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Abstract 

The distinction between de re (of the thing) and de dicto (of what is said) readings of sentences has long been the 
topic of studies in logic and philosophy of language. The article proposes to apply these concepts to anonymity. 
It argues that, in the proposed setting, de dicto knowledge preserves anonymity, while de re knowledge does not. 
The article also considers a third, “overt,” form of knowledge. The main technical result is a sound and complete 
logical system that captures the interplay between a data traceability expression and the de re, de dicto, and overt 
knowledge modalities. The article also shows that the three knowledge modalities are not definable through each 
other even in the presence of the traceability expression. 
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ntroduction 

magine that you have a nice neighbor whom you really like as a per-
on. At the same time, you happen to hate rich people. Your neighbor
s rich, but you do not know this. Thus, you like your neighbor and
ou hate him at the same time. However, you have these feelings in
wo distinct senses. You like him as an individual, but you hate the
esignator (“rich person”) that applies to him. In the philosophy of
anguage, this distinction is often called de re/de dicto distinction [ 1–
 ]. You like the neighbor de re (of the thing) and hate him de dicto (of
hat is said). The de re/de dicto distinction is an umbrella term that

s understood differently by different scholars and applies not only
o preferences. As another example, imagine that you are travelling
n a train and a fellow passenger starts giving you surprising medical
dvice. You most likely will not trust the stranger de re. However, you
ight be the type of person who trusts all doctors. If the passenger,
nknown to you, happened to be a doctor, then you would trust her
e dicto despite not trusting de re . 

In addition to our examples of preferences and trust, de re/de
icto distinction also manifests itself in knowledge. Imagine a young
oman Ann who is walking through a park. Ann was given up for

doption as a baby and she has never met her mom. Ann is curious
bout who her mom might be, so she has asked a close friend to
The Author(s) 2025. Published by Oxford University Press. This is an Open Access article
 https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribut
ited. 
ook for the mom. While walking through the park, Ann sees an old
oman sitting on a bench. Unknown to both of them, the woman

s Ann’s mother. Let us now consider two possible scenarios of what
ight happen next. In the first scenario, the woman tells Ann that

he, the woman, is sick. In this case, Ann knows that the woman is
ick, the woman is Ann’s mother, thus, Ann de re knows that her
om is sick. In the second scenario, while chatting with the woman
n the bench about the weather, Ann gets a text from her friend. The
ext tells her that the friend was able to trace Ann’s mother and has
earned that the mom is sick. In this case, Ann knows de dicto that
er mom is sick. Note that these two forms of knowledge are very
ifferent. Under the first scenario, Ann might tell the woman that
nn is sorry that she, the woman, is sick. She might recommend a
octor. It would be strange for Ann to recommend a doctor under
he second scenario. 

As our final example, imagine that Ann is your neighbor and that
ou are working as a technician at a health clinic. Ann visits the clinic,
nd a nurse there draws Ann’s blood sample and sends it to you with
 doctor’s order to test if “the patient” is pregnant. You conduct
he test and learn that the patient indeed is pregnant. The patient
s your neighbor Ann, but you don’t know this. In spite of this, you
ow de dicto know that Ann is pregnant. Because you know this de
1  distributed under the terms of the Creative Commons Attribution License 
ion, and reproduction in any medium, provided the original work is properly 
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dicto, your knowledge is really about the designator “patient,” not 
about Ann as a human being. This knowledge, as long as it stays de 
dicto, does not violate Ann’s anonymity . However, if you can trace 
the blood sample to your neighbor Ann, then you will know de re that 
she is pregnant. This knowledge will break Ann’s anonymity and vi- 
olate her privacy. As this example shows, de re/de dicto distinction,
when applied to knowledge based on data (such as test results), gives 
a way to characterize anonymity. Of course, privacy/anonymity is a 
broad term whose different aspects might be captured by different 
formal approaches. We are not suggesting here that de re/de dicto 
distinction can replace other, already existing, approaches to defin- 
ing anonymity. But we think it can complement them in a meaningful 
way. 

In this article, we propose a formal logical system that describes 
the interaction between de re (non-anonymized) knowledge based on 
data and de dicto (anonymized) forms of such knowledge. In addi- 
tion to modalities representing those two forms of knowledge, the 
system also includes data tracability expression and a third, overt ,
knowledge modality. To define a formal semantics of this logical sys- 
tem, we combine two previously independent research areas: two- 
dimensional egocentric logic and data-informed epistemic logic. The 
main technical results of this work are the undefinability of the pro- 
posed modalities through each other and a completeness theorem for 
the logical system describing their interplay. 

The rest of the article is organized as follows. First, we discuss 
egocentric logics and data-informed knowledge. Then, we give sev- 
eral more formal examples illustrating the difference between de re,
de dicto, and overt knowledge. In the “Syntax and semantics”section,
we introduce the language of our system and its formal semantics. In 
the “Undefinability results” section, we show that the modalities cap- 
turing these three forms of knowledge are not definable through each 
other. In the “Axioms” section, we state the axioms and the inference 
rules of our logical system. We prove their soundness and complete- 
ness in the next two sections. In the “Future work”section, we discuss 
k -anonimyty and how it can be captured in our setting. 

Preliminaries 

Egocentric logic 

Traditionally, the semantics of modal logics is defined in terms of 
a satisfaction relation w � ϕ between a possible world w and a 
formula ϕ. Under such semantics, the formula ϕ captures a prop- 
erty of the world w . Prior proposed to consider egocentric log- 
ics that capture the properties of agents rather than the proper- 
ties of possible worlds [ 7 ]. The semantics of such logics can be 
defined in terms of a satisfaction relation a � ϕ between an agent 
a and a formula ϕ. For example, to express the fact that agent a 
is pregnant, we can write a � “is pregnant”. In the egocentric set- 
ting, the Boolean connectives can be used in the standard way.
The statement a � “is pregnant”∧ “lives in Bath” means that agent 
a is pregnant and lives in Bath. Seligman, Liu, and Girard sug- 
gested to consider friendship modality F (read “for each friend”) 
in the egocentric setting [ 8 ,9 ]. For example, they read the state- 
ment a � F “lives in Bath” as “each friend of agent a lives in Bath”.
As usual, modalities can be combined with Boolean connectives.
For instance, the statement a � F ¬ ( “is pregnant”∧ “lives in Bath”) 
means that agent a does not have a pregnant friend who lives in 
Bath. At the same time, a � ¬ F ¬ ( “is pregnant”∧ “lives in Bath”) 
means that agent a does have such a friend. Modality F is also 
used in [ 10 ,11 ]. We previously introduced modality L , which 
stands for “likes those who” [ 12 ]. For example, the statement a �
L “lives in Bath” means that agent a likes those who live in Bath.
Modalities can be nested. For instance, the following statement a �
LL “lives in Bath” means that agent a likes those who like people liv- 
ing in Bath. 

Independently from the works on egocentric logics, a new class 
of two-dimensional semantics have been proposed in the philoso- 
phy of language [ 13 ]. Under such semantics, the truth value of a sen- 
tence depends not only on the current world but on some other pa- 
rameter sometimes called indexical. Stalnaker suggested visualizing 
world/indexical combinations as cells in a two-dimensional matrix 
[ 14 ]. Grove and Halpern combined the egocentric logic and two- 
dimensional semantics ideas by considering a formal logical system 

where the role of an indexical is played by an agent [ 15–17 ]. The for- 
mal semantics of their logical system is defined in terms of a ternary 
satisfaction relation w, a � ϕ. For example, the following statement: 
w, a � “is pregnant” means that agent a is pregnant in world w (but 
might not be in some other worlds). In this setting, one can define the 
“knows about herself” modality K . Using such a modality, for exam- 
ple, one can say that, in world w , agent a knows that she is pregnant: 
w, a � K “is pregnant”. In this article, we refer to the Grove-Halpern 
class of semantics as (two-dimensional) egocentric semantics. Such 
semantics has been used to define “know-who” [ 18 ,19 ] and “know 

how to tell apart” [ 20 ] modalities. Besides the introduction of a new 

modality, an important contribution of [ 20 ] is a new technique for 
proving completeness technique for two-dimensional semantics. The 
technique builds on Stalnaker [ 14 ] matrices to recursively define the 
canonical model as a limit of an infinite chain of matrices of maximal 
consistent sets of formulae. In the current article, we further develop 
this construction by specifying tree structures on the cells of the ma- 
trices. 

Data-informed knowledge 

Imagine that there is a digital clock on a wall. We use t to denote the 
time shown by the clock. Suppose that in world w the clock shows 
13:24. Thus, anyone who sees the clock would conclude that it is 
afternoon now. This conclusion can be made by any agent as long as 
the agent has access to the value of t. We say that this knowledge is 
informed by data variable t and write it as 

w � K t “It is afternoon”. 

This type of knowledge in the setting where t is a Boolean variable has 
been proposed by Grossi, Lorini, and Schwarzentruber [ 21 ]. For ar- 
bitrary variables, it was introduced by Baltag and van Benthem [ 22 ].
The term “data-informed knowledge” is suggested by us [ 23 ,24 ]. We 
also considered data-informed beliefs [ 25 ,26 ]. In this work, we con- 
sider data-informed knowledge in two-dimensional egocentric set- 
tings. 

De re/de dicto data-informed knowledge 

Imagine a hypothetical Family Planning survey that asks participants 
just three questions: their age, sex, and if they expect a child. To keep 
the example simple, let us assume that the survey has been conducted 
only among four people, agents a , b, c , and d. Suppose that it is com-
mon knowledge that agent d is 25 and the rest are 23. Also, it is 
common knowledge that agents a and c are female and agents b and 
d are male. Assuming only women can be pregnant, there are 4 pos- 
sible ways the survey can be answered. We call such combinations 
“possible worlds” and depict them in Fig. 1 as worlds w 1 , w 2 , w 3 ,
and w 4 . The figure also shows that a and b as well as c and d are
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Figur e 1. P ossible worlds in a F amily Planning survey. R eply + means that the participant is expecting a child. 
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arried couples, but this becomes important only later in our story.
inally, suppose now that the real world is w 1 . In other words, only
 is expecting a child. 

If somebody has access only to the anonymized results of agent a ’s
nswers, (23 , F, +) , then that person would know that the respondent
s pregnant. Since the respondent, in this case, is agent a , one can say
hat the a ’s survey data informs the knowledge that a is pregnant: 

w 1 , a � K age,sex,reply “is pregnant”. (1) 

t the same time, the observer of the anonymized survey data
(23 , F, +) would not be able to distinguish this a ’s data in world w 1 

rom the c ’s data in world w 2 , see Fig. 1 . Thus, one can argue, that
he a ’s survey data does not inform the knowledge that a is pregnant:

w 1 , a � K age,sex,reply “is pregnant”. (2) 

he inconsistency between statements ( 1 ) and ( 2 ) comes from the fact
hat they refer to two different types of knowledge . In statement ( 1 ),
odality K captures the knowledge about the name “participant,”
hich, in the current world, happens to refer to agent a . In statement

 2 ), modality K captures the knowledge about the actual participant.
s we discussed in the introduction, in the philosophy of language,

his distinction between a statement about the name of an object and
n actual object is known as de dicto/de re distinction. De dicto (“of
hat is said”) specifies that a statement refers to the name (such as
participant” in our case) and de re (“of the thing”) specifies that a
tatement refers to the actual object. In this article, instead of a single
nowledge modality K , we use modalities D and R for de dicto and
e re knowledge, respectively. Thus, in our example, 

w 1 , a � D age,sex,reply “is pregnant”, 

w 1 , a � R age,sex,reply “is pregnant”. 

ecause de re data-informed knowledge of a formula ϕ reveals that
is true about the actual person, it does not preserve the anonymity

f the participant and potentially violates her privacy. At the same
ime, if personal data only informs de dicto knowledge, it reveals ϕ
bout “the participant,” not an actual person. As a result, generally
peaking, it preserves the anonymity of the participant. 

At this point, the reader might think that de re data-informed
nowledge is stronger than de dicto one. In other words, knowing
omething de re implies knowing de dicto. Perhaps surprisingly, this
s not true. 

Indeed, let us modify our Family Planning survey as shown in
ig. 2 . Here, the agents a , b, c , and d are the same two couples of
he same age as in the previous example. They are again the only
articipants in a family planning survey. Let us suppose that instead
f sex, the survey asks about the city in which the participant lives. As
ne can see from the figure, agents a and b live in Bath and agents c
nd d live in York. We assume that the city in which each couple lives,
ust as their ages, is public information. In addition, instead of “Are
ou expecting a child?,” the survey asks “Is your family expecting a
hild?”. The four possible worlds in this new setting are depicted in
ig. 2 . Just like before, we assume that only agent a is pregnant. In
ther words, the current world is w 1 . 

Note that by looking at agent a ’s anonymized survey data,
(23 , Bath, +) , one would not be able to conclude that “the partic-
pant” is pregnant because a ’s data is indistinguishable from the sur-
ey data for agent b in the very same world w 1 and agent b is not
regnant: 

w 1 , a � D age,city,reply “is pregnant”. (3)

t the same time, it is easy to see that in any possible world, if the
urvey data for any agent is (23 , Bath, +) , then the agent a is pregnant
n that world, see Fig. 2 . Thus, any observer of the anonymized survey
ata (23 , Bath, +) would know that agent a is pregnant. In other
ords, any observer of agent a ’s anonymized survey data in world
 1 would de re know that agent a is pregnant: 

w 1 , a � R age,city,reply “is pregnant”. (4)

vert data-informed knowledge and traceability 

n the previous section, we introduced two forms of knowledge that
an be informed by anonymized data. As we have seen from the two
xamples, neither of these two forms is stronger than the other in the
ense that knowing something de dicto does not imply knowing de re
nd vice versa. In this section, we consider the knowledge informed
y non-anonymized data. That is, we consider what can be concluded
rom personal data when not only the data is given, but it is also
xplicitly stated about which agent this data is. We refer to this third
orm of knowledge as overt data-informed knowledge and represent
t by modality O . 

To illustrate the difference between the three forms of data-
nformed knowledge, consider yet another variation of our Family
lanning survey depicted in Fig. 3 . The only difference from Fig. 2
s that c had to relocate to Bath while still being married to agent d
ho remains in York. Using the same argument as we gave for state-
ent ( 3 ), we can see that agent a ’s anonymized personal data does



4 Jiang and Naumov 

Figur e 2. P ossible worlds in a survey. Reply + means that the participant’s family is expecting a child. 

Figur e 3. P ossible worlds in a survey. Reply + means that the participant’s family is expecting a child. 
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not inform de dicto knowledge that she is pregnant: 

w 1 , a � D age,city,reply “is pregnant”. (5) 

At the same time, in world w 1 , any observer looking only at a ’s 
anonymized data, (23 , Bath, +) , will also not be able to infer de re 
that agent a is pregnant: 

w 1 , a � R age,city,reply “is pregnant”. (6) 

This is because the personal data of agent a in world w 1 is the same 
as the personal data of agent c in world w 2 , where agent a is not 
pregnant. Thus, by relocating agent c to Bath we made statement ( 4 ) 
false. 

Observe now that anyone who, in world w 1 , has access to agent 
a ’s personal data (23 , Bath, +) and is also told that this data belongs 
to a , knows that she is pregnant: 

w 1 , a � O age,city,reply “is pregnant”. (7) 

This is because agent a is pregnant in each world where her personal 
data is (23 , Bath, +) . 

In this article, we investigate the dependencies between de re , de 
dicto , and overt forms of knowledge. To understand the relation be- 
tween them, it is also important to consider the notion of traceability .
We say that a set of data variables X is traceable to agent a in world 
w if knowing the values of data variables for agent a in world w in- 
forms the knowledge of which agent the data belongs to. We denote 
this by w, a �! X. For example, w 1 , b �! { age,sex,reply } in the exam- 
ple depicted in Fig. 1 . Indeed, in that example, there is only one agent 
of age 23 who is male. At the same time, w 1 , a � ! { age,sex,reply } for
the same example, because data (23 , F, +) could come from agent a 
in world w 1 or, for instance, from agent c in world w 2 . 

Syntax and semantics 

We start by defining the class of models that will be used to give 
formal semantics of our logical system. Throughout the rest of the 
article, we assume a fixed set of data variables V and a fixed set of 
atomic propositions. Examples of data variables from the two previ- 
ous sections are age , sex , city , and reply . Examples of atomic propo- 
sitions are “is pregnant” and “lives in Bath.” By a dataset we mean 
any subset of V . 

Intuitively, we assume that data variables have certain values that 
depend on the world and the agent. In the example depicted in Fig. 3 ,
in world w 1 for agent a , the value of data variable reply is + and the
value of data variable age is 23. As we will see in Definition 2, the 
actual values of data variables are not important for our semantics.
The only important thing is if the data variable has the same or dif- 
ferent values for any two given world-agent combinations. Hence,
formally, it is more convenient to view a data variable as an equiva- 
lence relation on such pairs. We adopt this approach in the definition 
below. 

Definition 1. 
A model is a tuple (W, A , {∼x } x ∈ V , π ) , where 
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(1) W is a (possibly empty) set of worlds, 
(2) A is a (possibly empty) set of agents, 
(3) ∼x is an equivalence relation on W × A for each data variable

x ∈ V , 
(4) π (p) ⊆ W × A for each atomic proposition p. 

We write (u 1 , a 1 ) ∼X (u 2 , a 2 ) if (u 1 , a 1 ) ∼x (u 2 , a 2 ) for each data
ariable x ∈ X. In particular, observe that the following statement is
lways true: (u 1 , a 1 ) ∼∅ 

(u 2 , a 2 ) . 
Note that, unlike the traditional approach in modal logic, val-

ation π (p) is a set of pairs rather than a set of possible worlds.
or example, if “is pregnant” is one of the atomic propositions, then

(u, a ) ∈ π ( “is pregnant”) means that agent a is pregnant in world u .
The language � of our logical system is defined by the following

rammar: 

ϕ := p | ! X | ¬ ϕ | ϕ ∨ ϕ | O X ϕ | D X ϕ | R X ϕ, 

here p is an atomic proposition and X ⊆ V is a dataset. We read ! X
s “dataset X is traceable,” O X ϕ as “dataset X informs overt knowl-
dge of ϕ ,”D X ϕ as “dataset X informs de dicto knowledge of ϕ,”and
 X ϕ as “dataset X informs de re knowledge of ϕ.” We assume that

mplication → and biconditional ↔ as well as the Boolean constants
rue 
 and false ⊥ are defined through negation and disjunction in
he usual way. 

efinition 2. 
or any model (W, A , {∼x } x ∈ V , π ) , world w ∈ W , agent a ∈ A , and
ormula ϕ ∈ �, the satisfaction relation w, a � ϕ is defined as follows:

(1) w, a � p, if (w, a ) ∈ π (p) , 
(2) w, a � ! X, if a = b for each world u ∈ W and each agent b ∈ A

such that ( w, a ) ∼X ( u, b) , 
(3) w, a � ¬ ϕ, if w, a � ϕ, 
(4) w, a � ϕ ∨ ψ , if either w, a � ϕ or w, a � ψ , 
(5) w, a � O X ϕ, if u, a � ϕ for each world u ∈ W such that

( w, a ) ∼X ( u, a ) , 
(6) w, a � D X ϕ, if u, b � ϕ for each world u ∈ W and each agent

b ∈ A such that ( w, a ) ∼X ( u, b) , 
(7) w, a � R X ϕ, if u, a � ϕ for each world u ∈ W and each agent

b ∈ A such that ( w, a ) ∼X ( u, b) . 

Recall that, informally, the relation ( w, a ) ∼X ( u, b) means that
ll variables in dataset X have the same values for agent a in world
 as for agent b in world u . Thus, item 2 above captures the fact that

n world w dataset X about agent a uniquely identifies the agent. 
Item 5 of the above definition assumes that the identity of agent a

s revealed, so it only considers worlds u in which dataset X for this
gent have the same values as in world w . 

Item 6 and item 7 do not assume that the identity is revealed.
hus, they consider all possible world-agent combinations (u, b) for
hich the value of dataset X is the same as for (w, a ) . 

ndefinability results 

n this section, we show that none of the three modalities is definable
hrough the two others even if the traceability expression is used.

e use the “truth sets algebra” technique for proving undefinability,
hich has been proposed in [ 27 ] and used in [ 24 , 28 , 29 ]. Unlike the
ore traditional “bisimulation” method, this technique uses a single
odel. The results in this section use the two definitions below: 
efinition 3. 
or any given model, the truth set � ϕ� of a formula ϕ ∈ � is the set
 (w, a ) | w, a � ϕ} . 
efinition 4. 
ormulae ϕ, ψ ∈ � are semantically equivalent if � ϕ� = � ψ� in each
odel. 

Without loss of generality, in this section, we suppose that lan-
uage � contains a single atomic proposition p and a single data
ariable x . Alternatively, in the models we construct below, the val-
ation of all atomic propositions could defined the same way as for

p. Similarly, equivalence relations for other data variables can be de-
ned the same as for data variable x . 

ndefinability of R through ! , O , and D 

onsider a model that contains three worlds: w , u , and v , and two
gents a and b. Suppose that equivalence relation ∼x divides set
 w, u, v } × { a, b} into two equivalence classes: { (w, a ) , (w, b) , (u, b) }
nd { (u, a ) , (v, a ) , (v, b) } . Informally, it means that data variable x has
ne value, say + , for each pair in the first class and another value, say
, for each pair in the second class. We depict these values in the left-
ost diagram in Fig. 4 . Let π (p) = { (w, a ) , (w, b) , (u, b) } . 

We visualize the truth sets of various formulae as 3 × 2 tables
hose rows are indexed with worlds and whose columns are indexed
ith agents. A cell (w, a ) in such a table is colored gray if the pair

(w, a ) belongs to the truth set. The four diagrams in the center of
ig. 4 visualize the truth sets � p � , � ⊥ � , � ¬ p � , and � 
 � . 

The idea behind the truth set algebra technique is to show that
ny formula that does not use modality R has a truth set equal to one
f the sets � p� , � ⊥ � , � ¬ p� , and � 
 � . At the same time, a formula that
ses modality R can have a different truth set. 

emma 1. 
 O ∅ 

ϕ� , � D ∅ 

ϕ� , � O x ϕ� , � D x ϕ� ∈ { � p� , � ⊥ � , � ¬ p� , � 
 � } for any for-
ula ϕ ∈ � such that � ϕ� ∈ { � p� , � ⊥ � , � ¬ p� , � 
 � } . 
roof. 
uppose that � ϕ� = � p� . First, we show that � O ∅ 

ϕ� = � ⊥ � = ∅ . In-
eed, assume the opposite. Thus, there is a world w 

′ ∈ { w, u, v } and
n agent a ′ ∈ { a, b} such that (w 

′ , a ′ ) ∈ � O ∅ 

ϕ� . Hence, w 

′ , a ′ � O ∅ 

ϕ

y Definition 3. Then, v, a ′ � ϕ by item 5 of Definition 2 because
(w 

′ , a ′ ) ∼∅ 

(v, a ′ ) . Thus, (v, a ′ ) ∈ � ϕ� by Definition 3. Hence, by the
ssumption � ϕ� = � p� , we have (v, a ′ ) ∈ � p� . Observe in Fig. 4 that
he truth set � p� does not contain any single pair (x, y ) , where x = v .
his is a contradiction. Therefore, � O ∅ 

ϕ� = � ⊥ � . 
The proof that � D ∅ 

ϕ� = � ⊥ � is similar, but it uses item 6 of Def-
nition 2 instead of item 5. In Fig. 4 , we visualize both results by a
irected edge from diagram � p� to diagram � ⊥ � labeled with O ∅ 

, D ∅ 

.
Next, we show that � O x ϕ� = � p� . 
(⊆) : Let us consider any world w 

′ ∈ { w, u, v } and any agent
 

′ ∈ { a, b} such that (w 

′ , a ′ ) ∈ � O x ϕ� . Thus, w 

′ , a ′ � O x ϕ by Defini-
ion 3. Note that (w 

′ , a ′ ) ∼x (w 

′ , a ′ ) . Hence, w 

′ , a ′ � ϕ by item 5 of
efinition 2. Then, (w 

′ , a ′ ) ∈ � ϕ� again by Definition 3. Therefore,
(w 

′ , a ′ ) ∈ � p� by the assumption � ϕ� = � p� . 
(⊇) : Consider any w 

′ ∈ { w, u, v } and any agent a ′ ∈ { a, b} such
hat 

(w 

′ , a ′ ) ∈ � p� . (8)

y Definition 3, it suffices to show that w 

′ , a ′ � O x ϕ. Toward this
roof, consider any w 

′′ ∈ { w, u, v } such that (w 

′ , a ′ ) ∼x (w 

′′ , a ′ ) . By
tem 5 of Definition 2, it suffices to establish that w 

′′ , a ′ � ϕ. 
Observe that the assumption (w 

′ , a ′ ) ∼x (w 

′′ , a ′ ) implies that
(w 

′ , a ′ ) ∈ � p� iff (w 

′′ , a ′ ) ∈ � p� , see Fig. 4 . Then, (w 

′′ , a ′ ) ∈ � p� by
tatement ( 8 ). Thus, by the assumption � ϕ� = � p� it follows that

(w 

′′ , a ′ ) ∈ � ϕ� . Therefore, w 

′′ , a ′ � ϕ by Definition 3. 
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Figure 4. Toward the proof of Theorem 1. 
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The proof that � D x ϕ� = � p� is similar, but it uses item 6 of Def-
inition 2 instead of item 5. In Fig. 4 , we visualize both results by a 
directed loop edge from diagram � p� back to the same diagram � p� 

labeled with O x , D x . 
The proofs in the remaining three cases, � ϕ� = � ⊥ � , � ϕ� = � ¬ p� ,

and � ϕ� = � 
 � , are similar. We show the corresponding directed 
edges in Fig. 4 . �
Lemma 2. 
� ϕ� ∈ { � p� , � ⊥ � , � ¬ p� , � 
 � } for any formula ϕ ∈ � that does not con-
tain modality R . 

Proof. 
We prove the statement of the lemma by induction on the structural 
complexity of formula ϕ. 

If ϕ is an atomic proposition p, then � ϕ� ∈ { � p� , � ⊥ � , � ¬ p� , � 
 � }
because truth set � p� is an element of the set { � p� , � ⊥ � , � ¬ p� , � 
 � } . 

Suppose that formula ϕ has the form ! X, where dataset X is ei- 
ther ∅ or { x } . Observe from the left-most diagram in Fig. 4 that for 
any w 

′ ∈ { w, u, v } and any a ′ ∈ { a, b} there is w 

′′ ∈ { w, u, v } and an
agent a ′′ ∈ { a, b} such that (w 

′ , a ′ ) ∼X (w 

′′ , a ′′ ) and a ′ � = a ′′ . Thus,
by item 2 of Definition 2, it follows that w 

′ , a ′ � ! X for each world 
w 

′ ∈ { w, u, v } and each agent a ′ ∈ { a, b} . Hence, truth set � ! X� is
empty by Definition 2. Then, � ! X� = � ⊥ � , see Fig. 4 . Therefore,
� ! X� ∈ { � p� , � ⊥ � , � ¬ p� , � 
 � } . 

Suppose that formula ϕ has the form ¬ ψ . Thus, the truth set � ϕ� is 
the complement of the truth set � ψ� by Definition 3 and item 3 of Def- 
inition 2. By the induction hypothesis, � ψ� ∈ { � p� , � ⊥ � , � ¬ p� , � 
 � } .
Observe in Fig. 4 that the complement of each truth sets in the 
family { � p� , � ⊥ � , � ¬ p� , � 
 � } belongs to the same family. Therefore,
� ϕ� ∈ { � p� , � ⊥ � , � ¬ p� , � 
 � } . 

Suppose that formula ϕ has the form ψ 1 ∨ ψ 2 . Thus, the truth 
set � ϕ� is the union of the truth sets � ψ 1 � and � ψ 2 � by Definition 3
and item 4 of Definition 2. Observe in Fig. 4 that the union of 
any two truth sets in the family { � p� , � ⊥ � , � ¬ p� , � 
 � } belongs to
the same family. For example, � p� ∪ � ¬ p� = � 
 � . Note that, by the
induction hypothesis, � ψ 1 � , � ψ 2 � ∈ { � p � , � ⊥ � , � ¬ p � , � 
 � } . Therefore,
� ϕ� ∈ { � p� , � ⊥ � , � ¬ p� , � 
 � } . 

If formula ϕ has either the form O X ψ or the form D X ψ , then the 
statement of the lemma follows from the induction hypothesis and 
Lemma 1. �

Next, let us make an auxiliary observation based on the left-most 
diagram in Fig. 4 . 

Lemma 3. 
For any world w 

′ ∈ { w, u, v } and any agent a ′ ∈ { a, b} , if data variable
x has value + at (w 

′ , a ′ ) , then data variable x has value + at (w 

′ , b) .

Lemma 4. 
� R x p � / ∈ { � p � , � ⊥ � , � ¬ p� , � 
 � } . 
Proof. 
It suffices to prove that the truth set � R x p� is the one depicted by the
right-most diagram in Fig. 4 . In other words it is enough to show 

that for any cell (w 

′ , a ′ ) of that diagram, w 

′ , a ′ � R x p iff cell (w 

′ , a ′ )
is gray. 

(⇒ ) : Suppose that the cell (w 

′ , a ′ ) is white at the right-most dia-
gram in Fig. 4 . We consider the following two cases separately: 

Case 1 : (w 

′ , a ′ ) = (w, a ) . Note that (u, a ) / ∈ π (p) by the choice
of valuation function π . Hence, (u, a ) � p by item 1 of Defi- 
nition 2. Additionally , (w , a ) ∼x (u, b) , see the left-most diagram 

in Fig. 4 . Thus, (w, a ) � R x p by item 7 of Definition 2. There-
fore, (w 

′ , a ′ ) � R x p by the assumption (w 

′ , a ′ ) = (w, a ) of the
case. 

Case 2 : (w 

′ , a ′ ) � = (w, a ) . Thus, the assumption that the cell
(w 

′ , a ′ ) is white at the right-most diagram in Fig. 4 implies that the
same cell (w 

′ , a ′ ) is white at the second-from-left diagram in Fig. 4 .
Hence, (w 

′ , a ′ ) / ∈ � p� . Then, (w 

′ , a ′ ) � p by Definition 3. Therefore,
it follows that (w 

′ , a ′ ) � R x p by item 7 of Definition 2 and because
(w 

′ , a ′ ) ∼x (w 

′ , a ′ ) . 
(⇐ ) : Suppose that the cell (w 

′ , a ′ ) is gray at the right-most dia-
gram in Fig. 4 . Thus a ′ = b and the value of data variable x is + , see
Fig. 4 . Consider any world w 

′′ ∈ { w, u, v } and any agent a ′′ ∈ { a, b}
such that ( w 

′ , b) ∼x ( w 

′′ , a ′′ ) . By item 7 of Definition 2, it suffices to
show that (w 

′′ , b) � p. 
Indeed, the assumption ( w 

′ , b) ∼x ( w 

′′ , a ′′ ) means that the value
of data variable x at cell (w 

′′ , a ′′ ) is the same as its value at cell (w 

′ , b) ,
which is + . Hence, the value of data variable x at cell (w 

′′ , b) is also +
by Lemma 3. Hence, (w 

′′ , b) ∈ � p� , see Fig. 4 . Therefore, (w 

′′ , b) � p
by Definition 3. �

The next result follows from Lemma 2 and Lemma 4. 
Theorem 1 (undefinability). 
Formula R x p is not semantically equivalent to any formula in lan- 
guage � that does not contain modality R . 

Undefinability of O and D 

The proof of the next theorem is similar to the proof of Theorem 1 
except that instead of Fig. 4 it uses Fig. 5 . 

Theorem 2 (undefinability). 
Formula O x p is not semantically equivalent to any formula in lan- 
guage � that does not contain modality O . 

The proof of the next theorem is also similar to the proofs of the 
two previous theorems except that it uses Fig. 6 . Note that, in this 
case, data variable x has three possible values that we denote by −,
1, and 2, see Fig. 6 . 
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Figure 5. Toward the proof of Theorem 2. 

Figure 6. Toward the proof of Theorem 3. 
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heorem 3 (undefinability). 
ormula D x p is not semantically equivalent to any formula in lan-
uage � that does not contain modality D . 

xioms 

n addition to propositional tautologies in language �, our logical
ystem contains the following axioms: 

(1) Truth: O X ϕ → ϕ, 
(2) Introspection of De Re Knowledge: R X ϕ → O X R X ϕ, 
(3) Negative Introspection: 

¬ � X ϕ → � X ¬ � X ϕ, where � ∈ { O , D } , 
(4) Distributivity: 

� X (ϕ → ψ ) → (� X ϕ → � X ψ ) , where � ∈ { O , D , R } , 
(5) Monotonicity: 

� X ϕ → � Y ϕ and ! X → ! Y , where X ⊆ Y and � ∈ { O , D , R } , 
(6) Overt Knowledge: � X ϕ → O X ϕ, where � ∈ { D , R } , 
(7) Introspection of Traceability: ! X → D X ! X, 
(8) Data-Free Knowledge: � ∅ 

ϕ → R ∅ 

ϕ, where � ∈ { O , D } , 
(9) Traceable Data: ! X → (O X ϕ → � X ϕ) , where � ∈ { D , R } . 

The Truth, the Negative Introspection, and the Distributivity ax-
oms are the standard axioms of the epistemic logic. The Truth ax-
om is valid for all three modalities, O , D , and R . We list it only for
odality O because this principle for the other two modalities can be
erived from using the Overt Knowledge axiom. At the same time,
he Negative Introspection axiom is not universally valid for modal-
ty R . As usual in epistemic logic, the positive introspection principle
s provable from the Negative Introspection and some other axioms.

e show this in Lemma 6. The positive introspection principle is also
ot universally valid for modality R . However, a weaker form of it,
xpressed by the Introspection of De Re Knowledge axiom, holds. 

The Introspection of Traceability axiom states that if the data
niquely identifies the agent, then the data informs the de dicto
nowledge of this. We state this axiom for modality D , the same prop-
rty for modality O and R is derivable. 

The Data-Free Knowledge axiom, when combined with the Overt
nowledge axiom, implies that the formulae O ∅ 

ϕ and R ∅ 

ϕ are
quivalent. Note that the formula D ∅ 

ϕ is not equivalent to the two
ormulae above. Indeed, w, a � O ∅ 

ϕ means that u, a � ϕ for each
orld u , see Definition 2. At the same time, w, a � D ∅ 

ϕ means that
, b � ϕ is true for each world u and each agent b. 

Finally, the Traceable Data axiom, when combined with the Overt
nowledge axiom, implies that there is no difference between the

hree forms of knowledge if the data is traceable. 
We write � ϕ and say that formula ϕ ∈ � is a theorem of our

ogical system if this formula is derivable from our axioms using the
ecessitation and the Modus Ponens inference rules: 

ϕ 

D X ϕ 

ϕ, ϕ → ψ 

ψ 

. 

e omit the Nesessitation inference rules for modalities O and R be-
ause these rules are derivable in our system. In addition to unary
elation � ϕ, we also consider binary relation � � ϕ between a (pos-
ibly infinite) set of formulae � ⊆ � and a formula ϕ ∈ �. We say that
� ϕ is true if formula ϕ is derivable from the theorems of our log-

cal system and an additional set of assumptions � using the Modus
onens inference rule only. Note that statements ∅ � ϕ and � ϕ are
quivalent. We say that a set of formulae � ⊆ � is consistent if � � ⊥ .

We conclude this section with a few technical observations that
ill be used in the proof of the completeness. 



8 Jiang and Naumov 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyae025/7965383 by U

niversity of Southam
pton user on 24 January 2025
Lemma 5. 
� � X ϕ → ϕ, where � ∈ { D , R } . 
Proof. 
Note that � � X ϕ → O X ϕ by the Overt Knowledge axiom. At the 
same time, � O X ϕ → ϕ by the Truth axiom. Therefore, � � X ϕ → ϕ

by propositional reasoning. �
The next lemma states a well-known observation that the posi- 

tive introspection principle is derivable from S5 axioms. To keep the 
article self-contained, we give its proof in the appendix . 

Lemma 6. 
� � X ϕ → � X � X ϕ, where � ∈ { O , D } . 
Lemma 7. 
� � X ϕ ↔ O X � X ϕ, where � ∈ { D , R } . 
Proof. 
Note that the formula O X � X ϕ → � X ϕ is an instance of the Truth ax- 
iom. Thus, it suffices to show that � � X ϕ → O X � X ϕ. If � is modal- 
ity R , then the last formula is an instance of the Introspection of De 
Re Knowledge axiom. 

Finally, let us prove � D X ϕ → O X D X ϕ. It follows from Lemma 6 
that � D X ϕ → D X D X ϕ. At the same time, the following formula is an 
instance of the Overt Knowledge axiom: D X D X ϕ → O X D X ϕ. There- 
fore, � D X ϕ → O X D X ϕ by propositional reasoning. �

The proof of the next standard lemma is also in the appendix . 

Lemma 8. 
If ϕ 1 , . . . , ϕ n � ψ , then � X ϕ 1 , . . . , � X ϕ n � � X ψ , for any modality
� ∈ { O , D , R } . 
Lemma 9 (Lindenbaum). 
Any consistent set of formulae can be extended to a maximal consis- 
tent set of formulae. 

Proof. 
The standard proof of Lindenbaum’s lemma [ 30 , Proposition 2.14] 
applies here. 

�

Soundness 

Theorem 4 (soundness). 
If � ϕ, then w, a � ϕ for any world w and any agent a of any model 
(W, A , {∼x } x ∈ V , π ) . 

Proof. 
The soundness of the Truth, the Negative Introspection, the Distribu- 
tivity , the Monotonicity , and Overt Knowledge axioms as well as of 
the Necessitation and the Modus Ponens inference rules is straight- 
forward. Below, we prove the soundness of each of the remaining 
axioms as a separate claim. 

Claim 1. 
If w, a � R X ϕ, then w, a � O X R X ϕ. 

Proof of Claim. 

Let us consider any world u ∈ W such that (w, a ) ∼X (u, a ) . By item 5
of Definition 2, it suffices to show that u, a � R X ϕ. Toward this proof,
consider any world v ∈ W and any agent b ∈ A such that (u, a ) ∼X 

(v, b) . By item 7 of Definition 2, it suffices to prove that v, a � ϕ. 

Note that ( w, a ) ∼X ( v, b) by the assumptions ( w, a ) ∼X ( u, a ) and
( u, a ) ∼X ( v , b) . Thus, v , a � ϕ by the assumption w, a � R X ϕ of the
claim and item 7 of Definition 2. �
Claim 2. 
If w, a � ! X, then w, a � D X ! X. 
Proof of Claim . 
Consider any world u ∈ W and any agent b ∈ A such that 

( w, a ) ∼X ( u, b) . (9) 

By item 6 of Definition 2, it suffices to prove that u, b � ! X. Toward 
this proof, consider any world v ∈ W and any agent c ∈ A such that
( u, b) ∼X ( v, c ) . By item 2 of Definition 2, it suffices to show that
b = c . 

Note that statement ( 9 ) and the assumption ( u, b) ∼X ( v, c ) imply
that ( w, a ) ∼X ( v, c ) . Thus, a = c by the assumption w, a � ! X of the
claim and item 2 of Definition 2. Similarly, a = b by statement ( 9 ).
Therefore, b = c . �
Claim 3. 
If w, a � � ∅ 

ϕ, then w, a � R ∅ 

ϕ, where � ∈ { O , D } . 
Proof of Claim . 
Note that the statement ( w, a ) ∼∅ 

( u, b) is true for any world u ∈ W 

and any agent b ∈ A . Thus, by item 5 (or item 6) of Definition 2 the
assumption w, a � � ∅ 

ϕ implies that u, a � ϕ for any world u ∈ W .
Hence, w, a � R ∅ 

ϕ by item 7 of Definition 2. �
Claim 4. 
If w, a � ! X and w, a � O X ϕ, then w, a � � X ϕ, where � ∈ { D , R } . 
Proof of Claim . 
First, assume that � = D . Consider any world u ∈ W and any agent
b ∈ A such that ( w, a ) ∼X ( u, b) . By item 6 of Definition 2, it suffices
to show that u, b � ϕ. 

Note that the assumption w, a � ! X of the claim implies that a = b
by the assumption ( w, a ) ∼X ( u, b) and item 2 of Definition 2. Thus,
( w, a ) ∼X ( u, a ) again by the assumption ( w, a ) ∼X ( u, b) . Hence,
u, a � ϕ by the assumption w, a � O X ϕ of the claim and item 5 of 
Definition 2. Therefore, u, b � ϕ because a = b. 

The proof in the case � = R is similar. �
This concludes the proof of the theorem. �

Completeness 

As usual, the proof of completeness for our logical system consists 
of a canonical model construction and a proof of a “truth” lemma 
that connects the satisfaction relation of the canonical model with 
the provability in our logical system. Traditionally, the worlds of the 
canonical model are defined as the maximal consistent sets of for- 
mulae. This approach works for modal logic with a few exceptions.
One such exception is the epistemic logic of distributed knowledge.
To prove the completeness of this system, Fagin, Halpern, and Vardi 
use a tree construction in which nodes of the tree are labeled with 
maximal consistent sets [ 31 ]. Note that although our logical system 

does not have distributed knowledge explicitly , it has it implicitly.
Indeed, for each agent a , one can consider a variable x a that repre- 
sents all information known to agent a . In such a setting, knowledge 
informed by a dataset { x a } a ∈ G 

is the distributed knowledge of group 
G . 

The maximal consistent set construction also needs to be adjusted 
for the egocentric setting when the semantics is defined in terms of a 
world-agent pair positioned on the left side of the satisfaction relation 
�. In such a setting, a maximal consistent set captures the properties 
of a world-agent pair rather than just of a possible world. As a result,
it is not, generally speaking, possible to define possible worlds sim- 
ply as maximal consistent sets of formulae. One of the approaches 
to deal with this is suggested by Naumov and Tao [ 20 ]. They use a
“matrix” technique in which the canonical model is recursively con- 
structed as an infinite matrix whose cells are maximal consistent sets 
of formulae. The rows and columns of such a matrix correspond to 

https://academic.oup.com/cybers/article-lookup/doi/10.1093/cybers/tyae025#supplementary-data
https://academic.oup.com/cybers/article-lookup/doi/10.1093/cybers/tyae025#supplementary-data
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Figure 7. A Cartesian tree. 
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ossible worlds and agents, respectively. The maximal consistent set
 wa in the w -th row and a -th column captures the properties that
gent a has in world w . 

In this article, we combine tree and matrix techniques to prove the
ompleteness of our logical system. At the center of our construction
s a tree structure on the cells of a matrix. Because the position of
ach cell in a matrix could be described by an element of the Carte-
ian product of the set of rows and the set of columns, we call such
tructure a Cartesian tree . 

artesian trees 

igure 7 depicts an example of a Cartesian tree. The nodes of this
ree are the cells in 2 × 3 matrix. As shown in the figure, we index
ows and columns starting from 0. The nodes and the undirected
dges between them form a tree (graph without cycles). As shown
n the figure, edges in a Cartesian tree are labeled with datasets. The
artesian tree depicted in Fig. 7 has a finite number of rows and

olumns. Our proof of completeness requires us to consider infinite
atrices whose rows and columns can be indexed by the whole set
f integer numbers (ordinal ω ). To achieve this, we define cells of
he matrix as elements of the Cartesian product α × β, where α ≤ ω

nd β ≤ ω are two ordinals. For the example shown in Fig. 7 , we
ave α = 2 = { 0 , 1 } and β = 3 = { 0 , 1 , 2 } . The formal definition of
 Cartesian tree is below. 

efinition 5. 
 Cartesian tree is a tuple (α, β, E, � ) , where 

(1) α, β ≤ ω are two ordinals, 
(2) E ⊆ (α × β) 2 is an symmetric adjacency relation on α × β that

forms an (undirected) tree structure, 
(3) � is a labeling function that to each edge e ∈ E assigns a dataset

� (e ) ⊆ V . 

By 〈 n 1 , n 2 〉 we denote the edge in the Cartesian tree between
odes n 1 , n 2 ∈ α × β. We use corner brackets to differentiate un-
rdered pairs from ordered pairs that we continue to denote by
arentheses. We say that an edge 〈 n 1 , n 2 〉 ∈ E is labeled with a vari-
ble x ∈ V if x ∈ � 〈 n 1 , n 2 〉 . By a simple path, we mean a path in the
ree without repeating nodes. We allow trivial paths that start and
nd at the same node. Recall that for any two nodes in a tree, there
s a unique simple path between these two nodes. 

efinition 6. 
or any nodes n 1 , n 2 ∈ α × β and any X ⊆ V , let n 1 

X 
� n 2 if all

dges along the simple path connecting nodes n 1 and n 2 are labeled
ith each data variable in set X. 

As an example, ( 1 , 0) 
{ x,y } 
� ( 0 , 1) for the Cartesian tree depicted in

ig. 7 . Also, ( 1 , 0) 
{ x } 
� ( 0 , 2) and ( 1 , 1) 

{ x,y } 
� ( 1 , 1) . In fact, n 

X 
� n is

rue for each dataset X ⊆ V and each node n in any Cartesian tree. 

omplete loaded Cartesian trees 

artesian trees provide a framework on which we construct the
anonical model by “loading” a maximal consistent set of formu-
ae at each node of the tree. We expect there to be some correlation
etween maximal consistent sets and the tree structure. The formal
efinition of a loaded Cartesian tree is below. 
efinition 7. 
 loaded Cartesian tree is a tuple (α, β, E, �, S ) such that 

(1) (α, β, E, � ) is a Certesian tree, 
(2) S is a node labeling function that maps each node (w, a ) in set

α × β into a maximal consistent set of formulae S (w, a ) , which
we denote by S wa , such that 

(a) if ! X ∈ S wa and ( w, a ) 
X 
� ( u, b ) , then a = b , 

(b) if ( w, a ) 
X 
� ( u, a ) , then O X ϕ ∈ S wa iff O X ϕ ∈ S ua , 

(c) if ( w, a ) 
X 
� ( u, b) , then D X ϕ ∈ S wa iff D X ϕ ∈ S ub , 

(d) if R X ϕ ∈ S wa and ( w, a ) 
X 
� ( u, b) , then ϕ ∈ S ua . 

Informally, we say that one loaded Cartesian tree is an extension
f another if the extended tree adds new nodes while preserving the
dges, labels, and loads in the original tree. The formal definition is
iven below. 

efinition 8. 
 loaded Cartesian tree (α′ , β′ , E 

′ , � ′ , S ′ ) is an extension of a loaded
artesian tree (α, β, E, �, S ) if 

(1) α ≤ α′ , 
(2) β ≤ β′ , 
(3) E = E 

′ ∩ (α × β) 2 , 
(4) � ′ (e ) = � (e ) for each edge e ∈ E, 
(5) S ′ wa = S wa for each node (w, a ) ∈ α × β. 

In order to be able to convert a loaded Cartesian tree into a
anonical model, the tree must be “complete.” Below, we give the
ormal definition of what “complete” means. In the next subsection,
e prove that any finite loaded Cartesian tree can be extended to a

possibly infinite) complete loaded Cartesian tree. This result is stated
t the end of the next subsection as Theorem 5. The non-trivial proof
f this theorem constitutes the bulk of the proof of the completeness
heorem. 
efinition 9. 
 loaded Cartesian tree (α, β, E, �, S ) is complete when for each or-
inal u < α, ordinal b < β, formula ϕ ∈ �, and dataset X ⊆ V , 

(1) if ! X / ∈ S ub , then there is a node (w, a ) ∈ α × β such that

( u, b) 
X 
� ( w, a ) and b � = a , 

(2) if O X ϕ / ∈ S ub , then there is a node (w, b) ∈ α × β such that

( u, b) 
X 
� ( w, b) and ϕ / ∈ S wb , 

(3) if D X ϕ / ∈ S ub , then there is a node (w, a ) ∈ α × β such that

( u, b) 
X 
� ( w, a ) and ϕ / ∈ S wa , 

(4) if R X ϕ / ∈ S ub , then there is a node (w, a ) ∈ α × β such that

( u, b) 
X 
� ( w, a ) and ϕ / ∈ S wb . 

xtension theorem 

 loaded Cartesian tree (α, β, E, �, S ) is finite if α, β < ω . As men-
ioned above, in this subsection we show that each finite loaded
artesian tree can be extended to a complete loaded Cartesian

ree. To be complete, the tree must satisfy conditions 1–4 of Def-
nition 9 for each dataset X, each formula ϕ, each row w , and
ach column a . Instead of constructing the complete tree at once,
e define it as a limit of an infinite chain of extensions. Each
f these extensions makes one (or more) of conditions 1–4 sat-
sfied for some specific values of X, ϕ, w , and a . The existence
f these single-step extensions is shown in the next two lem-
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Figure 8. Cartesian tree (α + 1 , β, E ′ , � ′ ) . 
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Lemma 10. 
For any finite loaded Cartesian tree T = (α, β, E, �, S ) , any node 
(u, b) ∈ α × β, and any formula O X ϕ / ∈ S ub , there is an extension 

T ′ = (α + 1 , β, E 

′ , � ′ , S ′ ) of tree T such that ( u, b) 
X 
� ( α, b) in tree

T ′ and ϕ / ∈ S ′ 
αb . 

Proof. 
To define the loaded Cartesian tree T ′ = (α + 1 , β, E 

′ , � ′ , S ′ ) , we first
construct Cartesian tree (α + 1 , β, E 

′ , � ′ ) and then specify the load 
S ′ . The tree (α + 1 , β, E 

′ , � ′ ) is obtained from tree (α, β, E, � ) by an
addition of a new row α. Each node in this new row is connected by 
an edge to the cell (u, b) . All of the newly added edges are labeled 
with the empty set except the edge between nodes (u, b) and (α, b) ,
which is labeled with set X, see Fig. 8 . Formally, relation E 

′ on the 
set (α + 1) × β is defined as: 

E 

′ = E ∪ {〈 (u, b) , (α, a ) 〉 | a < β} . (10) 

and the labeling function � ′ defined as: 

� ′ (e ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

X, if e = 〈 (u, b) , (α, b) 〉 , 
∅ , if e = 〈 (u, b) , (α, a ) 〉 , where a � = b , 
� (e ) , otherwise . 

(11) 

Note that (α + 1 , β, E 

′ , � ′ ) is a Cartesian tree by Definition 5. 
Next, we proceed to define function S ′ . First, let us consider the 

set of formulae 

Q 

− = {¬ ϕ} ∪ { ψ | O X ψ ∈ S ub } . (12) 

Claim 5. 
Q 

− is a consistent set of formulae. 

Proof of Claim . 
Suppose the opposite. Then, there are formulae 

O X ψ 1 , . . . , O X ψ n ∈ S ub (13) 

such that ψ 1 , . . . , ψ n � ϕ. Hence, O X ψ 1 , . . . , O X ψ n � O X ϕ, by
Lemma 8. Thus, S ub � O X ϕ by assumption ( 13 ). Then, O X ϕ ∈ S ub 

because S ub is a maximal consistent set, which contradicts the as- 
sumption O X ϕ / ∈ S ub of the lemma. �

By Lemma 9, set Q 

− can be extended to a maximal consistent set 
Q . 

To finish the construction of the loaded Cartesian tree, we need to 
define the labeling function S ′ that maps pairs from Cartesian prod- 
uct (α + 1) × β into maximal consistent sets. The values of this func- 
tion S ′ wa are given by the matrix of size α + 1 by β shown in below 
equation: 

(
S ′ wa 

) = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

S 00 S 01 . . . S 0 ,b−1 S 0 b S 0 ,b+1 . . . S 0 ,β−1 

S 10 S 11 . . . S 1 ,b−1 S 1 b S 1 ,b+1 . . . S 1 ,β−1 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

S u 0 S u 1 . . . S u,b−1 S ub S u,b+1 . . . S u,β−1 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

S α−1 , 0 S α−1 , 1 . . . S α−1 ,b−1 S α−1 ,b S α−1 ,b+1 . . . S α−1 ,β−1 

S u 0 S u 1 . . . S u,b−1 Q S u,b+1 . . . S u,β−1 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Matrix (S ′ wa ) toward the proof of Lemma 10. 
Although the visual definition of S ′ wa through a matrix is easier to 
understand intuitively, in proofs, it is more convenient to refer to an 
equivalent definition in a more traditional form: 

S ′ wa = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

S ua , if w = α and a � = b , 
Q, if w = α and a = b , 
S wa , otherwise . 

(14) 

This concludes the definition of the tuple T ′ = (α + 1 , β, E 

′ , � ′ , S ′ ) . 

Claim 6. 
(w 1 , a 1 ) 

Y 
� (w 2 , a 2 ) in tree T iff (w 1 , a 1 ) 

Y 
� (w 2 , a 2 ) in tree T ′ , for

each dataset Y ⊆ V , each w 1 , w 2 < α, and each a 1 , a 2 < β. 

To show that T ′ is a loaded Cartesian tree, we need to verify con- 
ditions (a)–(d) of item 2 of Definition 7. 

We verify these conditions in Claim 8, Claim 10, Claim 11, and 
Claim 13 below. First, let us prove an auxiliary statement used in the 
proof of Claim 8. 

Claim 7. 
O Y ψ ∈ S ub iff O Y ψ ∈ Q , for each dataset Y ⊆ X and each formula
ψ ∈ �. 

Proof of Claim . 
(⇒ ) : By Lemma 6 and the Modus Ponens rule, the assumption 
O Y ψ ∈ S ub implies that S ub � O Y O Y ψ . Hence, S ub � O X O Y ψ by the
Monotonicity axiom, the Modus Ponens inference rule, and the as- 
sumption Y ⊆ X. Thus, O X O Y ψ ∈ S ub because S ub is a maximal con- 
sistent set. Then, O Y ψ ∈ Q 

− by equation ( 12 ). Therefore, O Y ψ ∈ Q
because Q 

− ⊆ Q . 
(⇐ ) : Suppose that O Y ψ / ∈ S ub . Thus, ¬ O Y ψ ∈ S ub because S ub 

is a maximal consistent set. Then, S ub � O Y ¬ O Y ψ by the Neg- 
ative Introspection axiom and the Modus Ponens inference rule.
Hence, S ub � O X ¬ O Y ψ by the Monotonicity axiom, the Modus 
Ponens inference rule, and the assumption Y ⊆ X of the claim.
Thus, O X ¬ O Y ψ ∈ S ub because S ub is a maximal consistent set. Then,
¬ O Y ψ ∈ Q 

− by equation ( 12 ). Hence, ¬ O Y ψ ∈ Q because Q 

− ⊆ Q .
Therefore, O Y ψ / ∈ Q because set Q is consistent. �

We are now ready to prove condition 2(b) of Definition 7. 

Claim 8. 
O Y ψ ∈ S ′ w 1 a 

iff O Y ψ ∈ S ′ w 2 a 
, for each w 1 , w 2 < α + 1 , each a < β,

and each Y ⊆ V such that ( w 1 , a ) 
Y 
� ( w 2 , a ) in T ′ . 

Proof of Claim. 
We consider the following three cases separately. 

Case 1 : w 1 = w 2 . Then, O Y ψ ∈ S ′ w 1 a 
iff O Y ψ ∈ S ′ w 2 a 

. 

Case 2 : w 1 , w 2 < α. Then, (w 1 , a ) 
Y 
� (w 2 , a ) in T by Claim 6

and the assumption ( w 1 , a ) 
Y 
� ( w 2 , a ) in T ′ of the current claim.

Hence, O Y ψ ∈ S w 1 a iff O Y ψ ∈ S w 2 a by condition 2(b) of Definition 7.
Therefore, O Y ψ ∈ S ′ w 1 a 

iff O Y ψ ∈ S ′ w 2 a 
by equation ( 14 ). 

Case 3 : Exactly one of w 1 , w 2 is equal to α. Without loss of gen-
erality, suppose that 

w 1 < α and w 2 = α. (15) 
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hen, the assumption ( w 1 , a ) 
Y 
� ( w 2 , a ) in T ′ of the claim implies

hat ( w 1 , a ) 
Y 
� ( α, a ) in T ′ . In other words, in tree T ′ , the unique

ath from node (w 1 , a ) to node (α, a ) is labeled with each data vari-
ble from set Y . Note, see Fig. 8 , that this path must go through the
ode (u, b) and contain the edge 〈 (u, b) , (α, a ) 〉 . Thus, 

Y ⊆ � ′ ( 〈 ( u, b) , (α, a ) 〉 ) (16) 

nd ( w 1 , a ) 
Y 
� ( u, b) in tree T ′ . The last statement, by Claim 6, im-

lies 

( w 1 , a ) 
Y 
� ( u, b) in T. (17) 

e further split this case into two subcases: 
Case 3A : a = b. Then, � ′ ( 〈 ( u, b) , (α, a ) 〉 ) = X by equation ( 11 ).

ence, by statement ( 16 ), 

Y ⊆ X. (18) 

n addition, statement ( 17 ) and the assumption a = b of Case
A imply that O Y ψ ∈ S w 1 a iff O Y ψ ∈ S ub by item 2(b) of Defini-
ion 7. Hence, O Y ψ ∈ S w 1 a iff O Y ψ ∈ Q by Claim 7 and statement
 18 ). Then, O Y ψ ∈ S ′ w 1 a 

iff O Y ψ ∈ S ′ 
αb by equation ( 14 ). Therefore,

 Y ψ ∈ S ′ w 1 a 
iff O Y ψ ∈ S ′ w 2 a 

because of the part w 2 = α of statement
 15 ) and the assumption a = b of Case 3A. 

Case 3B : a � = b. Then, � ′ ( 〈 ( u, b) , (α, a ) 〉 ) = ∅ by equation ( 11 ).
ence, by statement ( 16 ), 

Y = ∅ . (19) 

y the assumption of the lemma u < α. Thus, the node (u, a ) also
elongs to the tree T . Hence, vacuously, all edges along the unique
imple path between the nodes (w 1 , a ) and (u, a ) are labeled with

ach element of the empty set. In other words, ( w 1 , a ) 
∅ 

� ( u, a ) in T .

hus, ( w 1 , a ) 
Y 
� ( u, a ) in T by statement ( 19 ). Then, O Y ψ ∈ S w 1 a

ff O Y ψ ∈ S ua by item 2(b) of Definition 7. Hence, O Y ψ ∈ S ′ w 1 a 
iff

 Y ψ ∈ S ′ αa by equation ( 14 ), the part w 1 < α of statement ( 15 ), and
he assumption a � = b of Case 3B. Therefore, O Y ψ ∈ S ′ w 1 a 

iff O Y ψ ∈
 

′ 
w 2 a 

by the part w 2 = α of statement ( 15 ). �
Claim 10 verifies condition 2(c) of Definition 7. The next claim is

n auxiliary statement toward proving Claim 10. 

laim 9. 
 Y ψ ∈ S ′ αa iff D Y ψ ∈ S ′ ub , for each formula ψ ∈ �, each ordinal a <
, and each dataset Y ⊆ � ′ ( 〈 ( α, a ) , (u, b) 〉 ) . 
roof of Claim . 
e consider the following two cases separately: 

Case 1: a � = b. Then the assumption Y ⊆ � ′ ( 〈 ( α, a ) , (u, b) 〉 ) of the
laim implies, see Fig. 8 , 

Y = ∅ . (20) 

he assumption (u, b) ∈ α × β of the lemma implies that u < α.
hus, nodes (u, b) and (u, a ) both belong to the tree T . Vacuously,
ll edges along the simple path connecting these nodes in tree T are

abeled with each element of the empty set. Hence, ( u, b) 
∅ 

� ( u, a )
n tree T . Then, D ∅ 

ψ ∈ S ub iff D ∅ 

ψ ∈ S ua by item 2(c) of Defini-
ion 7. Thus, D ∅ 

ψ ∈ S ′ ub iff D ∅ 

ψ ∈ S ′ αa by equation ( 14 ) and the
ssumption a � = b of the claim. Therefore, D Y ψ ∈ S ′ ub iff D Y ψ ∈ S ′ αa 

y equation ( 20 ). 
Case 2: a = b. Then, the assumption Y ⊆ � ′ ( 〈 ( α, a ) , (u, b) 〉 ) of

he claim imply that ( α, a ) 
Y 
� ( u, a ) in T ′ . Thus, O Y D Y ψ ∈ S ′ αa

ff O Y D Y ψ ∈ S ′ ua by Claim 8. Hence, D Y ψ ∈ S ′ αa iff D Y ψ ∈ S ′ ua by
emma 7 because S ′ αa and S ′ ua are maximal consistent sets. There-

ore, D Y ψ ∈ S ′ αa iff D Y ψ ∈ S ′ ub by the assumption a = b of the

ase. � F  
laim 10. 
 Y ψ ∈ S ′ w 1 a 1 

iff D Y ψ ∈ S ′ w 2 a 2 
for each formula ψ ∈ �, each

 1 , w 2 < α + 1 , each a 1 , a 2 < β, and each Y ⊆ V such that

(w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ . 

roof of Claim . 
e prove the claim by induction on the length of the simple path

etween the nodes (w 1 , a 1 ) and (w 2 , a 2 ) in tree T ′ . 
Base Case. (w 1 , a 1 ) = (w 2 , a 2 ) . Then, w 1 = w 2 and a 1 = a 2 .

herefore, D Y ψ ∈ S ′ w 1 a 1 
iff D Y ψ ∈ S ′ w 2 a 2 

. 
Induction Step. Consider the following two cases separately: 

Case 1: w 1 , w 2 < α. Then, (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T by Claim 6

nd the assumption (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ of the current claim.

hus, D Y ψ ∈ S w 1 a 1 iff D Y ψ ∈ S w 2 a 2 by item 2(c) of Definition 7.
herefore, D Y ψ ∈ S ′ w 1 a 1 

iff D Y ψ ∈ S ′ w 2 a 2 
by equation ( 14 ) and the

ssumption w 1 , w 2 < α of the case. 
Case 2: At least one of w 1 and w 2 is equal to α. Without loss of

enerality, let w 1 = α. Consider the simple path between the nodes
(w 1 , a 1 ) = (α, a 1 ) and (w 2 , a 2 ) in tree T ′ . Because we consider the
nduction step, this path has more than one node. Observe that the
ode (α, a 1 ) in tree T ′ is only connected to node (u, b) , see Fig. 8 .
hus, the path has the form: (α, a 1 ) , (u, b) , . . . , (w 2 , a 2 ) . Then, by

he assumption (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ of the claim, 

Y ⊆ � ′ ( 〈 ( α, a 1 ) , (u, b) 〉 ) , (21)

( u, b) 
Y 
� ( w 2 , a 2 ) in T ′ . (22)

hus, D Y ψ ∈ S ′ αa 1 
iff D Y ψ ∈ S ′ ub by Claim 9 and statement ( 21 ). Ad-

itionally, by the induction hypothesis, statement ( 22 ) implies that
 Y ψ ∈ S ′ ub iff D Y ψ ∈ S ′ w 2 a 2 

. Hence, D Y ψ ∈ S ′ w 1 a 1 
iff D Y ψ ∈ S ′ w 2 a 2 

ecause w 1 = α. �
The next claim verifies condition 2(d) of Definition 7. 

laim 11. 
f R Y ψ ∈ S ′ w 1 a 1 

and (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ , then ψ ∈ S ′ w 2 a 1 

, for
ach w 1 , w 2 < α + 1 , each a 1 , a 2 < β, each dataset Y ⊆ V , and each
ormula ψ ∈ �. 

roof of Claim . 
ne of the following four cases must take place, see Fig. 8 : 

Case 1 : either Y = ∅ or a 1 = a 2 . In the former case, all edges
long the simple path between nodes (w 1 , a 1 ) and (w 2 , a 1 ) are la-

eled with all data variables from set Y . Hence, (w 1 , a 1 ) 
Y 
� (w 2 , a 1 )

n T ′ . In the latter case, the same statement is true by the assump-

ion of the claim that (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ . Thus, O Y ψ ∈ S ′ w 1 a 1 

ff O Y ψ ∈ S ′ w 2 a 1 
by Claim 8. Note also that O Y ψ ∈ S ′ w 1 a 1 

by the as-
umption R Y ψ ∈ S ′ w 1 a 1 

of the claim, the Overt Knowledge axiom, the
odus Ponens inference rule, and the maximality of the set S ′ w 1 a 1 

.
ence, O Y ψ ∈ S ′ w 2 a 1 

. Therefore, ψ ∈ S ′ w 2 a 1 
by the Truth axiom, the

odus Ponens inference rule, and the maximality of the set S ′ w 1 a 1 
. 

Case 2 : w 1 , w 2 < α. Then, R Y ψ ∈ S w 1 a 1 by the assump-
ion R Y ψ ∈ S ′ w 1 a 1 

of the claim and equation ( 14 ). Additionally,

(w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T by the assumption (w 1 , a 1 ) 

Y 
� (w 2 , a 2 ) in

 

′ of the current claim and Claim 6. Hence, ψ ∈ S w 2 a 1 by item 2(d)
f Definition 7. Therefore, ψ ∈ S ′ w 2 a 1 

by equation ( 14 ). 
Case 3 : a 1 � = a 2 , one of the nodes (w 1 , a 1 ) and (w 2 , a 2 ) belongs to

ree T and the other is the node (α, b) . Then, the simple path between
he nodes (w 1 , a 1 ) and (w 2 , a 2 ) must go through the node (u, b) , see

ig. 8 . Furthermore, note that the assumption (w 1 , a 1 ) 
Y 
� (w 2 , a 2 )
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Figure 9. Toward a proof of Lemma 11. 
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in T ′ of the claim implies that 

(w 1 , a 1 ) 
Y 
� (u, b) in T ′ , (23) 

( u, b) 
Y 
� ( w 2 , a 2 ) in T ′ . (24) 

We further split this case into two subcases: 
Case 3A : w 1 < α and (w 2 , a 2 ) = (α, b) . Then, R Y ψ ∈ S w 1 a 1 by

the assumption R Y ψ ∈ S ′ w 1 a 1 
of the claim and equation ( 14 ). Note 

also that (w 1 , a 1 ) 
Y 
� (u, b) in T by statement ( 23 ) and Claim 6.

Thus, ψ ∈ S ua 1 by item 2(d) of Definition 7. Then, ψ ∈ S ′ αa 1 
by equa- 

tion ( 14 ) and the assumption a 1 � = a 2 of Case 3. Therefore, ψ ∈ S ′ w 2 a 1 
by the assumption (w 2 , a 2 ) = (α, b) of Case 3A. 

Case 3B : w 2 < α and (w 1 , a 1 ) = (α, b) . By the Introspection of 
De Re Knowledge axiom and the Modus Ponens inference rule, the 
assumption R Y ψ ∈ S ′ w 1 a 1 

of the claim implies S ′ w 1 a 1 
� O Y R Y ψ . Then,

O Y R Y ψ ∈ S ′ w 1 a 1 
because S ′ w 1 a 1 

is a maximal consistent set. Thus,
O Y R Y ψ ∈ S ′ ub by statement ( 23 ) and Claim 8. Hence, S ′ ub � R Y ψ

by the Truth axiom and the Modus Ponens inference rule. Then,
R Y ψ ∈ S ′ ub because S ′ ub is a maximal consistent set. Thus, by equa- 
tion ( 14 ) and the assumption (u, b) ∈ α × β of the lemma, 

R Y ψ ∈ S ub . (25) 

At the same time, statement ( 24 ), by Claim 6, the assumption (u, b) ∈ 

α × β of the lemma, and the assumption w 2 < α of Case 3B, implies 

that ( u, b) 
Y 
� ( w 2 , a 2 ) in T . Thus, ψ ∈ S w 2 b by item 2(d) of Defini-

tion 7 and statement ( 25 ). Hence, ψ ∈ S w 2 a 1 because b = a 1 by the 
assumption (w 1 , a 1 ) = (α, b) of Case 3B. Therefore, ψ ∈ S ′ w 2 a 1 

by 
equation ( 14 ) and the assumption w 2 < α of Case 3B. �

The condition 2(a) of Definition 7 is verified in Claim 13. The 
next claim is an auxiliary statement used in the proof of Claim 13.
Note that we have chosen to delay the verification of condition 2(a) 
because the proof of Claim 12 is using Claim 10. 

Claim 12. 
! Y ∈ S ′ w 1 a 1 

iff ! Y ∈ S ′ w 2 a 2 
, for each Y ⊆ V , each w 1 , w 2 < α + 1 , and

each a 1 , a 2 < β such that ( w 1 , a 1 ) 
Y 
� ( w 2 , a 2 ) in T ′ . 

Proof of Claim . 
It suffices to show that if ! Y ∈ S ′ w 1 a 1 

, then ! Y ∈ S ′ w 2 a 2 
. Indeed, by

the Introspection of Traceability axiom and the Modus Ponens in- 
ference rule, the assumption ! Y ∈ S ′ w 1 a 1 

implies that S ′ w 1 a 1 
� D Y (! Y ) .

Hence, D Y (! Y ) ∈ S ′ w 1 a 1 
because S ′ w 1 a 1 

is a maximal consistent set.

Thus, D Y (! Y ) ∈ S ′ w 2 a 2 
by Claim 10 and the assumption (w 1 , a 1 ) 

Y 
�

(w 2 , a 2 ) in T ′ of the current claim. Hence, S ′ w 2 a 2 
� ! Y by Lemma 5.

Therefore, ! Y ∈ S ′ w 2 a 2 
because S ′ w 2 a 2 

is a maximal consistent set. �
Claim 13. 
If ! Y ∈ S ′ w 1 a 1 

and (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ , then a 1 = a 2 , for each

dataset Y ⊆ V , each w 1 , w 2 < α + 1 , and each a 1 , a 2 < β. 

Proof of Claim. 
We prove the statement of the claim by induction on the length of 

the simple path between the nodes (w 1 , a 1 ) and (w 2 , a 2 ) in tree T ′ . 
Base Case: if the length of the path is zero, then (w 1 , a 1 ) = 

(w 2 , a 2 ) . Therefore, a 1 = a 2 . 
Induction Step: we further split the induction step into the fol- 

lowing three cases: 
Case 1: w 1 , w 2 < α. Then, ! Y ∈ S w 1 a 1 by equation ( 14 ). Also, by

Claim 6 and the assumption (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ of the current 

claim, (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T . Therefore, a 1 = a 2 by item 2(a) of
Definition 7. 
Case 2: at least one of w 1 , w 2 is equal to α. By Claim 12, without
loss of generality, we can suppose that w 2 = α. Note that (w 1 , a 1 ) � =
(w 2 , a 2 ) because we consider the induction step of the proof. Thus,
the assumption w 2 = α implies that the simple path in tree T ′ from 

the node (w 1 , a 1 ) to the node (w 2 , a 2 ) = (α, a 2 ) must go through the
node (u, b) , see Fig. 8 . Then, the simple path from the node (w 1 , a 1 ) to
the node (u, b) is shorter than the simple path from the node (w 1 , a 1 )
to the node (w 2 , a 2 ) . In addition, 

(w 1 , a 1 ) 
Y 
� (u, b) in T ′ , (26) 

Y ⊆ � ′ ( 〈 ( u, b) , (α, a 2 ) 〉 ) (27) 

by the assumption (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ of the claim. We further

split the proof into the following two subcases: 
Case 2A: a 2 = b. Note that a 1 = b by the induction hypothesis,

the assumption ! Y ∈ S ′ w 1 a 1 
of the claim and statement ( 26 ). There- 

fore, a 1 = a 2 by the assumption a 2 = b of Case 2A. 
Case 2B: a 2 � = b. Then, � ′ ( 〈 ( u, b) , (α, a 2 ) 〉 ) = ∅ , see Fig. 8 . Thus,

Y = ∅ by statement ( 27 ). Then, vacuously, all edges along the simple 
path between the nodes (u, b) and (u, a 2 ) in tree T are labeled with
all elements of the set Y . In other words, 

( u, b) 
Y 
� ( u, a 2 ) in T. (28) 

At the same time, the assumption ! Y ∈ S ′ w 1 a 1 
of the claim implies that 

! Y ∈ S ′ ub by Claim 12 and statement ( 26 ). Thus, ! Y ∈ S ub by equa-
tion ( 14 ) and because u < α due to the assumption (u, b) ∈ (α, β) of
the lemma. Therefore, a 2 = b by item 2(a) of Definition 7 and state- 
ment ( 28 ), which contradicts the assumption of Case 2B. �

This concludes the proof of the lemma. �
Lemma 11. 
For any finite loaded Cartesian tree T = (α, β, E, �, S ) , any node
(u, b) ∈ α × β, and any formulae D X ϕ / ∈ S ub and R X ψ / ∈ S ub such 
that ! X / ∈ S ub there is an extension T ′ = (α + 1 , β + 1 , E 

′ , � ′ , S ′ ) of

tree T such that ( u, b) 
X 
� ( α, β) in tree T ′ , ϕ / ∈ S ′ αβ, and ψ / ∈ S ′ 

αb . 

Proof. 
Following the general structure of the proof of Lemma 10, we first 
define the Cartesian tree (α + 1 , β + 1 , E 

′ , � ′ ) . This tree is obtained
by connecting all newly added nodes to the node (u, b) of the original 
tree (α, β, E, � ) , see Fig. 9 . Formally, relation E 

′ on the set (α + 1) ×
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(β + 1) is defined as follows: 

E 

′ = E ∪ { ( ( u, b) , (α, β)) } ∪ { ( ( u, b) , (α, a )) | a < β} 
∪ { ( ( u, b) , (w, β)) | w < α} . (29) 

e label all newly added edges with the empty set except for the edge
 (u, b) , (α, β) 〉 , which is labeled with set X, see Fig. 9 . Formally, we
efine edge labeling function � ′ as follows: 

� ′ (e ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

X, if e = ((u, b) , (α, β)) , 
∅ , if e = ((u, b) , (α, a )) , where a < β, 

∅ , if e = ((u, b) , (w, β)) , where w < α, 

� (e ) , otherwise . 

(30) 

The above equation concludes the definition of the Cartesian tree
(α + 1 , β + 1 , E 

′ , � ′ ) . Toward the definition of the labeling function
 

′ , let us first consider the following two sets of formulae: 

H 

− = {¬ ϕ} ∪ { χ ∈ � | D X χ ∈ S ub } , (31) 

G 

− = {¬ ψ} ∪ { χ ∈ � | R X χ ∈ S ub } . (32) 

he proof of the next claim is the same as the proof of Claim 5 except
hat it uses modalities D and R instead of modality O . �
laim 14. 
 

− and G 

− are consistent sets of formulae. 

By Lemma 9, sets H 

− and G 

− can be extended to maximal con-
istent sets H and G , respectively. We are now ready to define the la-
eling function S ′ . The values of the labelling function S ′ wa are given
y the (α + 1) × (β + 1) matrix shown in below equation: 

(S ′ wa ) = 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

S 00 S 01 . . . S 0 ,b−1 S 0 b S 0 ,b+1 . . . S 0 ,β−1 H 

S 10 S 11 . . . S 1 ,b−1 S 1 b S 1 ,b+1 . . . S 1 ,β−1 H 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
S u 0 S u 1 . . . S u,b−1 S ub S u,b+1 . . . S u,β−1 H 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
S α−1 , 0 S α−1 , 1 . . . S α−1 ,b−1 S α−1 ,b S α−1 ,b+1 . . . S α−1 ,β−1 H 

S u 0 S u 1 . . . S u,b−1 G S u,b+1 . . . S u,β−1 H 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

atrix (S ′ wa ) towards the proof of Lemma 11. 
n other words, let 

S ′ wa = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

S ua , if w = α, a � = b, and a � = β, 

G, if w = αand a = b , 
H, if a = β, 

S wa , otherwise . 

(33) 

he tuple T ′ = (α + 1 , β + 1 , E 

′ , � ′ , S ′ ) is now defined. Next, we
how that T ′ is a loaded Cartesian tree through verifying conditions
(a)–(d) of Definition 7. We start with the following equivalent of
laim 6. 
laim 15. 

(w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in tree T iff (w 1 , a 1 ) 

Y 
� (w 2 , a 2 ) in tree T ′ , for

ach dataset Y ⊆ V , each w 1 , w 2 < α, and each a 1 , a 2 < β. 

Claim 17 verifies condition 2(b) of Definition 7. Claim 16 is an
uxiliary statement used in the proof of Claim 17. 

laim 16. 
 ∅ 

χ ∈ S ub iff O ∅ 

χ ∈ G , for each formula χ ∈ �. 

roof of Claim . 
(⇒ ) : Suppose that O ∅ 

χ ∈ S ub . Then, by Lemma 6 and the
odus Ponens inference rule, S ub � O ∅ 

O ∅ 

χ . Hence, S ub � R ∅ 

O ∅ 

χ

y the Data-Free Knowledge axiom and the Modus Ponens infer-
nce rule. Then, S ub � R X O ∅ 

χ by the Monotonicity axiom and the
odus Ponens inference rule. Thus, R X O ∅ 

χ ∈ S because S is a
ub ub 
aximal consistent set of formulae. Therefore, O ∅ 

χ ∈ G 

− ⊆ G by
quation ( 32 ). 

(⇐ ) : Suppose that O ∅ 

χ / ∈ S ub . Then, ¬ O ∅ 

χ ∈ S ub because S ub

s a maximal consistent set of formulae. Thus, S ub � O ∅ 

¬ O ∅ 

χ by
he Negative Introspection axiom and the Modus Ponens inference
ule. Hence, S ub � R ∅ 

¬ O ∅ 

χ by the Data-Free Knowledge axiom
nd the Modus Ponens inference rule. Thus, S ub � R X ¬ O ∅ 

χ by the
onotonicity axiom and the Modus Ponens inference rule. Then,
 X ¬ O ∅ 

χ ∈ S ub because S ub is a maximal consistent set of formu-
ae. Thus, ¬ O ∅ 

χ ∈ G 

− ⊆ G by equation ( 32 ). Therefore, O ∅ 

χ / ∈ G
ecause set G is consistent. �
laim 17. 
 Y χ ∈ S ′ w 1 a 

iff O Y χ ∈ S ′ w 2 a 
, for each formula χ ∈ �, each w 1 , w 2 <

+ 1 , each a < β + 1 , and each dataset Y ⊆ V such that (w 1 , a ) 
Y 
�

(w 2 , a ) in T ′ . 

roof of Claim. 
We consider the following four cases separately: 

Case 1 : w 1 = w 2 . Then, S ′ w 1 a 
= S ′ w 2 a 

. Therefore, O Y χ ∈ S ′ w 1 a 
iff

 Y χ ∈ S ′ w 2 a 
. 

Case 2 : a = β. Then, S ′ w 1 a 
= H = S ′ w 2 a 

by equation ( 33 ). There-
ore, O Y χ ∈ S ′ w 1 a 

iff O Y χ ∈ S ′ w 2 a 
. 

Case 3 : a < β and w 1 , w 2 < α. Then, (w 1 , a ) 
Y 
� (w 2 , a ) in T by

laim 15 and the assumption ( w 1 , a ) 
Y 
� ( w 2 , a ) in T ′ of the cur-

ent claim. Hence, O Y χ ∈ S w 1 a iff O Y χ ∈ S w 2 a by item 2(b) of Defi-
ition 7. Therefore, O Y χ ∈ S ′ w 1 a 

iff O Y χ ∈ S ′ w 2 a 
by equation ( 33 ) and

he assumptions a < β and w 1 , w 2 < α of the case. 
Case 4 : a < β and one of w 1 , w 2 is equal to α while the other is

ess than α. Without loss of generality, let w 1 < α and w 2 = α. Hence,
he simple path between nodes (w 1 , a ) and (w 2 , a ) must contain the
dge 〈 (u, b) , (w 2 , a ) 〉 , see Fig. 9 . In addition, Y ⊆ � ′ (〈 (u, b) , (w 2 , a ) 〉 )
y the assumption ( w 1 , a ) 

Y 
� ( w 2 , a ) in T ′ of the claim. Note that

 

′ ( 〈 ( u, b) , (w 2 , a ) 〉 ) = ∅ by either equation ( 30 ) or Fig. 9 and the as-
umption of the case that a < β. Thus, Y = ∅ . Hence, it suffices to
how that O ∅ 

χ ∈ S ′ w 1 a 
iff O ∅ 

χ ∈ S ′ w 2 a 
. 

Observe that nodes (w 1 , a ) and (u, a ) belong to the tree T by
he assumption of Case 4 and the assumption u < α of the lemma.
hen, all edges along the simple path in tree T between these nodes
re vacuously labeled with all elements of the empty set. Hence,

( w 1 , a ) 
∅ 

� ( u, a ) in T . Thus, by item 2(b) of Definition 7, 

O ∅ 

χ ∈ S w 1 a iff O ∅ 

χ ∈ S ua . (34)

e further split this case into two subcases: 
Case 4A : a = b. Hence, O ∅ 

χ ∈ S ua iff O ∅ 

χ ∈ G by Claim 16.
hen, O ∅ 

χ ∈ S w 1 a iff O ∅ 

χ ∈ G by statement ( 34 ). Thus, O ∅ 

χ ∈
 

′ 
w 1 a 

iff O ∅ 

χ ∈ S ′ w 2 a 
by equation ( 33 ), the assumptions a < β, w 1 <

, and w 2 = α of Case 4 and the assumption a = b of Case 4A. 
Case 4B : a � = b. Then, O ∅ 

χ ∈ S ua iff O ∅ 

χ ∈ S ′ αa by equa-
ion ( 33 ), the assumption a < β of Case 4 and the assumption u < α

f the lemma. Thus, O ∅ 

χ ∈ S w 1 a iff O ∅ 

χ ∈ S ′ αa by statement ( 34 ).
herefore, O ∅ 

χ ∈ S ′ w 1 a 
iff O ∅ 

χ ∈ S ′ w 2 a 
by equation ( 33 ), the as-

umptions a < β, w 1 < α, and w 2 = α of Case 4. �
Claim 19 verifies condition 2(c) of Definition 7. Claim 18 is an

uxiliary statement used in the proof of Claim 19. 

laim 18. 
 Y χ ∈ S ′ wa iff D Y χ ∈ S ′ ub , for each χ ∈ �, each ( w, a ) ∈ ( α +
) × (β + 1) such that (w, a ) / ∈ α × β, and each dataset Y ⊆
 

′ ( 〈 ( w, a ) , (u, b) 〉 ) . 
roof of Claim . 
e consider the following two cases separately: 
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Case 1: w = α, a < β. Then, � ′ ( 〈 ( w, a ) , (u, b) 〉 ) = ∅ by equa-
tion ( 30 ); alternatively, see Fig. 9 . Thus, Y = ∅ by the assumption 
Y ⊆ � ′ ( 〈 ( w, a ) , (u, b) 〉 ) of the claim. Hence, it suffices to prove that
D ∅ 

χ ∈ S ′ wa iff D ∅ 

χ ∈ S ′ ub We further split this case into two sub- 
cases. 

Case 1A: a � = b. The assumption (u, b) ∈ α × β of the lemma im- 
plies that u < α and b < β. Hence, (u, a ) , (u, b) ∈ α × β by the as-
sumption a < β of Case 1. Thus, nodes (u, a ) and (u, b) belong to 
tree T . Note that all edges along the simple path between these two 
nodes are vacuously labeled with all elements of the empty set. Hence,

( u, a ) 
∅ 

� ( u, b) in tree T . Thus, D ∅ 

χ ∈ S ua iff D ∅ 

χ ∈ S ub by item 2(c)
of Definition 7. Then, D ∅ 

χ ∈ S ′ wa iff D ∅ 

χ ∈ S ub by equation ( 33 ) and 
the assumption w = α of Case 1 and the assumption a � = b of Case 
1A. Hence, D ∅ 

χ ∈ S ′ wa iff D ∅ 

χ ∈ S ′ ub by equation ( 33 ) and the as- 
sumption (u, b) ∈ α × β of the lemma. 

Case 1B: a = b. Note that, vacuously, all edges along the path 
between the nodes (w, a ) and (u, b) in tree T ′ are labeled with all 

elements of the empty set. In other words, ( w, a ) 
∅ 

� ( u, b) in tree 
T ′ . Hence, O ∅ 

D ∅ 

χ ∈ S ′ wa iff O ∅ 

D ∅ 

χ ∈ S ′ ub by Claim 17 and the 
assumption a = b of Case 1B. Therefore, D ∅ 

χ ∈ S ′ wa iff D ∅ 

χ ∈ S ′ ub 
by Lemma 7 because S ′ wa and S ′ ub are maximal consistent sets of for- 
mulae. 

Case 2: a = β. Then, the assumption Y ⊆ � ′ ( 〈 ( w, a ) , (u, b) 〉 ) of the
claim implies, see Fig. 9 , 

Y ⊆ X. (35) 

In addition, by equation ( 33 ) and the assumption (u, b) ∈ α × β, it 
suffices to prove that D Y χ ∈ H iff D Y χ ∈ S ub . 

(⇒ ) : Suppose that D Y χ / ∈ S ub . Then, ¬ D Y χ ∈ S ub because S ub 

is a maximal consistent set. Hence, S ub � D Y ¬ D Y χ by the Negative 
Introspection axiom and the Modus Ponens inference rule. Thus,
S ub � D X ¬ D Y χ by the Monotonicity axiom and statement ( 35 ).
Hence, D X ¬ D Y χ ∈ S ub because S ub is a maximal consistent set. Then,
¬ D Y χ ∈ H 

− ⊆ H by equation ( 31 ). Therefore, D Y χ / ∈ H because set 
H is consistent. 

(⇐ ) : Let D Y χ ∈ S ub . Then, S ub � D Y D Y χ by Lemma 6 and the 
Modus Ponens inference rule. Thus, S ub � D X D Y χ by the Mono- 
tonicity axiom and statement ( 35 ). Hence, D X D Y χ ∈ S ub because S ub 

is a maximal consistent set of formulae. Then, D Y χ ∈ H 

− ⊆ H by 
equation ( 31 ). �

The proof of the next claim is similar to the proof of Claim 10 
except it uses Claim 15 and Claim 18 instead of Claim 6 and Claim 

9. 

Claim 19. 
D Y χ ∈ S ′ w 1 a 1 

iff D Y χ ∈ S ′ w 2 a 2 
, for each dataset Y ⊆ V , each for- 

mula χ ∈ �, each w 1 , w 2 ≤ α + 1 and each a 1 , a 2 ≤ β + 1 such that

(w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ . 

Next, we verify condition 2(d) of Definition 7. 

Claim 20. 
If R Y χ ∈ S ′ w 1 a 1 

and (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ , then χ ∈ S ′ w 2 a 1 

for
each dataset Y ⊆ V , each formula χ ∈ �, each w 1 , w 2 ≤ α + 1 and 
each a 1 , a 2 ≤ β + 1 . 

Proof of Claim . 

The assumption (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ implies that one of the 

following cases must take place, see Fig. 9 . 

Case 1 : (w 1 , a 1 ) = (w 2 , a 2 ) . The assumption R Y χ ∈ S ′ w 1 a 1 
implies

that S ′ w 1 a 1 
� χ by Lemma 5. Hence, χ ∈ S ′ w 1 a 1 

because S ′ w 1 a 1 
is a 

maximal consistent set. Therefore, χ ∈ S ′ w 2 a 1 
by the assumption of 
the case. 
Case 2 : w 1 , w 2 < α and a 1 , a 2 < β. Thus, the assumption 

(w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ implies that (w 1 , a 1 ) 

Y 
� (w 2 , a 2 ) in T 

by Claim 15. In addition, the assumption R Y χ ∈ S ′ w 1 a 1 
implies that 

R Y χ ∈ S w 1 a 1 by equation ( 33 ). Then, χ ∈ S w 2 a 1 by item 2(d) of Defi-
nition 7. Therefore, χ ∈ S ′ w 2 a 1 

by equation ( 33 ) and the assumptions 
w 2 < α and a 1 < β of the case. 

Case 3 : Y = ∅ . Thus, by the assumption R Y χ ∈ S ′ w 1 a 1 
of the

claim, R ∅ 

χ ∈ S ′ w 1 a 1 
. Then, S ′ w 1 a 1 

� O ∅ 

χ by the Overt Knowledge 
axiom and the Modus Ponens inference rule. Hence, O ∅ 

χ ∈ S ′ w 1 a 1 
because S ′ w 1 a 1 

is a maximal consistent set of formulae. Observe that,
vacuously, all edges along the simple path between the nodes (w 1 , a 1 ) 
and (w 2 , a 1 ) in tree T ′ are labeled with each data variable from 

the empty set. In other words, (w 1 , a 1 ) 
∅ 

� (w 2 , a 1 ) in T ′ . Thus,
O ∅ 

χ ∈ S ′ w 2 a 1 
by Claim 17. Hence, S ′ w 2 a 1 

� χ by the Truth axiom 

and the Modus Ponens inference rule. Therefore, χ ∈ S ′ w 2 a 1 
because 

S ′ w 2 a 1 
is a maximal consistent set. 

Case 4 : a 1 = β. The assumption R Y χ ∈ S ′ w 1 a 1 
of the claim implies 

that S ′ w 1 a 1 
� χ by Lemma 5. Thus, χ ∈ S ′ w 1 a 1 

because S ′ w 1 a 1 
is a maxi- 

mal consistent set. Then, χ ∈ H by equation ( 33 ) and the assumption 
a 1 = β of the case. Therefore, χ ∈ S ′ w 2 a 1 

again by equation ( 33 ) and 
the assumption a 1 = β of the case. 

Case 5 : w 2 = α, w 1 < α, a 1 < β, and Y ⊆ X. Then, any path
from the node (w 1 , a 1 ) to the node (w 2 , a 2 ) must go through the

node (u, b) , see Fig. 9 . Hence, the assumption (w 1 , a 1 ) 
Y 
� (w 2 , a 2 )

in T ′ of the claim implies that 

(w 1 , a 1 ) 
Y 
� (u, b) in T ′ . (36) 

Hence, by Claim 15, the assumption (u, b) ∈ α × β of the lemma,
and the assumptions w 1 < α and a 1 < β of the case, 

(w 1 , a 1 ) 
Y 
� (u, b) in T. (37) 

We further split this case into two subcases: 
Case 5A : a 1 = b. The assumption R Y χ ∈ S ′ w 1 a 1 

of the claim im- 
plies S ′ w 1 a 1 

� O Y R Y χ by the Introspection of De Re Knowledge ax- 
iom and the Modus Ponens rule. Hence, O Y R Y χ ∈ S ′ w 1 a 1 

because 
S ′ w 1 a 1 

is a maximal consistent set. Thus, O Y R Y χ ∈ S ′ ub by Claim 

17, statement ( 36 ) and the assumption a 1 = b of Case 5A. Then,
O Y R Y χ ∈ S ub by equation ( 33 ) and the assumption (u, b) ∈ α × β

of the lemma. Hence, S ub � R Y χ by the Truth axiom and the Modus 
Ponens inference rule. Thus, S ub � R X χ by the Monotonicity axiom,
the Modus Ponens inference rule, and the assumption X ⊆ Y of Case 
5. Then, R X χ ∈ S ub because S ub is a maximal consistent set. Hence,
χ ∈ G 

− ⊆ G by equation ( 32 ). Thus, χ ∈ S ′ w 2 a 1 
by equation ( 33 ),

the assumption w 2 = α of Case 5 and the assumption a 1 = b of 
Case 5A. 

Case 5B : a 1 � = b. The assumption R Y χ ∈ S ′ w 1 a 1 
of the claim im-

plies R Y χ ∈ S w 1 a 1 by equation ( 33 ) and the assumptions w 1 < α and 
a 1 < β of Case 5. Hence, χ ∈ S u,a 1 by item 2(d) of Definition 7 and 
statement ( 37 ). Therefore, χ ∈ S w 2 ,a 1 by equation ( 33 ), the assump- 
tions w 2 = α and a 1 < β of Case 5 and the assumption a 1 � = b of
Case 5B. 

Finally, we verify condition 2(a) of Definition 7. 

Claim 21. 
If ! Y ∈ S ′ w 1 a 1 

and (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ , then a 1 = a 2 

for each dataset Y ⊆ V , each w 1 , w 2 ≤ α + 1 and each 
a 1 , a 2 ≤ β + 1 . 

Proof of Claim . 
At least one of the following three cases must take place, see Fig. 9 : 

Case 1 : (w 1 , a 1 ) = (w 2 , a 2 ) . Then, a 1 = a 2 . 
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Case 2 : w 1 , w 2 < α and a 1 , a 2 < β. Then, the assumption

(w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ implies that (w 1 , a 1 ) 

Y 
� (w 2 , a 2 ) in T by

laim 15. Also, the assumption ! Y ∈ S ′ w 1 a 1 
implies ! Y ∈ S w 1 a 1 by

quation ( 33 ). Therefore, a 1 = a 2 by item 2(a) of Definition 7. 
Case 3 : The simple path between the nodes (w 1 , a 1 ) and (w 2 , a 2 )

oes through the node (u, b) . Then, 

(w 1 , a 1 ) 
Y 
� (u, b) in T ′ , (38) 

Y ⊆ X. (39) 

y the assumption (w 1 , a 1 ) 
Y 
� (w 2 , a 2 ) in T ′ of the claim. At the

ame time, the assumption ! Y ∈ S ′ w 1 a 1 
of the claim implies that

 

′ 
w 1 a 1 

� D Y ! Y by the Introspection of the Traceability axiom and the
odus Ponens inference rule. Hence, D Y ! Y ∈ S ′ w 1 a 1 

because S ′ w 1 a 1 
is

 maximal consistent set. Thus, D Y ! Y ∈ S ′ ub by statement ( 38 ) and
laim 19. Then, S ′ ub � ! Y by Lemma 5. Thus, S ′ ub � ! X by the Mono-

onicity axiom, statement ( 39 ) and the Modus Ponens inference rule.
hen, ! X ∈ S ′ ub because S ′ ub is a maximal consistent set. Therefore,
 X ∈ S ub by equation ( 33 ) and the assumption (u, b) ∈ α × β of the
emma, which contradicts the assumption ! X / ∈ S ub of the lemma. �

This completes the proof of the lemma. �
For any tuples of sets (A 1 , . . . , A n ) and (B 1 , . . . , B n ) of the same

ength, let (A 1 , . . . , A n ) � (B 1 , . . . , B n ) if A i ⊆ B i for each i ≤ n . For
ny infinite chain of tuples 

(A 

1 
1 , . . . , A 

1 
n ) � (A 

2 
1 , . . . , A 

2 
n ) � (A 

3 
1 , . . . , A 

3 
n ) � . . . 

y 
⋃ 

i (A 

i 
1 , . . . , A 

i 
n ) we mean the tuple ( 

⋃ 

i A 

i 
1 , . . . , 

⋃ 

i A 

i 
n ) . Note that,

y Definition 7, each loaded Cartesian tree is a tuple (α, β, E, �, S )
here α and β are ordinals, E is a set of edges, � and S are

abeling functions. Following the set theory tradition, we view
rdinals and functions as sets. The next lemma follows from
efinition 7. 
emma 12. 
or any infinite chain of loaded trees T 1 � T 2 � T 3 � . . . , if loaded
ree T i +1 is an extension of the loaded tree T i for each i ≥ 1 , then 

⋃ 

i T i 
s a loaded tree that extends each of the loaded trees T 1 , T 2 , . . . . 

Intuitively, Definition 9 requires a complete loaded tree to have
o “deficiencies”. It is convenient to talk about each such deficiency
eparately. To be able to do this, below we introduce the notion of

(u, b, ψ ) -complete loaded tree. 

efinition 10. 
or any loaded Cartesian tree T = (α, β, E, �, S ) , any integers u < α

nd b < β, and any formula ψ ∈ �, tree T is (u, b, ψ ) -complete if the
ollowing conditions are satisfied: 

(1) if formula ψ has the form ! X and ! X / ∈ S ub , then is there is

(w, a ) ∈ α × β such that (u, b) 
X 
� (w, a ) and b � = a , 

(2) if formula ψ has the form O X ϕ and O X ϕ / ∈ S ub , then there is

(w, b) ∈ α × β such that (u, b) 
X 
� (w, b) and ϕ / ∈ S wb , 

(3) if formula ψ has the form D X ϕ and D X ϕ / ∈ S ub , then there is

(w, a ) ∈ α × β such that (u, b) 
X 
� (w, a ) and ϕ / ∈ S wa , 

(4) if formula ψ has the form R X ϕ and R X ϕ / ∈ S ub , then there is

(w, a ) ∈ α × β such that (u, b) 
X 
� (w, a ) and ϕ / ∈ S wb . 

The next lemma follows from Definition 8 and Definition 10. 

emma 13. 
f a loaded Cartesian tree T is (u, b, ψ ) -complete, then any extension
f tree T is also (u, b, ψ ) -complete. 
The lemma below follows from Definition 9 and Definition 10. 
emma 14. 

f a loaded Cartesian tree T = (α, β, E, �, S ) is (u, b, ψ ) -complete for
ll integers u < α and b < β and each formula ψ ∈ �, then tree T is
omplete. 

emma 15. 
or any finite loaded Cartesian tree T = (α, β, E, �, S ) , any integers
 < α and b < β, and any formula ψ ∈ �, if tree T is not (u, b, ψ ) -
omplete, then there is a finite (u, b, ψ ) -complete extension of tree
 . 

roof. 
ote that S ub � ⊥ because set S ub is consistent. Then, S ub � D X ⊥ and
 ub � R X ⊥ by Lemma 5 applied contrapositively. Thus, 

D X ⊥ / ∈ S ub and R X ⊥ / ∈ S ub . (40)

o finish the proof of the lemma, we consider the cases corresponding
o conditions 1-4 of Definition 10 separately. 

Case 1: suppose that formula ψ has the form ! X and ! X / ∈ S ub .
ence, by Lemma 11 and statement ( 40 ), there is an extension T ′ =

(α + 1 , β + 1 , E 

′ , � ′ , S ′ ) of tree T such that ( u, b) 
X 
� ( α, β) in tree T ′ .

hus, T ′ is a (u, b, ψ ) -complete extension of tree T by Definition 10.
Case 2: suppose formula ψ has the form O X ϕ and O X ϕ / ∈ S ub .

hen, by Lemma 10 there is an extension T ′ = (α + 1 , β, E 

′ , � ′ , S ′ )
f tree T such that ( u, b) 

X 
� ( α, b) in tree T ′ and ϕ / ∈ S ′ 

αb . Thus, T ′

s a (u, b, ψ ) -complete extension of tree T by Definition 10. 
Case 3: suppose formula ψ has the form D X ϕ and D X ϕ / ∈ S ub . We

urther slit this case into two subcases. 
Case 3A: ! X ∈ S ub . The assumption D X ϕ / ∈ S ub of Case 3 implies

 ub � D X ϕ because S ub is a maximal consistent set. Thus, it follows
hat S ub � O X ϕ by the Traceable Data axiom applied contraposi-
ively and the assumption ! X ∈ S ub of Case 3A. Hence, O X ϕ / ∈ S ub

ecause S ub is a maximal consistent set. Then, by Lemma 10 there is

n extension T ′ = (α + 1 , β, E 

′ , � ′ , S ′ ) of tree T such that (u, b) 
X 
�

(α, b) in tree T ′ and ϕ / ∈ S ′ 
αb . Thus, T ′ is a (u, b, ψ ) -complete exten-

ion of tree T by Definition 10. 
Case 3B: ! X / ∈ S ub . Hence, by the assumption D X ϕ / ∈ S ub of Case

, the part R X ⊥ / ∈ S ub of statement ( 40 ), and Lemma 11, there is an

xtension T ′ = (α + 1 , β + 1 , E 

′ , � ′ , S ′ ) of tree T such that (u, b) 
X 
�

(α, β) in tree T ′ and ϕ / ∈ S ′ αβ. Thus, T ′ is a (u, b, ψ ) -complete exten-
ion of tree T by Definition 10. 

Case 4: suppose formula ψ has the form R X ϕ and R X ϕ / ∈ S ub .
imilar to the previous case, we further slit this case into two sub-
ases. 

Case 4A: ! X ∈ S ub . By applying the argument similar to the one
n Case 3A, but using the form ! X → (O X → R X ) of the Traceabil-
ty axiom instead of the form ! X → (O X → D X ) , one can conclude
hat there is an extension T ′ = (α + 1 , β, E 

′ , � ′ , S ′ ) of tree T such

hat ( u, b) 
X 
� ( α, b) in tree T ′ and ϕ / ∈ S ′ 

αb . Thus, T ′ is a (u, b, ψ ) -
omplete extension of tree T by Definition 10. 

Case 4B: ! X / ∈ S ub . Thus, by the assumption R X ϕ / ∈ S ub of Case
, the part D X ⊥ / ∈ S ub of statement ( 40 ), and Lemma 11, there is an

xtension T ′ = (α + 1 , β + 1 , E 

′ , � ′ , S ′ ) of tree T such that (u, b) 
X 
�

(α, β) in tree T ′ and ϕ / ∈ S ′ 
αb . Therefore, T ′ is a (u, b, ψ ) -complete

xtension of tree T by Definition 10. �
heorem 5 (extension). 
ny finite loaded Cartesian tree can be extended to a complete loaded
artesian tree. 

roof. 
et T be a finite loaded Cartesian tree. To prove the theorem, we will
onstruct an infinite chain of finite loaded Cartesian trees T = T 1 �
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T 2 � T 3 � . . . such that T i +1 is an extension of tree T i for each inte- 
ger i ≥ 1 . Toward the construction of this chain, consider an enumer- 
ation (u 1 , b 1 , ψ 1 ) , (u 2 , b 2 , ψ 2 ) , . . . of all triples (u, b, ψ ) such that u
and b are nonnegative integer numbers and ψ ∈ � is a formula. 

We define chain T = T 1 � T 2 � T 3 � . . . recursively. Suppose 
that tree T k = (αk , βk , E k , � k , S k ) is already defined. If T k is (u, b, ψ ) -
complete for each u < αk , b < βk , and ψ ∈ �, then let T k +1 = T k .
Otherwise, let i min be the smallest i such that u i < αk , b i < βk , and 
T k is not (u i , b i , ψ i ) -complete. By Lemma 15, tree T k can be extended 
to a finite (u i , b i , ψ i ) -complete tree T k +1 . 

Let T ′ = ∪ k ≥1 T k = (α′ , β′ , E 

′ , � ′ , S ′ ) . Note that T ′ is an extension
of all trees T k by Lemma 12. T ′ is (u, b, ψ ) -complete for each u < α′ 

and b < β′ by the construction of the chain T = T 1 � T 2 � T 3 � . . . 

and Lemma 13. Therefore, T ′ is complete by Lemma 14. �

Canonical model 

In this subsection, we define a canonical model based on a complete 
loaded Cartesian tree. Recall that we think about such a tree as a 
matrix. In our construction, the rows of the matrix become possi- 
ble worlds of the model, and the columns of the matrix become the 
agents. 

Definition 11. 
For each complete loaded Cartesian tree T = (α, β, E, �, S ) , let 
canonical model M (T ) be defined as the tuple (α, β, {∼} x ∈ V , π ) , such 
that 

(1) (w 1 , a 1 ) ∼x (w 2 , a 2 ) if (w 1 , a 1 ) 
{ x } 
� (w 2 , a 2 ) for each x ∈ V ,

each w 1 , w 2 ∈ α, and each a 1 , a 2 ∈ β, 
(2) π (p) = { (w, a ) ∈ α × β | p ∈ S wa } for each p. 

Lemma 16. 
(w 1 , a 1 ) ∼X (w 2 , a 2 ) iff (w 1 , a 1 ) 

X 
� (w 2 , a 2 ) , for each w 1 , w 2 ∈ α,

each a 1 , a 2 ∈ β, and each dataset X ⊆ V . 

Proof. 
By the definition, the statement (w 1 , a 1 ) ∼X (w 2 , a 2 ) is equivalent 
to the statement that (w 1 , a 1 ) ∼x (w 2 , a 2 ) for each data variable 
x ∈ X. By item 1 of Definition 11, the last statement is equivalent 

to the statement that (w 1 , a 1 ) 
{ x } 
� (w 2 , a 2 ) for each data variable 

x ∈ X. By Definition 6, the previous statement is equivalent to the 
statement that for each x ∈ X there is a simple path between nodes 
(w 1 , a 1 ) and (w 2 , a 2 ) such that all edges along this path are labeled 
with date variable x . Note that in any tree there is a unique simple 
path between any two nodes. Thus, the last statement is equivalent 
to the statement that all edges along this unique simple path between 
nodes (w 1 , a 1 ) and (w 2 , a 2 ) are labeled with each variable from set 
X. Finally, by Definition 6, the previous statement is equivalent to 

(w 1 , a 1 ) 
X 
� (w 2 , a 2 ) . 

�
Lemma 17. 
w, a � ϕ iff ϕ ∈ S wa , for any formula ϕ ∈ �, any world w ∈ α, and
any agent a ∈ β of any canonical model M (T ) based on a complete 
loaded Cartesian tree T = (α, β, E, �, S ) . 

Proof. 
We prove the statement of the lemma by induction on structural com- 
plexity of formula ϕ. If formula ϕ is an atomic proposition, then the 
statement of the lemma follows from item 1 of Definition 2 and item 

2 of Definition 11. The case when formula ϕ is a negation or a dis- 
junction follows from items 3 and 4 of Definition 2 and the fact that 
S wa is a maximal consistent set in the standard way. 

Suppose that formula ϕ has the form ! X. 
(⇒ ) : Assume that ! X / ∈ S wa . Then, by item 1 of Definition 9,

there is a node (w 

′ , a ′ ) such that ( w, a ) 
X 
� ( w 

′ , a ′ ) and a � = a ′ . Hence,
( w, a ) ∼X ( w 

′ , a ′ ) by Lemma 16. Therefore, w, a � ! X by item 2 of
Definition 2. 

(⇐ ) : Assume that w, a � ! X. Then, by item 2 of Definition 2,
there exist a world w 

′ and an agent a ′ such that ( w, a ) ∼X ( w 

′ , a ′ ) and

a � = a ′ . Hence, (w, a ) 
X 
� (w 

′ , a ′ ) by Lemma 16. Therefore, ! X / ∈ S wa 

by item 2(a) of Definition 7 applied contrapositively. 
Suppose that formula ϕ has the form O X ψ . 
(⇒ ) : Assume that O X ψ / ∈ S wa . Then, by item 2 of Definition 9,

there is a node (w 

′ , a ) such that ( w, a ) 
X 
� ( w 

′ , a ) and ψ / ∈ S w 

′ a .
Hence, ( w, a ) ∼X ( w 

′ , a ) by Lemma 16 and w 

′ , a � ψ by the induc-
tion hypothesis. Therefore, w, a � O X ψ by item 5 of Definition 2. 

(⇐ ) : Suppose that O X ψ ∈ S wa . Consider any world w 

′ such that
( w, a ) ∼X ( w 

′ , a ) . By item 5 of Definition 2, it suffices to show that
w 

′ , a � ψ . 

The assumption ( w, a ) ∼X ( w 

′ , a ) implies ( w, a ) 
X 
� ( w 

′ , a ) by
Lemma 16. Then, O X ψ ∈ S w 

′ a by item 2(b) of Definition 7 and the 
assumption O X ψ ∈ S wa . Hence, S w 

′ a � ψ by the Truth axiom and the 
Modus Ponens inference rule. Thus, ψ ∈ S w 

′ a because S w 

′ a is a maxi- 
mal consistent set. Therefore, w 

′ , a � ψ by the induction hypothesis.
Suppose that formula ϕ has the form D X ψ . 
(⇒ ) : Assume that D X ψ / ∈ S wa . Then, by item 3 of Definition 9,

there is a node (w 

′ , a ′ ) such that ( w, a ) 
X 
� ( w 

′ , a ′ ) and ψ / ∈ S w 

′ a ′ .
Hence, ( w, a ) ∼X ( w 

′ , a ′ ) by Lemma 16 and w 

′ , a ′ � ψ by the induc-
tion hypothesis. Therefore, w, a � D X ψ by item 6 of Definition 2. 

(⇐ ) : Suppose that D X ψ ∈ S wa . Consider any world w 

′ and any
agent a ′ such that ( w, a ) ∼X ( w 

′ , a ′ ) . By item 6 of Definition 2, it
suffices to show that w 

′ , a ′ � ψ . 

The assumption ( w, a ) ∼X ( w 

′ , a ′ ) implies ( w, a ) 
X 
� ( w 

′ , a ′ ) by
Lemma 16. Then, D X ψ ∈ S w 

′ a ′ by item 2(c) of Definition 7 and the as-
sumption D X ψ ∈ S wa . Then, S w 

′ a ′ � ψ by Lemma 5. Thus, ψ ∈ S w 

′ a ′ 

because S w 

′ a ′ is a maximal consistent set. Therefore, w 

′ , a ′ � ψ by 
the induction hypothesis. 

Suppose that formula ϕ has the form R X ψ . 
(⇒ ) : Assume that R X ψ / ∈ S wa . Then, by item 4 of Definition 9,

there is a node (w 

′ , a ′ ) such that ( w, a ) 
X 
� ( w 

′ , a ′ ) and ψ / ∈ S w 

′ a .
Hence, ( w, a ) ∼X ( w 

′ , a ′ ) by Lemma 16 and w 

′ , a � ψ by the induc-
tion hypothesis. Therefore, w, a � R X ψ by item 7 of Definition 2. 

(⇐ ) : Suppose that R X ψ ∈ S wa . Consider any world w 

′ and any
agent a ′ such that ( w, a ) ∼X ( w 

′ , a ′ ) . By item 7 of Definition 2, it
suffices to show that w 

′ , a � ψ . 

The assumption ( w, a ) ∼X ( w 

′ , a ′ ) implies ( w, a ) 
X 
� ( w 

′ , a ′ ) by
Lemma 16. Then, ψ ∈ S w 

′ a by item 2(d) of Definition 7 and the as- 
sumption R X ψ ∈ S wa . Therefore, w 

′ , a � ψ by the induction hypoth- 
esis. �
Theorem 6 (strong completeness). 
For any set of formulae � ⊆ � and any formula ϕ ∈ �, if � � ϕ, then 
there is a world w ∈ W and an agent a ∈ A of some model, such that
w, a � γ for each formula γ ∈ � and w, a � ϕ. 

Proof. 
The assumption � � ϕ implies that the set � ∪ {¬ ϕ} is consistent.
Let � be any maximal consistent extension of this set. Consider 
the loaded Cartesian tree (1 , 1 , ∅ , ∅ , S ) , where S 00 = �. In other
words, the loaded cartesian tree consists of a single node (0,0) labeled 
with set �. Because the set of edges is empty, the tuple (1 , 1 , ∅ , ∅ )
is a Cartesian tree by Definition 5. Thus, to prove that the tuple 
(1 , 1 , ∅ , ∅ , S ) is a loaded Cartesian tree, it suffices to show that con-
ditions 2(a)-(d) of Definition 7 are satisfied. Conditions 2(a)-(c) are 
vacuously satisfied because the tree has only one node. To verify con- 
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ition 2(d), it suffices to show that if R X ψ ∈ S 00 , then ψ ∈ S 00 . In-
eed, the assumption R X ψ ∈ S 00 implies S 00 � ψ by Lemma 5 and
he Modus Ponens inference rule. Therefore, ψ ∈ S 00 because S 00 is
 maximal consistent set. 

By Theorem 5, tree (1 , 1 , ∅ , ∅ , S ) can be extended to a complete
oaded Cartesian tree T ′ = (α, β, E, �, S ′ ) . Note that S ′ 00 = S 00 =

⊇ � ∪ {¬ ϕ} by item 5 of Definition 8. Consider canonical model
 (T ′ ) . By Lemma 17, we have 0 , 0 � γ for each γ ∈ � and 0 , 0 � ¬ ϕ

ecause � ∪ {¬ ϕ} ⊆ S ′ 00 . Note that the statement 0 , 0 � ¬ ϕ implies
 , 0 � ϕ by item 3 of Definition 2. 

�

uture work: k-anonymity 

he term “k -anonymity” is usually used to refer to a setting where
ome information about an agent not only cannot be used to identify
he agent precisely but it even cannot be used to identify a group of k
gents to which the agent belongs. This concept has been extensively
tudied in the database literature [ 32 ,33 ]. It also was investigated by
ogicians in the context of knowledge [ 34 ] and actions [ 35 ]. In the
etting of our article, there are at least two different notions that
apture different aspects of k -anonymity. 

First, we can generalize our traceability expression ! X to k -
racability by modifying item 2 of Definition 2 as follows: 

w, a � ! k X, when there are agents a 1 , . . . , a k ∈ A such that for
ac h w orld u ∈ W and each agent b ∈ A , if (w, a ) ∼X (u, b) , then b ∈
 a 1 , . . . , a k } . 

Note that ! 1 X is equivalent to the traceability expression ! X we
tudied earlier in this article. The Monotonicity and the Introspection
f Traceability axioms are also valid for k -tracability: 

! k X → ! k Y, if X ⊆ Y , ! k X → D X ! k X. 

Before discussing the other notion related to k -anonymity, let us
o back to our de re modality. Recall from statement ( 4 ) that in world
 1 , knowing age , city , and reply of agent a informs de re knowledge

hat agent a is pregnant. Let us now suppose that, in the same world
 1 , instead of the questionnaire filled in by agent a we are looking
t the questionnaire filled in by her husband, agent b. Although these
wo questionnaires are filled identically , see Fig. 2 , agent b’s ques-
ionnaire, of course, does not inform the de re knowledge that he is
regnant: 

w 1 , b � R age,city,reply “is pregnant”. 

evertheless, his questionnaire does inform de re knowledge that his
ife, agent a , is pregnant. In other words, although the data in his
uestionnaire does not violate his own privacy, it does violate the
rivacy of his wife. The language of our original logical system can-
ot express this. However, one can introduce a new modality R 

∃ (“de
e knowledge about somebody”) that does it. The semantics of this
odality can be defined as follows: 

w, a � R 

∃ 
X ϕ, if there is a agent a ′ ∈ A such that for each world

 ∈ W and each agent b ∈ A , if ( w, a ) ∼X ( u, b) , then u, a ′ � ϕ. 
In our example, 

w 1 , b � R 

∃ 
age,city,reply “is pregnant”. 

ome properties of the modality R 

∃ are expected: 

R X ϕ → R 

∃ 
X ϕ, R 

∃ 
X ϕ → R 

∃ 
Y ϕ if X ⊆ Y . 

mong the unexpected ones is perhaps the introspection: 

R 

∃ 
X ϕ → D X R 

∃ 
X ϕ. 
ote that unlike the corresponding axiom for modality R , the intro-
pection property for modality R 

∃ is stronger , because it is true for
e dicto knowledge, not just the overt knowledge. 

Finally, let us get back to k -anonymity. Imagine a different survey
here an agent is asked if one of the agent’s children is getting mar-

ied. Suppose that an agent a , who has k adult children, fills in the
urvey and answers this question positively. If the survey has enough
nformation to trace the identity of the agent, then the dataset X in
he survey informs the knowledge that one of the k children is getting
arried. We write this as R 

k 
X “is getting married”. In general, modal-

ty R 

k can be defined as follows: 
w, a � R 

k 
X ϕ, if there are agents a 1 , . . . , a k ∈ A such that for each

orld u ∈ W and each agent b ∈ A , if (w, a ) ∼X (u, b) , then u, a i � ϕ

or some i ≤ k . 
Observe that the statement ¬ R 

k 
X ϕ means that dataset X does not

rovide enough information to identify a group of k agents one of
hich has property ϕ. Thus, just like the expression ¬ ! k X it cap-

ures an aspect of k -anonymity. Below are some of the properties of
odality R 

k : 

R 

1 
X ϕ ↔ R 

∃ 
X ϕ, R 

k 
X ϕ → D X R 

k 
X ϕ, 

R 

k 
X ϕ → R 

k 
Y ϕ if X ⊆ Y , R 

k 
X ϕ → R 

� 
Y ϕ if � ≤ k . 

 complete axiomatization of the interplay between the expression
 

k X and the modality R 

k 
X remains an open question. 

onclusion 

n this article, we observed that what one “knows” about an agent
ased on the agent’s data can be defined in three different ways. We
alled them de re, de dicto, and overt forms of knowledge. Out of
hese three forms, only de dicto knowledge preserves the privacy of
he agent. Our main technical results are the mutual undefinability
f these three forms of knowledge in an egocentric setting even when
he traceability expression ! is used and a sound and complete logical
ystem describing the interplay between the three forms of knowledge
nd the traceability expression. 

Finally, in the “Future work” section, we discuss how our
pproach can be generalized to capture two forms of k -
nonymity. 
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Appendix 

To keep the article self-contained, in this appendix , we give the proofs of the 
lemmas not proven in the main part of the article. We place them here because 
they are either straightforward or well-known. 

Lemma 18. 
The inference rule ϕ 

� X ϕ 
, where � ∈ { O , R } , is derivable. 

Proof. 
Suppose that � ϕ. Thus, � D X ϕ by the Necessitation inference rule. Hence,
� O X ϕ by the Overt Knowledge axiom and the Modus Ponens inference rule.
This proves that the rule ϕ 

O X ϕ 
is derivable. 

To prove derivability of the rule ϕ 

R X ϕ 
, assume again that � ϕ. Thus, � D ∅ 

ϕ

by the Necessitation inference rule. Hence, � R ∅ 

ϕ by the Data-Free Knowl- 
edge axiom and the Modus Ponens inference rule. Therefore, � R X ϕ by the 
Monotonicity axiom and the Modus Ponens inference rule. �
Lemma 6 . 

� � X ϕ → � X � X ϕ, where � ∈ { O , D } . 
Proof. 
Formula � X ¬ � X ϕ → ¬ � X ϕ is either an instance of the Truth axiom (if � is
modality O ) or Lemma 5 (if � is modality D ). Thus, by the law of contraposi- 
tion, � � X ϕ → ¬ � X ¬ � X ϕ. Hence, taking into account the following instance 
of the Negative Introspection axiom: ¬ � X ¬ � X ϕ → � X ¬ � X ¬ � X ϕ, we have

� � X ϕ → � X ¬ � X ¬ � X ϕ. (41) 

At the same time, ¬ � X ϕ → � X ¬ � X ϕ is an instance of the Negative Intro- 
spection axiom. Thus, � ¬ � X ¬ � X ϕ → � X ϕ by the law of contrapositive in 
the propositional logic. Hence, � � X (¬ � X ¬ � X ϕ → � X ϕ) by either the Ne- 
cessitation inference rule (if � is modality D ) or Lemma 18 (if � is modality 
O ). Thus, by the Distributivity axiom and the Modus Ponens inference rule,
� � X ¬ � X ¬ � X ϕ → � X � X ϕ. The latter, together with statement (), implies the
statement of the lemma by propositional reasoning. �
Lemma 19 (deduction). 
If �, ϕ � ψ , then � � ϕ → ψ . 

Proof. 
Suppose that sequence ψ 1 , . . . , ψ n is a proof from set � ∪ { ϕ} and the theorems 
of our logical system that uses the Modus Ponens inference rule only. In other 
words, for each k ≤ n , either 

(1) � ψ k , or 
(2) ψ k ∈ �, or 
(3) ψ k is equal to ϕ, or 
(4) there are i, j < k such that formula ψ j is equal to ψ i → ψ k . 

It suffices to show that � � ϕ → ψ k for each k ≤ n . We prove this by in-
duction on k by considering the four cases above separately. 

Case 1: � ψ k . Note that ψ k → (ϕ → ψ k ) is a propositional tautology, and
thus, is an axiom of our logical system. Hence, � ϕ → ψ k by the Modus Ponens 
rule. Therefore, � � ϕ → ψ k . 

Case 2: ψ k ∈ �. Note again that ψ k → (ϕ → ψ k ) is a propositional tau- 
tology, and thus, is an axiom of our logical system. Therefore, by the Modus 
Ponens rule, � � ϕ → ψ k . 

Case 3: formula ψ k is equal to ϕ. Thus, ϕ → ψ k is a propositional tautol- 
ogy. Therefore, � � ϕ → ψ k . 

Case 4: formula ψ j is equal to ψ i → ψ k for some i, j < k . Thus, by the
induction hypothesis, � � ϕ → ψ i and � � ϕ → (ψ i → ψ k ) . Note that for- 
mula (ϕ → ψ i ) → ((ϕ → (ψ i → ψ k )) → (ϕ → ψ k )) is a propositional tautol-
ogy. Therefore, � � ϕ → ψ k by applying the Modus Ponens inference rule 
twice. �
Lemma 8 . 

If ϕ 1 , . . . , ϕ n � ψ , then � X ϕ 1 , . . . , � X ϕ n � � X ψ , where � ∈ { O , D , R } . 
Proof. 
The assumption ϕ 1 , . . . , ϕ n � ψ , by Lemma 19 applied n times, implies that 

� ϕ 1 → (ϕ 2 → . . . (ϕ n → ψ ) . . . ) . 
Thus, by either the Necessitation inference rule (if � is the modality O ) or by
Lemma 18 (if � is one of the modalities D and R ), 

� � X (ϕ 1 → (ϕ 2 → . . . (ϕ n → ψ ) . . . )) . 

Hence, by the Distributivity axiom and the Modus Ponens rule, 

� � X ϕ 1 → � X (ϕ 2 → . . . (ϕ n → ψ ) . . . ) . 

Then, again by the Modus Ponens rule, 

� X ϕ 1 � � X ( ϕ 2 → . . . ( ϕ n → ψ ) . . . ) . 

Therefore, � X ϕ 1 , . . . , � X ϕ n � � X ψ by applying the previous steps (n − 1)
more times. �
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