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Abstract—Large optical reconfigurable intelligent surfaces
(ORISs) are proposed for employment on building rooftops to fa-
cilitate free-space quantum key distribution (QKD) between high-
altitude platforms (HAPs) and low-altitude platforms (LAPs).
Due to practical constraints, the communication terminals can
only be positioned beneath the LAPs, preventing direct upward
links to HAPs. By deploying ORISs on rooftops to reflect the
beam arriving from HAPs towards LAPs from below, reliable
HAP-to-LAP links can be established. To accurately charac-
terize the optical beam propagation, we develop an analytical
channel model based on extended Huygens-Fresnel principles
for representing both the atmospheric turbulence effects and the
hovering fluctuations of LAPs. This model facilitates adaptive
ORIS beam-width control through linear, quadratic, and focusing
phase shifts, which are capable of effectively mitigating the
detrimental effects of beam broadening and pointing errors (PE).
Consequently, the information-theoretic bound of the secret key
rate and the security performance of a decoy-state QKD protocol
are analyzed. Our findings demonstrate that quadratic phase
shifts enhance the SKR at high HAP-ORIS zenith angles or
mild PE conditions by narrowing the beam to optimal sizes. By
contrast, linear phase shifts are advantageous at low HAP-ORIS
zenith angles or moderate-to-high PE by diverging the beam to
mitigate LAP fluctuations.

Index Terms—Free-space optics (FSO), quantum key distribu-
tion (QKD), reconfigurable intelligent surface (RIS), high-altitude
platforms (HAPs), low-altitude platforms (LAPs).

I. INTRODUCTION

IN parallel to the evolution of cellular systems from the fifth
generation (5G) towards the sixth generation (6G), quantum

information technology has also experienced rapid growth,
particularly in quantum communications. The unconditional
security offered by quantum key distribution (QKD) protocols
is expected to substantially enhance the communication in-
frastructure of 6G networks [1]. QKD utilizes quantum states
to distribute cryptographic keys between legitimate parties,
ensuring that any eavesdropping attempt perturbs the quantum
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states according to the physical laws of quantum mechanics,
thereby revealing the eavesdropper’s presence. QKD proto-
cols are typically categorized as of discrete-variable (DV)
and continuous-variable (CV) nature. More specifically, DV-
QKD utilizes individual photons for encoding key informa-
tion, relying on properties like polarizations and requiring
single-photon sources as well as detectors [1]. By contrast,
CV-QKD maps the key to the quadrature components of
Gaussian quantum states, necessitating coherent sources and
homodyne/heterodyne detectors [2], [3].

QKD systems have the capability of operating over both
optical fiber and free-space optical (FSO) links, but FSO is
capable of over-bridging thousands of kilometers from space
to ground, eliminating the need for cable installations and
relaying [4]. Briefly, fiber-based QKD faces more substan-
tial pathloss in optical fibers than its FSO-based counter-
part communicating over atmospheric channels [5]. Recent
developments mark a significant shift in quantum network
architecture, moving from terrestrial infrastructures to seam-
less integration with non-terrestrial platforms like unmanned
aerial vehicles (UAVs) and satellites, forming essential parts
of the Quantum Internet in the Sky [6]. This paradigm shift
aligns synergistically with the consideration of non-terrestrial
networks (NTNs) in 6G, encompassing low-altitude platforms
(LAPs), high-altitude platforms (HAPs), and low-Earth orbit
(LEO) satellites [7]. With the emergence of new connectiv-
ity paradigms between LAPs and HAPs [7], safeguarding
these communication links with the aid of QKD has become
imperative. These links serve as critical intermediaries be-
tween terrestrial QKD systems and satellite-based quantum
nodes, while extending secure coverage to remote regions
with underdeveloped terrestrial infrastructure. Shorter HAP-
LAP distances further reduce the link latency compared to
satellites, while improving network resilience through redun-
dant connections between HAPs and LAPs to guard against
outages. While significant milestones have been reached in
establishing quantum links from LEO satellites to the ground
[8], research into establishing similar quantum links on other
platforms, such as HAPs and LAPs, is in its infancy.

HAPs, relying either on fixed-wing or balloon-based aerial
platforms operating at altitudes ranging from 19 km to 22
km in the stratosphere, have been designed for extended
quasi-stationary flight (e.g., several months), powered by so-
lar energy. HAPs can significantly expand the coverage of
quantum networks, especially in challenging terrains [7]. On
the other hand, LAPs rely on battery-powered UAVs, such
as rotary-wing drones, which operate at altitudes ranging
from tens of meters to a few hundred meters, depending on
national flight regulations. These platforms offer a flexible
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and agile infrastructure for quantum communications, making
them ideal for rapid deployment in disaster zones and complex
urban propagation environments. Recent progress has seen
the theoretical exploration of HAPs-to-ground QKD links [9],
and the experimental success of both drone-to-ground as well
as of drone-to-drone QKD systems [10], [11]. However, the
theoretical and experimental performance of HAPs-to-drone
QKD links is unknown at the time of writing, leaving a
connection gap in the global quantum NTNs.

While it would be desirable to install a communication
terminal on top of a drone to establish a direct line-of-sight
(LoS) link with HAPs, this is impractical. Explicitly, industrial
drones are engineered to carry their payloads underneath using
gimbals, which is convenient for optimizing communications
with other terminals at similar altitudes or on the ground
[10], [11]. The upper part of a drone houses critical com-
ponents such as batteries, global positioning system (GPS)
antennas, and the mechanical frame supporting the drone arms.
Mounting equipment on top can interfere with the GPS signal
and it is subject to significant vibrations and turbulence from
the propellers. Additionally, placing high weight at the top
may increase the risk of tipping over, especially in strong
winds. By contrast, mounting equipment underneath the drone
has the advantage of mitigating vibrations and allows LoS
communications with the terminal on the ground. To create
reliable QKD links with HAPs, innovative communication
methods must be developed that allow the QKD terminal to
be installed underneath the drone.

A. Related Studies

When the direct LoS links between a pair of optical
transceivers are blocked or there are hardware alignment
difficulties, optical reconfigurable intelligent surfaces (ORISs)
[12], [13] have been proposed for both classical [14]–[29] and
quantum [30], [31] FSO scenarios. Compared to dedicated
optical relay nodes, an ORIS offers a cost-effective alternative
by using passive elements for controlling the phase of incident
beams, hence enabling adaptive beam control and anomalous
reflection in specific desired directions at low power consump-
tion [32]. Thanks to its flat surface and compact electronics,
an ORIS can be conveniently mounted on building walls or
rooftops, typically relying on mirror-array and metasurface
types [12], [13]. Briefly, a mirror-array-based ORIS uses
small mirrors on micro-electro-mechanical systems to control
orientation, while a metasurface-based ORIS utilizes materials
having optically modulated properties, like liquid crystals
(LC), to produce phase shifts by modulating the molecular
alignments.

To elaborate, previous studies typically design ORIS phase-
shift profiles and model the optical beam propagation using
geometric optics relying on far-field approximations [14]–
[26]. However, far-field approximations are only valid over
distances of dozens of kilometers, which may not be suit-
able for practical ranges of intermediate-field FSO links.
Fortunately, the Huygens-Fresnel (HF) principles have been
exploited before for modeling ORIS-assisted FSO channels,
which are valid for both intermediate and far fields, spanning

distances from dozens of meters to dozens of kilometers [27].
Based on the classic HF principles, both linear phase shift
(LPS) and quadratic phase shift (QPS) profiles across the ORIS
were considered, where the LPS profile enables anomalous
reflection of the beam according to the generalized Snell’s
law of reflection, while the QPS profile reduces beam diver-
gence along the propagation path [27]. In designing the QPS
profile, specific attention was dedicated both to pointing errors
(PEs) arising from random misalignments at the transceivers
and ORIS, as well as to beam non-orthogonality [28]. Most
recently, a tractable power scaling law based on HF principles
has been developed for LPS, QPS, and focusing phase shift
(FPS) profiles, offering practical insights into the dependence
of received power on the ORIS, on the receiving lens, and on
beam widths [29].

The concept of employing ORISs for enhancing non-LoS
free-space terrestrial QKD systems was initially introduced
in [30]. However, this proposal did not account either for
the Gaussian power distribution of the optical beam or for
the HF principles. In a recent development, the QPS profile,
explicitly considering both the HF principles and the Gaussian
power distribution of the optical beam, was investigated in
free-space QKD non-LoS terrestrial links [31]. Nevertheless,
previous seminal studies have overlooked that both the geo-
metric optics and the HF principles only characterize optical
beam propagation in free space, i.e., in vacuum [27]–[29], [31],
but ignore the effects of atmospheric turbulence-induced beam
broadening. Furthermore, while random misalignment-induced
PEs were explored in [28] based on the HF principles for
classical ORIS-aided FSO systems, the corresponding analysis
of its QKD counterpart is unavailable in the literature.

B. Key Contributions

In this paper, we propose, for the first time, the utilization
of an ORIS for supporting QKD links between HAPs and
LAPs. Specifically, an ORIS is strategically positioned on a
building rooftop to reflect the signal impinging from HAPs
towards LAPs from below. This configuration allows the
communication terminal to be installed underneath the LAP.
The rooftop positioning is more practical than wall mounting,
as it provides unobstructed views and ample space1. The LAP
is typically an industrial rotary-wing drone capable of carrying
substantial payloads [10], [11]. Additionally, ORIS enables
adaptive beam-width control through adaptive phase-shift pro-
files, including LPS, QPS, and FPS. Tables I and II boldly
contrast our work against the current state-of-the-art ORIS-
aided FSO systems in classical and quantum communication
scenarios, respectively. Our contributions in this paper can be
summarized in more depth as follows.

• To accurately characterize optical beam propagation over
atmospheric channels, we employ the extended HF (EHF)
principles [33]–[35] to model the effects of atmospheric

1Recent studies [23]–[25] reported on the deployment of ORIS on LAPs.
However, this approach faces significant challenges. The limited space on
the LAP confines ORISs to a size much smaller than the incoming beam,
inevitably causing severe geometrical loss. Additionally, the substantial PEs
imposed by the LAP’s hovering fluctuations may result in high pathloss and
frequent outages at the receiving end.
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TABLE I
COMPARISON BETWEEN THIS WORK AND THE STATE-OF-THE-ART ORIS-AIDED CLASSICAL FSO SYSTEMS.

Ref.

ORIS Design Principles Beam Power
Distribution

Pointing Errors
in 2 Orthogonal Axes Non-

Terrestrial
Platforms

Geometric optics
(Far-field distances,
vacuum channels)

HF principles
(Intermediate & far-field distances,

vacuum channels)

Extended HF (EHF) principles
(Intermediate & far-field distances,

atmospheric channels)
Uniform Gaussian Uniform i.i.d.

Gaussian
i.n.i.d.

Gaussian

[14], [15]
√ √ √

[16]
√ √

[17]–[22]
√ √ √

[23]–[25]
√ √ √ √

[26]
√ √ √

[27]
√ √

[28]
√ √ √

[29]
√ √

This work
√ √ √ √ √

TABLE II
COMPARISON BETWEEN THIS WORK AND THE STATE-OF-THE-ART ORIS-AIDED QUANTUM FSO SYSTEMS.

Ref.
ORIS Design Principles Beam Power

Distribution Pointing
Errors

Non-
Terrestrial
Platforms

Finite-key effectsHF Principles EHF Principles Uniform GaussianLPS QPS FPS LPS QPS FPS
[30]

√

[31]
√ √

This work
√ √ √ √ √ √ √

turbulence-induced beam broadening and various phase-
shift profiles on the received beam-width at the LAP.
As an extension of the classic HF principles, the EHF
principles are applicable to both intermediate-field and
far-field distances, covering all practical FSO link ranges.
Furthermore, the proposed EHF model accurately char-
acterizes the Gaussian power intensity profile of the FSO
beam incident upon the ORIS, which is fundamentally
different from the uniform profile of radio-frequency RIS
systems. This distinction is crucial for ORIS designs since
both classical and quantum FSO systems use a coherent
laser source having a Gaussian profile [27], [31].

• The hovering fluctuations of LAPS, caused by GPS
inaccuracies or strong winds, lead to significant PEs
in the ORIS-to-LAP link. Our analytical framework in-
corporates these fluctuations in two orthogonal axes by
modeling them as two independent but not identically
distributed (i.n.i.d.) Gaussian random variables (RVs)2.
We derive a closed-form expression for the statistical
geometric and misalignment loss (GML), which is cor-
roborated by Monte-Carlo (MC) simulations. Remark-
ably, previous studies typically assume simplified PE
scenarios associated with independent and identically
distributed (i.i.d.) Gaussian RVs in two orthogonal axes
[14], [15], [17]–[26], or tractable uniformly distributed
fluctuations [28]. Our model, therefore, provides a more
generalized approach for analyzing the PE of ORIS-aided
FSO systems.

• Leveraging the newly developed framework based on
EHF principles and generalized PEs, we formulate the
ultimate information-theoretic bound of the secret key
rate (SKR) in an HAP-ORIS-LAP QKD system. We ex-
amine the average Pirandola-Laurenza-Ottaviani-Banchi

2This fact was validated by actual drone-based FSO experiments in [36].

(PLOB) bound, representing the theoretical upper limit
for the SKR of any QKD protocols, including both DV
and CV systems. In contrast to previous studies that use
a single atmospheric model for all transmission paths
[27], [29], [31], we consider independent atmospheric
turbulence statistics for the HAP-ORIS and ORIS-LAP
paths, giving cognizance to their distinct distances and
atmospheric profiles. Notably, the total probability dis-
tribution of the channel transmittance is newly derived,
incorporating random effects from both atmospheric tur-
bulence and generalized PE. Under these conditions, we
extensively investigate all phase-shift profiles, including
the LPS, QPS, and FPS, to optimize the received beam-
width at the LAP, leading to improved SKR under vari-
ous operational conditions. Thus, we provide a valuable
framework for the engineering design of HAP-to-LAP
QKD links.

• To further highlight the potential application of the pro-
posed theoretical framework, we provide a comprehen-
sive analysis of the two-decoy-state DV-QKD protocol,
incorporating finite-key effects that account for statistical
uncertainties and reduced key rates due to the limited
number of exchanged quantum signals. This analysis is
particularly crucial for HAP-to-LAP links, where the
battery-powered LAP has a constrained operational du-
ration. In such scenarios, the absence of an arbitrarily
large number of received signals makes it essential to
address statistical uncertainties and carefully handle the
statistical bounds of parameter fluctuations. Leveraging
finite-key considerations, we present numerical results for
the quantum bit error rate (QBER) and the secret key
length achievable within the LAP’s operational time. To
the best of our knowledge, this treatise is the first one to
provide such results for HAP-to-LAP QKD scenarios.
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The remainder of this paper is organized as follows. Section
II introduces the system and channel models of an ORIS-aided
HAP-to-LAP QKD link, and examines the influence of ORIS
on quantum signals during operational control. In Section III,
we develop the analytical framework for modeling the end-to-
end GML based on the EHF principles, considering practical
ORIS phase-shift profiles and generalized PEs at the LAP.
In Section IV, a novel closed-form expression of the PLOB
bound is derived for the SKR metric, and a comprehensive
security analysis of the two-decoy-state DV-QKD protocol
incorporating finite-key effects is also presented. Detailed
numerical results and discussions are provided in Section V.
Finally, Section VI concludes the paper.

Notations: Vectors and matrices are represented by boldface
lowercase and uppercase letters, respectively; |·| denotes the
absolute value, and ∥x∥=

√
x21+x

2
2+· · ·+x2n is the norm

of a vector x = (x1, x2,· · ·, xn); j denotes the imaginary
unit and R{·} is the real part of a complex number; E[·]
denotes the statistical expectation; ⟨·⟩ represents the ensemble
average. x∼N (µx, σ

2
x) indicates that the RV x follows the

Gaussian distribution having statistical mean µx and variance
σ2
x; y∼LN (µy, σ

2
y) means that the RV y follows the log-

normal distribution with statistical mean µy and variance
σ2
y . Finally, erf(z)= 2√

π

∫ z

0
exp
(
−t2

)
dt is the Gaussian error

function, and erfc(z)=1− erf(z) denotes the complementary
error function.

II. SYSTEM AND CHANNEL MODELS

A. System Model

We investigate a quantum NTN downlink scenario, where a
HAP seeks to establish a QKD link with a LAP, specifically
with a rotary-wing drone. Due to practical constraints, the
QKD terminal is mounted underneath the drone, optimizing
communications with other terminals at similar or lower
altitudes [10], [11], but impeding signal reception from the
HAP. To overcome this limitation, a large ORIS is placed on
a building rooftop at a lower altitude than the drone, enabling
the reflection of the incoming signal from the HAP towards the
drone from below3, as depicted in Fig. 1a. The transmitter (Tx)
on the HAP is positioned at the origin of the xyz-coordinate
system at an altitude of hHAP, while the receiver (Rx) on the
drone at an altitude of hLAP is located at the origin of the
x′y′z′-coordinate system. The center of the ORIS, situated
at an altitude of hORIS, is positioned at the origin of the
xryrzr coordinate system, as illustrated in Fig. 1b, with the
horizontal distance from the ORIS center to the projection
of LAP on the xryr-plane denoted as dLAP. The xryr-plane is
parallel to the xz-plane and the zr-axis is parallel to the y-
axis. The Tx is equipped with a laser source that emits an
optical beam having a Gaussian power density profile. The

3This concept is also applicable to the uplink scenario, where a LAP,
i.e., a drone, transmits signals to a HAP by directing the beam towards an
ORIS, which then reflects the signals upwards. Deploying the ORIS on a
building rooftop offers ample space for a large ORIS installation, avoiding
the potential obstruction issues of a wall-mounted ORIS. The ORIS effectively
reduces geometrical losses by fully reflecting the broadened optical beam. In
this paper, we assume that the ORIS is large enough to capture the entire
optical beam, with its specific dimensions detailed in Section III-A.

HAP Altitude

~20 km

LAP

~300 m

ORIS

(a)

(b)

(c) (d)

GPS antenna

Gimbal carrying 

Communication 

Terminal

GPS 

antenna

Fig. 1. (a) Schematic model of the ORIS-aided HAP-to-LAP QKD link
with ORIS deployed on a building rooftop; (b) ORIS coordinates and beam
propagation angles; (c) LAP’s top view; (d) LAP’s side view.

beam axis transmitted from Tx intersects the xryr-plane of
the ORIS at a distance d1, and it is oriented in the direction
Ψi=(θi, ϕi), where θi represents the elevation angle between
the xryr-plane and the beam axis, while ϕi denotes the angle
between the projection of the beam axis onto the xryr-plane
and the xr-axis, as depicted in Fig. 1b. In addition, we define
φi = 90◦−θi as the zenith angle between the beam axis and
the zr-plane. The beam reflected from the ORIS towards the
drone at a distance d2 is directed towards Ψr=(θr, ϕr), where
θr is the angle between the xryr-plane and the reflected beam
axis. Furthermore, ϕr denotes the angle between the projection
of the reflected beam axis onto the xryr-plane and the xr-axis.
Similarly, we define φr=90◦−θr as the zenith angle between
the reflected beam axis and the zr-plane.

Similar to [27], [29], without loss of generality, we assume
ϕi = 0 and ϕr = π for analytical tractability4. Finally,
we assume that the Rx communication terminal cannot be
mounted on top of the drone due to the space limited by the
GPS antennas and owing to the significant vibrations from
the propellers (Fig. 1c). Consequently, in practice, it can only
be deployed on a 3-axis gimbal attached beneath the drone
(Fig. 1d). This practical issue has often been overlooked in
the literature. Recent advances in miniaturized optics and en-
gineering have led to the successful development of real-world
prototypes for compact communication terminals5, which can
be installed on various small platforms, such as nanosatellites,
HAPs, and drones [37]–[39]. This confirms that FSO systems
have become a reality for aerial platforms.

4The shapes of the beam incident upon the ORIS and the projection of
the beam reflected to the Rx aperture on the ORIS are both ellipses, rotated
by angles ϕi and ϕr, respectively. When ϕi =0 and ϕr =π, the axes of both
ellipses coincide, maximizing the received power [29]. Therefore, the results
presented in this paper serve as upper bounds for the general case.

5These advanced miniaturized optical terminals feature a fine-pointing
and tracking system based on the closed-loop operation of a position detector
and a fast-steering mirror. This system corrects angle-of-arrival fluctuations
caused by beam non-orthogonality and displacements at the Rx aperture,
ensuring stable and accurate free-space beam coupling into a small detector
or optical fiber [37]–[39].
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We consider an ORIS of size
∑

ORIS = Lx×Ly , where
Lx and Ly are the dimensions of the ORIS along the xr-
and yr-axes, respectively. This ORIS is of the metasurface
type, composed of LC molecules, which act as passive sub-
wavelength elements designed to manipulate the properties of
the incident beam. Given that typically we have Lx, Ly ≫λ,
where λ is the optical wavelength6, a metasurface-based ORIS
can be modeled as a continuous surface with continuous phase-
shift profiles [29], [31]. For the ORIS designs, we consider the
following phase-shift profiles.

• LPS profile: This profile facilitates the generalized
Snell’s law of reflection and redirection of the beam from
the Tx to the Rx by utilizing an ORIS phase-shift profile
that varies linearly along the xr- and yr-axes as follows
[27], [29].

ΦLP
ORIS(rr) = k (Φxxr +Φyyr +Φ0) , (1)

where k = 2π/λ denotes the wave number and rr =
(xr, yr, 0) represents a point in the xryr-plane, and Φ0

is constant. The optical beam emerging from Tx in the
direction Ψi is redirected to the Rx direction Ψr by
applying the phase shift gradients as

Φx = cos (θi) cos (ϕi) + cos (θr) cos (ϕr) , (2)
Φy = cos (θi) sin (ϕi) + cos (θr) sin (ϕr) . (3)

• QPS profile: This profile focuses the optical beam at a
distance f from the ORIS in the direction Ψr, reducing
the beam width of the reflected beam by applying a phase-
shift profile that changes quadratically along the xr- and
yr-axes as follows [27], [29].

ΦQP
ORIS(rr)=k

(
Φx2x2r +Φy2y2r +Φxxr+Φyyr+Φ0

)
, (4)

where the terms Φx2 and Φy2 are given by

Φx2 = − sin2 (θi)

2R (d1)
− sin2 (θr)

2d2
+

sin2 (θr)

4f
(5)

Φy2 = − 1

2R (d1)
− 1

2d2
+

1

4f
, (6)

where R (d1) is the radius of curvature at the distance
d1 along the HAP-ORIS path. The term 1

4f introduces
a parabolic phase profile that narrows the beam at a
focus distance f . Beyond this point, the beam becomes
divergent.

• FPS profile: This profile focuses the optical beam at the
Rx, functioning like an artificial lens to concentrate the
incident beam at a distance of d2 by utilizing the phase-
shift profile that eliminates the accumulated phase of the
incident beam as follows [27], [29].

ΦFP
ORIS = −ψin − k ∥r̃o − rr∥ , (7)

6In both classical and QKD systems, common optical wavelengths are 810
nm and 1550 nm [6], which are considered eye-safe under the IEC 60825-1
standard, classified as class 1M [40]. In the HAP-to-drone scenario depicted
in Fig. 1a, the entire incoming optical beam is contained within the ORIS
dimensions, which is then reflected skyward towards the drone. This setup
ensures complete safety, as it prevents human exposure to the concentrated
beam when QPS and FPS profiles are applied at the ORIS.

where ψin denotes the phase of the incident beam on the
ORIS and r̃o =(x̃o, ỹo, z̃o)=(−d2 cos (θr) , 0, d2 sin (θr))
is the center of the Rx aperture.

B. Channel Model

In linear quantum optics, the losses can be characterized by
the input-output relationship of [41]

âout =
√
τ âin +

√
1− τ ĉ, (8)

where âin and âout are the input and output field annihilation
operators, respectively. Furthermore, ĉ is the environmental
mode operator in the vacuum state, and τ is the channel trans-
mittance, characterizing the linear losses within the channel.
From (8), τ is confined to the range of [0, 1] for preserving the
canonical commutation relations for the quantized optical field
operators in the input-output relationship. In free-space QKD
systems, quantum signals are transmitted through atmospheric
channels. Consequently, τ characterizes the fluctuating loss,
which is treated as a random variable. The input-output rela-
tionship in (8) can be transformed into the Schrodinger picture
of motion to derive the corresponding density operators [42].
By employing the Glauber-Sudarshan P representation [43],
[44], the relationship between the quantum states transmitted
and received through atmospheric channels is described as [42]
Pout(α)=

∫
f(τ) 1τPin

(
α√
τ

)
dτ , where Pin(α) and Pout(α) are

the input and output P functions, respectively. Furthermore,
f(τ) denotes the probability distribution of transmittance
(PDT). It is recognized that characterizing quantum signals
received from atmospheric channels reduces to the accurate
modeling of the PDT. In this paper, the quantum atmospheric
channel transmittance τ is assumed to represent four degrada-
tion factors, formulated as

τ = τeffτORISτlIaτp, (9)

where τeff is the Rx efficiency, τORIS is the ORIS reflectance, τl
is the deterministic loss over the atmosphere, Ia is the random
intensity fluctuation due to atmospheric turbulence, and τp is
the GML affected by the ORIS phase-shift profiles and drone
hovering fluctuation-induced PE.

For elevation angle θi > 20◦, let τl,1 denote the atmospheric
loss in the HAP-ORIS slanted path, which is scaled as [45]

τl,1 = τ sec(φi)
zen , (10)

where τzen denotes the transmission efficiency at φi = 0◦,
which can be conveniently estimated by the popular MOD-
TRAN code [45], which is a widely used atmospheric trans-
mittance and radiance simulator. For the ORIS-drone path,
assuming d2 ≪ d1 and that the entire d2 path is subject
to similar atmospheric conditions, we can apply the Beer-
Lambert law for estimating the atmospheric loss as [40]

τl,2 = exp (−βld2) , (11)

where βl represents the atmospheric extinction coefficient.
With the help of (10) and (11), the atmospheric loss over the
HAP-ORIS-drone paths can be calculated as τl = τl,1τl,2.

In describing Ia, we consider independent atmospheric
turbulence-induced intensity fluctuations for the HAP-ORIS
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and ORIS-drone paths, denoted as Ia,1 and Ia,2, respectively.
As a result, we have Ia = Ia,1Ia,2. In the weak turbulence
regime, the log-normal PDT is adopted [33], given by

f(Ia,ι)=
1

Ia,ι

√
2πσ2

R,ι

exp

−
(
ln(Ia,ι)+

σ2
R,ι
2

)2
2σ2

R,ι

, ι∈{1, 2}, (12)

where σ2
R,ι denotes the Rytov variances for the HAP-ORIS

(i.e., ι = 1) and ORIS-drone (i.e., ι = 2) paths over the
atmosphere, generally expressed as [33]

σ2
R,ι=2.25k7/6sec11/6(φζ)

∫ hχ

hORIS

C2
n (h)(h−hORIS)

5/6dh, (13)

where ζ∈{i, r} and χ∈{HAP,LAP} correspond to ι∈{1, 2},
respectively. Furthermore, C2

n (h) denotes the refractive index
structure parameter, which is determined from the Hufnagel-
Valley model as [33]

C2
n (h)=0.00594

( v
27

)2(
10−5h

)10
exp

(
− h

1000

)
+ 2.7×10−16 exp

(
− h

1500

)
+A exp

(
− h

100

)
, (14)

where h is the altitude in meters (m) and A is the nomi-
nal value of C2

n (0) at the ground in units of m−2/3. Still
referring to (14), v (m/s) is the root-mean-squared (rms)
transverse wind speed at altitudes above 5 km, readily given

by v =
(

1
15000

∫ 20000

5000
[V (h)]

2 dh
)1/2

[33], where V (h)

is the altitude-dependent Greenwood wind profile [46], ap-
propriately modified to include hORIS as V (h) = vg +

30 exp
[
−
(
h−12448+hORIS

4800

)2]
[47], where vg (m/s) denotes the

ground wind speed. To quantify the turbulence strength, the
scintillation index, defined as the normalized variance of Ia,ι,
is widely used. For a downlink path spanning from the HAP to
ORIS, a general scintillation index, denoted as σ2

Ia,1
applicable

across all turbulence regimes, is given by [33]

σ2
Ia,1

=exp

 0.49σ2
R,1(

1+1.11σ
12/5
R,1

)7/6 + 0.51σ2
R,1(

1+0.69σ
12/5
R,1

)5/6
−1.

(15)

The scintillation index serves as a figure of merit indicating
the strength of turbulence. Specifically, σ2

Ia,1
< 1 indicates a

weak turbulence regime, while σ2
Ia,1

= 1 represents moderate
turbulence, and σ2

Ia,1
> 1 denotes strong turbulence conditions

[48]. The scintillation index is investigated in Fig. 2 for the
dominant HAP-ORIS path versus both the distance d1 and the
zenith angle φi. The HAP-ORIS distance d1 varies with the
zenith angle φi and can be calculated as [48]

d1 =

√
(RE + hHAP)

2
+ (RE + hORIS)

2
(cos2(φi)− 1)

− (RE + hORIS)cos(φi) , (16)

where RE denotes the Earth’s radius. In particular, we consider
daytime conditions along with A = 3×10−13 in (14) [33],
thereby ensuring that the scintillation index depicted in Fig.

Fig. 2. Scintillation index versus HAP-ORIS distance d1 and zenith angle φi.
λ=810 nm, A=3×10−13 m−2/3, vg =5 m/s, hORIS =50 m, hHAP =20
km, RE =6370 km.

2 represents the worst-case scenario for a quantum link. It
transpires that σ2

Ia,1
<1 for φi≤68◦, indicating that this range

falls within the weak turbulence regime, which is favorable for
quantum communications. However, for φi > 68◦, the HAP-
ORIS link enters the moderate-to-strong turbulence regime,
significantly deteriorating the quantum signals and posing
substantial challenges for link alignments due to the high
zenith angles. Consequently, we restrict the QKD operations to
the weak turbulence regime7, where φi≤68◦ and d1≤53 km,
ensuring the validity of the log-normal PDT, as experimentally
verified for quantum signals in [47].

Finally, the GML coefficient τp includes both the deter-
ministic geometrical loss, resulting from the truncation of the
receiver aperture capturing only a portion of the optical beam’s
power, and the random PE-induced loss caused by drone hov-
ering fluctuations. In ORIS-aided HAP-to-drone QKD links,
accurately characterizing the GML is crucial, which is influ-
enced by ORIS phase-shift profiles, atmospheric conditions,
and PE due to drone hovering fluctuations. This challenge,
unaddressed in the literature, is thoroughly investigated in
Section III using the EHF principles.

C. Effects of ORIS on QKD Systems

1) ORIS Reflectance: As mentioned in Section I-A, ORISs
are classified into mirror-array-based and LC-based types.
Mirror-array-based ORIS offers high contrast and fast re-
sponse. However, it is limited by narrow beam deflection and
low spatial resolution, making it less suitable for large-scale,
cost-effective applications [49]. In contrast, LC-based ORIS
manipulates LC molecule orientation via independent elec-
trodes, achieving high spatial resolution, wide beam deflection
field of view, and polarization-independent reflectance [50].
By leveraging established mass production techniques from
the display industry, LC-based ORIS is ideal for scalable

7We assume that d2 ≪ d1, which is logical given that the drone functions
as a dynamic quantum platform capable of relocating to a favorable position to
receive the reflected beam from ORIS. By maintaining d2 within a reasonably
short distance, such as less than 1 km, additional atmospheric attenuation
losses are negligible. As a result, the scintillation index of the ORIS-drone
path remains well below unity, staying within the weak turbulence regime.
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Fig. 3. ORIS-induced delay spread and LoS propagation delay versus HAP-
ORIS zenith angle. θr = 45◦, λ= 810 nm, hORIS = 50 m, hHAP = 20 km,
hLAP =300 m, RE =6370 km, c = 3×108 m/s.

designs and continuous tunability. Assuming an ultra-thin
LC metasurface with negligible inherent losses and a glass
substrate cover introducing a total attenuation of 10% for
incident and reflected beams [51], the reflectance parameter
for LC-based ORIS can be set to τORIS=0.9 in (9).

2) ORIS-Induced Delay Spread: For a large ORIS, various
elements reflect distinct portions of the incident beam, each
traveling slightly different distances to the receiver. This
variation can result in different delays across the reflected
beam, leading to ORIS-induced delay spreads [52]. The delay
spread is defined as the difference between the maximum and
minimum delay values across all ORIS elements. In high-data-
rate classical FSO links (e.g., 1–10 Gbps), the short symbol
durations (e.g., 0.1-1 ns) make the system susceptible to inter-
symbol interference caused by such delay spreads. However,
typical QKD systems, which operate at significantly lower
rates with longer symbol durations (e.g., 5–10 ns) [8], may be
unaffected by ORIS-induced delay spreads. The delay profile
of ORIS, denoted as td(rr), can be simplified to a linear model
as td(rr) = tLoS + tORIS [52], where

tLoS =
d1 + d2

c
, (17)

tORIS =−
tan−1

(
d1

zR1

)
kc

− xr[cos(ϕr)cos(θr)+cos(ϕi)cos(θi)]

c

− yr[sin(ϕi)cos(θi)+sin(ϕr)cos(θr)]

c
, (18)

where tLoS denotes the end-to-end LoS propagation delay,
tORIS is the delay induced by ORIS, c (m/s) is the light velocity,
zR1 =

πw2
0

λ is the Rayleigh range, which is determined by the
beam waist at Tx w0=λ(πθdiv)

−1 along with θdiv being the Tx
half-angle beam divergence. Consequently, the delay spread
can be written as ∆td(rr) = max (td(rr))−min (td(rr)). In
Fig. 3, ∆td(rr) and tLoS are investigated with respect to zenith
angle φi, considering the in-plane reflection, i.e., ϕi = 0 and
ϕr=π. It is confirmed that delay spreads increase with ORIS
size and the difference between θi and θr. For the ORIS with
Lx=Ly=1 m (as in Section III-A), the delay spreads remain
below 2.4 ns, insufficient to cause pulse dispersion in typical

Fig. 4. ORIS-induced phase delay that converts linear polarization into
elliptical polarization.

QKD systems. When θi=θr, the delay spread is negligible, as
all reflected components reach the receiver simultaneously.

3) ORIS-Induced Polarization Changes: The hovering na-
ture of UAVs presents significant challenges for aligning
the polarization in HAP-to-LAP QKD links [6], [53]. These
challenges are further exacerbated by ORIS, where varying
reflection angles can misalign transmitted and received polar-
izations. For linear polarization, such variations induce phase
delays between the orthogonal components, thereby transform-
ing the linear polarization into elliptical polarization [5]. Fig.
4 illustrates this phenomenon, where a 45◦-linearly polarized
light reflected by the ORIS is transformed into elliptical polar-
ization. This transformation is represented as a 30◦ shift in the
Stokes parameter S3 on the Poincaré sphere, resulting in the
elliptical electric field. Such polarization alterations contribute
to increased error rates in DV QKD systems due to inaccurate
polarization detection8. To mitigate this, a motorized half-
wave plate can be installed at the receiver to realign the
polarization based on calculations from UAV inertial data and
ORIS reflection angles [53]. A quarter-wave plate can then
restore elliptically polarized light to linear by eliminating the
phase differences. The error probability associated with the
efficiency of these corrections is quantified as the erroneous
detector probability, edet, included in Section IV-B.

4) ORIS-Based Tracking Control: The primary function of
ORIS is to steer the optical beam toward the receiver and adap-
tively control the beam size to compensate for LAP hovering
misalignments. ORIS is operated by a nearby ground base
station via a high-speed optical fiber backhaul link. The HAP
and LAP first align their gimbals toward the fixed coordinates
of ORIS and transmit their inertial data to the base station.
The base station calculates the incident and reflection angles
based on the received data and generates the required phase-
shift profile, which is sent to ORIS for implementation. The
angle of arrival on the LAP can be determined by analyzing
intensity differences detected by a quadrant detector with four
regions [37]–[39], then transmitted to the base station for

8This is irrelevant in CV QKD, since information is encoded in the
amplitude and phase quadratures of light, which are polarization-independent
properties of the electromagnetic field.
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real-time control updates. Assuming the base station is close
to ORIS and LAP, the propagation delays are negligible. To
maintain alignments, ORIS must respond faster than the angle-
of-arrival changes caused by LAP hovering, which typically
have a frequency response below 50 Hz (i.e., equivalent to a 20
ms repetition time) [36]. While recent advancements in ORIS
technology achieve sub-ms response time [54], practical values
may depend on various factors such as ORIS size and reflector
design. If ORIS response time is longer than 20 ms, e.g., due
to ORIS control or hardware impairments, the resultant PEs
can be quantified using the framework proposed in Section
III, since any random displacements in horizontal and vertical
axes may be modeled by i.n.i.d. Gaussian RVs [36].

III. STATISTICAL GML BASED ON EHF PRINCIPLES

A. Characterization of Optical Beams Using EHF Principles
The impact of ORIS on the incident optical beam can be

theoretically modeled using three different frameworks: (i)
electromagnetic optics, which relies on vector field descrip-
tions, (ii) wave optics, which uses scalar field descriptions, and
(iii) geometric optics. The studies in [27], [29] found that wave
optics provides accurate results for practical ORIS-aided FSO
systems9. Specifically, using scalar fields allows for explicit
modeling of arbitrary ORIS phase-shift profiles, ORIS size,
and Rx aperture size, which geometric optics fails to achieve.
Consequently, the HF principles, based on a scalar-field
analysis method, were applied to derive the beam reflected
by the ORIS [27]–[29]. However, previous studies [27]–[29]
overlooked that HF principles are only valid for optical beam
propagation in a vacuum medium [34]. Particularly, the HF
principles state that every point on a wavefront acts as a center
of secondary disturbances, producing spherical wavelets, with
the wavefront at a later instant becoming the envelope of these
wavelets. For a random medium, the EHF principles state that
the secondary wavefront is still determined by the envelope
of spherical wavelets accruing from the primary wavefront.
However, each wavelet is now influenced by the propagation
of a spherical wave through the random turbulent medium [34].
Therefore, the key improvement of EHF principles lies in the
characterization of turbulence-induced beam broadening and
the random component of the complex phase of a spherical
wave due to propagation in a turbulent medium [35].

Following [29] and applying the EHF principles [33]–[35],
the electric field of the Gaussian laser beam incident on the
ORIS can be expressed as

Ei(rr)=Ciexp

(
− x2r
w2

i,x(d1)
− y2r
w2

i,y(d1)
−jψi(rr)+Υ(rr, d1)

)
, (19)

with the phase ψi(rr) given by

ψi(rr)=k

(
d̂1+

x2r sin
2(θi)+y

2
r

2R(d1)

)
−tan−1

(
d1
zR1

)
, (20)

where we have Ci =
√

4ηPt|sin(θi)|
πw2(d1)

and η is the channel
impedance, Pt is the transmitted power, and w(d1) is the

9The ORIS channel model based on wave optics applies to both classical
and quantum systems, due to their shared use of coherent Gaussian laser
beams, despite the lower power levels in quantum systems [31].

beam waist at the distance d1. Here, d̂1 = d1 − xr cos(θi).
Furthermore, wi,x=

w(d1)
sin(θi)

and wi,x=w(d1) are the indcident
beam widths on the ORIS plane in the x- and y-direction,
respectively, while Υ(rr, d1) denotes the phase pertubation of
the field due to random inhomogeneities along the HAP-ORIS
path. Subsequently, the electric field of the beam reflected by
the ORIS and received at the Rx aperture of the drone can be
written as

Er(r
′)=Cr

∫∫
(xr,yr∈

∑
ORIS)

Ei(rr) exp(−jk ∥ro−rr∥)

×exp[−jΦORIS(rr)] exp(Υ(r′, d2))dxrdyr, (21)

where Cr =

√
sin(θr)

jλd2
, ro = (r′+c)Rrot with r′ = (x′, y′, z′)

being a point in the Rx aperture plane and c = (0, 0, d2).
Furthermore, we have a rotation matrix of

Rrot =

− sin(θr) 0 − cos(θr)
0 −1 0

− cos(θr) 0 sin(θr)

 , (22)

and Ei(rr) of (21) is given in (19), while Υ(r′, d2) denotes the
phase perturbation of the field due to random inhomogeneities
along the ORIS-drone path.

In characterizing wave propagation through atmospheric
turbulence, the statistical long-term-average moments of the
optical field are of great interest. Thus, the mean electric field
of Er(r

′) can be written with the help of (19) and (21) as

⟨Er(r
′)⟩=CrCi

∫∫
(xr,yr∈

∑
ORIS)

exp

(
− x2r
w2

i,x(d1)
− y2r
w2

i,y(d1)
−jψi(rr)

)
× exp(−jk ∥ro−rr∥) exp(−jΦORIS(rr))dxrdyr

× ⟨exp[Υ(rr, d1)]⟩ ⟨exp[Υ(r′, d2)]⟩ . (23)

To calculate the ensemble averages appearing in (23), we
invoke the relationship [33]

⟨exp(Υ)⟩=exp

[
⟨Υ⟩+1

2

(〈
Υ2
〉
−⟨Υ⟩2

)]
=exp[E1(0, 0)] , (24)

which leads to the relationship with the second-order statistical
moment of the optical field E1(0, 0) that is real and indepen-
dent of the observation point and the matrix elements between
the input and output planes [33]. As a result, ⟨exp[Υ(rr, d1)]⟩
and ⟨exp[Υ(r′, d2)]⟩ in (23) can be respectively formulated as
[33]

⟨exp[Υ(rr, d1)]⟩=exp

[
−2π2k2sec(φi)

∫ hHAP

hORIS

∫ ∞

0

κΦn(κ, h)

]
dκdh,

(25)

⟨exp[Υ(r′, d2)]⟩=exp

[
−2π2k2sec(φr)

∫ hLAP

hORIS

∫ ∞

0

κΦn(κ, h)

]
dκdh,

(26)

where Φn(κ, h) denotes the spectral density10 of the refractive
index fluctuations, with κ being the scalar magnitude of the
three-dimensional spatial wave number vector K, under the as-

10The general development is independent of the choice of spectrum
model, which can be selected from the Kolmogorov, Tatarskii, von Karman,
or exponential spectrums [33].
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sumption that the random medium is statistically homogeneous
and isotropic in each transversal plane [33]. It is observed that
the mean fields ⟨exp[Υ(rr, d1)]⟩ and ⟨exp[Υ(r′, d2)]⟩ in (25)
and (26), respectively, tend to zero for both visible and infrared
wavelengths due to the k2 term. Hence, phase perturbation
becomes negligible for our QKD links at λ=810 nm.

To this end, the effect of atmospheric turbulence reduces
to beam broadening in both the HAP-ORIS and ORIS-drone
links, which was not considered in previous studies [27]–
[29]. The beam broadening effect of the HAP-ORIS path can
be characterized by w(d1), which represents the long-term
beam waist at a distance d1 after propagating through the
atmosphere. For a collimated beam, w(d1) is given by [33]

w(d1)=w0

√
(1+Λ2

0) (1+T ), (27)

where we have Λ0=
2d1

kw2
0

, and T characterizes the turbulence-
induced beam broadening effect, expressed as [33]

T =4.35Λ5/6k7/6 (hHAP − hORIS)
5/6

sec11/6(φi)

×
∫ hHAP

hORIS

C2
n (h)

(
h− hORIS

hHAP − hORIS

)5/3
dh, (28)

where Λ = Λ0

1+Λ2
0

. Upon using the parameters provided in the
caption of Fig. 2 along with θdiv = 16.5 µrad for a collimated
beam [47], and substituting them into (27) and (28), we find
that the maximum beam widths incident on the ORIS are
wi,x = 36.81 cm and wi,y = 34.14 cm at φi = 68◦. This
results in an elliptical beam with major and minor diameters
of 73.62 cm and 68.28 cm, respectively. Given that the ORIS
is fixed on the building rooftop, the Tx is equipped with an
accurate pointing system [39], and the ORIS size exceeds
the beam footprint, the PE in the HAP-ORIS link thus can
be considered negligible. To ensure that the incident beam
footprint remains well within the large ORIS, the dimensions
of
∑

ORIS in this paper should be Lx=Ly=1 m. For the ORIS-
drone path, the turbulence-induced beam broadening effect
must be considered when calculating the beam widths at the
Rx aperture for different ORIS phase-shift profiles. This is
discussed in Section III-B.

B. GML With ORIS Phase-Shift Profiles and Drone Hovering
Fluctuations

The GML coefficient τp is defined as [29]

τp =
1

2ηPt

∫∫
ARx

|⟨Er(r
′)⟩|2 dARx, (29)

where ARx denotes the area of the Rx aperture and ⟨Er(r
′)⟩

is given in (23). Following the approach in [29], we derive
closed-form solutions for (29) to estimate τp, which depends
on different ORIS phase-shift profiles and ARx. Assuming that∑

ORIS ≫ Ain, where Ain = πwi,xwi,y represents the area of
the equivalent beam footprint incident on the ORIS, τp follows
the saturated power scaling regime [29], where all the power
of the incident beam on the ORIS is reflected towards the
drone. Thus, τp is independent of

∑
ORIS and characterized by

the GML governed by the Rx beam footprint, ARx, and the
average PE loss imposed by drone hovering fluctuations.

Lemma 1. Using the LPS profile in (1) and assuming that
the hovering fluctuations in positions of the drone in x′

and y′ axes, respectively denoted as x̃′ and ỹ′, are i.n.i.d.
Gaussian RVs, i.e., x̃′ ∼ N (µx̃′ , σ2

x̃′) and ỹ′ ∼ N (µỹ′ , σ2
ỹ′),

the statistical average GML coefficient τp can be approximated
by τLPS

p , as given in (30), where a denotes the radius of the

Rx aperture, while wLPS
rx,x′ =w(d1)

|sin(θr)|
|sin(θi)|

√
ε
(

sin2(θi)
sin2(θr)

Λ1

)2
+1

and wLPS
rx,y′ =w(d1)

√
εΛ2

1+1 are the equivalent beam widths
given by the LPS profile at the Rx aperture in the x′ and y′

axes, respectively. Finally, Λ1=
2d2

kw2(d1)
and ε = 1+ 2w2(d1)

ρ2
0

,

with ρ0=
(
1.45k2

∫ hLAP

hORIS
C2

n (h) dh
)−3/5

cos3/5(φr).

Proof. See Appendix A.

Remark 1. From Lemma 1, we observe that Λ1 quanti-
fies the increase in beam width along the ORIS-drone path
at a distance d2 solely caused by diffraction. In addition,
ε characterizes the beam broadening due to atmospheric
turbulence after reflection by the ORIS. In the absence of
atmospheric turbulence, i.e., in a vacuum, ρ0 → ∞ and
ε→ 1. Hence, under these conditions, the beam broadening is
governed purely by free-space diffraction, as described by Λ1.
Additionally, in the absence of drone hovering fluctuations,
i.e., µx̃′ → 0, σ2

ỹ′ → 0, (30) reduces to [29, (22)].

Lemma 2. Using the QPS profile in (4) and assuming
that the hovering fluctuations in positions of the drone
in x′ and y′ axes, respectively denoted as x̃′ and ỹ′,
are i.n.i.d. Gaussian RVs, i.e., x̃′ ∼ N (µx̃′ , σ2

x̃′) and
ỹ′ ∼ N (µỹ′ , σ2

ỹ′), the statistical average GML coefficient
τp can be approximated by τQPS

p , as given in (31), where

wQPS
rx,x′ = w(d1)

|sin(θr)|
|sin(θi)|

√
ε
(

sin2(θi)
sin2(θr)

Λ1

)2
+
(

d2

2f

)2
and wQPS

rx,y′ =

w(d1)

√
εΛ2

1+
(

d2

2f

)2
are the equivalent beam widths induced

by the QPS profile at the Rx aperture in the x′ and y′ axes,
respectively. Finally, a, ε, and ρ0 are defined in Lemma 1.

Proof. See Appendix B.

Remark 2. Lemma 2 reveals that increasing the focus distance
f results in a smaller beam footprint at the Rx aperture plane.
Consequently, by adaptively adjusting f , the beam width at
the receiver can be optimized for enhancing the performance
under varying PE severities caused by drone hovering fluctua-
tions. In the absence of atmospheric turbulence-induced beam
broadening and drone hovering fluctuations, (31) reduces to
[29, (24)]. Additionally, by comparing (31) and (30), we find
that setting f = d2/2 causes an ORIS with a QPS profile to
behave identically to one with a LPS profile.

Lemma 3. Using the FPS profile in (7) and assuming that
the hovering fluctuations in positions of the drone in x′

and y′ axes, respectively denoted as x̃′ and ỹ′, are i.n.i.d.
Gaussian RVs, i.e., x̃′∼N (µx̃′ , σ2

x̃′) and ỹ′∼N (µỹ′ , σ2
ỹ′), the

statistical average GML coefficient τp can be approximated by
τFPS

p , as given in (32), where wFPS
rx,x′=w(d1)

|sin(θi)|
|sin(θr)|

√
εΛ2

1 and
wFPS

rx,y′=w(d1)
√
εΛ2

1 are the equivalent beam widths induced
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by the FPS profile at the Rx aperture in the x′ and y′ axes,
respectively. Moreover, a, ε, and ρ0 are defined in Lemma 1.

Proof. See Appendix C.

Remark 3. Lemma 3 demonstrates that the beam footprint
at the receiver is significantly smaller than those described in
Lemmas 1 and 2. In the absence of atmospheric turbulence-
induced beam broadening and drone hovering fluctuations,
(32) simplifies to [29, (25)] and the beam footprint is on the
order of w0, which is much smaller than the Rx aperture radius
a, leading to τFPS

p ≈ 0 dB. Furthermore, by comparing (32)
and (31), we find that setting f =∞ in (31) makes an ORIS
with a QPS profile behave identically to one with a FPS profile.

IV. APPLICATIONS IN QKD SYSTEMS

A. Bounding the SKR of QKD Systems

Optical communications over free-space links inherently
experience channel impairments, which can be typically char-
acterized by the transmissivity coefficient τ defined in (9).
For a lossy channel having arbitrary transmissivity τ , the
PLOB bound establishes the ultimate information-theoretic
upper limit for the SKR of any DV/CV-QKD protocols [31],
[48], [57], given by

R≤− log2(1− τ)=− log2(1− τeffτORISτlIaτp) . (33)

Corollary 1. The instantaneous τp for the LPS and QPS can
be approximated as

τU
p ≈Ax′Ay′exp

(
− 2x̃′2

(wU
rx,x′(eq))

2

)
exp

(
− 2ỹ′2

(wU
rx,y′(eq))

2

)
, (34)

where Ax′ =erf

(
a
√
π√

2wU
rx,x′

)
,Ay′ =erf

(
a
√
π√

2wU
rx,y′

)
, U∈{LPS,QPS}.

Hence, the statistical average of τU
p can be written as〈

τU
p

〉
=

Ax′Ay′γx′γy′√
(1+γ2x′)(1+γ2y′)

×exp

− 2

wU
rx,x′(eq)w

U
rx,y′(eq)

 µ2
x̃′

1+ 1
γ2
x′

+
µ2
ỹ′

1+ 1
γ2
y′

, (35)

where wU
rx,x′(eq) = wU

rx,x′

√ √
πAx′

2νx′ exp(−ν2
x′ )

and wU
rx,y′(eq) =

wU
rx,y′

√ √
πAy′

2νy′ exp(−ν2
y′ )

are the equivalent beam widths in x′ and

y′ axes, respectively, with νx′ = a
√
π√

2wU
rx,x′

and νy′ = a
√
π√

2wU
rx,y′

.

Moreover, γx′ =
wU

rx,x′(eq)

2σx̃′
and γy′ =

wU
rx,y′(eq)

2σỹ′
.

Proof. See Appendix D.

Remark 4. From Corollary 1, the exact expressions of
〈
τLPS

p

〉
and

〈
τQPS

p

〉
in (30) and (31) can be approximated by (35). The

approximation is valid when wU
rx,x′ and wU

rx,y′ are larger than
the Rx aperture radius a, with wU

rx,x′ , wU
rx,y′ ≥ 6a achieving

negligible approximation errors [58]. Consequently, Corollary
1 only applies to LPS and QPS profiles. It is noted that the
derivation of (34) is useful for the formulation of Corollary 2.

The average PLOB bound of the SKR R over the HAP-
ORIS and ORIS-drone links can be expressed as

⟨R⟩≤
∫ 1

0

− log2(1−τ)f(τ)dτ, (36)

where f(τ) is the PDT of the transmissivity coefficient τ .

Corollary 2. A closed-form expression of the average PLOB
bound of the SKR in (36), considering that Ia and τp are
independent RVs in (33), is given by (37), where G is the
Gauss-Hermite polynomial order, wg and xg are the weight
factors and the abscissas of the Gauss-Hermite quadrature,
respectively [61, Table 25.10]. Amod = Ax′Ay′Ψ with Ψ =

exp
(

1
γ2

mod
− 1

2γ2
x′
− 1

2γ2
y′
− µ2

x̃′
2σ2

x̃′γ
2
x′
− µ2

ỹ′

2σ2
ỹ′γ

2
y′

)
. γmod=

√
wU

rx,x′(eq)
wU

rx,y′(eq)

2σmod

with σmod=
(

3µ2
x̃′σ

4
x̃′+3µ2

ỹ′σ
4
ỹ′+σ6

x̃′+σ6
ỹ′

2

)1/6
. Furthermore, σ2

R=

σ2
R,1+σ

2
R,2, where σ2

R,1 and σ2
R,2 are defined in (13).

Proof. See Appendix E.

B. Two-Decoy-State DV QKD With Finite-Key Effects

Based on the BB84 DV-QKD protocol [62], the decoy-state
method utilizes signal states for key transmission, and decoy
states for estimating the number of single-photon transmis-
sions [63]. In our setup, we employ a simple two-decoy-state
protocol, using vacuum and weak decoy states, which achieves

〈
τLPS

p

〉
=

1

4

erf
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+ a
√
π√
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1+
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)2

−erf
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)2
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2µỹ′

wLPS
rx,y′

+ a
√
π√

2wLPS
rx,y′√

1+
4σ2
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ỹ′(
wLPS

rx,y′
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〈
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〉
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1
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ỹ′(
wQPS

rx,y′

)2


. (31)
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a key generation rate comparable to protocols with an infinite
number of decoy states [64]. Specifically, the HAP uses a
phase-randomized coherent source, encoding bits in the X
or Z basis via polarization, as in the standard BB84 scheme.
Along with the signal field, vacuum and weak decoy states are
generated. Phase randomization ensures the source follows a
Poissonian photon-number distribution, where for an average
photon number µ, the probability of emitting an n-photon
pulse is exp(−µ)µn/n!. The mean photon numbers are de-
noted as µϱ, where ϱ={s,d,v} represents signal, weak-decoy,
and vacuum states, respectively, with conditions µd <µs < 1
and µv = 0. At the drone, measurements are performed in
randomly chosen X or Z basis. The yield Yi of an i-photon
state represents the conditional probability of a detection event
given that an i-input state is transmitted. The vacuum state
estimates the background detection probability Y0, while the
weak-decoy state estimates the single-photon yield Y1 and the
error rate e1 of the single-photon state. Finally, HAP and
the drone conduct key sifting, error correction, and privacy
amplification to generate a secure and shared key.

Conventionally, QKD metrics are statistically estimated
assuming an infinite number of key bits transmitted over the
channel [63]. However, the limited operating duration of the
drone restricts the transmission to a finite block of quantum
signals, introducing statistical uncertainties in the estimated
parameters, commonly referred to as finite-key effects11 [48],
[65]. Considering these effects, the QBER is given as [65]

QBER=
⟨EµsQµs⟩
⟨Qµs⟩

, (38)

where Qµs is the gain of the signal states, EµsQµs is the
overall error gain. Particularly, ⟨EµsQµs⟩ =

∫∞
0

[e0Y0(τ) +
edet(1 − exp(−µsτ))(1 − Y0(τ))]f(τ)dτ , in which Y0(τ) =

Y DC
0 +

1
2pvNτ

N(
∑

ϱ=s,d,vexp(−µϱ)pϱ))
with N the total transmitted

bits and pϱ (ϱ= s,d,v) the probability of generating signal,
decoy, and vacuum bits, respectively [65]. Furthermore, edet
is the erroneous detector probability due to the misaligned
polarization and stability of the Rx optical system, and ⟨Qµs⟩=∫∞
0

[1− exp(−µsτ)(1−Y0(τ))]f(τ)dτ , where f(τ) is given

11By following [48], our framework is also applicable for analyzing the
security performance of CV-QKD protocols under finite-key effects.

in (45). Subsequently, the lower bound of the average SKR,
considering finite-key effects, can be expressed as [65]

⟨R⟩≤ ps

2

[
−⟨Qµs⟩f(QBER)H[QBER]

+
∑

ι=X,Z

〈
QιLB

1

〉(
1−H

[〈
eιUB
1 QιLB

1

〉
/
〈
QιLB

1

〉])]
, (39)

where f(QBER) is the bidirectional error correction efficiency,
H[x]=−x log2(x)−(1−x) log2(1−x) is the binary Shannon in-
formation function, Q1 is the gain of single-photon states, LB
and UB denote the lower bound and upper bound, respectively.
Moreover,

〈
QιLB

1

〉
=
∫∞
0
Y ιLB
1 (τ)µs exp(−µs)f(τ)dτ , where

Y ιLB
1 (τ) is given in [65, (G9)]. Besides, eZUB

1 (τ)=eXUB
1 (τ)+

θUB represent the relation between the upper bounds for single-
photon error rates in X and Z bases, where eXUB

1 is given in
[65, (G10)] and θUB can be obtained by numerically solving
[65, (G17)] at a given failure probability ϵf. Subsequently,〈
eιUB
1 QιLB

1

〉
=
∫∞
0
eιUB
1 (τ)QιLB

1 (τ)f(τ)dτ . Finally, the secret-
key length can be calculated by multiplying (39) with the total
transmitted bits N , while the drone operating time can be
determined by N/rN with rN the pulse repetition rate.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the analytical results of the
average GML and the average PLOB bound of the SKR R
(bits/use) for different ORIS phase-shift profiles and varying
severities of PE, using the main parameters given in Table
III. To confirm the analytical findings, MC simulations are
conducted for 107 RVs generated for each random parameter.
Observe from Table III that the drone altitude is hLAP =
dLAP tan (θr)+hORIS = 300 m, and the ORIS-drone distance
is d2 = dLAP

cos(θr)
∼= 353.55 m. The HF and EHF principles are

valid for intermediate-field ORIS-drone distances if d2 > dn,
where dn denotes the minimum intermediate distance defined
in [27, (14)]. Upon using the parameters of Table III, we find
that dn ∈ [211.88, 234.94] m corresponds to φi ∈ [0◦, 68◦].
Thus, d2 in our scenario satisfies the condition d2>dn.

A. Average GML ⟨τp⟩ With ORIS Phase-Shift Profiles

To highlight the atmospheric effects on the optical beam
footprint, we compare the Rx beam widths at the drone

〈
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p

〉
=

1

4
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√
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
. (32)

⟨R⟩ ≤ γ2modσR√
2

exp

(
−σ

2
R

2
γ4mod

) G∑
g=1

− wgerfc(xg) exp
(
x2g +

√
2σRγ

2
modxg

)
× log2

[
1−AmodτeffτORISτl exp

(√
2σRxg −

σ2
R

2

(
1 + 2γ2mod

))]
. (37)
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Fig. 5. (a) Rx beam widths wrx,x′ and wrx,y′ versus zenith angle φi for FPS (i), QPS (ii) and LPS (iii) profiles [29] ; (b) Rx beam widths wrx,x′ and wrx,y′

versus zenith angle φi using the framework in this paper for FPS (i), QPS (ii) and LPS (iii) profiles; (c) Comparison of GML τp using the framework in [29]
(i) versus that in this paper (ii) in the absence of PE.

TABLE III
SYSTEM AND CHANNEL PARAMETERS [33], [39], [47]

System and Channel Parameters Notation Value
Optical wavelength λ 810 nm
Transmission efficiency at zenith τzen 0.78
Atmospheric extinction coefficient βl 0.43 dB/km
Optical beam divergence half-angle θdiv 16.5 µrad
Ground turbulence refractive index A 3×10−13 m−2/3

Ground wind speed vg 5 m/s
ORIS’s altitude hORIS 50 m
HAP’s altitude hHAP 20,000 m
LAP’s altitude hLAP 300 m
ORIS-LAP projected distance dLAP 250 m
ORIS-LAP zenith angle φr 45◦

ORIS reflectance τORIS 0.9
Receiver aperture radius a 0.045 m
Receiver efficiency τeff 50%
Weak PE Parameters Notation Value
Mean hovering in x̃′-axis µx̃′ 0.3 m
Mean hovering in ỹ′-axis µỹ′ 0.2 m
Hovering deviation in x̃′-axis σx̃′ 0.2 m
Hovering deviation in ỹ′-axis σỹ′ 0.1 m
Moderate PE Parameters Notation Value
Mean hovering in x̃′-axis µx̃′ 0.4 m
Mean hovering in ỹ′-axis µỹ′ 0.3 m
Hovering deviation in x̃′-axis σx̃′ 0.25 m
Hovering deviation in ỹ′-axis σỹ′ 0.2 m
Strong PE Parameters Notation Value
Mean hovering in x̃′-axis µx̃′ 0.5 m
Mean hovering in ỹ′-axis µỹ′ 0.4 m
Hovering deviation in x̃′-axis σx̃′ 0.3 m
Hovering deviation in ỹ′-axis σỹ′ 0.25 m

for different ORIS phase-shift profiles using the frameworks
developed in [29] and in this paper, as shown in Figs. 5a and
5b, respectively. It is observed in Fig. 5b(i) that atmospheric
turbulence-induced beam broadening significantly affects the
beam widths of the focused beam induced by the FPS profile.
By contrast, this is ignored in Fig. 5a(i). Specifically, the
beam broadening effect is most pronounced at the highest
zenith angle of φi=68◦, due to the longest atmospheric path.
The broadened beam resulting from turbulence is more than
ten times larger than that caused by pure diffraction. On the
other hand, for diffractive beams induced by the QPS and
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Approx. by Eq. (35)

Fig. 6. Average GML ⟨τp⟩ for FPS and LPS profiles under various PE
severities induced by drone hovering fluctuations.

LPS profiles, the turbulence-induced beam broadening effect
remains insignificant even at φi = 68◦. For example, the
broadening is only about 1 cm larger than that caused by pure
diffraction, as shown in Figs. 5b(ii) and 5b(iii) compared to
Figs. 5a(ii) and 5a(iii). Using the beam width values from Figs.
5a and 5b, we analyze the GML τp for all phase-shift profiles
without PE based on the frameworks in [29] and this paper, as
illustrated in Figs. 5c(i) and 5c(ii), respectively. As expected,
the GML for the FPS profile under turbulence in Fig. 5c(ii) is
not perfectly zero as in Fig. 5c(i), but it is significantly reduced
to −1.93 dB at φi=68◦. Meanwhile, the GML values for the
QPS and LPS profiles under turbulence in Fig. 5c(ii) remain
approximately the same as in Fig. 5c(i), with only about a 0.1
dB difference at φi=68◦.

It is evident from Fig. 5c(ii) that the FPS profile achieves
the lowest GML, followed by the QPS and LPS profiles, in the
absence of PE. This occurs because the GML is determined
by the fraction of power captured by the Rx aperture, with
smaller beams resulting in a higher fraction of received power.
However, this trend does not hold for the average GML in the
presence of PE induced by drone hovering fluctuations, as
investigated in Fig. 6 for FPS and LPS profiles. Interestingly,
the FPS profile results in a higher average GML than the LPS
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Fig. 7. Average GML ⟨τp⟩ for the QPS profile under various PE severities induced by drone hovering fluctuations. (a) weak PE; (b) moderate PE; (c) strong
PE.

profile across all zenith angles under strong PE conditions and
for most zenith angles, e.g., φi < 67◦, in weak-to-moderate
PE conditions. This is because the random fluctuations in the
drone position cause higher losses for smaller beam widths.
However, at φi≥67◦ for weak-to-moderate PE conditions, the
average GML of the FPS profile surpasses that of the LPS
profile, since the beam widths induced by the LPS profile be-
come significantly broadened, resulting in higher geometrical
loss. Finally, the accuracy of analytical results is validated
through MC simulations, showing excellent agreement. The
approximated expression in (35) is also validated for the LPS
profile, showing a good match with the exact results from (30).

Following Fig. 6, we continue investigating the impact of
PE on the average GML of the QPS profile under weak,
moderate, and strong PE conditions in Figs. 7a, 7b, and 7c,
respectively. The QPS profile represents an adaptive scheme
capable of adjusting the beam widths, encompassing the FPS
and LPS as special cases, when the focus distance parameter
f is set to infinity and d2/2, respectively. The yellow regions
in Figs. 7a, 7b, and 7c highlight the optimal values for
the parameter f to achieve the lowest average GML with
respect to the zenith angle φi, where the minimum value
of f = d2/2 ∼= 177 m corresponds to the special case of
using the LPS profile. Apparently, the QPS profile optimizes
the beam width by gradually increasing f , thereby narrowing
the beam to an optimal size that effectively compensates for
drone hovering fluctuations. This optimization is suitable for
achieving the lowest possible GML over low zenith angles,
while maintaining a consistent GML over high zenith angles,
e.g., φi>28◦, φi>43◦, and φi>51◦ for weak, moderate, and
strong PE conditions in Figs. 7a, 7b and 7c, respectively.

B. Average PLOB Bound of The SKR ⟨R⟩
In Fig. 8, we examine the average PLOB bound of the SKR

R for the LPS profile versus the PE levels. The analytical
PLOB results, derived from Corollary 2, are corroborated by
the exact form in (36) and validated through MC simulations,
demonstrating excellent agreement. Fig. 6 previously reveals
optimal zenith angles that minimize GML for the LPS profile
(e.g., φi=36◦, 50◦, and 57◦ for weak, moderate, and strong PE
conditions, respectively). Correspondingly, Fig. 8 also identi-
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Fig. 8. Average PLOB bound of the SKR ⟨R⟩ (bits/use) for the LPS profile
under various PE severities induced by drone hovering fluctuations. The
Gauss-Hermite polynomial order G=100.

fies optimal zenith angles for maximizing SKRs under random
fluctuations induced by both turbulence and PE (e.g., φi=47◦,
55◦, and 60◦ for weak, moderate, and strong PE conditions,
respectively). It is noted that the optimal angles shift to higher
values compared to Fig. 6, resulting in larger beam widths. At
a radial distance from the beam centroid, larger beam widths
reduce intensity fluctuations caused by turbulence [33] and PE
[58], [59], but increase geometrical loss to a finite Rx aperture.
This trade-off makes higher zenith angles optimal, balancing
fluctuation reduction and geometrical loss.

Eventually, the PLOB bound of the SKR R found for the
QPS profile is analyzed under weak, moderate, and strong PE
conditions, as shown in Figs. 9a, 9b, and 9c, respectively. The
yellow regions in Figs. 9a, 9b, and 9c indicate the optimal
values for the parameter f to achieve the highest average SKR
relative to the zenith angle φi. Again, the minimum value of
f=d2/2∼=177 m corresponds to the special case of using the
LPS profile. As seen in Fig. 9a, the QPS profile is particularly
effective under weak PE conditions, where further narrowing
the beam width minimizes losses, resulting in the maximum
SKR at φi=56◦ with f=277 m. Conversely, the LPS profile is
beneficial for compensating moderate-to-strong PE conditions
due to its wider beams, achieving the maximum SKRs at φi=
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Fig. 9. Average PLOB bound of the SKR ⟨R⟩ (bits/use) for the QPS profile under various PE severities induced by drone hovering fluctuations. (a) weak
PE; (b) moderate PE; (c) strong PE. The Gauss-Hermite polynomial order G=100.

TABLE IV
TWO-DECOY-STATE DV QKD PARAMETERS [65]

Parameter Notation Value
Background yield (dark count) Y DC

0 5.89× 10−7

Background error rate e0 50%
Failure probability ϵf 10−5

Mean intensity of signal µs 0.8
Mean intensity of weak-decoy state µd 0.1
Pulse repetition rate rN 200 MHz
Generation prob. of signal bits ps 65%
Generation prob. of weak-decoy bits pd 25%
Generation prob. of vacuum bits pv 10%
Generation prob. of X-basis bits pXϑ (ϑ = s,d) 60%
Error correction efficiency f(QBER) 1.16
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Fig. 10. QBER versus erroneous detector probability under various settings.

55◦ and 60◦ in Figs. 9b and 9c, respectively. These optimal
zenith angles found for the LPS profiles are consistent with
those identified in Fig. 8.

C. Two-Decoy-State DV QKD With Finite-Key Effects

In this section, we calculate the QBER and secret-key length
using the QKD parameters given in Table IV. In Fig. 10,
the QBER in (38) is numerically investigated as a function
of the erroneous detector probability edet, which quantifies
error probabilities arising from polarization corrections (as
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Fig. 11. Secret-key length versus total transmitted bits within drone operating
duration under various settings.

described in Section II-C3) and the stability of the Rx optical
system. The investigation is conducted under varying PE
levels, considering optimal zenith angles and ORIS phase-
shift profile configurations that achieve the maximum PLOB
bounds identified in Figs. 9a, 9b, and 9c. It is observed that
QBER exhibits a linear dependence on edet, highlighting the
critical importance of maintaining an efficient optical receiver
in QKD systems, such as ensuring edet ≤ 1%. Consequently,
the QBER values corresponding to edet =1% are determined
to be 1.1%, 1.15%, and 2.88% under weak, moderate, and
strong PE conditions, respectively.

Using the derived QBER values, the secret-key length as a
function of the total transmitted bits during the drone operating
duration can be estimated in Fig. 11, based on the formu-
lation in (39). The shared secret key length is significantly
shorter than the total transmitted bits due to losses, QKD
procedures, and finite-key effects. These effects account for
statistical fluctuations that reduce the estimated SKR compared
to its asymptotic value for infinite data sizes [63], [64]. This
limitation is particularly evident in HAP-to-drone QKD links,
where the drone operating time is constrained by battery
capacity, typically less than 60 minutes with a 5-kg payload
on modern industrial drones [66]. Assuming a 60-minute
flight duration, the secret-key lengths are approximately 58.58,
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39.53, and 2.61 Mbits under weak, moderate, and strong PE
conditions, respectively, for N =7.2×1011 bits and rN =200
MHz. It should be noted that longer key lengths allow secure
encryption of larger data volumes, adhering to the one-time
pad principle, which requires the key length to match or exceed
the data size for optimal security [6].

VI. CONCLUSIONS

The ORIS concept was developed for enhancing QKD
links between HAPs and LAPs while mitigating the LAP’s
hovering fluctuations. By reflecting HAP’s incoming beam via
a rooftop-mounted ORIS to the terminal beneath the LAP,
we established an efficient QKD link. An ORIS facilitates
adaptive beam width control through LPS, QPS, and FPS
profiles, optimizing the GML at the receiver. This necessi-
tates a robust theoretical framework for accurately charac-
terizing the ORIS-controlled optical beam propagation over
atmospheric channels. We employ the EHF principles for
the first time to precisely model the atmospheric turbulence
effects imposed on ORIS-controlled beams. Our analytical
model incorporates the LAP hovering fluctuations, offering
a comprehensive framework for ORIS-aided non-terrestrial
FSO systems. Utilizing this model, we derive the ultimate
PLOB bound for the SKR, and analyze the performance of
a two-decoy-state DV-QKD protocol with finite-key effects
over HAP-ORIS-LAP links. Our findings demonstrate that
the QPS profile optimizes the SKR at high zenith angles or
under mild PE conditions by narrowing the beam to optimal
sizes, while the LPS profile is advantageous at low zenith
angles or under the moderate-to-strong PE by diverging the
beam to compensate for LAP hovering fluctuations. These
results underscore the efficiency of ORIS in mitigating PEs and
optimizing the QKD performance across diverse conditions.

APPENDIX A
PROOF OF LEMMA 1

Following the framework in [29], with the help of [29,
(54)], the statistical average GML coefficient τp in (29) can be
approximated by

〈
τLPS

p

〉
, for an LPS profile considering drone

hovering fluctuations, written as

〈
τLPS

p

〉
=CLPS

∫∫ a
√

π
2

− a
√

π
2

∫∫ ∞

−∞
exp

(
−k

2sin2(θr)(x
′+x̃′)

2R{bx′,LPS}
2d22 |bx′,LPS|2

)

×exp

(
−k

2(y′+ỹ′)
2R{by′,LPS}

2d22 |by′,LPS|2

)
×fx̃′(x̃′)fỹ′(ỹ′)dx′dy′dx̃′dỹ′, (40)

where x′, y′ ∈
[
−a

√
π

2 , a
√
π

2

]
and x̃′, ỹ′ ∈ (−∞,∞). Further-

more, we have CLPS =
2Pt sin(θi)sin(θr)π

λ2w2(d1)d2
2|bx′,LPS||by′,LPS| with bx′,LPS =

sin2(θi)
w2(d1)

+jk sin2(θi)
2R(d1)

+jk sin2(θr)
2d2

and by′,LPS=
1

w2(d1)
+ jk

2R(d1)
+ jk

2d2
.

fx̃′(x̃′) and fỹ′(ỹ′) are the Gaussian probability density func-
tions of the hovering fluctuations x̃′ and ỹ′, respectively, given
by fν(ν)= 1√

2πσ2
ν

exp
(
− (ν−µν)

2

2σ2
ν

)
, ν = {x̃′, ỹ′}. Using [55,

(4.3.13)] along with a change of variables, we arrive at the
following result∫ ∞

−∞
erf(αν+β)

exp
(
− (ν−µν)

2

2σ2
ν

)
√
2πσ2

ν

dν=erf

(
αµν+β√
1+2α2σ2

ν

)
. (41)

By invoking (41) and [56, (2.33.1)], (40) can be solved
and a closed-form expression is obtained in (30), where

wLPS
rx,x′ = w(d1)

|sin(θr)|
|sin(θi)|

√
ε
(
sin2(θi)
sin2(θr)

Λ1

)2
+
(
sin2(θi)
sin2(θr)

Λ2+1
)2

and

wLPS
rx,y′ = w(d1)

√
εΛ2

1+(Λ2+1)
2 are the equivalent beam

widths induced by the LPS profile at the Rx aperture in the
x′ and y′ axes, respectively. Furthermore, Λ1 =

2d2

kw2(d1)
and

Λ2=
d2

R(d1)
characterize the diffraction and refraction effects,

respectively. Since d1 ≫ zR1, we have R(d1)=d1
[
1+ zR1

d1

]
≈

d1, thus Λ2 =
d2

d1
. As d1 ≫ d2, Λ2 → 0 and can be omitted,

which gives the results of wLPS
rx,x′ and wLPS

rx,y′ in Lemma 1. This
completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Following the framework in [29], with the help of [29, (55)],
the statistical average GML coefficient τp in (29) derived for
a QPS profile by considering the drone hovering fluctuations
can be approximated by

〈
τQPS

p

〉
as

〈
τQPS

p

〉
=CQPS

∫∫ a
√

π
2

− a
√

π
2
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−∞
exp
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)

×exp

(
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2(y′+ỹ′)
2R{by′,QPS}

2d22 |by′,QPS|2

)
×fx̃′(x̃′)fỹ′(ỹ′)dx′dy′dx̃′dỹ′, (42)

where we have CQPS=
2Pt sin(θi)sin(θr)π

λ2w2(d1)d2
2|bx′,QPS||by′,QPS| with bx′,QPS=

sin2(θi)
w2(d1)

+ jk sin2(θr)
4f and by′,QPS = 1

w2(d1)
+ jk

4f . Similar to
Appendix A, by invoking (41) and [56, (2.33.1)], (42) can
be solved and a closed-form expression is obtained in (31).
This completes the proof.

APPENDIX C
PROOF OF LEMMA 3

Following the framework in [29], with the help of [29,
(56)], the statistical average GML coefficient τp in (29) can be
approximated by

〈
τFPS

p

〉
for an FPS profile considering drone

hovering fluctuations as

〈
τFPS

p

〉
=CFPS

∫∫ a
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2
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exp
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2
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2

(wFPS
rx,y′)2

]
×fx̃′(x̃′)fỹ′(ỹ′)dx′dy′dx̃′dỹ′, (43)

where CFPS = 2Ptπw
2(d1) sin(θr)

λ2d2
2 sin(θi)

, wFPS
rx,x′ = w(d1)

|sin(θi)|
|sin(θr)|

√
εΛ2

1

and wFPS
rx,y′ = w(d1)

√
εΛ2

1 are the equivalent beam widths
induced by the FPS profile at the Rx aperture in the x′ and
y′ axes, respectively. Similar to Appendix A, by invoking
(41) and [56, (2.33.1)], (43) can be solved and a closed-form
expression is obtained in (32). This completes the proof.
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APPENDIX D
PROOF OF COROLLARY 1

Following the theoretical framework in [58, Appendix],
the instantaneous τLPS

p and τQPS
p extracted from (40) and

(42), respectively, can be approximated by (34). Since x̃′

and ỹ′, are i.n.i.d. Gaussian RVs, i.e., x̃′∼N (µx̃′ , σ2
x̃′) and

ỹ′∼N (µỹ′ , σ2
ỹ′), the radial displacement due to drone hovering

follows the Beckmann distribution with the probability density
function given in [59, (17)]. Following the derivation steps in
[59, (18), (19), and (20)],

〈
τU

p

〉
with U∈{LPS,QPS} can be

derived as (35). This completes the proof.

APPENDIX E
PROOF OF COROLLARY 2

We have Ia = Ia,1Ia,2, where Ia,1 and Ia,2 are independent
log-normal RVs, due to the distinct atmospheric paths of the
HAP-ORIS and ORIS-drone links, respectively. Since Ia,1 ∼
LN(−σ2

R,1
2 , σ2

R,1) and Ia,2∼LN(−σ2
R,2
2 , σ2

R,2), it is straightfor-

ward to obtain that Ia∼LN (−σ2
R,1
2 − σ2

R,2
2 , σ2

R,1+σ
2
R,2), where

σ2
R,1 and σ2

R,2 are defined in (13). As a result, f(Ia) can be
expressed as

f(Ia)=
1

Ia
√

2πσ2
R

exp

[
−

(
ln (Ia)+

σ2
R
2

)2
2σ2

R

]
, (44)

where σ2
R = σ2

R,1+σ
2
R,2. Additionally, as τ = τeffτORISτlIaτp

is truncated at 1 to preserve the canonical commutation of
the input-output quantum relationship as seen in (36), Ia is
restricted to [0, 1/τeffτORISτlτp]. However, due to the small
values of τeffτORISτlτp, we can assume that Ia ∈ [0,∞), while
satisfying the canonical commutation relationship via E [Ia]=
1 [47]. Considering that Ia and τp are independent RVs, the
probability distribution of τ can be expressed as f(τ) =∫
f(τ |Ia)f(Ia) dIa, where f(τ |Ia) = 1

τeffτORISτlIa
fτp

(
τ

τeffτORISτlIa

)
is the conditional probability given a turbulence state Ia
with fτp(·) the probability distribution function of τp. Since
the radial displacement due to drone hovering follows the
Beckmann distribution in [59, (17)], fτp(·) can be derived

in a closed-form approximation as fτp(τp)≈ γ2
mod

(Amod)
γ2

mod
τ
γ2

mod−1
p ,

(0≤τp ≤Amod) [60, (11)], where Amod and γmod are given in
Corollary 2. Following derivation steps in [58, (13) and (14)]
and with the help of (44), f(τ), τ ∈ [0,∞), can be derived as

f(τ) =
γ2mod

2 (AmodτeffτORISτl)
γ2

mod
τγ

2
mod−1

× erfc

 ln
(

τ
AmodτeffτORISτl

)
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√
2σR


× exp

(
σ2

R

2
γ2mod

(
1 + γ2mod

))
, (45)

where Υ=
σ2

R
2

(
1 + 2γ2mod

)
. Substituting (45) into (36), mak-

ing a change of variables, and applying the Gauss-Hermite
polynomial

∫∞
−∞ f(x) dx≈

∑G
g=1wgexp

(
x2g
)
f(xg) [61, Table

25.10], (36) can be derived as a closed-form expression in (37)
for the LPS and QPS profiles. This completes the proof.
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