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Abstract

Accounting for the combined effects of mechanical anisotropy and nonlocality is critical for capturing a wide range
of material behaviour. Continuum-kinematics-inspired peridynamics (CPD) provides the essential underpinning the-
oretical and numerical framework to realise this objective. The formalism of rational mechanics is employed here to
rigorously extend CPD to the important case of transverse isotropy at finite deformations while retaining the funda-
mental deformation measures of length, area and volume intrinsic to classical continuum mechanics. Details of the
anisotropic contribution to the potential energy density due to length, area and volume elements are given. A series of
numerical examples serve to elucidate the theory presented.
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1. Introduction

Transversely isotropic materials exhibit isotropic behaviour in a defined geometric plane and distinct properties
orthogonal to it. Such directional dependence is present in many biological and engineered materials to achieve
optimal performance. While the local (Cauchy) continuum theory for transversely isotropic materials undergoing
finite deformations is well understood (see, e.g., Fu and Ogden, 2001; Holzapfel, 2000, and the references therein),
this is not the case for the nonlocal continuum theory of peridynamics (PD) proposed by Silling (2000) (see Javili et al.,
2019b, for a review of PD). The current study addresses this deficiency by extending the constitutive framework of
continuum-inspired peridynamics (CPD) (Javili et al., 2019a) to account for the important case of transverse isotropy.

Classical local continuum theory lacks a length scale and thus cannot account for the size-dependent response
exhibited by structures at small length scales. Extended continuum formulations, whose origins can be traced back
to the work of Kröner (1967), address this deficiency. Eringen and co-workers (Eringen, 1972a,b, 1976; Eringen
and Edelen, 1972) pioneered strongly nonlocal integral formulations where the stress at a material point depends on
the weighted value of the strain in a finite neighbourhood. Conversely, weakly nonlocal gradient continuum theories
(see, e.g., Gutkin and Aifantis, 1996; Kröner, 1967; Rogula, 1982; Vardoulakis et al., 1996) express the stress as a
function of the strain and its gradients. Higher-order theories introduce additional degrees of freedom associated with
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the microstructural response, with the most general being micromorphic theory (Eringen and Suhubi, 1964; Mindlin,
1964; Suhubi and Eringen, 1964).

The focus of this work is the strongly nonlocal continuum formulation of CPD (Javili et al., 2021a, 2019a, 2021b).
Unlike the aforementioned nonlocal formulations, PD and CPD do not require the concepts of stress and strain.
An appealing feature of CPD is its alignment with classical continuum mechanics, facilitating the formulation of
transverse isotropy at finite deformations.

The motivation to account for anisotropy at finite deformations within a nonlocal continuum formulation is pro-
vided by a range of important phenomena. The macroscopic properties of fibre-reinforced composites emerge from
the micro-scale interactions between fibres and the matrix, particularly as the size and aspect ratio of the reinforcing
fibres vary (Asmanoglo and Menzel, 2017; Spencer and Soldatos, 2007). Steigmann (2012) provided a theoretical
framework to predict such size-dependent behaviour, incorporating the impact of scale on stress distribution and fail-
ure mechanisms. Collectively, these studies reveal that the performance and structural integrity of fibre-reinforced
composites are significantly influenced by size-dependent effects, necessitating a comprehensive approach to design
and analysis that addresses the complex interplay between material size, fibre arrangement, and loading conditions.
Soft biological tissues are endowed with anisotropic mechanical properties due to the presence of collagen fibres (see,
e.g., Fung, 1993), and there is compelling experimental evidence that they exhibit multiple types of nonlocal behaviour
ranging from non-affinity of deformation across length scales to long-range mechano-sensing and mechano-regulation
of cells (Billiar and Sacks, 1997; Brewer et al., 2003; Hepworth et al., 2001; Krasny et al., 2017; Screen et al., 2004;
Tower et al., 2002). Collagen fibres are hierarchical, featuring complex structural assemblies spanning multiple length
scales. They interact with other elastic fibres (e.g., elastin), and the long-range mechanical interactions between the
fibres and the surrounding matrix are complex. The mechanism of force transmission in such structures – fundamental
to mechanobiology – can only be accurately described by non-local models.

Transverse isotropy has been accounted for by extending the original bond-based PD framework proposed in the
seminal work of Silling (2000). In general, such extensions introduce a continuous relationship describing the vari-
ation in the physical and mechanical characteristics with respect to a preferred direction within the neighbourhood
of a material points that then enters the force evaluation. This relationship typically reduces to scaling a material
parameter within the neighbourhood using a simple (Hu et al., 2011, 2012) or more complicated function (Ghajari
et al., 2014). In this spirit, Ahadi and Krochmal (2018) modulated the stiffness in the neighbourhood using an in-
fluence function that restricted interactions between neighbouring points to an ellipsoidal region. These models are
restricted to bond-based peridynamics, where the Poisson’s ratio is constrained, and infinitesimal deformations; overly
restrictive assumptions for biological materials and engineered polymers.

State-based peridynamics (Silling et al., 2007) overcomes the key limitation of the original formulation. State-
based PD was extended to account for transverse isotropy by Scabbia et al. (2024) using two bond stiffness functions,
i.e., a single-bond micromodulus (which depends on the orientation of a single bond) and a double-bond micromodulus
(which depends on the orientations of a pair of bonds). Other related works include Diana (2023); Li et al. (2024);
Prakash (2022); Yang et al. (2024). The work on extending CPD to account for anisotropy is limited. Tian and Zhou
(2021) introduced a linearised version of CPD that accounted for anisotropy based on the orientation of the vector
formed by a one-neighbour interaction and the bi-sector formed by a two-neighbour interaction. Our previous work
on a CPD formulation for elastoplasticity (Javili et al., 2021a) accounted for anisotropy in the plastic response via a
direction-dependent yield function.

In this work, we present a novel generalised transverse isotropic constitutive model for finite elastic deformations
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within the CPD framework. The constitutive model satisfies the essential requirements for material objectivity. The
resulting numerical implementation is inherently stable. A series of numerical examples serve to elucidate the theory.
Furthermore, enhanced modelling flexibility is achieved through area-element-based transverse anisotropy.

The structure of the presentation is as follows. Section 2 introduces the basic kinematics measures characterising
CPD, i.e., line, area and volume elements, together with their transformations. Next, the internal potential energy
for transverse anisotropy and the various contributions associated with line, area and volume elements are detailed
in terms of invariants so as to satisfy the requirements of material objectivity. The resulting contributions to the
governing equation are then outlined in Section 4, and the constitutive relations associated with line, area and volume
elements highlighted, as well as directional influence functions that characterise anisotropic mechanical properties.
Finally, a series of examples illustrate the versatility of the model and the ability to reproduce important physical
behaviour.

2. Kinematics

Peridynamics is a non-local continuum formulation where each (infinitesimal) point in the material configuration
B0 interacts with all other points within its horizon H0. The horizon is defined by a measure δ0, that is typically the
radius of a sphere. The position vector X indicates the location of a point in the material configuration. The nonlinear
map x = y(X) describes the motion of X to its position x in the spatial configuration Bt. In the CPD framework (Javili
et al., 2019a), the neighbour set of point X is identified as

{X∗} = {X∗ | X∗ ∈ H0} , (1)

where the superscript ∗ is a place holder to identify the neighbouring points within the horizon. The motion of
each point in the neighbour set {X∗} to their respective position in the spatial configuration {x∗} is described by the
nonlinear map y, i.e., x∗ = y(X∗). The kinematic response of a material point is described by the change in line-, area-
and volume elements. These are respectively defined by the sets containing one-, two- and three-neighbour points, as
indicated in Figure 1.

2.1. Line, area and volume elements

The relative position vector, or finite line element, between a point and its neighbour is denoted by Ξ∗ := X∗ − X.
The finite line element representing the relative deformation map is denoted by ξ∗ := x∗ − x. These vectors can be
respectively expressed in terms of their magnitudes, denoted by Ξ∗ and ξ∗, and the material and spatial unit vectors,
denoted by E∗ and e∗ (the rationale for this notation will be presented shortly):

Ξ∗ := |X∗ − X| E∗ = Ξ∗ E∗ and ξ∗ := |x∗ − x| e∗ = ξ∗ e∗ . (2)

A one-neighbour interaction considers the line element between a point X and one of its neighbours X|

. The set
of one-neighbours that forms these bonds are denoted {X|

| X|

∈ {X∗}}. The bond stretch captures the deformation of
the line element as follows

λ
|

:= ξ
|

/Ξ
|

> 0 . (3)

3



Figure 1: Motion of a continuum body in the CPD framework

A two-neighbour interaction considers the area element formed by the point X and two of its neighbours, X|

and X||

. The set of two-neighbours that forms these double-bonds is denoted {X|

, X||

| X|

, X||

∈ {X∗}}. The vectorial
area elements Ξ |/ || and ξ|/ || in the material and spatial configurations, respectively, can be expressed in terms of their
magnitudes, Ξ |/ || and ξ|/ ||, and unit vectors perpendicular to their area element, E|/ || and e|/ ||, as

Ξ |/ || := |Ξ
|

× Ξ
||

| E|/ || = Ξ |/ || E|/ || with E|/ || =
Ξ
|

× Ξ
||

|Ξ
|

× Ξ
||

|
,

ξ|/ || := |ξ
|

× ξ
||

| e|/ || = ξ|/ || e|/ || with e|/ || =
ξ
|

× ξ
||

|ξ
|

× ξ
||

|
. (4)

The double-bond stretch captures the deformation of the area element associated with a two-neighbour interaction and
is denoted by

λ|/ || := ξ|/ ||/Ξ |/ || > 0 . (5)

A three-neighbour interaction considers the volume element formed by the point X and three neighbours, X|

, X||

,
and X|||

. The set of three-neighbours that forms these triple-bonds is denoted {X|

, X||

, X|||

| X|

, X||

, X|||

∈ {X∗}}. The
signed scalar-valued volume elements Ξ |/ ||/ ||| and ξ|/ ||/ ||| are written in terms of their magnitudes Ξ |/ ||/ ||| and ξ|/ ||/ ||| as

Ξ |/ ||/ ||| := ±
∣∣∣∣[Ξ | × Ξ ||] · Ξ ||| ∣∣∣∣ = Ξ |/ ||/ ||| E|/ ||/ ||| and ξ|/ ||/ ||| := ±

∣∣∣∣[ξ| × ξ||] · ξ||| ∣∣∣∣ = ξ|/ ||/ ||| e|/ ||/ ||| . (6)

Here the notation e|/ ||/ ||| and E|/ ||/ ||| refers to the signed scalar (see Remark 1 below). That is,

E|/ ||/ ||| =

[
E| × E||

]
· E|||∣∣∣∣[E| × E||

]
· E|||

∣∣∣∣ = ±1 and e|/ ||/ ||| =

[
e| × e||

]
· e|||∣∣∣∣[e| × e||

]
· e|||

∣∣∣∣ = ±1 . (7)

The triple-bond stretch (or volume change) captures the deformation of the volume element associated with a three-
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neighbour interaction and is denoted by

λ|/ ||/ ||| := ξ|/ ||/ |||/Ξ |/ ||/ ||| > 0 . (8)

Remark 1. A boldface symbol typically denotes a vector or a tensor. The exception is that signed scalars associated
with the kinematic measures of volume elements are also boldface.

2.2. Linear transformation of line, area and volume elements

The three fundamental kinematic measures from classical continuum mechanics (CCM) are the deformation gra-
dient F, its cofactor K and its determinant J. These represent linear transformations of an infinitesimal line element
dX, an infinitesimal area element dA and an infinitesimal volume element dV from the material configuration to their
counterparts, dx, da and dv, respectively, in the spatial configuration. In CPD, these kinematic measures are mimicked
by linear transformations of the finite line, area and volume elements characterising one-neighbour, two-neighbour and
three-neighbour interactions, respectively. The bond-based secant map F

|

linearly transforms a finite line element Ξ
|

from the material configuration to their counterpart in the spatial configuration ξ
|

as follows

ξ
|

= F
|

· Ξ
|

with F
|

:= λ
|

e
|

⊗ E
|

. (9)

Similarly, the double-bond based co-secant map F|/ || linearly transforms finite area elements from the material to the
spatial configuration as

ξ|/ || = F|/ || · Ξ |/ || with F
|/ || := λ|/ ||e|/ || ⊗ E|/ || . (10)

Finally, finite volume elements are mapped by the triple-bond based volume measure map F|/ ||/ ||| as

ξ|/ ||/ ||| = F|/ ||/ ||| Ξ |/ ||/ ||| with F
|/ ||/ ||| := λ|/ ||/ ||| e|/ ||/ ||| E|/ ||/ ||| . (11)

Remark 2. Unlike the bond-based secant map and the double-bond based co-secant map, which transform vectors,
the triple-bond based material measure map describes a scalar transformation and should be interpreted as a volume
ratio. This corresponds to J := DetF in CCM. Only for affine deformations, i.e., in the local limit (δ → 0), do
the relations between F, its cofactor K and its determinant J hold for the otherwise independent linear mappings in
Eqs. (9)-(11).

3. Internal potential energy for transverse anisotropy

For elastic deformations, the governing equations for a body can be obtained by minimising its total potential
energy functional E, i.e., finding equilibrium by requiring δE

.
= 0∀ δy. The total energy consists of internal and

external contributions. The internal potential energy Eint is the stored energy Ψ in the body, i.e., Eint = Ψ . In CPD the
stored energy is composed of contributions from line elements, area elements and volume elements as

Ψ = Ψ1 + Ψ2 + Ψ3 . (12)
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For simplicity, external contributions will be neglected and equilibrium implies that

δΨ
.
= 0 ∀ δy ⇒ δΨ1 + δΨ2 + δΨ3

.
= 0 ∀ δy . (13)

In this contribution we extend CPD to transverse isotropy in a similar spirit as is common for CCM (see, e.g.,
Holzapfel et al., 2000; Spencer, 1984). To account for transverse isotropy in CCM, the stored energy function is
extended by including additional invariants (for further details on invariants for isotropic functions of vectorial and
tensorial arguments, see Adkins, 1960; Smith and Rivlin, 1957; Wang, 1970). These additional invariants are related
to fibre stretch in the preferred direction. They depend on the transformation of an infinitesimal line element, i.e.,
by the action of the tangent map F, and the direction of the fibres that characterises the anisotropy (the preferred
direction). In this spirit, transverse isotropy is captured in CPD by invariants that are dependent on transformations
of finite line and area elements, i.e., by the secant maps and the fibre direction. The subsequent sections detail the
invariants necessary to capture transverse isotropy in CPD. The ensuing requirements on the potential energy for
one-neighbour, two-neighbour and three-neighbour interactions are now discussed.

3.1. Potential energy for line elements

In PD the potential energy of the body is expressed as the integral of a non-local point-wise energy density over
the body. For line elements (also known as bond-based interactions) this non-local energy density is defined as the
potential energy double-density ψ

|

1 integrated over the horizon. The potential energy of the body due to one-neighbour
interactions is thus given by

Ψ1 (y) =
1
2!

∫
B0

∫
H0

ψ
|

1 dV
|

dV . (14)

For isotropic materials restricted to only line element contributions, the potential energy double-density depends
solely on the bond-based secant map, that is

ψ
|

1 = ψ
|

1(ξ
|

) = ψ
|

1(F
|

) . (15)

Spatial objectivity is ensured if ψ
|

1(F
|+) = ψ

|

1(F
|

) with F
|+ = Q · F| for all proper orthogonal tensors Q ∈ SO(3).

Following in the spirit of CCM, we ensure spatial objectivity by letting

ψ
|

1 = ψ
|

1(C
|

) with C
|

= F
| t ·F

|

= λ
|2E

|

⊗ E
|

, (16)

asC
|+ = [Q·F| ]t·Q·F| = C|

, whereC
|

is a Cauchy–Green-type tensor. Furthermore, material objectivity of the double-
density is ensured if ψ

|

1(C
|

) = ψ
|

1(Q ·C|

·Qt) for all proper orthogonal tensors Q ∈ SO(3). Following the representation
theorem for tensor functions (Zheng, 1994), the scalar-valued tensor function ψ

|

1(C
|

) may be expressed in terms of
the principal invariants of C

|

. Possible invariants of C
|

are, for example, inv
C
| = Tr{C

|

, C
|2, C

|3} = {λ
|2, λ

|4, λ
|6},

i.e., the even powers of the bond stretch. The potential energy double-density for isotropic materials can therefore be
sufficiently expressed using a single invariant as

ψ
|

1 = ψ
|

1(I1) with I1 := λ
|2 . (17)

For anisotropic materials, the deformation of the material with a single preferred direction also depends on the
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fibre orientation. The direction of a fibre at point X in B0 is denoted by A = A(X), |A| = 1, as shown in Figure 2(a). It
is convenient to introduce the direction cosine α

|

= α
|

(X|

; X) as a measure of the relative direction of Ξ
|

with respect
to A:

α
|

:= A · E
|

= |A| |E
|

| cos θ
|

= cos θ
|

with sign(α
|

) = ±1 and α
|

⊕ := |α
|

| . (18)

Figure 2: Point-wise fibre direction A and associated kinematic measures for (a) line elements and (b) area elements

To introduce physically motivated directional agnosticism, the line element energy double-density for transverse
isotropy is prescribed to be a function of the Cauchy–Green-like strain tensor C

|

and the structural tensorA, i.e.,

ψ
|

1 = ψ
|

1(C
|

,A) with A := A ⊗ A . (19)

If the anisotropy results solely from the presence of fibres, the energy remains unchanged if the deformation and the
fibres undergo the same rigid rotation superposed upon the material configuration, a situation denoted here as material
objectivity. The potential energy double-density is an objective function of C

|

andA if the condition

ψ
|

1(C
|

,A) !
= ψ

|

1(Q ·C
|

· QT,Q ·A · QT) , (20)

holds for all proper orthogonal tensors Q ∈ SO(3). The potential energy double-density in Eq. (19) can be written
in terms of the invariants associated with C

|

, the invariants associated with A, and the invariants associated with the
combination of the tensors, i.e.,

ψ
|

1 = ψ
|

1(Tr{C
|

, C
|2, C

|3, A, A2, A3, C
|

·A, C
|

·A2, C2 ·A, C
|2 ·A2}) , (21)

where the invariants are given by

inv
C
| = Tr{C

|

, C
|2, C

|3} = {λ
|2, λ

|4, λ
|6} ,

invA = Tr{A, A2, A3} = {1, 1, 1} , (22)

inv
C
|
,A = Tr{C

|

·A, C
|

·A2, C
|2 ·A, C

|2 ·A2} = {λ
|2α

|2, [λ
|2α

|2]2, λ
|4α

|2, [λ
|4α

|2]2} .
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Thus, the energy double-density can be sufficiently expressed as

ψ
|

1 = ψ
|

1
(

Tr{C
|

, C
|

·A, C
|2 ·A}

)
= ψ

|

1(I1, I4, I5) with I1 = λ
|2 , I4 = α

|2λ
|2 , I5 = α

|2λ
|4 . (23)

Here I1 refers to the invariant associated with the isotropic part of the line element contribution. The invariants
associated with the preferred direction for line element contributions are I4 and I5. We intentionally reserve I2 and
I3 for the invariants associated with isotropic area elements and volume elements that will be defined in Sections 3.2
and 3.3, respectively. Finally, the line element potential energy double-density for transverse isotropy that satisfies
material objectivity can equivalently be expressed in the following reduced format

ψ
|

1(λ
|2, α

|2λ
|2, α

|2λ
|4) = ψ

|

1(λ
|2, α

|2) ⇒ ψ
|

1 ≡ ψ
|

1
∗(λ

|

, α
|

⊕) . (24)

Note that the stretch λ
|

is always a positive value by definition and therefore, unlike α
|

⊕ (see Eq. 18), using a notation
such as λ

|

⊕ would be superfluous.

3.2. Potential energy for area elements

The potential energy associated with area elements Ψ2 is given as the integral of a non-local point-wise energy
density over the body. For area elements, this is defined as the potential energy triple-density ψ2

|/ || integrated over the
horizon twice. Thus Ψ2 is given by

Ψ2 (y) =
1
3!

∫
B0

∫
H0

∫
H0

ψ
|/ ||

2 dV
||

dV
|

dV . (25)

The potential energy triple-density for isotropic materials depends on the double-bond based co-secant map, that is

ψ
|/ ||

2 = ψ
|/ ||

2 (ξ|/ ||) = ψ|/ ||2 (F|/ ||) . (26)

To ensure the spatial objectivity, i.e., ψ|/ ||2 (F|/ ||+) = ψ
|/ ||

2 (F|/ ||) with F|/ ||+ = Q · F|/ || for all proper orthogonal tensors
Q ∈ SO(3), we require

ψ
|/ ||

2 = ψ
|/ ||

2 (C|/ ||) with C
|/ || = F|/ ||t ·F|/ || = λ|/ ||2E|/ || ⊗ E|/ || , (27)

where C|/ || is a Cauchy–Green-type tensor. Material objectivity of the triple-density is ensured if ψ|/ ||2 (C|/ ||) = ψ|/ ||2 (Q ·
C|/ || · Qt) for all proper orthogonal tensors Q ∈ SO(3). If ψ|/ ||2 (C|/ ||) is an invariant of the symmetric tensor C|/ || it may
be expressed in terms of the principal invariants of C|/ ||. Possible invariants of C|/ || are, for example,

inv
C
|/ || = {TrC|/ || = [λ|/ ||]2, Tr [C|/ ||]2 = [λ|/ ||]4, Tr [C|/ ||]3 = [λ|/ ||]6} , (28)

i.e., the even powers of the double-bond stretch. The potential energy triple-density for isotropic materials can there-
fore be expressed as a function of a single invariant by

ψ
|/ ||

2 = ψ
|/ ||

2 (I2) with I2 = [λ|/ ||]2 . (29)

The direction cosine α|/ || = α|/ ||(X|

, X||

; X), as indicated in Figure 2(b), captures the direction of the normal of the
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plane formed by a point and two of its neighbours in the two-neighbour set, i.e., E|/ ||, with respect to A, that is

α|/ || = A · E|/ || = |A||E |/ ||| cos θ|/ || = cos θ|/ || with sign(α|/ ||) = ±1 and α
|/ ||

⊕ = |α
|/ ||| . (30)

Physically, α|/ || describes the orientation of the normal vector E|/ || with respect to the fibre direction A; see Figure 3.
In particular if the direction of a fibre at point X is tangential to the plane spanned by Ξ

|

and Ξ
||

, then for that set of
neighbours α|/ || = 0. Conversely, if the direction of a fibre is orthogonal to Ξ

|

and Ξ
||

, then α|/ || = 1, i.e., α|/ || assumes
its maximum value.

Figure 3: Planes formed by a point and two neighbours. A plane perpendicular to the fibre direction (left), randomly oriented (middle) and parallel
to the fibre orientation (right) have different values of α|/ ||.

As for the line element contributions, physically motivated directional agnosticism is ensured by stipulating that
the area element potential energy triple-density for transverse isotropy depends on C|/ || and the structural tensor A,
i.e.,

ψ
|/ ||

2 = ψ
|/ ||

2 (C|/ ||,A). (31)

Assuming the anisotropy only results from fibres, the potential energy triple-density is a materially objective function
of C|/ || andA if the condition

ψ
|/ ||

2 (C|/ ||,A) !
= ψ

|/ ||

2 (Q ·C|/ || · QT,Q ·A · QT) (32)

holds for all proper orthogonal tensors Q ∈ SO(3). The interaction triple-density in Eq. (31) can be written in terms of
the invariants associated withC|/ ||, the invariants associated withA, and the invariants associated with the combination
of these tensors, i.e.,

ψ
|/ ||

2 = ψ
|/ ||

2 (Tr{C|/ ||, [C|/ ||]2, [C|/ ||]3, A, A2, A3, C|/ || ·A, C|/ || ·A2, [C|/ ||]2 ·A, [C|/ ||]2 ·A2}) . (33)

These invariants can be expressed as follows:

inv
C
|/ || =Tr{C|/ ||, [C|/ ||]2, [C|/ ||]3} = {[λ|/ ||]2, [λ|/ ||]4, [λ|/ ||]6} ,

invA =Tr{A, A2, A3} = {1, 1, 1} ,

inv
C
|/ ||,A =Tr{C|/ || ·A, C|/ || ·A2, [C|/ ||]2 ·A, [C|/ ||]2 ·A2}

={[λ|/ ||]2[α|/ ||]2, [[λ|/ ||]2[α|/ ||]2]2, [λ|/ ||]4[α|/ ||]2, [[λ|/ ||]4[α|/ ||]2]2} .
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This allows the energy triple-density to be sufficiently characterised as

ψ
|/ ||

2 = ψ
|/ ||

2
(

Tr{C|/ ||, C|/ || ·A, [C|/ ||]2 ·A}
)

(34)

= ψ
|/ ||

2 (I2, I6, I7) with I2 = [λ|/ ||]2 , I6 = [α|/ ||]2[λ|/ ||]2 , I7 = [α|/ ||]2[λ|/ ||]4 . (35)

Thus the final equivalent expression for the potential energy triple-density for area elements is

ψ
|/ ||

2 ([λ|/ ||]2, [α|/ ||]2[λ|/ ||]2, [α|/ ||]2[λ|/ ||]4) = ψ|/ ||2 ([λ|/ ||]2, [α|/ ||]2) ⇒ ψ
|/ ||

2 ≡ ψ
|/ ||

2
∗(λ|/ ||, α|/ ||⊕ ) . (36)

Again, since the area stretch λ|/ || is inherently positive, unlike α|/ ||⊕ , using a notation such as λ|/ ||⊕ would be superfluous.

Remark 3. For problems in two dimensions, E|/ || is out of the plane, and as A is in the plane, α|/ || = 0. It follows
from a physical perspective that the inclusion of transverse isotropy for two-neighbour interactions does not make
sense in two dimensions. The conclusion is that contributions to the potential energy density for transverse isotropy
in two-dimensional problems stems solely from one-neighbour interactions.

3.3. Potential energy for volume elements

The potential energy of the body associated with volume elements Ψ3 is given as the integral of a non-local point-
wise energy density over the body. For volume elements this is defined as the potential energy quadruple-density
ψ3
|/ ||/ ||| integrated over the horizon thrice. The potential energy Ψ3 is thus given by

Ψ3 (y) =
1
4!

∫
B0

∫
H0

∫
H0

∫
H0

ψ
|/ ||/ |||

3 dV
||

dV
|

dV . (37)

For isotropic materials where the energy of volume elements is also included, the energy depends on the triple-bond
volume measure map ψ|/ ||/ |||3 = ψ

|/ ||/ |||

3 (ξ|/ ||/ |||) = ψ|/ ||/ |||3 (F|/ ||/ |||) = ψ|/ ||/ |||3 (C|/ ||/ |||) = ψ|/ ||/ |||3 ([λ|/ ||/ |||]3). As ξ|/ ||/ |||, F|/ ||/ ||| and C|/ ||/ |||

are all scalars, the potential energy quadruple-density for isotropic materials can be expressed by a single invariant

ψ
|/ ||/ |||

3 = ψ
|/ ||

3 (I3) with I3 = λ
|/ ||/ ||| . (38)

Remark 4. As the triple-bond based material measure map is a scalar ratio indicating volume change of a finite
element, it is not possible to define a direction cosine α|/ ||/ ||| between this map and the fibre direction A. Therefore, the
triple-bond potential energy cannot be extended to include anisotropy.

3.4. Additive decomposition of potential energy densities

The potential energy densities for materials where the response of the material and the fibre to external loading
differs can be expressed additively as

ψ
|

1 = ψ
|

1,iso(I1) + ψ
|

1,ani(I4, I5) and ψ
|/ ||

2 = ψ
|/ ||

2,iso(I2) + ψ|/ ||2,ani(I6, I7) . (39)

4. Governing equations

Recall that equilibrium is obtained by finding the stationary point of the energy functional with respect to all
admissible variations (Eq. 13). This procedure is now utilised to realise the contribution to the governing equations
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associated with line-, area- and volume elements, along with the expressions for the respective interaction forces. For
a more detailed derivation, see Javili et al. (2019a, 2021b).

4.1. Contributions to variations of potential energy

The variation of the potential energy δΨ consists of the sum δΨ1 + δΨ2 + δΨ3 due to the contributions from
one-neighbour, two-neighbour, and three-neighbour interactions, corresponding to line, area and volume elements,
respectively. The individual contributions are now briefly discussed in Sections 4.1.1, 4.1.2 and 4.1.3. In what
follows, it is assumed that the field y and its variation δy are integrable, y satisfies the prescribed displacements, and
δy = 0 where the displacements are prescribed. That is, we assume the fields to be admissible.

4.1.1. Contribution from line elements

The contribution to the governing equation from Ψ1 in Eq. (14) is found by applying the chain rule and the
definition of the relative deformation map ξ

|

in Eq. (2)2 as

δΨ1(y) =
1
2!

∫
B0

∫
H0

∂λ|ψ
|

1 e
|

· δξ
|

dV
|

dV , (40)

which after some mathematical steps yields

δΨ1(y) = −
∫
B0

∫
H0

p
|

dV
|

· δy dV . (41)

Here

p
|

(X) := ∂λ|ψ
|

1 e
|

+�����:0
∂α|ψ

|

1 ∂ξ|α
|

= ∂λ|ψ
|

1e
|

with [p
|

] = force/m6 (42)

denotes the bond-wise interaction force double-density with its integral overH0 rendering a point-wise force density
with units force/m3. For more details on the derivation of the governing equations for one-neighbour interactions, see
Steinmann et al. (2023).

4.1.2. Contribution from area elements

Similarly, the stationary point and contribution to the governing equations from Ψ2 in Eq. (25) are obtained using
the chain rule, Eq. (4)2 and the property δξ|/ || = δξ

|

× ξ
||

+ ξ
|

× δξ
||

, yielding

δΨ2(y) =
1
3!

∫
B0

∫
H0

∫
H0

∂λ|/ ||ψ2
|/ || e|/ || · δ ξ|/ || dV

||

dV
|

dV , (43)

that after some mathematical steps reads

δΨ2(y) = −
∫
B0

∫
H0

∫
H0

p|/ || dV
||

dV
|

· δ y dV . (44)

The interaction force triple-density for two-neighbour interactions is given by

p|/ ||(X) := ξ
||

× [∂λ|/ ||ψ
|/ ||

2 e|/ || +
�������:0
∂α|/ ||ψ

|/ ||

2 ∂ξ|/ ||α
|/ ||] = ξ

||

× ∂λ|/ ||ψ
|/ ||

2 e|/ || with [p|/ ||] = force/m9 . (45)
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Integrating the area element interaction force triple-density twice over H0 renders a point-wise force density with
units force/m3. For more details on the derivation of the governing equations and force density for area elements, see
Laurien et al. (2024).

4.1.3. Contribution from volume elements

The stationary point and contribution to the governing equation from Ψ3 in Eq. (37) follows as

δΨ3(y) =
1
4!

∫
B0

∫
H0

∫
H0

∫
H0

∂λ|/ ||/ |||ψ3
|/ ||/ |||e|/ ||/ ||| · δ ξ|/ ||/ ||| dV

|||

dV
||

dV
|

, (46)

which after some mathematical steps can be expressed as

δΨ3(y) = −
∫
B0

∫
H0

∫
H0

∫
H0

p|/ ||/ ||| dV
|||

dV
||

dV
|

· δ y dV . (47)

The interaction force quadruple-density for three-neighbour interactions is defined by

p|/ ||/ |||(X) :=
[
ξ
||

× ξ
|||
]
∂λ|/ ||/ |||ψ3

|/ ||/ ||| e|/ ||/ ||| with [p|/ ||/ |||] = force/m12 . (48)

Integrating the volume element interaction force quadruple-density thrice overH0 renders a point-wise force density
with units force/m3. See Laurien et al. (2024) for further information.

4.2. Balance of linear momentum

The balance of linear momentum for quasi-static motion, neglecting external forces, is obtained by substituting
Eqs (41), (44)2 and (46)2 into Eq. (13), yielding

−

∫
H0

p
|

dV
|

−

∫
H0

∫
H0

p|/ || dV
||

dV
|

−

∫
H0

∫
H0

∫
H0

p|/ ||/ ||| dV
|||

dV
||

dV
|

= 0 . (49)

4.3. Balance of angular momentum

Following Javili et al. (2019a), the balance of angular momentum is obtained from the global moment balance and
subsequent application of the linear momentum equation which gives∫

H0

ξ
|

× p
|

dV
|

+

∫
H0

∫
H0

ξ
|

× p|/ || dV
||

dV
|

−

∫
H0

∫
H0

∫
H0

ξ
|

× p|/ ||/ ||| dV
|||

dV
||

dV
| .
= 0 . (50)

This condition is sufficiently met when ψ
|

1, ψ
|/ ||

2 and ψ|/ ||/ |||3 are expressed in terms of the scalar invariants described in
Eqs (24), (36) and (38). The resulting interaction force densities p| , p|/ ||, p|/ ||/ ||| in Eqs (42), (45), and (48) are parallel
to ξ

|

and therefore satisfy Eq. (50).

5. Computational Aspects

The numerical implementation is performed in the Julia programming language (Bezanson et al., 2017) and builds
on the framework introduced in Javili et al. (2020). For the sake of transparancy and brevity, the algorithm for a
problem consisting only of line and area elements is shown in the flowchart presented in Figure 4. The corresponding
algorithm that includes volume elements is analogous and thus omitted here.
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In the pre-processing stage, the necessary data structures are created and populated. The direction cosines α
|

⊕ and
α
| ||

⊕, as well as the density functions ρ(α
|

⊕) and ρ(α
| ||

⊕), introduced in Section 6, for each neighbour of each grid point
are then calculated.

A Newton-Raphson solution scheme is used to solve the non-linear system of discrete equations. Automatic
differentiation using hyper–dual numbers is employed to calculate the contributions to the residual (R), and tangent
(K) following Firooz et al. (2024).

In the post-processing stage, effective point-wise quantities F, P and a (see Eqs. (60), (61)b) are calculated.

6. Forms of the potential energy densities for transverse isotropy

The general requirements for the various isotropic and anisotropic energy density contributions are now outlined.
Thereafter a series of examples based solely on line element interactions is presented to demonstrate the ability to
recover various transverse isotropy formulations found in the literature using the general format of Eq. (24). Further
examples are given to illustrate the versatility of the model when extended to include area and volume elements
to accommodate materials that exhibit varying Poisson’s effect and to simulate three-dimensional bodies with more
than one preferred direction. Finally, a comparison between the line element (Eq. 24) and area element formulations
(Eq. 36) motivates the introduction of the novel area element formulation.

6.1. Solely line element interactions

A harmonic isotropic potential energy double-density is commonly used for line element interactions (or bond-
based peridynamics), see for example (Javili et al., 2020). This takes the form

ψ
|

1,iso(λ
|

) =
1
2

C1,iso Ξ
|

[λ
|

− 1]2 , (51)

where C1,iso is the bond stiffness coefficient. The analogous general format for the transversely isotropic potential
energy double-density, that also ensures the material configuration is in equilibrium (or “stress-free”) for zero defor-
mation, is given by

ψ
|

1,ani(λ
|

, α
|

⊕) =
1
2

C1,ani ρ(α
|

⊕)Ξ
|

[λ
|

− 1]2 . (52)

Here the bond stiffness coefficient C1,ani multiplies a weighting function ρ of the relative direction of the bond α
|

⊕.
Using Eq. (18), α

|

⊕ is obtained from the preferred direction A or equivalently from the orientation angle γ, where γ is
defined anticlockwise from the horizontal. Various choices for the density function ρ are now discussed.

6.1.1. ρ as a scaling function

Several models for transverse isotropy in PD include a function which scales the bond stiffness coefficient C1,ani

based on its relative direction (Ghajari et al., 2014; Hu et al., 2012; Tian and Zhou, 2021).
Figure 5 shows the deformation of an initially unit square with a preferred fibre direction γ = 45◦. The unit square

is subjected to 100% uniaxial extension enforced by prescribing a linear variation of the displacements within a region
of thickness δ. The domain is discretised using 41 × 41 grid points with a horizon-to-grid spacing ratio of δ/∆ = 3.
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The influence of the choice of ρ (α
|

⊕) on the response is now detailed. The different options proposed are nor-
malised such that∫

H0

ρ (α
|

⊕) dV
|

= 1 . (53)

That is, the combined stiffness of the neighbourhood remains unchanged, but the distribution of the stiffness differs
based on the choice of ρ (α

|

⊕). The polar plots of ρ (α
|

⊕) displayed in Figure 5 show the normalised value of ρ (α
|

⊕)
such that ρ (α

|

⊕) max = 1. A colour representation of the distribution of ρ (α
|

⊕) for the neighbourhood of a general
material point is shown adjacent to the deformed square.
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Figure 4: Flowchart illustrating the implementation of the CPD framework with line and area elements.
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Figure 5: Comparison of results for different forms of ρ (α
|

⊕). A 100% uniaxial extension of a transversely isotropic square with preferred direction
A specified by γ = 45◦. The isotropic and transverse isotropic bond stiffness coefficients are C1,iso = 0.01 and C1,ani = 1, respectively. Each
subfigure shows the normalised polar plot of ρ (α

|

⊕), the displacement in the vertical direction on the deformed square and a colour representation
of ρ (α

|

⊕) on the neighbourhood of general point.
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Figure 5 (a) shows the results for a power-law model where

ρ (α
|

⊕) = [α
|

⊕]p , (54)

for values of the exponent p > 1. For this model, there is no resistance in the direction perpendicular to A. This
can lead to physical instability for high values of p. Isotropic bulk resistance is required to avoid this situation. To
circumvent this issue an additive decomposition of potential energies (Eq. 39) is used and the bond stiffness constants
are set to C1,ani = 1 and C1,iso = 0.01.

Figure 5 (b) shows the results when using Legendre polynomials for ρ (α
|

⊕), as suggested by Ghajari et al. (2014),
where

ρ (α
|

⊕) =
∞∑

n=0

AnPn (α
|

⊕) . (55)

Here n denotes the degree of the polynomial, An the associated polynomial coefficient, and Pn the associated Legendre
functions. In order to fully determine ρ (α

|

⊕) its value at five different angles should be specified. In the model proposed
by Ghajari et al. (2014), two parameters, c1 and c2 are used and ρ (1) = c1, ρ(α

|

⊕) = c2 for cos−1(α
|

⊕) = 45◦, 55◦, 65◦,
and 90◦. Results for a ratio of c2/c1 = 0.1 for the second and eighth degree Legendre polynomials are shown in
Figure 5. For these cases, c2 can be interpreted as an isotropic contribution to the resistance. This cannot however be
generalised for arbitrary choices of the degree of the polynomial.

Histological data of fibrous biological tissue, such as experimentally determined collagen fibre distributions, are
often modelled by a von Mises distribution (Gasser et al., 2006). The form of the scaling function based on the
dispersion of fibres, expressed by the concentration parameter b, is given by

ρ (α
|

⊕) =
4

√
b

2π
exp

[
2b[α

|

⊕]2
]

erfi(
√

2b)
. (56)

This choice of scaling function can represent an isotropic material (b ≈ 0), fully aligned fibres (b→ ∞), and scenarios
in between. Figure 5 (c) shows the resulting displacements for different choices of b. Note that as b increases, i.e., the
fibres become more aligned, the model becomes physically unstable if there is no bulk resistance to confer stability to
the material. To avoid this, the bond stiffness constants are set to C1,ani = 1 and C1,iso = 0.01.

6.1.2. ρ as an influence function

Choosing ρ = ρ (α
|

⊕;Ξ
|

) introduces a dependence on the distance Ξ
|

between the two points in the sense of
a parametrisation (as indicated by the semicolon notation). The density function therefore resembles an influence
function and determines which of the neighbours contributes to the energy and C1,ani = ρ (α

|

⊕;Ξ
|

) C1. This choice
corresponds to the proposal by Ahadi and Krochmal (2018). A general form for an influence function is given by

ρ (α
|

⊕;Ξ) =

 g (α
|

⊕) if Ξ
|

≤ r (α
|

⊕) ,
0 otherwise .

(57)

For the simplest case, the function g (α
|

⊕) = 1 and a neighbour either contributes fully to the energy or it does not
contribute at all. The simplest version of the scalar measure r (α

|

⊕) would be the radius of a circle. Figure 6 shows the
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deformation of an initially unit square subjected to 100% uniaxial extension for the choice of an elliptical r (α
|

⊕) with
a horizontal long axis. The eccentricity

e =

√
1 −

(
rmin

δ0

)2

, (58)

describes the ratio of the lengths of the principal axes of the ellipse, where rmin denotes the minor axis length. The
square domain has a fixed fibre orientation (γ = 45◦), and the investigation is limited to the case where g(α

|

⊕) = 1,
C1,ani = 1, and C1,iso = 0.01. The polar plots show the shape of r (α

|

⊕). As the eccentricity increases, the results more
closely resemble those of the fully-aligned fibre.

Figure 6: Comparison of results when ρ is considered as an influence function. A 100% uniaxial extension of a transversely isotropic square with
γ = 45◦ defined anti-clockwise from the horizontal. Showing the deformation of an elliptical r (α

|

⊕) with g (α
|

⊕) = 1. The polar plot shows the
shape of r (α

|

⊕). The isotropic and transverse isotropic bond stiffness coefficients are C1,iso = 0.01 and C1,ani = 1, respectively.

6.1.3. Prescribing the preferred direction

Figure 7 shows the effect that varying the preferred direction has on the deformation of a unit square subjected to
100% uniaxial extension using the von Mises distribution model for ρ (α

|

⊕) and b = 4.12.

Figure 7: A unit square subjected to 100% uniaxial tension for various values of γ. The deformed body is coloured according to its vertical
displacement.
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6.1.4. The interplay between the isotropic and anisotropic contribution

The impact of the choice of C1,ani and C1,iso on the unit square subjected to 100% uniaxial tension is shown in
Figure 8. Two options for ρ (α

|

⊕) in Eq. (56), obtained by setting b = 4.12 and b = 20, are examined. The difference in
the deformation for the two values of b becomes more pronounced as the stiffness in the preferred direction increases.

Figure 8: The influence of increasing the stiffness in the preferred direction. Large deformation of a unit square with b = 4.12 and b = 20 using the
von Mises distribution model for ρ (α

|

⊕) and γ = 45◦. An increasing ratio of C1,ani/C1,iso from left to right is shown.

6.1.5. Other modes of deformation

The versatility of the proposed model is highlighted by comparing the deformation of a square subjected to 50%
simple shear. Figure 9 shows the vertical displacement for different prescribed values of the fibre orientation angle γ.

Figure 9: A unit square subjected to shear using the von Mises distribution model for ρ (α
|

⊕) with b = 4.12 and various choices of γ.

6.2. Multi-neighbour interactions, with transverse isotropy only included in line element interactions

In Section 6.1 only the energy contributions associated with line element interactions for both the isotropic and
anisotropic contributions were considered. The harmonic isotropic potential energy triple- and quadruple-densities
for area and volume elements, respectively, analogous to Eq. (51), are given by

ψ
|/ ||

2,iso(λ|/ ||) =
1
2

C2,iso Ξ
|/ || [λ|/ || − 1]2 and ψ

|/ ||/ |||

3,iso(λ|/ ||/ |||) =
1
2

C3,iso Ξ
|/ ||/ ||| [λ|/ ||/ ||| − 1]2 . (59)
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6.2.1. Compressibility

Figure 10 illustrates the interplay between C1,iso,C2,iso, and C1,ani for a square domain subjected to 100% uniaxial
extension. The von Mises distribution model for ρ (α

|

⊕) with b = 2.22 is used. As the ratio of C2,iso/C1,iso increases
from the top to the bottom of the tabulated figure, the material becomes less compressible, i.e., it exhibits a more
incompressible response, resulting in a thinner cross-section (see also Javili et al. (2020)). As the ratio of C1,ani/C1,iso

increases, the material resists deformation along the preferred diagonal direction (i.e., γ = 45◦) and consequently
opposes the thinning of the cross-section. The shape of the deformed square depends on the material properties i.e.,
which of the competing physical phenomena dominates.

Figure 10: The influence of varying compressibility and stiffness in the preferred direction. Large deformations of a unit square with a preferred
direction specified by γ = 45◦ using the von Mises distribution model for ρ(α

|

⊕) with b = 2.22. Showing increasing ratio’s of C1,ani/C1,iso from left
to right and increasing ratio’s of C2,iso/C1,iso from top to bottom.

6.2.2. Block reinforced by two families of fibres

The following example is motivated by a local model of the transverse isotropic response of biological tissue
and involves the imposition of simple tension to iliac adventitial strips (Gasser et al., 2006). The dimensions of the
strip are 4 × 2 × 0.5. Note that the example does not intend to reproduce the test case, but rather to illustrate that
the proposed model can capture the key characteristic behaviour. The material is nearly incompressible (C3 = 105),
mimicking the incompressibility of biological tissue. Two preferred directions are prescribed, with γ = 49.98◦ being
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the axial direction and γ = 40.02◦ the circumferential direction. The von Mises distribution used for ρ (α
|

⊕) captures
the dispersion of the fibres associated with collagen distribution and is informed by the local version in (Gasser
et al., 2006). The two values assigned to the concentration parameter, b = 100 and b = 1.36, correspond to the
values used for the dispersion parameter in (Gasser et al., 2006), mimicking fully-aligned fibres and fibres with some
dispersion, respectively. The ratio of the relative stiffness of the preferred direction to the bulk of the strip is high at
(C1,ani/C1,iso = 103). Uniaxial extensions of 50% and 28% in the circumferential and axial directions, respectively, are
prescribed. There are differences between the current example and Gasser et al. (2006): the energy density for both the
isotropic and preferred direction is different; a Dirichlet boundary condition is used here; PD is a non-local formulation
necessitating a thicker body to circumvent issues stemming from boundary effects. Thus, this is a qualitative and not
a quantitative comparison.

Figure 11 shows the component of the Cauchy stress tensor in the direction of extension (determined as outlined
below) superimposed upon the deformed configuration. The results for including dispersion of the fibres and for fully
aligned fibres are shown for both the circumferential and axial specimens. The results correspond well to the test case.
In order to calculate the Cauchy stress, the effective deformation gradient F is first calculated (Silling et al., 2007) as

F =
[∫
H0

E
|

⊗ E
|

dV
|

]−1

·

∫
H0

1
Ξ
|
ξ
|

⊗ E
|

dV
|

. (60)

The effective Cauchy stress σ is then calculated using the effective Piola stress tensor P as follows

σ =
1
J

P · FT with J = detF and P =
∫
H0

p| ⊗ Ξ
|

dV
|

. (61)

Figure 12 shows the prediction of the deformed collagen fibre orientations, i.e., ai = F ·Ai for i = 1, 2. The orientation
measure ca = a1 · a2 corresponds well with the benchmark example.

Figure 11: Fibre reinforced blocks resembling a circumferential and an axial specimen of a iliac adventitial strip, subjected to uniaxial extension of
50% and 28%, respectively. The Cauchy stress in the direction of the applied load is plotted. The cases on the left correspond to dispersion in the
collagen fibres, and on the right to no dispersion (fully aligned fibres).
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Figure 12: Prediction of the current (mean) collagen orientations using the orientation measure ca = a1 · a2. Results are shown for circumferential
and axial specimens. The cases on the left correspond to dispersion in the collagen fibres, and on the right to no dispersion (fully aligned fibres).

6.3. Transverse isotropy extended to area element interactions

The model for transverse isotropy incorporating only line elements (see Section 3.1) is now compared to that for
area elements (Section 3.2). The general format for the harmonic transversely isotropic potential energy triple-density
that ensures that the material configuration is in equilibrium for zero deformation is given by

ψ
|/ ||

2,ani(λ
|/ ||, α

|/ ||

⊕ ) =
1
2

C2,ani ρ (α|/ ||⊕ ) Ξ |/ || [λ|/ || − 1]2 . (62)

Consider a fibre-reinforced cube with a 40% cuboid cutout subjected to uniform expansion as shown in Figure 13.
The fibres are oriented diagonally as shown in the top right of the figure. The dimensions of the cube are 2 × 2 × 2
and a grid spacing of ∆ = 0.1 is used along with a ratio of δ/∆ = 2. The stiffness for the bulk material is C1,iso = 1
and the stiffness of the fibres is C1,ani = 103 and C2,ani = 106 for the line and area element interactions, respectively.
A von Mises distribution model was used to describe the fibres with b = 4.12. The results obtained using line
element transverse isotropy are shown on the left and those from area element transverse isotropy are shown on the
right. The deformation of the cutout on planes along the fibre direction and orthogonal to the fibre direction are
highlighted at the bottom of the figure for both line and area element transverse isotropy. Deformation along the
direction of the fibre is resisted in the material for line element transverse isotropy, resulting in a elongated cutout.
For area element transverse isotropy, the resistance is orthogonal to the fibre direction, resulting in a rounded cutout
on the orthogonal plane. The convergence of the Newton–Raphson scheme employed to solve the discrete form of the
nonlinear governing equations is quadratic as indicated in Table 1.
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Figure 13: Comparison between one-neighbour and two-neighbour anisotropy. The block with cutout is expanded uniformly. Fibres are aligned
diagonally through block. Plane (b) is orthogonal to the direction of the fibres, and Plane (a) is one of the orthogonal planes to Plane (b), as shown.

Increment (deformation)
2 (20%) 4 (40%) 6 (60%) 8 (80%) 10 (100%)

One-neighbour transverse isotropy
1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00
4.19e-02 4.15e-02 3.35e-02 2.68e-02 2.16e-02
3.68e-03 2.05e-03 1.38e-03 7.20e-04 3.52e-04
2.56e-06 6.92e-07 2.92e-07 6.23e-08 1.10e-08
2.58e-11 1.11e-12 1.71e-13 8.83e-14 1.01e-13
4.62e-14 6.37e-14
Two-neighbour transverse isotropy
1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00
5.38E-02 5.75E-02 6.10E-02 6.38E-02 6.16E-02
2.58E-04 1.40E-04 1.15E-04 1.36E-04 1.32E-04
1.13E-08 2.63E-09 1.57E-09 1.19E-09 1.43E-09
4.46E-14 6.78E-14 7.04E-14 7.22E-14 8.24E-14

Table 1: L2-norm of the residual for one neighbour interactions and two-neighbour interactions respectively, showing the quadratic convergence of
the Newton–Raphson solver.
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6.4. Relation to classical linear elasticity

One-neighbour interactions are an example of central interactions, with research on this topic dating back to the
work by Cauchy in his fundamental account on elasticity. Central interactions result in well-known constraints on the
material parameters in the continuum modelling of elasticity. For geometrically linear elasticity in CCM these result in
the so-called Cauchy relations allowing for the exchange of the two middle indices of the fourth-order elasticity tensor
Ci jkl = Cik jl. As a consequence, for central interactions the number of independent material parameters in the elasticity
tensor reduces from 21 to 15 for general anisotropy, from 5 to 3 for transverse isotropy, and from 2 to 1 for isotropy
(Itin, 2024; Trageser and Seleson, 2020). It has been shown that for affine and linearized deformations in the case
of isotropic peridynamics when only one-neighbour interactions are considered, a linear elasticity correspondence
model, (i.e., CCM) with the constraint of equal Lamé constants, µ = λ, and thus a Poisson ratio of 1/4 results (Ekiz
et al., 2022a,b). Taking multi-neighbour interactions into account allows for the spanning of the entire allowable range
of Poisson ratios (−1, 1/2) for the linear elasticity correspondence model of isotropic CPD.
In the following section the independent material parameters of both one-neighbour and multi-neighbour interactions
for transverse isotropy will be explored.

6.4.1. Solely line element interactions

For CPD, we can obtain the point-wise energy density for line element interactions from Eq. (52) by integrating
over the horizon as

ψ1,ani =
C1,ani

2

∫
H0

ρ (α
|

⊕)Ξ
|

[ε
|

]2 dV
|

, (63)

where ε
|

:= λ
|

− 1 denotes the strain of a line element. Note that CPD is a formulation directly formulated for
large-deformations, thus to compare the independent material parameters to those from linear transverse isotropy,
ψ1,ani should be evaluated at small deformations, and henceforth denoted as ψε1,ani. Thus, we first linearize the strain
measure of the energy density, via the generic linearization operator defined by

L {•} = {•}
∣∣∣
F=I +

∂

∂F
({•})

∣∣∣
F=I :

[
F − I

]
. (64)

After some mathematical steps that we omit here for the sake of brevity we arrive at

L ε
|

= I
|

: ε with I
|

:= E
|

⊗ E
|

and ε =
[
F − I

]sym
, (65)

where ε is the familiar small strain tensor, also known as the Cauchy strain tensor. Equipped with the linearized strain
measure of CPD, we can now write the point-wise quadratic strain energy density in terms of ε and the fourth order
elasticity tensor associated with line elements E1,ani as

ψε1,ani =
1
2
ε : E1,ani : ε with E1,ani = C1,aniC1,ani, (66)

with the normalised elasticity tensor associated with line elements C1,ani given by:

C1,ani =

∫
H0

ρ (α
|

⊕)Ξ
|

I
|

dV
|

where I
|

= E
|

⊗ E
|

⊗ E
|

⊗ E
|

. (67)
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Restricting attention to a spherical horizon and conveniently specifying A = E3, the unit vectors can be expressed
in spherical coordinates as E| =̂

[
sin ϕ

|

cos θ
|

, sin ϕ
|

sin θ
|

, cos ϕ
|
]

and the density function by ρ = ρ (|cos ϕ
|

|). After
splitting the integral and integrating with respect to Ξ

|

,C1,ani can be written in terms of the double normalised elasticity
tensor B1,ani:

C1,ani ≈ δ
4
0B1,ani with B1,ani =

∫ θ
|
=2π

θ
|
=0

∫ ϕ
|
=π

ϕ
|
=0

I
|

ρ (|cos ϕ
|

|) sin ϕ
|

dϕ
|

dθ
|

. (68)

After integrationB1,ani can be expressed in terms of two isotropy parameters, a1
|

and a2
|

and three transverse isotropy
parameters a3

|

− a5
|

in the form:

B1,ani
.
= a1

|

[I ⊗ I] + a2
|
[
I⊗ I + I⊗ I

]
+ a3

|

[A⊗ A ⊗ A⊗ A]

+ a4
|
[
I⊗ [A ⊗ A] + I⊗ [A ⊗ A] + [A ⊗ A] ⊗ I + [A ⊗ A] ⊗ I

]
+ a5

|

[I ⊗ [A ⊗ A] + [A ⊗ A] ⊗ I] .
(69)

By comparing the coefficients ofB1,ani in terms of a1
|

−a5
|

with entries obtained from tediously evaluating the integral
in Eq. (68) we obtain the following system of linear equations:

1 2 1 4 2
1 0 0 0 0
1 0 0 0 1
0 1 0 0 0
0 1 0 1 0





a1
|

a2
|

a3
|

a4
|

a5
|


.
=



c2
|

c1
|

c3
|

c1
|

c3
|


⇒



a1
|

a2
|

a3
|

a4
|

a5
|


=



c1
|

c1
|

3c1
|

+ c2
|

− 6c3
|

−c1
|

+ c3
|

−c1
|

+ c3
|


. (70)

Thus, the transverse isotropic fourth-order tensor can be written in terms of new coefficients c1
|

, c2
|

, c3
|

:

B1,ani
.
= c1

|
[
I ⊗ I + I⊗ I + I⊗ I

]
+

[
3c1

|

+ c2
|

− 6c3
|
]

[A⊗ A ⊗ A⊗ A]

+
[
c3
|

− c1
|
] [

I⊗ [A ⊗ A] + I⊗ [A ⊗ A] + [A ⊗ A] ⊗ I + [A ⊗ A] ⊗ I + I ⊗ [A ⊗ A] + [A ⊗ A] ⊗ I
]
.

(71)

Note that for line element interactions only, just one of the two isotropy parameters is independent and only two of
the three transverse isotropy parameters are independent. Note that furthermore, the transverse isotropy parameters
a3
|

to a5
|

vanish identically for isotropy. Taken together, the Cauchy relations of CCM are retained.

6.4.2. Line and area element interactions

The point-wise energy density associated with area element interactions can be obtained from Eq. (62) by twice
integrating over the horizon as

ψ2,ani =
C2,ani

2

∫
H0

∫
H0

ρ (α|/ ||⊕ )Ξ |/ || [ε|/ ||]2 dV
||

dV
|

, (72)

where ε|/ || := λ|/ || − 1 denotes the strain of an area element. The strain measure of the energy density can be linearized,
via the generic linearization operator defined in Eq. (64) to arrive , after some mathematical steps, at

L ε|/ || =
[
I − E|/ || ⊗ E|/ ||

]
: ε again with ε =

[
F − I

]sym
. (73)
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Equipped with the linearized strain measure of (73), we can now write the point-wise strain energy density in terms
of ε and the elasticity tensor associated with area elements E2,ani :

ψε2,ani =
1
2
ε : E2,ani : ε with E2,ani = C2,aniC2,ani, (74)

with the normalised elasticity tensor associated with area elements C2,ani given by:

C2,ani =

∫
H0

∫
H0

ρ (α|/ ||⊕ )Ξ |/ || I|/ ||dV
||

dV
|

, where I
|/ || : =

[
I − E|/ || ⊗ E|/ ||

]
⊗

[
I − E|/ || ⊗ E|/ ||

]
. (75)

We again restrict our attention to a spherical horizon of radius δ0. Let Ξ
|

= Ξ
|E| and Ξ

||

= Ξ
||E|| visit every point

within and on a δ0-sphere independently, then their vector product Ξ |/ || := Ξ
|

× Ξ
||

= Ξ |/ ||E|/ || visits every point within
and on a δ2

0-sphere µ(Ξ |/ ||) times. Therefore, Ξ |/ || can be expressed as

Ξ |/ ||=̂Ξ |/ ||
[
sin ϕ|/ || cos θ|/ ||, sin ϕ|/ || sin θ|/ ||, cos ϕ|/ ||

]
, (76)

and the integral in Eq. (75) can be equivalently expressed by integrating over the ball with Ξ |/ || ∈
[
0, δ2

0

]
(taking

µ(Ξ |/ ||) into account), ϕ|/ || ∈ [0, π] and θ|/ || ∈ [0, 2π]. By specifying A = E3, the unit vectors can be expressed in
spherical coordinates by E|/ ||=̂

[
sin ϕ|/ || cos θ|/ ||, sin ϕ|/ || sin θ|/ ||, cos ϕ|/ ||

]
and the density function by ρ = ρ (|cos ϕ|/ |||).

After splitting the integral and integrating with respect to Ξ |/ ||,C2,ani can be written in terms of the double normalised
elasticity tensor B2,ani as

C2,ani ≈ δ
8
0B2,ani with B2,ani =

∫ θ|/ ||=2π

θ|/ ||=0

∫ ϕ|/ ||=π

ϕ|/ ||=0
I
|/ ||ρ (|cos ϕ|/ |||) sin ϕ|/ || dϕ|/ || dθ|/ || . (77)

After integration B2,ani can be written in the same general form as B1,ani (in terms of two isotropy parameters and
three transverse isotropy parameters) as

B2,ani
.
= a1

|/ || [I ⊗ I] + a2
|/ ||

[
I⊗ I + I⊗ I

]
+ a3

|/ || [A⊗ A ⊗ A⊗ A]

+ a4
|/ ||

[
I⊗ [A ⊗ A] + I⊗ [A ⊗ A] + [A ⊗ A] ⊗ I + [A ⊗ A] ⊗ I

]
+ a5

|/ || [I ⊗ [A ⊗ A] + [A ⊗ A] ⊗ I] .
(78)

By comparing the coefficients of B2,ani in terms of a1
|/ || − a5

|/ || with entries obtained from meticulously evaluating the
integral in Eq. (77) we obtain

1 2 1 4 2
1 0 0 0 0
1 0 0 0 1
0 1 0 0 0
0 1 0 1 0





a1
|/ ||

a2
|/ ||

a3
|/ ||

a4
|/ ||

a5
|/ ||


.
=



c2
|/ || + d1

|/ || − 2d3
|/ ||

c1
|/ || + d1

|/ || − 2d2
|/ ||

c3
|/ || + d1

|/ || − d3
|/ || − d2

|/ ||

c1
|/ ||

c3
|/ ||


⇒



a1
|/ ||

a2
|/ ||

a3
|/ ||

a4
|/ ||

a5
|/ ||


=



c1
|/ || + d1

|/ || − 2d2
|/ ||

c1
|/ ||

3c1
|/ || + c2

|/ || − 6c3
|/ ||

−c1
|/ || + c3

|/ ||

−c1
|/ || + c3

|/ || + d2
|/ || − d3

|/ ||


. (79)
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Thus, the transverse isotropic fourth-order tensor B2,ani can be written in terms of coefficients c1
|/ ||, c2

|/ ||, c3
|/ || and

d1
|/ ||, d2

|/ ||, d3
|/ || as

B2,ani
.
=

[
c1
|/ || + d1

|/ || − d2
|/ ||
]

[I ⊗ I] + c1
|/ ||

[
I⊗ I + I⊗ I

]
+

[
3c1
|/ || + c2

|/ || − 6c3
|/ ||
]

[A⊗ A ⊗ A⊗ A]

+
[
c3
|/ || − c1

|/ ||
] [

I⊗ [A ⊗ A] + I⊗ [A ⊗ A] + [A ⊗ A] ⊗ I + [A ⊗ A] ⊗ I
]

+
[
c3
|/ || − c1

|/ || + d2
|/ || − d3

|/ ||
]

[I ⊗ [A ⊗ A] + [A ⊗ A] ⊗ I] .

(80)

Consequently, for area element interactions there are two independent parameters associated with isotropy and three
independent parameters associated with transverse isotropy, on the condition that d2

|/ || , d3
|/ ||. Thus five independent

material parameters are present when area element interactions are used in addition to line element interactions.
Furthermore, the transverse isotropy parameters a3

|/ || to a5
|/ || vanish for isotropy (since then also d2

|/ || = d3
|/ || holds)

and two independent isotropy parameters remain. Taken together, the modelling capacities of linear CCM, both for
isotropy and transverse isotropy, are fully retained by our approach to CPD.

7. Conclusion

A framework for incorporating transverse isotropy into CPD has been presented. This significant extension has
been developed in the spirit of rational mechanics. Spatial objectivity has been ensured by parameterising the energy
densities in terms of the invariants of a Cauchy–Green type secant deformation tensor and a structural tensor defining
the preferred anisotropy. The anisotropic response can be associated with either line or area elements, with the
former providing modified stiffness in the fibre direction and the latter in the direction orthogonal to the fibre. The
governing equations of equilibrium have been derived from the stationarity of the energy functional. The balance
of angular momentum has also been satisfied. A series of numerical examples that elucidate the proposed theory
have been presented. The ability of our model to account for all five independent constants (two associated with
isotropy and three associated with transverse isotropy) characterising transverse isotropy in the linearised case when
multi-neighbour interactions are used has been demonstrated. For the case of isotropy the three transverse isotropy
constants vanish, while the two independent isotropy parameters remain. For central interactions, only one of the
two isotropy constants is independent and only two of the three transverse isotropy constants are independent (i.e,,
the Cauchy relations from CCM are retained). Taken together, it has been shown that the modelling capabilities and
structure of linear CCM, both for isotropy and transverse isotropy, are fully retained in our approach to CPD.

Future work will investigate alternative forms for the energy density to capture biological tissues and other
anisotropic materials undergoing finite deformations. Of particular importance is a more in depth analysis, in the
spirit of Ekiz et al. (2022a,b), to investigate the relationship between the material constants that characterise the CPD
model and the familiar elastic constants from linearised CCM. The extension of the framework to consider visco- and
inelastic materials will also be pursued.
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