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Abstract

Motivation: Genome-wide association studies (GWAS) have been remarkably successful in identifying associations between genetic variants
and imaging-derived phenotypes. To date, the main focus of these analyses has been on established, clinically-used imaging features. We
sought to investigate if deep learning approaches can detect more nuanced patterns of image variability.

Results: \We used an autoencoder to represent retinal optical coherence tomography (OCT) images from 31 135 UK Biobank participants. For
each subject, we obtained a 64-dimensional vector representing features of retinal structure. GWAS of these autoencoder-derived imaging
parameters identified 118 statistically significant loci; 41 of these associations were also significant in a replication study. These loci encom-
passed variants previously linked with retinal thickness measurements, ophthalmic disorders, and/or neurodegenerative conditions. Notably,
the generated retinal phenotypes were found to contribute to predictive models for glaucoma and cardiovascular disorders. Overall, we demon-
strate that self-supervised phenotyping of OCT images enhances the discoverability of genetic factors influencing retinal morphology and pro-

vides epidemiologically informative biomarkers.

Availability and implementation: Code and data links available at https://github.com/tf2/autoencoder-oct.

1 Introduction

Imaging technologies have greatly enhanced the scope and
precision of phenotype discovery. A wide range of imaging-
derived phenotypes are easily amenable to human identifica-
tion and are routinely used in biomedical contexts, including
in clinical practice (Oren et al. 2020). However, to capture
the complexity of human biology, there is a need to go be-
yond traditional clinically-focused and/or expert-curated im-
aging features (Gong et al. 2022).

Artificial neural networks (ANNs) are machine learning
models inspired by information processing in biological neu-
ral networks (LeCun et al. 2015, Hinton 2018, Hasson et al.
2020). ANNSs can be used to extract granular information
from images without introducing certain biases associated
with human curation. An autoencoder is a type of ANN that
is designed to transform an input set of data into a lower-
dimensional code (i.e. a set of latent space variables or

“embeddings”) and then to recreate the input from the
encoded representation (Hinton and Salakhutdinov 2006,
Michelucci 2022). Broadly, autoencoders can be used to effi-
ciently compress an image by identifying the key features that
lead to optimal reconstruction performance.

The most optically accessible part of the central nervous sys-
tem is the retina, the multilayered tissue that lines the back of
the eyes. The retina is particularly vulnerable to disease, and
disruption of its normal architecture (e.g. in conditions like
age-related macular degeneration or glaucoma) can lead to vi-
sual disability (Sheffield and Stone 2011, Zhao et al. 2024).
Examination of the retina relies, to a great extent, on imaging,
especially the use of optical coherence tomography (OCT).
OCT is a noninvasive, non-contact method for cross-sectional
imaging that has a resolution approaching that of histopathol-
ogy (Bouma et al. 2022). Application of ANN-based algo-
rithms in OCT image processing is attracting increasing
attention with key advantages including the rapid speed, high
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consistency and quantitative nature of the analyses (De Fauw
et al. 2018, Yim et al. 2020, Keenan et al. 2021).

To date, genetic studies of imaging phenotypes have mostly
focused on features associated with long-established clinical
diagnostic processes (Elliott et al. 2018, Xie et al. 2024). In
our own previous work, we used standardized OCT-derived
thickness measurements of the inner (Currant et al. 2021)
and outer (Currant ef al. 2023) retinal layers to good effect,
discovering previously unreported genetic associations and
exploring relationships with disease. Here, we performed ge-
nomic analyses on OCT imaging phenotypes extracted using
a self-supervised, autoencoder-based approach. We highlight
the autoencoder’s ability to derive biologically meaningful
phenotypes (with association to genetic variants not seen
in previous studies) and to contribute to predictive models
for health outcomes such as glaucoma and cardiovascu-
lar conditions.

2 Materials and methods
2.1 Cohort characteristics

We used data from the UK Biobank, a biomedical resource
containing genomic and health information from >500 000
individuals from across the United Kingdom (Bycroft et al.
2018). UK Biobank participants were recruited between
2006 and 2010 and were, at enrollment, between 40 and 69
years of age. At the initial assessment, UK Biobank volunteers
provided consent, answered questions on socio-demographic,
lifestyle and health-related factors, completed a range of
physical measures, and provided biological samples. DNA
was extracted from the donated blood samples and was used
to generate genotyping array data. The baseline information
has been extended in several ways. For example, repeat
assessments were conducted in subsets of the cohort every
few years (Bycroft et al. 2018). Notably, thousands of UK
Biobank participants underwent ophthalmic phenotyping in-
cluding imaging of the central retina using OCT (>84 000
individuals) (Patel et al. 2016, Chua et al. 2019). A total of
67 664 individuals were imaged at the time of their baseline
visit (Instance 0, “Initial assessment visit (2006-2010)”); this
cohort was the focus of the primary analysis. A further
17 090 different participants were imaged for the first time
during their first repeat assessment (Instance 1, “First repeat
assessment visit (2012-2013)”); these were included in the
replication study.

We performed quality control considering genetic and im-
aging parameters. First, to reduce the impact of population
stratification and to increase the validity of the conducted ge-
netic association studies, we focused on individuals within a
genetically well-mixed, European-like subset of the UK
Biobank. This was achieved by applying principal component
analysis (PCA) to UK Biobank genotypic data using standard,
previously-implemented methods (Currant et al. 2023).
Additional participants were excluded as their OCT scans
failed to meet a set of previously-described, rigorous quality
control criteria (Patel et al. 2016, Currant et al. 2021, 2023).
Finally, participants were removed on the basis of being rec-
ommended for exclusion from genetic studies by the UK
Biobank or because they were related to third degree or
more. The final dataset for the primary analysis included
31 135 study subjects (Supplementary Fig. S1). Similar
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criteria were used for the replication study with the exception
of the imaging quality control parameters which were identi-
cal to those described by Zekavat ef al. (2024).

2.2 Generation of thickness maps from OCT
volume scans

All the UK Biobank volunteers that were included in our
analysis were imaged using the 3D OCT-1000 Mark II device
(Topcon, Japan). OCT imaging was carried out in a dark
room without pupil dilation using the 3D 6 X 6 mm* macular
volume scan mode (128 horizontal B-scans in a 6 X 6 mm
raster pattern). The right eye was imaged first (Patel et al.
2016, Chua et al. 2019). Our analysis focused on left eye
images as we assumed that familiarity with the test would
have led to scans that, on average, had higher overall quality.
A total of 128 PNG images were generated from each tested
eye with the dimensions of each PNG image being 650 x 512
X 1 grayscale pixels. After cropping the top (superior) and
bottom (inferior) edge of the image area, PNG images with
dimensions of 512 x 512 x 1 pixels were obtained.

The 128 images of each OCT scan were used to create a
“thickness map”, i.e. a single image displaying the retinal
thickness throughout the imaged area. To achieve this, seg-
mentation of all the scans in the dataset was performed using
a U-Net-based approach. The utilized U-Net method was first
described in 2015 (Ronneberger et al. 2015) and involves a
fully convolutional network that consists of a contracting
path (that extracts features) and an expansive path (that
localizes objects).

Initially, the inner- and outer-most limits of the retina (cor-
responding to the inner limiting membrane and the Bruch’s
membrane, respectively) were manually identified in 100 ran-
domly selected OCT images using the https://www.make
sense.ai tool. The original images and the generated “ground
truth” segmentation masks were subsequently utilized to
train the U-Net. Adaptive moment estimation (Adam) was
used to optimize the algorithm for training the network
parameters, and training was performed for 50 epochs. The
output of the U-Net consisted of segmented OCT images
(analogous to the provided masks). These were used to calcu-
late retinal thickness (i.e. the vertical distance between the
top and bottom edge of the mask in each of the 512 points of
the horizontal axis). The obtained measurements were com-
pared to those acquired through the purpose-built Topcon
Advanced Boundary Segmentation (TABS) software (the lat-
ter are available in the UK Biobank dataset). Good correla-
tion was observed in retinae both with and without
pathology, increasing confidence in the utilized approach
(Supplementary Fig. S2). Finally, the thickness measurements
from the 128 images (“slices”) that were obtained in each
tested left eye were combined and used to generate a thick-
ness map for each UK Biobank participant that met the inclu-
sion criteria of this study (Fig. 1).

2.3 Autoencoder set-up

An autoencoder was used for self-supervised feature extrac-
tion from the 31 135 left eye OCT-derived thickness maps. A
conventional autoencoder architecture was utilized (Hinton
and Salakhutdinov 2006, Michelucci 2022): the encoder net-
work projected the input images to a low-dimensional space
(“latent space”) with 64 variables (“embeddings”), and a
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Figure 1. Outline of the experimental approach. OCT images from the central retinae of 67 321 UK Biobank participants were analyzed. After applying
quality control (QC) filters considering genetic information and image quality, a cohort of 31 135 study subjects was identified. Aiming to generate retinal
“thickness maps” for these individuals, OCT image segmentation was performed using an artificial neural network (U-Net) approach. In brief, 100 OCT
images were manually segmented and the generated segmentation masks (examples shown in yellow) were used as input to the U-Net which
subsequently segmented all other images. This allowed conversion of the 128 cross-sectional images obtained from each tested eye into a single
thickness map image. The thickness maps of the left eyes were then used as input to an autoencoder. This was trained utilizing 2500 training and 500
test images. The output of the embedding network was designed to be a 64-dimensional vector (i.e. 64 variables were obtained for each study subject).
These 64 autoencoder-derived embeddings were then used for genetic association studies, correlation analyses, and predictive modeling.

function was used to try to reconstruct the original images
from these 64 latent space representations. A mean squared
error (MSE) loss function was employed to measure the devi-
ation between reconstructed and input data (but otherwise
the reconstructed images were not used in the primary analy-
sis). It is noted that the autoencoder was trained end-to-end
for 150 epochs utilizing 2500 training and 500 test images.
We trialed different autoencoder layouts with bottleneck
layers of the following sizes: 128, 64, 32, and 16. For 128
and 64, we obtained very similar reconstruction loss curves
during training over 300 epochs. In contrast, for both 32 and
16, the image reconstruction loss could not be dropped below
0.006, suggesting that these models were unable to generalize
as well as the larger bottleneck sizes (Supplementary Fig. S3).
We then selected a bottleneck size of 64 since this was the
smallest size with the best image reconstruction accuracy
among the layouts that we tested.

To extract further information from the latent space, PCA
(i.e. linear dimensionality reduction) was performed using the
64 embeddings as input; the first 25 principal components
were then considered for further analyses.

2.4 Genome-wide association studies:

primary analysis

Genome-wide association studies (GWAS) analyses of the
autoencoder-derived embedded features (64 embeddings and
25 embedding-related principal components) were performed
using an additive linear model implemented in REGENIE
v3.1.1 (https://rgcgithub.github.io/regenie/) (Mbatchou et al.
2021). All embedded variables were inverse rank normalized
prior to modeling with REGENIE to avoid any potential bias
that could be introduced by outlier values (and in an attempt
to prevent embeddings with a broader range of variation
overshadowing those with a narrower range). The following
quality control filters were applied on the imputed genotype

data (UK Biobank data-field 22828) during the creation of
the whole-genome regression model (REGENIE step 1): a mi-
nor allele frequency (MAF) > 5%; Hardy—Weinberg equilib-
rium test not exceeding P > 1 x 107'°; a genotyping rate
above 99%; not present in a low-complexity region, a region
of long-range linkage disequilibrium or a sex chromosome
(Mbatchou et al. 2021). This resulted in up to 7 114 193
genotyped variants that were tested for association using a
Firth logistic regression model (REGENIE step 2). Correction
for the following covariates was undertaken: age at recruit-
ment (data-field 21022), sex (data-field 31), height (data-field
50), weight (data-field 21002), refractive error (calculated as
spherical error + 0.5 X cylindrical error; data-fields 5085
and 5086), and genetic principal components 1 to 20 (data-
field 22009).

A degree of correlation was expected among autoencoder-
derived embeddings so the summary statistics obtained
from the GWAS analyses were used to perform a multi-trait
meta-analysis. First, embeddings with a high genetic correla-
tion (i.e. with Pearson correlation coefficient R > 0.9) were
identified. Then, the MTAG v1.0.8 tool (https://github.com/
JonJala/mtag) (Turley et al. 2018) was used to conduct a sin-
gle meta-analysis for every individual inverse rank normal-
ized embedding, leveraging the findings from correlated
embedded features and producing an updated set of GWAS
summary statistics for each of these 64 variables. Under cer-
tain assumptions, the generated estimates would be expected
to be more precise than those obtained from the input GWAS
(Turley et al. 2018).

To refine the obtained association signals, further analyses
were performed using the GCTA-CO]JO tool (https://yanglab.
westlake.edu.cn/software/gcta/#COJO) (Yang et al. 2012).
These analyses were conducted utilizing linkage disequilib-
rium estimates from a reference sample (Currant et al. 2023)
and summary statistics from: (i) the 64 embedding GWAS,

Gz0z Aenige4 ¢| uo 1senb Aq Z09616//2€/9B10/ L/ L /o101 e/SoleWIOUIOlG/W0D dnodlwspede.//:sdly woly papeojumoq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://rgcgithub.github.io/regenie/
https://github.com/JonJala/mtag
https://github.com/JonJala/mtag
https://yanglab.westlake.edu.cn/software/gcta/#COJO
https://yanglab.westlake.edu.cn/software/gcta/#COJO

(ii) the 25 embedding-related principal component GWAS,
(iii) the 64 embedding MTAG-GWAS. Genetic variants in
loci that were on different chromosomes or more than 10 Mb
distant from each other were assumed to be uncorrelated.

Genetic changes in the main variant set were annotated us-
ing Ensembl (Cunningham et al. 2022), Open Targets
(Ochoa et al. 2021), and GWAS Catalog (Sollis et al. 2023)
data. To accurately summarize the strongest signals, the link-
age disequilibrium metrics of the changes that were
highlighted as lead variants by GCTA-COJO analysis and
were within 1 Mb of one another were manually inspected
using the LDlink tool (Myers et al. 2020).

2.5 Genome-wide association studies: replication

We sought to replicate the genetic associations detected in the
primary analysis in a different set of OCT images. As the
number of open resources that have sufficiently large human
cohorts with combined genomic and OCT imaging data is
small, we made use of the UK Biobank “Instance 1” left eye
scans (data-field: 21017_1_0). This included images from
17 090 participants that were not part of the discovery/pri-
mary cohort and were not used for training of either the U-
net segmentation or the autoencoder. It is noted that these ad-
ditional OCT images were obtained at a different time
(2012-2013) compared to the scans in the discovery/primary
cohort (2006-2010). Due to the inconsistent capture of cer-
tain OCT-related metrics in the replication cohort scans, we
used a different set of image QC exclusion criteria. Following
the removal of poor quality and outlier images (using the ap-
proach described by Zekavat et al. (2024)), the replication
cohort included 10 439 high-quality scans from unrelated
UK Biobank participants of predominantly European-like
genetic ancestries (as determined by PCA of genotypes). A
replication GWAS was then performed using exactly the
same parameters as in the discovery/primary study (outlined
above). To gain insights into the extent to which the findings
of the primary and the replication study were in agreement,
we assessed the degree of correlation between the detected
effect size estimates. The relevant beta—beta plots are shown
in Supplementary Fig. S4.

2.6 Correlation and logistic regression analyses

Direct pairwise comparisons between the 64 embeddings
were performed and the relevant Pearson correlation coeffi-
cients (R) were calculated. Genetic correlation was also esti-
mated, again using Pearson correlation coefficients but this
time utilizing the effect size estimates from across the signifi-
cant associations for all 64 embeddings.

The correlation structure of the embedding space was fur-
ther studied using hierarchical clustering of the distance ma-
trix between the 64 embeddings. The canonical correlation
values for every pairwise test and every embedding were sub-
sequently calculated (Supplementary Fig. S5).

In addition to evaluating the relationship between pairs of
the studied embedded features, correlation analyses were per-
formed to look for links between each of these 64 features
and four ophthalmic traits (Supplementary Fig. S6).
Furthermore, a logistic regression approach was used to look
for relationships between embeddings and a set of diseases
(high-level ICD10 codes); only the 454 disease-related codes
for which there were >1000 cases in the UK Biobank cohort
were considered (when factoring in only data obtained after
the date of OCT image acquisition (2012)). Age, sex, height,
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and weight were used as covariates and the statistical signifi-
cance threshold was determined using Bonferroni correction.

2.7 Predictive modeling

Survival analysis was performed using penalized Cox propor-
tional hazard regression; a mixture of L1 and L2 regulariza-
tion was utilized (often referred to as the Cox elastic net). We
focused on two main outcomes—glaucoma and cardiovascu-
lar disorders (essential hypertension, angina pectoris, and
chronic ischemic heart disease). These included ICD10 codes
that were highlighted as significant by the logistic regression
analyses described in the previous section and were chosen as
predicting them was deemed to be of clinical significance.
Only diagnoses assigned after the date of OCT image acquisi-
tion were considered. To evaluate discriminative perfor-
mance, we used Harrell’s C-index as a measure of the
concordance between predicted and actual risk. The hyper-
parameter of L1/L2 penalization strength was set to 0.1, and
20 repetitions of five-fold cross-validation were used to eval-
uate model performance. Survival curves were estimated us-
ing the Kaplan—Meier estimator.

2.8 Ethics approval

The UK Biobank has received approval from the National
Information Governance Board for Health and Social Care
and the National Health Service North West Centre for
Research Ethics Committee (Ref: 11/NW/0382). This re-
search was conducted using the UK Biobank Resource under
projects 49978, 53144, and 2112. All investigations were
conducted in accordance with the tenets of the Declaration
of Helsinki.

3 Results
3.1 Obtaining autoencoder-derived phenotypes
from OCT images

After applying standard genetic and OCT quality control fil-
ters (Patel et al. 2016, Currant et al. 2021), we defined a sub-
set of the UK Biobank population that (i) can be considered
genetically well-mixed (i.e. includes participants that were
assigned by genotype PCA to a cluster with subjects of mostly
European-like ancestries) and (ii) only contains individuals
with high-quality OCT images (Supplementary Fig. S1). This
cohort included 31 135 individuals and had a similar sex and
age profile to the overall UK Biobank population (Currant
et al. 2023). Most study subjects were female (54%) and self-
identified as White British (91%). The mean age at OCT im-
aging was 56 years (standard deviation: 8 years).

Study subjects had an OCT “volume scan” of the central
retina in each eye. Each volume scan contained 128 cross-
sectional images and was generated using a horizontal raster
scanning protocol. To extract thickness information and to
compress these 128 images into a single retinal “thickness
map” we utilized an ANN algorithm involving a U-Net archi-
tecture (Ronneberger et al. 2015) (Fig. 1; Materials
and methods).

The 31 135 left eye retinal thickness maps that we gener-
ated were then used as input to an autoencoder. This was
trained end-to-end for 150 epochs utilizing 2500 training and
500 test images. We explored various embedding dimension-
alities and opted for a 64-dimensional vector (i.e. the latent
space or “bottleneck layer” contained 64 features) (Fig. 1;
Materials and methods). It has been previously shown that
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this autoencoder architecture can sufficiently represent data-
sets of similar complexity (Schroff et al. 2015, Song et al.
2015). A reconstruction error of 0.0037 was obtained
(Supplementary Fig. S3).

The univariate distributions of the 64 embeddings are
shown in Supplementary Fig. S7. Mostly unimodal or bi-
modal distributions were observed.

To create an alternative representation allowing informa-
tion to be combined across different variables within the la-
tent space, we used the 64 embeddings as input to a PCA.
The first 25 principal components, representing 98.5% of the
variance within the embeddings, were studied further and
used for genetic association tests.

3.2 Genetic association studies of autoencoder-
derived OCT phenotypes

To look for genetic factors associated with the obtained
autoencoder-derived embedded features (i.e. the 64 embed-
dings and the first 25 embedding-related principal compo-
nents), we performed common-variant GWAS. We used
REGENIE (Mbatchou ef al. 2021) and incorporated the fol-
lowing set of covariates into the model: age at recruitment,
sex, height, weight, refractive error, and genetic principal
components 1 to 20. Notably, each embedded feature was in-
verse rank normalized prior to performing genetic association
testing. As we anticipated a degree of correlation between
autoencoder-derived phenotypes, we also conducted a multi-
trait meta-analysis using MTAG (Turley et al. 2018). This in-
volved identifying genetically correlated embeddings and
leveraging these relationships to obtain adjusted GWAS
results for each of the 64 embeddings (Materials
and methods).

Overall, 418 312 association signals from 17 022 common
variants reached the genome-wide significance threshold (P <
5 x 107®) (Table 1; Fig. 2). These merged into 239 lead loci
following analysis with GCTA-COJO (conditional and joint
multiple-variant analysis) (Yang et al. 2012) (Supplementary
Table S1); 118 of these remained significant when a conserva-
tive/higher (“study-wide”) threshold was used to account for
all the different association routes that were utilized (P < 3.2
x 107! following Bonferroni correction for 153 tests).

A replication study was conducted using OCT scans from
10 409 UK Biobank participants that were not included in the
primary analysis. There was a high level of concordance in the
findings of the two association studies (Supplementary Fig. S4).
A total of 41 loci passed both the conservative study-wide
threshold (P < 3.2 x 107'%) in the primary analysis and a
Bonferroni correction based threshold (P < 8.5 x 107> follow-
ing Bonferroni correction for 118 tests) in the replication study.
Most of these loci encompass variants previously linked to reti-
nal layer thickness parameters (including around LINC00461,

Table 1. Comparative analyses of conventional and MTAG GWAS results
(primary analysis)

GWAS MTAG GWAS

64 embeddings 64 embeddings 25 PCAs

Total genetic variants 14 885 9520 11 075
(P<5x107%)

Lead genetic variants 443 99 157
(P<5x107%)

GWAS, genome-wide association study; MTAG, multi-trait analysis of
GWAS; PCA, principal component analysis.

TSPAN10, and COBL) (Gao et al. 2019, Currant et al. 2021,
2023) while a subset of them has also been linked to monogenic
retinal disorders [including RDHS (retinal dystrophy), TYR (al-
binism), and GNB3 (congenital stationary night blindness)]
(Table 2; Supplementary Table S1).

For each of the 118 lead loci that were found to be signifi-
cant in the primary analysis (P < 3.2 x 107'%), we compared
the retinal thickness maps of heterozygotes for the key vari-
ant to that of homozygotes. Interestingly, some genetic altera-
tions appeared to have recessive effects (e.g. rs62075722)
while others appeared to have dominant effects (e.g.
rs11051131); topographical variation was also noted
(Supplementary File S1).

Our primary analysis identified notable associations be-
tween multiple embeddings and a locus encompassing the
MAPT (microtubule-associated protein tau) gene. The
detected signal appears to be driven by a common ancestral
genomic inversion at 17g21.31 (Fig. 3A) (Stefansson et al.
20035, Espinosa et al. 2023). Using the pattern of alternative
alleles across this genomic region, we were able to classify
487 409 UK Biobank participants as either reference:refer-
ence (no inversion), reference:inversion (heterozygous inver-
sion), or inversion:inversion (homozygous inversion)
(Fig. 3B). In accordance with previous studies (Steinberg
et al. 2012), we found that the 17q21.31 inversion is com-
mon in individuals of European-like ancestries, rare in indi-
viduals of African-like ancestries and very rare in Asian-like
populations (allele frequency of 0.22, 0.01, and 0.004 respec-
tively). When we compared the retinal thickness profiles be-
tween study subjects that carry heterozygous and
homozygous inversion genotypes, we found that the
17g21.31 inversion appears to affect retinal thickness in an
apparently recessive pattern (Fig. 3C). We then performed a
phenome-wide association study (PheWAS) of the 17q21.31
inversion using disease-related ICD10 codes. After
Bonferroni correction, we found six statistically significant
signals for ICD10 codes, including one for Parkinson disease
(G20; P = 5.3 x 1077; B -0.61) (Fig. 3D). When we re-run
this analysis, this time under a recessive model, we observed a
marginal increase in signal strength (median increase of 0.74
on —logio P) and found statistically significant signal for one
additional ICD10 code: E66 (obesity).

3.3 Investigating how autoencoder-derived OCT
phenotypes are related between them and with
other retinal traits and diseases

To gain insights into the nature of the autoencoder-derived
embedded features, we performed correlation and logistic re-
gression analyses. First, we examined the direct pairwise cor-
relation between the 64 embeddings; a few prominent
clusters were noted (Fig.4A —upper triangle; Supplementary
Fig. S5). Then we looked at genetic correlation (Fig. 4A—
lower triangle); a notable observation was the discrepancy
between the degree of direct and genetic correlation for many
groups of embeddings. This suggests that although the latent
space is complex and includes (linearly) correlated features,
the different embeddings are able to represent discrete factors
related to different aspects of retinal morphology genetics.
We subsequently investigated the relationship between the
64 embedded features and a set of traits and disease codes
(ICD10) that are available in the UK Biobank dataset.
Unsurprisingly, most embeddings correlated with retinal
layer thickness parameters (Supplementary Fig. S6). We then

Gz0z Aenige4 ¢| uo 1senb Aq Z09616//2€/9B10/ L/ L /o101 e/SoleWIOUIOlG/W0D dnodlwspede.//:sdly woly papeojumoq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae732#supplementary-data

6 Sergouniotis et al.
LOC102546226
LINCUO461
NPLOC4
60 o
RDHS
B
] TSPANIO
> a0
o ABLIM3 COBL
=
=3
: Pm‘é MACROD2
v
DIRCS s Eqre1 EIF3E I ey
LOCB41515 1 ADCYS TYR GRP
@ KOMSB ' — MIRSIHE ATOH?  pans teocas |
CEN SNRPF .
LPHN2 H ) MEF2C LOC100130298 Pax2 A3B7 ARH 3AP23
B prox1 TE¥M i ' . ,JN MIRG130 e LOC102724084
T 'c'?ﬁi’éé:m RAR| 3 b soni sniPEi W'ﬁmfzﬁkﬁz TSPANDAZorfa2 | FERES Efaf e LIF
H CoL4ddq JOB02 o2 2 | RO Pt FOXN4 DA&H Hﬁﬁlﬁﬁ CTCEK\UL
____________ a1 S i L B !
| 1 1 i |
| | I | | | . | :
| | | 1
1 2 3 4 S ] 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22
Chromosome
-
47 1.050 4 ®
-
97 36 1
©
2
27 £ 1.025 1
<
1.000 4 ‘ ‘
v v '
MTAG ENCODER MTAG PCA

Figure 2. Genome-wide association studies of autoencoder-derived retinal OCT phenotypes (primary analysis). (A) Manhattan plot showing the P-values
obtained from common-variant GWAS of embedded features (64 embeddings and first 25 embedding-related principal components). Signals that
reached genome-wide significance (P < 5 x 107%) only in embedding variable analyses are highlighted with dark blue. Signals that reached genome-wide
significance only in analyses of embedding-related principal components are highlighted with orange. Signals that reach genome-wide significance only in
MTAG of embedding variables are highlighted with green. All other genome-wide significant signals are highlighted with cyan. (B) Venn diagram shows
the overlap of lead signals among: conventional GWAS of the 64 embeddings (“encoder” group in light blue); MTAG of the 64 embeddings (“MTAG"”
group in light green) and conventional GWAS of the first 25 embedding-related principal components (“PCA" group in light orange). (C) Genomic inflation
factor lamda (1) for 64 embedding-, 64 MTAG- and 25 PCA-GWAS (median AGC = 1.016).

used a logistic regression approach (with sex, age, height, and
weight as covariates) and detected significant associations be-
tween specific embeddings and the following conditions: non-
insulin-dependent diabetes, epilepsy, glaucoma, and chronic is-
chemic heart disease (Fig. 4B). Two of these lead signals (epilespy
and chronic ischemic heart disease) are associated very specifi-
cally to only one embedding each (embedding no. 1 and no. 26,
respectively). In contrast, glaucoma is associated with two differ-
ent embeddings (no. 39 and no. 47) and diabetes to three sequen-
tial embeddings (nos. 36-38) (Fig. 4C). Reassuringly, GWAS
analysis of embeddings no. 36-38 revealed statistically significant
signals linked to ADCYS5 (Supplementary Table S1), a gene that
influences glucose metabolism and has been previously linked to
non-insulin-dependent diabetes by multiple association studies
(Roman et al. 2017).

To understand which aspects of retinal morphology drove the
association between the embedded features and the lead disease

codes (non-insulin-dependent diabetes, epilepsy, glaucoma, and
chronic ischemic heart disease), we inspected a set of retinal
thickness difference maps. These compared retinal thickness in
UK Biobank participants that had been assigned the relevant
ICD10 code (after OCT imaging) to those that have not
(Fig. 4D). In keeping with previous observations: (i) the main
areas of difference for diabetes were the paracentral region and
the areas temporal to the optic disc (corresponding to the major
retinal vessels) (Li et al. 2021); (ii) the main area of difference for
glaucoma corresponded to what is described in the glaucoma lit-
erature as the “macular vulnerability zone” (Hood 2017).

3.4 Using autoencoder-derived OCT phenotypes to
gain insights into disease risk

We investigated if autoencoder-derived embedded features
from an individual’s OCT scan can help predict the
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Table 2. Summary of the 10 top-ranking loci associated with autoencoder-derived retinal OCT phenotypes.®

Top-ranking  Chr: position Key gene(s) Allele freq  Minimum  Embeddings with Selected previous
common (grch37) (ukb) P-value significant result association(s) with
variant in for the locus the detected significant
locus variants in the locus GWAS
catalog; (Panelapp)
rs17421627 5:87847586  LINCO00461 0.07 4x107°8 83 Retinal thickness measurements, retinal
vascular fractal density
rs62075722 17:79611271  TSPAN10/ 0.65 1x10°¢? 83 Retinal thickness measurements,
NPLOCH4/ refractive error, eye color, hair color
PDE6G
rs3138142 12:56115585 RDHS/CD63 0.24 1x107%¢ 91 Retinal thickness measurements,
refractive error, retinal vascular fractal
density; (retinal dystrophy)
rs13171669 5:148601243  AFAP1L1/ABLIM3 0.43 1x 1073 84 Retinal thickness measurements, height,
waste-hip ratio, lung function
rs12719025 7:51100190 COBL 0.46 1x 1073 113 Retinal thickness measurements,
refractive error
rs3391234S5 14:60976537  SIX6/Cl40rf39/ 0.61 4x10728 6 Retinal thickness measurements,
PPPM1A glaucoma, height; (ocular
malformations)
1s887595 14:74666641  VSX2/LINS2 0.82 6x 107 85 Retinal thickness measurements;
(microphthalmia)
rs17279437 3:45814094  SLC6A20 0.11 8 x 107 33 Retinal thickness measurements, macular
telangiectasia, brain measurements,
metabolite measurements;
(hyperglicynuria)
rs1042602 11:88911696 TYR 0.37 5x 10722 29 Retinal thickness measurements, brain
measurements, skin color, hair
color; (albinism)
rs62175360  2:218520035 DIRC3 0.07 9x107% 21 Retinal thickness measurements, optic

disc measurements, brain
measurements, metabolite
measurements, height, cancer

* The above loci were identified after selecting fine mapped variants that had a P < 3.2 x 107'% in the primary analysis and a P < 5 x 1073 in the
replication study. Manual inspection of linkage disequilibrium patterns was subsequently performed to further refine the signals and the 10 loci with the

lowest P-value were selected. UKB, UK Biobank.

occurrence of certain diseases, including glaucoma and car-
diovascular disorders. We used survival analysis (Cox pro-
portional hazard regression) and found significant links
between specific embeddings and the occurrence of disease
(after the OCT scan date) (Fig. SA). High-risk cohorts identi-
fied based on the embedded features showed a higher chance
of being affected by glaucoma or cardiovascular conditions
compared to the sex-stratified baseline rate of disease occur-
rence. In other words, the embedded features could help iden-
tify high-risk cohorts (Fig. 5B). It is highlighted that a few
embeddings appear to be linked to multiple diseases (e.g. no.
28), while others have no effect on any disease or are specific
to single disease codes (e.g. embedding no. 18 for chronic is-
chemic heart disease). A notable observation is the link be-
tween multiple embeddings and essential hypertension. This
is often in the presence of signals from other cardiovascular
disease codes, suggesting that changes in blood pressure can
lead to alterations in OCT-evaluated retinal structure which
may in turn be a marker for the development of cardiovascu-
lar complications (Fig. 5C).

4 Discussion

Phenotypes are abstract entities that can be thought of as sim-
plified maps carved from higher dimension spaces (Cortese
et al. 2021). These maps are generally influenced by a combi-
nation of genetic, environmental, and stochastic factors.
Discovering phenotypes that represent distinct biological

pathways and/or have pragmatic medical significance is of
particular interest (Dahl and Zaitlen 2020). Here, we show
that a computational, autoencoder-based approach can be
used to efficiently extract informative phenotypes from reti-
nal OCT images.

Analysis of the genetic basis of autoencoder-derived em-
bedded features revealed 118 statistically significant (P < 3.2
x 107'°) association signals. Notably, three recent studies
that used a similar analytical approach but focused on differ-
ent imaging modalities—fundus photography (Kirchler et al.
2022, Xie et al. 2024) and cardiac magnetic resonance images
(Bonazzola et al. 2024)—identified a slightly smaller number
of genetic associations (Supplementary Table S2). While
many of the loci detected here have prior links to retinal phe-
notypes, at least 20 of them have no such prior association.
One example is the locus around LPHN2/ADGRL2, a gene
encoding a synaptic adhesion molecule implicated in guiding
neural circuit connectivity (Donohue ef al. 2021) (lead
marker: rs1492258; association with seven autoencoder-
derived embedded features; minimum P 1.4 x 107%).
Although this gene is expressed in the retina, especially in the
bipolar cells (Karlsson et al. 2021), it has not been previously
associated with a retinal phenotype.

Reassuringly, there was a significant overlap between the
findings of the present study and the results of previous anal-
yses that investigated the genetic architecture of traditional
OCT-derived retinal phenotypes. These include three UK
Biobank studies: (i) one that looked at macular (i.e. total
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Figure 3. Analysis of the chromosome 17g21.31 inversion association signal. (A) Genetic association study result highlighting a group of 2,936 common
variants that passed the genome-wide significance threshold for MTAG of embedding no.21. The genetic alterations are colored based on their linkage
disequilibrium (LD; R?) relationship to the inversion genotype. (B) Classification of the inversion status based on the pattern of alternative alleles across
the 17921.31 region for 487 409 UK Biobank participants. (C) Left eye retinal thickness maps showing the difference in retinal structure between
individuals with different inversion-related alleles. Left: mean depth (thickness) representation for reference:reference (no inversion) alleles. Middle:
difference between image mean for reference:reference and image mean for reference:inversion (heterozygous inversion) genotypes. Right: difference
between image mean for reference:reference and image mean for inversion:inversion (homozygous inversion) genotypes. A paracentral area of
differential retinal thickness can only be visualized in the reference-to-homozygous difference map (in keeping with a recessive effect). (D) Phenome-
wide associations for the inversion genotype against 454 ICD10 disease codes for which there were >1000 cases in the UK Biobank cohort (when only
data obtained after the date of OCT image acquisition were considered); six codes (M16, G20, 184, M20, K60, J84) remained significant after Bonferroni
correction; —logo P-values are shown grouped by high-level ICD10 category.

central retinal) thickness and reported 139 loci (Gao et al.
2019), and (ii) two from our group that investigated OCT-
derived measurements of inner and outer retinal layers, and
reported 46 and 111 loci, respectively (Currant et al. 2021,
2023). Overall, 36% (98/273) of the combined lead loci from
these studies also reached genome-wide significance in the
present analysis (58%, 33%, and 41% for Currant et al.
2021, 2023 and Gao et al. 2019, respectively). Interestingly,
the two signals with the highest statistical significance in the
macular thickness GWAS conducted by Gao et al. (2019)
were also the most significant hits in this study (Fig. 2). The
marker with the highest statistical significance was within the
LINC00461 locus. LINC00461 is a long noncoding RNA
that is the primary transcript of miR-9-2. LINC00461 is
highly expressed in neural stem cells and a decrease in its ex-
pression has been shown to alter the timing of retinal neuro-
genesis (Thomas et al. 2022). The locus with the second
highest statistical significance encompassed the TSPANI0
gene. In the eye, TSPAN10 is predominantly expressed in
melanin-containing cells (retinal pigment epithelia (RPE) and
uveal melanocytes), and the corresponding protein is thought
to have a role in regulating retinal cell fate and development

(Dornier et al. 2012, Haining et al. 2012, Orozco et al.
2020). Further functional genomic analyses of these two key
loci are expected to provide important insights into develop-
mental processes shaping human retinal morphology.

An intriguing association that we detected was that be-
tween certain autoencoder-derived retinal phenotypes and a
common 17g21.31 inversion encompassing the MAPT gene.
MAPT is primarily expressed in brain neurons, and genetic
alterations impacting the MAPT locus have been linked to
several neurodegenerative disorders including Alzheimer dis-
ease, frontotemporal dementia and parkinsonism (Wang and
Mandelkow 2016, Shi et al. 2021). Recently, inner retinal
layer thickness parameters and glaucoma have been added to
the growing list of phenotypes associated with the MAPT lo-
cus (Gharahkhani et al. 2021, Diaz-Torres et al. 2023).
Further work is required to pinpoint which (and how many)
genes within the MAPT region are causally associated with
retinal and brain phenotypes (Diaz-Torres et al. 2023). More
broadly, the extent to which the overlap between neurode-
generative disorders, retinal morphology, and glaucoma
reflects pleiotropy rather than causal relationships remains to
be determined. Of note, causal genetic effects in both

Gz0z Aenige4 ¢| uo 1senb Aq Z09616//2€/9B10/ L/ L /o101 e/SoleWIOUIOlG/W0D dnodlwspede.//:sdly woly papeojumoq



Autoencoder-based phenotyping of ophthalmic images 9

A B D
n ' 1. L N . | ] L B En -
ETH - HET R -ie =
-...-.-- ----.-J-_I.-lﬁ- . é -
L .t -
o ‘, — I
2k
o o
o e |
z = 02
= o
| :
-—‘;,_- 02
Hao —
c > I
= "
’_‘J .
- .}
:é s
[ 1%
—
E = |-
- A=

enbeddng

Figure 4. Correlation and logistic regression analyses of autoencoder-derived retinal OCT phenotypes. (A) Direct (upper triangle) and genetic (lower
triangle) correlations among embedded features (64 embeddings). The two correlation matrices are displayed using a heatmap where rows and columns
were ordered by the distances obtained via hierarchical clustering (on the embedding value correlation matrix only). (B) Logistic regression analysis of the
64 embeddings against high-level ICD10 disease codes; only data obtained after the date of OCT image acquisition were included and only ICD10 codes
for which there were >1000 cases in the UK Biobank cohort were considered; sex, age, height, and weight were factored in as covariates. A total of
eight signals for five distinct ICD10 codes remained significant after Bonferroni correction: E11 (3), G40 (1), H40 (2), 125 (1), F10 (1). (C) Graph showing
which specific embeddings were significantly correlated with the lead signals of the logistic regression analysis, i.e. non-insulin-dependent diabetes
(E11), epilepsy (G40), glaucoma (H40) and chronic ischemic heart disease (125); —logo P-values are shown for all 64 embedded features. (D) Left eye
retinal thickness maps showing the difference in retinal structure between UK Biobank participants who were diagnosed with non-insulin-dependent
diabetes (E11; first row), epilepsy (G40; second row), glaucoma (H40; third row), and chronic ischemic heart disease (125; fourth row) after having an OCT

scan against the groups of individuals that have not been assigned the relevant ICD10 codes.

directions have been previously suggested between retinal im-
aging traits and Alzheimer disease (Zhao et al. 2024) while
little support has been found for a causal relationship be-
tween glaucoma and Alzheimer disease (Budu-Aggrey
et al. 2020).

Deep learning approaches have been shown to be able to
detect imaging patterns that are not amenable to human iden-
tification and which can assist with prediction tasks (Patel
et al. 2024, Radhakrishnan et al. 2023, Zhou et al. 2024,
Yun et al. 2024). For example, neural networks can predict
sex and age with good accuracy from retinal OCT images
(Chueh et al. 2022, Le Goallec et al. 2022), whereas human
experts find these tasks impossible. Here, we investigated if
autoencoders can identify OCT parameters that can be used
to predict health outcomes (glaucoma and cardiovascular dis-
ease). Although the overall predictive ability of the generated
models was moderate, the autoencoder-derived features were
shown to enhance risk stratification. These observations sug-
gest that it is not inconceivable that purpose-built autoen-
coders will play a role in improving the efficiency of medical
screening programs in the future.

This study has a number of limitations. First, the autoen-
coder input was retinal thickness maps generated using a
U-Net approach which made our framework semi-automated
(as a small amount of manual labeling was required). Using
three-dimensional autoencoders to extract features directly
from OCT volume scans could fully automate the pipeline,

minimizing any subjective aspects and reducing the burden of
data curation (Diaz-Pinto et al. 2022). Second, an empirical
approach was used to determine the number of embedded
features that were analyzed; this was guided by observations
regarding the information-content and variance captured.
Third, we only performed common-variant genetic associa-
tion analyses of the obtained embedded features. The increas-
ing availability of genome sequencing data in UK Biobank
participants will allow us to more comprehensively look for
genetic associations, including with rare variants and with
copy number alterations in the future. Third, the fact that
relationships were detected between embeddings and certain
health outcomes does not necessarily imply causation. The
main aim of this study was to assess if autoencoders can be
utilized to produce biologically and clinically relevant pheno-
types. In-depth confounder adjustment and causal inference
studies were therefore not performed. Furthermore, the pre-
dictive models described here have a proof-of-concept nature
and are not intended for implementation (especially as the
data used for training and evaluation were highly homoge-
neous and focused on individuals with predominantly
European-like ancestries).

In summary, this study proposes a framework for retinal
phenotyping based on a self-supervised deep learning ap-
proach. Our findings highlight that autoencoder-based tech-
niques can be used to extract knowledge about the genetic
factors determining retinal morphology. The outlined
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Figure 5. Survival analysis investigating the contribution of embedded features upon the time-to-diagnosis for four ICD10 disease codes. (A)

Concordance index evaluating the embedding-incorporating model’s ability to discriminate sex-stratified disease occurrence; the distribution across 20
repetitions of five-fold cross-validation is shown (n = 100 for each box plot); all box plots demarcate quartiles and median values, while whiskers extend
to 1.5x of the interquartile range. (B) Kaplan-Meier plots showing sex-stratified risk of disease occurrence for the overall population as well as for high-
risk cohorts determined by the embedding-incorporating model (top 25% based on Cox regression). (C) Graph highlighting which embedded features
have a significant relationship with the selected diseases in male and female cohorts; —log1q hazard ratios are shown.

approach is flexible and can be adapted and extended to
other organs and imaging modalities.
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