
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder/s. The content of the thesis and accompanying research data (where applicable)
must not be changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the
University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Temporal Dynamics in Emergent
Communication

by

Olaf Lipinski
BSc

ORCiD: 0000-0002-2023-7617

A thesis for the degree of
Doctor of Philosophy

February 2025

http://www.southampton.ac.uk
http://orcid.org/0000-0002-2023-7617

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

Temporal Dynamics in Emergent Communication

by Olaf Lipinski

Emergent communication is an approach designed to enhance the communicative
capabilities of agents in multiagent systems. Unlike traditional multiagent
communication fields, emergent communication allows agents to learn both the
structure and content of their communication protocol with minimal constraints on
character sets or vocabularies. This flexibility enables the development of more efficient,
adaptable, and environment-specific languages compared to hand-crafted protocols. In
this thesis, we identify a significant gap in the existing literature on emergent
communication, specifically the lack of exploration of temporal dynamics of emergent
languages. To address this, we investigate three dimensions of temporality in emergent
communication. First, we examine the influence of communication duration on agent
behaviour in a social deduction game called Werewolf, by allowing agents to
communicate for varying lengths of time. Our findings reveal that agents develop
unexpected strategies and that our modifications enhance their ability to converge on a
common language. Second, we study the emergence of temporal references, or words
indicating relative positions in time. We introduce a novel environment where agents
must communicate about temporal relationships within a dataset. The results
demonstrate that agents can learn to reference different time steps to solve the
environment successfully. Third, we explore how agents communicate about local
spatio-temporal relationships within a single observation. The results not only show
that the agents learn to communicate about such relationships, but also that this
language can be human interpretable. The contributions presented in this thesis pave
the way for more efficient and adaptable protocols in multiagent communicative
settings.

http://www.southampton.ac.uk

v

Contents

List of Figures ix

List of Tables xi

Declaration of Authorship xiii

Acknowledgements xv

Abbreviations xvii

1 Introduction 1
1.1 Emergent Communication . 1
1.2 Time in Emergent Communication . 3
1.3 Research Aims . 4
1.4 Contributions and Novelty . 5
1.5 Thesis Outline . 6

2 Literature Review 7
2.1 Linguistics Background for Emergent Communication 7
2.2 Language Emergence with Deep Learning 9
2.3 Emergent Language Properties . 9

2.3.1 Compositionality . 9
2.3.2 Language Efficiency . 10
2.3.3 Generalisation . 11
2.3.4 Understudied Properties . 12

2.4 Quantifying the Properties of Emergent Languages 13
2.4.1 Measuring Compositionality . 13
2.4.2 Analysing Semantics . 14

2.5 Emergent Communication Environments 15
2.5.1 Referential Games . 15
2.5.2 Werewolf . 16

2.6 Agent Architectures . 18
2.7 Agent Optimisation . 19
2.8 Conclusions . 20

3 Interaction Time in Dialogue 23
3.1 Emergent Communication in Werewolf 23
3.2 Werewolf Environment . 24

vi CONTENTS

3.3 Architecture . 26
3.4 Interaction Time Experiments . 27

3.4.1 Hypotheses . 27
3.4.2 Convergence Speed . 27
3.4.3 Win Rate . 27
3.4.4 Comparison to the Original Environment 29
3.4.5 Language Analysis . 30

3.5 Discussion . 31
3.5.1 Strategy Analysis . 32
3.5.2 Convergence Speed . 32
3.5.3 Win Rate . 33
3.5.4 Failure Modes . 33

3.6 Limitations . 34
3.7 Conclusions . 35

4 Temporal References 37
4.1 Temporal References in Emergent Communication 37
4.2 Temporal Referential Games . 39

4.2.1 Definitions . 39
4.2.2 Temporal Logic . 40
4.2.3 Temporal Referential Games . 41

4.3 Agent Architectures . 43
4.3.1 Base Agent . 44
4.3.2 Temporal Agent . 44
4.3.3 TemporalR Agent . 46

4.4 Measuring Temporality and Compositionality 47
4.4.1 Temporality Metric . 47
4.4.2 Compositionality Metrics . 49

4.5 Temporal Referencing Experiments . 49
4.5.1 Hypotheses . 49
4.5.2 Agent Training . 50
4.5.3 Significance Analysis . 51
4.5.4 Task Accuracy . 51
4.5.5 Temporality Sanity Check . 51
4.5.6 Temporality Analysis . 51
4.5.7 Compositionality Analysis . 54
4.5.8 Generalisation Analysis . 54

4.6 Discussion . 55
4.6.1 Accuracy . 55
4.6.2 Compositionality . 56

4.7 Limitations . 56
4.8 Conclusion . 56

5 Spatio-temporal References 59
5.1 Spatio-temporal Referencing in Emergent Communication 59
5.2 Spatio-temporal Referential Game . 60

5.2.1 Referential Game Environment . 60

CONTENTS vii

5.2.2 Spatio-temporal Reference Formalisation 62
5.3 Agent Architecture . 64
5.4 Message Interpretability and Analysis using NPMI 65
5.5 Spatio-temporal Referencing Experiments 69

5.5.1 Emergence of non-compositional spatio-temporal references . . . 70
5.5.2 Emergence of compositional spatio-temporal references 70
5.5.3 Generalisation . 71
5.5.4 Evaluating interpretation validity and accuracy 72

5.6 Discussion . 74
5.7 Limitations . 75
5.8 Conclusion . 75

6 Discussion 77
6.1 Compositionality . 77
6.2 Efficiency . 78
6.3 Scalability . 79
6.4 Temporality . 80
6.5 Broader Impact . 81

7 Conclusion 83

Appendix A Werewolf 85
Appendix A.1 Training Details . 85
Appendix A.2 Statistical Significance Analysis 86

Appendix B Temporal Referential Games 89
Appendix B.1 Training Details . 89
Appendix B.2 Datasets Details . 91

Appendix B.2.1 Test Environments . 92
Appendix B.3 Accuracy Distributions . 93
Appendix B.4 Topographic Similarity Distributions 94

Appendix C Temporal Progression Games 95
Appendix C.1 Training Details . 95
Appendix C.2 Dataset Details . 95
Appendix C.3 NPMI Algorithm Descriptions 96

Glossary 103

References 105

ix

List of Figures

2.1 An illustration of the referential game environment. 16
2.2 Visual representation of the flow of the game of Werewolf. 17
2.3 The base architecture of EGG agents (Kharitonov et al., 2019). 18

3.1 Werewolf agent architecture. 26
3.2 Impact of the number of rounds on the convergence speed. 28
3.3 Impact of the voting plurality threshold on the convergence speed. . . . 28
3.4 Impact of the voting plurality threshold on the win rate. 29
3.5 Impact of the number of communication rounds on the win rate. 29
3.6 Most used unique message and its top ten distance-one adjacents versus

the villager win percentage. 31
3.7 Most used unique message versus the villager win percentage. 31
3.8 Impact of the number of communication rounds on the number of training

episodes. 34

4.1 Attribute-Value Object Representation . 40
4.2 Structure of the referential game and temporal referential game. 42
4.3 The Base GRU sender and receiver architectures. 44
4.4 The Temporal GRU sender and receiver architectures, with the temporal

modules highlighted in purple. 45
4.5 Examples of regular and temporal batching strategies. 46
4.6 The TemporalR GRU sender and receiver architectures, with the temporal

modules highlighted in purple. 47

5.1 Spatio-temporal referencing example. 63
5.2 The sender and receiver architectures. Adapted from (Lipinski et al., 2023). 65
5.3 Examples of the different types of message compositionality that are

possible to identify using the PMI algorithms. 67

Appendix A.1 Spearman correlation strength and its significance. 87

Appendix B.1 Number of target repetitions per dataset. 91
Appendix B.2 Accuracies for each network variant on all evaluation environ-

ments. 93
Appendix B.3 Topographic similarity scores for each network variant on all

evaluation environments. 94

xi

List of Tables

3.1 Results for both our and the original Brandizzi et al. (2021) environment. 30

4.1 Maximum value of the M⊖4 metric for each network/loss/training envi-
ronment combination. 52

4.2 Percentage of networks that develop temporal messages. 53

5.1 Average emergence and vocabulary coverage of all message types. . . . 71
5.2 Evaluation accuracy differences for shorter sequence lengths compared

to the training sequence lengths. 72
5.3 Accuracy improvements using the NPMI-based dictionary. 73
5.4 Example dictionary of the agents’ messages and their meanings 75

Appendix A.1 Training and Grid Search Parameters 85
Appendix A.2 Compute Resources . 86
Appendix A.3 Linear regression analysis. 86

Appendix B.1 Training and Grid Search Parameters 90
Appendix B.2 Compute Resources . 90
Appendix B.3 Example Inputs and Outputs for Always Same. 92
Appendix B.4 Example Inputs and Outputs for Never Same. 92

Appendix C.1 Compute resources . 95
Appendix C.2 Training and Grid Search Parameters 96
Appendix C.3 PMI Grid Search Parameters 96

xiii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: Lipinski et al. (2022); Lipinski (2023);
Lipinski et al. (2023, 2024)

Signed:.. Date:..................

xv

Acknowledgements

First, I would like to thank my supervisors, Tim Norman, Adam Sobey and Federico
Cerutti. Their guidance and support have been invaluable and have made me the
researcher I am today. The countless drafts that I have sent, and the many comments,
culminated in an incredible improvement in how I can understand and communicate
complex topics more clearly. I am truly grateful for their time, patience, and trust,
especially when the deadlines always seemed just around the corner.

I would also like to thank all my friends at the MINDS CDT — for the pub escapes from
deadlines, the deep discussions over drinks, and most importantly, for the true
friendships formed that, I hope, will last a lifetime.

I would also like to thank my family and friends in Poland. Their emotional support
has been invaluable, from reading my drafts despite being outside their field, to making
each return visit feel like I had never left.

Last but definitely not least, I would like to thank my partner, Elinor, whose
unwavering support and patience have been a blessing throughout my PhD. Her
willingness to listen to my research talks, despite working in a completely different
field, and her encouragement, during both victories and challenges, have made this
achievement possible.

It is through all your support that this work was made possible.

xvii

Abbreviations

AI Artificial Intelligence.

DRL Deep Reinforcement Learning.

EC Emergent Communication.

HAS Harris’ Articulation Scheme.

IoT Internet of Things.

LLM Large Language Model.

LLMs Large Language Models.

LTL Linear Temporal Logic.

ML Machine Learning.

NN Neural Networks.

NPMI Normalised Pointwise Mutual Information.

PLTL Past Linear Temporal Logic.

RG Referential Game.

RGs Referential Games.

RL Reinforcement Learning.

RLAIF Reinforcement Learning from AI Feedback.

RLHF Reinforcement Learning from Human Feedback.

TPG Temporal Progression Game.

TPGs Temporal Progression Games.

xviii Abbreviations

TRG Temporal Referential Game.

TRGs Temporal Referential Games.

VAE Variational Autoencoder.

VAEs Variational Autoencoders.

1

Chapter 1

Introduction

Machine Learning (ML), and more specifically, Neural Networks (NN) and Deep
Reinforcement Learning (DRL) have made strides of progress since the increased
interest in the techniques from 2012 (Maslej et al., 2024). They have since been used in a
variety of domains, from transcribing ancient texts (Assael et al., 2022) or control of
tokamak plasmas for improvements in fusion energy (Degrave et al., 2022) to
optimising the algorithms that are crucial components of our operating systems
(Mankowitz et al., 2023).

A subfield of ML recently experiencing unprecedented leaps in both neural network
abilities and funding, with over $25.2 billion invested in 2022 (Maslej et al., 2024), is
research into Large Language Models (LLMs). While mostly known for the GPT chatbot
models (Brown et al., 2020; Radford et al., 2018; OpenAI et al., 2023), LLMs are also used
to study aspects of human cognition and linguistic ability (e.g., Cheng et al., 2024; Yin
et al., 2024; Kuribayashi et al., 2024). While the study of LLMs bases the insights on
languages taught to the agents, our work also lies in a field at the intersection of ML
and linguistics that takes the opposite approach: Emergent Communication.

1.1 Emergent Communication

Emergent Communication (EC) is a subfield of multiagent communication research,
where instead of specifying the protocol, or language, that agents would use to
communicate, they are allowed to develop it from scratch. The agents control both the
structure and content of this protocol, developing a language through repeated
interaction in given tasks. In common with other subfields of Machine Learning,
Emergent Communication is experiencing a surge in interest in different emergent
language properties, such as the impact of different pressures and biases on the
emergent language (e.g., Tucker et al., 2022), the effect of agent and population structure

2 Chapter 1. Introduction

and homogeneity (e.g., Rita et al., 2022a), or the evolution of grammars and natural
language-like structures (e.g., Ueda et al., 2023).

The goal of such experiments is two-fold. Firstly, the field of EC aims to improve the
communication efficiency and interpretability of multiagent systems (Boldt and
Mortensen, 2024b; Rita et al., 2024). The emergent protocol is naturally optimised
through the way it is developed. As the language emerges in a specific environment, it
is naturally tailored to its observation space. Given that the agents can only perceive
their task-specific environment, they do not need to learn words that would refer to
irrelevant objects. Instead, the protocol can be more task specific, while still allowing for
generalisation to unseen observations within the task context (Rita et al., 2022b;
Auersperger and Pecina, 2022; Xu et al., 2022).

With advances in EC, we could expect improvements in terms of ad-hoc connectivity in
multiagent systems (Cope and McBurney, 2022), given that the language developed by
the agents is easily transferable (Li and Bowling, 2019). Ad-hoc connectivity would then
directly translate to many applications, such as communication in ad-hoc teams of
agents for autonomous vehicles or IoT (Cope and McBurney, 2022; Abudu and
Markham, 2020). Agents that can more easily teach others their language, will also
benefit from more effective communication themselves, as the language would be more
general and structured (Cogswell et al., 2019). A generalisable protocol will enable them
to adapt to new observations and environments (Silver et al., 2021), allowing the agents
to interact autonomously more easily. As more agents are equipped with the ability to
adapt and learn new emergent languages, the quality and efficiency of these
interactions would also improve (Baroni, 2020a).

With the appropriate pressures and reward structures, the observations that agents refer
to most will also have the shortest utterances (Rita et al., 2020), increasing their
bandwidth efficiency. Both of these properties mean that there are no redundant
phrases in the language, and that the agents can use their vocabulary as efficiently as
possible. Therefore, there is less need for a human to hand-code any optimised
protocols, also removing the need to account for all possible observations and their
corresponding descriptions for a given task (Silver et al., 2021).

Through analysing the emergence of different properties of language among agents, we
can attempt to understand the evolution and origins of human languages (Warstadt and
Bowman, 2022; Boldt and Mortensen, 2024b; Rita et al., 2024), learning what influences
may have shaped their structure, thanks to the relative ease of analysing and observing
the behaviour of neural networks as compared to human brains (Boldt and Mortensen,
2024b).

However, the applicability of insights from the field of EC is not limited to multiagent
communication or linguistics. Another aspect that Emergent Communication could
potentially enable is easier acquisition of human language, for either human-agent

1.2. Time in Emergent Communication 3

interaction (Baroni, 2020a), or for natural language processing (Yao et al., 2022;
Steinert-Threlkeld et al., 2022). EC has been shown to offer improvements in the latter
(Steinert-Threlkeld et al., 2022; Yao et al., 2022), where pre-training a natural language
model on an emergent communication dataset improves its performance on NLP tasks.
Emergent Communication has been shown to perform better than other systems in
terms of their linguistic ability (Baroni, 2020a), better learning of compositional
representations (Xu et al., 2022) and even better generalisation in recognising objects in
images (Feng et al., 2023).

EC has been applied to various domains, varying from Augmented Reality (Chen and
Guo, 2023), controlling flying base stations (Naoumi et al., 2023), task offloading in IoT
(Mostafa et al., 2024b), intent profiling (Mostafa et al., 2024a), and has even been applied
to help interpret fMRI data (Latheef et al., 2024). These advances demonstrate that EC
has a large potential impact on fields not related to multiagent communication, and
could improve other aspects of ML (Boldt and Mortensen, 2024b).

1.2 Time in Emergent Communication

A key feature of human communication is the ability to correctly reference the temporal
sequence of events. We use words that can refer to the past or future, specify when
certain actions have occurred, and take turns to achieve our goals. This ability
fundamentally shapes how we communicate and interact with others.

For artificial agents, the capacity to discuss temporal relationships is equally crucial.
However, in the current emergent communication literature, the temporal aspect of
language has been ignored. There are no examples of agents developing or
understanding temporal references or using temporal aspects of their environment to
their advantage.

Agents deployed in autonomous vehicles or monitoring financial transactions would
benefit from being able to refer to temporal relationships, as they could inform other
agents about their experiences and observations. In the case of autonomous vehicles,
agents could describe the conditions on different parts of the roads that the cars have
driven through, aiding traffic control and enhancing safety. In financial monitoring,
agents could relay information about past suspicious transactions and when they
occurred, helping to prevent fraud by recognizing patterns over time. In smart
warehouses, robots and sensors could optimize inventory management by discussing
the arrival and departure times of goods. In smart homes, devices could synchronize
actions based on user routines and historical data. In manufacturing, machines could
adjust operations based on the timing of production stages.

4 Chapter 1. Introduction

As environmental complexity is being scaled in emergent communication research
(Chaabouni et al., 2022; Rita et al., 2024), temporal references will also benefit agents in
settings where temporal relationships are embedded. One example is social deduction
games, where referencing past events is key to winning strategies. These games, which
often involve multiple players attempting to uncover hidden roles or information, rely
heavily on the players’ abilities to recall and reference past events accurately. The
strategic use of temporal references, such as indicating when a particular event occurred
or referencing a sequence of past actions, can be crucial for devising winning strategies.
Temporal referencing will also allow agents to develop more efficient methods of
communication by assigning shorter messages using temporal references. For instance,
instead of elaborating on a series of past events in detail, an agent might simply
reference a specific time point or a known sequence of actions, thus conveying the
necessary information succinctly.

1.3 Research Aims

This thesis aims to bring the advantages of using temporal dynamics in natural
language to the field of Emergent Communication. To do so, we address three key
research questions.

How does the amount of interaction time impact the emergent language? We examine
the relationship between communication duration and the emergent language in a
social deduction game of Werewolf, where teams of agents need to collaborate to
eliminate the opposing team, through agreeing on a common voting strategy. By
varying the time agents have to communicate, we analyse how the length of interaction
time affects both the agents’ strategies and the properties of the emergent language. The
agents must develop effective communication protocols to establish voting majorities
and coordinate their strategies, making this an ideal environment to study how
different interaction times influence the emergent language. We explore this in detail in
Chapter 3.

What is needed for agents to communicate about temporal relationships across their
dataset? We focus on the emergence of temporal references in agent communication, or
the ability to refer to past events. We investigate the minimal conditions and
architectural requirements that enable agents to develop temporal references in their
language. Additionally, we analyse the compositional properties of the emergent
languages, comparing those with and without temporal references to understand how
the development of temporal references affects language compositionality. We present
this work in Chapter 4.

1.4. Contributions and Novelty 5

How do agents communicate about spatio-temporal relationships within their
observations? We study how agents can communicate spatio-temporal relationships
between parts of their observations. We explore whether complex environments are
truly required for such language properties to emerge (Rita et al., 2024), or are simple
referential games (Section 2.5) enough. We analyse the resulting language using
normalised pointwise mutual information, a linguistic collocation measure, to
investigate its structure and interpretability. We provide the details of this study in
Chapter 5.

1.4 Contributions and Novelty

Our work analysing the impact of the amount of time to communicate in the game of
Werewolf (Lipinski et al., 2022) shows that, even for simple strategies, increasing the
number of turns the agents can take to communicate improves their convergence
efficiency and their game performance. We also show that the agents develop a highly
efficient and successful strategy of using passwords to communicate their identities.

To analyse the emergence of languages capable of expressing temporal relationships
between different observations (Lipinski et al., 2023), we develop a novel environment,
called Temporal Referential Games (TRGs). This variant of the commonly used
referential game environment allows us to repeat targets that the agents observe,
allowing them to exploit the temporal relationships. By using a simple environment to
study the emergence of temporal references, we explore what building blocks are
required for them to emerge. We develop a novel metric to analyse the emergence of
such references. We show that additional losses are unnecessary, and that the key to the
emergence of such languages are simple changes to the agent architecture, paving the
way for more ubiquitous use of temporal references in other EC settings.

To analyse the development of languages capable of discussing spatio-temporal
relationships (Lipinski et al., 2024) within data points we develop a new environment,
based on the referential games, called Temporal Progression Games (TPGs). Using this
simple environment, we show that the usual agent architecture requires only a small
modification to be able to understand and communicate about such relationships. We
also provide an analysis of the emergent language, showing how the agents compose
their messages, by using a novel NPMI measure. We also show that the resulting
language is interpretable using this measure.

6 Chapter 1. Introduction

1.5 Thesis Outline

This thesis first analyses the available literature from both the field of EC, and related
linguistics concepts in Chapter 2, providing the theoretical foundation for temporal
dynamics in artificial languages. Chapters 3 to 5 are our contribution chapters.
Chapter 3 investigates the relationship between the length of communication time and
emergent language in the social deduction game of Werewolf. Chapter 4 explores the
conditions required for temporal references to emerge in agent communication.
Chapter 5 examines the emergence of spatio-temporal communication in a referential
game environment. In Chapter 6, we present a critical analysis of the work discussed in
the previous chapters, together with future directions that this line of research could
take. Chapter 7 concludes the work presented in this thesis.

7

Chapter 2

Literature Review

Since the field has begun, the evolution of language has been of interest to linguists,
with many theories and investigations into the origin of human language (e.g. Hockett,
1960; Pinker and Bloom, 1990; Mesoudi et al., 2011). With the increase in computational
power, this question started to be studied through simulation (Steels and Kaplan, 1999;
Kirby, 1999). This has led to research in Emergent Communication (EC), and its
application to multiagent communication.

2.1 Linguistics Background for Emergent Communication

From a linguistic perspective, the current work in EC pertains to the pragmatics and
semantics of emergent language. Pragmatics, as defined by Korta and Perry (2020),
concerns the context around words rather than the properties of them. Analysing the
pragmatics of an emergent language would be studying the context and its effect on
meaning behind the phrases used by agents. Pragmatics in the context of EC are much
simpler than that considered by linguistics, as the languages studied in EC are
analogically simpler. For an overview of pragmatics in linguistics, we refer to Kempson
(2003) and Korta and Perry (2020).

One pragmatic property of human languages relevant to this work is the existence of
deixis (Lyons, 1977; Stapleton, 2017). Deixis has been described as a way of pointing
through language, with words such as “here” or “now”. These two words are examples
of spatial and temporal deixis, respectively. Deixis can also be categorized into other
types such as personal, discourse, and social deixis (Stapleton, 2017). Personal deixis refers
to the use of pronouns like “I”, “you”, and “we”, which indicate the participants in a
conversation. Discourse deixis involves expressions like “this” or “that” when referring
to parts of the discourse itself, aiding in the navigation of conversation. Social deixis
pertains to words that encode social information about the relationships between

8 Chapter 2. Literature Review

speakers, such as honorifics or titles. The effective use of deixis requires a shared
context and mutual understanding between interlocutors, making it a fundamental
aspect of communication that bridges the gap between language and the physical,
temporal, and social world.

Another pragmatic aspect of human language is the existence of anaphora. Anaphora
enhances textual cohesion by referring back to something previously mentioned in
discourse. Anaphoric references can take several forms, including pronominal, nominal,
and adverbial anaphora (Halliday and Hasan, 1976). Pronominal anaphora uses
pronouns like "he," "she," or "it" to refer to earlier, or future, entities. Nominal anaphora
employs nouns or noun phrases, such as "the teacher" or "the book," while adverbial
anaphora uses adverbs or adverbial phrases like "there" or "then." Anaphora is crucial
for managing information flow and maintaining cohesion in text, making it vital for
tasks in natural language processing and computational linguistics, such as machine
translation and text summarization.

In contrast to pragmatics, the study of semantics focuses on the analysis of meaning
(Lappin, 2003). In linguistics, semantics refers to the meaning behind words, sentences,
or longer form utterances. The two main subfields of semantics are that of compositional
semantics and lexical semantics. The former studies the structure of smaller parts of
speech, and how new meanings can be created by combining these components. The
latter focuses on the meaning of the smaller parts itself, how they acquire their meaning,
and how new meanings of words can be created.

From within the field of semantics, comes the principle of compositionality (Szabó, 2020), a
term often used in emergent communication. Compositionality, as defined by Szabó
(2020), states that meaningful expressions in natural language, can be built using
smaller forms of other meaningful expressions. For example, combining the words
“green” and “banana” to create the phrase “green banana” conveys a different meaning
than the two words individually. More formally, as stated by Szabó (2020), “For every
complex expression e in L, the meaning of e in L is determined by the structure of e in L
and the meanings of the constituents of e in L", where L is the language under
consideration. This more formal definition is known as the aforementioned principle of
compositionality in linguistics.

Compositionality has been argued as a way to increase natural language productivity
(Szabó, 2020), the ability to describe a virtually limitless number of things. Given the
knowledge of just a few words, such as “black, white, gray, cat, stripes” the English
language makes it possible to describe tens of combinations of a cat’s fur, using its
compositional qualities. Once a natural language is learned, the understanding of it is
also productive and allows for processing and producing of almost any conveyable
sentence in that language (Szabó, 2020). These properties made compositionality a

2.2. Language Emergence with Deep Learning 9

desideratum in emergent communication (Brighton, 2002; Smith et al., 2003; Vogt, 2005),
as it has the potential to increase the efficiency and generality of emergent languages.

Another linguistics analysis that has been recently used in EC is text segmentation. As a
linguistic term, segmentation refers to dividing sentences into their core components.
One such technique is Harris’ Articulation Scheme (HAS), which can segment a
sentence into its constituent words by using the changes in the probability of
appearance of consequent phonemes (Harris, 1955).

2.2 Language Emergence with Deep Learning

We break down the progress in five specific areas of Emergent Communication research:
the relevant properties of the emergent language, the ways used to measure such
properties, the environments used to analyse the emergence of such properties, the
agent architectures and the optimisation techniques used to train EC agents.

2.3 Emergent Language Properties

The main properties that have been investigated in EC are compositionality (e.g.
Lazaridou et al., 2018; Chaabouni et al., 2020; Auersperger and Pecina, 2022),
transmission efficiency and linguistic parsimony (e.g. Chaabouni et al., 2019; Rita et al.,
2020), generalisation to novel input and different modalities (e.g. Harding Graesser
et al., 2019; Chaabouni et al., 2020), ease of learning and transmission (e.g. Li and
Bowling, 2019; Ueda et al., 2023), influence of competition (e.g. Noukhovitch et al., 2021;
Liang et al., 2020), population dynamics (e.g. Rita et al., 2022b; Mahaut et al., 2023) and
their effect on the language, and interpretability of the emergent protocol (e.g. Andreas
et al., 2017; Mihai and Hare, 2021; Cope and McBurney, 2024).

In this thesis we focus our review on the properties of compositionality, transmission
efficiency and generalisation as the most relevant to our work. We also analyse some of
the understudied properties of emergent languages.

2.3.1 Compositionality

Compositionality has been the most researched property in EC. The main aspects that
have been analysed are the way to incentivise compositionality (e.g. Kirby, 1999; Vogt,
2005; Chaabouni et al., 2020), generalisation of compositional languages (e.g.
Harding Graesser et al., 2019; Baroni, 2020b; Chaabouni et al., 2020), and ways to
measure compositionality (e.g. Lowe et al., 2019; Korbak et al., 2020; Perkins, 2021).

10 Chapter 2. Literature Review

Some research has also been dedicated to the non-trivial aspects of compositionality,
which are much harder to measure using conventional and well-established methods
(Bogin et al., 2018; Perkins, 2021; Bosc, 2022). Compositional languages are a
desideratum for EC research, as they may enable better generalisation and facilitate
better human understanding (Michel et al., 2022). We discuss the ways to measure
compositionality, as well as other properties of emergent languages, in Section 2.4

Compositionality, while at first may seem a trivial aspect, is not a given in emergent
protocols. Numerous results indicate that compositionality does not emerge naturally,
and instead agents develop degenerate or holistic languages (Kottur et al., 2017;
Chaabouni et al., 2019; Lipinski et al., 2022). A degenerate language indicates that all
meaning is associated with a single, ambiguous signal, while holistic languages do not
contain any structure, and just map each distinct observation to a separate signal (Kirby
et al., 2015). The main ways for compositionality to emerge that have been identified so
far are information bottlenecks (Kharitonov et al., 2020), linguistic parsimony or Zipf’s
law pressure (Zipf, 1949; Chaabouni et al., 2019; Rita et al., 2020), the ease of
transmission pressure (Li and Bowling, 2019; Ren et al., 2020), and noisy channels
(Kucinski et al., 2021). However, little research has been done into the compound
environmental pressures that may incentivise compositionality (Kucinski et al., 2021;
Chaabouni et al., 2022). These could include the ability to refer to complex observations,
where compositionality, in our view, would be a requirement for successful and efficient
communication. For example, referring to a blue object seen two time steps ago is easier
if the meanings of “two”, “time step” and “blue” can be composed, instead of creating a
unique word for the combination of these three properties.

Whether compositionality is a positive aspect of the emergent languages, and should be
a goal when training agents, is debated. Some results point to compositionality being
not necessary for generalisation (Chaabouni et al., 2020; Andreas, 2019; Kharitonov and
Baroni, 2020), some that it is negatively correlated (Nikolaus, 2023), and some that it is
positively correlated (Ohmer et al., 2022a). It may also be that due to linguistic variation
in the languages, ones that are classified as non-compositional could nevertheless be
compositional (Conklin and Smith, 2022). Together with the questions posed around the
validity of the metrics used to measure compositionality (Section 2.4), this adds to the
growing number of questions about the impact and importance of compositionality in
emergent languages.

2.3.2 Language Efficiency

Language efficiency has also been of interest in emergent communication (Chaabouni
et al., 2021). Chaabouni et al. (2019) have shown that without an advantageous pressure
to do otherwise, agents will develop “anti-efficient” protocols. “Anti-efficiency” refers
to the words that the agents assign to objects, usually using the maximum length

2.3. Emergent Language Properties 11

available. Unless a penalty is applied to reduce the utterance length, the agents will use
all the available message length to convey their messages. This phenomenon differs
notably from human languages, where articulatory effort often shapes language
evolution, with many human languages showing a tendency toward efficiency through
linguistic parsimony (Chaabouni et al., 2019). This pattern, however, is not constant
across cultures and languages, with some maintaining longer forms in formal contexts
while allowing significant contractions in casual speech, while others show different
patterns of such behaviour altogether. In contrast, in artificial agents, the only pressure
that exists on the networks is the perceptual pressure, where longer messages are easier
to distinguish as they can be more distinct from each other (Lazaridou and Baroni, 2020).
Rita et al. (2020) and Rodríguez Luna et al. (2020) explore the possible ways of applying
this and other pressures to force the agents to create more succinct languages. Rita et al.
(2020) suggest that both the speaker and the listener need to have a pressure towards
efficiency. Once the pressure on both types of agents is in place, the emergent language
follows the Zipf’s Law 1 (Zipf, 1949), where the most used utterances are the shortest.
However, the work of Rodríguez Luna et al. (2020) shows that transmission efficiency
may be accomplishable through a different pressure, where the speaker is incentivised
to end its messages as soon as possible.

2.3.3 Generalisation

Generalisation requirements for compositional, or structured, languages have also been
disputed (Kharitonov and Baroni, 2020). It has been argued that compositional
languages are not needed for generality because the pressures that exist in an
environment do not necessarily incentivise a compositional language. Instead, they may
incentivise only a general language, which may be holistic or degenerate, depending on
the agent’s tasks (Kharitonov and Baroni, 2020). Kharitonov and Baroni (2020) even
argue that compositionality may not be a good target if we want to focus only on the
generality of the protocol because it may be too human-centric.

This view has been challenged in recent works, with compositional languages leading
to better generalisation abilities (Auersperger and Pecina, 2022). Auersperger and
Pecina (2022) show that generalisation is only successful if the emergent languages are
compositional. Similarly, Ohmer et al. (2022a) show that agents develop good
generalisation through using a compositional hierarchical language. This has again
been called into question by Nikolaus (2023), where they provide evidence that
compositionality and generalisation could be negatively correlated.

Some degree of generality has already been shown in the early work of (Havrylov and
Titov, 2017), where the agent’s language exhibited some categorisation (Baroni, 2020c).

1Zipf’s Law can also be viewed as an ordering according to the Kolmogorov complexity for each phrase
(Manin, 2014)

12 Chapter 2. Literature Review

Generalisation of emergent languages has also been shown through multiple tests of
zero-shot evaluations (e.g., Choi et al., 2018; Tucker et al., 2021). It was observed that
agents with a structured language, developed through environmental pressures, can
afterwards perform better in other types of games and environments (Mu and
Goodman, 2021).

In contrast to the works we have described so far, others have found that agents do not
develop a sufficiently general language, but rather an idiolect (Steels and Kaplan, 1999).
An idiolect is, in the case of EC, when the emergent language is specific to the speaking
agent, and so the agents have to each learn each other’s language instead of a general
one, as was also noted by Bouchacourt and Baroni (2019).

2.3.4 Understudied Properties

Another aspect of interest is that of the influence of time on the emergent language.
Research has been done on turn taking (Taillandier et al., 2023) and multistep
interactions (Kalinowska et al., 2022) in emergent communication. However, in the
current literature, there are few investigations concerning other aspects of the influence
of time, such as how the amount of time to communicate affects the emergent language
and the agent strategies. Similarly, while spatial and temporal deixis have been studied
extensively in linguistics (Stapleton, 2017), they have been an underexplored topic in
EC. We consider that these aspects will be significantly important in the future, as the
environment and task complexity increases, requiring the use of more varied language
properties.

Close to the investigation of deixis is the research into anaphoric structure in emergent
communication (Edwards et al., 2023). Edwards et al. (2023) show that neural agents
can easily acquire languages with anaphoric structure, and that such structures may be
able to naturally emerge. The authors argue that, given emergent languages use unique
n-grams that refer to redundancy and increase ambiguity (especially under the pressure
of brevity), anaphoric structures emerge naturally.

The ability to refer to numerical concepts has also only recently been shown in EC by
Zhou et al. (2024). Zhou et al. (2024) present a task where agents have to learn to refer to
the number of objects present in their observations. These numerical concepts must
then be used with a prescribed mathematical operator, such as addition or subtraction,
to arrive at the correct answer to the task. While the authors show that the agents can
learn to count, the agents do not learn about the mathematical operators, as these are
prescribed. In essence, the sender agent learns to count, and the receiver agent learns to
perform addition and subtraction given two numbers.

2.4. Quantifying the Properties of Emergent Languages 13

2.4 Quantifying the Properties of Emergent Languages

To measure all the properties that an emergent language could have, several metrics
have been proposed. Most metrics concentrate on measuring compositionality (e.g.,
Andreas, 2019; Korbak et al., 2020; Bogin et al., 2018; Brighton and Kirby, 2006;
Chaabouni et al., 2020), the influence of communication on the behaviour of other
agents (e.g., Lowe et al., 2019; Eccles et al., 2019), or how to measure communication in
competitive environments (e.g., Noukhovitch et al., 2021). In this thesis, we focus on the
ways to measure compositionality, and the semantics of emergent languages, as the
most relevant to this work.

2.4.1 Measuring Compositionality

Measuring compositionality is a non-trivial task. Most metrics developed so far suffer
from the inability to measure non-trivial compositionality (Perkins, 2021; Korbak et al.,
2020; Xu et al., 2022; Carmeli et al., 2024). This is because these metrics fail to account
for the complex nature of compositional structures that differ from traditional human
language patterns. Most use simple heuristics to define and find compositional
languages. Metrics such as topographic similarity (Brighton and Kirby, 2006) would, for
example, qualify the English language as non-compositional, as individual letters hold
no meaning (Bosc and Vincent, 2022).

Topographic similarity can be viewed as a correlation between pairwise input distances
and corresponding representation, or message, distances (Chaabouni et al., 2020). In
recent work, topographic similarity has been shown to have a high correlation with
generalisability of the emergent language (Rita et al., 2022b). However, the use of this
metric is limited, as it would not be able to measure non-trivial compositionality
(Perkins, 2021; Korbak et al., 2020) or when the input-representation pairs are
unavailable (Ossenkopf et al., 2022).

As shown by Perkins (2021), intelligent agents can use unusual methods to create
compositional structures. These would lead to negative results on most
compositionality metrics, even if the emergent language is trivially compositional. That
is why Perkins (2021) proposes a benchmark for future metrics to check for more
complex types of compositionality. They create transformations that can be applied to a
language to create compositional systems, which current metrics cannot measure. These
can then be used to test any new proposed metrics to verify if they could still perform
well against such languages.

Based on these shortcomings of analysing compositionality, Chaabouni et al. (2022)
suggest that these attempts should be abandoned in favour of measuring more
quantitative outcomes of language performance, such as task success. Rita et al. (2024)

14 Chapter 2. Literature Review

suggest instead that measures and metrics should focus on using linguistic insights to
be able to measure emergent languages. By using metrics developed for human
language, or at least inspired by such techniques, emergent languages can be more
closely compared to natural language.

2.4.2 Analysing Semantics

Analysing the semantics of the emergent language is challenging. By the nature of
emergent communication settings, the language developed by the agents is adapted
and optimised for their task, making it harder to understand how agents compose their
messages (Perkins, 2021), and the meanings behind them. While most work in emergent
communication focuses on discrete token-based languages, research has shown that
agents can learn to communicate through visual channels using drawings (Mihai and
Hare, 2021), similar to how visual communication preceded written language in human
history. However, regardless of the communication modality, the fundamental
challenge of semantic interpretation persists.

Attempts to interpret emergent messages often rely on the presence of dataset labels.
One such method is using normalised mutual information (nMI) to express the
closeness of dataset labels, or meanings, to the emergent language (Dessì et al., 2021).
An extension to nMI has been proposed in the same work called WNsim which further
measures the similarity based on the shortest path between two categories using
WordNet (Miller, 1992), thus creating less penalty for using the same utterance for
similar categories (Dessì et al., 2021). However, these methods require extensive dataset
labelling.

A first step to interpreting an emergent language is to be able to segment messages into
the atomic parts which carry different meanings. A new metric to quantify
compositionality has also been recently proposed by Bosc (2022), called concatenability.
This metric measures whether two atomic symbols or expressions can be concatenated
together, and still retain their separate meanings. For example, if we assign the number
1 to the meaning of red and the number 3 to the meaning of car, then this metric would
check if the symbol 13 meant red car, or if it had another meaning. This technique could
be a first step towards interpreting each symbol of the emergent language, however
Bosc (2022) still rely on dataset labels.

Another way of segmenting emergent language messages is Harris’ Articulation
Scheme (HAS) (Harris, 1955). Initially devised to segment natural language sentences
based on phoneme probabilities, HAS has been adapted to employ entropy measures
after each character to segment the words in the emergent language (Ueda et al., 2023).
This method detects a separate word by the entropy falling after one character, while
increasing on the next character. For example, in the English language, if we write

2.5. Emergent Communication Environments 15

“lang”, then it would be quite likely that the next letter is “u”, and so the entropy would
be lower. However, after a full word “language” the entropy is high, as we have many
other characters we could use to start a new word. While the emergent languages have
been shown to be segmentable, no meaningful segmentation has been found so far
(Ueda et al., 2023).

An approach to both segment and create a meaningful mapping of the concepts from
emergent messages to natural language has been developed by Carmeli et al. (2024).
Carmeli et al. (2024) use adjusted mutual information to create a bipartite graph from
words present in the messages to concepts present in the dataset. They show that agents
can create interpretable mappings, and that these can be represented by a graph.
However, the authors treat each character in a message as a separate word, meaning
that any words which are longer than a single character would be ignored by this
proposed method.

2.5 Emergent Communication Environments

An important factor in the evolution of the emergent protocol is the environment. The
properties of a language depend on the domain it needs to cover, which makes the
design of the environment an important aspect in determining how the agents create
their languages. The environment design is essential to allow for better generalisation
(Hill et al., 2020). Even how the environment is perceived can affect how and what the
agents learn, with the perceptual biases passed onto the language (Ohmer et al., 2022b).
The design of the agents’ perception can even significantly affect their performance in a
given task, with pretrained vision networks performing worse than vision networks
trained in a given environment (Ohmer et al., 2022b). In this section, we will focus on
two environments: Werewolf and Referential Games.

2.5.1 Referential Games

Referential games, also known as discrimination games, are a popular choice of
environment for testing various aspects of emergent communication. First introduced
by Lewis (1969), and adapted for the specific purpose of emergent communication by
Lazaridou et al. (2017), the referential games are a relatively simple setting. There are
two agents, a sender and a receiver. The sender observes a vector and transmits its
compressed representation through a discrete channel to the receiver. The receiver
observes a set of vectors together with the sender’s message. One of these vectors is the
same as the one the sender has observed. The receiver’s goal is to correctly identify the
vector the sender has described, among other vectors referred to as distractors. The

16 Chapter 2. Literature Review

[5, 10, 6] Apple!

Distractors

Target

FIGURE 2.1: An illustration of the referential game environment.

simplicity of the referential games enables the reduction of extraneous factors which
could impact the emergence of different language properties.

For illustration purposes, a single round of the referential games is provided in
Figure 2.1. The sender observes a red apple, and transmits the vector [5,10,6] to the
receiver. This vector could be composed of parts representing both red and apple, or it
could be non-compositional, with the whole vector representing the concept of a red
apple. Alternatively, the vector could encode other concepts typically ignored by people
in their descriptions of such an object (Perkins, 2021), such as the presence of a curved
stem. The receiver processes this vector, and has to decide which object is being
described from the three objects it can observe. Assuming that the concept of a red
apple is encoded in the vector [5,10,6], and the receiver can recover this information
from this compressed representation, the receiver correctly identifies the red apple as
the target. The referential game would then continue to a new round, with different
target and distractor objects.

2.5.2 Werewolf

In Werewolf, players are divided into two teams: werewolves and villagers, typically
with a ratio of one werewolf to three villagers. The game alternates between two phases:
nighttime and daytime. During the nighttime, werewolves secretly communicate and
decide on a villager to eliminate. When daytime arrives, all players, including the
werewolves, discuss and vote to eliminate someone they suspect to be a werewolf. The
objective for the werewolves is to eliminate villagers without being discovered, using

2.5. Emergent Communication Environments 17

FIGURE 2.2: Visual representation of the flow of the game of Werewolf.

deception and manipulation during the day discussions. Villagers aim to identify and
vote out the werewolves based on the behaviours and clues observed during the
discussions. The game continues through these cycles of night and day until either all
werewolves are eliminated or the werewolves outnumber the villagers, resulting in a
victory for the respective team. We provide a visual representation of the game phases
in Figure 2.2.

For example, in a four-player game of Werewolf, there are three villagers (players 1, 2,
and 3) and one werewolf (player 4). During the first nighttime phase, player 4 (the
werewolf) decides to eliminate player 2. In the following daytime phase, the players
discover that player 2 has been eliminated, leaving three players (1,3,4). During the
daytime phase, players 1 and 3 discuss who they suspect might be the werewolf. Player
4 tries to blend in and deflect suspicion. After deliberation, players 1 and 4 vote to
eliminate player 3, believing them to be the werewolf. With only players 1 and 4
remaining, the game continues to nighttime. Player 4 eliminates player 1, resulting in a
victory for the werewolf.

The game of Werewolf has garnered some interest in the ML community recently, with
the launch of the AI Wolf Competition (Toriumi et al., 2017). The competition, however,
relies on pre-defined structures for agent communication, and does not allow for the
emergence of other protocols. With only one work published (Brandizzi et al., 2021) on
emergent protocols in Werewolf, this presents an important research gap. Achieving
any significant win rates Werewolf could require complex strategies, coordination, and
communication protocols, making it a useful environment for EC research.

18 Chapter 2. Literature Review

Target

Initial Hidden State for RNNTarget Parsing
Linear

Message
Generation

RNN
Gumbel-Softmax

Sequence of
Character

Probabilities

Embedding from
Vocab to Character

Linear

Repeat until max_len reached

Hidden to Vocab
Linear

(A) EGG Sender Architecture

Message Parsing
RNN

Final hidden
state

Object
Embedding
Linear

Target Index
Prediction

Sequence of
Character

Probabilities

Objects
Embedded

Matrix Multiply
torch.matmul

Target and
Distractors

(B) EGG Receiver Architecture

FIGURE 2.3: The base architecture of EGG agents (Kharitonov et al., 2019).

2.6 Agent Architectures

In EC the most used agent architecture is that of EGG (Kharitonov et al., 2019). This
basic architecture consists of sender and receiver agents, constructed around a single
RNN, such as a GRU (Cho et al., 2014) or an LSTM (Hochreiter and Schmidhuber, 1997).
First, the sender (Figure 2.3a) processes the target object, using either an RNN or a
Linear layer. The result is the initial hidden state for the message generation RNN. The
messages are generated character by character, using the Gumbel-Softmax trick (Jang
et al., 2017). These messages are then passed to the receiver, an overview of which is
shown in Figure 2.3b. The receiver’s architecture contains an object embedding linear
layer and a message processing RNN. The output of both the embedding layer and the
message RNN is combined to create the referential game object prediction. We present a
visual representation of the EGG architecture for both the sender and the receiver in
Figure 2.3.

Other architectures have also been proposed, including Variational Autoencoders (Ueda
and Taniguchi, 2023), and attention-based architectures (Vaswani et al., 2017; Ri et al.,
2023). Initial results show significant promise, with the attention architecture creating
more compositional languages (Ri et al., 2023). Interestingly, combining an attention
mechanism with the more common RNN performs even better than a purely
attention-based approach (Ri et al., 2023). While transformers show great promise in
many areas (OpenAI et al., 2023), they still struggle with compositional generalisation
(Yin et al., 2024; Kim and Smolensky, 2024), which humans can do easily (Kim and
Smolensky, 2024). This could potentially point to the best architecture being a
combination of attention-based mechanisms together with RNNs, especially with the
modified LSTM architectures even outperforming transformers (Merrill et al., 2024;
Merrill and Sabharwal, 2022; Deletang et al., 2022), which have been shown to be less

2.7. Agent Optimisation 19

powerful than LSTMs (Beck et al., 2024). With new RNN architectures such as the
xLSTM, the RNN-based models could be competitive with LLMs (Beck et al., 2024).

2.7 Agent Optimisation

The three main techniques that are used in emergent communication are REINFORCE
(Williams, 1992), Gumbel-Softmax (Jang et al., 2017), and classic backpropagation
(Schulman et al., 2015). Some approaches also use a combination of these optimisation
techniques to achieve better performance or faster convergence rates.

The main problem encountered when implementing EC systems is that direct
backpropagation and differentiation is usually impossible. As the messages passed
between agents are often composed of discrete tokens, the gradients for
backpropagation cannot be computed for those discrete token choices. The simplest
solution to this problem comes with REINFORCE (Williams, 1992). The REINFORCE
approach introduces rewards to agents so that they can learn from the positive or
negative results of their message choices, instead of back propagating the referential
game error directly.

In combination, REINFORCE (Williams, 1992) is often used for the sender, and
backpropagation for the listener. The objective of the listener can often be viewed as a
simple classification task, as it only needs to map the discrete input it receives to the
correct output. For example, if we assume that the sender is a static dictionary, then the
listener can be viewed as learning in a supervised way a mapping of all items in a
dictionary to all objects that have that meaning. The combined approach means that the
more computationally expensive technique (REINFORCE) can be limited to only one
agent, therefore increasing the training performance of the whole model (Chaabouni
et al., 2019).

The Gumbel-Softmax technique (Jang et al., 2017) can be viewed as both continuous
and discrete, as it “converts” the emergent language from a discrete to a probabilistic
continuous representation so that it can be differentiated and then backpropagated. At
training time, the discrete symbols are approximated to a continuous vector, with a
concentrated peak around the value of the discrete character (Chaabouni et al., 2021;
Jang et al., 2017). This discretisation trick allows for the training speed to come close to
the continuous communication, where the gradients can flow freely, while the
communication being discrete at test time allows for linguistic analysis.

While the Gumbel-Softmax technique (Jang et al., 2017) has gained significant
popularity in the field of EC, there exists a significant limitation to its possible
applications. It allows the gradients to flow through both the sender and the receiver,
and so the two agents can be treated as one neural network, similar to autoencoder

20 Chapter 2. Literature Review

architectures (Kramer, 1992). This makes it harder to scale this technique to multiagent
settings. Converting multiple agents to virtually a single network is challenging, and
becomes impossible when the agents can act at different time steps. This is where pure
reinforcement learning techniques, bypassing the issue of direct gradient flow, will gain
an advantage, as scaling is being pursued in EC (Chaabouni et al., 2022).

2.8 Conclusions

This literature review has explored the evolution and current state of research in
Emergent Communication, emphasizing the foundational linguistic concepts such as
pragmatics and semantics, which inform the study of emergent languages. Pragmatic
elements like deixis and anaphora, alongside semantic principles, especially
compositionality, are crucial for understanding how agents can develop and use
language, while providing new directions for future research in EC.

While progress has been made, especially in understanding properties like
compositionality and efficiency (Chaabouni et al., 2019, 2020; Auersperger and Pecina,
2022), there is still much to explore within simple environments. Referential games
(Lazaridou et al., 2018), despite their simplicity, continue to offer a controlled and
effective setting for studying various aspects of EC. These environments allow isolation
and analysis of specific language properties without the confounding factors present in
more complex settings. As such, they remain valuable for foundational research and for
testing new hypotheses about language emergence and agent communication strategies.

The review also highlights the challenges in quantifying the properties of emergent
languages, pointing out that current metrics often fall short in capturing their full
complexity. There is a need for metrics that are more linguistically inspired and less
reliant on extensive dataset labelling (Rita et al., 2024). Techniques such as
concatenability (Bosc, 2022) and entropy-based segmentation (Ueda et al., 2023) show
promise but also underscore the need for further research. Future studies should focus
on developing metrics that draw from linguistic theories and methods, ensuring a
closer alignment with how natural languages are studied and understood (Boldt and
Mortensen, 2024b; Rita et al., 2024). The insight we may gather from such developments
in EC may also lead to new questions being asked in linguistics (Galke and Raviv, 2024).
Metrics inspired or borrowed from the study of human language may also help bridge
the gap between human and emergent languages (Rita et al., 2024).

In addition to refining metrics, the interpretation of emergent languages should move
towards more automated methods rather than relying heavily on manual dataset
labelling. Automated interpretation techniques, such as those involving mutual
information and bipartite graph mappings (Carmeli et al., 2024), offer a way forward.
These methods can facilitate a more scalable and efficient analysis of emergent

2.8. Conclusions 21

languages, enabling researchers to decode and understand agent communication with
less manual intervention.

Finally, the temporal dynamics in emergent communication could play an important
role in the future. Fundamental aspects of natural languages like spatial or temporal
deixis serve a crucial purpose of bridging language with the physical, temporal, and
social world (Stapleton, 2017). We consider that this avenue deserves close attention to
investigate how deixis emerges and functions within EC, as it holds the potential to
significantly enhance the richness and applicability of agent communication strategies.

Overall, the field of emergent communication offers a wealth of opportunities for
continued interdisciplinary research. Combining insights from computational
linguistics and machine learning will be essential for advancing our understanding and
capabilities in this field, leading to more intelligent and effective communicative
multiagent systems.

23

Chapter 3

Interaction Time in Dialogue

Building on the key concepts discussed in Chapter 2, in this chapter we examine the
impact of interaction time on the development of emergent communication in
multi-agent systems. We extend the framework of the Werewolf game, previously
explored by Brandizzi et al. (2021), to examine how varying the amount of interaction
time influences agent strategies and language efficiency.

3.1 Emergent Communication in Werewolf

Emergent communication has been used to improve the performance of intelligent
agents in the game of Werewolf (Brandizzi et al., 2021), a well-known party game, also
sometimes referred to as Mafia. The authors show that agent win rate significantly
improves when the agents create their own language, however the analysis of the
language and strategy of the villagers is left for future work. In the original
environment (Brandizzi et al., 2021), the villagers only had a single round of
communication to agree on a player to vote out as an alleged werewolf, which may not
allow them to fully explore other, possibly better, strategies.

Investigating the amount of time allocated for communication allows us to analyse how
extended discussions influence the effectiveness of the agents’ strategies, potentially
leading to more refined and successful approaches. By observing how agents interact
over different timeframes, we can gain a deeper understanding of how time constraints
impact the development of shared languages and cooperative behaviour. This work can
provide generalizable knowledge applicable to enhancing teamwork in automated
systems, and optimizing communication protocols in complex, multi-agent
environments.

We extend the Werewolf environment by introducing multiple rounds of
communication, to determine the effect of a longer period of discussion on the language

24 Chapter 3. Interaction Time in Dialogue

developed and the success rate in identifying the werewolf. Our work is motivated by
the assumption that if agents are allowed more time to communicate, they will develop
successful strategies faster. We introduce a voting threshold to encourage villagers to
work together and to vote uniformly. Both of these changes tell us how much the time
needed to communicate influences the agents’ performance.

We show that the agents develop a highly successful strategy of password signalling to
win the game, where their communication behaves like a Turing test (Turing, 1950)
analogue for identifying the werewolves. The multiround aspect increases convergence
speed and allows the agents to establish this identity test more rapidly. Finally, we
describe the effects of the voting threshold regarding the win rate of the villagers, as
well as convergence speed.

3.2 Werewolf Environment

The agent environment is based on the work of Brandizzi et al. (2021). The environment
game flow follows that of the game of Werewolf (Section 2.5.2), with alternating
nighttime and daytime phases with some minor changes. Firstly, the “daytime” phase
consists of one round of communication, where agents are allowed to exchange a single
message (Brandizzi et al., 2021). Secondly, the game in these environments ends when
all werewolves are voted out, or when the number of villagers and werewolves are
equal. This condition is included because when the numbers are equal on each team,
the villagers can no longer win.

The observations the agents receive consist of the day count, the status map, the game
phase, the voting targets, agent ID, and messages. The day count allows the agents to
understand the number of days that have passed in the game. The status map shows
which agents are still in the game, and which have been eliminated. The game phase
indicates which of the four game phases the agents are currently in: the nighttime
communication phase; the nighttime elimination phase; the daytime communication
phase; or the daytime elimination phase. The voting targets allows each agent to see the
final vote of all other agents. The agent ID represents the ID of each agent, which is the
ID is used during voting. Finally, the messages represent all messages sent by all agents
during a given phase.

The action that each agent can take is to produce a message and a vote for each round of
communication. The message is represented by an array of integers, which can be
selected by the agents from a given vocabulary. The length of this array is determined
by the message length parameter. No other actions can be taken by the agents. After a
successful vote, be it by the werewolves during the nighttime, or all players in the
daytime phase, the player voted out is removed from the game, and may take no
further action. The status map is updated to reflect this.

3.2. Werewolf Environment 25

Messages are passed during all phases as an observation to the agents. Depending on
the agent’s role, it can receive both the nighttime and daytime observations, if it is a
werewolf, or purely the daytime observations, if it is a villager.

The reward scheme for the villagers seeks to incentivise specific behaviours (Brandizzi
et al., 2021). The reward values are: −5 for death, to incentivise avoiding being voted
out/eaten by a werewolf; +25 for winning the game, to incentivise winning strategies;
−25 for losing the game so that the agents avoid any losing strategies; −1 for picking a
target besides the one that was voted out, to reinforce uniform voting.

To test our hypotheses (Section 3.1), we extend the Werewolf environment to a
multi-round communication domain and introduce changes to how the voting works to
incentivise quicker convergence on communication between the villagers1.

Our multi-round approach is implemented during the daytime phase when all agents
communicate. We choose only the daytime phase, as the werewolves have a static
policy (Brandizzi et al., 2021) (Section 3.3), meaning communication during the
nighttime phase has no effect on the werewolves’ vote. This modified game can be
parameterised with the number of communication rounds, nr, varying the amount of
time agents have to converse. More precisely, it is the number of times that the agents
can exchange a single message between all of them. The number of rounds is distinct
from the number of episodes which relates to the number of full games played by the
agents, where full games refer to a game which has reached a win condition, and the
environment was then reset.

We incentivise our agents to decide quickly on the target of their vote, while also
maintaining a high consensus rate among them as to who their target will be. This is
done through the agreement loss, as presented by Brandizzi et al. (2021), as well as our
additional loss based on the number of rounds taken to reach a conclusion. We
introduce a negative reward of −2 for wasting a round, or not reaching the voting
threshold, tv, to further incentivise voting in unison. The agreement loss penalises
agents who voted for a target that was not voted out, while tv represents the minimum
percentage of agents that must agree on a target for the vote to be considered valid. This
means that, when less than tv% of agents agree on a target, then the vote is considered
invalid, and no agents are eliminated. This modification can be viewed as adding an
independent judge to count all agent votes, where only a significant plurality is
permitted to decide whether to vote out an agent or not. This contrasts with the original
environment, which only required a simple plurality of agents to choose a target, even if
that plurality amounted to just two out of 21 agents, and when no plurality could be
reached, an agent would be removed at random.

1Our code is available on GitHub at https://github.com/olipinski/rl_werewolf

https://github.com/olipinski/rl_werewolf

26 Chapter 3. Interaction Time in Dialogue

Day
[1]

Status Map
[num_agents]

Phase
[1]

Targets
[num_agents]

Own ID
[1]

Messages
[num_agents,

message_length]

Linear
[X, 256]

Linear
[1, 256]

Linear
[num_agents, 256]

Linear
[1, 256]

Linear
[num_agents, 256]

Linear
[1, 256]

Linear
[256, 256]

Linear
[256, 256]

Linear
[256, 256]

Linear
[256, 256]

Linear
[256, 256]

Linear
[256, 256]

Concatenate
[1536]

LSTM
[1536,256]

Linear
[256, X] Reverse One-Hot

Actions

Observations

Vote Target
[1]

Message
[message_length]

FIGURE 3.1: Werewolf agent architecture.

3.3 Architecture

The architecture of Brandizzi et al. (2021), and by extension of this work, follows the
default agent architecture of Ray RLLib (Liang et al., 2018; Moritz et al., 2017). We
present an overview of the agent architecture in Figure 3.1. As the number of agents
and message length are variables, we do not present the sizes of the layers which
depend on their values, instead using the placeholder value X. These values are
automatically calculated based on the runtime parameters.

The presented architecture, following Brandizzi et al. (2021), is used only for the villager
agents. The werewolf agents instead follow a static werewolf policy (Brandizzi et al.,
2021). This policy picks an agent at random to be voted out by the werewolves. All
werewolves follow the same static policy.

Each agent observation (i.e., Day Number, Status Map, Game Phase, Targets, Own ID
and Messages (Section 3.2)) is first processed by two linear layers. The output of all
linear layers is concatenated to a single vector, which is then passed to an LSTM. After
the LSTM processes this input, it is passed to a final linear layer, which outputs a
one-hot encoding of the chosen agent actions. This one-hot representation is then
processed into actions which can be passed into the environment.

3.4. Interaction Time Experiments 27

3.4 Interaction Time Experiments

The modified version of the environment exposes two additional parameters to explore:
the number of rounds nr and the voting threshold tv. We explore them using a grid
search, maintaining the other parameters from the original paper (Brandizzi et al., 2021).
We provide details of the training and the grid search parameters in Appendix A.1.

3.4.1 Hypotheses

To investigate the influence the amount of time and voting plurality has on the agents’
strategies, we pose two hypotheses that we test in this work:

Hypothesis 1 (H1) The longer we allow the villagers to communicate, the faster they
will converge to a common communication strategy, and the higher their win rate
will be.

Hypothesis 2 (H2) The more the agents are encouraged to vote in unison, the faster
they will adopt an accurate voting pattern.

3.4.2 Convergence Speed

Increasing both nr and tv appears to decrease the average convergence episode, as
shown in Figure 3.2 and Figure 3.3, with shaded areas representing the 95% confidence
interval. We define the convergence episode as the episode number where our agents
reach over 75% win rate, which we choose as an arbitrary threshold for a successful
strategy. The convergence speed is defined as the average number of training episodes
required to reach this 75% win rate.

To confirm these observations, statistical analysis on the impact that both the number of
rounds and the voting threshold have on the convergence speed is performed, shown in
detail in Appendix A.2. The results indicate that the number of rounds has a statistically
significant effect on both win rate and convergence speed. We find that the higher the
number of communication rounds, the quicker the agents converge, partially
confirming our H1. The voting threshold, however, does not have a statistically
significant effect, falsifying our H2, and so its impact on the convergence speed is not
discussed further.

3.4.3 Win Rate

We analyse the impact that both of our additional parameters have on the average win
rate of the villagers. Figure 3.4 and Figure 3.5 illustrate the interaction between the

28 Chapter 3. Interaction Time in Dialogue

5 10 15 20 25 30 35
Number of Communication Rounds nr

0.5

1.0

1.5

2.0

2.5

Co
nv

er
ge

nc
e

Ep
iso

de
 (1

06)

FIGURE 3.2: Impact of the number of rounds on the convergence speed.

0.0 0.2 0.4 0.6 0.8 1.0
Voting Threshold tv

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Co
nv

er
ge

nc
e

Ep
iso

de
 (1

06)

FIGURE 3.3: Impact of the voting plurality threshold on the convergence speed.

parameters nr and tv in terms of the win rate, with the shaded areas representing the
95% confidence interval. The win rate is defined as the percentage of games that the
villagers win in a single training run. For certain configurations of the communication
round count and voting threshold, our agents achieve over 95% win rate.

Performing the statistical significance analysis, outlined in Appendix A.2, we find that
only the number of communication rounds has a statistically significant effect on the
win rate. With a larger nr, the win rates tend to be lower, as shown in Figure 3.5
indicating that increasing the number of communication rounds is negatively correlated
with the average win rate. This partially falsifies our H1. However, the number of
rounds together with the voting threshold increases the average win rate past the
previously reported values by Brandizzi et al. (2021), shown in Table 3.1, and results in
an overall positive trend.

3.4. Interaction Time Experiments 29

0.0 0.2 0.4 0.6 0.8 1.0
Threshold tv

0%

20%

40%

60%

80%

100%

W
in

 R
at

e

FIGURE 3.4: Impact of the voting plurality threshold on the win rate.

5 10 15 20 25 30 35
No. Communication Rounds nr

0%

20%

40%

60%

80%

100%

W
in

 R
at

e

FIGURE 3.5: Impact of the number of communication rounds on the win rate.

3.4.4 Comparison to the Original Environment

In Table 3.1 the results from this work are compared to the original experiments by
Brandizzi et al. (2021). Our configuration notation is consistent with Brandizzi et al.
(2021), where “SR” is vocabulary size, or the number of characters available for each
position in the message (originally called Signal Range), “SL” is message length
(originally called Signal Length), “PL” is the number of players, “WR” is “Win Rate”,
and “TH” and “RS” being the threshold value and number of rounds respectively.
Lastly, the “Convergence” column refers to the episode number, or convergence point,
that the agents with that configuration achieved. All values are reported for the best run
of each configuration, with better ones (as compared between the original environment
and our modified version) displayed in bold. The mean win rate together with the
1-sigma standard deviation, ±, are reported in the parentheses. The convergence
episode for the original configurations is reported as obtained by our reproduction.

Table 3.1 shows that the introduced modifications result in a lower total episode count
before convergence for two out of three compared configurations, while also achieving

30 Chapter 3. Interaction Time in Dialogue

TABLE 3.1: Results for both our and the original Brandizzi et al. (2021) environment.

Configuration TH RS Our WR (%) Original WR (%) Convergence (106)

SL9-SR2-PL9 1 36 100
(60± 31) N/A 0.70

(0.94± 0.84)

SL9-SR2-PL9 0 1 99
(78± 32) 45 1.29

(1.57± 0.41)

SL9-SR2-PL21 1 3 96
(83± 13) N/A 0.70

(1.47± 0.42)

SL9-SR2-PL21 0 1 95
(78± 27) 98 1.19

(1.28± 0.59)

SL21-SR2-PL21 0.4 3 100
(80± 17) N/A 0.62

(0.93± 0.19)

SL21-SR2-PL21 0 1 98
(92± 13) 94 0.58

(0.72± 0.12)

a higher win rate for two out of the three configurations. This demonstrates that
allowing the agents to communicate for longer results in a possible improved
performance for both metrics of the game. Reproductions of the configurations that
were presented by Brandizzi et al. (2021) are also included, with our modifications to
the code for a better comparison. We note that our reproductions have higher win rates
than reported, which could mean that the original runs were not fully converged,
possibly owing to the time or compute power available to the original study.
Nevertheless, our results still improve over the reproductions.

3.4.5 Language Analysis

To analyse the emergent language, we gather the information about word usage from
the latter parts of the training of our agents, focusing on agents who have completed the
exploration phase, and developed a stable language. We consider this point when the
win rate improvements plateau and there is minimal variation in the agent policies.

Analysing the language that agents have developed, we find a focus on a sparse word
vocabulary for the successful strategies, while most unsuccessful strategies have
multiple words in their vocabulary. Moreover, almost all successful agent populations
use a single word at least 90% of the time, with a minor number of outliers.

We can see the usage of the most common message in Figure 3.7. We observe the same
correlation when including the most common message and its distance-one adjacents,
defined as any message that has a single character difference from the most common
message, in Figure 3.6. Both figures are produced using a rolling average of the usage
percentages, to reduce the noise in the plot, and increase the visibility of the common
trends. However, the rolling average does remove the outliers at the higher win rate

3.5. Discussion 31

0% 20% 40% 60% 80% 100%
Win Rate

0%

20%

40%

60%

80%

100%

Us
ag

e
of

 To
p-

1
&

1-
Di

st

FIGURE 3.6: Most used unique message and its top ten distance-one adjacents versus
the villager win percentage.

0% 20% 40% 60% 80% 100%
Win Rate

0%

20%

40%

60%

80%

100%

Us
ag

e
of

 To
p-

1

FIGURE 3.7: Most used unique message versus the villager win percentage.

part of the plot, therefore limiting the plot to about 90%. The positive correlation
observed in both figures shows winning strategies mostly use a single unique message,
with some exploration of adjacent messages (i.e., using [1, 1, 1, 0] instead of previously
used [1, 1, 0, 0]).

3.5 Discussion

Brandizzi et al. (2021) demonstrate that agents can develop communication strategies
that improve upon the calculated theoretical baseline win rates for random policies
using a single round of communication. We investigated the impact of permitting
agents to engage in multiple rounds of communication during each episode, and
constraints on level of voting “agreement”. Our agent and game configuration
significantly improves over both the theoretical baseline win rates and the previously
demonstrated performance (Brandizzi et al., 2021) (Section 3.4).

32 Chapter 3. Interaction Time in Dialogue

3.5.1 Strategy Analysis

During the game, villagers are observed to send the same message every round of
communication and vote off those who do not comply with this strategy. As the agents
mostly use very sparse, almost single-word vocabularies, we posit that our agents do
not develop a compositional language, but rather a kind of password, similar to a
degenerate language (Section 2.3.1). We theorise that this is because expanding their
vocabulary would not bring an improvement to their performance. With such sparse
vocabularies, they can already achieve a high success rate, without needing to develop
more complex languages. As the password strategy relies on very simple
communication, we assume that it is straightforward to reach in the global loss
landscape, which is why it is the most adopted strategy. We additionally observe no
difference in performance or adoption of this strategy, when accounting for different
message lengths or ranges (Table 3.1).

Following the original game setup of Brandizzi et al. (2021), the werewolves use a static
policy, allowing villagers to easily distinguish the alternative agent type, as the
werewolves can never adapt their communication to their interlocutors. For a single
communication round, the agents at the start of the game have no information about
who the werewolves may be, and so would need to vote for a random player. Instead,
with multiple rounds, they can establish this distinction without having to cast the final
vote. We consider this strategy to be of particular interest, as we believe it resembles
that of the Turing Test (Turing, 1950), with it being performed by multiple separate
intelligent agents, with no involvement of humans. We discuss the limitations of the
static policy approach, together with experiments where werewolves are allowed to
adapt, in Section 3.6.

3.5.2 Convergence Speed

The number of communication rounds has a statistically significant (Appendix A.2)
effect on the convergence speed. The more rounds the agents can converse for, the
quicker they can converge on a common strategy. We hypothesise this is due to the
increased potential for information exchange and strategy alignment. When agents can
communicate more, they can better refine their understanding of the game dynamics
and the behaviour of other agents. This iterative process of communication and
adjustment leads to a faster alignment of strategies, reducing the time needed for
convergence.

The voting threshold, however, does not have a statistically significant effect on the
convergence speed. The voting threshold was intended to incentivise faster convergence
in the agents, by penalising agents that vote for different agents each round. The
negative result for the voting threshold may be explained by the voting threshold being

3.5. Discussion 33

too close in function to the agreement reward, as implemented by Brandizzi et al. (2021).
Essentially, both mechanisms might serve similar purposes in guiding agent behaviour,
leading to redundancy and thus diminishing the distinct impact of the voting threshold.

Another possible reason for the lack of impact from the voting threshold is that agents
may not require such a penalty to converge effectively. If the communication rounds
themselves provide sufficient incentive, additional mechanisms like the voting
threshold might not contribute significantly to the convergence process.

3.5.3 Win Rate

The number of communication rounds also affects the win rate, which is confirmed to
be statistically significant (Appendix A.2). Increasing the number of communication
rounds impacts the win rate negatively. We believe this decrease is due to the longer
training times, as the larger number of rounds requires more computation, and
therefore does not achieve convergence within the same time as our other
configurations. We can see that the number of total training episodes decreases as the
number of rounds increases, which is due to the limited amount of time that we could
run the simulations in Figure 3.8. We hypothesise that this is the reason behind lower
performance as the number of rounds increases. As the agents need to exchange more
messages in configurations with higher number of rounds, they do not have enough
time to converge to a winning strategy; hence they perform worse. This observation
suggests that while additional communication rounds can facilitate strategy refinement
and convergence, practical constraints such as computational resources and training
duration limit must be considered.

The voting threshold does not have a statistically significant effect on the win rate of the
villagers, for reasons we discuss in Section 3.5.2. This further supports the notion that
the increase in the number of communication rounds is sufficient in guiding agent
behaviour towards convergence and effective strategy formation.

3.5.4 Failure Modes

We observe that, in one case, our agents perform worse than those of the original study
(Brandizzi et al., 2021). Our results show a higher convergence speed for the 9-SL
settings, while a lower, but similar, convergence speed for the 21-SL setting. We
hypothesise that this is due to the larger message lengths in that setting. As agents can
communicate more information per round, the advantage of a larger number of rounds
may decrease. This also points to an interesting finding, where the convergence speed
may be tied to the total amount of information exchanged in a single round, be it
through more interaction time or longer messages. However, we consider our approach

34 Chapter 3. Interaction Time in Dialogue

5 10 15 20 25 30 35
Number of Communication Rounds nr

0.5

1.0

1.5

2.0

2.5

Co
nv

er
ge

nc
e

Ep
iso

de
 (1

06)

FIGURE 3.8: Impact of the number of communication rounds on the number of training
episodes.

of increasing the amount of time, rather than message length, more robust. As message
length increases, any corruption in the message transmission could potentially
significantly affect the message content (Kucinski et al., 2021; Ueda and Washio, 2021),
especially if the messages are information-dense and do not have built in error
correction.

3.6 Limitations

The main limitation of this work is the use of static policies for the werewolf agents. We
use that static policies to provide a faithful reproduction and comparison to the work of
Brandizzi et al. (2021), which also used static policies. However, it does preclude the
werewolves from adapting to the villager strategies. While the results presented hold
with this static policy approach, we do consider that if the werewolves were able to
learn, they would be able to counter the identified password signalling strategy.

Brandizzi et al. (2021) also explore the idea of werewolves having a trainable policy.
They identify that this would lead to an unnecessary increase in complexity and
decrease in stability of the learning, clouding the goal of studying the emergent
language between cooperative agents. We ran experiments with both villagers and the
werewolves being able to learn, finding an equilibrium of 50% win rate for either team.
This may be due to the lack of stability in the learning, as we find no signs of an explicit
strategy emerging from the villagers. These experiments are therefore excluded from
this work.

3.7. Conclusions 35

3.7 Conclusions

We introduce multi-round communication to the originally single round environment of
Werewolf (Brandizzi et al., 2021). We show that the number of communication rounds
decreases the convergence time of the agents, with statistical analysis showing that this
correlation is significant. We investigate the strategies that the agents develop to
achieve the high win rates, and demonstrate that our agents are using password
signalling to allow villagers to efficiently identify each other. Our results confirm that
allowing agents to communicate for longer offers improvements to the way that the
agents can play the game. With more time, agents can create more efficient strategies,
while also having an efficient communication protocol. Our findings underscore the
significance of extended communication periods in enhancing agent performance and
language development. The strategies that emerge from these extended interactions,
such as password signalling, illustrate the potential for more sophisticated and efficient
communication protocols stemming from investigating temporal dynamics in EC.

37

Chapter 4

Temporal References

Building on the exploration of communication time in Chapter 3, in this chapter we
investigate another crucial aspect of emergent communication: temporal deixis or
temporal references (Section 2.1). Deixis (Section 2.1), has been described as a way of
pointing through language. Examples of temporal deixis include words such as
“yesterday” or “before” (Lyons, 1977). In this chapter, we examine how agents develop
the ability to use deixis to refer to past events, and the architectural modifications
necessary to facilitate such references.

4.1 Temporal References in Emergent Communication

Many aspects of emergent language have been explored (Lazaridou and Baroni, 2020;
Boldt and Mortensen, 2024b), with a particular focus on improving communication
efficiency (Rita et al., 2020; Chaabouni et al., 2019; Kang et al., 2020). Kang et al. (2020)
demonstrate how using the minimal deviation between subsequent time steps allows
for more concise communication by reducing redundant information transfer.
Investigation of the contextual information of the resulting language offered a further
improvement in agent performance by using the time step similarity together with
optimisation of the reconstruction of the speaker’s state (Kang et al., 2020).

Despite these advances, no existing research has investigated or reported on the
emergence of temporal referencing strategies, where agents can communicate
relationships between different time steps. Including temporal references, alongside the
general characteristics of emergent languages, promises to enhance agents’ bandwidth
efficiency and task performance across a variety of scenarios.

As research in emergent communication continues to advance, increasing the
complexity of environmental settings is becoming a crucial step to better simulate
real-world scenarios (Chaabouni et al., 2022). This scaling often involves introducing

38 Chapter 4. Temporal References

more variables, dynamic elements, and multi-agent interactions, which make
communication between agents more challenging, while also becoming more reflective
of the communication strategies observed in humans. In these complex environments,
the ability of agents to reference temporal relationships, such as identifying the
sequence or timing of events, becomes particularly valuable.

Temporal references are essential because they allow for more sophisticated strategies
and better coordination. For instance, in environments where actions need to be
planned based on previous outcomes or where understanding the order of events is
crucial, agents equipped with the ability to use temporal references can significantly
improve their performance. One example is social deduction games (Brandizzi et al.,
2021; Lipinski et al., 2022; Kopparapu et al., 2022), where players must infer others’
intentions or past actions to succeed. In such games, the ability to accurately refer to
past events is a key component of a winning strategy, as it allows agents to deduce
hidden information, predict opponents’ behaviour, and coordinate with allies more
effectively.

Temporal referencing also facilitates the development of more efficient communication
protocols among agents. By assigning shorter, more efficient messages to frequently
occurring events, agents can streamline their communication, reducing the cognitive
load and bandwidth required for successful interactions. This concept is analogous to
Zipf’s Law in human languages (Zipf, 1949), which observes that the most commonly
used words tend to be shorter (such as “is” or “am” versus “neuroscience” or
“embroidery”), allowing for quicker and more efficient communication. In emergent
language systems, similar patterns can evolve, where agents naturally develop a
shorthand for common events, leading to optimized communication that is both concise
and effective. Such efficiency gains are critical in complex environments where rapid
and accurate communication can mean the difference between success and failure.

Temporal references would be particularly effective when the distribution of
observations would be non-uniform, which means that certain objects appear more
often than others. Specialised messages, used only for temporal references, would then
also become more frequent than others. From information theory, we know that
(adaptive) Huffman coding (Huffman, 1952; Knuth, 1985; Vitter, 1987) can assign
shorter bit sequences to more frequent messages, thereby compressing them more
efficiently than less common messages. Consequently, the incorporation of temporal
references can enhance the efficiency of transmitting the emergent language, optimizing
communication.

Our contribution lies in examining when temporal references emerge between agents.
Three potential prerequisites are explored: environmental pressures, external pressures
and architectural changes. The agents are trained in both the regular referential game
(Lazaridou et al., 2017) and on an environment which encourages the development of

4.2. Temporal Referential Games 39

temporal references through embedded environmental pressures (Section 4.2.3). The
effect of an external pressure to develop temporal referencing is explored via an
additional loss applied to the agents (Section 4.5). Three types of architecture are
evaluated, (Section 4.3), analysing two novel architectures together with a reference
architecture based on the commonly used EGG (Kharitonov et al., 2019) agents. The
baseline Base (Section 4.3.1) agent, provides us with a reference performance for both
the emergence of temporal references, and performance in an environment. This
baseline is compared to a Temporal (Section 4.3.2) agent, which features a sequentially
batched GRU, instead of the parallel batching used in EGG, which allows the agents to
build an understanding of the sequence of target objects. Additionally, the TemporalR
(Section 4.3.3) agent combines the information from the sequential GRU and the parallel
batched GRU from the Base agent. This allows it to process information about the
objects, without needing to focus on their order in the sequence at the same time.

4.2 Temporal Referential Games

4.2.1 Definitions

In referential games (Section 2.5.1), agents need to identify objects from an object space V,
which appear to them as attribute-value vectors x ∈ V. To define the object space V, the
value space of all possible attributes is defined as S = {0, 1, 2 . . . Nval} where Nval is the
number of values. The value space represents the variations each object attribute can have.
The object space is defined as

V = S1 × · · · × SN = {(a1, . . . , aNatt) | ai ∈ Si for every i ∈ {1, . . . , Natt}},

where Natt is the number of attributes of an object.

To give an intuition of the notion of attributes and values, consider that the object
shown to the sender is an abstraction of an image of a 2-D shape, shown in Figure 4.1.
The attributes of the shape could include the colour of the background or what shape it
represents. The values are the variations of these attributes. In this example, possible
values of the background colour are red, green, or blue, which are indicated by integers
[0, 1, 2] respectively. The shape is represented by integers [0, 1, 2], indicating a triangle,
square, and circle. The colour of the shape is in the second position of the vector, while
the shape is in the first. To represent a blue circle, a vector [circle, blue] is used, which
would be represented as an integer vector [3, 2], where 3 represents a circle, and 2
represents the colour blue.

The characters available to the agents (i.e., the symbol space) is ω = {0, 1, 2 . . . Nvocab − 1}
where Nvocab is the vocabulary size. The message space, or the space that all messages must

40 Chapter 4. Temporal References

[0,0] [1,1] [1,2] [2,2] [2,1] [2,0]

FIGURE 4.1: Attribute-Value Object Representation

belong to, is defined as

ξ = ω1 × · · · ×ωL = {(c1, . . . , cL) | ci ∈ ωi for every i ∈ {1, . . . , L}},

where L is the maximum message length.

Combining the message and object space, the agents’ language is defined as a mapping
from the objects in V to messages in ξ. Finally, the exchange history, representing all
messages and objects that the agents have sent/seen so far, is defined as a sequence
τ = {(mn, xn)}n∈{1,...,t} such that ∀n, mn ∈ ξ ∧ xn ∈ V, with t signifying the episode of
the last exchange.

4.2.2 Temporal Logic

Temporal logic is used to formally define the behaviour of our temporal referential
games. To achieve this, a form of Linear Temporal Logic (LTL) (Pnueli, 1977) called Past
Linear Temporal Logic (PLTL) (Lichtenstein et al., 1985) is employed.

LTL focuses on the connection between future and present propositions, defining
operators such as “next” �, indicating that a given predicate or event will be true in the
next step. The LTL operators can then be extended to include the temporal relationship
with propositions in the past, creating PLTL. PLTL defines the operator “previously” ⊖,
corresponding to the LTL operator of “next” �.

The “previously” PLTL operator must satisfy Equation (4.1), using the definitions from
Maler et al. (2008), where σ refers to a behaviour of a system (the message sent by an
agent) at time t, and ϕ signifies a property (the object seen by the agent).

(σ, t) |= ⊖ϕ↔ (σ, t− 1) |= ϕ (4.1)

Additionally, the shorthand notation of ⊖n is used, signifying that the ⊖ operator is
applied n game steps back. For instance, ⊖4ϕ↔ ⊖⊖⊖⊖ ϕ.

4.2. Temporal Referential Games 41

4.2.3 Temporal Referential Games

The temporal version of the referential games (Lewis, 1969; Lazaridou et al., 2017) is
based on the “previously” (⊖) PLTL operator.1 At every game step, st, the sender agent
is presented with an input object vector, x, generated by the function X(t, c, hv), with a
random chance parameter, c, the history range value, hv, and the current episode, t.

X(t, c, hv) =

x c = 0

⊖hv x = τt−hv c = 1
(4.2)

The history range value, hv, is uniformly sampled, taking the value of any integer in the
range [1, h], where h is the history length hyperparameter. The history range value is
randomly sampled to allow agents to develop temporal references of varying temporal
lengths, instead of the parameter being fixed each run. The function X(t, c, hv) selects a
target object to be presented to the sender using Equation (4.2), either generating a new
random target object or using the old target object. This choice is facilitated using the
chance parameter c, which is sampled from a Bernoulli distribution, with p = 0.5. If
c = 1 a previous target object is used, and if c = 0 a new target object is generated. Both
c and hv are sampled every time a target object is generated.

For example, consider an episode at t = 4 with the sampled parameters c = 1 and
hv = 2. Suppose the agent has observed the following targets: [j, k, l]. Given that c = 1,
further to Equation (4.2), the ⊖2 (⊖hv) target is chosen. The target sequence becomes
[j, k, l, k], with the target k being repeated, as it was the second to last target. Now
suppose that c was sampled to be c = 0 instead. Further to Equation (4.2), a random
target a is generated from a ∈ V. The target sequence then becomes [j, k, l, a].

This behaviour describes the environment TRG, which represents the base variant of
temporal referential games, where targets are randomly generated with a 50% chance of
repetition of a target from the history length [1, h]. The TRG Hard variant is also used,
which is a temporal referential game with the same 50% chance of a repetition, but
where targets only differ in a single attribute when compared to the distractors. TRG
Hard tests whether temporal referencing improves performance in environments where
highly similar target repetitions are common. We expect that this environment will
prove challenging for the agents, and so we expect an accuracy drop. However, we
expect the accuracy to improve with the addition of temporal references, as the agents
should be able to overcome the target similarities by referring to the temporal
relationships between the targets instead. A visual representation of the TRG
environment is shown in Figure 4.2b, with the original referential game presented in
Figure 4.2a.

1Our code is available at https://github.com/olipinski/TRG

https://github.com/olipinski/TRG

42 Chapter 4. Temporal References

[5, 10, 6] Apple!

Distractors

Target

(A) Referential game

T-2 Banana!

Distractors

Target

T-1

T-2

Time T

(B) Temporal referential game

FIGURE 4.2: Structure of the referential game and temporal referential game.

Additionally, two more environments are used: Always Same and Never Same. Their
purpose is to verify whether the messages that are identified as temporal references are
correctly labelled. The Always Same environment sequentially repeats each target from a
uniformly sampled subset of all possible targets ten times2. Repeating the target ten
times allows verification that the messages are used consistently; i.e., if the agents use
temporal messaging. The Never Same never repeats a target and goes through a subset
of all possible targets in order. The Never Same environment is used to verify if the same
messages are used for other purposes than to purely indicate that the targets are the
same. In both environments, the dataset only repeats the target object, while the
distractor objects are randomly generated for each object set. Sample inputs and
expected outputs for these environments are provided in Appendix B.2.1.

The agents are also trained and evaluated in the RG environment, which represents the
classic referential game (Lewis, 1969; Lazaridou et al., 2017), where targets are randomly
generated, and RG Hard, which is a more difficult version of the referential games,
where the target and distractors only differ in a single attribute. The RG environment
establishes a reference performance for the agents, while RG Hard determines whether
temporal references enhance performance in an environment where targets are harder
to differentiate. In common with the TRG Hard, we expect an accuracy drop in the RG
Hard environment.

Since the RG, RG Hard, and Never Same environments have almost no target
repetitions, (cf., Appendix B.2, Figure B.1) we do not expect to observe the emergence of
temporal references in these environments. We use RG, RG Hard, and Never Same to
validate our results, and to provide a baseline performance on the environments usually
used in emergent communication research (Boldt and Mortensen, 2024b).

2A subset is used as the object space grows exponentially with the number of attributes and values.

4.3. Agent Architectures 43

4.3 Agent Architectures

As discussed in Section 2.6, both sender and receiver agents are typically built around a
single recurrent neural network (Kharitonov et al., 2019). In this work, these standard
agent architectures, based on a GRU (Cho et al., 2014), are compared to temporal GRU
architectures, which use a different batching strategy. The Base agent, used as a baseline,
is the commonly used GRU-based EGG agent (Cho et al., 2014; Kharitonov et al., 2019).
Our two novel architectures, the Temporal and TemporalR agents, feature a sequentially
batched GRU (Cho et al., 2014). This additional module allows the agents to gather
information about the sequence of objects itself, instead of the regular GRU, as used in
EGG (Kharitonov et al., 2019), which processes all objects in parallel. While the Temporal
agents use just the sequential GRU to process their input, the TemporalR agents combine
both the Base and Temporal approaches, combining the outputs of a regular GRU,
together with the sequentially batched GRU. This allows the TemporalR agents to
process the information that may be present in the objects themselves, as well as the
order of their appearances, without needing to store this information in a single GRU
hidden state.

While many architectures may work for processing temporal information within
datasets, we opt for a distinct batching strategy for two key reasons. Firstly, it requires
minimal modification to the Base agent design, facilitating direct comparisons between
the two architectures and enabling straightforward application of our architectural
modifications to other contexts. Secondly, it offers a straightforward framework for
examining the emergence of temporal references. Although our experiments initially
involved more complex architectures, including attention-based agents, we observed no
significant differences in any metrics from those of GRU-based networks. Consequently,
our focus in this study remains on GRU-based agents.

44 Chapter 4. Temporal References

Objects
[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Target
[4,3,3,1]

GRU
(Meaning)

[batch_size,1,4]

Final hidden states
 for each element
 in the sequence

Message
Generation

GRU

Initial Hidden State for GRU

Gumbel-Softmax

Sequence of
Character

Probabilities

Embedding from
Vocab to Character

Linear

Repeat until max_len reached

Hidden to Vocab
Linear

Input

(A) The Base GRU sender architecture.

GRU
(Meaning)

[batch_size, len, vocab]

Final hidden
states for each
element in the

sequence

Object
Embedding

Linear

Object Guess

Sequence of
Character

Probabilities

Objects
Embedded

Multiply
torch.matmul

Objects
[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Input

(B) The Base GRU receiver architecture.

FIGURE 4.3: The Base GRU sender and receiver architectures.

4.3.1 Base Agent

In common with other approaches (Kharitonov et al., 2019; Chaabouni et al., 2019;
Auersperger and Pecina, 2022), each of the Base sender and receiver agents are
constructed around a single GRU (Cho et al., 2014), as described in Section 2.6. The
sender processes the target object through the GRU to produce the initial hidden state
for generating messages. These messages are then generated character by character
using the Gumbel-Softmax technique (Jang et al., 2017) and passed to the receiver. The
receiver’s architecture combines the output from an object embedding linear layer and a
message processing GRU to predict the target object in the referential game. We present
the sender (Figure 4.3a) and receiver (Figure 4.3b) architectures for comparison with the
Temporal and TemporalR agents.

4.3.2 Temporal Agent

For the Temporal agent, a sequential GRU module is introduced in both the sender and
receiver networks (Figure 4.4). This additional GRU is batched with a sequence over the
whole training input, similar to the sequential learning of language in humans
(Christiansen and Kirby, 2003). Assume the regular sender GRU (Section 4.3.1) expects
an input of the form [batch_size, seq_len, Natt]. Let batch_size = 128, and Natt = 6. A
batch of shape [128, 1, 6] is then created, obtaining 128 objects of size 6, with sequence
length 1 (Kharitonov et al., 2019). The sequential GRU (cf., Figure 4.4a) instead receives

4.3. Agent Architectures 45

Objects
[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Target
[4,3,3,1]

GRU 1
(Temporal)

[1,batch_size,4]

Hidden states for
 each element in
 the sequence

Elementwise
Multiply

torch.mul

Combined
Features

Message
Generation

GRU

Initial Hidden State for GRU

Gumbel-Softmax

Sequence of
Character

Probabilities

Embedding from
Vocab to Character

Linear

Repeat until max_len reached

Hidden to Vocab
Linear

Input

Temporal Module

(A) The Temporal GRU sender architec-
ture.

 GRU 1
(Meaning)

[batch_size, len, vocab]

Final hidden
states for each
element in the

sequence

Object
Embedding

Linear

Object Guess Temporal
Guess

Objects
[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Input

Sequence of
Character

Probabilities

Objects
Embedded

Temporal
Prediction

Linear

Multiply
torch.matmul

GRU 2
(Temporal)

[1, batch_size, 128]

Hidden states for
 each element in
 the sequence

Temporal Module

Elementwise
Multiply

torch.mul

(B) The Temporal GRU receiver architec-
ture.

FIGURE 4.4: The Temporal GRU sender and receiver architectures, with the temporal
modules highlighted in purple.

a batch of shape [1, 128, 6], or a sequence of 128 objects of size 6. This allows the
sequential GRU to process all objects one after another to create temporal
understanding. A visual representation of the two batching strategies is shown in
Figure 4.5. In Figure 4.5a, the GRU takes as input all the objects at once (sequence length
is 1), whereas in Figure 4.5b the GRU takes as input all objects in a sequence (sequence
length is 128). This then allows the GRU’s final hidden state (final h_t) in Figure 4.5b to
contain the information about the temporal relationships between the objects, as
compared to only the information about each object separately, as is the case in
Figure 4.5a.

By including this sequential GRU, the sender and the receiver are able to develop a
more temporally focused understanding. This ability to process temporal relationships
is proposed to allow the agents to represent the entire object sequence within the GRU
hidden state. Since it does not require reward shaping approaches or architectures
specifically designed for referential games, this addition is also a scalable and general
approach to allowing temporal references to develop. A different batching strategy can
be applied to any environment and agent.

Additionally, the temporal prediction layer and the sequential GRU are also used in the
receiver agent (Figure 4.4b). First, a hidden state is computed for each message using
the regularly batched GRU. Then, the sequential GRU processes each of the regularly
batched GRU’s hidden states to build a temporal understanding of the sender’s
messages. The combined information from both GRUs and the object is also used in the
temporal prediction layer, which allows the agent to signify whether an object is the

46 Chapter 4. Temporal References

Object 1

Object 2

Object 3

Object 128

Batch
128

Sequence
1

GRU
[256]

H_n
[1,256]

Final H_t
[1,256]

(A) Regular batching of a GRU.

Sequence
128

Batch
1

Temporal
GRU
[256]

H_n
[128,256]

Final H_t
[1,256]

O
bject 1

O
bject 2

O
bject 3

O
bject 128

(B) Temporal batching of a GRU.

FIGURE 4.5: Examples of regular and temporal batching strategies.

same as a previously seen object within the history length h. This is implemented as a
single linear layer, which outputs the temporal label prediction.

The temporal label used in this prediction only considers the past of history length h;
otherwise, it defaults to 0. For example, assume an object has been repeated in the
current episode and last appeared 5 episodes ago. If the history length, h, is 8, the label
assigned to this object would be 5, as 5 past episodes are still within the history, i.e.,
5 ≤ h. However, if h is 4, the label would be 0, as the episode lies outside the history
length, i.e., 5 ≥ h.

This predictive ability is combined with an additional term in the loss function, which
together form a temporal prediction loss. The agent’s loss function can be formulated
as Lt = Lrg + Ltp. The Lrg component is the referential game loss between the receiver
guess and the sender target label, using cross entropy. Ltp is the temporal prediction
loss, which is implemented using cross entropy between the labels of when an object
has last appeared, and the receiver’s prediction of that label. Agents that include this
loss perform an additional task, which corresponds to correctly identifying which two
outputs are the same. The goal of this loss is to improve the likelihood of an agent
developing temporal references by increasing the focus on these relationships. Analysis
of how the presence of this explicit loss impacts the development of temporal references
is provided in Section 4.5.

4.3.3 TemporalR Agent

The TemporalR (cf., Figure 4.6) agent combines the Base and the Temporal architectures.
The sequential GRU from the Temporal agent is added to the Base architecture, merging
both the sequential understanding from the temporal module, with the parallel
understanding of the target objects from the regularly batched GRU. The hidden states
of both GRUs are combined through an elementwise multiplication and fed into the
message generation GRU. The receiver agent is the same as the Temporal receiver, and
includes the temporal prediction module.

4.4. Measuring Temporality and Compositionality 47

Objects
[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Target
[4,3,3,1]

GRU 1
(Temporal)

[1,batch_size,4]

GRU 2
(Meaning)

[batch_size,1,4]

Final hidden states
 for each element
 in the sequence

Hidden states for
 each element in
 the sequence

Elementwise
Multiply

torch.mul

Combined
Features

Message
Generation

GRU

Initial Hidden State for GRU

Gumbel-Softmax

Sequence of
Character

Probabilities

Embedding from
Vocab to Character

Linear

Repeat until max_len reached

Hidden to Vocab
Linear

Input

Temporal Module

(A) The TemporalR GRU sender architec-
ture.

 GRU 1
(Meaning)

[batch_size, len, vocab]

Final hidden
states for each
element in the

sequence

Object
Embedding

Linear

Object Guess Temporal
Guess

Objects
[1,3,2,4]
[4,3,3,1]
[2,2,1,4]
[3,1,2,4]

Input

Sequence of
Character

Probabilities

Objects
Embedded

Temporal
Prediction

Linear

Multiply
torch.matmul

GRU 2
(Temporal)

[1, batch_size, 128]

Hidden states for
 each element in
 the sequence

Temporal Module

Elementwise
Multiply

torch.mul

(B) The TemporalR GRU receiver architec-
ture.

FIGURE 4.6: The TemporalR GRU sender and receiver architectures, with the temporal
modules highlighted in purple.

4.4 Measuring Temporality and Compositionality

To be able to confirm the emergence of temporal references we need a way to analyse
their presence. As current literature has not investigated temporal references, we
develop a correlation metric, M⊖n , to achieve this task. We also present the
compositionality metrics that we use to analyse the interaction between the
development of temporal references and the development of compositional languages.

4.4.1 Temporality Metric

To evaluate the development of temporal references, we propose a new metric, M⊖n ,
which measures how often a given message has been used as the “previous” operator in
prior communication. Given an exchange history (the sequence of objects shown to the
sender and messages sent to the receiver), τ, it checks when an object has been repeated
within a given history range hv, and records the corresponding message sent to describe
that object.

Let Cm⊖n count the times the message m has been sent together with a repeated object
for hv = n

Cm⊖n =
t

∑
j=1

I(mj = m ∧ objectSame(xj, n)) (4.3)

48 Chapter 4. Temporal References

where I(·) is the indicator function that returns 1 if the condition is true and 0
otherwise, and objectSame(xj, n) is a function that evaluates to true if the object xj is the
same as the object n episodes ago.

Let Tm denote the total count of times the message m has been used

Tm =
t

∑
j=1

I(mj = m) (4.4)

where I(·) is an indicator function selecting the message m in the exchange history τ.

The percentage of previous messages that are the same as m can then be calculated
using M⊖n(m):

M⊖n(m) =
Cm⊖n

Tm
× 100. (4.5)

The objective of the M⊖n(m) metric is to measure if the message can give reference to a
previous episode; e.g., if a message is used similarly to the sentence “The car I can see is
the same colour as the one mentioned two sentences ago”. More formally, assume a
target object sequence of [x, y, z, y, y, y, x]. Each vector, x,y,z, represents an object
belonging to the same arbitrary V. In this example, there is only one object repeating: y.
We can then consider three message sequences: [m1, m2, m3, m2, m4, m4, m1],
[m1, m2, m3, m4, m4, m4, m1] and [m1, m2, m3, m2, m2, m2, m1], with each mn belonging to
the same arbitrary ξ and calculate the metric ⊖1.

There are two repetitions in the sequence of objects: the second and third y following
the sequence of [x, y, z, y]. In the first example message sequence, the message m4 has
been sent and so Cm4⊖1 = 2, for both of the repetitions. The total use of m4 is Tm4 = 2.
Calculating the metric M⊖1(m4) = 2/2× 100 = 100% gives 100% for the use of m4 as a
⊖1 operator in this sequence: this message is used exclusively as a ⊖1 operator.

In the second message sequence, m4 has also been used for the initial observation of the
object. This means that Tm4 = 3, while Cm4⊖1 = 2, M⊖1(m4) = 2/3× 100 = 66%,
which could mean that the message is being used as ⊖1 66% of the time.

The third message sequence illustrates the case where an agent may be using messages
describing objects using their features. Following the previous examples, Tm2 = 4, with
Cm2⊖1 = 2. This message would then be classed as 50% ⊖1 use,
M⊖1(m2) = 2/4× 100 = 50%.

In general, if M⊖n(m) < 100%, we cannot conclude that message m is used exclusively
as a ⊖1 operator. We therefore define the emergence of temporal references as the
appearance of messages that are used exclusively in situations in which an agent would
be expected to use a temporal reference in communication; i.e., M⊖n = 100%. We expect
the M⊖n metric to reach 100% for all agents that successfully incorporate temporal

4.5. Temporal Referencing Experiments 49

references into their communication, thus providing a clear and unequivocal indication
of temporal reference emergence. We employ the 100% threshold to ensure that only
messages consistently used as temporal references are considered, thereby mitigating
the influence of chance repetitions on our results. Chance repetitions could potentially
skew the values provided by the M⊖n , since if the same objects appeared multiple times
in a row, our metric would classify the given message as high M⊖n value, as the message
could also be seen as being used in a temporal context (see Section 4.4). However, the
M⊖n metric is extremely unlikely to reach a value as high as 100% by chance alone.

4.4.2 Compositionality Metrics

Emergent languages are often analysed in terms of their compositionality scores, using
the topographic similarity metric (Brighton and Kirby, 2006) (Section 2.4.1).
Topographic similarity measures the Spearman Rank correlation (Spearman, 1904)
between the distances of messages and objects in their respective spaces. For example, a
message describing a “blue circle” should be closer to “blue triangle”, than to “red
square” if the language is compositional.

Languages are also evaluated using metrics that account for languages where the
symbols themselves carry all the information: posdis, which use the positional
information of individual characters, and bosdis, for permutation invariant languages,
(Chaabouni et al., 2020). Posdis intuitively measures if, for example, the first symbol
always refers to a property of the object, such as in the English phrases “blue circle” or
“red square”, versus “circle blue” or “square red”. Bosdis measures whether a symbol
carries all the information independent of the position of this symbol, such as in the
English conjunctions example from Chaabouni et al. (2020), “dogs and cats” and “cats
and dogs”, where both constructions are valid and convey the same information.

4.5 Temporal Referencing Experiments

Having defined our metrics for measuring temporality (M⊖n) and compositionality in
emergent languages, we can now analyse the language developed within the temporal
referential game. Using the metrics described in Section 4.4, we can evaluate how
different agent architectures and training environments influence the development of
temporal references.

4.5.1 Hypotheses

To study the impact of the architecture, as well as the external and internal pressures of
the agents, we propose three hypotheses to guide our experiments:

50 Chapter 4. Temporal References

Hypothesis 3 (H3) All agents can develop some form of temporal references, with
agents that include the temporal prediction loss more likely to do so.

Hypothesis 4 (H4) Temporal references will increase the agent’s performance in
environments that include temporal relationships.

Hypothesis 5 (H5) No temporal references will be detected with the M⊖n metric in
environments where there are no temporal relationships.

Hypothesis 3 is investigated by using multiple agent types and applying a temporal
prediction loss. Hypothesis 4 is analysed by using two environments, TRG and TRG
Hard, where temporal relationships are explicitly introduced. We then compare the
performance of agents, for which we have good evidence that they develop temporal
references, to those that do not, to determine the impact of temporal references on task
accuracy. We include all evaluation environments, including those where there are no
target repetitions when evaluating the M⊖n to validate Hypothesis 5, which acts as a
sanity check.

4.5.2 Agent Training

The following architectures are trained and evaluated:

Base The same as the EGG (Kharitonov et al., 2019) agents, used as a baseline for
comparisons (Section 4.3.1);

Temporal The base learner with the sequential GRU instead of the regularly batched
GRU (Section 4.3.2); and

TemporalR The base learner with the regularly batched GRU and the sequential GRU
(Section 4.3.3)

Each agent type is additionally trained with and without the temporal prediction loss.
The agents that include the temporal prediction loss have an explicit reward to develop
temporal understanding. There is no additional pressure to develop temporal
references for agents that do not include the temporal prediction loss, except for the
possibility of increased performance on the referential task. The aim of the additional
loss is to investigate if it would aid in the temporal reference emergence, or if it
improves agent performance.

All agent types were trained for the same number of epochs and on the same
environments during each run. Agent pairs are trained in either the RG or TRG
environment. Evaluation of the agents is performed after the training has finished. Each
agent pair is assessed in six different environments: Always Same, Never Same, RG, RG
Hard, TRG and TRG Hard. The target objects are uniformly sampled from the object
space V in all environments. The training dataset contains 20k objects, with Nval and

4.5. Temporal Referencing Experiments 51

Natt both equal to 8. Each possible configuration was run ten times, with randomised
seeds between runs for both the agents and the datasets. Appendix B.1 provides further
details.

4.5.3 Significance Analysis

The underlying distribution of each network type is analysed, using the Kruskal-Wallis
H-test (Kruskal and Wallis, 1952), as scores are not guaranteed to be distributed
normally. Conover-Iman (Conover and Iman, 1979) post-hoc analysis is performed,
with Holm-Bonferroni (Holm, 1979) corrections applied, to verify which of the different
network types differ significantly from each other. Using these methods, all results
reported in the following sections have been verified to be statistically significant, with
level of significance p < 0.05.

4.5.4 Task Accuracy

All agents achieve high task accuracy, with all achieving over 95% in the Referential
Games (RG) environment. Both Hard variants (i.e., RG Hard and TRG Hard) present a
challenge to the agents. All agents perform significantly worse in these two evaluation
environments, achieving approximately 72% accuracy on average for the RG Hard
environment, and 85% accuracy for the TRG Hard environment. We observe no increase
in the task accuracy for the agents that develop temporal references, and so we reject
hypothesis H4. We provide a discussion of the possible reasons behind this in
Section 4.6. The detailed accuracy distributions are provided in Appendix B.3.

4.5.5 Temporality Sanity Check

In line with H5, the values of M⊖n for the Never Same, RG, and RG Hard environments
consistently register at 0%. These results reduce the likelihood of significant issues with
the M⊖n metric, given that the probability of target repetition in these environments is
near zero. Since the results remain constant and at 0% for these environments, they are
omitted from the subsequent sections for brevity.

4.5.6 Temporality Analysis

Table 4.1 illustrates the M⊖4 metric values, referring to an observation four messages in
the past, of all agent types over the evaluation environments (cf., Sections 4.4 and 4.5.2),
where M⊖4 > 0%.3

3The value of 4 is chosen arbitrarily, to lie in the middle of the explored range of h.

52 Chapter 4. Temporal References

TABLE 4.1: Maximum value of the M⊖4 metric for each network/loss/training envi-
ronment combination.

Network Loss Training Env AS TRG TRG Hard

Base Reg RG 60% 85% 85%
Base Reg TRG 60% 85% 85%
Base Reg+T RG 60% 85% 85%
Base Reg+T TRG 60% 85% 85%

Temporal Reg RG 100% 100% 100%
Temporal Reg TRG 100% 100% 100%
Temporal Reg+T RG 100% 100% 100%
Temporal Reg+T TRG 100% 100% 100%

TemporalR Reg RG 100% 100% 100%
TemporalR Reg TRG 100% 100% 100%
TemporalR Reg+T RG 100% 100% 100%
TemporalR Reg+T TRG 100% 100% 100%

Table 4.1 indicates that the temporally focused processing of the input data makes the
agents predetermined to develop temporal references. “AS” is Always Same, “RG” is
the regular Referential Game environment, “TRG” is the Temporal Referential Game,
and “TRG Hard” is TRG with the target differing in a single attribute with respect to the
distractors.

The behaviour of sequential GRU (Temporal and TemporalR) agents, provide good
evidence for the emergence of temporal references. There is strong evidence for the
emergence of temporal references in these networks, regardless of the training dataset.
Even in a regular environment, without additional pressures, temporal references are
advantageous. No messages in the Base architectures are used 100% of the time for ⊖4,
irrespective of the dataset they have been trained on. We, therefore, conclude that
temporal prediction loss is insufficient for temporal reference emergence, and that the
ability to process observations temporally is the key factor. These results partially
confirm hypothesis H3, indicating that all agents capable of explicitly processing
temporal relationships develop temporal references and that no additional pressures are
required. While we expected that the additional temporal prediction loss would
improve the development of temporal references, this analysis indicates that it is neither
sufficient nor necessary.

Additionally, messages that are used for ⊖4 have a high chance of being correct, with
most averaging above 90% correctness. Correctness refers to whether the receiver agent
correctly guessed the target object after receiving the message.

Most messages are used only in the context of the current observations, with Temporal
and TemporalR networks using a more specialised subset of messages to refer to the
temporal relationships. Only Temporal and TemporalR variants develop messages that
reach 100% on the M⊖4 metric. The distribution also suggests that these messages could

4.5. Temporal Referencing Experiments 53

TABLE 4.2: Percentage of networks that develop temporal messages.

Network Type Loss Type Percentage

Base Regular loss 0%
Base Regular + Temporal loss 0%
Temporal Regular loss 100%
Temporal Regular + Temporal loss 100%
TemporalR Regular loss 98.66%
TemporalR Regular + Temporal loss 97%

be a more efficient way of describing objects, as the number of temporal messages is
relatively small. Since only a small number of messages are needed for temporal
references, they can be used more frequently. This message specialisation, combined
with a linguistic parsimony pressure (Rita et al., 2020), could lead to a more efficient
way of describing an object: sending the object properties requires more bandwidth
than sending only the time step the object last appeared.

The percentage of networks that develop temporal messaging is shown in Table 4.2. The
percentages shown are absolute values, calculated by taking the total number of runs
and checking whether at least one message has reached M⊖n = 100% for each run. That
number of runs is divided by the total number of runs of the corresponding
configuration to arrive at the quantities in Table 4.2.

The Temporal and TemporalR network variants reach over 96% of runs that have
converged to a strategy which uses at least one message as the ⊖n operator. In contrast,
the Base networks never achieve such a distinction. However, in the case of the
TemporalR network, some runs do not converge to a temporal strategy within the
training time. These instances account for only 3% of the total number of runs, and the
differences are not statistically significant from the Temporal network, showing that the
emergence of temporal references is still very likely, if somewhat dependent on the
network initialisation. These results indicate that the ability to build a temporally
focused representation of the input data is the deciding factor in the emergence of
temporal references.

When increasing the number of target repetitions in a dataset, the use of temporal
messages increases. As the repetition chance p increases, the percentage of messages
that are used for ⊖n increases for all agent variants. On average, Base networks
demonstrate the same chance of using a message for ⊖n as the dataset repetition chance.
This means that while the percentage increases, it is only due to the increase in the
repetition chance. If a dataset contains 75% repetitions, on average, each message will
be used as an accidental ⊖n 75% of the time. For example, if the language does not have
temporal references and uses a given message to describe an object, this message will be
repeated every time this object appears. This means that for every repetition, the
message could be considered a message indicating a previous episode, whereas, in

54 Chapter 4. Temporal References

reality, it is just a description of the object. In contrast to the Base networks, for Temporal
and TemporalR networks, the average percentage does reach 100%. This means that
messages the agents designate for ⊖n are used more often than the repetition chance.

4.5.7 Compositionality Analysis

All agents create compositional languages with varying degrees of structure, which
shows that learning to use temporal references does not negatively impact
compositionality. All agents reach values between 0.1 and 0.2 (the higher, the more
compositional the language is) on the topographic similarity metric (Brighton and
Kirby, 2006; Rita et al., 2022b), where a score of 0.4 has been considered high in previous
research (Rita et al., 2022b). We provide a visual representation of the topographic
similarity scores in Appendix B.4. These results indicate that temporal references have
no negative effect on the languages’ compositionality, showing that their emergence
does not necessitate a trade-off in the possible generalisation ability of the emergent
language (Auersperger and Pecina, 2022).

The differences between the posdis and bosdis distributions for each network type are
not statistically signifiant. Therefore, the differences in the posdis and bosdis metrics
across network types could be due to random fluctuations in the score distribution.

4.5.8 Generalisation Analysis

Analysing the development of temporal references, we observe the emergence of
messages being used by the agents to describe the previous hv = 4 episodes. As an
example of such behaviour, in one of the runs where the agents were trained in the
TemporalR configuration, the message [25, 6, 9, 3, 2] was consistently used as a ⊖1

operator. When the agents were evaluated in the Always Same environment, they used
this message only when the target objects were repeating, while also being used
exclusively for twelve distinct objects. For a total of 10 repetitions of each object, this
message was used nine times, indicating that the only time a different message was sent
was when the object appeared for the first time. For example, when the object
[4, 2, 3, 6, 5, 8, 8, 4] appeared for the first time, a message [25, 6, 17, 9, 9] was sent, and
subsequently the temporal message was used. This shows that temporal messages aid
generalisation. A message that has been developed in a different training environment,
in this case TRG, can be subsequently used during evaluation, even if the targets are not
shared between the two environments.

4.6. Discussion 55

4.6 Discussion

The results presented in this chapter indicate that no explicit pressures are required for
temporal messages to emerge, unlike increasing linguistic parsimony where additional
losses are needed (Rita et al., 2020; Kalinowska et al., 2022). We show that the incentives
are already present in datasets that are not altered to increase the number of repetitions
occurring. Temporal references therefore emerge naturally, as long as the agents are able
to build a temporal understanding of the data, such as with the sequential GRU in the
Temporal and TemporalR agents. This allows temporal references to emerge in any
communication setting if a suitable architecture is used. This could provide greater
bandwidth efficiency by allowing agents to use shorter messages for events that happen
often, when combined with other linguistic parsimony approaches (Rita et al., 2020;
Chaabouni et al., 2019).

The emergence of temporal references only through architectural changes could also
point towards additional insights in terms of modelling human language evolution
using EC (Galke et al., 2022). These architectural approaches to the emergence of
temporal references could be viewed as analogous to sequential learning in natural
language (Christiansen and Kirby, 2003), as we learn to encode and represent elements
in temporal sequences.

4.6.1 Accuracy

As expected, both the RG Hard and the TRG Hard environments posed a challenge,
presenting a significant accuracy drop. In the case of the Temporal, TemporalR agents, we
hypothesised the emergence of temporal references to provide an advantage, increasing
the agents’ accuracy (Section 4.5.1). While there indeed is a small increase in accuracy in
the TRG Hard environment, it is not attributable to temporal references (cf.,
Appendix B.3). This is because we observe the same increase for the Base agents, which
do not develop temporal references. We conclude that the increase is due to increased
object repetition, making the task slightly easier.

A possible reason for no increase in accuracy being observed for agents that develop
temporal references might be the perceptual similarities between the highly similar
distractor objects. This may make the task of discerning the difference between these
objects too difficult for the receiver. Alternatively, if the receiver struggled to correctly
identify an object the first time it has observed it, the additional information that
temporal references would offer would be insufficient. The receiver would not know
what the correct choice was for the previous timesteps.

Additionally, networks that have been trained with the temporal loss and on the
temporally focused dataset, perform slightly worse, by about 1%. The reason for this

56 Chapter 4. Temporal References

accuracy drop could lie in too much pressure on the temporal aspects of the dataset.
Because of the additional loss, agents can increase their rewards by only focusing on
creating temporal messages, without learning a general communication protocol. This
then leads to overfitting the training dataset, where they can rely on both their temporal
language and their memory of the object sequences, instead of communicating about
the object attributes. Consequently, we observe a decline in performance on the
evaluation dataset.

4.6.2 Compositionality

We hypothesise that the effect of the temporal loss on the topographic similarity scores
(we do not discuss the posdis and bosdis scores, as there are no statistically significant
differences) is similar to its effect on task accuracy. Agents focus more on the temporal
aspects of the task and dataset, and so they develop less general languages, leading to
lower compositionality scores. We do not believe the low compositionality scores are
related to the simplicity of the dataset, being composed of integer vectors, since other
research in similar settings achieve higher topographic similarity scores (Chaabouni
et al., 2020; Rita et al., 2022b).

4.7 Limitations

Reported compositionality scores could be negatively affected by the presence of
temporal references. Temporal messages can be compositional, but they would not refer
to a specific object, and so topographic similarity would not be able to identify them
correctly. Similarly, since posdis and bosdis also rely on the mappings between the
messages and the dataset, instead of the temporal relationships captured by the
temporal references, they could also be inaccurately lowered by their presence. Since
temporal references, even if they were compositional, do not map directly to object
properties in the dataset, they would be counted as non-compositional messages,
therefore lowering the values of the evaluated metrics. This could be the reason for the
lower values observed in our experiments when compared to previous research (Rita
et al., 2022b).

4.8 Conclusion

The investigation of learning and communicating temporal relationships has remained
largely unexplored, despite extensive research on various aspects of emergent
languages, such as efficiency (Rita et al., 2020; Chaabouni et al., 2019), compositionality

4.8. Conclusion 57

(Auersperger and Pecina, 2022), generalization (Chaabouni et al., 2020), and population
dynamics (Chaabouni et al., 2022; Rita et al., 2022a). Understanding and discussing past
events is crucial for effective communication, as it conserves bandwidth by reducing
redundancy and facilitates easier sharing of experiences.

This work is the first exploration of such emergent languages, including addressing the
fundamental questions of when they could develop and what is required for their
emergence. We present a set of environments that are designed to facilitate
investigation into how agents might create such references. We use the conventional
agent architecture for emergent communication (Kharitonov et al., 2019) as a baseline
and explore both temporal loss and alternative architectures that may endow agents
with the ability to learn temporal relationships. We show that architectural change is
necessary for temporal references to emerge, and demonstrate that temporal prediction
loss is neither sufficient for their emergence, nor does it improve the emergent language.

The results presented in this chapter demonstrate the emergence of temporal references
with minimal architectural changes, highlighting the adaptability of EC systems. These
findings pave the way for our subsequent analysis of spatio-temporal references in
Chapter 5, where we extend the concept of temporal deixis to include spatial
relationships.

59

Chapter 5

Spatio-temporal References

In Chapter 4, we investigated how agents may refer to repeated observations, which
could also be viewed from the linguistic perspective as investigating temporal deixis, or
how agents can refer to different moments in time (Section 2.1). Although scientists
have advocated for investigations into how key concepts from natural language such as
this can emerge (Rita et al., 2024), no work has demonstrated the emergence of relative
references to specific locations within an observation. Such references could be using
either spatial or temporal deixis, by, for example, referring to a part of the observation
that comes after another, or which parts are next to each other.

5.1 Spatio-temporal Referencing in Emergent Communication

In linguistics, deixis (Section 2.1) serves as a referential pointing mechanism within
language, with temporal deixis utilising terms such as “yesterday” or “before,” while
spatial deixis employs expressions like “here” or “next to” (Lyons, 1977).

In an emergent communication scenario, such references would be valuable in
establishing shared context between agents, increasing communication efficiency by
reducing the need for detailed descriptions, and adaptability, by removing the need for
unique references per object. Spatio-temporal referencing streamlines communication
by leveraging the shared environment as a reference point. In dynamic environments
where objects might change positions, spatial references enable agents to easily track
and refer to objects without having to update their descriptions. This enhances
communication efficiency and improves interaction and collaboration between agents.
These elements may also help the evolved language become human interpretable,
allowing the development of trustworthy emergent communication (Lazaridou and
Baroni, 2020; Mu and Goodman, 2021).

60 Chapter 5. Spatio-temporal References

This work therefore explores how agents can develop communication with relative
spatio-temporal references. While Rita et al. (2024) posit that the emergence of these
references might require complex settings, we show that even agents trained in a
modified version of the simple referential game (Lazaridou et al., 2018; Lewis, 1969) can
develop them.1

The resulting language is analysed using a collocation measure, Normalised Pointwise
Mutual Information (Section 5.4) adapted from computational linguistics. Normalised
Pointwise Mutual Information allows us to measure the strength of associations
between message parts and their context, allowing for message segmentation, not
usually performed due to its perceived complexity (Bosc and Vincent, 2022). Using
Normalised Pointwise Mutual Information, we show how the agents compose such
references, providing the first evidence of a syntactic structure, usually assumed not to
be present (Bosc and Vincent, 2022).

We find that the segmented language is interpretable by humans, a significant step
toward developing trustworthy and transparent communication systems between
agents and humans (Lazaridou and Baroni, 2020; Mu and Goodman, 2021). This human
interpretability could facilitate better collaboration and trust in human-agent
interactions.

5.2 Spatio-temporal Referential Game

Current emergent communication environments have not produced languages
incorporating spatio-temporal references. To address this, we present a referential game
(Section 2.5.1) environment where an effective language requires communication about
spatio-temporal relationships.

5.2.1 Referential Game Environment

In this work, the sender’s input is an observation in the form of a vector
o = [o1, o2, o3, o4, o5], where ∀o ∈ {−1, 0, 1 . . . 59}. The vector o is always composed of 5
integers. The observation includes a −1 in only one position, e.g., o3 = −1 for
o = [x, x,−1, x, x], to indicate the target integer for the receiver to identify. o represents
a window into a longer sequence s, which is randomly generated using the integers
{0 . . . 59} without repetitions. This sequence is visible to the receiver, but not to the
sender. As the target’s position in the sequence is unknown to the sender, it has to rely
on the relative positional information present in its observation, necessitating the use of
spatio-temporal referencing.

1Our code is available on GitHub at https://github.com/olipinski/TPG

https://github.com/olipinski/TPG

5.2. Spatio-temporal Referential Game 61

Due to the window into the sequence being of length 5, it is necessary to shift the
window when it approaches either extent of the sequence. The window is then shifted
to the other side, maintaining the size of 5. For example, given a short sequence
s = [7, 5, 2, 12, 10, 4, 3, 15, 16, 13, 14, 6, 9, 8, 11, 1], if the selected target is 1, since there are
no integers to the right of 1 the vector o would be o = [6, 9, 8, 11,−1] where it is shifted
to the left as it approaches this rightmost extent of the sequence.

Due to the necessity of maintaining the window size, some observations provide
additional positional information to the sender agent. Given the same example
sequence s, we can categorise all observations into 5 types. The first two types are begin
and begin+1, where the target integer is either at, or one after, the beginning of the
sequence, i.e., o = [−1, 5, 2, 12, 10] or o = [7,−1, 2, 12, 10]. The end and end-1, where the
target integer is either at, or one before, the end of the sequence, i.e., o = [6, 9, 8, 11,−1]
or o = [6, 9, 8,−1, 1]. The most common case is the middle observation, where the target
integer is anywhere in the sequence, excluding the first, second, second to last, and last
positions, e.g., o = [12, 10,−1, 3, 15]. Given a window of length 5, only 4 specific target
integer positions per sequence can result in the other observations (begin, begin+1, end-1,
and end). All other target integer positions within the sequence fall into the middle
category, as they do not occupy the first, second, second to last, or last positions.
Consequently, the majority of the target integer positions result in a middle type
observation, as for the window size 5, only 4 integers per sequence can be the
non-middle observations, i.e., the first two and the last two integers. This means that as
the sequence length grows, the probability of a non-middle observation decreases.

The sender’s output is a message defined as a vector m = [m1, m2, m3], where
m ∈ {1 . . . 26}. 26 is chosen to allow for a high degree of expressivity, with the agents
being able to use over 17k different messages, while also matching the size of the Latin
alphabet. Since such a vocabulary size is enough to convey any information in natural
languages like English, we consider that this should also apply to the agents. The vector
m is always composed of 3 integers.

The receiver’s input is an observation consisting of three vectors: the sender’s message
m, the sequence s, and the set of distractor integers together with the target integer td.
The distractor integers are randomly generated, without repetitions, given the same
range of integers as the original sequence s, i.e., {0 . . . 59}, excluding the target object
itself. Given an environment with 3 distractors, td could be [d1, t, d2, d3], where t is the
target object and d1, d2, d3 are distractor objects. The position of the target object in td is
randomised.

For example, given the sequence s = [7, 5, 2, 12, 10, 4, 3, 15, 16, 13, 14, 6, 9, 8, 11, 1], and the
sender’s observation o = [4, 3,−1, 16, 13], the vector td could be td = [7, 15, 11, 9], with
15 being the target that the receiver needs to identify. The sender could produce a
message m = [3, 1, 1], which would mean that the target integer is one after the integer

62 Chapter 5. Spatio-temporal References

3. This message would then be passed to the receiver, together with s and td. The
receiver would then have to correctly understand the message m (i.e., that the target is
one after 3) and find the integer 3 together with the following integer in the sequence s.
Having identified the target, 15, given the message m and the sequence s, it would
output the correct position of this target in the td vector, i.e., 2, since td2 = 15.

5.2.2 Spatio-temporal Reference Formalisation

To provide a foundation for understanding how spatio-temporal references might
extend beyond our current setting, we formalise what we refer to by spatio-temporal
references.

Let O represent an abstract observation that an agent perceives from its environment,
O ∈ Rm, where m represents the dimensions of the observation. These dimensions can
represent any structure of the observation space. For example, in a 2D grid, m could be
m = j× k or all the grid cells; in an RGB image m could be j× k× 3 (pixels × colour
channels); and in a video sequence m could be j× k× t× 3 (pixels × timesteps ×
colour channels). The m dimensions are able to represent the spatial, temporal, or other
positions.

Let Op and Ot be the coordinates of some elements in O, represented by an m-tuple of
natural numbers (x1, x2...xm) and (y1, y2...ym), respectively. Each coordinate xi or yi

represents the position along the i-th dimension of the observation space. Op represents
the reference point and Ot represents a target point. These coordinates could refer to
some objects in the observation O.

Then, the relative distance function d(Op, Ot) returns an m-tuple of integers (z1, z2...zm),
such that zi = xi − yi. This relative distance function allows for unambiguous
identification of the target object Ot, given that the position of Op is known.

We define the spatio-temporally referent expression as a mapping of the value of
d(Op, Ot), the reference point Op, and their context O, to a specific linguistic or symbolic
phrase that describes the relationship between Op and Ot. This mapping can be
represented as:

(O, d(Op, Ot), Op)→ Phrase(O, d(Op, Ot), Op)

where the resulting expression Phrase(O, d(Op, Ot), Op) is a description of the reference
point Op and its relative distance to the target point Ot, given the context O.

To give intuition to this formalisation consider an example, shown in Figure 5.1. An
agent observes a 2D grid O ∈ R4×4×2 representing a 4× 4 grid, where each element
contains two values: one for the existence of a box and one for the box colour. The
agent’s reference point is Op = (2, 2), which could represent the agent itself. In this grid,

5.2. Spatio-temporal Referential Game 63

FIGURE 5.1: Spatio-temporal referencing example.

there are three identical blue boxes at positions (3, 2), (3, 3), and (1, 1). To refer to one of
the blue boxes, the agent calculates the relative distances. For the blue box at (3, 3),
d(Op, Ot) = (2− 3, 2− 3) = (−1, −1). The mapping to a phrase could then yield "The
blue box diagonally ahead to my right". The agent has to specify the position more
precisely, as there are two blue boxes to the right. The context O was necessary to
distinguish between the blue boxes on the right using their relative positions. However,
for the blue box at (1, 1), d(Op, Ot) = (2− 1, 2− 1) = (1, 1). Here the phrase can
simply be "The blue box to my left", as there are no other blue boxes on the left. No
additional spatial information is needed due to its uniqueness in the context O.

This example demonstrates how the necessity of context O influences whether all parts
of the relative distances d(Op, Ot) are required in the referent expression to
unambiguously identify the target object Ot.

We note that the interpretation of these referent expressions can encompass both spatial
and temporal dimensions simultaneously. For instance, in a one-dimensional sequence,
a reference such as ’before’ or ’after’ could be interpreted spatially (as in ’to the left’ or
’to the right’), temporally (as in ’earlier’ or ’later’), or both. This ambiguity is inherent in
the agent’s perspective, as they may not explicitly distinguish between spatial and
temporal relationships. The mapping function Phrase(O, d(Op, Ot), Op) can therefore

64 Chapter 5. Spatio-temporal References

produce expressions that bridge both spatial and temporal references, with the precise
interpretation depending on the context O and the observer’s frame of reference. This
flexibility in interpretation becomes particularly relevant in sequential environments,
where spatial and temporal relationships naturally coincide.

The version of spatio-temporal referencing present in our environment is a specific case
of the general spatio-temporal reference formalisation, where the observation O is
represented as a one-dimensional tensor, and the target object is always indicated by the
value −1 within the observation tensor O. The sender’s task is to describe the relative
position of the target Ot within this sequence, using a message that effectively
communicates the spatio-temporal relationship between an agent-chosen Op and the
target Ot. However, the general framework of the spatio-temporal references remains
the same, allowing for expanding the insights gained in this work to other
environments.

5.3 Agent Architecture

The agent architecture follows that of the most commonly used EGG agents
(Kharitonov et al., 2019) (Section 2.6). This architecture is used to maintain consistency
with the common approaches in emergent communication research (Kharitonov et al.,
2019; Chaabouni et al., 2019, 2020; Ueda and Washio, 2021; Lipinski et al., 2023),
increasing the generalization of the results presented in this work.

The sender agent, shown in Figure 5.2a, receives a single input, the vector o composed
of scalar values2, which is passed through the first GRU of the sender. The resulting
hidden state is used as the initial hidden state for the message generation GRU (Cho
et al., 2014). The message generation GRU is used to produce the message, character by
character, using the Gumbel-Softmax reparametrization trick (Jang et al., 2017;
Mordatch and Abbeel, 2018; Kharitonov et al., 2019) (Section 2.7). The sequence of
character probabilities generated from the sender is used to output the message m.

Message m is input to the receiver agent, shown in Figure 5.2b, together with the full
sequence s and the target and distractors td. The message is processed by the first
receiver GRU, which produces a hidden state used as the initial hidden state for the
GRU processing the sequence s. This is the only change from the standard EGG
architecture (Kharitonov et al., 2019). This additional GRU allows the receiver agent to
process the additional input sequence s, using the information contained within the
message m. The goal of this GRU is to use the information provided by the sender to
correctly identify which integer from the sequence s is the target integer. The final
hidden state from the additional GRU is multiplied with an embedding of the targets

2One-hot encoding of the observation vectors leads to agents memorising the dataset.

5.4. Message Interpretability and Analysis using NPMI 65

Sequence
Window

[1,2,-1,4,5]

GRU 1
Final hidden states
 for each element
 in the sequence

GRU 2
Message

Generation

Initial Hidden State for GRU

Gumbel-Softmax

Sequence of
Character

Probabilities

Embedding from
Vocab to Character

Linear

Repeat until max_len reached

Hidden to Vocab
Linear

(A) The sender architecture.

 GRU 1

Final hidden
states for each
element in the

sequence

Object
Embedding

Linear

Integer
Guess

Sequence of
Character

Probabilities

Objects
Embedded

Matrix Multiply
torch.matmul

Initial Hidden State

Target and
Distractors
[5,10,7,3]

Full sequence
[1,2,3,4,5,6,7,8,9,10]

GRU 2
(Combine)

(B) The receiver architecture.

FIGURE 5.2: The sender and receiver architectures. Adapted from (Lipinski et al., 2023).

and distractors, to output the receiver’s prediction. This prediction is in the form of the
index of the target within td.

Following the commonly used approach (Kharitonov et al., 2019), agent optimisation is
performed using the Gumbel-Softmax reparametrization (Jang et al., 2017; Mordatch
and Abbeel, 2018), allowing for direct gradient flow through the discrete channel. The
agents’ loss is computed by applying the cross entropy loss, using the receiver target
prediction and the true target label. The resulting gradients are passed to the Adam
optimiser and backpropagated through the network. Detailed training hyperparameters
are provided in Appendix C.1.

5.4 Message Interpretability and Analysis using NPMI

To analyse spatio-temporal references in emergent language, we need a way to identify
their presence. In discrete emergent languages, interpretation is typically done by either
using dataset labels in natural language (Dessì et al., 2021), or by qualitative analysis of
specific messages (Havrylov and Titov, 2017)(Section 2.4.2). However, both of these
techniques require message-meaning pairs, and so neither would be able to identify the
presence of spatio-temporal references. As the meaning behind each message and what
the agents focus on is developed during their interactions, associated labels will not
necessarily be easily available, or may require finding the meaning in the first place,
creating a circular dependency. One approach that could overcome this problem is
emergent language segmentation using Harris’ Articulation Scheme, recently employed
by Ueda et al. (2023). Ueda et al. (2023) compute the conditional entropy of each
character in the emergent language, segmenting the messages where the conditional
entropy increases. However, even after language segmentation, there is no easy way to

66 Chapter 5. Spatio-temporal References

interpret the segments, as no method has been proposed to map them to specific
meanings.

We present an approach to both segment the emergent language and map the segments
to their meanings. We use a collocation measure called Normalised Pointwise Mutual
Information (NPMI) (Bouma, 2009), often used in computational linguistics (Yamaki
et al., 2023; Lim and Lauw, 2024; Thielmann et al., 2024). It is used to determine which
messages are used for which observations and to analyse how the messages are
composed, including whether they are trivially compositional (Korbak et al., 2020;
Steinert-Threlkeld, 2020; Perkins, 2021). By applying a collocation measure to different
parts of each message as well as the whole message, we can address the problems of
both segmentation and interpretation of the message segments. This approach allows
any part of the message to carry a different meaning. For example, if an emergent
message contains segments that frequently appear in contexts involving specific
integers, NPMI can help identify these segments and their meanings based on their
statistical association with those integers.

NPMI is a normalised version of the Pointwise Mutual Information (PMI) (Church and
Hanks, 1989), which is a measure of association between two events. PMI is widely
used in computational linguistics, to measure the association between words (Paperno
and Baroni, 2016; Han et al., 2013). Normalising the PMI measure results in its
codomain being defined between −1 and 1, with −1 indicating a purely negative
association (i.e., events never occurring together), 0 indicating no association (i.e., events
being independent), and 1 indicating a purely positive association (i.e., events always
occurring together). Normalised PMI is used for convenience when defining a
threshold at which we consider a message or n-gram to carry a specific meaning, as the
threshold can be between 0 and 1, instead of unbounded numbers in the case of PMI. 3

To determine which parts of each message are used for a given meaning, two
algorithms are proposed.

1. PMInc The algorithm to measure non-compositional monolithic messages, most
often used for target positional information (e.g., begin+1 (Section 5.2)); and

2. PMIc the algorithm to measure compositional messages and their n-grams, used
to refer to different integers in different positions.

A visual representation of the different types of messages that the algorithms can
identify is provided in Figure 5.3. The PMInc algorithm can identify any
non-compositional messages, while the PMIc algorithm identifies both position variant
and invariant compositional messages. The positional variance of the emergent

3Our implementation of NPMI is not numerically stable due to probability approximation, sometimes
exceeding the [-1,1] co-domain.

5.4. Message Interpretability and Analysis using NPMI 67

[5, 6, 8] [4, 2, 8] [10, 5, 6]

[5, 6, 8] [8, 5, 6] [10, 5, 6]

[5, 6, 8] [5, 6, 2][5, 6, 6]

Compositional Position Invariant

Compositional Position Variant

Non-Compositional

Message Observation

[-1, X, X, X, X]

[X, 4, -1, X, X]

[X, -1, X, X, X][X, 9, -1, X, X]

[X, 8, -1, X, X] [X, X, -1, 8, X]

[X, 4, -1, X, X] [X, 2, -1, X, X] [X, X, -1, 4, X]

FIGURE 5.3: Examples of the different types of message compositionality that are
possible to identify using the PMI algorithms.

language means that the position of an n-gram in the message also carries a part of its
meaning. In this work, n-grams refer to a contiguous sequence of n integers from the
sender’s message. Consequently, in one message there are 3 unigrams (m1, m2, m3), two
bigrams ([m1, m2], [m2, m3]), and one trigram (i.e., the whole message [m1, m2, m3]).

Figure 5.3 shows that in the position invariant case, the bigram [5, 6] always carries the
meaning of 4. While in the position variant case, the bigram [5, 6] in position 1 of the
message means 4, but [5, 6] in position 2 of the message means 8. This can also be
interpreted as the position of the bigram containing additional information, meaning a
single “word” could be represented as a tuple of the bigram and its position in the
message, as both contribute to its underlying information. Non-compositional messages
are monolithic, i.e., the whole message carries the entire meaning. For example, message
[5, 6, 8] means the target is in the first position, while [5, 6, 6] means the target is one to
the right of 9, even though the two messages share the bigram [5, 6].

The PMInc algorithm The PMInc algorithm calculates the NPMI per message by first
building a dictionary of all counts of each message being sent, together with an
observation that may provide positional information (e.g., begin+1) or refer to an integer
in a given position (e.g., 1 left of the target). The counts of that message and the counts
of the observation, including the integer position, are also collected. For example,
consider the observation o = [4,−1, 15, 16, 13]. For the corresponding message m, the
counts for each integer in each position relative to the target would increase by 1 (i.e.,
le f t1[4]+ = 1, right1[15]+ = 1 etc.). The count for the message signifying begin+1
would also be increased. Given these counts, the algorithm then estimates the
probabilities of all respective events (messages, positional observations, and integers in
given positions) and calculates the NPMI measure.

We provide a condensed pseudocode for the PMInc algorithm in Algorithm 1. The
n-grams in the pseudocode would be whole messages, i.e., trigrams. This base
pseudocode would then be duplicated, interpreting the context as either an observation
that may provide positional information (e.g., begin+1) or an integer. A detailed

68 Chapter 5. Spatio-temporal References

Algorithm 1: PMI Algorithm Base

1 Gather ngram_counts, context_counts, joint_counts, n_grams;
2 for each n-gram g in position p and context c do
3 P(g, p) = ngram_counts[g] · 1

total n-grams ;

4 P(c) = context_counts[c] · 1
total contexts ;

5 P(g, p; c) = joint_counts[(g, c)] · 1
total n-grams ;

6 NPMI(g, p; c) = log2
P(g, p, c)
P(g)P(c) ·

1
− log2 P(g, p, c) ;

7 end
8 return NPMI;

commented pseudocode for the PMInc algorithm is available in Algorithm 2 in
Appendix C.3.

The PMIc algorithm The PMIc algorithm first creates a dictionary of all possible
n-grams, given the message space (m) and maximum message length (3). The list of all
possible n-grams is pruned to contain only the n-grams present in the agents’ language,
avoiding unnecessary computation in the later parts of the algorithm. Given the pruned
list of n-grams, the algorithm checks the context in which the n-grams have been used.
The occurrence of each n-gram is counted, together with the n-gram position in the
messages and the context in which it has been sent, or the integers in the observation.
The n-gram position in the message is considered to account for the possible position
variance of the compositional messages.

Consider the previous example, with o = [4,−1, 15, 16, 13] and a message
m = [11, 13, 5]. For all n-grams ([11], [13], [5], [11, 13], etc.) of the message, all integers are
counted, irrespective of their positions (i.e., counts[4]+ = 1, counts[15]+ = 1, etc.).

Given these counts, the PMIc algorithm estimates the NPMI measure for all n-grams
and all integers in the observations. These probabilities are estimated from the dataset
using the count of their respective occurrences divided by the number of all
observations/messages.

Once the NPMI measure is obtained for the n-gram-integer pairs, the algorithm
calculates the NPMI measure for n-grams and referent positions or the positions of the
integer in the observation the message refers to. For example, given an observation
o = [4,−1, 15, 16, 13], if the message contains an n-gram which has been identified as
referring to the integer 15, the rest of the message (i.e., the unigram or bigram,
depending on the length of the integer n-gram) is counted as a possible reference to that
position, in this case, to position right1, or 1 to the right of the target. This procedure
follows for all messages, building a count for each time an n-gram was used together

5.5. Spatio-temporal Referencing Experiments 69

with a possible n-gram for an integer. These counts are used to calculate the NPMI
measure for n-gram and position pairs.

The PMIc algorithm also accounts for the possible position invariance of the n-grams,
i.e., where in the message the n-gram appears. This is achieved by calculating the
respective probabilities regardless of the position of the n-gram in the message, by
summing the individual counts for each n-gram position.

The condensed pseudocode in Algorithm 1 can also be used for the PMIc algorithm. In
that case, only the unigrams and bigrams would be evaluated. The base pseudocode
would also be duplicated, once for the integer in a given position, and second for the
referent position. Each would be used as the context in which to evaluate the NPMI for
each n-gram. A detailed commented pseudocode for PMIc algorithm is available in
Algorithm 3 in Appendix C.3.

Both algorithms use two hyperparameters: a confidence threshold tc and top_n tn. The
confidence threshold tc refers to the value of the NPMI measure at which a message or
n-gram can be considered to refer to the given part of the observation unambiguously.
To account for polysemy (where one symbol can have multiple meanings), the agents
can use a single n-gram to refer to multiple integers. This is given by the second
hyperparameter, top_n tn, which sets the degree of the polysemy, or the number of
integers to be considered for a given n-gram.

5.5 Spatio-temporal Referencing Experiments

Having defined the necessary measures to analyse the presence of spatio-temporal
references, we proceed to analyse their emergence. This section examines whether
agents can successfully develop a communication protocol for describing
spatio-temporal relationships, and whether we can interpret their emergent referential
system using the NPMI-based analysis method described in Section 5.4.

Agent pairs are trained over 16 different seeds to verify the results’ significance. All
agent pairs achieve above 98% accuracy in the spatio-temporal referential game,
suggesting that the agents are able to communicate about spatio-temporal relationships
in their observations. The analysis provided in this section is based on the messages
collected from the test dataset after the training has finished.

The two hyperparameters, tc and tn (Section 5.4), governing the NPMI measure have
been determined through a grid search to maximise the understanding of the emergent
language, by maximising the translation accuracy. The results in this section are
obtained using the best-performing values for each of the hyperparameters. We provide
the values for the grid search in Appendix C.1.

70 Chapter 5. Spatio-temporal References

5.5.1 Emergence of non-compositional spatio-temporal references

Using the PMInc algorithm, we detect the emergence of messages tailored to convey the
spatio-temporal information contained in the observations. As mentioned in Section 5.2,
sender observations which require shifting convey additional information about the
position of the target within the sequence. In over 90% of agent pairs, these
observations, i.e., begin, begin+1, end-1 and, end, are assigned unique messages.

In 20% of runs which develop these specialised messages, the same repeating character
is used to convey the message. The characters used for these observations are reserved
only for these types of observations. For example, in one of the runs the agents use
character 11 to signify the beginning of the sequence, with the character 11 being used
only in two contexts: as the messages [11, 11, 11] to signify begin, or as a message
[0, 11, 11] to signify begin+1. In other cases, characters are fully reserved for specific
messages. e.g., 22 is used only for end, in the message [22, 22, 22].

The emergence of non-compositional references used for other observations is also
detected using the PMInc algorithm. Such messages refer to a specific integer in a
specific position of the sender observation, e.g., o5 = 10. While we allow for polysemy
by considering up to the top 15 most correlated messages for each observation
(tn = [1, 2, 3, 5, 10, 15]), we observe the highest translation accuracy with tn = 1,
indicating that the non-compositional messages do not carry any additional meanings.

5.5.2 Emergence of compositional spatio-temporal references

Using the PMIc algorithm, we also detect the emergence of compositional spatio-temporal
references for 25% of agent pairs. Such messages are composed of two parts, a
spatio-temporal reference and an integer reference. The spatio-temporal reference
specifies where or when a given integer can be found in the observation, in relation to
the masked target integer −1. The integer reference specifies which integer the
positional reference is referring to. For example, one pair of agents has assigned the
unigram 7 to mean that the target integer is 2 to the right of, or after, the given integer,
and the bigram [0, 2] to mean the integer 18. Together, a message can be composed
[7, 0, 2], which means that the target integer for the receiver to identify is 2 to the right
of, or after, the integer 18, i.e., o = [18, X,−1, X, X]. This allows the sender to identify
the target integer exactly, given the sequence s. The PMIc algorithm follows the same
approach as the PMInc algorithm for evaluating polysemy when identifying
compositional references, using up to the top 15 most correlated n-grams
(tn = [1, 2, 3, 5, 10, 15]) for both the spatio-temporal and integer component of the
message.

5.5. Spatio-temporal Referencing Experiments 71

TABLE 5.1: Average emergence and vocabulary coverage of all message types.

Message Type Avg. % Emergence Avg. % of Messages

Non-Compositional ST 99.3% (100%-93.75%) 1% (3%-0%)
Non-Compositional ST Reserved 18.75% 1% (3%-0%)
Non-Compositional Integer 45.1% (100%-0%) 10% (15%-0%)
Compositional Integer 100% 34% (99.7%-0%)
Compositional ST 25% (27%-0%) 56% (100%-0%)

In Table 5.1, we summarise the emergence of each type of message across all runs,
together with the percentage of the vocabulary that they represent. “ST” is short for
Spatio-Temporal, and “ST Reserved” refers to the messages that use specific characters
exclusively dedicated to conveying specific spatio-temporal information, such as for
“begin” and “end” (Section 5.5.1). The entries in the table are composed of average
percentages, across all tn and tc choices. In the parentheses, we show the maximum and
minimum values across all tn and tc choices. The average % of emergence represents the
absolute % of runs in which a certain message type or message feature emerges. The
average % of messages for a given type or feature is computed only across the runs
where that type or feature emerged, excluding runs where it did not appear. For
example, if a feature emerges in 8 out of 16 runs, its emergence is 50%, and the average
% of messages which contain that feature is calculated using only those 8 runs.

5.5.3 Generalisation

To generalise the results presented in this work, we also run additional tests, varying
the vocabulary size, training sequence length, evaluation sequence length, and the
hidden size of the agents, as outlined in Appendix C.1. We observe no performance
decline with either increasing or decreasing the vocabulary size or the training sequence
length, given that the agents have enough capacity within their network to still learn
the longer sequence lengths. We observe a decline in task accuracy at sequence lengths
of 100, when the agents have a hidden size of 64. However, increasing the hidden size to
128 brings the training and validation accuracy back to over 90%.

When agents are evaluated on sequence lengths that are different from the ones they
were trained on, we observe a small performance decline for small differences in
sequence lengths. We present the average accuracies for the base case (Sequence
shortened by 0), as well as the average difference in accuracy as compared to the
baseline for different sequence lengths in Table 5.2. We observe a significant difference if
the agents are evaluated on sequences that are over 50% shorter than the ones they were
trained on. We hypothesise that this is due to the agents missing certain integers that
they used more often than others, therefore reducing their accuracy. However, even in
the worst case, the accuracy remains above 70%.

72 Chapter 5. Spatio-temporal References

TABLE 5.2: Evaluation accuracy differences for shorter sequence lengths compared to
the training sequence lengths.

Training
length

Sequence shortened by

0 -5 -10 -20 -40

20 98.68% 98.15% (-0.53%) 91.18% (-7.50%) N/A N/A
40 95.59% 95.64% (0.05%) 94.84% (-0.75%) 90.04% (-5.55%) N/A
60 92.98% 93.28% (0.30%) 92.68% (-0.30%) 90.51% (-2.47%) 77.18% (-15.8%)

100 86.23% 86.57% (0.34%) 86.20% (-0.03%) 84.97% (-1.26%) 81.03% (-5.2%)

5.5.4 Evaluating interpretation validity and accuracy

To ensure the validity of our message analysis, we present two hypotheses which, if
supported, would indicate that the mappings generated by the NPMI measure are
correct.

Hypothesis 6 (H6) If the correlations exist and do not require non-trivial
compositionality (Perkins, 2021), and are not highly context-dependent (Nikolaus,
2023), then the evaluation accuracy should be significantly higher than chance, or
above 20%, when using the identified mappings.

Hypothesis 7 (H7) If the spatio-temporal components of compositional messages are
correctly identified and carry the intended meaning, then their inclusion should
result in an increase in accuracy.

Given the messages identified by the NPMI method, we test H6 and H7 by using a
dictionary of all messages successfully identified, given the values of the NPMI
hyperparameters tn and tc. A dataset is generated to contain only targets that can be
described with the messages present in the dictionary.

For the non-compositional messages, the dataset is generated by selecting a message
from the dictionary at random, and creating an observation that can be described with
that message. Given a non-compositional message that corresponds to the target being
on the right of, or after, the integer 15, an observation o = [1, 15,−1, 5, 36] would be
created. Analogously, for non-compositional spatio-temporal messages such as begin an
observation o = [−1, 15, 8, 5, 36] would be created.

For the compositional messages, we create the observations by randomly selecting a
spatio-temporal component and an integer component from the dictionary. For
example, given the unigram 7 meaning that X is 2 to the left of, or before, the target, we
could select the bigram [8, 14] corresponding to the integer 30. The observation created
could then be o = [30, 8,−1, 36, 5]. The dataset creation process for the compositional
messages also checks if the observations can be described given the two n-grams in
their required positions within the message.

5.5. Spatio-temporal Referencing Experiments 73

TABLE 5.3: Accuracy improvements using the NPMI-based dictionary.

Dict Type tn tc Average Accuracy Maximum Accuracy

Non-Compositional ST 1 0.9 0.90 ±0.03 0.94
Non-Compositional Integer 1 0.5 0.36 ±0.004 0.37
Compositional-NP 1 0.5 0.22 ±0.02 0.28
Compositional-P 1 4 0.5 0.30 ±0.21 0.78

To test H7, a dataset is created using only the integers that can be described by the
dictionaries, randomly selecting integer components from the dictionary, and creating
the respective observations. This process also accounts for the required positions of the
message components so that a message describing the observation can always be
created. For example, if the unigram 9 described the integer 11, and the bigram [5, 1]
described the integer 6, a corresponding observation could be o = [11, 6,−1, 8, 9]. The
positions of the integers in the observations are chosen at random. By generating both
compositional datasets using a stochastic process, we do not assume a specific syntax.
Rather, the syntax can only be identified by looking at messages which were understood
by the receiver.

These datasets, together with their respective dictionaries, are then used to query the
receiver agent, testing if the messages are identified correctly. We run this test for all of
our trained agents, with the dictionaries that were identified for each agent pair. We
provide the details of this evaluation in Table 5.3, where ± denotes the 1-sigma standard
deviation. Non-Compositional ST (Spatio-Temporal) refers to messages such as begin or
end, Non-Compositional Integer refers to the non-compositional monolithic messages
describing both the position and the integer, Compositional-NP refers to messages only
containing the identified integer components, and the Compositional-P which refers to
messages containing both the identified integer and spatio-temporal components.

Using just the non-compositional spatio-temporal messages, we observe a significant
increase in the performance of the agents, compared to random chance accuracy of 20%.
This provides strong evidence for the support of Hypothesis H6, showing that at least
some messages do not require complex functions to be composed, or contextual
information to be interpreted. As the accuracy for these messages reaches over 90% on
average, we argue that the NPMI method has captured almost all the information
transmitted using the non-compositional spatio-temporal messages.

As mentioned in H7, we examine the impact of the spatio-temporal components and
whether they carry the information the NPMI method has identified. We, therefore,
separate the compositional analysis into two parts: Compositional-NP, where the
spatio-temporal components are replaced with 0, and Compositional-P, which includes

4The value of tn for the referent position n-grams is set to 0.3 while the value of tn for the integer n-grams
is set to 1.

74 Chapter 5. Spatio-temporal References

the identified spatio-temporal components. In the Compositional-NP case, the agents
achieve a close to random accuracy, with a maximum recorded of 28%. In contrast,
Compositional-P agents achieve above random accuracy, with some agent pairs
reaching over 75% accuracy. This provides strong evidence for the support of
Hypothesis H7, allowing us to conclude that the NPMI method successfully identifies
spatio-temporal information contained in messages, together with the integer
information.

5.6 Discussion

Having demonstrated the validity of Hypotheses H6 and H7, we confirm the emergence
and correct identification of spatio-temporal references. To provide human
interpretability of the emergent language, we use the NPMI method to create a
dictionary providing an understanding of the analysed messages. We present an excerpt
from an example dictionary in Table 5.4. With human interpretability, we can gain a
deeper understanding of the principles underlying the agents’ communication protocol.

We posit that the emergence of compositional spatio-temporal references points to a first
emergence of a simple syntactic structure in an emergent language. Both of the n-grams
in our example from Section 5.5.2, also shown in Table 5.4, are assigned specific
positions in the message by the agents. The unigram 7 must always be in the first
position of the message, while the bigram [0, 2] must always be in the second position.
The emergence of this structure shows that even though referential games have been
considered obsolete in recent research (Chaabouni et al., 2022; Rita et al., 2024), a careful
design of the environment may yet elicit more of the fundamental properties of natural
language.

We hypothesise that the emergence of non-compositional spatio-temporal references
tailored to specific observations, such as begin+1, is due to observation sparsity.
Compositionality would bring no benefit since the observations they describe are
usually rare, representing 1–2% of the dataset and are monolithic, i.e., begin, begin+1,
end-1, and end. We therefore argue that the emergence of non-compositional references
in these cases is advantageous, since these messages are easily compressible. Since
these messages are monolithic, they could be compressed to a single token/character in
simple encoding schemes. In contrast, compositional messages require at least two
tokens/characters, one for each integer/spatio-temporal component. With a linguistic
parsimony pressure (Rita et al., 2020; Chaabouni et al., 2019) applied, these messages
could be more efficient at transmitting the information contained within these
observations than compositional ones.

5.7. Limitations 75

TABLE 5.4: Example dictionary of the agents’ messages and their meanings

Message Type Meaning

[11, 11, 11] Non-Compositional Spatio-temporal begin
[0, 11, 11] Non-Compositional Spatio-temporal begin+1
[10, 10, 10] Non-Compositional Spatio-temporal end-1
[18, 18, 18] Non-Compositional Spatio-temporal end
[12, 16, 14] Non-Compositional Integer 15 is 1 left of, or before, target
[15, m2, m3] Compositional Spatio-temporal ? is 2 left of, or before, target
[7, m2, m3] Compositional Spatio-temporal ? is 2 right of, or after, target
[m1, 0, 17] Compositional Integer Integer 1
[m1, 0, 2] Compositional Integer Integer 18
[m1, 8, 14] Compositional Integer Integer 30

5.7 Limitations

The accuracy for the Non-Compositional Integer, and Compositional-P messages
averages about 33%. While still above random, showing that some meaning is captured
in non-compositional messages, it points to there being more to be understood about
these messages. We hypothesise this may be due to the higher degree of message
pragmatism, or context dependence (Nikolaus, 2023). Our method of message
generation, using randomly selected parts, may not be able to capture the complexity of
the messages. For example, the context in which they are used might be crucial for
some n-grams, requiring the use of a specific n-gram instead of another when referring
to certain integers, or when specific integers are present in the observation. Just like in
English, certain verbs are only used with certain nouns, such as “pilot a plane” vs “pilot
a car”. While the word “pilot” in the broad sense refers to operating a vehicle, it is not
used with cars specifically. This may also be the case for emergent languages. For
compositional messages, an additional issue may be that some messages are
non-trivially compositional, using functions other than simple concatenation to convey
compositional meaning (Perkins, 2021), making them impossible to analyse with the
NPMI measure. However, these issues may be addressed by scaling the emergent
communication experiments as the languages become more general with the increased
complexity of their environment (Chaabouni et al., 2022).

5.8 Conclusion

Recent work in the field of emergent communication has advocated for better alignment
of emergent languages with natural language (Rita et al., 2024; Boldt and Mortensen,
2024b), such as through the investigation of deixis (Rita et al., 2024). Aligned to this
approach, we provide a first reported emergent language containing spatio-temporal
references (Lyons, 1977), together with a method to interpret the agents’ messages in

76 Chapter 5. Spatio-temporal References

natural language. We show that agents can learn to communicate about spatio-temporal
relationships with over 90% accuracy. We identify both compositional and
non-compositional spatio-temporal referencing, showing that the agents use a mixture
of both. We hypothesise why the agents choose non-compositional representations of
observation types which are sparse in the dataset, arguing that this behaviour can be
used to increase communicative efficiency. We show that, using the NPMI language
analysis method, we can create a human interpretable dictionary, of the agents’ own
language. We confirm that our method of language interpretation is accurate, achieving
over 94% accuracy for certain dictionaries.

77

Chapter 6

Discussion

Throughout this thesis, we have focused on the influence of temporal dynamics on the
emergent language. Having answered the research questions presented in Chapter 1,
this chapter provides a critical analysis of the findings from Chapters 3 to 5, integrating
insights from the impact of communication time, the emergence of temporal references,
and the development of spatio-temporal languages. We discuss the broader
implications of these findings and outline potential future research directions. Our
findings are well-placed to deliver new and interesting results to both the EC
community and the broader ML community. Moreover, with the improvements in EC,
through our research into more advanced properties, we will be moving closer to
improving autonomous and ad-hoc communication, and its efficiency.

6.1 Compositionality

In all studies presented in this thesis, agents develop languages with various levels of
compositional structure. In Chapter 3, we show that agents develop a degenerate
language, with no compositional structure, while in Chapter 4 and Chapter 5 agents
develop compositional languages. These results point to two aspects of measuring
compositionality— the effect of language efficiency, discussed in Section 6.2 and the
issues with compositionality measurement, discussed in this section.

As mentioned in Section 2.4.1, measuring the compositionality of emergent languages is
challenging. Using just the topographic similarity metric leads to a perceived low
compositionality score of the languages developed by agents in Chapter 4. However, as
noted by Nikolaus (2023), topographic similarity is limited because it is unable to
measure more context-dependent messages. Topographic similarity would also fail to
identify compositional messages, where there is variation present in message

78 Chapter 6. Discussion

composition (Conklin and Smith, 2022), such as using messages that are similar to
indicate the same concept, for example using distance-1 messages in Chapter 3.

Having observed the limitations of the compositionality metrics in Chapter 4 we instead
opt to analyse the compositionality of messages in Chapter 5 using our more tailored
NPMI measure. While our NPMI measure does use knowledge about the content of the
dataset to perform segmentation of the messages, it could be adapted for more general
purposes, while preserving its ability to analyse the spatio-temporal references in agent
messages. Given the NPMI measure relies on simple collocation between n-grams and
possible meanings, it is an extensible framework upon which future work could build.

We consider the analysis of compositionality to be a pathway to more general insights
about emergent languages. While analysing the compositionality alone is a poor way of
measuring agent performance or language generalisation abilities (Chaabouni et al.,
2022; Rita et al., 2024), analysing the compositionality of messages may lead to more
interpretable emergent protocols. Thus, we consider the development of tools for
analysing the emergent languages in terms of their compositionality, syntax, grammar,
and other linguistic properties to be an important aspect of future work in the field of
EC. We propose one such avenue in this thesis, showing that compositionality can be
analysed using a technique based on the NPMI measure. Future research can further
draw on inspiration from tools developed for linguistics, similar to grammar induction
tools (Ueda et al., 2022; van der Wal et al., 2020), or HAS (Ueda et al., 2023) (Section 2.1).
Such endeavours could then be tested on large datasets of emergent communication
corpora, made possible by the recent work of Boldt and Mortensen (2024a).

Moreover, investigating compositionality in emergent languages could help bridge the
gap between artificial and natural languages (Rita et al., 2024). By developing an
understanding of how compositionality emerges and evolves in artificial systems,
future research might be able to draw parallels to human language development and
cognitive processes. This understanding could also inform the design of more
human-like communication systems in AI.

6.2 Efficiency

Improving communication efficiency is one of the goals of emergent communication.
Throughout this thesis, we focus on how the emergent protocols, developed by the
agents, could be used to contribute to this goal.

In Chapter 3, we show that agents can develop a highly efficient communication
protocol, requiring only a single message to be learned by all villagers to achieve a high
win rate, even though efficiency was not explicitly encouraged. This finding

6.3. Scalability 79

underscores the potential for spontaneous emergence of optimal communication
strategies in agent-based systems.

In Chapter 4 and Chapter 5, we further illustrate that with minimal architectural
modifications and specific environmental pressures, agents can learn to utilize temporal
and spatio-temporal deixis effectively. These modifications enable agents to convey the
spatio-temporal relationships in their observations in flexible and informative messages,
showing possible increases in communication bandwidth and generalisability.

As mentioned in Chapter 4, such references, and more broadly efficient languages, can
significantly increase the communication bandwidth. By compressing such references,
we can transmit the emergent language more efficiently. The ability to develop and
refine efficient languages has important implications for real-world applications. For
instance, in autonomous systems deployed in dynamic environments, the ability to
communicate efficiently can lead to significant improvements in operational
performance and cost-effectiveness. Future research could explore the scalability of
these findings across more complex environments and larger agent populations to
validate this broader applicability.

Efficiency in communication is not merely about reducing the length of messages, but
also about enhancing the quality of the transmitted information, increasing its relevance
and richness. The ability of agents to distil spatio-temporal relationships into concise
messages means that they can rely on shared context, allowing for more precise
communication. By ensuring that every bit of communicated information is relevant
and contextually appropriate, we can enhance the overall performance and reliability of
multiagent systems.

6.3 Scalability

All the environments used in this thesis were relatively simple. We use a simple social
deduction game Werewolf (Chapter 3), and the simple referential game (Chapters 4
and 5), to evaluate the different temporal environmental and inductive pressures and
their effect on the communication protocol. We consider this a strength of our approach,
as it allows us to isolate any extraneous factors and focus on what is needed to achieve
the desired properties of the language.

However, this also poses a question of scalability. Our networks, while based on the
state-of-the-art approaches in EC literature (Section 2.6), are quite simple. One could
wonder whether such approaches would scale to wholly different network architectures
such as transformers (Vaswani et al., 2017). However, this may be an unnecessary
distraction. Recent literature shows that RNN-based architectures, such as the xLSTMs
(Beck et al., 2024), may be just as good, if not better than, transformers. Additionally,

80 Chapter 6. Discussion

transformer models, and LLMs, have been shown to not necessarily be reliable when it
comes to temporal features, such as time series forecasting (Tan et al., 2024). Instead, a
combined approach, such as our TemporalR architecture in Chapter 4, may provide an
avenue to improve their capabilities.

The recurrent nature of RNN-based architectures, such as the ones presented in this
thesis, could pose an obstacle to scaling them. While transformers can be trained in
parallel, RNNs cannot. This has helped propel transformers to become the go-to
architecture for most LLMs. While it is an obstacle in widespread adoption of RNN
architectures, it may not be a fatal flaw. A combined approach could be the way
forward, where transformers handle System 1 reasoning (fast, intuitive, and parallel
processing of information akin to human pattern recognition and heuristic
decision-making) and slower RNNs manage System 2 reasoning (sequential, deliberate
processing requiring step-by-step computation, similar to human logical analysis and
structured problem-solving). This architectural division would mirror human cognitive
processes, where System 1 enables rapid, unconscious pattern recognition and intuitive
responses, while System 2 supports methodical, conscious reasoning through complex
problems that require sequential processing (Kahneman, 2011). Alternatively, a small
RNN could be used alongside the transformer to feed temporal information to its latent
space, thus decreasing the training time required for that component. Additionally,
once proven successful, parallelizable RNN architectures such as the mLSTM (Beck
et al., 2024) could replace both transformers and other RNNs.

6.4 Temporality

Our work is novel in assessing the influence of time in emergent language. We have
made significant progress in understanding how temporal aspects shape
communication protocols. By analysing temporal and spatio-temporal deixis, as well as
the impact of communication time, we have provided a foundation for future research
in this area.

Exploiting the temporal and spatio-temporal deixis brings possible efficiency gains, as
they are more compressible, especially when compared to purely descriptive
compositional languages (Chapter 4). Showing that the amount of time to communicate
increases the training and accuracy of agent populations could also improve
performance in other areas of emergent communication, such as population-based
approaches (Rita et al., 2022a; Michel et al., 2022).

There is much more to explore in the temporal aspects of emergent communication.
Future research could investigate hierarchical temporal structures, interactions across
different time scales, and more complex temporal relationships. Understanding these

6.5. Broader Impact 81

aspects will be crucial as emergent communication systems are deployed in increasingly
dynamic and temporally complex environments.

6.5 Broader Impact

The approaches and insights developed in this thesis also carry the potential of
applications to fields outside of EC. The interpretation methods presented, including
the NPMI measure or the M⊖n measure, could also be used to interpret latent
representations in other neural models. As the basic setting of EC could be viewed as an
auto-encoder model, with the sender being the encoder (encoding observations into
messages) and the receiver being the decoder (decoding messages into objects), the
approaches presented in Chapter 5 and Chapter 4 could also be employed to
understand such models. For example, using the NPMI approach from Chapter 5 we
could attempt to find the latent space representations of different features in the dataset.
Additionally, since similarities exist in transformer models encoding their observations
into latent spaces, these could also be approached with the measures developed in this
thesis. Models that develop complex latent representations, such as JEPA-based models
(Garrido et al., 2024), may also benefit from these approaches. Understanding of such
large models will be increasingly important (Maslej et al., 2024), especially as research
shows that model size is a major factor in its generalisation abilities (Hong et al., 2024).

Understanding of how AI models operate is becoming increasingly important, not just
to the researchers in AI, but also to the general public (Maslej et al., 2024). As AI is being
used in more industrial settings with the promise of improving worker productivity
(Maslej et al., 2024), understanding of how such models make their decisions will be
crucial. Additionally, AI is now being used to generate data for itself, such as through
Reinforcement Learning from AI Feedback (RLAIF) (Bai et al., 2022), an extension of
Reinforcement Learning from Human Feedback (RLHF). RLAIF leverages the scalability
and efficiency of AI to provide feedback faster than humans can. Therefore,
understanding the underlying models is essential to avoid harmful self-reinforcing
loops.

With the rise of the number of incidents and increased adoption of AI among
businesses, including in medical applications (Maslej et al., 2024), trustworthiness of AI
systems will be of paramount importance. Approaches such as latent space analyses
could be combined with, or assist the efforts of, mechanistic interpretability, which has
also been trying to understand the linguistic properties in intermediate activations of
language models (Rai et al., 2024).

Emergent protocols, with the rise of emergent language corpora datasets (Boldt and
Mortensen, 2024a), could also be used for better training of language models (Yao et al.,
2022; Cope and McBurney, 2024), especially with the drive for self-improvements, such

82 Chapter 6. Discussion

as through RLAIF (Bai et al., 2022). Temporality, important in LLMs, could also help
their performance (Hou et al., 2024). The use of techniques not reliant on human input
paves the way for faster improvements, especially where human data is scarce (Maslej
et al., 2024).

83

Chapter 7

Conclusion

Previous research in Emergent Communication has primarily focused on simpler
properties of EC. In this thesis, we explore the more advanced aspect of temporal
dynamics in emergent communication, an understudied area until now. We investigate
three main aspects of temporality in emergent languages: the amount of interaction
time in dialogue, the emergence of inter-observational temporal references, and
spatio-temporal references within a single observation.

To study the influence of the time given to agents to interact, we modified the game of
Werewolf, examining how the duration of communication impacts language evolution
and agent strategies. Our findings reveal that increased communication time enhances
agent performance, highlighting the critical role of temporal factors in agent
communication. Additionally, we demonstrate that without constraints, agents tend to
develop highly effective but linguistically degenerate language.

We also explored the emergence of temporal references in agent communication. We
answer the key questions of how and when such references develop, showing that
temporal references naturally arise when agents can process past information. This
occurs with only minimal modifications to the standard EC agent architecture,
underscoring the generalisability of this approach.

We analysed the agents’ ability to communicate local spatio-temporal relationships
within their environment. Our findings confirm that standard agent architectures can
develop these references, provided the environment contains such relationships,
thereby expanding the scope of what agents can learn and communicate about. We also
show that, using measures developed for natural language analysis, we can develop a
better understanding of how agents communicate such relations.

Throughout this thesis, we focused on multiple aspects of the influence of time on
emergent language. Through experimental analyses, we have shown how such aspects
can emerge, how they influence the agents’ behaviour and how agents create meaning

84 Chapter 7. Conclusion

within their messages. We consider that the techniques developed in this thesis can
advance emergent languages created by autonomous agents a step closer to human
languages. Through further research into the ways to analyse emergent languages and
incentivise more and more advanced and human-like language properties, we are
optimistic that emergent languages can become just as rich and complex as human
languages, lending them their efficiency and generalisability.

85

Appendix A

Werewolf

A.1 Training Details

We use the Ray (Moritz et al., 2017) and RLLib (Liang et al., 2018) libraries to train the
agents, using the APPO algorithm. APPO is an asynchronous sampling variant of the
Proximal Policy Optimization (Schulman et al., 2017), provided through RLLib (Liang
et al., 2018). The training runs last for an average of 3M episodes. With the experimental
setup as described, a total of 180 runs were performed. An average run of 3M episodes
took approximately 20 hours on a single NVIDIA RTX8000 GPU. We present the
overview of our compute resources used in this study in Table A.2.

We present the training hyperparameters in Appendix A.1. All our training parameters,
except for nr and tv which were the addition of our study, follow that of (Brandizzi et al.,
2021) to introduce as little variation as possible.

TABLE A.1: Training and Grid Search Parameters

Parameter Value

Episodes 3M
Optimizer Adam
Learning Rate α 0.0003
GAE Parameter λ 0.95
Discount Factor γ 0.998
Batch Size 500
Rollout Fragment Length 100
Batch Mode Complete Episodes
Voting Threshold tv [0, 0.2, 0.4, 0.6, 1]
Number of Rounds nr [1, 3, 12, 36]

86 Chapter A. Werewolf

TABLE A.2: Compute Resources

Resource Value

CPU Cores (Intel(R) Xeon(R) Silver 4216 × 2) 10
GPUs (NVIDIA Quadro RTX8000) 1
Wall Time 20hrs
Memory 40GB

TABLE A.3: Linear regression analysis.

Relationship p-Value R2

Number of Rounds vs Win Rate < 0.001 0.264
Voting Threshold vs Win Rate 0.600 0.002
Number of Rounds vs Convergence Episode < 0.001 0.189
Voting Threshold vs Convergence Episode 0.686 0.001

A.2 Statistical Significance Analysis

The normality of the distribution of both dependent variables, the mean of villager win
rates and the number of episodes that it takes villagers to converge, are analysed. The
normality analysis is performed using the Shapiro-Wilk normality test from the SciPy
package (Virtanen et al., 2020), obtaining p-values of less than 0.0001, indicating that the
data is not normally distributed.

The correlation and significance of the correlation are then analysed using the Spearman
rank correlation metric from the pandas package (McKinney, 2010; The pandas
development team, 2020). The results of these correlation tests are presented in
Figure A.1. The Spearman correlation coefficient, together with the Spearman p-value,
are shown for each variable pair. The significance, or p-value, can be discerned by the
number of * next to the corresponding correlation coefficient, where no * signifies
p > 0.05; * is p < 0.05; and ** is p < 0.01.

The strength for the number of rounds affecting either the villager win rate or
convergence episode is high. However, the relationship between the threshold and win
rate or convergence is much weaker.

The results are also analysed with a simple linear regression model, from the SciPy
package (Virtanen et al., 2020), shown in Table A.3. The linear regression tests predict
that win rate and convergence episode are affected by the number of rounds, whereas
the voting threshold does not appear to have an effect on either.

These analyses suggest that the number of rounds does have a statistically significant
effect on both the win rate and convergence speed. However, no statistically significant
correlation is found between the voting threshold and either of our dependent variables.

A.2. Statistical Significance Analysis 87

W
in

 ra
te

Co
nv

er
ge

nc
e

Co
m

. R
ou

nd
s n

r

Convergence

Com. Rounds nr

Threshold tv

0.66**

-0.47** -0.66**

-0.03 -0.06 0.01

0.6

0.4

0.2

0.0

0.2

0.4

0.6

FIGURE A.1: Spearman correlation strength and its significance.

89

Appendix B

Temporal Referential Games

B.1 Training Details

Our agents were trained using PyTorch Lightning (Falcon and The PyTorch Lightning
Team, 2019) using the Adam optimizer (Kingma and Ba, 2015), with experiment
tracking done via Weights & Biases (Biewald, 2020). We provide our grid search
parameters per network and per training environment in Table B.1. We ran the grid
search over these parameters for each network and training dataset combination, where
the networks were Base, Temporal, TemporalR and the training datasets were Referential
Games or Temporal Referential Games. Each trained network was then evaluated on
the six available environments: Always Same, Never Same, Referential Games,
Temporal Referential Games, Hard Referential Games, and Hard Temporal Referential
Games. Running the grid search for one iteration, with the value of repetition chance
fixed, took approximately 28 hours, using the compute resources in Table B.2.

90 Chapter B. Temporal Referential Games

TABLE B.1: Training and Grid Search Parameters

Parameter Value

Epochs [600]
Optimizer Adam
Learning Rate α 0.001
Number of Objects in Dataset [20 000]
Number of Distractors [10]
Number of Attributes Natt [8]
Number of Values Nval [8]
Temporal Prediction Loss Present [True, False]
Length Penalty [0]
Maximum Message Length L [5]
Vocabulary Size Nvocab [26]
Repetition Chance (p) [0.25, 0.5, 0.75]
History Length h [8]
Sender Embedding Size [128]
Sender Meaning LSTM Hidden Size [128]
Sender Temporal LSTM Hidden Size [128]
Sender Message LSTM Hidden Size [128]
Receiver LSTM+Linear Hidden Size [128]
Gumbel-Softmax Temperature [1.0]

TABLE B.2: Compute Resources

Resource Value

CPU Cores (Intel(R) Xeon(R) Silver 4216 × 2) 20
GPUs (NVIDIA Quadro RTX8000) 1
Wall Time 28hrs

B.2. Datasets Details 91

B.2 Datasets Details

In Figure B.1, we analyse our datasets, using the parameters as specified in
Appendix B.1, for the number of repetitions that occur. When the temporal dataset
repetition chance is set to 50%, the datasets, predictably, oscillate around 50% of
repeating targets. Generating the targets randomly yields a miniscule fraction of
repetitions of less than 1%, as we can see in Figure B.1, for the Classic and Hard
referential games.

RG RG Hard TRG TRG Hard
Dataset type

0%

10%

20%

30%

40%

50%

%
 R

ep
ea

ts
 in

 a
 d

at
as

et

FIGURE B.1: Number of target repetitions per dataset. Regular referential games
datasets very rarely encounter target repetitions. This data is an average over 1000

seeds per environment.

92 Chapter B. Temporal Referential Games

B.2.1 Test Environments

Both Always Same and Never Same environments act as sanity checks for our results.

We provide example inputs and outputs for both environments in Table B.3 and
Table B.4.

For the Always Same environment, in the case of the agent using temporal references,
we may also see other messages instead of the message m4, as we have observed that
there are more than one message used as previously. We always expect to see at most
90% of usage as previously for this environment, unless the agents learn temporal
referencing strategies, when we would expect the usage to reach 100%.

For the Never Same environment, we expect to see no temporal references being
identified. Any identification of temporal references in the Never Same environment
would indicate an issue with our metric.

TABLE B.3: Example Inputs and Outputs for Always Same.

Example Type Example Values

Input [x, x, x, y, y, y, z, z, z]
Temporal Referencing [m1, m4, m4, m2, m4, m4, m3, m4, m4]
No Temporal Referencing [m1, m1, m1, m2, m2, m2, m3, m3, m3]

TABLE B.4: Example Inputs and Outputs for Never Same.

Example Type Example Values

Input [x, y, z, a, b, c, d, e]
Temporal Referencing [m1, m1, m1, m2, m2, m2, m3, m3, m3]
No Temporal Referencing [m1, m2, m3, m4, m5, m6, m7, m8]

B.3. Accuracy Distributions 93

B.3 Accuracy Distributions

The accuracy distributions for all agent types across all evaluation environments are
shown in Figures B.2a to B.2c, where “+L” refers to agents trained with the temporal
loss. All agents converge to very similar levels of accuracy.

Always Same Never Same RG RG Hard TRG TRG Hard
Validation dataset

65%

70%

75%

80%

85%

90%

95%

100%

Ac
cu

ra
cy

Network Type
Base trained on RGs
Base trained on TRGs

Base+L trained on RGs
Base+L trained on TRGs

(A) The evaluation accuracy for the Base
agents across all environments.

Always Same Never Same RG RG Hard TRG TRG Hard
Validation dataset

75%

80%

85%

90%

95%

100%

Ac
cu

ra
cy

Network Type
Temporal trained on RGs
Temporal trained on TRGs

Temporal+L trained on RGs
Temporal+L trained on TRGs

(B) The evaluation accuracy for the Tem-
poral agents across all environments.

Always Same Never Same RG RG Hard TRG TRG Hard
Validation dataset

70%

75%

80%

85%

90%

95%

100%

Ac
cu

ra
cy

Network Type
TemporalR trained on RGs
TemporalR trained on TRGs

TemporalR+L trained on RGs
TemporalR+L trained on TRGs

(C) The evaluation accuracy for the Tem-
poralR agents across all environments.

FIGURE B.2: Accuracies for each network variant on all evaluation environments.

94 Chapter B. Temporal Referential Games

B.4 Topographic Similarity Distributions

The topographic similarity distributions for all agent types across all evaluation
environments are shown in Figures B.3a to B.3c. All agents converge to very similar
values of topographic similarity.

Always Same Never Same RG RG Hard TRG TRG Hard
Validation dataset

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

To
po

gr
ap

hi
c

sim
ila

rit
y

Network Type
Base trained on RGs
Base trained on TRGs

Base+L trained on RGs
Base+L trained on TRGs

(A) The topographic similarity scores for
the Base agents across all environments.

Always Same Never Same RG RG Hard TRG TRG Hard
Validation dataset

0.08

0.10

0.12

0.14

0.16

To
po

gr
ap

hi
c

sim
ila

rit
y

Network Type
Temporal trained on RGs
Temporal trained on TRGs

Temporal+L trained on RGs
Temporal+L trained on TRGs

(B) The topographic similarity scores for
the Temporal agents across all environ-

ments.

Always Same Never Same RG RG Hard TRG TRG Hard
Validation dataset

0.08

0.10

0.12

0.14

0.16

0.18

To
po

gr
ap

hi
c

sim
ila

rit
y

Network Type
TemporalR trained on RGs
TemporalR trained on TRGs

TemporalR+L trained on RGs
TemporalR+L trained on TRGs

(C) The topographic similarity scores for
the TemporalR agents across all environ-

ments.

FIGURE B.3: Topographic similarity scores for each network variant on all evaluation
environments.

95

Appendix C

Temporal Progression Games

C.1 Training Details

The computational resources needed to reproduce this work are shown in Table C.1,
with the hyperparameters in Table C.2 and Table C.3. The Table C.1 shows resources
required for all training and evaluation. The processors used were a mixture of Intel
Xeon Silver 4216s and AMD EPYC 7502s. The GPUs used for the training were a
mixture of NVIDIA Quadro RTX 8000s, NVIDIA Tesla V100s, and NVIDIA A100s,
hosted on the IRIDIS cluster.

TABLE C.1: Compute resources

Resource Value (1 Run) Value (Training Total) Value (Evaluation & Analysis)

Nodes 1 8 1
CPU 16 cores 128 cores 64 cores
GPU 1 8 1
Memory 50 GB 400 GB 120 GB
Storage 1 GB 32 GB 32 GB
Wall time 2 hours 240 hours 24 hours

C.2 Dataset Details

To train and evaluate the agents, we use datasets consisting of 200,000 samples for
training, 200,000 for validation, and 20,000 for testing. Each dataset is generated
independently, with sequences created randomly. Given the sequence length of 60 and
the fact that no integers are repeated, the number of possible permutations is
60! ≈ 8× 1081, which vastly exceeds the number of samples we generate. We further
ensure that there is no overlap between datasets by empirically checking the overlap
rates across 1,000 randomly generated datasets, confirming an overlap rate of 0%.

96 Chapter C. Temporal Progression Games

TABLE C.2: Training and Grid Search Parameters

Parameter Value

Epochs 1000
Optimizer Adam
Learning Rate α 0.001
Gumbel-Softmax Temperature [1.0]
Training Dataset Size 200k
Test Dataset Size 20k
No. Distractors 4
No. Points [20,40,60,100]
Message Length 3
Vocabulary Size [13,26,52]
Sender Hidden Size [64,128]
Receiver Hidden Size [64,128]

TABLE C.3: PMI Grid Search Parameters

Parameter Values

tc [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
tn [1, 2, 3, 5, 10, 15]

C.3 NPMI Algorithm Descriptions

For our pseudocode we will be using the Python assignments convention, i.e., = and←
are equivalent, and x+=1 is equivalent to x ← x + 1. The algorithms presented are for
top_n = 1. To improve the computational efficiency. the probability of the integer
appearing is statically defined as 1

60 for top_n = 1, or in Equation (C.1) for top_n > 1. In
the case of top_n > 1 we use the probability for the integer as per Equation (C.1), to
account for the polysemy, i.e., the probability for any of top_n integers occurring in the
observation. The lower part of the binomial is 4, as there are 4 integers that can be
sampled from the 60 possible integers, instead of 5, as we exclude the target integer.

p(integers) =
(60

4)− (60−top_n
4)

(60
4)

(C.1)

Additionally, in the PMIc algorithm, we specify a probability to equal to 0.98 in Line 74
and Line 77. This is a simplification of the calculation for clarity of the pseudocode. This
probability is instead obtained using the count of a given type of observation, divided
by the number of total observations. This calculation is performed for each type of
observation, i.e., begin, begin+1, end, end-1 and middle. The probability of the middle
observation is very close to 1, being on average 0.98, while the other probabilities are on
average 0.005. Since the middle observation is most common, we included its value in
the pseudocode.

C.3. NPMI Algorithm Descriptions 97

Algorithm 2: The PMInc algorithm

Data: O_M ; # All observations together with sent messages
Data: L = len(O_M) ; # Total number of observations with sent messages
Data: S = [begin, begin + 1, end− 1, end] ; # List of spatio-temporal observations
Result: pminc[m][NPMI]

1 pminc = dict;
2 for o, m ∈ O_M do
3 pminc[m][count] += 1 ; # Message occurrences
4 for pos ∈ S do
5 if o == pos then
6 pminc[pos][count] += 1 ; # Spatio-temporal observations count
7 pminc[m][pos] += 1 ; # Message sent with spatio-temporal observation
8 end
9 end

10 for integer ∈ o do
11 pminc[m][integer_pos][integer] += 1 ; # Message sent with integer in given position
12 end
13 end
14 for pos ∈ S do
15 posittotal = pminc[pos][count] ; # Count of spatio-temporal observations

16 p(pos) = posittotal
L ; # Estimate observation probability

17 for m ∈ pminc[m] do
18 mtotal = pminc[m][count] ; # Total count of message
19 mstotal = pminc[m][pos] ; # Total count of message with spatio-temporal obs
20 p(m) = mtotal

L ; # Estimate message probability
21 p(m, pos) = mstotal

L ; # Estimate joint probability
22 h(m, pos) = − log2(p(m, pos)) ;

23 pmi(m, pos) = log2(
p(m,pos)

p(m)p(pos));

24 npmi(m, pos) = pmi(m,pos)
h(m,pos) ;

25 pminc[m][NPMI] = npmi(m, pos);
26 end
27 end
28 for pos ∈ pminc[m] do
29 for integer ∈ pminc[m][pos] do
30 p(pos) = 1

60 ; # Estimated observation probability for 60 integers
31 mtotal = pminc[m][count] ; # Total count of message
32 mstotal = pminc[m][pos][integer] ; # Total count of message with integer in given

position
33 p(m) = mtotal

L ; # Estimate message probability
34 p(m, pos) = mstotal

L ; # Estimate joint probability
35 h(m, pos) = − log2(p(m, pos)) ;

36 pmi(m, pos) = log2(
p(m,pos)

p(m)p(pos));

37 npmi(m, pos) = pmi(m,pos)
h(m,pos) ;

38 pminc[m][pos][integer][NPMI] = npmi(m, pos);
39 end
40 end

98 Chapter C. Temporal Progression Games

Algorithm 3: The PMIc algorithm
Input: tc ; # Confidence value
Data: O_M ; # All observations together with sent messages
Data: L = len(O_M) ; # Total number of observations with sent messages
Data: ngrams ; # List of all message ngrams present in O_M
Result: pmic[m][NPMI]

1 pmic = dict;
; # First we identify ngrams corresponding to integers.

2 for ngram ∈ ngrams do
3 for o, m ∈ O_M do
4 if ngram ∈ m then
5 pmic[ngram][count] += 1 ; # Total ngram occurrences
6 pmic[ngram][ngram_pos][count] += 1 ; # ngram occurrences including ngram

position
7 for integer ∈ o do
8 pmic[ngram][integer][count] += 1 ; # ngram sent with integer in given

position
9 pmic[ngram][ngram_pos][integer][count] += 1 ; # ngram in given position

sent with integer in given position
10 end
11 end
12 end
13 end

; # Calculate integer NPMI.
14 for ngram ∈ ngrams do

; # Position variant NPMI.
15 for pos ∈ pmic[ngram][ngram_pos] do
16 p(integer) = 1

60 ; # Estimated observation probability for 60 integers
17 integerp = max(pmic[ngram][integer][count]);; # Find integer with highest

co-ocurrence given position
18 ngrampos = pmic[ngram][ngram_pos][count] ;
19 p(ngrampos) =

ngrampos
L

20 p(ngrampos, integer) = pmic [ngram][ngram_pos][integer][count]
L ;

21 h(ngrampos, integer) = − log2(p(ngrampos, integer));

22 pmi(ngrampos, integer) = log2(
p(ngrampos ,integer)

p(ngrampos)p(integer));

23 npmi(ngrampos, integer) = pmi(ngrampos ,integer)
h(ngrampos ,integer) ;

24 pmic[ngram][ngram_pos][integer] = npmi(ngrampos, integer);
25 end

; # Position invariant NPMI.
26 integer = max(pmic[ngram][integer][count]) ; # Find integer with highest co-ocurrence
27 p(integer) = 1

60 ; # Estimated observation probability for 60 integers
28 ngramtotal = pmic[ngram][count] ;
29 p(ngram) = ngramtotal

L×(4−len(ngram))
; # If ngram is length 1, it could appear 3 times per message

30 p(ngram, integer) = pmic [ngram][integer][count]
L ;

31 h(ngram, integer) = − log2(p(ngram, integer));

32 pmi(ngram, integer) = log2(
p(ngram,integer)

p(ngram)p(integer));

33 npmi(ngram, integer) = pmi(ngram,integer)
h(ngram,integer) ;

34 pmic[ngram][integer] = npmi(ngram, integer);
35 end

C.3. NPMI Algorithm Descriptions 99

Algorithm 4: The PMIc algorithm cont.

; # Now we identify ngrams corresponding to referent positions.
36 ngrampr = dict;

; # Prune ngrams with NPMI below c
37 for ngram ∈ pmic do
38 for integer ∈ pmic[ngram] do
39 if pmic[ngram][integer] < tc then
40 del pmic[ngram][integer];
41 end
42 for pos ∈ pmic[ngram] do
43 for integer ∈ pmic[ngram][pos] do
44 if pmic[ngram][pos][integer] < tc then
45 del pmic[ngram][pos][integer];
46 end
47 end
48 end
49 end
50 end

; # Find messages with integer ngrams
51 for ngram ∈ pmic[ngram] do
52 for o, m ∈ O_M do

; # Position variant ngram
53 if pmic[ngram][pos] then
54 if ngram ∈ m[pos] then
55 new_ngram = m− ngram; # Get leftover ngram
56 pr = pos(pmic[ngram][pos][integer], msg) ; # Get the possible referent

position
57 ngrampr[new_ngram][pr][count]+ = 1 ; # Count leftover ngram occurence
58 ngrampr[new_ngram][pos][pr][count]+ = 1 ; # Count leftover ngram

occurence in given positions
59 end
60 end

; # Position invariant ngram
61 else
62 if ngram ∈ m then
63 new_ngram = m− ngram ; # Get leftover ngram
64 pr = pos(pmic[ngram][integer], msg) ; # Get the possible referent position
65 ngrampr[new_ngram][pr][count]+ = 1 ; # Count leftover ngram occurence
66 ngrampr[new_ngram][pos][pr][count]+ = 1 ; # Count leftover ngram

occurence in given positions
67 end
68 end
69 end
70 end

100 Chapter C. Temporal Progression Games

Algorithm 5: The PMIc algorithm cont.

; # Calculate referent position NPMI.
71 for ngram ∈ ngrampr do
72 for pr ∈ ngrampr[ngram][pr] do

; # Position variant NPMI.
73 for pos ∈ ngrampr[ngram][pos][pr] do
74 p(pr) = 0.98; # Estimated observation probability for given position
75 ngrampos = ngrampr[ngram][pos][pr][count] ; p(ngrampos) =

ngrampos
L

p(ngrampos, pr) = ngrampr [ngram][pos][pr][count]
L ;

h(ngrampos, pr) = − log2(p(ngrampos, integer));

pmi(ngrampos, pr) = log2(
p(ngrampos ,pr)

p(ngrampos)p(pr));

npmi(ngrampos, pr) = pmi(ngrampos ,pr)
h(ngrampos ,pr) ;

pmic[ngram][pos][pr] = npmi(ngrampos, pr);
76 end

; # Position invariant NPMI.
77 p(pr) = 0.98; # Estimated observation probability for given position
78 ngram = max(ngrampr[ngram][pr][count]) ; # Find highest spatio-temporal

reference count
79 p(ngram) = ngram

L ;

80 p(ngram, pr) = ngrampr [ngram][pr][count]
L ;

81 h(ngram, pr) = − log2(p(ngram, integer));

82 pmi(ngram, pr) = log2(
p(ngram,pr)

p(ngram)p(pr));

83 npmi(ngram, pr) = pmi(ngram,pr)
h(ngram,pr) ;

84 pmic[ngram][pr] = npmi(ngram, pr);
85 end
86 end

C.3. NPMI Algorithm Descriptions 101

103

Glossary

anaphoric A word whose meaning depends on the context of previous communication
(e.g... .This means...).

compositionality The possibility of concatenation, or otherwise combination, of atomic
symbols of a language to convey new meanings. For example, two atomic
symbols of “red” and “dog” create new meaning when combined.

degenerate language A language which assigns all meanings to the same expression.
Therefore, it is maximally ambiguous as only one “word” exists in the whole
language, but fully compressible (Kirby et al., 2015).

deixis A word whose meaning depends on the context of the speaker or interlocutor
(e.g...over there...).

holistic language A language which assigns all meanings their own separate
expression. Therefore, it is fully unambiguous, but also incompressible (Kirby
et al., 2015).

idiolect The unique language of an individual, which includes the way that the
individual slightly changes the grammar, syntactic or semantic structures.

polysemy The capacity for a word or phrase to have multiple distinct meanings.

productivity The ability of the language to have an almost infinite number of uses. In
other words, the language can refer to infinitely many concepts, through the
usage of rules such as compositionality.

structured language A language which has structure and rules as to how to create
meaningful expressions. It is the mid-point between holistic language and
degenerate language, where it is compressible, but also ambiguous (Kirby et al.,
2015).

105

References

Prince Abudu and Andrew Markham. Deep Emergent Communication for the IoT. In
2020 IEEE International Conference on Smart Computing (SMARTCOMP), pages 130–137,
2020. .

Jacob Andreas. Measuring compositionality in representation learning. In Proc. of ICLR.
OpenReview.net, 2019.

Jacob Andreas, Anca Dragan, and Dan Klein. Translating neuralese. In Proc. of ACL,
pages 232–242. Association for Computational Linguistics, 2017. .

Yannis Assael, Thea Sommerschield, Brendan Shillingford, Mahyar Bordbar, John
Pavlopoulos, Marita Chatzipanagiotou, Ion Androutsopoulos, Jonathan Prag, and
Nando de Freitas. Restoring and attributing ancient texts using deep neural networks.
Nature, 603(7900):280–283, 2022. ISSN 1476-4687. .

Michal Auersperger and Pavel Pecina. Defending compositionality in emergent
languages. In Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies: Student Research
Workshop, pages 285–291. Association for Computational Linguistics, 2022. .

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol
Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey
Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael
Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk,
Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan.
Constitutional AI: Harmlessness from AI Feedback, 2022.

Marco Baroni. Autonomous Linguistic Emergence in Neural Networks (ALiEN) ERC
Advanced Grant 2020, 2020a.

106 REFERENCES

Marco Baroni. Linguistic generalization and compositionality in modern artificial
neural networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 375
(1791):20190307, 2020b. .

Marco Baroni. Rat big, cat eaten! Ideas for a useful deep-agent protolanguage. ArXiv
preprint, abs/2003.11922, 2020c.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra
Prudnikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp
Hochreiter. xLSTM: Extended Long Short-Term Memory, 2024.

Lukas Biewald. Experiment Tracking with Weights and Biases, 2020.

Ben Bogin, Mor Geva, and Jonathan Berant. Emergence of Communication in an
Interactive World with Consistent Speakers. ArXiv preprint, abs/1809.00549, 2018.

Brendon Boldt and David Mortensen. ELCC: the Emergent Language Corpus
Collection, 2024a.

Brendon Boldt and David R. Mortensen. A Review of the Applications of Deep
Learning-Based Emergent Communication. Transactions on Machine Learning Research,
2024b. ISSN 2835-8856.

Tom Bosc. Varying meaning complexity to explain and measure compositionality. In
Emergent Communication Workshop at ICLR 2022, 2022.

Tom Bosc and Pascal Vincent. The Emergence of Argument Structure in Artificial
Languages. Transactions of the Association for Computational Linguistics, 10:1375–1391,
2022. ISSN 2307-387X. .

Diane Bouchacourt and Marco Baroni. Miss tools and mr fruit: Emergent
communication in agents learning about object affordances. In Proc. of ACL, pages
3909–3918. Association for Computational Linguistics, 2019. .

Gerlof J. Bouma. Normalized (pointwise) mutual information in collocation extraction.
In Von der Form zur Bedeutung: Texte automatisch verarbeiten - From Form to Meaning:
Processing Texts Automatically, volume 30, pages 31–40, 2009. ISBN 978-3-8233-7511-1.

Nicolo’ Brandizzi, Davide Grossi, and Luca Iocchi. RLupus: Cooperation through
emergent communication in The Werewolf social deduction game. Intelligenza
Artificiale, 15(2):55–70, 2021. ISSN 2211-0097. .

Henry Brighton. Compositional Syntax From Cultural Transmission. Artificial Life, 8(1):
25–54, 2002. ISSN 1064-5462. .

Henry Brighton and Simon Kirby. Understanding Linguistic Evolution by Visualizing
the Emergence of Topographic Mappings. Artificial Life, 12(2):229–242, 2006. ISSN
1064-5462. .

REFERENCES 107

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems 2020 (NeurIPS 2020), 2020.

Boaz Carmeli, Yonatan Belinkov, and Ron Meir. Concept-Best-Matching: Evaluating
Compositionality in Emergent Communication, 2024.

Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, and Marco Baroni.
Anti-efficient encoding in emergent communication. In Advances in Neural Information
Processing Systems 2019 (NeurIPS 2019), pages 6290–6300, 2019.

Rahma Chaabouni, Eugene Kharitonov, Diane Bouchacourt, Emmanuel Dupoux, and
Marco Baroni. Compositionality and generalization in emergent languages. In Proc. of
ACL, pages 4427–4442. Association for Computational Linguistics, 2020. .

Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, and Marco Baroni.
Communicating artificial neural networks develop efficient color-naming systems.
Proceedings of the National Academy of Sciences, 118(12), 2021. ISSN 0027-8424,
1091-6490. .

Rahma Chaabouni, Florian Strub, Florent Altché, Eugene Tarassov, Corentin Tallec,
Elnaz Davoodi, Kory Wallace Mathewson, Olivier Tieleman, Angeliki Lazaridou, and
Bilal Piot. Emergent communication at scale. In Proc. of ICLR. OpenReview.net, 2022.

Ruxiao Chen and Shuaishuai Guo. Emergent communication for AR. ArXiv preprint,
abs/2308.07342, 2023.

Emily Cheng, Diego Doimo, Corentin Kervadec, Iuri Macocco, Jade Yu, Alessandro
Laio, and Marco Baroni. Emergence of a High-Dimensional Abstraction Phase in
Language Transformers, 2024.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder–decoder for statistical machine translation. In Proc. of EMNLP,
pages 1724–1734. Association for Computational Linguistics, 2014. .

Edward Choi, Angeliki Lazaridou, and Nando de Freitas. Compositional obverter
communication learning from raw visual input. In Proc. of ICLR. OpenReview.net,
2018.

Morten H. Christiansen and Simon Kirby. Language evolution: consensus and
controversies. Trends in Cognitive Sciences, 7(7):300–307, 2003. ISSN 1364-6613. .

108 REFERENCES

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information,
and lexicography. In 27th Annual Meeting of the Association for Computational
Linguistics, pages 76–83. Association for Computational Linguistics, 1989. .

Michael Cogswell, Jiasen Lu, Stefan Lee, Devi Parikh, and Dhruv Batra. Emergence of
Compositional Language with Deep Generational Transmission. ArXiv preprint,
abs/1904.09067, 2019.

Henry Conklin and Kenny Smith. Compositionality with Variation Reliably Emerges in
Neural Networks. In The Eleventh International Conference on Learning Representations,
2022.

WJ Conover and RL Iman. On multiple-comparisons procedures. Technical report, Los
Alamos National Lab.(LANL), Los Alamos, NM (United States), 1979.

Dylan Cope and Peter McBurney. Joining the Conversation: Towards Language
Acquisition for Ad Hoc Team Play. In Emergent Communication Workshop at ICLR 2022,
2022.

Dylan Cope and Peter McBurney. Learning Translations: Emergent Communication
Pretraining for Cooperative Language Acquisition. ArXiv preprint, abs/2402.16247,
2024.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las
Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling,
Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb Noury,
Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, Stefano Coda,
Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Koray Kavukcuoglu, Demis Hassabis,
and Martin Riedmiller. Magnetic control of tokamak plasmas through deep
reinforcement learning. Nature, 602(7897):414–419, 2022. ISSN 1476-4687. .

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang,
Elliot Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A.
Ortega. Neural Networks and the Chomsky Hierarchy. In The Eleventh International
Conference on Learning Representations, 2022.

Roberto Dessì, Eugene Kharitonov, and Marco Baroni. Interpretable agent
communication from scratch (with a generic visual processor emerging on the side).
In Advances in Neural Information Processing Systems 2021 (NeurIPS 2021), pages
26937–26949, 2021.

Tom Eccles, Yoram Bachrach, Guy Lever, Angeliki Lazaridou, and Thore Graepel. Biases
for emergent communication in multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems 2019 (NeurIPS 2019), pages 13111–13121, 2019.

REFERENCES 109

Nicholas Edwards, Hannah Rohde, and Henry Coxe-Conklin. Anaphoric Structure
Emerges Between Neural Networks. Proceedings of the Annual Meeting of the Cognitive
Science Society, 45(45), 2023.

William Falcon and The PyTorch Lightning Team. PyTorch Lightning, 2019.

Yicheng Feng, Boshi An, and Zongqing Lu. Learning Multi-Object Positional
Relationships via Emergent Communication, 2023.

Lukas Galke and Limor Raviv. Emergent communication and learning pressures in
language models: a language evolution perspective, 2024.

Lukas Galke, Yoav Ram, and Limor Raviv. Emergent Communication for
Understanding Human Language Evolution: What’s Missing? In Emergent
Communication Workshop at ICLR 2022, 2022.

Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman,
and Yann LeCun. Learning and Leveraging World Models in Visual Representation
Learning, 2024.

M. A. K. Halliday and Ruqaiya Hasan. Cohesion in English. Routledge, 1976. ISBN
978-1-315-83601-0. .

Lushan Han, Tim Finin, Paul McNamee, Anupam Joshi, and Yelena Yesha. Improving
Word Similarity by Augmenting PMI with Estimates of Word Polysemy. TKDE, 25(6):
1307–1322, 2013. .

Laura Harding Graesser, Kyunghyun Cho, and Douwe Kiela. Emergent linguistic
phenomena in multi-agent communication games. In Proc. of EMNLP, pages
3700–3710. Association for Computational Linguistics, 2019. .

Zellig S. Harris. From Phoneme to Morpheme. Language, 31(2):190–222, 1955. ISSN
0097-8507. .

Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games:
Learning to communicate with sequences of symbols. In Advances in Neural
Information Processing Systems 2017 (NeurIPS 2017), pages 2149–2159, 2017.

Felix Hill, Andrew K. Lampinen, Rosalia Schneider, Stephen Clark, Matthew Botvinick,
James L. McClelland, and Adam Santoro. Environmental drivers of systematicity and
generalization in a situated agent. In Proc. of ICLR. OpenReview.net, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, 1997. ISSN 0899-7667. .

Charles F Hockett. The origin of speech. Scientific American, 203(3):88–97, 1960.

Sture Holm. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian
Journal of Statistics, 6(2):65–70, 1979. ISSN 0303-6898.

110 REFERENCES

Zhuoqiao Hong, Haocheng Wang, Zaid Zada, Harshvardhan Gazula, David Turner,
Bobbi Aubrey, Leonard Niekerken, Werner Doyle, Sasha Devore, Patricia Dugan,
Daniel Friedman, Orrin Devinsky, Adeen Flinker, Uri Hasson, Samuel A. Nastase,
and Ariel Goldstein. Scale matters: Large language models with billions (rather than
millions) of parameters better match neural representations of natural language, 2024.

Guiyang Hou, Wenqi Zhang, Yongliang Shen, Linjuan Wu, and Weiming Lu. TimeToM:
Temporal Space is the Key to Unlocking the Door of Large Language Models’
Theory-of-Mind, 2024.

David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE, 40(9):1098–1101, 1952. ISSN 2162-6634. .

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. In Proc. of ICLR. OpenReview.net, 2017.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Aleksandra Kalinowska, Elnaz Davoodi, Florian Strub, Kory Mathewson, Todd
Murphey, and Patrick Pilarski. Situated Communication: A Solution to
Over-communication between Artificial Agents. In Emergent Communication Workshop
at ICLR 2022, 2022.

Yipeng Kang, Tonghan Wang, and Gerard de Melo. Incorporating pragmatic reasoning
communication into emergent language. In Advances in Neural Information Processing
Systems 2020 (NeurIPS 2020), 2020.

Ruth Kempson. Pragmatics: Language and Communication. In The Handbook of
Linguistics, pages 394–424. John Wiley & Sons, Ltd, 2003. ISBN 978-0-470-75640-9. .

Eugene Kharitonov and Marco Baroni. Emergent language generalization and
acquisition speed are not tied to compositionality. In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages
11–15. Association for Computational Linguistics, 2020. .

Eugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt, and Marco Baroni. EGG: a
toolkit for research on emergence of lanGuage in games. In Proc. of EMNLP, pages
55–60. Association for Computational Linguistics, 2019. .

Eugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt, and Marco Baroni. Entropy
minimization in emergent languages. In Proc. of ICML, volume 119 of Proceedings of
Machine Learning Research, pages 5220–5230. PMLR, 2020.

Najoung Kim and Paul Smolensky. Structural Generalization of Modification in Adult
Learners of an Artificial Language, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, Proc. of ICLR, 2015.

REFERENCES 111

Simon Kirby. Syntax out of Learning: The Cultural Evolution of Structured
Communication in a Population of Induction Algorithms. In Dario Floreano,
Jean-Daniel Nicoud, and Francesco Mondada, editors, Advances in Artificial Life, 5th
European Conference, ECAL’99, Lausanne, Switzerland, September 13-17, 1999, Proceedings,
volume 1674 of Lecture Notes in Computer Science, pages 694–703. Springer, 1999. .

Simon Kirby, Monica Tamariz, Hannah Cornish, and Kenny Smith. Compression and
communication in the cultural evolution of linguistic structure. Cognition, 141:87–102,
2015. ISSN 0010-0277. .

Donald E Knuth. Dynamic huffman coding. Journal of Algorithms, 6(2):163–180, 1985.
ISSN 0196-6774. .

Kavya Kopparapu, Edgar A. Duéñez-Guzmán, Jayd Matyas, Alexander Sasha
Vezhnevets, John P. Agapiou, Kevin R. McKee, Richard Everett, Janusz Marecki,
Joel Z. Leibo, and Thore Graepel. Hidden Agenda: a Social Deduction Game with
Diverse Learned Equilibria. ArXiv preprint, abs/2201.01816, 2022.

Tomasz Korbak, Julian Zubek, and Joanna Raczaszek-Leonardi. Measuring non-trivial
compositionality in emergent communication. In 4th Workshop on Emergent
Communication, NeurIPS 2020, 2020.

Kepa Korta and John Perry. Pragmatics. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2020
edition, 2020.

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Batra. Natural language does not
emerge ‘naturally’ in multi-agent dialog. In Proc. of EMNLP, pages 2962–2967.
Association for Computational Linguistics, 2017. .

M. A. Kramer. Autoassociative neural networks. Computers & Chemical Engineering, 16
(4):313–328, 1992. ISSN 0098-1354. .

William H. Kruskal and W. Allen Wallis. Use of Ranks in One-Criterion Variance
Analysis. Journal of the American Statistical Association, 47(260):583–621, 1952. ISSN
0162-1459. .

Lukasz Kucinski, Tomasz Korbak, Pawel Kolodziej, and Piotr Milos. Catalytic role of
noise and necessity of inductive biases in the emergence of compositional
communication. In Advances in Neural Information Processing Systems 2021 (NeurIPS
2021), pages 23075–23088, 2021.

Tatsuki Kuribayashi, Ryo Ueda, Ryo Yoshida, Yohei Oseki, Ted Briscoe, and Timothy
Baldwin. Emergent Word Order Universals from Cognitively-Motivated Language
Models, 2024.

112 REFERENCES

Shalom Lappin. An Introduction to Formal Semantics. In The Handbook of Linguistics,
pages 369–393. John Wiley & Sons, Ltd, 2003. ISBN 978-0-470-75640-9. .

Ammar Ahmed Pallikonda Latheef, Alberto Santamaria-Pang, Craig K. Jones, and
Haris I. Sair. Emergent Language Symbolic Autoencoder (ELSA) with Weak
Supervision to Model Hierarchical Brain Networks, 2024.

Angeliki Lazaridou and Marco Baroni. Emergent Multi-Agent Communication in the
Deep Learning Era. ArXiv preprint, abs/2006.02419, 2020.

Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-agent
cooperation and the emergence of (natural) language. In Proc. of ICLR.
OpenReview.net, 2017.

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence
of linguistic communication from referential games with symbolic and pixel input. In
Proc. of ICLR. OpenReview.net, 2018.

David Kellogg Lewis. Convention: A Philosophical Study. Cambridge, MA, USA:
Wiley-Blackwell, 1969.

Fushan Li and Michael Bowling. Ease-of-teaching and language structure from
emergent communication. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 15825–15835, 2019.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg,
Joseph Gonzalez, Michael I. Jordan, and Ion Stoica. Rllib: Abstractions for distributed
reinforcement learning. In Jennifer G. Dy and Andreas Krause, editors, Proc. of ICML,
volume 80 of Proceedings of Machine Learning Research, pages 3059–3068. PMLR, 2018.

Paul Pu Liang, Jeffrey Chen, Ruslan Salakhutdinov, Louis-Philippe Morency, and
Satwik Kottur. On Emergent Communication in Competitive Multi-Agent Teams. In
Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An, and Neil Yorke-Smith, editors,
Proceedings of the 19th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, pages 735–743.
International Foundation for Autonomous Agents and Multiagent Systems, 2020.

Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In Workshop on
Logic of Programs, pages 196–218. Springer, 1985.

Jia Peng Lim and Hady W. Lauw. Aligning Human and Computational Coherence
Evaluations. Computational Linguistics, pages 1–58, 2024. ISSN 0891-2017. .

REFERENCES 113

Olaf Lipinski. emlangkit: Emergent Language Analysis Toolkit, 2023. URL
https://github.com/olipinski/emlangkit.

Olaf Lipinski, Adam Sobey, Federico Cerutti, and Timothy J. Norman. Emergent
Password Signalling in the Game of Werewolf. In Emergent Communication Workshop
at ICLR 2022, 2022.

Olaf Lipinski, Adam J. Sobey, Federico Cerutti, and Timothy J. Norman. It’s About
Time: Temporal References in Emergent Communication. ArXiv preprint,
abs/2310.06555, 2023.

Olaf Lipinski, Adam Sobey, Federico Cerutti, and Timothy J. Norman. Speaking Your
Language: Spatial Relationships in Interpretable Emergent Communication. In
Advances in Neural Information Processing Systems 2024 (NeurIPS 2024), 2024.

Ryan Lowe, Jakob N. Foerster, Y.-Lan Boureau, Joelle Pineau, and Yann N. Dauphin. On
the Pitfalls of Measuring Emergent Communication. In Edith Elkind, Manuela Veloso,
Noa Agmon, and Matthew E. Taylor, editors, Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC,
Canada, May 13-17, 2019, pages 693–701. International Foundation for Autonomous
Agents and Multiagent Systems, 2019.

John Lyons. Deixis, space and time. In Semantics, volume 2, pages 636–724. Cambridge
University Press, 1977. ISBN 978-0-521-29186-6. .

Matéo Mahaut, Francesca Franzon, Roberto Dessì, and Marco Baroni. Referential
communication in heterogeneous communities of pre-trained visual deep networks,
2023.

Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking Temporal Properties of
Discrete, Timed and Continuous Behaviors. In Arnon Avron, Nachum Dershowitz,
and Alexander Rabinovich, editors, Pillars of Computer Science: Essays Dedicated to
Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, Lecture Notes in
Computer Science, pages 475–505. Springer, 2008. ISBN 978-3-540-78127-1. .

Yuri I. Manin. Zipf’s law and L. Levin probability distributions. Functional Analysis and
Its Applications, 48(2):116–127, 2014. ISSN 1573-8485. .

Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin
Paduraru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, Thomas
Köppe, Kevin Millikin, Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris
Gamble, Kieran Milan, Robert Tung, Minjae Hwang, Taylan Cemgil,
Mohammadamin Barekatain, Yujia Li, Amol Mandhane, Thomas Hubert, Julian
Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin Riedmiller, Oriol Vinyals, and
David Silver. Faster sorting algorithms discovered using deep reinforcement learning.
Nature, 618(7964):257–263, 2023. ISSN 1476-4687. .

https://github.com/olipinski/emlangkit

114 REFERENCES

Nestor Maslej, Loredana Fattorini, Raymond Perrault, Vanessa Parli, Anka Reuel, Erik
Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika,
Juan Carlos Niebles, Yoav Shoham, Russell Wald, and Jack Clark. Artificial
Intelligence Index Report 2024, 2024.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der
Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference,
pages 56 – 61, 2010. .

William Merrill and Ashish Sabharwal. The Parallelism Tradeoff: Limitations of
Log-Precision Transformers, 2022.

William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in
State-Space Models, 2024.

Alex Mesoudi, Alan G McElligott, and David Adger. Introduction: Integrating Genetic
and Cultural Evolutionary Approaches to Language. Human Biology, 83(2):141–151,
2011.

Paul Michel, Mathieu Rita, Kory Wallace Mathewson, Olivier Tieleman, and Angeliki
Lazaridou. Revisiting Populations in multi-agent Communication. In The Eleventh
International Conference on Learning Representations, 2022.

Daniela Mihai and Jonathon S. Hare. Learning to draw: Emergent communication
through sketching. In Advances in Neural Information Processing Systems 2021 (NeurIPS
2021), pages 7153–7166, 2021.

George A. Miller. WordNet: A lexical database for English. In Speech and Natural
Language: Proceedings of a Workshop Held at Harriman, New York, February 23-26, 1992,
1992.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in
multi-agent populations. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proc. of AAAI, pages 1495–1502. AAAI Press, 2018.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica.
Ray: A Distributed Framework for Emerging AI Applications. ArXiv preprint,
abs/1712.05889, 2017.

Salwa Mostafa, Mohammed S. Elbamby, Mohamed K. Abdel-Aziz, and Mehdi Bennis.
Intent Profiling and Translation Through Emergent Communication, 2024a.

Salwa Mostafa, Mateus P. Mota, Alvaro Valcarce, and Mehdi Bennis. Emergent
Communication Protocol Learning for Task Offloading in Industrial Internet of
Things, 2024b.

REFERENCES 115

Jesse Mu and Noah D. Goodman. Emergent communication of generalizations. In
Advances in Neural Information Processing Systems 2021 (NeurIPS 2021), pages
17994–18007, 2021.

Salmane Naoumi, Reda Alami, Hakim Hacid, Ebtesam Almazrouei, Merouane Debbah,
Mehdi Bennis, and Marwa Chafii. Emergent Communication in Multi-Agent
Reinforcement Learning for Flying Base Stations. In 2023 IEEE International
Mediterranean Conference on Communications and Networking (MeditCom), pages
133–138, 2023. .

Mitja Nikolaus. Emergent Communication with Conversational Repair. In The Twelfth
International Conference on Learning Representations, 2023.

Michael Noukhovitch, Travis LaCroix, Angeliki Lazaridou, and Aaron C. Courville.
Emergent Communication under Competition. In Frank Dignum, Alessio Lomuscio,
Ulle Endriss, and Ann Nowé, editors, AAMAS ’21: 20th International Conference on
Autonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, May 3-7,
2021, pages 974–982. ACM, 2021.

Xenia Ohmer, Marko Duda, and Elia Bruni. Emergence of hierarchical reference systems
in multi-agent communication. In Proceedings of the 29th International Conference on
Computational Linguistics, pages 5689–5706. International Committee on
Computational Linguistics, 2022a.

Xenia Ohmer, Michael Marino, Michael Franke, and Peter König. Mutual influence
between language and perception in multi-agent communication games. PLOS
Computational Biology, 18(10):e1010658, 2022b. ISSN 1553-7358. .

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu,
Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel
Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine
Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin
Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson,
Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu,
Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan,
Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David
Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford,
Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene,
Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,

116 REFERENCES

Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost
Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang,
Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak
Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew
Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe,
Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok
Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard
Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe
Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita,
Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute
Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real,
Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli,
Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah
Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin,
Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher,
Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak,
Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun
Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder,
Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel
Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai
Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. GPT-4 Technical Report, 2023.

Marie Ossenkopf, Kevin Sebastian Luck, and Kory Wallace Mathewson. Which
Language Evolves Between Heterogeneous Agents? - Communicating Movement
Instructions With Widely Different Time Scopes. In Emergent Communication Workshop
at ICLR 2022, 2022.

REFERENCES 117

Denis Paperno and Marco Baroni. Squibs: When the whole is less than the sum of its
parts: How composition affects PMI values in distributional semantic vectors.
Computational Linguistics, 42(2):345–350, 2016. .

Hugh Perkins. Neural networks can understand compositional functions that humans
do not, in the context of emergent communication. ArXiv preprint, abs/2103.04180,
2021.

Steven Pinker and Paul Bloom. Natural language and natural selection. Behavioral and
Brain Sciences, 13(4):707–727, 1990. .

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977), pages 46–57. ieee, 1977.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
Language Understanding by Generative Pre-Training. OpenAI, 2018.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A Practical Review
of Mechanistic Interpretability for Transformer-Based Language Models, 2024.

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B. Cohen, and Simon Kirby.
Compositional languages emerge in a neural iterated learning model. In Proc. of ICLR.
OpenReview.net, 2020.

Ryokan Ri, Ryo Ueda, and Jason Naradowsky. Emergent Communication with
Attention, 2023.

Mathieu Rita, Rahma Chaabouni, and Emmanuel Dupoux. “LazImpa”: Lazy and
impatient neural agents learn to communicate efficiently. In Proceedings of the 24th
Conference on Computational Natural Language Learning, pages 335–343. Association for
Computational Linguistics, 2020. .

Mathieu Rita, Florian Strub, Jean-Bastien Grill, Olivier Pietquin, and Emmanuel
Dupoux. On the role of population heterogeneity in emergent communication. In
Proc. of ICLR. OpenReview.net, 2022a.

Mathieu Rita, Corentin Tallec, Paul Michel, Jean-Bastien Grill, Olivier Pietquin,
Emmanuel Dupoux, and Florian Strub. Emergent Communication: Generalization
and Overfitting in Lewis Games. In Advances in Neural Information Processing Systems
2022, NeurIPS 2022, 2022b.

Mathieu Rita, Paul Michel, Rahma Chaabouni, Olivier Pietquin, Emmanuel Dupoux,
and Florian Strub. Language Evolution with Deep Learning, 2024.

Diana Rodríguez Luna, Edoardo Maria Ponti, Dieuwke Hupkes, and Elia Bruni.
Internal and external pressures on language emergence: least effort, object constancy
and frequency. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 4428–4437. Association for Computational Linguistics, 2020. .

118 REFERENCES

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient
estimation using stochastic computation graphs. In Advances in Neural Information
Processing Systems 2015 (NeurIPS 2015), pages 3528–3536, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms, 2017.

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough.
Artificial Intelligence, 299:103535, 2021. ISSN 0004-3702. .

Kenny Smith, Simon Kirby, and Henry Brighton. Iterated learning: a framework for the
emergence of language. Artificial Life, 9(4):371–386, 2003. ISSN 1064-5462. .

C. Spearman. The Proof and Measurement of Association between Two Things. The
American Journal of Psychology, 15(1):72–101, 1904. ISSN 0002-9556. .

Andreea Stapleton. Deixis in Modern Linguistics. Essex Student Journal, 9(1), 2017. ISSN
2633-7045. .

Luc Steels and Frederic Kaplan. Collective learning and semiotic dynamics. In European
Conference on Artificial Life, pages 679–688. Springer, 1999.

Shane Steinert-Threlkeld. Toward the Emergence of Nontrivial Compositionality.
Philosophy of Science, 87(5):897–909, 2020. ISSN 0031-8248, 1539-767X. .

Shane Steinert-Threlkeld, Xuhui Zhou, Zeyu Liu, and C. M. Downey. Emergent
Communication Fine-tuning (EC-FT) for Pretrained Language Models. In Emergent
Communication Workshop at ICLR 2022, 2022.

Zoltán Gendler Szabó. Compositionality. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2020
edition, 2020.

Valentin Taillandier, Dieuwke Hupkes, Benoît Sagot, Emmanuel Dupoux, and Paul
Michel. Neural Agents Struggle to Take Turns in Bidirectional Emergent
Communication. In The Eleventh International Conference on Learning Representations,
2023.

Mingtian Tan, Mike A. Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen.
Are Language Models Actually Useful for Time Series Forecasting?, 2024.

The pandas development team. pandas-dev/pandas: Pandas, 2020.

Anton Thielmann, Arik Reuter, Quentin Seifert, Elisabeth Bergherr, and Benjamin
Säfken. Topics in the Haystack: Enhancing Topic Quality through Corpus Expansion.
Computational Linguistics, pages 1–37, 2024. ISSN 0891-2017. .

REFERENCES 119

Fujio Toriumi, Hirotaka Osawa, Michimasa Inaba, Daisuke Katagami, Kosuke Shinoda,
and Hitoshi Matsubara. AI Wolf Contest — Development of Game AI Using
Collective Intelligence. In Tristan Cazenave, Mark H.M. Winands, Stefan Edelkamp,
Stephan Schiffel, Michael Thielscher, and Julian Togelius, editors, Computer Games,
Communications in Computer and Information Science, pages 101–115. Springer
International Publishing, 2017. ISBN 978-3-319-57969-6. .

Mycal Tucker, Huao Li, Siddharth Agrawal, Dana Hughes, Katia P. Sycara, Michael
Lewis, and Julie A. Shah. Emergent discrete communication in semantic spaces. In
Advances in Neural Information Processing Systems 2021 (NeurIPS 2021), pages
10574–10586, 2021.

Mycal Tucker, Roger P. Levy, Julie Shah, and Noga Zaslavsky. Trading off Utility,
Informativeness, and Complexity in Emergent Communication. In Advances in Neural
Information Processing Systems, 2022.

A. M. Turing. Computing Machinery and Intelligence. Mind, LIX(236):433–460, 1950.
ISSN 0026-4423. .

Ryo Ueda and Tadahiro Taniguchi. Lewis’s Signaling Game as beta-VAE For Natural
Word Lengths and Segments, 2023.

Ryo Ueda and Koki Washio. On the relationship between Zipf’s law of abbreviation and
interfering noise in emergent languages. In Proc. of ACL, pages 60–70. Association for
Computational Linguistics, 2021. .

Ryo Ueda, Taiga Ishii, Koki Washio, and Yusuke Miyao. Categorial Grammar Induction
as a Compositionality Measure for Emergent Languages in Signaling Games. In
Emergent Communication Workshop at ICLR 2022, 2022.

Ryo Ueda, Taiga Ishii, and Yusuke Miyao. On the Word Boundaries of Emergent
Languages Based on Harris’s Articulation Scheme. In The Eleventh International
Conference on Learning Representations, 2023.

Oskar van der Wal, Silvan de Boer, Elia Bruni, and Dieuwke Hupkes. The grammar of
emergent languages. In Proc. of EMNLP, pages 3339–3359. Association for
Computational Linguistics, 2020. .

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems 2017 (NeurIPS 2017), pages 5998–6008, 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan

120 REFERENCES

Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. .

Jeffrey Scott Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM,
34(4):825–845, 1987. ISSN 0004-5411. .

Paul Vogt. The emergence of compositional structures in perceptually grounded
language games. Artificial Intelligence, 167(1):206–242, 2005. ISSN 0004-3702. .

Alex Warstadt and Samuel R. Bowman. What artificial neural networks can tell us
about human language acquisition. In Algebraic Structures in Natural Language, pages
17–60. CRC Press, 2022.

Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning. Mach. Learn., 8:229–256, 1992. .

Zhenlin Xu, Marc Niethammer, and Colin A. Raffel. Compositional Generalization in
Unsupervised Compositional Representation Learning: A Study on Disentanglement
and Emergent Language. Advances in Neural Information Processing Systems 2022
(NeurIPS 2022), 35:25074–25087, 2022.

Ryosuke Yamaki, Tadahiro Taniguchi, and Daichi Mochihashi. Holographic CCG
Parsing. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors,
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 262–276. Association for Computational Linguistics,
2023. .

Shunyu Yao, Mo Yu, Yang Zhang, Karthik R. Narasimhan, Joshua B. Tenenbaum, and
Chuang Gan. Linking emergent and natural languages via corpus transfer. In Proc. of
ICLR. OpenReview.net, 2022.

Yongjing Yin, Lian Fu, Yafu Li, and Yue Zhang. On compositional generalization of
transformer-based neural machine translation. Information Fusion, 111:102491, 2024.
ISSN 1566-2535. .

Enshuai Zhou, Yifan Hao, Rui Zhang, Yuxuan Guo, Zidong Du, Xishan Zhang, Xinkai
Song, Chao Wang, Xuehai Zhou, Jiaming Guo, Qi Yi, Shaohui Peng, Di Huang, Ruizhi
Chen, Qi Guo, and Yunji Chen. Emergent Communication for Numerical Concepts
Generalization. Proc. of AAAI, 38(16):17609–17617, 2024. ISSN 2374-3468. .

George Kingsley Zipf. Human behavior and the principle of least effort. Human behavior
and the principle of least effort. Addison-Wesley Press, 1949.

	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Emergent Communication
	1.2 Time in Emergent Communication
	1.3 Research Aims
	1.4 Contributions and Novelty
	1.5 Thesis Outline

	2 Literature Review
	2.1 Linguistics Background for Emergent Communication
	2.2 Language Emergence with Deep Learning
	2.3 Emergent Language Properties
	2.3.1 Compositionality
	2.3.2 Language Efficiency
	2.3.3 Generalisation
	2.3.4 Understudied Properties

	2.4 Quantifying the Properties of Emergent Languages
	2.4.1 Measuring Compositionality
	2.4.2 Analysing Semantics

	2.5 Emergent Communication Environments
	2.5.1 Referential Games
	2.5.2 Werewolf

	2.6 Agent Architectures
	2.7 Agent Optimisation
	2.8 Conclusions

	3 Interaction Time in Dialogue
	3.1 Emergent Communication in Werewolf
	3.2 Werewolf Environment
	3.3 Architecture
	3.4 Interaction Time Experiments
	3.4.1 Hypotheses
	3.4.2 Convergence Speed
	3.4.3 Win Rate
	3.4.4 Comparison to the Original Environment
	3.4.5 Language Analysis

	3.5 Discussion
	3.5.1 Strategy Analysis
	3.5.2 Convergence Speed
	3.5.3 Win Rate
	3.5.4 Failure Modes

	3.6 Limitations
	3.7 Conclusions

	4 Temporal References
	4.1 Temporal References in Emergent Communication
	4.2 Temporal Referential Games
	4.2.1 Definitions
	4.2.2 Temporal Logic
	4.2.3 Temporal Referential Games

	4.3 Agent Architectures
	4.3.1 Base Agent
	4.3.2 Temporal Agent
	4.3.3 TemporalR Agent

	4.4 Measuring Temporality and Compositionality
	4.4.1 Temporality Metric
	4.4.2 Compositionality Metrics

	4.5 Temporal Referencing Experiments
	4.5.1 Hypotheses
	4.5.2 Agent Training
	4.5.3 Significance Analysis
	4.5.4 Task Accuracy
	4.5.5 Temporality Sanity Check
	4.5.6 Temporality Analysis
	4.5.7 Compositionality Analysis
	4.5.8 Generalisation Analysis

	4.6 Discussion
	4.6.1 Accuracy
	4.6.2 Compositionality

	4.7 Limitations
	4.8 Conclusion

	5 Spatio-temporal References
	5.1 Spatio-temporal Referencing in Emergent Communication
	5.2 Spatio-temporal Referential Game
	5.2.1 Referential Game Environment
	5.2.2 Spatio-temporal Reference Formalisation

	5.3 Agent Architecture
	5.4 Message Interpretability and Analysis using NPMI
	5.5 Spatio-temporal Referencing Experiments
	5.5.1 Emergence of non-compositional spatio-temporal references
	5.5.2 Emergence of compositional spatio-temporal references
	5.5.3 Generalisation
	5.5.4 Evaluating interpretation validity and accuracy

	5.6 Discussion
	5.7 Limitations
	5.8 Conclusion

	6 Discussion
	6.1 Compositionality
	6.2 Efficiency
	6.3 Scalability
	6.4 Temporality
	6.5 Broader Impact

	7 Conclusion
	Appendix A Werewolf
	Appendix A.1 Training Details
	Appendix A.2 Statistical Significance Analysis

	Appendix B Temporal Referential Games
	Appendix B.1 Training Details
	Appendix B.2 Datasets Details
	Appendix B.2.1 Test Environments

	Appendix B.3 Accuracy Distributions
	Appendix B.4 Topographic Similarity Distributions

	Appendix C Temporal Progression Games
	Appendix C.1 Training Details
	Appendix C.2 Dataset Details
	Appendix C.3 NPMI Algorithm Descriptions

	Glossary
	References

