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Abstract

Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important
source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of
long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and
study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from
the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified
as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a
mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent
infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape,
or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cell-cell transmission within the host or
persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo
mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be
discounted.
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Introduction et al. 2021; Riddell et al. 2022). The Beta (B.1.351), Gamma (P.1),
and Omicron (B.1.1.529) variants all emerged in similar circum-
stances to alpha, potentially suggesting that they also emerged
from long-term infections.

To better understand evolutionary pressures associated with
viral evolution during long-term infections, a dataset composed
of 168 SARS-CoV-2 genomes was compiled to examine the fre-

quency of recurrent mutations. These genomes were associated

Long-term SARS-CoV-2 infections in immunodeficient patients
are important, but understudied (Moran et al. 2021). Evolution
of viruses during long-term infection is an important source of
novel variation and is thought to be a key influence on the evolu-
tionary dynamics of SARS-CoV-2 generally, and the emergence of
new variants specifically. Notably Alpha and Omicron, which were
responsible for recent epidemic waves globally, are hypothesised

by some to have arisen during long-term infections (Rambaut
et al. 2020; Msomi et al. 2021). The Alpha variant (B.1.1.7) emerged
abruptly with a constellation of novel mutations and a long branch
length from its nearest common ancestor in the B.1.1 clade, dur-
ing a time of extremely high surveillance in the UK (Rambaut et al.
2020). A likely explanation is that the Alpha variant evolved within
a single long-term host over a long period before emergence back
into the general population. Evolution during long-term infection
has been associated with the rapid accumulation of many muta-
tions within a short period (Avanzato et al. 2020; Choi et al. 2020;
Baang et al. 2021; Jensen et al. 2021; Karim et al. 2021; Peacock

with twenty-eight patients with a range of conditions that result
in immunodeficiency significant enough to prevent rapid viral
clearance. This builds upon previous work performing a similar
analysis using case studies that included a total of ten patients
(Peacock et al. 2021). This analysis expands on that work by util-
ising a significantly larger dataset which increases the power, also
many of the cases included are the alpha variant which have
not been discussed in the context of long-term SARS-CoV-2 cases
previously and potentially gives insight into future variant emer-
gence, and lastly all genome series were analysed using a single
analysis pipeline.
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Methods
Dataset assembly

Patient-associated genome series were selected for inclusion via
a literature search for case studies using the following search
terms and filters: After 2019, ‘SARS-CoV-2’, ‘nCoV-2019’, ‘Immun-
odeficient’, Tmmunocompromised’, ‘long-term’, all searches took
place between the dates 1 August 2021 and 30 November 2021.
Other genome series were extracted from the COG-UK dataset, a
UK-wide genomic surveillance repository (COVID-19 Genomics UK
(COG-UK) 2020; Nicholls et al. 2021).

Genome series were only included if they met the following cri-
teria: at least two genomes available on either public databases or
via a request, evidence of long-term viral infection for a period no
less than 28days (some genome series covered a shorter period
but the clinical information met this criterion), clinical informa-
tion available was sufficient to indicate the nature of the patient’s
immune deficiency. For all genome series included in the dataset,
a Civet report (O'Toole et al. 2021a) was generated using Civet
v3.0. These reports confirm that all genomes were the result of
long-term infections rather than a superinfection or indepen-
dent infection events by virtue of individual genomes sharing a
recent common ancestor with a step-wise accumulation of muta-
tions over time. A single genome from patient 11 was excluded
due to a probable superinfection as described by (Tarhini et al.
2021). Figures were generated for each phylogeny generated with
civet using ggtree (Yu et al. 2018) and are included within the
supplementary material.

Genomes included in the dataset were obtained from: (Choi et
al. 2020; Avanzato et al. 2020; Reuken et al. 2021; Tarhini et al.
2021, Kemp et al. 2021 Baang et al. 2021; Stanevich et al. 2021;
Khatamzas et al. 2021; Borges et al. 2021; Riddell et al. 2022; Ciuf-
freda et al. 2021; Jensen et al. 2021; Weigang et al. 2021). A full
description of the dataset is available within the supplementary
material of this article. When a genome series was selected for
inclusion all genomes were placed within an individual multi-
fasta file with a header identifying the patient via an identifier
(‘pt-1’, ‘pt-2’, etc.) and the number of days passed since the initial
genome available within that genome series (the day 0 genome),
in several cases this genome was collected after a lengthy period
of active infection but only the time period covered by the genome
series was considered in the analysis.

Mutation calling of genomes

Mutation calling was automated with an R script adapted
from (Mercatelli et al. 2021) which utilises Nucleotide mummer
(NUCmer) (Margais et al. 2018) for genome alignment to an anno-
tated SARS-CoV-2 reference sequence (Wu et al. 2020) and defines
Single Nucleotide Polymorphisms (SNPs), insertions, deletions,
frameshifts, and inversions relative to this reference sequence
(NCBI accession NC_045512.2). One change was made to the anno-
tations of the reference in the case of the ORF1ab polyprotein gene
non-structural protein12 (NSP12) where the position was adjusted
by a single nucleotide so that all mutation calls would be relative
to the reading frame post the ribosomal frameshift for simplic-
ity; zero mutations were detected in the pre-ribosomal frameshift
region of NSP12, therefore, no mutations were incorrectly anno-
tated as a result.

De novo mutation cumulative occurrence analysis
pipeline

Processing of the mutation calls was performed with a Python
script  (https://github.com/BioWilko/recurrent-sars-cov-2-mutati
ons/blob/main/mutation_call_analysis.py) to investigate de novo

mutations (DNMs). A DNM was defined as observed mutations
within a genome series that were not present at day O of the
genome series. It should be noted it is possible a subset of the
mutation present at day 0 could have arisen in the chronic patients
prior to the first sequence being found and would therefore not be
included in this analysis. DNMs which reverted to the day O base
were still counted as a DNM occurrence within a genome series
since they did indeed occur. Further to this a recurrent mutation
was defined as a DNM which was observed to occur within more
than one genome series. A cumulative count of each observed
DNM was performed for each day between 0 and the maximum
genome series length (218 days). When a deletion was observed all
deletions with a reference position within eighteen nucleotides of
the reference position of the initial deletion regardless of length or
position were clustered as a single region. Ambiguous nucleotides
were not considered in mutation calling. The resultant dataframe
was finally formatted with an R script and figures generated using
ggplot2 (Wickham 2016).

Results

The SARS-CoV-2 spike gene (S) demonstrated the greatest num-
ber of recurrent mutations in the dataset (Fig. 2, Fig. 1) with ten
substitutions—S:S131, S:T951, S:G142V, S:L452R, S:E484K, S:E484G,
S:F4861, S:F490L, S:Q493K, and S:Q498R. The domain where the
highest number of DNM occurrences were observed was the
RBD with seven, followed by the NTD with five, and the SP
with one for a total of thirteen. Clustering mutations by AA
loci additionally revealed the following sites as notable: S:484,
S:501, S:330, and S:440. The domain with the highest number
of AA loci with DNMs was the RBD with nine, followed by the
NTD with five, and the SP with one. The most frequently occur-
ring DNM was S:E484K with eight occurrences, when all DNMs
at the S:484 locus are clustered (Fig. 2); the number of occur-
rences is increased to twelve clearly demonstrating an enrich-
ment of DNMs at this locus. The DNMs at the locus S:484 con-
sist of: eight S:E484K, two S:E484G, and one each of S:E484Q,
and S:E484A. AA loci clustering highlighted the loci S:330, S:440,
and S:501 as recurrent for DNMs (> two occurrences in the
period).

The only recurrent deletions observed in the dataset were
located within the NTD of S-gene: S:A67 region (recurrent dele-
tion region 1/RDR1), S:A138 region (RDR2), and S:A243 region
(RDR4) (McCarthy et al. 2021). S:A138 region was the most fre-
quent with four occurrences, followed by S:A67 region and S:A138
region with two occurrences, respectively. Deletions within the
S:A67 region consisted of one S:A67 and one S:A69-70, the uncon-
ventional annotation is the result of the algorithm utilised to
cluster deletions, the genome series in which S:A67 occurred
already possessed S:A69 in its day O genome. S-gene constitutes
just over one-eighth of the overall SARS-CoV-2 genome by length;
despite this, ~34 per cent (79/234) of the total DNM occurrences
were observed within S-gene as well as 59 per cent (13/22) of the
recurrent DNMs.

Non-spike, non-ORFlab SARS-CoV-2 genes demonstrated a
lower number of DNM occurrences (Fig. 3, Fig. 1). Three muta-
tions within Matrix (M) and Envelope (E) were notable in their
frequency (> 2 occurrences in the period): E:T30I and M:H125Y.
E:T30I was the only recurrent DNM observed within E-gene and
the second most frequent DNM revealed by the analysis overall
at six occurrences. E:T30I occurrences were not observed to be
associated with any particular source study, geographical region,
or SARS-CoV-2 lineage suggesting this may be a sensitive marker
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Figure 1. Distribution of de novo mutations included in this study across the entire SARS-CoV-2 genome. Schematic of SARS-CoV-2 genome with
relevant ORFs annotated. DNMs with the highest frequency annotated by amino acid position and substitutions—X indicates multiple amino acids

form DNMs at this position.

for persistent infection. Within M-gene, M:H125Y was the only
recurrent DNM with four occurrences.

When DNMs observed in these genes were clustered by AA
loci the findings remained almost entirely unchanged other than
in the case of the locus M:2 which was raised to three DNM
occurrences by day 218 rather than the two presented in (Fig. 3).

ORFlab polyprotein genes, constituting many NSPs within
SARS-CoV-2, demonstrated a larger number of recurrent muta-
tions but still far fewer than in spike (Fig. 4). Six DNMs were
notable for their occurrence frequency: NSP3:T504P, NSP3:T8201,
NSP3:P822L, NSP3:K977Q, NSP4:T2951, and NSP12:V792I. ORFlab
contained 86 out of the 195 DNMs observed, but only six of the
total of twenty-one of the recurrent DNMs ORFlab constitutes
more than two-thirds of the overall SARS-CoV-2 genome by length
making the number of overall DNMs within the polyprotein dis-
proportionately lower than would be expected if the distribution
were random.

When DNMs observed within ORFlab were clustered by AA
loci the overall shape of the results remain broadly identical with
two exceptions: NSP3:T504 and NSP3:P822 where their day 218
occurrences are raised to 3 and 4, respectively.

The relative frequencies for each recurrent mutation observed
in the DNM occurrence analysis were compared to their preva-
lence within the COG-UK dataset (on 23 November 2021) (Table 1).
As in the initial analysis S:E484K, E:T30I, and M:H125Y are

noteworthy in their frequency especially compared to their low
frequency in the larger COG-UK dataset.

Each observed recurrent DNM was compared to the UKHSA
VOC/VUI definition files (Table 2). S:E484K was the most frequent
DNM to appear in VOC/VUI definitions with eleven appearances,
then S:L452R with four, then S:T95I and S:A138/RDR2 region
with three each, followed by NSP3:K977Q, NSP3:P822L, S:Q498R,
S:A67/RDR1region, and S:A243/RDR4 region with one each. Of the
twenty-one recurrent DNMs observed in the analysis nine of them
are considered defining mutations for a VOC/VUIL.

Discussion

Not all mutations are discussed in detail, while a literature search
has been performed for every recurrent DNM only those with
sufficient literature available for discussion to be informative were
included below.

S-gene—RBD recurrent mutations

The frequency of RBD DNMs observed in this analysis is a signifi-
cant finding; the RBD is a relatively small region of the SARS-CoV-2
genome making up less than 2 per cent of the genome by length,
but these account for 17 per cent of all DNMs observed (Fig. 1). It
is clear that RBD mutations were the most strongly selected for in
the immunocompromised patients included within the dataset.
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Figure 2. Cumulative occurrences of non-synonymous recurrent de novo mutations in S-gene divided by gene domain in 168 genomes obtained from
twenty-eight patients. Substitution mutations were clustered by amino acid loci, this is notated with the International Union of Pure and Applied
Chemistry (IUPAC) ambiguity code X to indicate any possible amino acid, lines for cumulative sites are dashed for easier differentiation. Only loci that
were notable when clustered (significant difference with non-clustered equivalent or loci not highlighted without clustering) were included in the
figure. Mutations were observed in the following domains: NTD, receptor-binding domain (RBD), and the SP (Xia 2021). Deletions (A) were clustered
within a window of six amino acids (AA) regardless of length or position of deletion; full details of the breakdown can be found at
https://github.com/BioWilko/recurrent-sars-cov-2-mutations/blob/

main/dataset/mutation_calls.csv. The first genome from each patient was considered to be day 0. The sampling periods and frequencies within the
dataset were highly variable, 218 days was the longest time period covered within the dataset but the majority were much shorter, the full details of
the dataset are available in Supplementary Table S1. All recurrent de novo mutations were labelled on the graph.
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Figure 3. Cumulative occurrences of non-synonymous recurrent DNMs in genes other than S or ORFlab subdivided by gene in 168 genomes obtained
from 28 patients. Recurrent DNMs were observed in E (encodes envelope protein) and M (encodes membrane glycoprotein) genes, the full details of the
gene definitions used are available from (Wu et al. 2020). The first genome from each patient was considered to be day 0. The sampling periods and
frequencies within the dataset were highly variable, 218 days was the longest time period covered within the dataset but the majority were much
shorter, the full details of the dataset are available in Supplementary Table S1. All recurrent DNMs were labelled on-graph.
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Figure 4. Cumulative occurrences of non-synonymous recurrent DNMs in ORFlab polyprotein subdivided by gene in 168 genomes obtained from 28
patients. The first genome from each patient was considered to be day 0. The sampling periods and frequencies within the dataset was highly variable,
218 days was the longest time period covered within the dataset but the majority were much shorter, the full details of the dataset are available in

Supplementary Table S1. All recurrent DNMs were labelled on-graph.

Table 1. DNM occurrence frequencies for all recurrent DNMs in this analysis and the COG-UK dataset (n=1,576,942). COG-UK dataset
figures were generated using the dataset as it existed on 7 December 2021. Data was generated via CLIMB-Covid (Nicholls et al. 2021).
The COG-UK dataset was used due to the quality of metadata available as a background dataset as well as programmatic access to

variant information through existing CLIMB-COVID tools.

Frequency in DNM

Frequency in COG-UK

Percentage of genome series

Percentage of genomes in

DNM annotation occurrence analysis dataset in which DNM occurred COG-UK with DNM
S:E484K 8 3,437 28.57% 0.2180%
E:T301 6 208 21.42% 0.0132%
M:H125Y 4 2,188 14.29% 0.1387%
S:A138 region 4 283,289 14.29% 17.9645%
NSP4:T2951 3 1,933 10.71% 0.1226%
S:Q493K 3 59 10.71% 0.0037%
S:A67 region 2 292,969 7.14% 18.5783%
S:S131 2 211 7.14% 0.0134%
NSP12:V7921 2 10 7.14% 0.0006%
NSP3:P822L 2 28,410 7.14% 1.8016%
NSP3:T8201 2 442 7.14% 0.0280%
NSP3:T504P 2 18 7.14% 0.0011%
S:L452R 2 1,010,866 7.14% 64.1029%
S:Q498R 2 225 7.14% 0.0143%
S:E484G 2 46 7.14% 0.0029%
S:A243 region 2 546 7.14% 0.0346%
S:F4861 2 6 7.14% 0.0004%
S:G142V 2 1,361 7.14% 0.0863%
S:T95I 2 682,286 7.14% 43.2664%
NSP3:K977Q 2 391 7.14% 0.0248%
S:F490L 2 463 7.14% 0.0294%

The sharp rise of S:E484K occurrences early in the period is
biased due to the data from Jensen et al. (2021) as a result of their
sampling strategy and research focus. Jensen et al. (2021) specifi-
cally discussed the emergence of S:E484K in long-term immuno-
compromised patients and published short periods of surveillance
of these cases when the patients in question had significantly
longer shedding periods to demonstrate this. However, even if this
study is excluded S:E484K remains the most frequently occurring
DNM within spike.

The high frequency of the S:E484K occurrences is suggestive
of a strong selective pressure; this is further demonstrated by
the total of twelve DNMs observed at the S:484 locus. The two
occurrences of S:E484G in the dataset also suggest that the glycine
substitution is subject to differing selection pressures than the
lysine substitution in S:E484K although this may be host depen-
dent. In one of the two occurrences of S:E484G this change was
transient and was replaced by S:E484K. There are two possible
explanations for this observation: a secondary mutation or both
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Table 2. Recurrent mutations which are variant defining
based upon United Kingdom Health Security Agency (UKHSA)
variant definitions. Variant definitions were parsed from
the UKHSA variant definition files available at: https://git
hub.com/phe-genomics/variant_definitions. Lineages were called
using pangolin (O'Toole et al. 2021b).

Mutation Pango
annotation lineage UKHSA label WHO label
NSP3:K977Q P1 VOC-21JAN-02 Gamma
NSP3:P822L AV.1 VUI-21MAY-01 n/a
S:E484K B.1.351 VOC-20DEC-02 Beta
S:E484K B.1.525 VUI-21FEB-03 Eta
S:E484K P1 VOC-21JAN-02 Gamma
S:E484K A23.1 VUI-21FEB-01 n/a
S:E484K AV.1 VUI-21MAY-01 n/a
S:E484K B.1.1.318 VUI-21FEB-04 n/a
S:E484K B.1.1.7 VOC-21FEB-02 n/a

(with

E484K)
S:E484K B.1.324.1 VUI-21MAR-01 n/a
S:E484K P3 VUI-21MAR-02 Theta
S:E484K P2 VUI-21JAN-01 Zeta
S:E484K B.1.621 VUI-21JUL-01 n/a
S:L452R B.1.617.2 VOC-21APR-02 Delta
S:L452R B.1.617.1 VUI-21APR-01 Kappa
S:L452R B.1.617.3 VUI-21APR-03 n/a
S:L452R C.36.3 VUI-21MAY-02 n/a
S:Q498R BA.1 VOC-21NOV-01 Omicron
S:T951 AV.1 VUI-21MAY-01 n/a
S:T951 B.1.1.318 VUI-21FEB-04 n/a
S:T951 B.1.621 VUI-21JUL-01 n/a
S:A67 region/RDR1 B.1.1.7 VOC-20DEC-01 Alpha
S:A138 region/RDR2 B.1.1.7 VOC-20DEC-01 Alpha
S:A138 region/RDRZ AV.1 VUI-21MAY-01 n/a
S:A138 region/RDR2 B.1.1.318 VUI-21FEB-04 n/a
S:A243 region/RDR4 C37 VUI-21JUN-01 Lambda

mutations occurred within the patient and the S:E484K subpop-
ulation outcompeted the S:E484G population to become domi-
nant. There is no single nucleotide change by which a G -> K
AA change might occur, supporting the second possibility. If the
second explanation is correct it would suggest that S:484 muta-
tions are selected for generally. The large difference between the
frequency of S:E484K in this dataset compared to the national
COG-UK dataset further suggests that the selection pressures
which caused S:E484K to be so frequent within this analysis are
not true of the majority of hosts (Table 1). S:E484K is also consid-
ered a defining mutation for a large number of variants, further
indicating a strong selection pressure for the mutation (Table 2).
Despite its presence within a large number of variants it is only
present within a small proportion of the COG-UK dataset suggest-
ing that on a population level it may have a deleterious effect
on transmission. Although this may be explained by other fac-
tors such as variants with S:E484K not being common in the UK
generally.

A strong selective pressure for S:E484K was also observed by
Zahradnik et al. (2021) who discovered using an in vitro experi-
mental evolution model, that >70per cent of clones in one library
gained S:E484K and S:N501Y which were associated with a sig-
nificant increase in ACE2 affinity. Furthermore they observed the
occurrence of the mutation S:Q498R alongside S:N501Y in two
repeats, this combination was observed to lead to significantly
greater affinity to ACE2 compared to both wild-type and Alpha
which rose further alongside S:E484K. This combination was only
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Figure 5. Spike mutational profiles of particular interest described by
this study. Select spikes from late sequencing of three long-term Alpha
infections shown as Spike schematics. Spike variants from WT Alpha,
Delta, and BA.1 Omicron shown for comparison. Mutations shown in
grey are existing lineage-defining Alpha mutations. Mutations marked
with an asterisk indicate mixed, but resolvable bases in the sequence.

observed within a single patient (patient 19) although the com-
bination E484G, Q498R, and N501Y did arise in a further patient
(patient 17); in both cases the infections were Alpha and there-
fore already possessed S:N501Y. At the time of this publication
that constellation of mutations had not been observed in wild
virus but with the emergence of Omicron, this combination has
become significantly more frequent (albeit with E484A rather than
E484K).

The low occurrence frequency of S:N501Y compared to that
observed by Zahradnik et al. (2021) is also notable but is partly
explained by its high (nine out of twenty-eight) day O frequency
in the genome series, due to the high amount of long-term Alpha
infections included in this study. When DNMs were clustered by
AA locus S:501 was highlighted as recurrent, however.

Another notable observation is the two de novo occurrences
of S:L452R (a defining mutation of Delta, Kappa, and Epsilon
variants) which aids both immune evasion and ACE2 affinity
(Motozono et al. 2021).

S:Q493K has previously been identified by Huang et al. (2021)
as a highly beneficial adaptation to a mouse host, improving
spike binding affinity to murine ACE2 (Huang et al. 2021), its rar-
ity in the overall SARS-CoV-2 population (58 in COG-UK dataset)
suggests that it is not strongly selected for in a human host gen-
erally. The three occurrences in this dataset may suggest that
S:Q493K does confer a benefit to the virus within the context of
a long-term infection but not in transient infection. A highly sim-
ilar mutation, S:Q493R, is a defining mutation of the Omicron
variant.
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S:F4861 has been observed to decrease the affinity of some neu-
tralising antibodies to spike protein (Xu et al. 2021), and may
decrease the affinity of spike to ACE2 (Clark et al. 2021). S:F4861 has
furthermore been associated with mink adaptation (Zhou et al.
2021). S:490L has been observed to reduce the affinity of multiple
mAbs as well as decrease the neutralisation sensitivity of pseu-
dovirus to convalescent sera, however, it does not appear to have
an impact on viral infectivity (Li et al. 2020). It is noteworthy that
a large number of mutations described in this present study are
associated with enhanced human ACE2 affinity including Q493K,
Q498R and N501Y (Starr et al. 2020).

When AA loci clustering was performed recurrent DNMs at
S:330 and S:440 were observed.

Finally, although most of this study has considered mutations
in isolation, several of the late stage long-term infections showed
interesting combinations of mutations, particularly within Spike
(Fig. 5). Patient 19 for example was an Alpha infection that had
picked up a large number of mutations, many of which were
in common with, or similar to Omicron, for example S:A67D,
S:G142V, S:T95I, S:A210/S:L2121, S:E484K, and S:Q498R. A further
case, patient 17 also contained S:E484G and S:Q498R alongside
the Alpha lineage-defining mutation, S:N501Y and patient 27 con-
tained S:T951, a further deletion at S:A138 region and S:G496S, in
common with Omicron.

S-gene N-terminal domain recurrent mutations

S:T95I has been show to bind to the human Tyrosine-protein
kinase receptor UFO (AXL) and it has been suggested by (Singh
et al. 2021) that AXL facilitates SARS-CoV-2 cell entry to the same
extent as ACE2 in AXL overexpressed cell culture. NTD also has a
substantial role in the antigenicity of spike with multiple escape
mutations identified in this domain (Harvey et al. 2021).

All recurrent deletions within the SARS-CoV-2 genome were
observed within the NTD (S:A67 region/RDR1, S:A138/RDR2
region, and S:A243/RDR4 region). Deletions within the S:69-70
region are commonly observed (McCarthy et al. 2021; Meng et al.
2021). Menget al. (2021) characterised the common S:A69-70 dele-
tion as contributing to infectivity by improving incorporation of
cleaved spike protein into virions and possibly has a compensatory
effect on mutations in the RBD associated with Ab escape such as
S:N439K and S:Y453F. Of the two observations of deletions within
the S:67-70 region, one was S:A69-70 whereas the other was S:A67
which has not been commonly observed, but it is notable that
the genome series in which S:A67 was observed already possessed
S:A69 at day 0. S:A69-70 is also a defining mutation of the Alpha
and Omicron variants and is responsible for the S-gene target fail-
ure observed in the PCR testing of alpha variant samples with
TagPath SARS-CoV-2 PCR kits (Kidd et al. 2021).

De novo occurrences of slightly differing deletions within the
S:A138/RDR2 region were observed four times. This region makes
up part of the ‘NTD antigenic supersite’ which is the majority of
neutralising antibodies against the NTD target (McCallum et al.
2021b). S:A140 has consequently been associated with a signifi-
cant decrease in Ab neutralisation (Andreano et al. 2021; Liu et al.
2021). Based on the high number of occurrences, it appears likely
that deletions in this region confer some benefit to the virus dur-
ing long-term infections. As with S:N501Y, as well as S:A67 region,
it is worth noting a substantial proportion of long-term infections
already carried deletions in the S:A138 region at day O due to being
the Alpha variant.
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Two occurrences of S:A243, another NTD supersite muta-
tion, were also observed, another deletion that has been demon-
strated to decrease Ab neutralisation in vitro (McCarthy et al. 2021;
McCallum et al. 2021b).

S-gene SP recurrent mutations

The single recurrent SP DNV, S:S131, has been previously shown
to mediate a shift of the cleavage site of the SP which in turn facil-
itates immune evasion by causing a significant re-arrangement
of the NTD antigenic supersite and its constituent internal disul-
phide bonding (McCallum et al. 2021a, 2021b).

E-gene recurrent mutations

The most frequent DNM observed outside of the spike gene is
Envelope:T30I (the second most frequent mutation overall after
S:E484X). This mutation was observed by Chaudhry et al. (2020)
in a cell-culture passage experiment, where it conferred a growth
advantage in Calu-3 cells but slowed growth in Vero E6 cells
(Chaudhry et al. 2020).

The high frequency of E:T30I is strongly suggestive of a selec-
tive pressure during long-term infections and further suggests
that the conditions experienced by the virus in immunocompro-
mised patients may exist in a similar selective environment as
cell culture, potentially due to a lack of stability needed for trans-
mission. The significant enrichment of E:T30I in this analysis
compared to the COG-UK dataset (Table 2) suggests that E:T30I
may be a deleterious mutation within the circulating SARS-CoV-2
population. A single variant lineage, B.1.616, does contain E:T30I
as a lineage-defining mutation. Interestingly, B.1.616 was associ-
ated with an extremely localised, largely nosocomial-associated
outbreak, suggesting the possibility this may have been the emer-
gence of a virus from a long-term infection (Fillatre et al. 2021).
This also raises the hypothetical possibility that E:T30I may be
considered a marker of long-term SARS-CoV-2 infections. Fur-
ther study is necessary to determine the phenotypic effect of this
mutation and its role in influencing within- and between-host
fitness.

ORF1ab-NSP3 recurrent mutations

Literature concerning mutations in ORFlab is generally obser-
vational rather than experimental due to the current lack of
tractable models to study them in vitro. The concentration of
higher frequency mutations within the NSP3 gene is not surpris-
ing considering it is the largest gene within the ORF1ab polyprotein
and is known to be a bulky, modular protein that may have some
flexible linker regions which are fairly hypermutatable. Stanevich
et al identified NSP3:T504P as a mutation associated with cyto-
toxic T cell epitope immune escape (Stanevich et al. 2021).

Conclusions

This work sought to determine recurrent mutations across the
SARS-CoV-2 genome associated with long-term infections in
immunodeficient patients. This study has several notable limi-
tations: importantly a significant publication bias is likely to be
present which may overemphasise the importance of some muta-
tions. S:E484K especially is affected by this, the six genome series
obtained from Jensen et al. (2021) were published to demonstrate
the emergence of S:E484K within immunocompromised patients.
Further work will attempt to avoid this by utilising less-biased
sampling strategies from long-term infected patients, requiring a
prospective study design that aims to regularly sample genomes
from long-term infected patients. Another potential limitation is
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the use of the COG-UK dataset (Nicholls et al. 2021) as a back-
ground dataset considering that ten out of twenty-eight patients
were located within the UK (Table 1). The COG-UK dataset is lim-
ited to SARS-CoV-2 genomes collected within the UK, but was
still used due to the richness of associated metadata within this
dataset as well as programmatic access to variant database infor-
mation provided via CLIMB-COVID (Nicholls et al. 2021). It is
also likely that DNMs occurred before the day O genomes for
the genome series, but without genome sequences it is difficult
to judge whether any observed, non-lineage defining mutations
occurred within the patient or prior to their infection.

The majority of recurrently observed DNMs have been associ-
ated with immune escape, increased ACE2 affinity, or improved
viral packaging and are generally not highly prevalent within the
wider SARS-CoV-2 population (with the exception of some SARS-
CoV-2 variants). Many recurrent DNMs identified in this work have
been observed to occur during experiments investigating spike
selection in various models as well as efforts to identify immune
escape mutations.

These factors suggest that the conditions during long-term
infections at least partly select for mutations which aid the virus
with intra-host replication (cell-cell transmission) and persistence
as opposed to the general SARS-CoV-2 population, where muta-
tions which aid inter-host transmission are more strongly selected
for. E:T30I in particular is worthy of further study as a potential
marker of long-term SARS-CoV-2 infections.

However, the large number of occurrences overlapping with
variant defining mutations observed does indicate that patients
within this category should not be discounted as a potential
source of previous, or indeed future variants. The potential of
mutations which aid cell-cell transmission within the host or
improve viral packaging may affect virulence and any mutations
within this category which do not impact viral transmissibility
could have a significant impact. This is highly relevant as many
of the most abundant mutations described in this dataset are
found across many variant lineages. Furthermore, it is possible
sub-neutralising levels of antibodies which may be present in
some cases (either homologous or from heterologous convales-
cent or monoclonal antibody treatments) could be selecting for
the acquisition of antigenic mutations observed (Kemp et al. 2021).

At present it is unresolved where SARS-CoV-2 variants emerge
from. One prevailing hypothesis is that some variants emerged
from long-term chronic infections, generating novel advantageous
combinations of mutations without the stringent selection pres-
sure of transmission, eventually resulting in an outbreak and
onward transmission. We have compared common mutations
arising during chronic infections and described how many are
shared with SARS-CoV-2 variant lineages. Furthermore we present
evidence, based on a rare mutational signature, that the French
B.1.616 variant lineage arose from a direct and recent spillover
from a chronic infection. Overall the data presented here is con-
sistent and supportive of the chronic infection hypothesis of
SARS-CoV-2 variant emergence. Therefore we suggest identifying
and curing chronic infections, preferably with combined antiviral
therapy as would be used for more traditionally chronic viruses
Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV)
both to theinfected individual, but also to global health. Intra-host
variation of SARS-CoV-2 is likely to play a significant role within
this patient group however the lack of raw data availability for the
majority of the samples within this dataset makes this challenging
(Chaudhry et al. 2020).

We anticipate this dataset will be maintained as a public
resource to enable the study of long-term SARS-CoV-2 infections

inimmunodeficient patients for as long as itis deemed relevant to
enable other researchers to contribute to this understudied, highly
important, patient group (https://github.com/BioWilko/recurrent-
sars-cov-2-mutations/blob/main/dataset/mutation_calls.csv).

Supplementary data

Supplementary data are available at Virus Evolution online.
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