then, =Og x € S,,;, because S,
is a maximal consistent set of formulae. Thus, S,;, - Oz—0g x by
the Negative Introspection axiom and the Modus Ponens inference
rule. Hence, S,;, - Rg—0gx by the Data-Free Knowledge axiom
and the Modus Ponens inference rule. Thus, S,,;, = Rx—Og x by the
Monotonicity axiom and the Modus Ponens inference rule. Then,
Rx—Ogx €S, because S, is a maximal consistent set of formu-
lae. Thus, =Ogx € G~ € G by equation (32). Therefore, Ogx ¢ G

ub

because set G is consistent. O
Claim 17.
Oyyx € S;”]a iff Oy x € S;/zd’ for each formula y € ®, each wy,w, <

a+1,each a < B + 1, and each dataset Y C V such that (w1, a) oo
(wy,a)inT'.
Proof of Claim.
We consider the following four cases separately:

Case 1: wy = w;. Then, §;, , =S, ;. Therefore, Oy x € S, , iff
Oy)( S S;lzza'

Case 2: a = p. Then, S, , = H = §;,,, by equation (33). There-
fore,Oyx €8, ,iff Oyx €8,

wia u/za'

Case 3:a < B and wq, wy < «. Then, (w1, a) oo (wy,a)in T by
Claim 15 and the assumption (w1, a) oo (wy,a) in T” of the cur-
rent claim. Hence, Oy x € S,,4 iff Oy x € Sy,q by item 2(b) of Defi-
nition 7. Therefore, Oy x € S;”la iff Oy x € S;f/zﬂ
the assumptions a < B and wq, w, < o of the case.

Case 4: a < B and one of w1, w, is equal to « while the other is

by equation (33) and

less than oe. Without loss of generality, let vy < acand w;, = «. Hence,
the simple path between nodes (w1, a) and (w,, a) must contain the
edge ((u, b), (w3, a)), see Fig. 9. In addition, Y C ¢'({(u, b), (w3, a)))
by the assumption (w1, a) oo (wy,a) in T’ of the claim. Note that
' ({(u, b), (w3, a))) = @ by either equation (30) or Fig. 9 and the as-
sumption of the case that a < 3. Thus, Y = . Hence, it suffices to
show that Og x €5, , iff Oz x €5,

Observe that nodes (wq,a) and (u, a) belong to the tree T by
the assumption of Case 4 and the assumption # < « of the lemma.
Then, all edges along the simple path in tree T between these nodes
are vacuously labeled with all elements of the empty set. Hence,

(w1, a) o (u,a) in T. Thus, by item 2(b) of Definition 7,
OzX € Swla iff OgX € Suav (34)

We further split this case into two subcases:

Case 4A: a = b. Hence, Ogx € S, iff Ogx € G by Claim 16.
Then, Og x € Si,q iff Ogx € G by statement (34). Thus, Ogx €
S;jla iff Ogy € S;fzﬂ by equation (33), the assumptions a < 3, wq <
«, and w) = « of Case 4 and the assumption a = b of Case 4A.

Case 4B: a#b. Then, Ogyx € Sy iff Ogy €S, by equa-
tion (33), the assumption a < B of Case 4 and the assumption # < «
of the lemma. Thus, Og x € Sy,4 iff Ogx € S, by statement (34).
Therefore, Ogx € S;,la iff Ogyx € S;,za by equation (33), the as-
sumptions a@ < B, w; < &, and w; = « of Case 4. O

Claim 19 verifies condition 2(c) of Definition 7. Claim 18 is an
auxiliary statement used in the proof of Claim 19.
Claim 18.
Dyx €S, iff Dyx €S, for each x € ®, each (w,a)e (ax+
1) x (B+1) such that (w,a)¢ « x B, and each dataset Y C
({(w,a), (u, b))).
Proof of Claim.
We consider the following two cases separately:

G20z Asenuer pz uo Jasn uoidweyinos 1o AlsiaAiun Aq £8€5962/5Z02.A)/1/1 | /aonde/AlunoasiagAo/woo dno-olwspeoe)/:sdny woJj papeojumoq



14

Jiang and Naumov

Case 1: w=«, a < P. Then, ¢'({((w,a), (u,b))) = @ by equa-
tion (30); alternatively, see Fig. 9. Thus, Y = & by the assumption
Y C ¥ ({(w, a), (u, b)) of the claim. Hence, it suffices to prove that
Doy €8, iff Dax €S/, We further split this case into two sub-
cases.

Case 1A: a # b. The assumption (u, b) € o x B of the lemma im-
plies that # < o« and b < 3. Hence, (u, a), (4, b) € « x 3 by the as-
sumption a < 3 of Case 1. Thus, nodes (u, a) and (u, b) belong to
tree T. Note that all edges along the simple path between these two
nodes are vacuously labeled with all elements of the empty set. Hence,
(1, a) Zo (u, b) intree T. Thus,Dg x € S, iff D x € S, by item 2(c)
of Definition 7. Then,Dg x € §,,,iff Dy x € S,,;, by equation (33) and
the assumption w = o« of Case 1 and the assumption a # b of Case
1A. Hence, Dz x €S, iff D x € S/, by equation (33) and the as-
sumption (u#, b) € ¢ x $ of the lemma.

Case 1B: a = b. Note that, vacuously, all edges along the path
between the nodes (w, a) and (u, b) in tree T’ are labeled with all
elements of the empty set. In other words, (w, a) oo (u, b) in tree
T'. Hence, OgDgx €S,,, iff OgDgx € S;h by Claim 17 and the
assumption @ = b of Case 1B. Therefore, Doy €S, iff Dy €S/,
by Lemma 7 because S, and S/, are maximal consistent sets of for-
mulae.

Case 2:a = B. Then, the assumption Y C ¢'(((w, a), (u, b))) of the
claim implies, see Fig. 9,

Y CcX. (35)

In addition, by equation (33) and the assumption (u, b) € x x B, it
suffices to prove that Dy x € H iff Dy x € S,

(=) : Suppose that Dyx ¢ S,;,. Then, =Dy x € S, because S,
is a maximal consistent set. Hence, S,;, - Dy—Dy x by the Negative
Introspection axiom and the Modus Ponens inference rule. Thus,
S., F Dx—Dyx by the Monotonicity axiom and statement (35).
Hence,Dx—Dyx € S,,;, because S,,;, is a maximal consistent set. Then,
—Dyx € H- C H by equation (31). Therefore, Dy x ¢ H because set
H is consistent.

(«<): Let Dyx €S, Then, S,;, = DyDy x by Lemma 6 and the
Modus Ponens inference rule. Thus, S,;, - DxDyx by the Mono-
tonicity axiom and statement (35). Hence, DxDy x € S,,;, because S,,;,
is a maximal consistent set of formulae. Then, Dyx € H~ € H by
equation (31). O

The proof of the next claim is similar to the proof of Claim 10
except it uses Claim 15 and Claim 18 instead of Claim 6 and Claim
9.

Claim 19.
Dyx €S,,4, iff Dyy € Stoyays for each dataset Y €V, each for-
mula y € ®,each wy, w, < «+ 1 and eachay,a; < B + 1 such that

% .
(w1, a1) oo (w3, ay) in T'.

Next, we verify condition 2(d) of Definition 7.

Claim 20.
If RyX S S;‘/lal
each dataset Y C V, each formula x € ®, each wy,w); < a+ 1 and

eachay,ay <p+1.
Proof of Claim.

4

Y .
and (wq,ay) oo (w;,ay) in T', then x € Swza1 for

The assumption (w1, a1) oo (w2, ay) in T' implies that one of the
following cases must take place, see Fig. 9.

Case 1: (wy,a1) = (w3, az). The assumption Ryy € S;,lal implies
that S}, , F x by Lemma S. Hence, x €, ,, because S}, , is a

4

maximal consistent set. Therefore, x €S, by the assumption of

the case.

Case 2: wy,wy <« and ay,ap; < B. Thus, the assumption
(wq,ay) R (wy,ay) in T" implies that (wy,ay) R (wy,ay) in T
by Claim 15. In addition, the assumption Ry x € S, ,, implies that
Ry x € Sw,a, by equation (33). Then, x € Sy,4, by item 2(d) of Defi-

;/zal
wy < owand a; < P of the case.

Case 3: Y = @. Thus, by the assumption Ryx €S, ,, of the
claim, Rgx €5, ,,- Then, §;, , F Ogx by the Overt Knowledge
axiom and the Modus Ponens inference rule. Hence, Oz x € S;, 4,
because S, ,, is a maximal consistent set of formulae. Observe that,
vacuously, all edges along the simple path between the nodes (w1, a;)

and (w;,ay) in tree T’ are labeled with each data variable from

nition 7. Therefore, x € S by equation (33) and the assumptions

the empty set. In other words, (wq,ay) o (wy,ay) in T'. Thus,
Ogx e by Claim 17. Hence, S, F x by the Truth axiom

wray whaq
U

and the Modus Ponens inference rule. Therefore, x €S, because

Sis,a, is @ maximal consistent set.

Case 4:ay = 3. The assumption Ry x € S
that S/ F x by Lemma 5. Thus, x € S,

wyay wiyay
mal consistent set. Then, x € H by equation (33) and the assumption

4
whay

!
wiay

because S, , is a maxi-

of the claim implies

a1 = P of the case. Therefore, x € S again by equation (33) and
the assumption a; = B of the case.

Case 5: wy) = &, w1 < &, a1 < B, and Y C X. Then, any path
from the node (wq, a;) to the node (w;,a;) must go through the
node (u, b), see Fig. 9. Hence, the assumption (w1, a1) oo (wy,az)
in T’ of the claim implies that

(w1, a1) o (u,b) in T'. (36)

Hence, by Claim 15, the assumption (u, b) € ot x § of the lemma,
and the assumptions wy < « and a; < B of the case,

(w1, 1) o (u,b) in T. (37)

We further split this case into two subcases:
Case 5A: a; = b. The assumption Ryy € §

4

twyay Of the claim im-

U
wia

iom an(i ;he Modus Ponens rule. Hence, OyRyx €S, ,,
S;,lal is a maximal consistent set. Thus, OyRyy € S;b by Claim
17, statement (36) and the assumption a; = b of Case SA. Then,
OyRyx €S, by equation (33) and the assumption (1, b) € & x B

of the lemma. Hence, S,;, - Ry x by the Truth axiom and the Modus

plies S F OyRy x by the Introspection of De Re Knowledge ax-

because

Ponens inference rule. Thus, S,;, - Rx x by the Monotonicity axiom,
the Modus Ponens inference rule, and the assumption X C Y of Case
5. Then, Rx x € S,,;, because S, is a maximal consistent set. Hence,
x € G~ € G by equation (32). Thus, x € S;‘Z“I by equation (33),
the assumption w;, = o« of Case 5 and the assumption a; = b of
Case SA.
Case 5B: a; # b. The assumption Ry x € Storay

plies Ry x € Si,4, by equation (33) and the assumptions wy < ocand
ay < B of Case §. Hence, x € S,.4, by item 2(d) of Definition 7 and
statement (37). Therefore, x € Sy, 4, by equation (33), the assump-

of the claim im-

tions wy = « and a; < B of Case 5 and the assumption a; # b of
Case SB.

Finally, we verify condition 2(a) of Definition 7.

Claim 21. v
If 'YeS,, and (wi,a1)oo(wya) in T, then a1 =ay
for each dataset Y CV, each wj,w) <x+1 and each

ay,ar <p+1.

Proof of Claim.
At least one of the following three cases must take place, see Fig. 9:
Case 1: (wy,a1) = (w3, a>). Then, a; = a.
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Case 2: wi,wy <« and ay,a; < . Then, the assumption
(w1, ay) R (w2, ay) in T" implies that (wq, ay) o (wa,ay) in T by
Claim 15. Also, the assumption !'Y € Si,a, implies 1Y € Sy,4, by
equation (33). Therefore, @y = a; by item 2(a) of Definition 7.

Case 3: The simple path between the nodes (w1, a1) and (w;, a2)
goes through the node (u, b). Then,

(w1, 1) o (u,b) in T, (38)

YCcX. (39)

by the assumption (wq, ay) R (wa,ay) in T’ of the claim. At the

same time, the assumption !Y € S, of the claim implies that

wyay
Sioya; - Dy!Y by the Introspection of the Traceability axiom and the

Modus Ponens inference rule. Hence, Dy!Y € S, , because §;, , is
a maximal consistent set. Thus, Dy!Y € S/, by statement (38) and
Claim 19. Then, S/, H!Y by Lemma 5. Thus, S/, F!X by the Mono-
tonicity axiom, statement (39) and the Modus Ponens inference rule.
Then, !X €S, because §/, is a maximal consistent set. Therefore,
X e Sub

lemma, which contradicts the assumption !X ¢ S,,, of the lemma.[]

by equation (33) and the assumption (#, b) € o x B of the

This completes the proof of the lemma. O

For any tuples of sets (Aq, ..., A,) and (Bq, ..., B;) of the same
length, let (Aq, ..., A,) T (By, ..., B,) if A; € B; for each i < n. For
any infinite chain of tuples

(Al AN E (AT, A C (A}, .. A))E ...

by U;(A%, ..., Al) we mean the tuple ({J; A%, ..., U, A%). Note that,
by Definition 7, each loaded Cartesian tree is a tuple (c, B, E, €, S)
where o and B are ordinals, E is a set of edges, £ and S are
labeling functions. Following the set theory tradition, we view
ordinals and functions as sets. The next lemma follows from
Definition 7.

Lemma 12.

For any infinite chain of loaded trees T T T, T T3 C .. ., if loaded
tree Tj; 1 is an extension of the loaded tree T; for eachi > 1,then J; T;
is a loaded tree that extends each of the loaded trees Ty, T5, .. ..

Intuitively, Definition 9 requires a complete loaded tree to have
no “deficiencies”. It is convenient to talk about each such deficiency
separately. To be able to do this, below we introduce the notion of
(u, b, ¥ )-complete loaded tree.

Definition 10.

For any loaded Cartesian tree T = (c, B, E, £, S), any integers # < «
and b < B, and any formula ¥ € @, tree T is («, b, ¥ )-complete if the
following conditions are satisfied:

(1) if formula ¢ has the form !X and !X ¢ S, then is there is
(w, a) € o x B such that (u, b) o (w,a)and b # a,

(2) if formula ¢ has the form Ox¢ and Ox¢ ¢ S,,,, then there is
(w, b) € o« x B such that (u, b) &o (w,b)and ¢ ¢ S,,p,

(3) if formula ¢ has the form Dx¢ and Dx¢ ¢ S,,, then there is
(w, a) € a x B such that (u, b) o (w, a) and ¢ ¢ S,4,

(4) if formula ¥ has the form Rx¢ and Rx¢ ¢ S,,;,, then there is
(w, a) € a x B such that (u, b) o (w,a)and ¢ ¢ S,

The next lemma follows from Definition 8 and Definition 10.
Lemma 13.

If a loaded Cartesian tree T is (#, b, ¥ )-complete, then any extension
of tree T is also (u, b, y)-complete.

The lemma below follows from Definition 9 and Definition 10.
Lemma 14.
If a loaded Cartesian tree T = («, B, E, £, S) is (u, b, ¥ )-complete for
all integers # < acand b < P and each formula v € @, then tree T is
complete.

Lemma 15.

For any finite loaded Cartesian tree T = («, 3, E, £, S), any integers
u < «and b < B, and any formula ¥ € @, if tree T is not (u, b, ¥r)-
complete, then there is a finite (u, b, 1 )-complete extension of tree
T.

Proof.

Note that S,,;, ¥ L because set S,,;, is consistent. Then, S,,;, ¥ Dx L and
S, ¥ RxL by Lemma § applied contrapositively. Thus,

DxLl ¢S,, and Ryl ¢S, (40)

To finish the proof of the lemma, we consider the cases corresponding
to conditions 1-4 of Definition 10 separately.

Case 1: suppose that formula ¢ has the form !X and !X ¢ S,,,.
Hence, by Lemma 11 and statement (40), there is an extension T =
(c+1,B+1,E, ¢, 5)of tree T such that (u, b) o (o, B)intree T'.
Thus, T" is a (u, b, ¥ )-complete extension of tree T by Definition 10.

Case 2: suppose formula ¥ has the form Ox¢ and Ox¢ ¢ S,,,.
Then, by Lemma 10 there is an extension T' = («+ 1, 3, E', ¢/, )
of tree T such that (u, b) & (e, b) in tree T" and ¢ ¢ S ;. Thus, T’
is a (u, b, ¥)-complete extension of tree T by Definition 10.

Case 3: suppose formula ¥ has the form Dx¢ and Dx¢ ¢ S,,;,. We
further slit this case into two subcases.

Case 3A: 'X € S, The assumption Dx¢ ¢ S,,;, of Case 3 implies
S.b ¥ Dx¢ because S,,;, is a maximal consistent set. Thus, it follows
that S,;, ¥ Ox¢ by the Traceable Data axiom applied contraposi-
tively and the assumption !X € S,;, of Case 3A. Hence, Ox¢ ¢ S,
because S,,;, is a maximal consistent set. Then, by Lemma 10 there is
an extension T" = (o« + 1, B, E’, £/, §') of tree T such that («, b) o
(o, b)intree T"and ¢ ¢ S’ . Thus, T" is a (u, b, ¥)-complete exten-
sion of tree T by Definition 10.

Case 3B: 1X ¢ S,,,- Hence, by the assumption Dx¢ ¢ S,,;, of Case
3, the part Ry L ¢ S,,;, of statement (40), and Lemma 11, there is an
extension T = («+ 1,3 + 1, E’, ¢/, §') of tree T such that (u, b) o
(o, B) intree T" and ¢ ¢ S/rx[i' Thus, T is a (u, b, ¥ )-complete exten-
sion of tree T by Definition 10.

Case 4: suppose formula ¥ has the form Rx¢ and Rx¢ ¢ S,,,.
Similar to the previous case, we further slit this case into two sub-
cases.

Case 4A: 'X € S,,;,. By applying the argument similar to the one
in Case 3A, but using the form !X — (Ox — Rx) of the Traceabil-
ity axiom instead of the form !X — (Ox — Dyx), one can conclude
that there is an extension T' = (a«+ 1, 3, E', ¢/, ') of tree T such
that (u, b) o (o, b) in tree T" and ¢ ¢ §' . Thus, T" is a (u, b, ¥/)-
complete extension of tree T by Definition 10.

Case 4B: 'X ¢ S,,;,. Thus, by the assumption Rx¢ ¢ S,,, of Case
4, the part Dx L ¢ S, of statement (40), and Lemma 11, there is an
extension T = («+ 1,3 + 1, E/, ¢/, §') of tree T such that (u, b) o
(e, B) in tree T and ¢ ¢ S . Therefore, T is a (u, b, yr)-complete
extension of tree T by Definition 10.

Theorem 5 (extension).

Any finite loaded Cartesian tree can be extended to a complete loaded
Cartesian tree.

Proof.

Let T be a finite loaded Cartesian tree. To prove the theorem, we will
construct an infinite chain of finite loaded Cartesian trees T = T} =
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LET;E...
geri > 1. Toward the construction of this chain, consider an enumer-
ation (uy, by, Y1), (uz, by, ¥2), ... of all triples (#, b, ¥) such that u
and b are nonnegative integer numbers and ¢ € @ is a formula.

such that T;, is an extension of tree T; for each inte-

We define chain T=T; £ T, T T5 C ... recursively. Suppose
that tree Ty, = (ot, Pg, Eg. £, Sy ) is already defined. If Tj, is (u, b, ¥ )-
complete for each u < &y, b < By, and ¥ € @, then let Ty = T,.
Otherwise, let i,,; be the smallest i such that #; < o, b; < By, and
T}, is not (u;, b;, ¥;)-complete. By Lemma 135, tree T}, can be extended
to a finite (u;, b;, ¥;)-complete tree Ty ;.

Let T = Uy T, = («, B/, E', €/, §"). Note that T' is an extension
of all trees T}, by Lemma 12. T” is (u, b, ¥ )-complete for each u < o
and b < P’ by the construction of thechain T=T{ T T, T T5C ...
and Lemma 13. Therefore, T’ is complete by Lemma 14. O

Canonical model

In this subsection, we define a canonical model based on a complete
loaded Cartesian tree. Recall that we think about such a tree as a
matrix. In our construction, the rows of the matrix become possi-
ble worlds of the model, and the columns of the matrix become the
agents.

Definition 11.

For each complete loaded Cartesian tree T = («, B, E, ¢, S), let
canonical model M(T') be defined as the tuple (e, B, {~}xcv, ), such
that

(1) (wq,ay) ~x (wr,ar) if (wq,aq) & (wy, ap) for each x e V,
each wy,w, € «, and each ay, a; € B,
(2) 7(p)={(w,a) € xx | p € Sy} for each p.

Lemma 16. «
(wy,ar) ~x (wy, a2) iff (wy,a1) o~ (w3, a3), for each wy, w; € «,
each a1, a) € B, and each dataset X C V.

Proof.

By the definition, the statement (w1, a1) ~x (w2, ay) is equivalent
to the statement that (wq,a1) ~x (wy,ay) for each data variable
x € X. By item 1 of Definition 11, the last statement is equivalent

to the statement that (wq,aq) & (wy, ap) for each data variable
x € X. By Definition 6, the previous statement is equivalent to the
statement that for each x € X there is a simple path between nodes
(w1, a1) and (w;, ay) such that all edges along this path are labeled
with date variable x. Note that in any tree there is a unique simple
path between any two nodes. Thus, the last statement is equivalent
to the statement that all edges along this unigque simple path between
nodes (w1, a1) and (w,, ay) are labeled with each variable from set
X. Finally, by Definition 6, the previous statement is equivalent to
(01, a1) S~ (w3, a2).

O
Lemma 17.
w, al- ¢ iff ¢ € Sy, for any formula ¢ € ®, any world w € «, and
any agent a € 3 of any canonical model M(T) based on a complete
loaded Cartesian tree T = («, B, E, ¢, S).

Proof.

We prove the statement of the lemma by induction on structural com-
plexity of formula ¢. If formula ¢ is an atomic proposition, then the
statement of the lemma follows from item 1 of Definition 2 and item
2 of Definition 11. The case when formula ¢ is a negation or a dis-
junction follows from items 3 and 4 of Definition 2 and the fact that
S.wa is a maximal consistent set in the standard way.

Suppose that formula ¢ has the form !X.

(=) : Assume that !X ¢ S,,,. Then, by item 1 of Definition 9,
there is a node («/, @’) such that (w, a) o (w',a’) and a # a’'. Hence,
(w,a) ~x (w',d’) by Lemma 16. Therefore, w, a ¥!X by item 2 of
Definition 2.

(<) : Assume that w, a ¥ !X. Then, by item 2 of Definition 2,
there exist a world &/ and an agent @’ such that (w, a) ~x (w', a’) and
a # a'. Hence, (w, a) o (w',a') by Lemma 16. Therefore, !X ¢ S,
by item 2(a) of Definition 7 applied contrapositively.

Suppose that formula ¢ has the form Ox.

(=) : Assume that Oxy ¢ S,,. Then, by item 2 of Definition 9,
there is a node («/,a) such that (w,a) o (w',a) and ¥ ¢ S,,.
Hence, (w, a) ~x (', a) by Lemma 16 and w’, a ¥ v by the induc-
tion hypothesis. Therefore, w, a ¥ Oxy by item 5 of Definition 2.

(<) : Suppose that Oxy € S,,. Consider any world «/ such that
(w, a) ~x (W', a). By item 5 of Definition 2, it suffices to show that
w,alk .

The assumption (w,a) ~x (w/,a) implies (w, a) o (w',a) by
Lemma 16. Then, Oxv € S/, by item 2(b) of Definition 7 and the
assumption Ox v € S,,,. Hence, S/, - ¥ by the Truth axiom and the
Modus Ponens inference rule. Thus, ¥ € S/, because S,,/, is a maxi-
mal consistent set. Therefore, «/, a I- ¥ by the induction hypothesis.

Suppose that formula ¢ has the form Dx .

(=) : Assume that Dx v ¢ S,,,. Then, by item 3 of Definition 9,
there is a node (w/, a’) such that (w, a) o (w',a') and ¥ ¢ S,
Hence, (w, a) ~x (w',a’) by Lemma 16 and w/', @’ ¥ ¥ by the induc-
tion hypothesis. Therefore, w, a ¥ Dxy by item 6 of Definition 2.

(<) : Suppose that Dx v € S,,. Consider any world » and any
agent a’ such that (w,a) ~x (w/,d’). By item 6 of Definition 2, it
suffices to show that /', @’ I .

The assumption (w, a) ~x (w/,a’) implies (w, a) o (w',da’) by
Lemma 16. Then,Dxy € S, by item 2(c) of Definition 7 and the as-
sumption Dx ¢ € Sy,. Then, S,/ = ¢ by Lemma 5. Thus, ¥ € S,/
because S, is a maximal consistent set. Therefore, /', a’ I- ¥ by
the induction hypothesis.

Suppose that formula ¢ has the form Rx .

(=) : Assume that Rxv ¢ S,,. Then, by item 4 of Definition 9,
there is a node (w/,a’) such that (w, a) o (w',ad') and ¥ ¢ S,
Hence, (w, a) ~x (W', a’) by Lemma 16 and «/, a ¥ ¥ by the induc-
tion hypothesis. Therefore, w, a ¥ Rx ¢ by item 7 of Definition 2.

(<) : Suppose that Rx ¢ € S,,. Consider any world ' and any
agent 4’ such that (w,a) ~x (w/,d’). By item 7 of Definition 2, it
suffices to show that ', a I- .

The assumption (w, a) ~x (', d’) implies (w, a) o (w',a') by
Lemma 16. Then, y € S, by item 2(d) of Definition 7 and the as-

sumption Rxy € Sy,. Therefore, /', a IF ¢ by the induction hypoth-
esis. O

Theorem 6 (strong completeness).

For any set of formulae I' € @ and any formula ¢ € ®,if ' ¥ ¢, then
there is a world w € W and an agent a € A of some model, such that
w, a |-y for each formula y € T and w, a ¥ ¢.

Proof.

The assumption T' ¥ ¢ implies that the set I' U {—¢} is consistent.
Let A be any maximal consistent extension of this set. Consider
the loaded Cartesian tree (1,1, 9, &, S), where Syp9 = A. In other
words, the loaded cartesian tree consists of a single node (0,0) labeled
with set A. Because the set of edges is empty, the tuple (1,1, @, @)
is a Cartesian tree by Definition 5. Thus, to prove that the tuple
(1,1, 2, @, S) is a loaded Cartesian tree, it suffices to show that con-
ditions 2(a)-(d) of Definition 7 are satisfied. Conditions 2(a)-(c) are
vacuously satisfied because the tree has only one node. To verify con-
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dition 2(d), it suffices to show that if Rxvy € Spo, then ¥ € Spg. In-
deed, the assumption Rx v € Soo implies Soo = ¥ by Lemma 5 and
the Modus Ponens inference rule. Therefore, 1 € Soo because Sy is
a maximal consistent set.

By Theorem §, tree (1, 1, @, @, §) can be extended to a complete
loaded Cartesian tree T" = («, 3, E, ¢, §'). Note that Sj, = Soo =
A DT U({—¢} by item 5 of Definition 8. Consider canonical model
M(T’).By Lemma 17, we have 0, 0 I y foreachy € "'and 0, 0 IF —¢
because I' U {—¢} C 5. Note that the statement 0, 0 |- —¢ implie3
0, 0 ¥ ¢ by item 3 of Definition 2.

Future work: k-anonymity

The term “k-anonymity” is usually used to refer to a setting where
some information about an agent not only cannot be used to identify
the agent precisely but it even cannot be used to identify a group of k
agents to which the agent belongs. This concept has been extensively
studied in the database literature [32,33]. It also was investigated by
logicians in the context of knowledge [34] and actions [35]. In the
setting of our article, there are at least two different notions that
capture different aspects of k-anonymity.

First, we can generalize our traceability expression !X to k-
tracability by modifying item 2 of Definition 2 as follows:

w, a - kX, when there are agents ay, ...,a € A such that for
each worldu € W and each agent b € A, if (w, a) ~x (u, b), then b €
{{11, ey (lk}.

Note that !'X is equivalent to the traceability expression !X we
studied earlier in this article. The Monotonicity and the Introspection
of Traceability axioms are also valid for k-tracability:

kX 1ky, if X C Y, kX = Dy kX,

Before discussing the other notion related to k-anonymity, let us
go back to our de re modality. Recall from statement (4) that in world
w1, knowing age, city, and reply of agent a informs de re knowledge
that agent a is pregnant. Let us now suppose that, in the same world
w1, instead of the questionnaire filled in by agent a we are looking
at the questionnaire filled in by her husband, agent b. Although these
two questionnaires are filled identically, see Fig. 2, agent b’s ques-
tionnaire, of course, does not inform the de re knowledge that he is
pregnant:

w1, b ¥ Ryge cityreply “is pregnant”.

Nevertheless, his questionnaire does inform de re knowledge that his
wife, agent g, is pregnant. In other words, although the data in his
questionnaire does not violate his own privacy, it does violate the
privacy of his wife. The language of our original logical system can-
not express this. However, one can introduce a new modality R? (“de
re knowledge about somebody™) that does it. The semantics of this
modality can be defined as follows:

w, al- R, if there is a agent a’ € A such that for each world
u € W and each agent b € A, if (w, a) ~x (u, b), then u, a’ I ¢.

In our example,

3
wi, bl Rage,city,reply

“is pregnant”.

Some properties of the modality R are expected:
Rx¢ — Ro, Ri¢ — Ripif X C Y.

Among the unexpected ones is perhaps the introspection:

R¥¢ — DxR}¢.

Note that unlike the corresponding axiom for modality R, the intro-
spection property for modality R? is stronger, because it is true for
de dicto knowledge, not just the overt knowledge.

Finally, let us get back to k-anonymity. Imagine a different survey
where an agent is asked if one of the agent’s children is getting mar-
ried. Suppose that an agent a, who has k adult children, fills in the
survey and answers this question positively. If the survey has enough
information to trace the identity of the agent, then the dataset X in
the survey informs the knowledge that one of the k children is getting
married. We write this as R’){(“is getting married”. In general, modal-
ity R can be defined as follows:

w,alF R’§(<p, if there are agents ay, ..., ay, € A such that for each
worldu € W and each agent b € A, if (w, a) ~x (u, b), thenu, a; I+ ¢
for some i < k.

Observe that the statement —-R’§(<p means that dataset X does not
provide enough information to identify a group of k agents one of
which has property . Thus, just like the expression — XX it cap-
tures an aspect of k-anonymity. Below are some of the properties of
modality Rk:

R%¢ — DxRY o,
Ré‘((p — Ripift <k

R}(qo < Rg‘(ga,
Rl}‘((p — R/§<p ifXCY,

A complete axiomatization of the interplay between the expression
18X and the modality Ré‘( remains an open question.

Conclusion

In this article, we observed that what one “knows” about an agent
based on the agent’s data can be defined in three different ways. We
called them de re, de dicto, and overt forms of knowledge. Out of
these three forms, only de dicto knowledge preserves the privacy of
the agent. Our main technical results are the mutual undefinability
of these three forms of knowledge in an egocentric setting even when
the traceability expression ! is used and a sound and complete logical
system describing the interplay between the three forms of knowledge
and the traceability expression.

Finally, in the “Future work” section, we discuss how our
approach can be generalized to capture two forms of k-
anonymity.
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Appendix

To keep the article self-contained, in this appendix, we give the proofs of the
lemmas not proven in the main part of the article. We place them here because
they are either straightforward or well-known.

Lemma 18.
The inference rule DL);W, where O € {O, R}, is derivable.

Proof.

Suppose that F ¢. Thus, - Dx¢ by the Necessitation inference rule. Hence,
 Ox¢ by the Overt Knowledge axiom and the Modus Ponens inference rule.
This proves that the rule ﬁ is derivable.

To prove derivability of the rule ﬁ, assume again that - ¢. Thus, Dg ¢
by the Necessitation inference rule. Hence, = Rz ¢ by the Data-Free Knowl-
edge axiom and the Modus Ponens inference rule. Therefore, - Rx¢ by the
Monotonicity axiom and the Modus Ponens inference rule.

Lemma 6.

F Ox¢ — OxOxg, where O € {O, D}.
Proof.
Formula Ox—0Ox¢ — —Oxe is either an instance of the Truth axiom (if O is
modality O) or Lemma $ (if O is modality D). Thus, by the law of contraposi-
tion, - Ox¢ — —Ox—Ox¢. Hence, taking into account the following instance

of the Negative Introspection axiom: =Ox—Ox¢ — Ox—Ox—Ox¢, we have

F Ox¢ — Ox—0Ox—0Oxe. (41)

At the same time, =Ox¢ — Ox—Oxg is an instance of the Negative Intro-
spection axiom. Thus, = =Ox—0Ox¢ — Ox¢ by the law of contrapositive in
the propositional logic. Hence, - Ox (—Ox—Ox¢ — Ox¢) by either the Ne-
cessitation inference rule (if O is modality D) or Lemma 18 (if O is modality
0). Thus, by the Distributivity axiom and the Modus Ponens inference rule,
 Ox—Ox—Ox¢ — OxOxe. The latter, together with statement (), implies the
statement of the lemma by propositional reasoning.

Lemma 19 (deduction).
T,k y¢,thenT o — .

Proof.

Suppose that sequence V1, . .., ¥, is a proof from set I' U {¢} and the theorems
of our logical system that uses the Modus Ponens inference rule only. In other
words, for each k < n, either

(1) k4, or

(2) ypeTl,or

(3) vy is equal to ¢, or

(4) there are i, j < k such that formula v/; is equal to ¥; — V.

It suffices to show that I' = ¢ — v, for each k < n. We prove this by in-
duction on k by considering the four cases above separately.

Case 1: = .. Note that ¥, — (¢ — V) is a propositional tautology, and
thus, is an axiom of our logical system. Hence, - ¢ — v, by the Modus Ponens
rule. Therefore, I' - ¢ — ..

Case 2: , € T'. Note again that ¥, — (¢ — ) is a propositional tau-
tology, and thus, is an axiom of our logical system. Therefore, by the Modus
Ponens rule, T' - ¢ — .

Case 3: formula v, is equal to ¢. Thus, ¢ — ¥, is a propositional tautol-
ogy. Therefore, I' - ¢ — ..

Case 4: formula v; is equal to ¥; — v, for some 7, j < k. Thus, by the
induction hypothesis, ' = ¢ — ; and T' ¢ — (¥; — ¥;,). Note that for-
mula (¢ = ¥;) = ((¢ = (¥i = ¥)) = (¢ — Yy)) is a propositional tautol-
ogy. Therefore, I' ¢ — v, by applying the Modus Ponens inference rule
twice. O

Lemma 8.
Ifo1,..., 0, = ¥, then Oxgy, ..., Oxe, - Ox¥, where 0 € {O, D, R}.

Proof.
The assumption ¢y, ..., ¢, = ¥, by Lemma 19 applied # times, implies that

For— (02— (@ —> V)...).

Thus, by either the Necessitation inference rule (if O is the modality O) or by
Lemma 18 (if O is one of the modalities D and R),

FOx(er = (92 = oo (gn > ¥).0).
Hence, by the Distributivity axiom and the Modus Ponens rule,
FOxer = Ox(g2 = ... (@0 = ¥)...).
Then, again by the Modus Ponens rule,
Oxe1 = Ox(g2 = oo (@ = ¥)...).

Therefore, Ox¢1. ..., Ox¢, - Oxy¥ by applying the previous steps (7 — 1)

more times. (Il
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