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Autoencoder-based phenotyping of ophthalmic images 
highlights genetic loci influencing retinal morphology and 
provides informative biomarkers
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Abstract
Motivation: Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants 
and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We 
sought to investigate if deep learning approaches can detect more nuanced patterns of image variability.
Results: We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For 
each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging 
parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encom
passed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably, 
the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demon
strate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and pro
vides epidemiologically informative biomarkers.
Availability and implementation: Code and data links available at https://github.com/tf2/autoencoder-oct.

1 Introduction
Imaging technologies have greatly enhanced the scope and 
precision of phenotype discovery. A wide range of imaging- 
derived phenotypes are easily amenable to human identifica
tion and are routinely used in biomedical contexts, including 
in clinical practice (Oren et al. 2020). However, to capture 
the complexity of human biology, there is a need to go be
yond traditional clinically-focused and/or expert-curated im
aging features (Gong et al. 2022).

Artificial neural networks (ANNs) are machine learning 
models inspired by information processing in biological neu
ral networks (LeCun et al. 2015, Hinton 2018, Hasson et al. 
2020). ANNs can be used to extract granular information 
from images without introducing certain biases associated 
with human curation. An autoencoder is a type of ANN that 
is designed to transform an input set of data into a lower- 
dimensional code (i.e. a set of latent space variables or 

“embeddings”) and then to recreate the input from the 
encoded representation (Hinton and Salakhutdinov 2006, 
Michelucci 2022). Broadly, autoencoders can be used to effi
ciently compress an image by identifying the key features that 
lead to optimal reconstruction performance.

The most optically accessible part of the central nervous sys
tem is the retina, the multilayered tissue that lines the back of 
the eyes. The retina is particularly vulnerable to disease, and 
disruption of its normal architecture (e.g. in conditions like 
age-related macular degeneration or glaucoma) can lead to vi
sual disability (Sheffield and Stone 2011, Zhao et al. 2024). 
Examination of the retina relies, to a great extent, on imaging, 
especially the use of optical coherence tomography (OCT). 
OCT is a noninvasive, non-contact method for cross-sectional 
imaging that has a resolution approaching that of histopathol
ogy (Bouma et al. 2022). Application of ANN-based algo
rithms in OCT image processing is attracting increasing 
attention with key advantages including the rapid speed, high 
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consistency and quantitative nature of the analyses (De Fauw 
et al. 2018, Yim et al. 2020, Keenan et al. 2021).

To date, genetic studies of imaging phenotypes have mostly 
focused on features associated with long-established clinical 
diagnostic processes (Elliott et al. 2018, Xie et al. 2024). In 
our own previous work, we used standardized OCT-derived 
thickness measurements of the inner (Currant et al. 2021) 
and outer (Currant et al. 2023) retinal layers to good effect, 
discovering previously unreported genetic associations and 
exploring relationships with disease. Here, we performed ge
nomic analyses on OCT imaging phenotypes extracted using 
a self-supervised, autoencoder-based approach. We highlight 
the autoencoder’s ability to derive biologically meaningful 
phenotypes (with association to genetic variants not seen 
in previous studies) and to contribute to predictive models 
for health outcomes such as glaucoma and cardiovascu
lar conditions.

2 Materials and methods
2.1 Cohort characteristics
We used data from the UK Biobank, a biomedical resource 
containing genomic and health information from >500 000 
individuals from across the United Kingdom (Bycroft et al. 
2018). UK Biobank participants were recruited between 
2006 and 2010 and were, at enrollment, between 40 and 69 
years of age. At the initial assessment, UK Biobank volunteers 
provided consent, answered questions on socio-demographic, 
lifestyle and health-related factors, completed a range of 
physical measures, and provided biological samples. DNA 
was extracted from the donated blood samples and was used 
to generate genotyping array data. The baseline information 
has been extended in several ways. For example, repeat 
assessments were conducted in subsets of the cohort every 
few years (Bycroft et al. 2018). Notably, thousands of UK 
Biobank participants underwent ophthalmic phenotyping in
cluding imaging of the central retina using OCT (>84 000 
individuals) (Patel et al. 2016, Chua et al. 2019). A total of 
67 664 individuals were imaged at the time of their baseline 
visit (Instance 0, “Initial assessment visit (2006–2010)”); this 
cohort was the focus of the primary analysis. A further 
17 090 different participants were imaged for the first time 
during their first repeat assessment (Instance 1, “First repeat 
assessment visit (2012–2013)”); these were included in the 
replication study.

We performed quality control considering genetic and im
aging parameters. First, to reduce the impact of population 
stratification and to increase the validity of the conducted ge
netic association studies, we focused on individuals within a 
genetically well-mixed, European-like subset of the UK 
Biobank. This was achieved by applying principal component 
analysis (PCA) to UK Biobank genotypic data using standard, 
previously-implemented methods (Currant et al. 2023). 
Additional participants were excluded as their OCT scans 
failed to meet a set of previously-described, rigorous quality 
control criteria (Patel et al. 2016, Currant et al. 2021, 2023). 
Finally, participants were removed on the basis of being rec
ommended for exclusion from genetic studies by the UK 
Biobank or because they were related to third degree or 
more. The final dataset for the primary analysis included 
31 135 study subjects (Supplementary Fig. S1). Similar 

criteria were used for the replication study with the exception 
of the imaging quality control parameters which were identi
cal to those described by Zekavat et al. (2024).

2.2 Generation of thickness maps from OCT 
volume scans
All the UK Biobank volunteers that were included in our 
analysis were imaged using the 3D OCT-1000 Mark II device 
(Topcon, Japan). OCT imaging was carried out in a dark 
room without pupil dilation using the 3D 6 × 6 mm2 macular 
volume scan mode (128 horizontal B-scans in a 6 × 6 mm 
raster pattern). The right eye was imaged first (Patel et al. 
2016, Chua et al. 2019). Our analysis focused on left eye 
images as we assumed that familiarity with the test would 
have led to scans that, on average, had higher overall quality. 
A total of 128 PNG images were generated from each tested 
eye with the dimensions of each PNG image being 650 × 512 
× 1 grayscale pixels. After cropping the top (superior) and 
bottom (inferior) edge of the image area, PNG images with 
dimensions of 512 × 512 × 1 pixels were obtained.

The 128 images of each OCT scan were used to create a 
“thickness map”, i.e. a single image displaying the retinal 
thickness throughout the imaged area. To achieve this, seg
mentation of all the scans in the dataset was performed using 
a U-Net-based approach. The utilized U-Net method was first 
described in 2015 (Ronneberger et al. 2015) and involves a 
fully convolutional network that consists of a contracting 
path (that extracts features) and an expansive path (that 
localizes objects).

Initially, the inner- and outer-most limits of the retina (cor
responding to the inner limiting membrane and the Bruch’s 
membrane, respectively) were manually identified in 100 ran
domly selected OCT images using the https://www.make 
sense.ai tool. The original images and the generated “ground 
truth” segmentation masks were subsequently utilized to 
train the U-Net. Adaptive moment estimation (Adam) was 
used to optimize the algorithm for training the network 
parameters, and training was performed for 50 epochs. The 
output of the U-Net consisted of segmented OCT images 
(analogous to the provided masks). These were used to calcu
late retinal thickness (i.e. the vertical distance between the 
top and bottom edge of the mask in each of the 512 points of 
the horizontal axis). The obtained measurements were com
pared to those acquired through the purpose-built Topcon 
Advanced Boundary Segmentation (TABS) software (the lat
ter are available in the UK Biobank dataset). Good correla
tion was observed in retinae both with and without 
pathology, increasing confidence in the utilized approach 
(Supplementary Fig. S2). Finally, the thickness measurements 
from the 128 images (“slices”) that were obtained in each 
tested left eye were combined and used to generate a thick
ness map for each UK Biobank participant that met the inclu
sion criteria of this study (Fig. 1).

2.3 Autoencoder set-up
An autoencoder was used for self-supervised feature extrac
tion from the 31 135 left eye OCT-derived thickness maps. A 
conventional autoencoder architecture was utilized (Hinton 
and Salakhutdinov 2006, Michelucci 2022): the encoder net
work projected the input images to a low-dimensional space 
(“latent space”) with 64 variables (“embeddings”), and a 
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function was used to try to reconstruct the original images 
from these 64 latent space representations. A mean squared 
error (MSE) loss function was employed to measure the devi
ation between reconstructed and input data (but otherwise 
the reconstructed images were not used in the primary analy
sis). It is noted that the autoencoder was trained end-to-end 
for 150 epochs utilizing 2500 training and 500 test images. 
We trialed different autoencoder layouts with bottleneck 
layers of the following sizes: 128, 64, 32, and 16. For 128 
and 64, we obtained very similar reconstruction loss curves 
during training over 300 epochs. In contrast, for both 32 and 
16, the image reconstruction loss could not be dropped below 
0.006, suggesting that these models were unable to generalize 
as well as the larger bottleneck sizes (Supplementary Fig. S3). 
We then selected a bottleneck size of 64 since this was the 
smallest size with the best image reconstruction accuracy 
among the layouts that we tested.

To extract further information from the latent space, PCA 
(i.e. linear dimensionality reduction) was performed using the 
64 embeddings as input; the first 25 principal components 
were then considered for further analyses.

2.4 Genome-wide association studies: 
primary analysis
Genome-wide association studies (GWAS) analyses of the 
autoencoder-derived embedded features (64 embeddings and 
25 embedding-related principal components) were performed 
using an additive linear model implemented in REGENIE 
v3.1.1 (https://rgcgithub.github.io/regenie/) (Mbatchou et al. 
2021). All embedded variables were inverse rank normalized 
prior to modeling with REGENIE to avoid any potential bias 
that could be introduced by outlier values (and in an attempt 
to prevent embeddings with a broader range of variation 
overshadowing those with a narrower range). The following 
quality control filters were applied on the imputed genotype 

data (UK Biobank data-field 22828) during the creation of 
the whole-genome regression model (REGENIE step 1): a mi
nor allele frequency (MAF) ≥ 5%; Hardy–Weinberg equilib
rium test not exceeding P > 1 × 10−15; a genotyping rate 
above 99%; not present in a low-complexity region, a region 
of long-range linkage disequilibrium or a sex chromosome 
(Mbatchou et al. 2021). This resulted in up to 7 114 193 
genotyped variants that were tested for association using a 
Firth logistic regression model (REGENIE step 2). Correction 
for the following covariates was undertaken: age at recruit
ment (data-field 21022), sex (data-field 31), height (data-field 
50), weight (data-field 21002), refractive error (calculated as 
spherical error þ 0.5 × cylindrical error; data-fields 5085 
and 5086), and genetic principal components 1 to 20 (data- 
field 22009).

A degree of correlation was expected among autoencoder- 
derived embeddings so the summary statistics obtained 
from the GWAS analyses were used to perform a multi-trait 
meta-analysis. First, embeddings with a high genetic correla
tion (i.e. with Pearson correlation coefficient R > 0.9) were 
identified. Then, the MTAG v1.0.8 tool (https://github.com/ 
JonJala/mtag) (Turley et al. 2018) was used to conduct a sin
gle meta-analysis for every individual inverse rank normal
ized embedding, leveraging the findings from correlated 
embedded features and producing an updated set of GWAS 
summary statistics for each of these 64 variables. Under cer
tain assumptions, the generated estimates would be expected 
to be more precise than those obtained from the input GWAS 
(Turley et al. 2018).

To refine the obtained association signals, further analyses 
were performed using the GCTA-COJO tool (https://yanglab. 
westlake.edu.cn/software/gcta/#COJO) (Yang et al. 2012). 
These analyses were conducted utilizing linkage disequilib
rium estimates from a reference sample (Currant et al. 2023) 
and summary statistics from: (i) the 64 embedding GWAS, 

Figure 1. Outline of the experimental approach. OCT images from the central retinae of 67 321 UK Biobank participants were analyzed. After applying 
quality control (QC) filters considering genetic information and image quality, a cohort of 31 135 study subjects was identified. Aiming to generate retinal 
“thickness maps” for these individuals, OCT image segmentation was performed using an artificial neural network (U-Net) approach. In brief, 100 OCT 
images were manually segmented and the generated segmentation masks (examples shown in yellow) were used as input to the U-Net which 
subsequently segmented all other images. This allowed conversion of the 128 cross-sectional images obtained from each tested eye into a single 
thickness map image. The thickness maps of the left eyes were then used as input to an autoencoder. This was trained utilizing 2500 training and 500 
test images. The output of the embedding network was designed to be a 64-dimensional vector (i.e. 64 variables were obtained for each study subject). 
These 64 autoencoder-derived embeddings were then used for genetic association studies, correlation analyses, and predictive modeling.
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(ii) the 25 embedding-related principal component GWAS, 
(iii) the 64 embedding MTAG-GWAS. Genetic variants in 
loci that were on different chromosomes or more than 10 Mb 
distant from each other were assumed to be uncorrelated.

Genetic changes in the main variant set were annotated us
ing Ensembl (Cunningham et al. 2022), Open Targets 
(Ochoa et al. 2021), and GWAS Catalog (Sollis et al. 2023) 
data. To accurately summarize the strongest signals, the link
age disequilibrium metrics of the changes that were 
highlighted as lead variants by GCTA-COJO analysis and 
were within 1 Mb of one another were manually inspected 
using the LDlink tool (Myers et al. 2020).

2.5 Genome-wide association studies: replication
We sought to replicate the genetic associations detected in the 
primary analysis in a different set of OCT images. As the 
number of open resources that have sufficiently large human 
cohorts with combined genomic and OCT imaging data is 
small, we made use of the UK Biobank “Instance 1” left eye 
scans (data-field: 21017_1_0). This included images from 
17 090 participants that were not part of the discovery/pri
mary cohort and were not used for training of either the U- 
net segmentation or the autoencoder. It is noted that these ad
ditional OCT images were obtained at a different time 
(2012–2013) compared to the scans in the discovery/primary 
cohort (2006–2010). Due to the inconsistent capture of cer
tain OCT-related metrics in the replication cohort scans, we 
used a different set of image QC exclusion criteria. Following 
the removal of poor quality and outlier images (using the ap
proach described by Zekavat et al. (2024)), the replication 
cohort included 10 439 high-quality scans from unrelated 
UK Biobank participants of predominantly European-like 
genetic ancestries (as determined by PCA of genotypes). A 
replication GWAS was then performed using exactly the 
same parameters as in the discovery/primary study (outlined 
above). To gain insights into the extent to which the findings 
of the primary and the replication study were in agreement, 
we assessed the degree of correlation between the detected 
effect size estimates. The relevant beta–beta plots are shown 
in Supplementary Fig. S4.

2.6 Correlation and logistic regression analyses
Direct pairwise comparisons between the 64 embeddings 
were performed and the relevant Pearson correlation coeffi
cients (R) were calculated. Genetic correlation was also esti
mated, again using Pearson correlation coefficients but this 
time utilizing the effect size estimates from across the signifi
cant associations for all 64 embeddings.

The correlation structure of the embedding space was fur
ther studied using hierarchical clustering of the distance ma
trix between the 64 embeddings. The canonical correlation 
values for every pairwise test and every embedding were sub
sequently calculated (Supplementary Fig. S5).

In addition to evaluating the relationship between pairs of 
the studied embedded features, correlation analyses were per
formed to look for links between each of these 64 features 
and four ophthalmic traits (Supplementary Fig. S6). 
Furthermore, a logistic regression approach was used to look 
for relationships between embeddings and a set of diseases 
(high-level ICD10 codes); only the 454 disease-related codes 
for which there were >1000 cases in the UK Biobank cohort 
were considered (when factoring in only data obtained after 
the date of OCT image acquisition (2012)). Age, sex, height, 

and weight were used as covariates and the statistical signifi
cance threshold was determined using Bonferroni correction.

2.7 Predictive modeling
Survival analysis was performed using penalized Cox propor
tional hazard regression; a mixture of L1 and L2 regulariza
tion was utilized (often referred to as the Cox elastic net). We 
focused on two main outcomes—glaucoma and cardiovascu
lar disorders (essential hypertension, angina pectoris, and 
chronic ischemic heart disease). These included ICD10 codes 
that were highlighted as significant by the logistic regression 
analyses described in the previous section and were chosen as 
predicting them was deemed to be of clinical significance. 
Only diagnoses assigned after the date of OCT image acquisi
tion were considered. To evaluate discriminative perfor
mance, we used Harrell’s C-index as a measure of the 
concordance between predicted and actual risk. The hyper
parameter of L1/L2 penalization strength was set to 0.1, and 
20 repetitions of five-fold cross-validation were used to eval
uate model performance. Survival curves were estimated us
ing the Kaplan–Meier estimator.

2.8 Ethics approval
The UK Biobank has received approval from the National 
Information Governance Board for Health and Social Care 
and the National Health Service North West Centre for 
Research Ethics Committee (Ref: 11/NW/0382). This re
search was conducted using the UK Biobank Resource under 
projects 49978, 53144, and 2112. All investigations were 
conducted in accordance with the tenets of the Declaration 
of Helsinki.

3 Results
3.1 Obtaining autoencoder-derived phenotypes 
from OCT images
After applying standard genetic and OCT quality control fil
ters (Patel et al. 2016, Currant et al. 2021), we defined a sub
set of the UK Biobank population that (i) can be considered 
genetically well-mixed (i.e. includes participants that were 
assigned by genotype PCA to a cluster with subjects of mostly 
European-like ancestries) and (ii) only contains individuals 
with high-quality OCT images (Supplementary Fig. S1). This 
cohort included 31 135 individuals and had a similar sex and 
age profile to the overall UK Biobank population (Currant 
et al. 2023). Most study subjects were female (54%) and self- 
identified as White British (91%). The mean age at OCT im
aging was 56 years (standard deviation: 8 years).

Study subjects had an OCT “volume scan” of the central 
retina in each eye. Each volume scan contained 128 cross- 
sectional images and was generated using a horizontal raster 
scanning protocol. To extract thickness information and to 
compress these 128 images into a single retinal “thickness 
map” we utilized an ANN algorithm involving a U-Net archi
tecture (Ronneberger et al. 2015) (Fig. 1; Materials 
and methods).

The 31 135 left eye retinal thickness maps that we gener
ated were then used as input to an autoencoder. This was 
trained end-to-end for 150 epochs utilizing 2500 training and 
500 test images. We explored various embedding dimension
alities and opted for a 64-dimensional vector (i.e. the latent 
space or “bottleneck layer” contained 64 features) (Fig. 1; 
Materials and methods). It has been previously shown that 
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this autoencoder architecture can sufficiently represent data
sets of similar complexity (Schroff et al. 2015, Song et al. 
2015). A reconstruction error of 0.0037 was obtained 
(Supplementary Fig. S3).

The univariate distributions of the 64 embeddings are 
shown in Supplementary Fig. S7. Mostly unimodal or bi
modal distributions were observed.

To create an alternative representation allowing informa
tion to be combined across different variables within the la
tent space, we used the 64 embeddings as input to a PCA. 
The first 25 principal components, representing 98.5% of the 
variance within the embeddings, were studied further and 
used for genetic association tests.

3.2 Genetic association studies of autoencoder- 
derived OCT phenotypes
To look for genetic factors associated with the obtained 
autoencoder-derived embedded features (i.e. the 64 embed
dings and the first 25 embedding-related principal compo
nents), we performed common-variant GWAS. We used 
REGENIE (Mbatchou et al. 2021) and incorporated the fol
lowing set of covariates into the model: age at recruitment, 
sex, height, weight, refractive error, and genetic principal 
components 1 to 20. Notably, each embedded feature was in
verse rank normalized prior to performing genetic association 
testing. As we anticipated a degree of correlation between 
autoencoder-derived phenotypes, we also conducted a multi- 
trait meta-analysis using MTAG (Turley et al. 2018). This in
volved identifying genetically correlated embeddings and 
leveraging these relationships to obtain adjusted GWAS 
results for each of the 64 embeddings (Materials 
and methods).

Overall, 418 312 association signals from 17 022 common 
variants reached the genome-wide significance threshold (P <
5 × 10−8) (Table 1; Fig. 2). These merged into 239 lead loci 
following analysis with GCTA-COJO (conditional and joint 
multiple-variant analysis) (Yang et al. 2012) (Supplementary 
Table S1); 118 of these remained significant when a conserva
tive/higher (“study-wide”) threshold was used to account for 
all the different association routes that were utilized (P < 3.2 
× 10−10 following Bonferroni correction for 153 tests).

A replication study was conducted using OCT scans from 
10 409 UK Biobank participants that were not included in the 
primary analysis. There was a high level of concordance in the 
findings of the two association studies (Supplementary Fig. S4). 
A total of 41 loci passed both the conservative study-wide 
threshold (P < 3.2 × 10−10) in the primary analysis and a 
Bonferroni correction based threshold (P < 8.5 × 10−5 follow
ing Bonferroni correction for 118 tests) in the replication study. 
Most of these loci encompass variants previously linked to reti
nal layer thickness parameters (including around LINC00461, 

TSPAN10, and COBL) (Gao et al. 2019, Currant et al. 2021, 
2023) while a subset of them has also been linked to monogenic 
retinal disorders [including RDH5 (retinal dystrophy), TYR (al
binism), and GNB3 (congenital stationary night blindness)] 
(Table 2; Supplementary Table S1).

For each of the 118 lead loci that were found to be signifi
cant in the primary analysis (P < 3.2 × 10−10), we compared 
the retinal thickness maps of heterozygotes for the key vari
ant to that of homozygotes. Interestingly, some genetic altera
tions appeared to have recessive effects (e.g. rs62075722) 
while others appeared to have dominant effects (e.g. 
rs11051131); topographical variation was also noted 
(Supplementary File S1).

Our primary analysis identified notable associations be
tween multiple embeddings and a locus encompassing the 
MAPT (microtubule-associated protein tau) gene. The 
detected signal appears to be driven by a common ancestral 
genomic inversion at 17q21.31 (Fig. 3A) (Stefansson et al. 
2005, Espinosa et al. 2023). Using the pattern of alternative 
alleles across this genomic region, we were able to classify 
487 409 UK Biobank participants as either reference:refer
ence (no inversion), reference:inversion (heterozygous inver
sion), or inversion:inversion (homozygous inversion) 
(Fig. 3B). In accordance with previous studies (Steinberg 
et al. 2012), we found that the 17q21.31 inversion is com
mon in individuals of European-like ancestries, rare in indi
viduals of African-like ancestries and very rare in Asian-like 
populations (allele frequency of 0.22, 0.01, and 0.004 respec
tively). When we compared the retinal thickness profiles be
tween study subjects that carry heterozygous and 
homozygous inversion genotypes, we found that the 
17q21.31 inversion appears to affect retinal thickness in an 
apparently recessive pattern (Fig. 3C). We then performed a 
phenome-wide association study (PheWAS) of the 17q21.31 
inversion using disease-related ICD10 codes. After 
Bonferroni correction, we found six statistically significant 
signals for ICD10 codes, including one for Parkinson disease 
(G20; P ¼ 5.3 × 10−7; β −0.61) (Fig. 3D). When we re-run 
this analysis, this time under a recessive model, we observed a 
marginal increase in signal strength (median increase of 0.74 
on −log10 P) and found statistically significant signal for one 
additional ICD10 code: E66 (obesity).

3.3 Investigating how autoencoder-derived OCT 
phenotypes are related between them and with 
other retinal traits and diseases
To gain insights into the nature of the autoencoder-derived 
embedded features, we performed correlation and logistic re
gression analyses. First, we examined the direct pairwise cor
relation between the 64 embeddings; a few prominent 
clusters were noted (Fig.4A —upper triangle; Supplementary 
Fig. S5). Then we looked at genetic correlation (Fig. 4A— 
lower triangle); a notable observation was the discrepancy 
between the degree of direct and genetic correlation for many 
groups of embeddings. This suggests that although the latent 
space is complex and includes (linearly) correlated features, 
the different embeddings are able to represent discrete factors 
related to different aspects of retinal morphology genetics.

We subsequently investigated the relationship between the 
64 embedded features and a set of traits and disease codes 
(ICD10) that are available in the UK Biobank dataset. 
Unsurprisingly, most embeddings correlated with retinal 
layer thickness parameters (Supplementary Fig. S6). We then 

Table 1. Comparative analyses of conventional and MTAG GWAS results 
(primary analysis)

GWAS MTAG GWAS
64 embeddings 64 embeddings 25 PCAs

Total genetic variants  
(P < 5 × 10−8)

14 885 9 520 11 075

Lead genetic variants  
(P < 5 × 10−8)

443 99 157

GWAS, genome-wide association study; MTAG, multi-trait analysis of 
GWAS; PCA, principal component analysis.
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used a logistic regression approach (with sex, age, height, and 
weight as covariates) and detected significant associations be
tween specific embeddings and the following conditions: non- 
insulin-dependent diabetes, epilepsy, glaucoma, and chronic is
chemic heart disease (Fig. 4B). Two of these lead signals (epilespy 
and chronic ischemic heart disease) are associated very specifi
cally to only one embedding each (embedding no. 1 and no. 26, 
respectively). In contrast, glaucoma is associated with two differ
ent embeddings (no. 39 and no. 47) and diabetes to three sequen
tial embeddings (nos. 36–38) (Fig. 4C). Reassuringly, GWAS 
analysis of embeddings no. 36–38 revealed statistically significant 
signals linked to ADCY5 (Supplementary Table S1), a gene that 
influences glucose metabolism and has been previously linked to 
non-insulin-dependent diabetes by multiple association studies 
(Roman et al. 2017).

To understand which aspects of retinal morphology drove the 
association between the embedded features and the lead disease 

codes (non-insulin-dependent diabetes, epilepsy, glaucoma, and 
chronic ischemic heart disease), we inspected a set of retinal 
thickness difference maps. These compared retinal thickness in 
UK Biobank participants that had been assigned the relevant 
ICD10 code (after OCT imaging) to those that have not 
(Fig. 4D). In keeping with previous observations: (i) the main 
areas of difference for diabetes were the paracentral region and 
the areas temporal to the optic disc (corresponding to the major 
retinal vessels) (Li et al. 2021); (ii) the main area of difference for 
glaucoma corresponded to what is described in the glaucoma lit
erature as the “macular vulnerability zone” (Hood 2017).

3.4 Using autoencoder-derived OCT phenotypes to 
gain insights into disease risk
We investigated if autoencoder-derived embedded features 
from an individual’s OCT scan can help predict the 

Figure 2. Genome-wide association studies of autoencoder-derived retinal OCT phenotypes (primary analysis). (A) Manhattan plot showing the P-values 
obtained from common-variant GWAS of embedded features (64 embeddings and first 25 embedding-related principal components). Signals that 
reached genome-wide significance (P < 5 × 10−8) only in embedding variable analyses are highlighted with dark blue. Signals that reached genome-wide 
significance only in analyses of embedding-related principal components are highlighted with orange. Signals that reach genome-wide significance only in 
MTAG of embedding variables are highlighted with green. All other genome-wide significant signals are highlighted with cyan. (B) Venn diagram shows 
the overlap of lead signals among: conventional GWAS of the 64 embeddings (“encoder” group in light blue); MTAG of the 64 embeddings (“MTAG” 
group in light green) and conventional GWAS of the first 25 embedding-related principal components (“PCA” group in light orange). (C) Genomic inflation 
factor lamda (λ) for 64 embedding-, 64 MTAG- and 25 PCA-GWAS (median λGC ¼ 1.016).
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occurrence of certain diseases, including glaucoma and car
diovascular disorders. We used survival analysis (Cox pro
portional hazard regression) and found significant links 
between specific embeddings and the occurrence of disease 
(after the OCT scan date) (Fig. 5A). High-risk cohorts identi
fied based on the embedded features showed a higher chance 
of being affected by glaucoma or cardiovascular conditions 
compared to the sex-stratified baseline rate of disease occur
rence. In other words, the embedded features could help iden
tify high-risk cohorts (Fig. 5B). It is highlighted that a few 
embeddings appear to be linked to multiple diseases (e.g. no. 
28), while others have no effect on any disease or are specific 
to single disease codes (e.g. embedding no. 18 for chronic is
chemic heart disease). A notable observation is the link be
tween multiple embeddings and essential hypertension. This 
is often in the presence of signals from other cardiovascular 
disease codes, suggesting that changes in blood pressure can 
lead to alterations in OCT-evaluated retinal structure which 
may in turn be a marker for the development of cardiovascu
lar complications (Fig. 5C).

4 Discussion
Phenotypes are abstract entities that can be thought of as sim
plified maps carved from higher dimension spaces (Cortese 
et al. 2021). These maps are generally influenced by a combi
nation of genetic, environmental, and stochastic factors. 
Discovering phenotypes that represent distinct biological 

pathways and/or have pragmatic medical significance is of 
particular interest (Dahl and Zaitlen 2020). Here, we show 
that a computational, autoencoder-based approach can be 
used to efficiently extract informative phenotypes from reti
nal OCT images.

Analysis of the genetic basis of autoencoder-derived em
bedded features revealed 118 statistically significant (P < 3.2 
× 10−10) association signals. Notably, three recent studies 
that used a similar analytical approach but focused on differ
ent imaging modalities—fundus photography (Kirchler et al. 
2022, Xie et al. 2024) and cardiac magnetic resonance images 
(Bonazzola et al. 2024)—identified a slightly smaller number 
of genetic associations (Supplementary Table S2). While 
many of the loci detected here have prior links to retinal phe
notypes, at least 20 of them have no such prior association. 
One example is the locus around LPHN2/ADGRL2, a gene 
encoding a synaptic adhesion molecule implicated in guiding 
neural circuit connectivity (Donohue et al. 2021) (lead 
marker: rs1492258; association with seven autoencoder- 
derived embedded features; minimum P 1.4 × 10−15). 
Although this gene is expressed in the retina, especially in the 
bipolar cells (Karlsson et al. 2021), it has not been previously 
associated with a retinal phenotype.

Reassuringly, there was a significant overlap between the 
findings of the present study and the results of previous anal
yses that investigated the genetic architecture of traditional 
OCT-derived retinal phenotypes. These include three UK 
Biobank studies: (i) one that looked at macular (i.e. total 

Table 2. Summary of the 10 top-ranking loci associated with autoencoder-derived retinal OCT phenotypes.a

Top-ranking  
common  
variant in  

locus

Chr: position  
(grch37)

Key gene(s) Allele freq  
(ukb)

Minimum  
P-value

Embeddings with  
significant result  

for the locus

Selected previous  
association(s) with  

the detected significant  
variants in the locus GWAS  

catalog; (Panelapp)

rs17421627 5:87847586 LINC00461 0.07 4 × 10−68 83 Retinal thickness measurements, retinal 
vascular fractal density

rs62075722 17:79611271 TSPAN10/ 
NPLOC4/ 
PDE6G

0.65 1 × 10−62 83 Retinal thickness measurements, 
refractive error, eye color, hair color

rs3138142 12:56115585 RDH5/CD63 0.24 1 × 10−56 91 Retinal thickness measurements, 
refractive error, retinal vascular fractal 
density; (retinal dystrophy)

rs13171669 5:148601243 AFAP1L1/ABLIM3 0.43 1 × 10−36 84 Retinal thickness measurements, height, 
waste-hip ratio, lung function

rs12719025 7:51100190 COBL 0.46 1 × 10−36 113 Retinal thickness measurements, 
refractive error

rs33912345 14:60976537 SIX6/C14orf39/ 
PPPM1A

0.61 4 × 10−28 6 Retinal thickness measurements, 
glaucoma, height; (ocular 
malformations)

rs887595 14:74666641 VSX2/LIN52 0.82 6 × 10−27 85 Retinal thickness measurements; 
(microphthalmia)

rs17279437 3:45814094 SLC6A20 0.11 8 × 10−24 33 Retinal thickness measurements, macular 
telangiectasia, brain measurements, 
metabolite measurements; 
(hyperglicynuria)

rs1042602 11:88911696 TYR 0.37 5 × 10−22 29 Retinal thickness measurements, brain 
measurements, skin color, hair 
color; (albinism)

rs62175360 2:218520035 DIRC3 0.07 9 × 10−22 21 Retinal thickness measurements, optic 
disc measurements, brain 
measurements, metabolite 
measurements, height, cancer

a The above loci were identified after selecting fine mapped variants that had a P < 3.2 × 10−10 in the primary analysis and a P < 5 × 10−8 in the 
replication study. Manual inspection of linkage disequilibrium patterns was subsequently performed to further refine the signals and the 10 loci with the 
lowest P-value were selected. UKB, UK Biobank.
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central retinal) thickness and reported 139 loci (Gao et al. 
2019), and (ii) two from our group that investigated OCT- 
derived measurements of inner and outer retinal layers, and 
reported 46 and 111 loci, respectively (Currant et al. 2021, 
2023). Overall, 36% (98/273) of the combined lead loci from 
these studies also reached genome-wide significance in the 
present analysis (58%, 33%, and 41% for Currant et al. 
2021, 2023 and Gao et al. 2019, respectively). Interestingly, 
the two signals with the highest statistical significance in the 
macular thickness GWAS conducted by Gao et al. (2019)
were also the most significant hits in this study (Fig. 2). The 
marker with the highest statistical significance was within the 
LINC00461 locus. LINC00461 is a long noncoding RNA 
that is the primary transcript of miR-9-2. LINC00461 is 
highly expressed in neural stem cells and a decrease in its ex
pression has been shown to alter the timing of retinal neuro
genesis (Thomas et al. 2022). The locus with the second 
highest statistical significance encompassed the TSPAN10 
gene. In the eye, TSPAN10 is predominantly expressed in 
melanin-containing cells (retinal pigment epithelia (RPE) and 
uveal melanocytes), and the corresponding protein is thought 
to have a role in regulating retinal cell fate and development 

(Dornier et al. 2012, Haining et al. 2012, Orozco et al. 
2020). Further functional genomic analyses of these two key 
loci are expected to provide important insights into develop
mental processes shaping human retinal morphology.

An intriguing association that we detected was that be
tween certain autoencoder-derived retinal phenotypes and a 
common 17q21.31 inversion encompassing the MAPT gene. 
MAPT is primarily expressed in brain neurons, and genetic 
alterations impacting the MAPT locus have been linked to 
several neurodegenerative disorders including Alzheimer dis
ease, frontotemporal dementia and parkinsonism (Wang and 
Mandelkow 2016, Shi et al. 2021). Recently, inner retinal 
layer thickness parameters and glaucoma have been added to 
the growing list of phenotypes associated with the MAPT lo
cus (Gharahkhani et al. 2021, Diaz-Torres et al. 2023). 
Further work is required to pinpoint which (and how many) 
genes within the MAPT region are causally associated with 
retinal and brain phenotypes (Diaz-Torres et al. 2023). More 
broadly, the extent to which the overlap between neurode
generative disorders, retinal morphology, and glaucoma 
reflects pleiotropy rather than causal relationships remains to 
be determined. Of note, causal genetic effects in both 

Figure 3. Analysis of the chromosome 17q21.31 inversion association signal. (A) Genetic association study result highlighting a group of 2,936 common 
variants that passed the genome-wide significance threshold for MTAG of embedding no.21. The genetic alterations are colored based on their linkage 
disequilibrium (LD; R2) relationship to the inversion genotype. (B) Classification of the inversion status based on the pattern of alternative alleles across 
the 17q21.31 region for 487 409 UK Biobank participants. (C) Left eye retinal thickness maps showing the difference in retinal structure between 
individuals with different inversion-related alleles. Left: mean depth (thickness) representation for reference:reference (no inversion) alleles. Middle: 
difference between image mean for reference:reference and image mean for reference:inversion (heterozygous inversion) genotypes. Right: difference 
between image mean for reference:reference and image mean for inversion:inversion (homozygous inversion) genotypes. A paracentral area of 
differential retinal thickness can only be visualized in the reference-to-homozygous difference map (in keeping with a recessive effect). (D) Phenome- 
wide associations for the inversion genotype against 454 ICD10 disease codes for which there were >1000 cases in the UK Biobank cohort (when only 
data obtained after the date of OCT image acquisition were considered); six codes (M16, G20, I84, M20, K60, J84) remained significant after Bonferroni 
correction; −log10 P-values are shown grouped by high-level ICD10 category.

8                                                                                                                                                                                                                         Sergouniotis et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/1/btae732/7919602 by guest on 13 February 2025



directions have been previously suggested between retinal im
aging traits and Alzheimer disease (Zhao et al. 2024) while 
little support has been found for a causal relationship be
tween glaucoma and Alzheimer disease (Budu-Aggrey 
et al. 2020).

Deep learning approaches have been shown to be able to 
detect imaging patterns that are not amenable to human iden
tification and which can assist with prediction tasks (Patel 
et al. 2024, Radhakrishnan et al. 2023, Zhou et al. 2024, 
Yun et al. 2024). For example, neural networks can predict 
sex and age with good accuracy from retinal OCT images 
(Chueh et al. 2022, Le Goallec et al. 2022), whereas human 
experts find these tasks impossible. Here, we investigated if 
autoencoders can identify OCT parameters that can be used 
to predict health outcomes (glaucoma and cardiovascular dis
ease). Although the overall predictive ability of the generated 
models was moderate, the autoencoder-derived features were 
shown to enhance risk stratification. These observations sug
gest that it is not inconceivable that purpose-built autoen
coders will play a role in improving the efficiency of medical 
screening programs in the future.

This study has a number of limitations. First, the autoen
coder input was retinal thickness maps generated using a 
U-Net approach which made our framework semi-automated 
(as a small amount of manual labeling was required). Using 
three-dimensional autoencoders to extract features directly 
from OCT volume scans could fully automate the pipeline, 

minimizing any subjective aspects and reducing the burden of 
data curation (Diaz-Pinto et al. 2022). Second, an empirical 
approach was used to determine the number of embedded 
features that were analyzed; this was guided by observations 
regarding the information-content and variance captured. 
Third, we only performed common-variant genetic associa
tion analyses of the obtained embedded features. The increas
ing availability of genome sequencing data in UK Biobank 
participants will allow us to more comprehensively look for 
genetic associations, including with rare variants and with 
copy number alterations in the future. Third, the fact that 
relationships were detected between embeddings and certain 
health outcomes does not necessarily imply causation. The 
main aim of this study was to assess if autoencoders can be 
utilized to produce biologically and clinically relevant pheno
types. In-depth confounder adjustment and causal inference 
studies were therefore not performed. Furthermore, the pre
dictive models described here have a proof-of-concept nature 
and are not intended for implementation (especially as the 
data used for training and evaluation were highly homoge
neous and focused on individuals with predominantly 
European-like ancestries).

In summary, this study proposes a framework for retinal 
phenotyping based on a self-supervised deep learning ap
proach. Our findings highlight that autoencoder-based tech
niques can be used to extract knowledge about the genetic 
factors determining retinal morphology. The outlined 

Figure 4. Correlation and logistic regression analyses of autoencoder-derived retinal OCT phenotypes. (A) Direct (upper triangle) and genetic (lower 
triangle) correlations among embedded features (64 embeddings). The two correlation matrices are displayed using a heatmap where rows and columns 
were ordered by the distances obtained via hierarchical clustering (on the embedding value correlation matrix only). (B) Logistic regression analysis of the 
64 embeddings against high-level ICD10 disease codes; only data obtained after the date of OCT image acquisition were included and only ICD10 codes 
for which there were >1000 cases in the UK Biobank cohort were considered; sex, age, height, and weight were factored in as covariates. A total of 
eight signals for five distinct ICD10 codes remained significant after Bonferroni correction: E11 (3), G40 (1), H40 (2), I25 (1), F10 (1). (C) Graph showing 
which specific embeddings were significantly correlated with the lead signals of the logistic regression analysis, i.e. non-insulin-dependent diabetes 
(E11), epilepsy (G40), glaucoma (H40) and chronic ischemic heart disease (I25); −log10 P-values are shown for all 64 embedded features. (D) Left eye 
retinal thickness maps showing the difference in retinal structure between UK Biobank participants who were diagnosed with non-insulin-dependent 
diabetes (E11; first row), epilepsy (G40; second row), glaucoma (H40; third row), and chronic ischemic heart disease (I25; fourth row) after having an OCT 
scan against the groups of individuals that have not been assigned the relevant ICD10 codes.
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approach is flexible and can be adapted and extended to 
other organs and imaging modalities.
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