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Statistical modelling of skyrmion magnetic materials with defects

by Vanessa NEHRUJI

Skyrmions, a whirling magnetic texture, stabilised by the Dzyaloshinskii-Moriya in-
teraction, emerge as promising candidates for next-generation data particles, owing
to their compact size and topological stability. However, defects introduced during
the manufacturing process can unpredictably affect the stability and dynamics of
skyrmions, compromising data reliability. To address this, we conduct a compre-
hensive study using statistical physics-based modeling and machine learning data
analysis to assess the impact of defects on the equilibrium properties of skyrmions.
In our investigation, we uncover a novel disorder-driven continuous phase transi-
tion from a hexagonally-ordered arrangement of skyrmions (OSKL), in defect-free
systems, to a disordered array of skyrmions (DSKL) at high defect levels. We pin-
point the OSKL-DSKL transition, representing the minimum defect level required to
disrupt the OSKL, via the spin-spin correlation analysis. Due to the lack of appropri-
ate order parameter formalism, we employ deep learning dimensionality reduction
methods, which yield alternative transformations of the spin variables, to differenti-
ate other phases present in such materials. In addition to phase classification, we use
deep learning methods, based on the U-Net network, to estimate the Hamiltonian
parameters and precisely identify defect locations. This more integrated approach,
combining machine learning with numerical methods, provides insights into the
complex interplay between defects and skyrmions, offering potential pathways for

new experimentation and a wide range of technological applications.
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Chapter 1

Introduction

1.1 Motivation

Modern technological advancements increasingly rely on vast datasets, propelling
the demand for robust hardware with enhanced data density and reduced energy
consumption. Skyrmions, novel topological quasi-particles, offer a promising alter-
native to electric charge as primary data carriers in memory devices, owing to the
reduced energy needed for writing, deleting and transfer of data via spin-polarised
currents[1-3]. Their small sizes (mere nanometres[4, 5]) allow for high data density,
and their topological protection ensures the non-volatility of data[6, 7].

The viability of a skyrmion-based device depends on the stability of skyrmions
across the wide range of temperatures and fields required by analogous electronic
devices[8-10]. Skyrmions primarily exist in a limited number of bulk low-symmetry
crystals (B20 alloys[11-14]), where they are stable within a narrow range of fields
and at very low temperatures. Optimising skyrmion stability over a wider range is
feasible through various methods, including sample thickness reduction[12, 14, 15],
pressure application[16], epitaxial strain introduction, and doping[17]—all of which
introduce defects into the system.

Structural defects are particularly prevalent in sputtered thin films[18-20], which
constitute the majority of skyrmion-hosting materials. These thin films are favoured
for their ease of integration into multilayer heterostructures[21], allowing for fine-

tuning of skyrmion properties through interactions with other layers[18, 20, 22-34].
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However, the random and uncontrolled nature of these defects often leads to unde-
sirable consequences. These include the suppression of the skyrmion phase[23], dis-
ruption of lattice tight-packing (resulting in diminished data density)[20, 30, 32-34],
pinning of skyrmions to the crystal lattice impeding their mobility within the mate-
rial (a critical aspect for skyrmion-based devices)[20, 22-24, 32], and even the anni-
hilation of skyrmions, jeopardising data preservation. Defects, when controlled, can
be exploited to create novel device ideas[35-38] or stabilise metastable skyrmions[13,
16, 17, 39, 40], but when unwanted, they can have unpredictable behaviour on the
spin textures. Through statistical modelling of the defect distribution, our research
aims to expand our understanding on the impact of defects on the skyrmion lattice

phase.

1.2 Our Research Contribution

The majority of prior studies have primarily focused on investigating the mecha-
nisms behind the pinning of skyrmions with defects stemming from atomic origins,
such as atomic vacancies, or local variations in exchange, Dzyaloshinskii-Moriya
interaction (DMI), and anisotropy strength. The effects of defects have been also
noted in several experimental studies[18, 41]. However, the research is still in its
infancy, largely due to difficulty in simulating and analysing the spin texture of all
potential defect distributions. Therefore, instead of examining the effects of indi-
vidual defects, this thesis explores the role of entire statistical distributions of de-
fects on the formation of skyrmion phases. To facilitate effective computational
modelling, we first developed a lattice-resolved mean-field model of the classical
Heisenberg Hamiltonian with Dzyaloshinskii-Moriya interaction and random pin-
ning field, which we validated by comparing it to experimental measurements of
Fe3GeTe; two-dimensional van der Waals magnet. We subsequently used this model
in conjunction with pattern-searching deep learning models to analyse the hysteretic
behaviour of skyrmion materials across different levels of defects.

The defects in our material are modelled as a spatially varying random pinning

tield (Hy), following a Gaussian distribution[42]. External magnetic field sweeps,
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within a ‘clean” system, with very low pinning field distribution, reveal an instan-
taneous switch from the uniform state to an ordered skyrmion lattice (OSkL). Con-
versely ‘dirty” systems, with significant pinning field distribution, display a gradual
proliferation of skyrmions, forming instead a disordered array of skyrmions (DSKL).
We argue that this shift from an abrupt emergence of skyrmion lattice to a smooth
appearance of isolated skyrmion clusters as the magnetic field is swept along a hys-
teresis loop highlights the existence of a novel disorder-driven phase transition from
OSKL to DSKL, with a critical disorder of H, ;. This phase transition is signified by
the divergence of the spin-spin correlation mapping between configurations along a
field sweep at the skyrmion nucleation boundary. Further analysis shows that larger
skyrmions are more sensitive to the defect field, suggesting that systems with high
DMI (resulting in smaller skyrmions) are likely to achieve higher data density due
to the tighter packing within an ordered lattice.

While spin-spin correlation mapping provides a rough estimate of the OSKL-
DSKL transition boundary, its applicability is limited to the skyrmion nucleation
boundary, being overly sensitive to minor configuration changes within a phase.
Moreover, no other known property or order parameter can discern all phases within
the entire magnetic-field parameter space. Hence, we used dimensionality reduction
techniques, such as variational autoencoders (VAE)[43], to efficiently derive a set of
macroscopic properties from spin variables that maximises phase information. VAE
effectively clusters most phases in materials with defects, providing a more com-
prehensive method to identify phases and accurately pinpoint the transition bound-
aries.

Despite the random nature of defects induced by sputtering, supervised training
of a neural network enables the development of a model capable of identifying de-
fect locations in new materials. If the interactions between a skyrmion and defect are
fully understood, then this approach can offer valuable insights into skyrmion sta-
bility and dynamics, without the need for extensive experimental testing. Through
adaptation of the U-Net model[44], we can effectively extract both the underlying
defect field and all additional Hamiltonian parameters, whether they vary locally at

each lattice site or are applied globally, even in polycrystalline thin film materials.
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1.3 Thesis Outline

In this thesis, the first three chapters serve as an introduction to the field, offering a
summary of magnetic modelling, including an outline of the specific computational
methods used for both simulation and data analysis, and a broad background on
the current status of skyrmion research. The four concluding chapters present the
main outcomes of our research. The initial chapter validates the mean-field model
against experimental work carried out on 2D FGT flakes. The next chapter focuses
on characterising the impact of defects on magnetic configurations, including the
identification of a potential OSKL-DSKL phase transition. The final two chapters
explore the application of deep learning techniques for phase classification and the
estimation of Hamiltonian parameters from materials with defects.

Chapter 2 covers the theoretical background to understand the equilibrium be-
haviour of magnetic systems. It explores fundamental models such as the Ising and
Heisenberg models, detailing the intrinsic interactions among magnetic moments
and the incorporation of defects into these models. Finally, it discusses the two nu-
merical methods used in our research for finding ground state spin configurations:
the Monte Carlo method and mean field approximation.

Chapter 3 presents an overview of machine learning (ML), providing an in-depth
explanation of neural networks, the training process, and introduces various layers
that potentially reduce network complexity. Furthermore, it discusses the relevant
architectures and models used in our study, including the U-Net for defect detection
(see Chapter 8), and dimensionality reduction techniques for phase classification
(see Chapter 7).

Chapter 4 introduces the concept of a magnetic skyrmion, and provides an overview
of the key developments in skyrmion research. It underscores the challenges posed
by material defects, particularly in thin film skyrmionic materials, and outlines our
specific contributions to understanding the impact of these defects.

In Chapter 5, we validate the mean field model by reproducing similar spin
configurations and field-sweep behaviour of the 2d magnet Fe;_,GeTep. Our sim-
ulations correctly generates Néel skyrmions that are primarily stabilised by dipo-

lar interactions, and accurately recovers the transitions between the monodomain,
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skyrmion and stripe domain phases at various levels of Fe composition.

The impact of defects on equilibrium states is explored in Chapter 6, where we
note a blurring of first-order transitions at increased defect levels, characterised by
a gradual proliferation of skyrmions in the system. Using the spin-spin correlation
mapping between configurations along the field sweep, we identify the critical tran-
sition boundary between OSkL and DSKL and analyse its behaviour as a function of
skyrmion size.

Rather than manually computing macroscopic parameters such as skyrmion num-
bers, or counting the number of reciprocal space peaks to identify the various phases,
Chapter 7 uses unsupervised deep learning methods to find latent variables that
contain the maximum information about a phase. This quasi-order parameter could
differentiate between all phases present in defect materials, other than between the
OSKL and DSKL due to a limitation of convolutional layers.

Chapter 8 uses the U-Net architecture to predict the random pinning field for an
unknown spin texture to a high degree of accuracy. The architecture was then mod-
ified to predict any combination of local and global Hamiltonian parameters, even
in polycrystalline materials featuring regions of varying thickness. The key compo-
nents of U-Net that render such predictions feasible include convolutional layers,
max-pool layers, the symmetric structure of the network, and most importantly, the
incorporation of skip connections.

Finally, Chapter 9 summarises the key outcomes of our research and discusses

future improvements and applicability of the work.






Chapter 2

Background in Magnetism

The following chapter introduces the theoretical concepts required to understand
phases and the transitions between them, starting from a macroscopic standpoint
using thermodynamics, before delving into the microscopic models used in statisti-
cal mechanics. It covers key topics including the Ising model (order-disorder phase
transition), Heisenberg model, defect modelling and, numerical methods (specifi-
cally equilibrium states) concluding with discussions on techniques for identifying

skyrmions and skyrmion lattices within ground state spin configurations.

2.1 Magnetic Phases

Though predating the discovery of the atom, thermodynamics has emerged as a
foundational framework capable of accurately characterising the behaviour of many-
body systems in thermal equilibrium. Despite the myriad interactions among its
innumerable particles, their collective dynamics converge to only a limited number
of thermodynamic states, commonly referred to as macrostates. This macroscopic
state can be effectively captured using only a minimal set of state quantities, for in-
stance the internal energy of a system can be derived solely from its entropy and net
magnetization, U = U(S,M )1. Thermodynamics is thus able to describe the macro-
scopic behaviour of complex systems, even in the absence of detailed microscopic
information.
The fundamental equation of thermodynamics encapsulates the energy flow within

a system, attributing changes in internal energy to the transfer of heat or work.

IThermal equilibrium occurs when the internal energy is minimised at a fixed S and M, or equiv-
alently, from maximising the entropy of an isolated system with a fixed internal energy and net mag-
netisation, S = S(U, M)
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Specifically, in the case of work induced by a magnetic field, H, the first law is given
as follow,

dU = 6Q + 6W = TdS + poH - dM 2.1)

where dU, 6Q, and W are the changes in internal energy, heat and applied work
on the system. T is the temperature, dS is the change in entropy, y is the magnetic
permeability, H is the external field and dM is the change in net magnetisation of the
sample. However, the practical application of this equation is limited, notably due to
the inherent difficulty in manipulating the quantities (S, M) within an experimental
setting. Consequently, they are transformed into (T, H) using Legendre transforms,

resulting in the Helmholtz free energyz,
dF(T,H) = —SdT — yoM - dH. (2.3)

From this transformation, the system’s magnetisation can be computed at fixed tem-

perature as follows,
M= — <18F) . (2.4)

pooH ) 1

The state space encompasses all possible values of the minimal set of state quan-
tities permissible for the system under consideration, with each point in this space
representing a unique macrostate. A phase is classified as a region over the state
space where the system’s macroscopic properties exhibit minute variation. Con-
versely, transitions between phases result in abrupt and discontinuous changes. One
of the most extensively studied phase transitions in magnetic systems is from a para-
magnetic state (where spins are randomly oriented) at high temperatures to a ferro-
magnetic state (with all spins aligned in the same direction) at low temperatures.
The length of the reduced magnetisation, m, jumps from 0 to 1 between the disor-
dered and ordered phase as temperature decreases. As it distinguishes the ordered

state from the disordered state, m is termed the order parameter.

2This is the equivalent of minimising the internal energy under the constraints of constant temper-
ature and field,
F(T,H) =U(S,M) — TS —ugH-M (2.2)
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Landau derives the order parameter through a series expansion of the Helmholtz

free energy in terms of m, yielding the following relationship,
F(T,m) = Fy+a(T — T.)m* + bm* + ..., (2.5)

where a and b are the coefficients of the Taylor expansion and a,b > 0. Only even
powers of m are considered due to the up-down symmetry of the magnetised state.
Equilibrium occurs when the potential is at a minimum, therefore,

IF\ -
<8m>T = 2a(T — T.)m + 4bm® = 0. (2.6)

The solutions to the above equation are given below,

m=0, m’= —W. (2.7)

The first condition holds true when T > T, corresponding to the paramagnetic
phase. For the second condition, the ferromagnetic state has m = 1 at T = 0, result-
ing in a transition temperature of T, = v/2b/a. T, is the Curie temperature, denoting
the boundary between the ordered and disordered phases.

Although thermodynamics offers a macroscopic description of magnetic mate-
rials under the effect of external conditions, including at transition boundaries, it
lacks a microscopic reasoning for such behaviours. This can only be found in sta-
tistical mechanics, which applies probability theory to a representation of the micro-
scopic model and can determine macroscopic properties via statistical averages. The

simplest of such models is the Ising model.

211 Ising Model

The Ising model is the earliest microscopic model for ferromagnetic materials, and
was proposed by Ising in 1925 for the purpose of understanding the paramagnetic-
ferromagnetic phase transition[45]. The magnetic material is represented by a set of
equally-spaced points on a hypercubic lattice of dimension d°. Each lattice point is

assigned a spin and the collection of all spins in the lattice is denoted by set A. The

3In other words, a 1D system is a chain of lattice points, 2D system is a plane of points, etc.
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spins themselves are constrained to take discrete values, s; € {—1,1} for alls; € A.
A spin configuration is a lattice with all spins assigned to appropriate values, ¥~ =

(5i);cn- The interactions between N spins is encoded in following the Hamiltonian,

N N
H(s) = —%IZ Z sisj — poH Zsi. (2.8)
i j€ign i

The first term is the pairwise exchange interaction between neighbouring spins, s;
and s;, with a strength of J. The factor of 3 is introduced to prevent double-counting
of spin interactions. When | > 0, the ordered state is ferromagnetic, with adja-
cent spins aligned parallel to one another, while | < 0 favors an antiferromagnetic
ordering with spins aligning anti-parallel. The sum is taken only over the nearest
neighbours of a spin, j € i,y,, as this is a short-ranged effect. The second term is a
uniform external field H acting on every spin, s;, on the lattice.

All potential spin configurations form a set, (). In the canonical ensemble, where
the system is in contact with a heat bath?, the probability measure over () follows
the Boltzmann distribution. The probability of a specific microstate u € (), at a
macrostate energy of E,, can be determined from this distribution as follows,

e PE e P
pn)=——=—— (2.9)

where f = kBLT, and Z is the partition function®, calculated as a sum of the Boltzmann

factors over all accessible states in Q):

Z=Y e Pt (2.10)
ueQ)

Macroscopic properties can be computed using p, as ensemble averages. For

example, net magnetisation, m, is given as,

N
1
(m) =Y mupy =3} sipe P 2.11)
H noi

4The system is at fixed temperature.
5This is a normalising factor such that p(Q) = 1.
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where (m) is the ensemble average of m. It further provides a microscopic descrip-

tion for the Helmholtz free energy,

P:—;mz (2.12)

The paramagnetic-uniform phase transition is a second-order (continuous) transi-

9*F

tion which should show discontinuities in SHE-

However, in a 1D chain of spins,
the exact computation of the free energy reveals no non-analyticities, indicating an
absence of a finite-temperature phase transition. Consequently, Ising deemed the
model inadequate for representing real magnetic materials and abandoned it. On-
sager later refuted this claim, demonstrating the existence of this phase transition
in a 2D system using transfer matrices, and analytically determining a critical tem-
perature of T, = 2/In(1+ \@) = 2.269 for | = 1[46]. Numerical methods, such
as the Monte Carlo discussed later in Section 2.4.1, further validate the existence of
a phase transition, showing a discontinuity in the thermally averaged susceptibil-

ity, x = g%. Example configurations at various temperatures are also illustrated in

Figure 2.1A.

Temperature

FIGURE 2.1: a) Example Ising configurations at a range of tempera-

tures T € [0.25,4.0] when | = 1, generated with Monte Carlo simula-

tions, at lattice size, L = 40. b) Thermal statistics of the average mag-

netisation, m, the magnetic susceptibility, x, energy, E, and specific

heat, Cj, at different lattice sizes, averaged over 1000 Monte Carlo

steps and 4000 realizations. The grey dashed line shows the critical
temperature of T, = 2.2691.
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2.2 Heisenberg Model

The Heisenberg model expands the Ising model by allowing more degrees of free-
dom in the spin definition. The Heisenberg spin, s;, is represented as a unit vector,
|si| = 1, allowing for rotations in SO(3). Consequently, a wider range of interactions

can be incorporated into the Hamiltonian, with the main ones highlighted below,

H= Hexch + Hdm + /Hani + Hext + /Hdemag (213)

The first term is the isotropic exchange, the second term is an antisymmetric
exchange term called the Dzyaloshinskii-Moriya (DM) interaction, the third term is
the anisotropy of the material, the fourth term is the external field, and the last term
is the effect of the demagnetising field caused by the magnetism of the moments.

The remainder of this section discusses these terms in more detail.

2.2.1 Isotropic Exchange

The Heisenberg system, like the Ising model, has a spin-spin pairwise interaction,
resulting in ferromagnetic behaviour in the material. The exchange is a quantum
mechanical effect that arises due to the indistinguishable nature of the system’s un-
paired electrons, forcing the total wavefunction to be antisymmetric on the exchange
of any two electrons. Due to this symmetry and the Pauli Exclusion principle, stating
that no two particles can occupy the same quantum state within an atom, two elec-
trons can either couple in a spin-singlet (S = 0) or a spin-triplet (S = 1) state. The en-
ergy due to Coulomb repulsion between the electrons can be determined solely from

the spin component of the wavefunction, leading to the following interaction[47],

1 N
Hexch = _Ejex Z Z (Si : sj)- (2.14)
i j€inn
In ferromagnetism, the triplet spin state is preferred and J.x > 0, leading to a parallel
alignment of spins. Conversly, antiferromagnetism prefers the singlet state, leading
to Jox < 0 and an anti-parallel alignment. The preferred spin configuration of these

different states are shown in Figure 2.2. Here, we model isotropic exchange as a short
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range interaction, applicable only when the electron orbitals overlap, and therefore

the sum is performed only over the nearest neighbours of s;.

Ferromagnetic Antiferromagnetic
] ex > O ] ex < 0

¢odoé %4
¢ooé %464
o6 %40

FIGURE 2.2: Example spin configurations showing the ferromagnetic
state with J., > 0 (left), and the antiferromagnetic state with J,x < 0
(right).

2.2.2 Dzyaloshinskii-Moriya Interaction

Historically, typically antiferromagnetic crystals, such as a-Fe,O3[48], MnCOj3 and
CoCO;3, exhibit "weak" ferromagnetism, unexplained by the Hamiltonian interac-
tions of the time. In 1958, Dzyaloshinskii used Landau’s theory of symmetry argu-
ments to introduce a new term in the free energy expansion, which favours canted
spin configurations[49]. This phenomenological treatment could, unfortunately, only
specify that D was parallel to the trigonal axis of a-Fe;O3, and was unable to explain
its origins, nor how to calculate the strength of D.

Moriya later provided a microscopic justification, expanding on Anderson’s the-
ory of superexchange, with spin-orbit coupling, in which the largest contribution in
anisotropic superexchange has the same antisymmetric form derived by Dzyaloshin-

skii[50]. In the atomistic Hamiltonian, this appears as,

Ham = —% % Z Djj - (si X s;), (2.15)

1 J€lnn
where Dj; = 4, D, is the DM vector whose strength (J;,,) and orientation (D,) are
determined by the neighbouring vectors. If the lattice structure is known, then the
D;;j vector between atoms i and j can be derived using Moriya’s rules[50]. Figure
2.3 shows certain orientations of the DM vector and the skyrmion structures they

produce.
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FIGURE 2.3: Dzyaloshinkskii-Moriya vectors (grey) are given for
spins on a square lattice, and the corresponding skyrmion structure is
plotted on the right. a) Bloch skyrmions are created with radial DM

vectors, b) Néel with azimuthal vectors, and c) Antiskyrmions require
a mixture of radial and azimuthal DM vectors.

The DM interaction must be included when modelling non-centrosymmetric ma-
terials®. Although it is weak in comparison to isotropic exchange, particularly in

bulk materials[51], it is responsible for the creation of canted magnetic structures

®Materials with no inversion symmetry.
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such as the helical, conical and skyrmion structures[52]. For this reason, many stud-
ies have focused on techniques that increase the strength of this interaction, includ-
ing by artificially inducing inversion symmetry breaking at the interface between a

ferromagnetic layer over a non-magnetic heavy metal layer[23, 25] (see Figure 2.4).

FIGURE 2.4: Interfacial Dzyaloshinskii-Moriya interaction due to
symmetry breaking between a ferromagnetic layer and a heavy metal
substrate. Reproduced from Figure 4.5.

In our implementation, D, lies radially along the vector connecting two spins, 7;;,

but this can be rotated to allow for other skyrmion types.

2.2.3 Magnetocrystalline Anisotropy

Magnetocrystalline anisotropy is an intrinsic property that stems from the shape and
crystalline structure of the material, causing spins to prefer alignment to a particular
direction (easy axis), or in a particular plane (easy plane). Anisotropy is the energy
required to shift the alignment of a spin vector from the easy axis to a hard axis; from
first-principles, it is the energy needed to overcome the barrier caused by spin-orbit
coupling[53].

Spin-orbit coupling is a relativistic effect, whereby the motion of an electron
about the nucleus creates a magnetic field that acts on the electron, but only in the
rest frame of the electron. Consequently, a magnetic moment in that field has an
energy of AE = —pu - B « L-§, where the field is proportional to the orbital an-
gular momentum, B « L and the moment to the spin angular momentum, p « S.
When spin direction changes, the tightly coupled orbital axis attempts to follow.
The electronic orbitals, however, are also coupled to the underlying lattice via the
crystal field, leading to a competition between the orbital-lattice and spin-orbital

coupling[54].
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Anisotropy, therefore, arises in two ways: if the orbital-lattice coupling domi-
nates the spin-orbital coupling, then L is tightly coupled to the lattice and anisotropy
stems from the spin-orbital energy, o< L - S; in contrast, if spin-orbital coupling dom-
inates, then L couples to S, and anisotropy emerges from the orbital-lattice energy
where the orbital momentum magnitude varies with the magnetisation direction[55,
56].

In a hexagonal or tetragonal system, there is a single axis of high symmetry

which can be atomistically modelled as,

N
Hani = _]k Z(Si : ei)zr (2'16)

i
where J; is the strength of the anisotropy, and e; is the high symmetry axis. This is
also known as uniaxial anisotropy. It is particularly crucial to model the effects of
anisotropy in finite-sized systems or systems with reduced dimensions such as thin
films. In these cases both the strength of the spin-orbit coupling and the magnitude

of the orbital momentum is increased, resulting in an stronger anisotropy effects[57].

2.2.4 External Field

Applying an external Zeeman field to a magentic system causes spins to align pref-
erentially along the axis of the field. This applies uniformly on every spin, s;, as
follows,

N
,Hext - _‘u ZH +Si, (217)

where y is the magnetic moment.

2.2.5 Demagnetising Field

A spin is a magnetic dipole which generates its own magnetic field. The interaction
between a spin and the magnetic field of its neighbouring spins is the dipolar in-
teraction, with the sum of these interactions being the demagnetising field. In the

atomistic model, the dipolar interaction is calculated as follows,

‘st + 351 ?”)ff Pi) (2.18)
T Tij

Si

J demag
Hdemag = - > Z -
ij
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Here, Jqemag is the strength of the dipolar interaction, r;; is the distance between
spins 7 and j, and the sum is taken over all other spins in the material. Due to the
high computational expense’ and to avoid artificial anisotropies, the calculation is
simplified such that only neighbours ascribed within a circle of radius . of spin i are

considered (see Figure 2.5).

FIGURE 2.5: The large grey circle is the cutoff radius, 7., when cal-

culating the dipolar interactions for the red spin. The demagnetising

field is the sum of all pairwise interactions between the red spin and
each of the green spins.

The demagnetising field prefers an alignment of spins that minimises the total
self-magnetisation of the material and plays a significant role in thin film materials.
It competes with the effects of isotropic exchange and uniaxial anisotropy®, favour-
ing in-plane spins due to the factor (s; - #;;). The sum over the various dipolar neigh-
bours divides the magnetic material into domains aligned along the longest axis to

minimise the energy, see Figure 2.6.

70(n?) complexity
81f e = (0,0, 1), this would prefer spin aligned out of plane.
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FIGURE 2.6: Given a magnetic material that is uniformly magnetised,
the dipolar interaction seeks to minimise the self-magnetisation of the
body by separating into domains along the longest axis.

2.3 Modelling Defects

Defects play a crucial role in shaping the properties of materials, significantly in-
fluencing the interaction strength between dipoles and, consequently, the resulting
ground-state configurations. These imperfections in crystal structures can be classi-
tied according to their dimensionality, ranging from zero-dimensional point defects
to three-dimensional precipitates. Point defects, which are the focus of this study,
include vacancies (missing atoms), interstitials (atoms occupying non-lattice posi-
tions), and substitutions (foreign atoms at lattice or interstitial sites)[58, 59]. While
extended defects such as edge/screw dislocations or planar boundaries exist[58, 59],
their modeling is more complex[59], hence this research primarily concentrates on
the distribution of point defects. These defects can occur accidentally during ma-
terial growth or be intentionally introduced through methods like irradiation. The
presence of defects can significantly alter material properties, and this study aims
to investigate how they specifically affect the ground state spin configurations in
magnetic materials.

Defects are prevalent in thin film heterostructures as a result of the the fabri-

cation process[13, 15, 17, 18, 20, 22-34, 39]. There are two primary methods used
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FIGURE 2.7: Examples of defects in crystalline solids. a) Point defects
(interstitials), b) line defects (edge dislocation), c) planar defects (an-
tiphase boundary), and d) volume defects (precipitates).

for growing thin layers: molecular beam epitaxy (MBE), which preserves crystalline
structure but requires longer deposition time, and sputtering, which deposits layers
quickly but with less regard for structure. Sputtering is the most common growth
process, but resultant thin films are typically amorphous or at best polycrystalline,
lacking the single-crystalline structure’(see Figure 2.8). Despite this, skyrmions can
still emerge in all these diverse thin film types[61-67].

In atomistic simulations, defects can be modelled by either modifying the lattice
structure itself (e.g. removing certain sites) or by altering the spin interactions. The
earliest example of defect modelling is Random Field Ising Model (RFIM), where a
site-dependent pinning field (H;) is added to each spin[68, 69],

HRrM = — = Z Z SiSj — yZHiSi. (2.19)

i j€iny

Here, s; are Ising spins, and H; is a Gaussian random variable drawn from A (0, Hy),
with H, characterising the level of defects in the system. Even minor additions of

this defect type can significantly influence the phases observed in clean systems,

9Polycrys’calline films contain small grains (also called crystallites) of differing sizes and random
orientations, rather than the perfectly-aligned structure of single crystalline material[60]. Amorphous
films have a higher level of disorder, with no long-range geometric order in the structure[60].
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Single Crystalline Amorphous
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FIGURE 2.8: Types of thin film structures: a) single crystalline, where
the thin film is stacked regularly (yellow) over the substrate (red);
b) amorphous, where atoms are distributed in completely random

fashion; c) polycrystalline, where atoms form grains with different
sizes and orientations (generated via voronoi tessellation).

hence referred to as strong disorder!'’[68, 70]. For instance, the paramagnetic-ferromagnetic
phase transition, analytically proven to occur in 2D systems by Onsager, is sup-
pressed at even low levels of defects (¢ < ])''. Additionally, it has been rigorously
proven that random fields destroy long-range order in systems with dimensions
d < 2 for discrete order parameter systems (Ising), and d < 4 for continuous or-
der parameter systems (Heisenberg)[68, 72, 73], if H; is symmetric under rotations.

In our research, defects are similarly modelled in Heisenberg systems with a
spatially-dependent random pinning (RP) field, with randomness constrained to
only vary in only the z-direction, H; = H,;, with H,; ~ N (0, H,). This appears as

an additional term in the Heisenberg Hamiltonian (Equation 2.13),

N
HRrpos = Mo ZH,- - S;. (2.20)

Here, H; is a quenched field that is fixed throughout the simulation and H, con-
trols the level of defects in the system. When | = 1, a H, value of 0.001 approxi-

mates a ‘clean’ system, while H, = 0.1 represents a ‘dirty” system with a high defect

10There is also weak disorder, where the form of disorder simply modifies critical transition points
or the order of the transition.

UWhen o > J, the preference for disorder is higher than for an ordered state (J), and it has been
proven exactly that low temperature states are disordered[71].
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level. Research on the 2D XY model demonstrated that small variations of this con-
strained defect field results magnetic structures with long-range order[74]. Likewise,
in our scenario, the H; should also function as a weak disorder that simply alters the
boundaries of the skyrmion lattice phase'?. Although these random field systems
were previously used to study diluted antiferromagnetic systems[75] and Jahn-Teller
systems[76, 77], they are typically avoided due to the difficulty in creating a spatially
varying external field in real environments[78]. Random anisotropy[42, 79-82], and
random bond defects in DMI[18, 20], and exchange strength[83] present a more re-

alistic representation of defects in the crystal field.

2.4 Numerical Methods

In this section, we review two of the main methods used to model equilibrium mag-
netic states at finite temperature: the Monte Carlo (MC) algorithm and the mean
field (MF) approximation. The objective for both methods is to compute macro-
scopic properties of the ground state configuration, given a particular Hamiltonian.

As discussed in Section 2.1.1, a macroscopic property, A, is given as,
(Ay =Y Aupyu, 2.21)
H

where p, is the probability of microstate y, (p, = e ") /Z). This requires the
computation of the partition function, Z.

Unfortunately, brute force calculation of Z is not feasible due to the uncountable
number of possible configurations, y € (). Instead, alternative methods are used
to compute Z, including Monte Carlo which uses importance sampling to select the
most important configurations, and the mean field approximation which simplifies

Z by decoupling the pairwise spin interaction.

2.4.1 Monte Carlo

The Monte Carlo method cleverly selects samples from the entire sample set, which

are the most likely to correspond to low energy states: this is known as importance

12This is explored further in Chapter 6.



22 Chapter 2. Background in Magnetism

sampling[84, 85]. It does this by generating a Markov chain, where the future state
depends on the current one and not on prior history, and each successive state is
drawn from a probability distribution that converges to the Gibbs distribution, p,,.

In our numerical simulation, we want to find the average thermal parameters,
(X), of the lowest energy state. This can be computed by the usual numerical meth-
ods for integration, such as the Simpson’s method or via Gaussian quadrature, but
the high-dimensional nature of state y results in a very inefficient algorithm. Instead
we use Monte Carlo methods, where the integrand is separated into the random
variable (RV) of interest, X, € (), and the probability of its occurrence, p(u). Then
we draw M independent and identically distributed (IID) RVs from this probability
distribution function (pdf), Xi, ..., Xp ~ p. The thermal average is thus approxi-
mated by the estimator,

N
Xm = ! Y X B (X), (2.22)
1

M &
which tends to the average value, (X), as M — oo from the law of large numbers.

Unfortunately, we cannot sample directly from this target distribution in suffi-
cient time'®. We instead draw dependent samples which in the long run eventually
draws from the target distribution, 77(x). One set of RVs which has been proven to
have a pdf that converges to the target distribution is the Markov chain.

A set of IID RVs X; € (), is a Markov chain if it satisfies the Markov property,
P (Xit1 = wil Xi = wj), (2.23)

where the probability, IP, of reaching X;; only depends on the current state X;.
wy,; are the specific states of the RVs X;;; and X;. This Markov chain is time-

homogeneous if the transition probabilities stays constant over i,
P (Xit1 = wilXi = wj) =P (X1 = wa| Xo = wy) . (2.24)

The probability of going from any state w; to any state wy can be more succinctly

written in matrix form with elements Py = P (X1 = wi|Xo = w;) = P(w; — wy),

13The target distribution, py,, contains a normalization factor which integrates over the entire sample
space.
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and in the Markov chain, the pdf is updated successively with this transition matrix,

= Y po(wj)P(w; = wy). (2.25)
jkeQ
Thus after M steps in the chain, the probability distribution is pp1 = pp—1P = pOPM .
To use this Markov chain to produce thermal averages, the transition matrix must
have a stationary distribution'*, whereby the pdf is invariant under multiplication
with the transition matrix, 1 = 7rP. This is the target distribution from which we
originally wanted to sample.

To generate this target pdf, we first rewrite the stationarity condition as follows,

Y w(j)P(j = k) = m(k) = Y m(k)P(k — j), (2.26)
jeQy ke

where the final equality was obtained by multiplying the distributionby } cq P(k —

j) = 1. This condition is sufficiently satisfied by,
n(j)P(j — k) = n(k)P(k —j)  VjkeQ. (2.27)

This is known as the detailed balance equation, and states that rate of flow from state
j to k is equal to the flow from k to j. The Metropolis-Hastings algorithm[86] uses
this equation to generate a suitable Markov chain.

The algorithm works similarly to the simpler MC acceptance-rejection algorithm,
in that a newly drawn state, Y, is sampled from P(Y = y|X; = x) = Q(x — y),
where Q is the probability of choosing y given x, and this is accepted with probability
A(x — y). If it is accepted, then we set X;;1 = Y, otherwise it is rejected and the
state is unchanged, X;; = X;. This states that the total probability of transitioning

from state x to state y is,

P(x — y) = P(y is chosen|x AND y is accepted|x) (2.28)

=Q(x = y)A(x = y) (2.29)

14This requires that transition matrix is both irreducible and aperiodic.
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To ensure this satisfies detailed balance, we require that, given acceptance ratio Q, A

must satisfy

mt(x)Q(x = y)A(x = y) = n(y)Qy — x)A(y — x). (2.30)

For an efficient algorithm, we preferably want to set the acceptance rate as high
as possible in order to accept many states and increase convergence, but since A is a
probability it is subject to the limit A < 1. Therefore max (A(x — y), A(y — x)) < 1.

Equation 2.30 can be rearranged as,

Al y) = ORI 5 4y ) = Anw)Qy %), @3

A(y—x)

where we have introduced the factor A = Q=)

. From detailed balance, this is
equal regardless of the direction of flow, A = A(x,y) = A(y, x). The limit of A can be

used to find the maximal value of A,

A max ((y)Q(y — x), t(x)Q(x — y)) =1 (2.32)

N 1
- max (n(y)Q(y — x), m(x)Q(x = y))

< oo (2.33)

Substituting the expression for A(x,y), we find,
A(x — y) = min (1, "(y)Q(y_”c)) (2.34)
7T —

This is the Metropolis-Hastings acceptance ratio and it implies that new states
with higher probability are preferred, 7t(y) > 7(x), as well as new states where it
is easier to return to the previous state, Q(y — x) > Q(x — y). The ratio allows

us to use the unnormalised version of the target distribution, % = Z" Ez; , and we
M

are therefore not required to calculate the partition function, Z. The term within the

acceptance ratio is known as the Hastings ratio,

and this must be specified for different models.
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The general algorithm for the Markov Chain Monte Carlo (MCMC) method is
thereby given in Algorithm 1. Here, we see that if the Hastings ratio, R, is greater
than a random number drawn from the uniform distribution, UJ[0, 1], then the new

state is accepted, otherwise it is rejected.

Algorithm 1 Metropolis Hastings

1: procedure MC STEP
2 y~Qx =y

Ty (Y —X
» R= migggg—wg
4: u ~ ujo,1]
5: if U < R then
6
7
8
9

Xiy1 Y > accept the state
else
Xii1 < X; > reject the state
: end if
10: goto fop.
11: end procedure

Applying this to the simple Ising model, a new state, y, is picked by randomly
choosing a spin on the lattice and flipping it, thus the probability of picking a new
state is Q(x — y) = 4. This transition matrix is symmetric, Q(x — y) = Q(y —

x) = %, and so the Hastings ratio simplifies to,

!

()
yuMey

= exp [-B(H(y) — H(x))] = exp [-pdE], (2.36)

where dE is the change in energy from the spin flip.

The Heisenberg model is likewise similar but the transition matrix is the joint
probability of choosing a spin on the lattice and choosing a new value for the spin
vector, Q(x — y) = 5 - P(choose s; = {six, sy, Siz},|si| = 1). The only limitation
in our choice of Q is that it is symmetric so that the Metropolis Hastings algorithm
is kept simple, but otherwise we would ideally choose Q such that it samples high

probability states'(for faster convergence). Our program uses the method devel-

oped by Hinzke and Nowak[87], which integrates three separate spin kick choices

into a single algorithm. These three choices are outlined below, where sf and sf.“
refers to the spin vectors at lattice position i, at current and future MC steps, t and

t+1,

15This is known as importance sampling.
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1. Spin inversion. Signs of all spin components are inverted,

5§+1 = {_Six/ —Siy, _Siz} (2-37)
2. A random spin on the unit sphere. There are numerous ways to generate this

vector, but an efficient method involves sampling the components from the

standard normal distribution, N'(0, 1) and then normalizing the result,

{six ~ N(0,1), 57, ~ N'(0,1),5. ~ N(0,1)} (2.38)
sitl = L{ij,sjy, Siz} (2.39)
sl

3. A random spin within a small cone about the axis of the original spin. This
is achieved by finding a new random vector, sj, as in method 2, adding a small

fraction, -y of that vector to the old spin vector, sf-, and then normalizing,

sitl = M(sf +7s;) (2.40)
There is an equal probability of choosing any of the above three methods. Typically
in most MC algorithms only method 2 is used, but the Hinzke-Nowak method re-
sults in a faster convergence rate, since it allows the simulation to gradually reach
a low energy state through the cone step, but does not let the system freeze in a
metastable state by using the spin flip and random spin selection[87]. The full tech-
nique is outline in Algorithm 2.

Once the system has relaxed through a sufficient number of steps to reach equi-
librium and ensure sampling from the correct target distribution (77), thermally aver-
aged properties of the material can be computed. The two notable properties are the
system energy, E and the average magnetization, M. These are trivially calculated
by finding the local change in energy/magnetism, 4X, after a spin kick, and adding
this to the prior value, Xt1 to find the global value, X!. Then these global values are
averaged across all MC steps to find the ensemble average (X). Other parameters of
interest include the square of energy and magnetism, E> and M2, which can be used

to compute the variance of the E and M, respectively known as the specific heat and
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susceptibility of the material,

Cr= fj(@ - (E)?), (2.41)
x = BN({M?) — (M)?). @42)

These properties can be used to identify the Curie temperature since they show a
point of discontinuity as a function of f as N — co. The final property of interest in
the skyrmion number of the system: in systems with the DM interaction, Ny can be
used to identify phase regions which have skyrmionic structures (see Section 2.5).

The full algorithm for the MCMC method is given in Algorithm 3.

Algorithm 2 Heisenberg MCMC: Hinzke-Nowak Spin Kick

1: procedure SPINKICK

2: u ~ Uplo,2]

if U = 0 then > spin flip
return s/t = {—s;,, —Siy, —Siz }

else if U = 1 then > random spin
generate s; = {sj, ~ N (0,1) fora € {x,y,z}}
return s{t! = %

else if U = 2 then l > random spin in cone
generate s; = {sj, ~ N(0,1) fora € {x,y,z}}

10: §j =8; + S|

.
11: return st = 2L

i sl
12: end if
13: end procedure

Algorithm 3 Heisenberg MCMC: Metropolis Hastings

1: procedure MC STEP

2 for spin_index in Ndo

3 i~Upl0,N —1]

4 slt. < Find old spin at index, i

5: Sy < Get a new random spin > Spin Kick, Alg. 2
6 dE < Find local energy change

7 u ~ ujo,1]

8 if dE < O then

9: sitl s, > accept the state
10: else if exp (—pdE) < U then
11: sf“ — s, > accept the state
12: else
13: sith st > reject the state
14: end if

15: end for
16: end procedure
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2.4.2 Mean Field

The mean field (MF) approximation decouples the pairwise spin-spin interactions to
an interaction with an average field of all spins. For example, in the Ising model at
zero external field, the energy from the interaction between spin s; and its z neigh-

bouring spins can be decoupled as follows,

= —f] Z Sisj = ]zs E Sj, (2.43)

j€inn 2 j€in
where % Yjei,, Sj can be interpreted as the average interaction from the nearest neigh-
bours. This is a local magnetisation density that varies across the lattice, but MF
replaces this with a global density, + Z]N sj. Consequently, the partition function
simplifies to a system of non-interacting spins, with spins interacting with a global
mean field generated by their neighbours. From this, we obtain a self-consistency

equation for magnetisation.
= tanh (B(Jzm + uH)) (2.44)

This is known as the Curie-Weiss (CW) method[88, 89] and its full derivation is given
in the Appendix, Chapter A.1. For more complex Heisenberg systems, CW does not
result in a partition function that can be analytically computed, and therefore we
introduce the Hubbard Statonovich (HS) method that is more generisable to complex

systems.

The Hubbard-Stratonovich Transformation

For simplicity, we consider a system with isotropic exchange, DMI and and external

field,
- _*Z Y [Jij(si-sj) + Dy~ (si x s;)] ZH si). (2.45)

i j€inn
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This leads to the partition function as follows,

N

z :Zexp< EZ Y. [Jij(si-sj) +Dij- (si x sj)] —‘uZHi-si)>,

i j€inn

—_

(2.46)
1
= Trg, (exp ('B(E(Sl I-s;) — pH; - si)>>.

Here, the sum is taken over all spin configurations, si, and I is a general matrix

containing the symmetric isotropic exchange and antisymmetric DMI,

XX Xy Xz
ij Dz‘j,z _DZ] Y
L= | _pyx vy Yz
IL;; D, T Dj (2.47)
zZX zy zZ
| Dijy  ~Dijx i

The spin-spin interaction, s; - I - s;, prevents any further simplification of Z, and
therefore we use the Hubbard Stratonovich (HS) transformation to decouple this.

HS uses a mathematical identity of Gaussian integrals to transform the nearest
neighbour interaction term into a simpler coupling between non-interacting spins

and a new auxiliary field, x;. The Gaussian identity can be summarised as follows,

dx;, (2.48)

1 bl 71”_/ exp —3x; - Ajj - xj + x; - by
VIA| V27

where A is a real symmetric matrix with determinant |A|, b; is an arbitrary vector
at i, which is coupled to a fluctuating auxiliary field x;. Applying this results in the

following partition function,

—%lPi (B - ‘l’j)Tfsk exp ((lPi + upH;) - Sz’) dip;.
(2.49)

oty L]

Z now describes the interaction of non-interacting spins, s;, with a fluctuation field,
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;. Up until this point, the partition function remains in its exact form with no ap-

proximations made. We rewrite this in terms of an action, £(¢;, I[Z-]-, 1H;), as follows,

NI

g

T /_o:o exp <—5£(¢ir]lij/VHi)>dQ

(2.50)
1 1
L(i, Tij, pHy) = Spi- 157 - pj = Bln [Tfsk exp ([3 (¢i + uH;) - Sz‘)}

Further simplification requires the saddle point approximation, which assumes
that the integral is dominated by the maximum value of the integrand, and there-
fore approximates the partition function by the maximum of exp(—BL(¢;, I;j, uH;)).
This is equivalent to minimising the action £, which is found by setting %i to zero.
After a rearrangement, a set of self-consistent equations is found for the average lo-
cal magnetic moment, rz;. A full derivation is provided in the Appendix, Section

A.2.2, but the main results are summarised below,

oy = LBl ) i @51)

VHf = Jijm; — Djj x m; — uH;, (2.52)

where L(x) = coth (x) — x~! is the Langevin function, and y is set to 1. Hj is the
effective field acting on each mean-field spin, ;, including all interactions specified

in the mean-field Hamiltonian'®

N N

i j€inn

Equations 2.51 and 2.52 are a set of N coupled equations which must be solved iter-

atively as follows:

1. The system is initialized in a well-defined state: either the uniform state at high

field, or a paramagnetic state at high temperatures.

2. At each field and temperature point on the phase diagram, we perform the

following steps:

16The MF Hamiltonian can be trivially derived as the Curie-Weiss model, whereby atomistic spins
are replaced by their mean field equivalent, s; = ; + Js, and terms beyond the first-order are
neglected. Derivation of the self-consistent equations for #i;, however, requires the field-theoretic
Hubbard-Stratonovich method.
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(a) Calculate the effective field for each lattice spin, H; (Equation 2.52).
(b) Find the new magnetic moment, 1;, using H; (Equation 2.51).

(c) Update the old spin with a small fraction of the newly calculated mo-
ment'”, sf“ = st +a(m; —st)
(d) Calculate the error, err = |[si™ — st||?

(e) If this error if below a specified tolerance value, then end the simulation.

Otherwise, repeat from step a.

3. Store the spin configuration of the ground state for future analysis.

The MF step has been outlined with more clarity in Algorithm 4.

Algorithm 4 Heisenberg MF: Iterative Step

1: while err > tol do

2 err =0

3 fori € N do

4: calculate H; > Equation 2.52
5 calculate i (H;) > Equation 2.51
6 t“ = st +a(m; — f > calculate new spin
7: err += ( Hl_ ,7) fory € {x,y,z} > find err
8: end for

9: end while

The computational resources required by the algorithm significantly depends on
the convergence of the method. Despite this, MF is generally faster compared to MC,
and therefore investigation into magnetic materials typically commence with an MF
exploration to identify key regions of the phase diagram. Accurately identifying the

boundaries of these regions, however, requires a comprehensive Monte Carlo study.

Initial Conditions

In our simulations, we run hysteresis loops, whereby the system starts in a perfectly
uniform spin-down state at an external field of H = —1, and then the field is grad-
ually increased until the system reaches the spin-up uniform state. When running
these loops, the initial uniform state must include a small variation from the per-

fectly aligned state when the Hamiltonian has no term preferring canted spins (i.e.

7New spin only uses a fraction of the new moment in order to control the rate of convergence. If &
is too high, the system would jump sporadically about the true minima without settling, but with too
low an &, simulations take a long time to converge.
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the Dzyaloshinskii-Moriya interaction). A perfectly aligned state can lead to con-
strained dynamics'®, and the dipolar term in Equation 2.18 works only partially.
When starting from a perfectly aligned state, only the first term contributes to the
energy minimisation, and directly competes with isotropic exchange. The second
term, which prefers in-plane spins, reamins at zero, with no other terms to cant
spins away from (0,0, 1) such that it is no longer zero. Our implementation adds a
random tilt in a cone of 0.0001° to the initial uniform state, and a random variation
to the uniaxial axis in a cone of 0.1°, in case the system relaxes back to the perfectly

uniform state.

2.5 Skyrmion Number

The skyrmion number of a spin system is the simplest method of detecting topolog-

ically non-trivial spin structures. In the continuum limit, it is calculated as follows,

1 2 om oJm
Ni = £ /drm-(axxay>, (2.54)

where Ny describes the number of times m can be wrapped around the sphere S2. It

is possible to simply discretise this on a square lattice as follow,

1 mx+1,y — Myy mx,y+1 — Myy
Ny = ype Zx:;mw . < Az X Ay AxAy. (2.55)

But a naive discretisation leads to small numerical errors and, therefore, N, is no
longer quantised.

Berg and Luscher developed an analytic equivalent of Equation 2.54 for lattice
models[90]. In this method, the lattice is first triangulated, and then the solid angles
are calculated for each triangle[90, 91]. Our implementation only considers opposite
triangles, (s;, s1,s2) and (s;, s3,s4) to avoid double counting (see Figure 2.9 for trian-
gles in a square and hexagonal lattice)[92]. The solid angle is best described as the

area on the sphere which is enclosed by the three vectors (s;, s1,s2) (final image in

18States where only the m, component can vary.
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Figure 2.9), and can be found as,
i0) 1 .
exp (7) = ;(1 +51-Sp+52-83+ 8381 +1s1-(s2 X83)), (2.56)

where —271 < () < 27 and p is the normalisation factor,

o= \/2(1+51'52)(1+52'S3>(1—|—53~S1). (2.57)

The lattice topological charge is given by sum of the spherical areas of the triangles,

(si,s1,52) and (s;,s3,54) over all lattice points, i,

. 1
Q=3q() =} (12 +Qiza). (2.58)
i i
Square Lattice Hexagonal Lattice
51

S1

S4

FIGURE 2.9: The top two images show the triangulation method used

to calculate the skyrmion number for a square and hexagonal lattice.

The solid angle is the spherical area of the triangle enclosed by the
three spins, (s;, s1,52), shown in the bottom plot.
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Chapter 3

Background in relevant Machine

Learning methods

Machine learning (ML) methods are used extensively in our research both in phase
classification of materials with defects (Chapter 7), as well as in defect detection and
Hamiltonian parameter estimation (Chapter 8). This chapter commences with a brief
outline of neural networks, their training procedure and the various layers they are
comprised of. We then delve into the specific architectures and ML methods used
in our work, including the U-Net architecture, principal component analysis, and

variational autoencoders.

3.1 Supervised vs. Unsupervised Learning

ML methods can be broadly categorised into two main groups, each with different
objectives and methodologies. Supervised learning involves training on a labelled
dataset, where input x has a corresponding label y, and the model learns a mapping
f(x), that closely predicts the true target, y[93, 94]. Some examples of supervised
methods include classification and regression tasks. For example, Chapter 8 involves
a regression task to predict the parameters of the magnetic Hamiltonian using the
U-Net architecture. Conversely, in unsupervised learning, the model operates on
an unlabelled dataset, where it learns to uncover patterns, structures, or relation-
ships within the data without explicit guidance[93, 94]. Tasks requiring unsuper-

vised learning include clustering, anomaly detection, and dimensionality reduction.
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3-layer Network
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FIGURE 3.1: A simple 3-layer neural network with fully connected
hidden and output layers.

Chapter 7 is an example of dimensionality reduction, where a spin configuration is

reduced to key variables that retain maximal information about the phase.

3.2 Neural Networks

Artificial neural networks (ANNs) are ML models that loosely emulate the neural
pathways found in the brain, where the nodes are the 'neurons’ of the system and
a collection of nodes form a layer in the network. There are connections between
nodes of different layers and these are weighted depending on the importance of
the feature detected by the node. ANNS typically consist of several layers of nodes
and therefore these models are classified as deep learning (DL) models. They are
considered to be universal function approximators[95], capable of approximating
any any nonlinear function due to their inherent complexity.

A simple 3-layer feed-forward neural network' is shown in Figure 3.1. The net-
work is composed of fully connected (Dense) layers with connections between all

nodes in layers n and n — 1, effectively modeling the following non-linear function,

D, Dy
§(x, ™) = a<w§?h(Zw,ﬁf)h(zw](})xi))), (3.1)
j=0 i=0

1In our notation, an n-layer neural network, contains 1 input layer, 7 — 1 hidden layers and 1 output
layer. n refers to the hidden and output layers.
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ReLU(x) Sigmoid(x)
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FIGURE 3.2: a) ReLU activaton function, typically used in the hidden
layers of ANNSs. b) Sigmoid, 7, activation function, used as an output
activation function for binary classification.

where x is the 1D input vector with an additional bias of xg, w(" is the weight matrix
between nodes in layer n and n — 1 and the weight of the bias is set to 1 (w](-é1 ) = 1).
D, is the number of nodes in the g-th hidden layer. / is the hidden layer activation
function, whose main purpose is to add non-linearity to the function®. For example,
for the rectified linear unit (ReLU) activation (h(x) = max (0, x)), the neuron makes
a decision on whether or not to pass on the information contained in the weighted
sum, x (see Figure 3.2). ¢ is the output activation function, which transforms the last
layer’s features into a format that is compatible with a given problem. For example,
in binary classification, ¢ is the sigmoid activation function (Figure 3.2), giving the

probability that input x belongs to class 1,

1

o(x) = [

(3.2)

whereas in a regression task, ¢ is a linear function, o(x) = x.

The training process of a neural network consists of a forward propagation step,
the evaluation of a loss function, and finally a backpropagation step to update the
weights based on the loss function[93]. Forward propagation is a straightforward
progression of input data through the network represented by Equation 3.1. Given

the input of the previous layer, a'~!, each layer performs the following steps,

Zl = wWg1 (3.3)

al = h(zh). (3.4)

2The network must have non-linearity in order to model non-linear decision boundaries. If the
activation functions were all linear, then this would be equivalent to a single layer network and the
class of potential functions for the network would be severely limited.
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This process generates a prediction for the target variable, ;. The loss function mea-
sures the difference of the predicted value from the true target value (y;) and can be
found using maximum likelihood estimation. For regression tasks, the most com-

mon loss function is the mean squared error (MSE), given as follow[93],

1Y
E(w!) = N Z(]/i — i) (3.5)
For binary classification tasks, the binary cross-entropy (BCE) loss function is
commonly used. BCE measures the performance of a classification model whose
output is a probability value between 0 and 1. It is defined as,

E(w) = =

=~ lvilog(9;) + (1 —yi) log(1 — §;)]. (3.6)

=

Il
—_

Our primary goal is to find the model parameters, w™, that minimises the error
function, E(w™)). The minima of this function occurs when its gradient with respect
to w vanishes?,

VE(w™) = 0. (3.7)

To find the minima we use an iterative approach, known as gradient descent, whereby
w" is updated by taking small steps in the direction of the steepest descent of

E(w™), given by —VE (w()[93].
w™ = w" —yVE(w") (3.8)

Here, T is the iteration step, and 77 > 0 is the learning rate*. If this is computed
using the full dataset, then it is referred to as batch gradient descent (BGD). For
large datasets, where storing the entire dataset in memory for gradient calculation
is impractical, we instead use an online variant, called stochastic gradient descent
(SGD), where the gradients are updated after every individual datapoint. Though

SGD converges faster than BGD and is more likely to escape local minima, it never

3Due to the nonlinearity, this is not a convex function of w("), thus containing multiple minima.
The training process may converge to a local minimum rather than the global one, which still provides
a satisfactory approximation for the parameters.

41f the learning rate is set to a small value, it may take a long time for the algorithm to converge,
but a high learning rate may prevent the algorithm from settling to the optimum solution.
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fully converges to the optimum, instead oscillating about the minima. An interme-
diate method is mini-batch gradient descent where the dataset is partitioned into
batches and the gradient is computed over each batch[93]. This method can take
advantage of vectorisation to speed up the computation and reduces the volatility
of the oscillations.

To implement the iterative schemes discussed above, the computation of VE(w)
is essential, and can be found via backpropagation[96]. This procedure initially
computes the loss gradient with respect to the output, g—yEi, and on subsequent steps,
uses Leibniz’s chain rule to recursively determine the gradients with respect to the
activations, a’, and inputs, z!, propagating the error backward through the network.
These gradients indicate the level of contribution of each parameter to the final er-
ror. Once VE(w) is computed, parameters are updated through gradient descent.
This process of forward propagation, backpropagation and parameter update is re-
peated for multiple epochs until satisfactory convergence of the model parameters
w is achieved. Following training, the model’s performance is evaluated on an un-
seen dataset (test set). Additionally, model hyperparameters such as the number of
layers or the learning rate can be fine-tuned using a validation dataset before final

evaluation on the test set.

3.3 Network Layers

Our discussions so far have only mentioned the Dense layer with fully intercon-
nected nodes, z/ = w")a'~1. However this transformation can be replaced by a num-
ber of other layers, each serving a different purpose. The only requirement is that
z is differentiable with respect to its weights and inputs, such that it is compatible
with the backpropagation algorithm. The following section discusses a few of the

key layers used in our study.
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3.3.1 Convolutional Layers

The main drawback of Dense layers is the inefficiency in learning their numerous
weights, leading to longer training times and potential overfitting’. Convolutional
(Conv) layers address this issue by leveraging the spatial locality of input features to
substantially reduce the number of trainable parameters[97-102]. They extract key
features of an image through a convolution with a small matrix known as the kernel.
For a 2D image, X, of size Ny X N, the convolution with a kernel, K, of size k, x ky,
applied at a stride of (s, s,) gives the following feature map,

ky—1ky—1
Zij = (K% X)ij = Z Z Km,nXm+sxi,n+syj- (3.9)

m=0 n=0

Ny—k,+2P
—,

Here, the size of output Z is Floor( ) in the x-dimension, and Floor(

Ny —ky+2P
1) in the y-dimension. P refers to padding around the input image and is used to
preserve any features on the boundaries. Some example feature maps with specific

kernels are shown in Figure 3.3.

Sharpen

Original

FIGURE 3.3: The output of applying a convolution of the blur,
sharpen, emboss and outline kernels (inset) to an image of a skyrmion
lattice.
The convolution operation is performed by sliding the kernel window over the

image, calculating an elementwise multiplication on the overlapping pixels and

summing the result (see Figure 3.4). The size of the kernel determines the number of

SOverfitting occurs when a machine learning model learns the training data too precisely, captur-
ing noise and random fluctuations instead of the underlying true relationship, which results in good
performance on training data but poor generalisation to new, unseen data.
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input features that affect a particular output feature, limiting the spatial locality of
these input features. When the size of the kernel matches that of the input, the Conv
layer behaves equivalently to a Dense layer, with each output feature representing
a weighted combination of all input features. The weights within the kernel matrix

are learned via backpropagation.

FIGURE 3.4: Demonstration of the convolution operation. The 4 x

4 matrix is the input data, which is overlaid by a darker blue 3 x 3

kernel with is values displayed in the top-right corner. The operation

is applied with a stride of 1 in the x and y directions, resulting in a

2 x 2 output matrix in green. The dark green output value shows the

results of the sum of the elementwise multiplication of the kernel and
the pixels in the top right corner of the input matrix.

FIGURE 3.5: The feature maps of each channel, obtained by convolv-
ing a kernel with a channel of the input, are summed to produce a
final output of a filter. A convolutional layer can have several filters.

Our image input may contain more than one channel, for example a coloured
image of size N, x N, has three channels representing the red, green and blue pixel

values, resulting in an input size of Ny X N, x 3. Conv layers implement a unique
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kernel for each channel, and the concatenation of these kernels is called a filter. A
kernel of size ky X k, results in a filter of size k, x k; X c;,, where c;, is the number
of input channels, and k; < Ny, k, < N,. When the filter is applied to an image,
each kernel processes its respective channel and the resulting feature maps are ele-
mentwise summed to produce a single output map, as shown in Figure 3.5. Each
kernel in a filter has an independent weight, potentially causing one channel to be
prioitised over the others. A bias term is then added to the resulting kernel, before
it is passed through a non-linear activation function. Conv layers can have multi-
ple filters for extracting different features, with the number of filters being a tunable

hyperparameter.

3.3.2 Up-convolutional Layers

The transpose or up-convolution (UpConv) operation is an upsampling technique
that can reverse the size reduction that occurs from a Conv layer. However, it is
important to note that this does not reverse the convolution operation, but rather
performs a backward pass of the Conv layer. Specifically, it involves sliding the
input across the kernel and performing an elementwise multiplication, before over-
lapping elements are summed. Figure 3.6 shows an example transpose convolution
operation, applying the same kernel from Figure 3.4 to its output. The output of Up-
Conv is different to the input of the Conv layer (Figure 3.4) since UpConv does not
reverse the Conv operation. The UpConv layer is commonly used in fully convolu-
tional networks such as the U-Net in order to produce an output matrix of identical
size as an input image. For more in-depth discussions on the U-Net architecture,

please refer to Section 3.4.

3.3.3 Pooling Layers

One limitation of Conv layers is their tendency to encode the precise position of fea-
tures in the input, and minor changes such as rotations or translations can drastically
alter the feature map. Downsampling mitigates this issue by reducing the resolution
of the input features while preserving essential information, thereby decreasing sen-

sitivity to small variations. This can be acheived either by increasing the stride of
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FIGURE 3.6: The transpose convolution operation. Each element of

the kernel is element-wise multiplied by the input to produce 3 x 3

(kernel-sized) intermediate matrices and the overlapping values are
summed for the final output.

the Conv layer or through the use of pooling layers. Pooling layers divide the space
into non-overlapping regions called pooling regions (F) and performs an operation

to reduce the patch to a single value[103].

POOl(X)i/]‘,k = f(Xistrm,jsern,k; n, m) (310)

Here, (sy,s,) is the stride and (m,1) is the size of F in the x and y dimensions.
The most common pooling layer is MaxPool, where f(X;n,m) = max,, (X). This
operation retains the presence of a feature without also learning its exact position,

thereby enhancing the translation invariance of the model.
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3.3.4 Skip Connections

weight layer

b e
identity

FIGURE 3.7: A residual block in ResNet with a skip connection. Taken
from [101].

As the depth of a network increases, its ability to capture abstract and intricate
features from the input is enhanced. However, beyond a certain depth threshold,
the model performance begins to degrade, likely due to vanishing gradients and
low convergence rates in deep layers[101]. Skip connections provide an alternative
pathway for data to traverse from preceding layers to subsequent ones, bypassing
intermediate layers. This is in contrast to the sequential pipeline of traditional net-
works. More generally, the output of neurons in layer [, incorporating information

from layer I — k, where k < I, is given by,
a) = h(Wl_l’lﬂl_l + bl—l + Wl_k'lal_k) (3.11)

where h is the activation function, W!="! denotes the weights between the I — i-th
and [-th layers, and a4;_; and b;_; represent the outputs and biases of the [ — i-th layer.
This was first implemented in the ResNet architecture[101], where the weight W%/
corresponds to the identity matrix (see Figure 3.7). With convolutional layers, skip
connections are implemented by either concatenating earlier p feature channels from
layer I — k to the g channels in layer /, leading to a layer output with p 4 g channels,
or through the addition of the p feature channels in I — k to an equal number of p

channels in /.

3.4 The U-Net Model

The U-Net architecture was designed specifically for image segmentation tasks[44],
where instead of classifying a single object in a image, it simultaneously identifies

multiple objects[44, 105-108], such as the ones shown in Figure 3.8. In Chapter 8, we
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FIGURE 3.8: An example input image with its corresponding label
matrix containing the class of each object, taken from the COCO
dataset[104].

reuse this architecture, as a general mapping function between a 2D input and 2D
output, to learn the underlying defect field of a material, given an input spin texture.

One of the earliest models to tackle image segmentation was the fully convo-
lutional network (FCN)[105], which substituted the Dense layers of a traditional
convolutional neural network with an up-convolutional layer, enabling pixel-wise
classification. This modification resulted in two aditional benefits: firstly, the model
was no longer restricted to fixed-size inputs which are necessary for the matrix mul-
tiplication in the forward-pass step for Dense layers, and secondly, it reduces the
computational resources required for training, due to the decreased number of pa-
rameters in Conv layers as opposed to Dense ones. In Chapter 8, we use FCN as
a benchmark model to test the effectiveness of our U-Net variant in Hamiltonian
parameter estimation.

The U-Net is an encoder-decoder model, that enchances the network structure of
the FCN by introducing a symmetric architecture between the succussive Conv and
UpConv layers[44]. These pathways, called the contracting and expanding paths re-
spectively, form a ‘U’-shaped architecture that gives the model its name, see Figure
3.9[44]. In the contracting path, three blocks of two 3 x 3 Conv layers with a ReLU
activation are followed by a downsampling using a 2 x 2 MaxPool operation with a
stride of 2. MaxPool halves the resolution of the features, while the Conv layer im-
mediately following it doubles the number of feature channels. The expanding path
reverses this structure with three blocks of a transposed 2 x 2 convolution to halve
the number of feature channels, followed by a skip connection (via concatenation)
to features channels from the encoder path, and finally two additional 3 x 3 Conv

layers. Upsampling is a sparse operation, so concatenation improves the prediction
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FIGURE 3.9: The U-Net architecture. The blue boxes correspond to

the feature channels computed at each layer while the white boxes in

the decoder path represent the high-resolution feature channels taken

from their respective encoder layer. The number of feature channels

is denoted at the top of the box and the x — y dimensions are at the
side of the boxes.

accuracy by adding the high-resolution details from the encoding path with the cur-
rently learned features in the decoder path. The final layer uses a 1 x 1 convolutional
layer to map all prior feature channels to a matrix indicating the pixel class. We im-
plement a variant of this network in Chapter 8, where the final output contains the

predictions of a site-dependent random pinning field.

3.5 Dimensionality Reduction

The following section summarises the two dimensionality reduction techniques used

for phase classification in Chapter 7.
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3.5.1 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique that
reduces the redundancy in the feature vector while preserving as much informa-
tion as possible from the original dataset, thereby resulting in a more concise rep-
resentation of the data[109]. It accomplishes this by linearly transforming a high-
dimensional dataset into a lower-dimensional subspace, spanned by a set of or-
thogonal axes, called principal axes, along which the data exhibits the greatest vari-
ance[109-112].

This transformation is achieved by diagonalising the covariance matrix of the
dataset[109]. A dataset of m examples with n features, X € R"*", may contain
several highly-correlated features that could potentially be reduced to a single vari-
able. The covariance between any two features, (x;, x]-), captures how these move in

relation to one another,

(NgE

1
cov(x;, xj) = — ) (%ik — Xi) (xjx — %)) (3.12)
=1

where ¥; and ¥; denote the means of features i and j. The covariance matrix encodes

the pairwise covariances between all features in the dataset,

var(x1) ... cov(xy,xy,)

Yx =cov(X,X) = : : , (3.13)

cov(xy,x1) ... var(xy)

where var(x;) = L Y7 (x; — %;)? is the variance of feature i, and Zx is symmet-
ric, with cov(x;, xj) = cov(xj, x;). If the features are mean-centered, the covariance
simplifies to ©x = L XXT. A large magnitude of a diagonal term in this matrix sig-
nifies the importance of this feature (high variance), whereas a large magnitude of
an off-diagonal term suggests a high redundancy due to these features. Ideally, the
optimised covariance matrix would have off-diagonal terms set to zero, producing
uncorrelated features, and the diagonal terms would be ordered in terms of the fea-
tures exhibiting the greatest variance. This can be achieved by finding an matrix,

P, that linearly transforms the dataset X to Y = PX, such that the first basis vector
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aligns with the axis of maximal variance and subsequent basis vectors are found,
subject to the constraint of orthonormality.

The covariance of Y can be written in terms of the covariance of X as follows,

1

1 1
Yy = —YYT = —(PX)(PX)" = —PXX"P! = PxxP! (3.14)
m m m

Since Y.x is a symmetric matrix it can be diagonalised by an orthogonal matrix com-
posed of its eigenvectors, Xx = CDC T where each column in C corresponds to an
eigenvector of Xx, and D is a diagonal matrix with the respective eigenvalue of each
eigenvector. Selecting P, such that each row (p;) is an eigenvector of Xx (P = C ),

diagonalises v,
Yy = PxxP’ = p(cDC")PT = (PPT)D(PPT) = (PP~ )D(PP™!) =D (3.15)

The principal components are therefore given by the eigenvectors of Xx with the
variance along p; given by the i-th eigenvalue, found via the decomposition of
Tx’. Finally, by retaining only the first d principal components (d < n), the higher-

dimensional dataset can be projected to a lower-dimensional subspace,
Y = PX € R™*™, (3.16)
where P € R?*" is the projection matrix.

3.5.2 Variational Autoencoders

An autoencoder is as a latent variable model, mapping a D-dimensional datapoint,
denoted as x; € RP, to lower-dimensional latent variables, represented by z; € RM,
where M < D. Although these latent variables cannot be directly observed, they

can be inferred from observable variables, for example intelligence can be inferred

6Uses the property that the inverse of an orthogonal matrix is equal to its transpose, P~1 = PT.

7In an alternative derivation, principal components can be found by maximising the variance of
the data projected onto the principal component, plTZX p1, under the constraint that p; is a unit vec-
tor, (pIZxp1 — A(1 — pTp1). Consequently, this also results in p; being the eigenvector of Zx with
the greatest eigenvalue. Subsequent principal components can be similarly found, with additional
constraints on the orthonormality of basis vectors.
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from the scores of different exams. Autoencoders learn to extract these latent vari-
ables from the observed data, denoted as p(z|x) (the encoder), and subsequently
reconstruct the full features from the compressed latent information, represented by
p(x|z) (the decoder).

Given a dataset of N independent and identically distributed samples, X =
{xi}f\i 1, the objective is to determine the parameters, 6%, that approximate the true
distribution, p(X). The common approach is maximum likelihood estimation (MLE),
where the likelihood of the data, marginalized over the latent variables, is maxi-
mized,

N
0 = argmax py(X) = arg max Y log pe(xi). (3.17)
€O 0O =1

However, this method encounters two main challenges[43],

1. The computation of the marginal distribution, py(x;), involves solving the in-

tegral
pol) = [ palxi2)dz = [ polxilz)pe(2)dz, (3.18)

which is often intractable®.

2. The integral must be computed over all N datapoints, thus we cannot optimize

for speed or RAM usage with mini-batch GD or SGD.

To address the intractability issue, we use variational inference (VI), which re-
frames the inference problem as an optimization task. In VI, we seek to approximate
the true posterior distribution, py(z|x), using a variational approximation, g4(z|x),
parameterized by ¢, drawn from a family of approximations denoted as Q. Our
objective is to find the ¢ that selects the g4 (z|x) closest to py(z|x), measured by the
Kullback-Leibler (KL) divergence,

Dit (g =10 [po(z1)) = [ gy (zl) tog 215
po(z|xi)

1

(3.19)

Rewriting log pg(x;) in terms of Dk (94 (z|xi)||pe(z|x;)), we find that maximising
the log-likelihood is equivalent to maximising the evidence lower bound (ELBO),

L(¢,0;x;), with respect to the model parameters, 6 and variational parameters, ¢,

8Requires exponential time to compute.
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for each datapoint x;,

N
max Y. rn;lx L(¢,6;x;) (3.20)
i=1

L(¢,0;xi) = Ey (2|, [log po(xi|z)] — Dxr(qe(z[xi)|[pe(z)) (3.21)

The Stochastic Gradient Variational Bayes (SGVB) estimator

Maximising the ELBO requires the gradients of £(¢,6; x;) with respect to 6 and ¢,

which are summarised as follows,

Vgﬁ(xi) = Eq¢(z\xi)[v9 log pg(xi, Z)] (3.22)

Vo L(xi) = Ey, (z1x) [(log po(xi, z) — log g¢(z|x:)) Vg log 4¢ (z]xi)] (3.23)

These gradients involve intractable expectations over the latent space, and there-
fore must be estimated using Monte Carlo. This entails generating m samples of

latent variables, z1, ..., z;, from g, (z|x;) and computing the following averages,

1
VoL(x;) = — Z Vo log pe(xi, z;) (3.24)

§

=1

1
m

VoL(x;) = (log po(xi, zj) —logqe(zi|xi)) Vylog g (zj|x;) (3.25)

Il
—_

j

Though these estimators are unbiased, the variance of the score function estimator,
VL (x;), is high, reducing the efficiency of the Monte Carlo algorithm and therefore
requiring more steps for convergence[113]. Kingma et al. proposed an alternative
estimator, the Stochastic Gradient Variational Bayes (SGVB) estimator, using the
reparametrisation trick, which exhibits lower variance[43].

For various differentiable parametric families, we can generate samples z ~

¢ (z|x;) using a two-step generative process:
1. Generate samples from a simple distribution, £ ~ p(€), i.e. N'(0,1)

2. Apply a differentiable deterministic function, Z = g4(&, x), to £. Then z fol-

lows the distribution q¢(z|x;).



3.5. Dimensionality Reduction 51

For instance, if the parametric approximation was a univariate Gaussian, g, (z|x;) ~
N (u,0), then drawing £ ~ N(0,1) and transforming it by g4(£) = p+ € = z,
yields z ~ N (p, o) as desired.

Using the reparametrisation trick, we can express the derivative with respect to

¢ as follows:

VoEg, (2 [f (2)] = Vo Epe) [f (8 (€, )] (3.26)

=E,5)[Vof(gp(E, xi))], (3.27)

hence the estimator for the derivative becomes:
_ 1
VoL(x) = — Y Vof(8s(E,xj)) (3.28)
j=1

This estimator is also unbiased for V£ (x;), but it exhibits lower variance compared
to the score estimator, thereby enhancing the efficiency of the learning process. The
full algorithm for the auto-encoding variational bayes (AEVB) is given in Algorithm
5.

Algorithm 5 The AEVB algorithm : Taken from [43]

1: Initialize 6, ¢

2: while 0, ¢ not converged do

3: Select random minibatch of M points, X"
Take random samples, £ ~ p(&)

Calculate gradients, g <— Vg, L(0,¢; XM, )
Update 6, ¢ with g (using SGD or Adagrad)
7: end while

8: return 0, ¢

AN S

Until now, we’ve maintained a general approach without specifying the exact
functional forms of g4(z|x;), and py(x;|z). In our study, convolutional neural net-
works are used to define both the encoder, g4 (z|x;) and the decoder, py(x;|z). Figure
3.10 depicts the architecture, where the input spin texture (x) is fed into the CNN en-
coder to output the means (¢) and standard deviations (o) of the latent space. Latent
variable z is sampled from N (u, o) using the reparametrisation trick, and then input
into the CNN decoder to reproduce the spin texture (£). By training such a model in

Chapter 7, we can classify the majority of phases observed in materials with defects.
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Encoder (CNN)
q¢(2[x)

Z=p+o¢
Z e~ N(0,1)

Decoder (CNN)
pe(x|z)

FIGURE 3.10: VAE network architecture, using convolutional neural
networks for the encoder and decoder.

3.6 Conclusion

In conclusion, we have introduced the fundamental concepts behind neural net-
works, focusing on the U-Net network, which we repurpose in Chapter 8 for Hamil-
tonian parameter estimation and defect detection. Additionally, we discuss dimen-

sionality reduction techniques, such as PCA and VAE, used in Chapter 7 to capture
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signatures of phase transitions directly from the spin configuration. In the upcoming
chapter, we delve into the topic of skyrmions, providing an overview of the current
research and highlighting challenges in using skyrmions for storage solutions as a

result of material defects.
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Chapter 4

Background of Skyrmion Research

4.1 Skyrmions and their Discovery

In 1962, Tony Skyrme introduced a groundbreaking concept that fundamentally re-
shaped our understanding of particles — the skyrmion[114]. Driven by the quest
to unify meson and baryon particles, Skyrme devised a field-theoretical model of
the meson, from which a topological knot emerges, embodying a localised nucleon
particle. Imagined as a "hedgehog'"-like structure, formed by wrapping a three-
dimensional vector field around a unit sphere, the skyrmion’s stability was solely
attributed to a unique property of the field — its topology. Initially hailed for its
promise, especially in explaining the low-energy behaviours of nucleons, skyrmions
eventually yielded to the advancements of quantum chromodynamics. However,
the concept of topology, once confined to the annals of mathematics, emerged as a
tangible property stabilising particles throughout condensed matter physics, from
chiral nematic liquid crystals[115] to Bose-Einstein condensates[116-119] and quan-
tum Hall magnets[120-123]. This thesis focuses specifically on skyrmion particles
emerging from the spin field of magnetic materials.

A resurgence of interest in skyrmions within magnetic systems occurred in 1989,
inspired by the emergence of Abrikosov vortices within type-II superconductors.
Bogdanov and Yablonskii envisioned a lattice of particles, similar to vortices[52],
sustained by the delicate interplay between the isotropic and a newly-introduced
inhomogeneous exchange, described within Landau’s free energy expansion. This
additional exchange, known as the Dzyaloshinskii-Moriya interaction (DMI)[49],

favours an orthogonal alignment of magnetic moments, encouraging the formation



56 Chapter 4. Background of Skyrmion Research

o e T S S S

FIGURE 4.1: a) Small-angle neutron scattering (SANS) experiment re-

veals a novel six-fold FFT image which could indicate the presence of

a multi-Q structure. b) Mean field simulations of a proposed three-Q
structure produces a skyrmion lattice. Taken from [11].

of a diverse array of canted spin configurations including helices, cones, and — most
importantly — skyrmions.

Unfortunately, the presence of skyrmions in real materials is constrained by Neu-
mann’s principle which dictates that a material’s free energy must adhere to the sym-
metries of its underlying crystal lattice. Consequently, skyrmions are observable in
only a limited selection of materials, where inversion symmetry is broken. Nearly
two decades after its theoretical proposition, the experimental confirmation was
achieved by Miihlbauer et al. in the low-symmetry (P2;3) MnSi crystal[11]. They
observed an anomalous six-peak pattern in reciprocal space that defied explanation
using known spin structures. By simulating a superposition of three coplanar spin
spirals, Miihlbauer successfully reproduced the skyrmion lattice in real space and
correspondingly accounted for the six-peak pattern in reciprocal space[11]. Lorentz
transmission electron microscopy (LTEM) of a thinned sample reveals the presence

of a real-space skyrmion lattices[12], unequivocally establishing the existence of

skyrmions.
m=1
m=—1

FIGURE 4.2: Various types of skyrmions classified by their helicity, -,
and skyrmion number, m. Taken from [124].
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FIGURE 4.3: Examples of commonly-found skyrmion textures: a)
Bloch skyrmion, b) Néel skyrmion, c) Antiskyrmion, with a Néel wall
along x = 0 and y = 0, and a Bloch wall on the y = x axis.

Structurally, a skyrmion is a whirling spin texture characterized by a boundary

180° out-of-phase with the central-most spin, and a continuous rotation in spins

from perimeter to core. Mathematically, this can be expressed, in terms of polar

coordinates ¥ = (rcos (), rsin (1)), as follows,

cos (6(y)) sin (¢(r))
m(r) = | sin (6(y)) sin (¢(r))
cos (¢(r))

(4.1)

This general definition encompasses several skyrmion varieties[124], with differing

helicities and skyrmion numbers (Figure 4.2). Among these, most investigations fo-

cus on Bloch and Néel skyrmions, so named, due their resemblance to Bloch/Néel

domain walls (Figure 4.3). Other variants include the antiskyrmion[125, 126], char-

acterized by a Néel wall along the x = 0 and y = 0 axes, and a Bloch wall along the

Yy = x axis, a biskyrmion consisting of a pair of bound skyrmions of opposite chiral-

ity[127, 128], and the skyrmionium, featuring a skyrmion embedded within another

skyrmion with an opposite topological charge[129, 130].
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Skyrmions are classified into distinct topological classes based on their skyrmion
number (Ng), representing the number of times a spin texture wraps around the unit

sphere. At the continuum limit, the skyrmion number is calculated as follows,

Nie= o [[ drm (a’" %’;) (42)

This integrand sums the total solid angle formed by all spins, mapping the 2D field
onto a 3D sphere. Configurations belonging to the same topological class deform
smoothly between each other[6], for example in the Bloch to Néel skyrmion trans-
formation. However, when dealing with configurations of different classes, defor-
mation is subject to an energy barrier[6, 7]. This topological protection ensures the
stability of the skyrmion structure, making them reliable candidates for data parti-

cles in non-volatile memory|[6, 7].

4.2 Applications in Storage Technology

The primary driving force behind skyrmion research lies in its potential application
in innovative spintronic-based storage technology. The demand for efficient data
storage solutions has surged in recent years, particularly with the proliferation of
Deep Learning applications and expansion of IoT technology. According to a 2020
forecast by Statista[131], the global accumulated data volume, which stood at 64
ZB in 2020, is predicted to soar to 181 ZB by 2025, with the data generation rate
continuing to surge.

However, current storage technologies are facing challenges in keeping up with
this ever-growing demand for data storage. While significant progress has been
made in miniaturising memory cells in transistor-based CMOS[132], with sizes reach-
ing 3nm, these efforts are impeded by quantum tunnelling effects[133, 134]. More-
over, transistors, serving as volatile memory, demand continuous power to uphold
data integrity, and substantial power for read/write operations to drive electrons
within the transistor circuits[135]. Spintronics presents an alternative approach to

creating memory devices, by leveraging electron spin rather than its charge[136—
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138]. This approach benefits from lower power consumption since less energy is re-
quired to alter spin orientation compared to traditional electron manipulation[135].
Moreover, the inherent property of ferromagnetic materials, to remain magnetised
even after the removal of a field, enables non-volatility of data[135]. The pivotal
breakthrough in spintronics came with Giant Magnetoresistance (GMR)[139, 140],
which facilitated the development of spin-valve read heads, resulting in a 103-fold
increase in magnetic disk technology efficiency[138]. However, the 10nm magnetic
domains of disk technology are reaching their size limit due to challenges in stabil-
ising small magnetic bits against thermal fluctuations[138].

Skyrmion-based devices emerge as a promising replacement for magnetic disks,
with the potential to deliver higher data density owing to their smaller sizes in cer-
tain materials[4, 5, 135], ranging from 5-200nm][141, 142], and significantly acceler-
ated read/write speeds, of 10ns[135], in contrast to the mechanical read-head used

in conventional disk technology.

current
pulse

write-in

read-out

FIGURE 4.4: Depiction of a skyrmion-based racetrack device, where
teh presence of a skyrmion encodes a binary 1, and its absence is 0.
Taken from [143].
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The domain wall (DW) racetrack, first explored in 2007[144, 145], is the lead-
ing methodology for memory devices in spintronics, whereby magnetic domains
encode binary data traversing a nanowire via spin-polarised current[144-146]. Al-
though promising, DWs are highly sensitive to defects leading to unpredictable
motion, reduced speeds, and tracking challenges[147-149]. Conversely, skyrmion-
based systems offer multiple advantages[143, 150, 151]. Skyrmions, smaller than do-
mains[135, 141], allow for higher data density and require lower spin currents'[1-
3, 153-156]. Furthermore, owing to their topological stability, skyrmions exhibit
greater resilience to defects[124, 157], mitigating the risk of data loss. In skyrmion-
based racetracks, binary data is encoded by the presence or absence of a skyrmion
and their effective utilisation for data storage offers improvements in writing (via
nucleation)?, reading (via detection)’, and deletion (via annihilation)*[22, 177]. Fi-
nally, optimising the racetrack itself, by tuning layers[178] (to enhance skyrmion
stability and facilitate their formation[22, 32, 35, 179]) or introducing defects (to
guide[38, 180, 181] and accelerate skyrmion[36, 37]), provides further advantages.

Unfortunately, the heightened and uncontrollable level of defects in multilayer
heterostructures poses a significant obstacle to realising a skyrmion racetrack device.
These defects can significantly impede the motion and trajectory of skyrmions[20,
179, 182], even trapping them when the driving current is insufficient[35, 169, 179] —
an issue encountered in other device prototypes as well. For example, in a skyrmion-
based synapse[183-185], designed to model the weights of a neural network, defects
can alter the size and behaviour of skyrmions, leading to unpredictable motion and
erroneous weight assignments[185]. Moreover, defects can have detrimental effects
on logic gates, amplified by their constricted geometry, resulting in skyrmion annihi-
lation and incorrect logic operations[180, 186, 187]. Though skyrmions offer exciting

opportunities, for the realisation of ultradense energy-efficient storage technology, a

110~ Am~2 for skyrmions, compared to 10~ Am—2for DWs[152].

2Writing methods include current injection (via spin-transfer torque or spin-orbit torque)[22, 158,
159], applying a localised field (electric or magnetic)[160-162], heating[163], and ion radiation[164,
165], along with the exploitation of defects and geometrical constriction[160, 166].

3Reading can be accomplished using magnetoresistance, via magnetic tunnel junctions[167, 168],
microscopy imaging[12], or from electrical Hall measurements[169, 170].

4Skyrmions can be deleted via magnetic fields[171, 172], electric fields[162, 173, 174] and spin-
polarised currents[175, 176].
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comprehensive study of defects is essential for advancing skyrmion-based technolo-

gies.

4.3 Stability of Skyrmions

One of the primary challenges in skyrmion research, pivotal for the feasibility of
skyrmion-based devices, revolves around ensuring their stability under varying ex-
ternal conditions. The energetic stability of a skyrmion hinges on a delicate balance
between intrinsic interactions among a material’s magnetic moments and external
factors like magnetic field strength and temperature. While the former can be influ-
enced by material composition, safeguarding skyrmions against environmental fluc-
tuations across a broad range of fields and temperatures is crucial to prevent their
degradation. Furthermore, for the practical implementation of skyrmion-based de-
vices, it is imperative that skyrmions maintain stability even at room temperature

(RT)? while maintaining a compact size.

FIGURE 4.5: Interfacial Dzyaloshinskii-Moriya interaction from the
symmetry breaking between a ferromagnetic layer and a heavy metal
substrate.

However, identifying bulk crystals that meet the stringent criteria for skyrmion-
device fabrication poses significant hurdles. Early B20 helimagnets such as MnSi[11]
and Fe(5Co05Si[12, 13] only host skyrmions within a limited range of fields and tem-
peratures, typically below 40K. Although other B20 crystals like MnGe and FeGe
with higher Curie temperatures up to 278 K have been identified, alternative strate-
gies are required to bolster the stability of the skyrmion phase. Early investigations
suggest that thinning the material[12, 14, 15] and inducing tensile strain through
epitaxial coupling to a substrate can suppress the conical state and broaden the

skyrmion phase to encompass a wider temperature and field spectrum. Interfacial

5Most consumer storage technology can withstand much higher temperatures (almost 80°)[8-10]
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FIGURE 4.6: A depiction of the merging of two skyrmions. This oc-
curs via a Bloch point which creeps up along the tube zipping up
skyrmions to form a helical state[191].

DM, induced by inversion symmetry breaking at the interface between a heavy
metal (HM) and ferromagnetic layer (FM), exhibits greater strength compared to
bulk DMI[188, 189] (see Figure 4.5). This enhancement, attributed to the substan-
tial spin-orbit coupling from the HM layer[27], further improves the stability of
skyrmions[23, 27, 190].

Recent ab-initio and experimental investigations highlight the role of HM sub-
strate imperfections in strengthening spin-orbit coupling and subsequently improv-
ing skyrmion stability[192, 193]. Thus, defects emerge as key contributors to skyrmion
stability enhancement. Understanding how defects stabilise skyrmions involves
delving into the skyrmion decay process. During this process, a topological defect
known as a Bloch point emerges at the intersection of two skyrmion tubes, before
“zipping” up and merging the skyrmions to form spin spirals[191]. Introducing a
defect at the core of the Bloch point halts its progression and prevents the unwind-
ing of the skyrmion, thereby extending its lifespan[17, 194, 195]. Systems with high
levels of defects exhibit a broader skyrmion phase under external environmental
fluctuations. Defects can be intentionally introduced through doping[13, 17, 40] or
by applying mechanical stress[16] to shift atoms from their original lattice sites, con-
sistently enhancing skyrmion stability.

In the absence of defects, improving skyrmion stability relies on rapidly driving
the system away from its equilibrium configuration[145], either through cooling pro-
tocols[13, 15, 17, 39, 40, 196] or rapid non-thermal excitations within the skyrmion

pocket[197, 198]. These processes yield metastable skyrmions, where the particle’s



4.4. Impact of Material Defects 63

topology forms an energy barrier against thermal agitation, preventing its unwind-
ing to the energetically-favourable spin spiral. However, achieving rapid cooling
rates in clean materials necessitates specialised cryogenic equipment, increasing ma-
terial manufacturing costs[196]. Therefore, leveraging defects holds promise for re-

ducing device manufacturing costs while enhancing data reliability.

4.4 Impact of Material Defects

Thin films and multilayer heterostructures dominate current skyrmion research[15,
18, 20, 22-34, 199, 200], both from ease of tunability for device applicability[23, 190],
and their seamless integration to the industry-standard pipeline for semiconductor
manufacturing. Unfortunately, a preference for magnetron sputtering[18, 201], over
epitaxial methods[202], driven by the pursuit of faster material growth, inadver-
tently leads to a heightened level of defects in resulting thin films. Pits, dislocations
and impurities can arise from a substrate’s surface imperfections ultimately impact-
ing the intrinsic interactions of magnetic moments[203].

The inherent topological stability of the skyrmion serves as its primary defense
mechanism against small defects, propelling the skyrmion-based racetrack to the
forefront of spintronic research over its domain-wall counterpart[143-145, 150, 151].
Essential to the functionality of a viable racetrack device is the unimpeded move-
ment of skyrmions—fast yet predictable—under a preferably low spin-polarized
current[1-3, 153-156]. In such systems, skyrmions exhibit high mobility in the pres-
ence of small and sparsely-distributed defects, distorting around defects[152, 204,
205], while experiencing only a marginal reduction in their speed[152, 160]. Con-
versely, domain walls are significantly hindered by defects, resulting in a notable
decrease in speed and necessitating a considerable increase in current density to
overcome these kinks[206, 207]. Unfortunately, further investigation reveals that
larger or denser distributions of defects, often encountered in sputtered films, can
impede the rapid motion of skyrmions[20, 204, 208-210], leading to stochastic tra-
jectories[20, 211] with markedly reduced velocities[20, 205, 212-214] and increased
transverse motion[204, 213, 214], sometimes even causing skyrmion pinning[20, 204,

205, 213]. Consequently, collisions between skyrmions and other pinned skyrmions,
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large defects, or material boundaries, may result in their annihilation[204, 205, 208],
jeopardising the non-volatility of data. Even the prototypical logic gates is vulnera-
ble to defects, with skyrmions blocked behind defects within its confined geometry,
resulting in erroneous outcomes[215].

Yet, controlled defects offer a promising avenue for predictably manipulating
the properties[19, 20, 24, 216, 217], dynamics[218], and nucleation of skyrmions[160,
217, 219, 220], contingent upon a comprehensive understanding of their character-
istics[221]. Ab-initio studies categorise atomic defects into two primary types: at-
tractive or repulsive, determined by their chemical composition®[228]. Strategically
positioned attractive defects can serve as stable and predictable nucleation sites for
skyrmions[227, 229]. These defects not only reduce the size of skyrmions[226] but
can also minimise the spacing between them, thereby enhancing data density in stor-
age devices. Skyrmions exhibit a high resilience to the defects, owing to their topo-
logical protection, which favours structural deformation[152, 204, 205] over annihi-
lation (up to a particular defect level) when in close proximity to defects or other an-
chored skyrmions[222]. This enhanced stability promotes data preservation across a
broader range of external conditions compared to defect-free systems, including at
zero field using curvilinear defects[230]. Additionally, repulsive defects can be used
to engineer skyrmion dynamics, guiding skyrmions along specific trajectories[225,
226, 231-233], altering their speeds[226, 232], trapping them[223, 224, 233-235], and
regulating their passage within the confined geometry of logic gates[231, 236]. In the
subsequent chapters, we exclusively examine the equilibrium behavior of skyrmion
states under the influence of defects, leaving the exploration of dynamics for future

research.

6 Atomistically, these can be modeled as a pinning field incorporated into the various interaction
strengths, for example fluctuations in the exchange strength, DMI, or anisotropy[20, 204, 209, 210, 213,
214, 218, 220-227].
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Chapter 5

Validation of the mean-field model

based on a 2D magnet Fe;GeTe;

The key purpose of this chapter is to validate the mean-field model, by comparing
its predictions with experimental data obtained from the two-dimensional van der
Waals magnets Fe;_,GeTe;, with Fe deficiency only, which was published earlier
in [237, 238]. The author of this thesis supported the experimental work in these
publications by performing the mean-field modelling as highlighted below. Below
we present a brief summary of the results; for more details, the reader is referred to

the original article[238].

5.1 Two-dimensional van der Waals magnet Fe;GeTe;

Two-dimensional (2D) van der Waals (vdW) magnets are atomic monolayer mag-
nets that have been recently shown to sustain skyrmion structures. These materials
are defined by atomically flat surfaces with no dangling bonds [239-242], making
them well-suited to stacking into heterostructures, in comparison to typical sput-
tered multilayer skyrmion systems. The Fe3GeTep (FGT) [243-246] has been de-
veloped recently and is currently studied as prospective skyrmion host. In FGT,
skyrmions are primarily stabilised by a combination of the dipolar interaction and
strong out-of-plane anisotropy [247, 248]. However, our observation of monochi-
ral Néel-type domain walls in thinner samples indicates that the dipolar interaction
may not be sufficient for sustaining skyrmions, and the presence of some form of

interfacial DMI may be necessary [237].
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For the development of viable skyrmion-based devices, it is crucial to control ma-
terial parameters to engineer specific skyrmion properties, such as size and stability.
Previous studies on bulk skyrmion materials have demonstrated that modifying sto-
ichiometry or substituting particular elements in the composition (e.g., Mn; _,Fe,Ge,
Fe1,Co,Si) can effectively modulate the Curie temperature (T.) and skyrmion sizes.
Recent investigations on FezGeTe, (FGT) flakes have yielded promising results, in-
cluding the discovery that skyrmion stability increases with additional layers of
WTe; or Co/Pd in heterostructures. Furthermore, alterations to stoichiometry and
chemical substitution have been shown to modify bulk material properties in FGT.
Notably, Fe deficiency has been found to decrease magnetocrystalline anisotropy
in FGT. However, the direct impact of these compositional changes on topological
spin textures in FGT remains largely unexplored. This study aims to bridge this
knowledge gap by systematically investigating the effects of Fe deficiency on the
formation, stability, and characteristics of skyrmions and related spin textures in
FGT, providing valuable insights for future spintronic applications.

In [238], we investigated both bulk and exfoliated flake samples of Fe;_,GeTe,,
with Fe deficiency x between 0.03 and 0.37. Using a combination of magnetometry
and real-space scanning transmission x-ray microscopy (STXM), we explored the ef-
fect that this altered composition has on the formation and stability of all observed
spin textures, including stripe domain, skyrmion and skyrmionium states. Support-
ing mean-field and micromagnetic simulations confirm the vital role that the tem-
perature varying uniaxial anisotropy plays in altering the magnetic phase diagrams

of the material.

5.2 Magnetic Phase Diagram

In this section, we examine the material properties and magnetic phase diagrams
of four bulk single crystals of Fe;_,GeTe, with Fe deficiencies of x = 0.03, 0.10, 0.27
and 0.37. Detailed information on sample preparation and characterization can be
found in the original article[238]. Figure 5.1a illustrates the sample magnetization as
a function of temperature in an external out-of-plane field of 3 mT, revealing a clear

reduction in Curie temperature (T.) with increasing Fe deficiency. We also observe
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an additional step in the M-T diagram, indicating a second transition temperature,
T*. While previous studies have attributed this to antiferromagnetic ordering or
heavy fermion behavior, we propose that it may result from interlayer ordering be-

tween individual van der Waals (vdW) layers, occurring at a lower temperature than

the intralayer ordering at 7.

c
r TIc . - 340
x=0.03 20074 e T - 320
™ TC
R & 300 &~
3 |x=010 i & M
5 ] T ¢ = . -]
] P_ “e “w
] : 1604 8-, ® [260 =
{x=027 | 1 8..T
T il 3mT = F 240
1 ' Hic 140 A
1x= 037 1 ‘m [ 220
50 100 150 200 250 00 01 02 03 04
T (K) X

(oW

A Q T

c @ Fel
2

- W Fell
S

= o Ge

@

>

© © 0 ¢

FIGURE 5.1: a) Magnetisation as a function of temperature for each

Fe deficiency with an external out-of-plane field of 3 mT, with two

critical temperatures, T, and T*. b) T;, T*, and Mg as a function of Fe
deficiency, x. c) Side view of a two layers in FezGeTe,.

Figure 5.1b displays the behavior of T,, T*, and the saturation magnetization
(M) as a function of Fe deficiency. The observed reduction in these properties can
be attributed to the decrease in magnetic Fe ions within the crystal structure. As
illustrated in Figure 5.1c, the crystal is composed of FGT layers separated by a vdW
gap. The structure contains two types of Fe atoms: Fe I, which are positioned closer

to the Te atoms, and Fe II, located midway between the Te layers. Previous studies

have shown that Fe deficiency primarily occurs in the Fe II sites, while the Fe I sites
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remain fully occupied.

From the bulk crystals with x = 0.03, 0.27 and 0.37, thin exfoliated flakes were me-
chanically cleaved and stamped onto SizN4 membranes. Exposure to ambient atmo-
spheric conditions resulted in 6 nm of oxidation on both sides of the samples. To pre-
vent further oxidation, the flakes were capped with hexaboron nitride (hBN). Mag-
netic phase diagrams were generated using a field-sweep (FS) protocol. For each
sample, at various temperatures, we initially established a saturated monodomain
state at -250 mT. The applied field was then incrementally increased up to +250 mT,
with Scanning Transmission X-ray Microscopy (STXM) imaging performed at each
tield value. Figure 5.2a-0 presents a selection of X-ray micrographs acquired follow-
ing this procedure, showcasing different temperatures, magnetic fields, and flakes
with varying Fe compositions, x.

Each row corresponds to different temperature value normalised by the Curie
temperature, T, of a given sample. The T. of each flake sample was determined as
the temperature at which real-space magnetic contrast could no longer be observed,
with values slightly lower than those in the bulk: 207, 180 and 146 K for the x = 0.03,
0.27 and 0.37 compositions, respectively. The reductions of T, are consistent with
decreases seen in thinner flakes of 2D magnets [243], but we also cannot discount a
temperature offset of a few Kelvin in the thermocouple measurement.

The results for the x = 0.03 flake, obtained at 203 K, or 0.98 T, are shown in Fig-
ure 5.2a. The images reveal the formation of a dense disordered array of skyrmions
(labeled Sk) for both positive and negative applied fields, as well as stripe domains
(labeled SD) at 0 mT. At decreasing temperatures, shown in Figure 5.2(b,c), the char-
acteristic size of the stripe domains increases, and skyrmion formation is no longer
observed. Finally, at 150 K (0.72 T) and below, only uniform switching between the
positive and negative monodomain states (labeled MD=) is observed.

The high temperature results for the two flakes with greater Fe deficiency, x =
0.27 and x = 0.37, shown in Figure 5.2(f,g) and Figure 5.2(k,1), reveal a similar behav-
ior, with dense skyrmion formation only observed close to T, and the characteristic
stripe domain size increasing with decreasing temperature. However, at lower tem-
peratures, there is a significant difference in the crossover to monodomain switching

behavior. In comparison to the x = 0.03 flake, this occurs at a comparatively lower
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FIGURE 5.2: Scanning transmission microscopy measurements fol-
lowing the field-sweep procedure. a-o) X-ray micrographs of the
Fe;_,GeTe, (FGT) flake samples measured as a function of tempera-
ture and applied magnetic field for the x=0.03 (a-e), 0.27 (f-j) and 0.37
(k-0) flakes respectively. The images were taken as a function of in-
creasing out-of-plane applied magnetic field, starting in the saturated
state at —250, as indicated by the orange arrows. The temperature
as a fraction of the Curie temperature T; is labeled. The color map
indicates the out-of-plane component of the magnetisation, m,. Re-
produced with permission from [238].

temperature in the x = 0.27 sample (0.61 T), revealed in Figure 5.2(h-j). Furthermore,
in the x = 0.37 sample, monodomain switching behavior was not observed down to
the base temperature of the STXM instrument at 30 K — instead, we observed the for-
mation of stripe domains across the full investigated temperature range, as shown
in Figure 5.2m-o.

The overall behavior is visible from the magnetic phase diagrams of each flake
sample presented in Figure 5.3(a-c), which plot the observation of each magnetic
state as a function of the applied magnetic field at each temperature when follow-
ing the FS procedure. In cases where both stripe and skyrmion states coexisted,
these were included in the skyrmion regions for clarity. The temperature is plotted
on both an absolute scale, and as a fraction of T.. The phase diagram of the x =
0.03 sample, with the crossover to the monodomain switching behavior, is similar
to those previously reported for FGT flakes with x close to 0 [237]. However, the

results of the x = 0.37 flake, where real-space spin textures were observed across the
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full temperature range, is more reminiscent of typical dipolar-stabilised skyrmion

bubble systems [249], as well as the multilayer skyrmion hosts [250].
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FIGURE 5.3: Composition dependent magnetic phase diagrams. a-c)
Magnetic phase diagrams following the field-sweep procedure deter-
mined by x-ray microscopy of the three Fe;_,GeTe, (FGT) flakes as
a function of temperature and applied field. Results are shown for
each composition x = 0.03, 0.27 and 0.37, as labeled. Red arrow indi-
cates the measurement path of each field-temperature protocol. The
extent of the skyrmion (Sk) stripe domain (SD) and uniformly mag-
netised monodomain (MD=) states is shown by the colored red, blue
and grey regions, respectively. Markers indicate the measured phase
boundary points of the Sk (red squares) and SD (blue circle) states.
The vertical dashed lines indicate the measured values of T.. The
field was increased stepwise from -250mT to 250mT, in steps of 10mT.
Reproduced with permission from [238].

5.3 Mean-Field modelling

To perform temperature-dependent simulations to validate the experimental phase
plots shown in Figures 5.2 and 5.3 above, we employed the mean-field model dis-
cussed in Chapter 2. To include the essential physics of FGT samples, the Hamil-
tonian given in Equation 2.13 includes a uniaxial anisotropy energy term with cou-
pling constant Ji, and also the dipolar energy term with coupling constant Jgemag- In

the mean-field formulation, this is given as follows,

1 1
HE = =2 Jex Y (i - i) = = Jam ) Do - (o x i)
(i) (i)

= Ji Y (m;-e)? —p} H-m (5.1)

i

1 pmi - pm;_(pm; - #y) (pm; - 7i)
~ pJdemag )~ 35— +3 ) :
i ij ij
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The simulations in this section considered a two-dimensional hexagonal lattice of

30x30 spins, with periodic boundary conditions in the plane.
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FIGURE 5.4: Composition dependence of magnetisation reversal and
uniaxial anisotropy. a-c) Measurements of the magnetisation M ver-
sus applied field yoH, at 5 K, of each Fe3_,GeTe; bulk crystal, with
compositions x = 0.03, 0.27 and 0.37, respectively. Measurements
were acquired with the magnetic field H applied both parallel (purple
triangles) and perpendicular (orange circles) to the c crystalline axis.
d) Extracted values of the saturation magnetisation Mg as a function
of temperature T for each FGT composition, x = 0.03, 0.10, 0.27 and
0.37. e) Extracted values of the uniaxial anisotropy Ky of each FGT
sample as a function of T. Reproduced with permission from [238].

The coupling constants were determined based on experimental magnetometry
measurements conducted on bulk single crystals of FGT. Figure 5.4(a-c) shows M
of FGTs of different compositions, measured at 5 K, as a function of magnetic field
H applied both parallel and perpendicular to the film axis. From these plots, we
extracted Ms, needed for calibrating Jjemag constant in (5.1) to match experimental
data, and also estimated values of Ky for each sample, needed for calibrating Ji
constant in Eq. (5.1).

The parameters for each composition are plotted as a function of temperature
in Figure 5.4(d,e). As expected, both Mg and the anisotropy constant Ky decrease
with increasing Fe deficiency (x). However, the anisotropy field, calculated as Hx =
2Ky / Ms, varies with temperature irregularly (inset of Figure 5.4e), suggesting that

the change in Ky between samples is not proportional to Ms.
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Further analysis of the data in Figure 5.4 reveals a scaling behaviour that allows
for the estimation of the compositional dependence of the model interactions in Eq.
(5.1), via simple scaling laws. Starting from the mean field Hamiltonian, with short-

hand symbols to simplify the notation,

1 1 1
Hmr = _Elexﬂzz_EIDVZZ_IKZ_EIdemag,”Z Y, (5.2)
ex D K

demag

this equation can be made dimensionless by normalising by the anisotropy strength,

Jx

Hue 1 expt? Z_}MZ Z_EM y . (5.3)

Jx 2 Jk ex D K 2 Jx demag

Two different systems, a and b, are equivalent if the following conditions hold,

a b
Jopd T TR T Jdemaghe  Jdemaghs 654
Jk 17 Jk Iy Jk I

If the interaction strengths are known for system a, we can obtain the parameters for

system b by rearranging,

271b 271b
a] a Ll] a ]
]gx = Ll%]g exs ]%) = zzjllai ]DI ]demag 2]Iu< ]demag' (5.5)

These mean-field parameters are related to the experimentally observed parameters
as given below,

b b b
b _ Mg,aKU a b MSaK M%aK
]ex - M% bK?J ]exr ]D M2 Ka ]D' ]demag M2 Ka ]demag/

(5.6)

where Kj; and Mg are the experimentally-observed maxima for the anisotropy and
magnetisation-temperature curves from Figure 5.4. These values are listed in Table
5.1. Starting from a set of model parameters for the x = 0.03 system, we can calculate
parameters for each composition system, scaled by Ki; and Mg, yielding the model
parameters in Table 5.2. Note that these are dimensionless parameters, where the
physical dimensions have been remove by additional normalisation, %, where A =

10-20/4/3]. Here, A determines the absolute energy scale.
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0.03 213 790 320
0.27 185 400 280
0.37 156 200 240

TABLE 5.1: Parameters obtained from experimental anisotropy and
magnetisation vs. temperature measurements.

0.03 0.700 0.100 0.350 2.500 2.25 £ 0.05
0.27 0.463 0.066 0.231 2.500 1.95 £ 0.05
0.37 0.315 0.045 0.158 2.500 1.75 £ 0.05

TABLE 5.2: Parameters of the model Hamiltonian.

We performed simulations of each FGT system, following a field-sweep proce-
dure starting at negative applied fields, with a summary of the results shown in
Figure 5.5. Additional data can be found in the supporting information in [238].
Simulations 1, 2 and 3 correspond to parameters selected to model the x = 0.03, 0.27
and 0.37 experimental systems, respectively. The visualisations of the simulations
in Figure 5.5(a-c) show a good agreement with the experimental behavior in Figure
5.2. The formation of skyrmions at high temperatures is reproduced, while the ob-
served crossover from stripe domain formation to uniform magnetisation switching
is evident in simulations 1 and 2.

The results are better visible in the simulated magnetic phase diagrams in Fig-
ure 5.5(d-f). Comparison to Figure 5.3(a-c) shows a reasonable agreement to the
experimentally determined phase diagrams. In particular, specific features such as
the applied field asymmetry of both the high temperature skyrmion pockets and the
stripe domain formation (due to the field asymmetry) are reproduced. The main fea-
tures that are poorly replicated are the switching fields at low temperatures, which
might be explained by the presence of thermal fluctuations or defects allowing easier

switching in the experimental system.
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FIGURE 5.5: Mean-field simulations modeling Fez_,GeTe; flakes.
Simulations 1-3 correspond to systems based on parameters for the
x = 0.03, 0.27 and 0.37 experimental compositions, respectively. a-c),
Selected visualisations of simulated states acquired following a field
sweep procedure starting from negative applied fields. The color map
indicates the out-of-plane component of the magnetisation, m,. d-f)
Simulated magnetic phase diagrams of the three systems. The extent
of the skyrmion (Sk) stripe domain (SD) and uniformly magnetised
monodomain (MD=) states is shown by the colored red, blue and
gray regions, respectively. Markers indicate the sampled positions in
phase space. The simulated values of T¢ are indicated by the vertical
lines. Reproduced with permission from [238].

5.4 Conclusions

The mean-field modelling qualitatively reproduces all of the observed features in the
X-ray microscopy results of the magnetic spin textures hosted in exfoliated flakes of
Fe;_,GeTe,. Namely, the model recovers the observed formation of stripe domain,
skyrmion and composite skyrmion states, and the underlying transition paths be-

tween them.
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Chapter 6

Effect of Defects on the Formation

of Ordered Skyrmion Lattices

6.1 Motivation

In experimental studies, it has been hypothesised that defects can stabilise the skyrmion
region over a broader range of external fields and temperature. This hypothesis is ex-
amined in the following chapter, where we investigate the impact of defects—modeled
as a random pinning (RP) field—on the formation of spin textures during a field
sweep. Our computational methods, based on mean field algorithms, offer a more
comprehensive analysis of defects, leading to insights beyond those obtained from
single snapshots in real materials. Our study confirms that the broadening of the
skyrmion region can be attributed to defects, resulting in a highly disordered ar-
rangement of skyrmions (DSkL) in “dirty” systems compared to the ordered skyrmion
lattice (OSKL) observed in ‘clean” systems. Furthermore, we hypothesise that there
is a disorder-driven phase transition from the OSkL to DSKL and we determine the
critical defect level necessary to disrupt the regular ordering of skyrmions across

various skyrmion sizes.

6.2 Method

We simulated a hypothetical material with no anisotropy or dipolar interactions, us-
ing parameters J,, = 0.5 and J;, = 0.5. For a specific defect level, we generated

the RP field' and applied the Monte Carlo (MC) method in Section 6.3 and the mean

IFor further details, see Chapter 2, Section 2.3.



76 Chapter 6. Effect of Defects on the Formation of Ordered Skyrmion Lattices

field (MF) algorithm? for subsequent analysis. Both algorithms were run through
a field sweep at a fixed temperature from H = —1.0 to H = 1.0, with fine inter-
vals of dH = 0.01, on a 2D 50 x 50 hexagonal lattice, initiating from a well-defined
uniform state, with all spins aligned to —z. In subsequent field steps, the final con-
figuration of the previous field served as the input for the current field step. At the
end of each simulation at every field step, we recorded the final spin configuration
and calculated key macroscopic properties such as skyrmion number and average
magnetisation. Additionally, we generated reciprocal-space FFT images to mimic
experimental small-angle neutron scattering (SANS) output.

With mean-field modelling, this process was repeated for 81 different tempera-
turesbetween T = 0.0 and T = 2.0, generating a full H — T phase diagram, with 1000
realisations of the underlying RP field. For MC modelling, the next section high-
lights the challenges encountered in using this algorithm, and consequently only a
single hysteresis loop was run for only one realisation of the RP field, using 1000
equilibrium steps and 10000 MC steps. Macroscopic properties were thermally av-

eraged over all MC steps °.

6.3 Analysing defects using Monte Carlo simulations

We begin our analysis by examining the equilibrium spin configurations generated
using the MC method, which provides a more accurate representation of the im-
pact of thermal fluctuations on magnetic phases. The evolution of the spin config-
urations along hysteresis loops for T € {0.2,0.5,1.0}, for a single realisation of a
‘clean” system (H, = 0.001), is shown in Figure 6.1. Note that in these figures, the
skyrmion number is quoted as a long-run average over the MC steps (5 ¥; Nek.:),
which can result in a non-quantised value as skyrmions nucleate/annihilate along
the MC path. In ‘clean’ system, skyrmions with varying shapes and sizes, approx-
imately arranged in a hexagonal lattice*, are noticeable at lower temperature, but
this becomes increasingly obscured at higher temperature due to the thermal noise.

By T = 1.0, the presence of skyrmions becomes undetectable, though the thermally

2This is outlined in Algorithm 4, Chapter 2.
3See Chapter 2, Section 2.4.1 for further detail.
4 A perfectly ordered hexagonal lattice would show six peaks in reciprocal space.
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averaged skyrmion number gives a non-zero value for these spin textures. Further
analysis, given below, reveals that the algorithm for N fails in the presence of sig-

nificant defects, such as those produced by the thermal noise.

Clean Systems - H, = 0.001

FIGURE 6.1: Evolution of the spin configuration along a hysteresis

loop for T € {0.2,0.5,1.0} in a single realisation of a ‘clean’ system

(Hs = 0.001). The inset shows the reciprocal space of the real-space
image, found via fast Fourier transform (FFT).

Figure 6.2 compares the Ny calculation for a single skyrmion (A) and a spin de-
fect point (B). The diagram shows the intermediate step in this algorithm, comput-
ing the sum of the solid angle formed by adjacent spins on two opposing triangles
at each lattice point, and the skyrmion number is the total sum of these solid angles
across the full texture®. For a skyrmion with a core in —z, the solid angle is at its
maximum at the center of the skyrmion before gradually decreasing to 0 near the
boundary. Conversely, a spin defect, such as those produced by MC noise in Figure
6.1, has a very different signature to the skyrmion, featuring a large negative solid
angle at the center that is now surrounded by a positive solid angle near the bound-
ary. Unfortunately, though these defects are not skyrmions, they are also counted
towards the skyrmion number calculation, leading to an erroneous output for Ng.

Consequently, reliably detecting skyrmions at high temperatures is challenging both

SFurther details are given in Chapter 2, Section 2.5
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from the real-space MC-generated configuration and from its subsequent N calcu-

lation.
Skyrmion Spin Defect
DNy = —27.00 D Ng = —15.00
0.00
C . 0.4
-0.01
. 9 "o, 0.2
r—0.02 "
-0.0
-0.03 |8
-0.04 e s (702
E ﬂ -0.05 I—0-4
DNy = —0.99
0.00
0.4
-0.01
0.2
-0.02
0.0
=
-0.04 02
-0.05 —0.4

FIGURE 6.2: Comparison of the Ny calculation for a skyrmion and
a spin defect. The top row shows the full configuration, while the
bottom row shows a single skyrmion/spin defect that is outlined in
yellow. The color represents the summed solid angle at each lattice
point, formed by the adjacent spins of the two opposing triangles.

When considering a ‘dirty” system with H, = 0.1, it similarly exhibits a skyrmion
phase at the same field strength as the ‘clean’ system (H = —0.3), but now skyrmions
are smaller and more numerous in the presence of defects. These skyrmions are ar-
ranged in a less ordered formation, as indicated by the larger area covered by the
FFT ring pattern compared to the ‘clean’ system, potentially caused by the pinning
of certain skyrmions to particular defect locations[36, 251]. Moreover, a greater num-
ber of skyrmions persist at lower fields, effectively separating the long meandering

domains at H = 0.1. Encouragingly, we will encounter a similar impact of defects
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using a mean field model, despite this model averaging over the thermal fluctua-

tions, allowing the use of MF models over MC.

FIGURE 6.3: Evolution of the spin configuration along a hysteresis
loop for T = 0.2 in a single realisation of a ‘dirty” system (H, = 0.1).

Performing a systematic study of defects using only the Monte Carlo method
would be challenging, largely due to the difficulty of detecting skyrmions, even in
‘clean’ systems, and this is further compounded by the slow speed of the algorithm.
A single run, with 10000 MC steps and 40 field steps in the hysteresis loop, required
approximately ~2500s for only one realisation of the defect field. The algorithm’s
efficiency is further impacted by the multiple runs, necessary for improved accu-
racy of the thermal averages, and the several realisations for each defect level, re-
quired for a systematic study of defects. In other words, the computation is of order
O(MCRuns x NumRealisations). In contrast, due to the deterministic nature of the
mean field model, it is of order O(NumRealisations), and takes only ~150s for a
single realisation of a ‘clean” system and ~70s for a “dirty” system. Consequently, in
subsequent analysis, we opt for the mean field model to conduct further studies into

the effects of defects on equilibrium magnetic states.

6.4 Effect of random pinning fields on the H — T phase dia-
grams
An analysis of the impact of defects on spin configurations, requires a comparative

study involving clean (H, = 0.001) and dirty (H, = 0.1) systems, using the MF

model.
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6.4.1 Magnetic behaviour of ‘Clean’ Systems - H, = 0.001

We initially consider the ‘clean” case, which serves as our baseline for comparison.
AtT =1, a’clean’ system transitions through five distinct phase, as shown in Figure
6.4. In order, the phases are as follows: 1. Unf(-): uniform state, where spins are
aligned in —z, 2. SKL(+): an ordered hexagonal skyrmion lattice, with cores in +z, 3.
Helical: helical state, with spin spirals, 4. SKL(-): skyrmion lattice, with cores in —z, 5.

Unf(+): uniform state, with spins aligned in +z.

FIGURE 6.4: Evolution of the spin configuration along a hysteresis

loop for T = 1.0 in a single realisation of a ‘clean’ system (H, =

0.001), generated by the mean field model. The inset shows the recip-
rocal space of the spin texture.

Experimentally, the aforementioned phases can be identified via their peaks in
the reciprocal space (inset in Figure 6.4), which reflect variations in the long-range
ordering of structures in the spin patterns. The hexagonal ordering of skyrmions
results in six peaks for both skyrmion core orientations (SkL(+) and SkL(-)). Con-
versely, the long-range order of spin spirals, which orient in a single direction, are
characterised by only two peaks. In certain realisations, however, defects can pin the
spin spiral branches, causing a change in their orientation, leading to a smearing of
the two peaks (see Figure 6.5). Later, when considering the impact of larger defects
(Section 6.4.2), differentiating the phases using reciprocal space patterns becomes
even more challenging.

The transition boundaries between the different phases can be found via the
macroscopic properties of the system, namely the skyrmion number, Ny, and av-
erage z-magnetisation, M, (see Figure 6.6). These properties are averaged over 1000
realisations of the RP field to account for the small level of defects in our system,
and N is further normalised by the maximum number of skyrmions in the lattice.

The behaviour of Ny distinctly delineates phases of differing topological classes,
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Spin Spirals Pinned Spin Spirals

oo L

FIGURE 6.5: Spin configuration for an unpinned and pinned spin spi-
ral state, taken at different realisations of H, = 0.001, together with
its reciprocal space pattern.

showing a sharp jump at each transition, indicative of a first-order transition.

FIGURE 6.6: Spin configurations for an example realisation (first
row) and averaged macroscopic properties, Ny and M, (second row)
along a hysteresis loop in a “clean’ system (H, = 0.001) at T = 1.0.

When comparing systems with low defect levels (H, = 0.001) and no defects
(Hy = 0.0 - Figure 6.7), we observe minor additional impacts resulting from the ex-
istence of small defects. One notable effect is the presence of non-zero Ny in the heli-
cal phase. This occurs because defects, even small ones, pin the spin spiral branches,
causing them to separate and form ends that are counted as half-skyrmions by our
Ny algorithm.

Another effect is a decrease in the magnitude of the jump at the transitions exit-

ing both SkL phases. This reduction is caused by a gradual decrease in Ny over the
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FIGURE 6.7: Averaged macroscopic properties, Ng and M,, in a
defect-free material, H, = 0.0.

SKL phases, indicating that initially a few skyrmions annihilate before the remain-
der. Conversely, in defect-free materials, Ny remains constant throughout the SkL
phases (Figure 6.7). A similar effect occurs at the SkL(+)-Helical boundary, where
the jump in N splits into two separate jumps, suggesting that, on average, half
the skyrmions annihilate before the other half. In both scenarios, this phenomenon
is likely induced by the non-zero RP field, which shifts the local energy landscape
near defect points, destabilising skyrmions[228, 252]. Consequently, it appears that
a small level of frozen defects smears the first-order transition, a phenomenon noted
in other studies[252].

The final macroscopic parameter of interest is M, (see Figure 6.6). Like Ny,
this property similarly shows discontinuities at the phase transitions, albeit with
a significantly smaller magnitude of jump. This effect is particularly notable at the
SkL(+)-Helical boundary, where the smearing of the first-order transition obscures
the transition. In defect-free systems, M, more clearly delineates the SkL(+)-Helical
transition, although the jump magnitude remains small (Figure 6.7). However, M,
does display a unique range of values in each of the five phases; in contrast, Ny
fails to differentiate between the non-topological phases—the uniform state and the
pure helical state—yielding N5 = 0 for both. Moreover, the peaks in the FFT fail to

differentiate between SkL(+) from SkL(-), or between Unf(-) from Unf(+). Hence, it
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appears that all these parameters struggle to differentiate between all phases in this

system, a problem that we further explore in Chapter 7.

Ng. 530 30

FIGURE 6.8: Phase diagram for a ‘clean’ system with H, = 0.001, with
skyrmion number, N, averaged over 200 realizations, as a function
of temperature, T, and applied field, H.

Generating hysteresis loops for a range of temperatures in T € [0.01,2] pro-
duces the phase diagram shown in Figure 6.8, where the colour represents the av-
erage Ng. This diagram reveals two pockets of SkLs close to the Curie temperature
(T, = 1.2 J/kp), one at positive fields and the other at negative fields, with a sharp
boundary to the non-topological phases. We further observe that the pocket at pos-
itive field expands to low temperatures with fewer skyrmions, but the pocket at
negative field is is suppressed at these temperatures.

The spin configurations at T = 0.5 reveal that, after the initial transition into a
meandering domain state, these wormy structures coalesce to a few isolated skyrmions,
randomly distributed within the system. Upon stabilisation into the isolated skyrmion
state (Sk(-)), subsequent increases in the external field lead to the gradual shrinking
of the skyrmions until their eventual annihilation. The key feature of this Sk(-) state
is the absence of peaks in reciprocal space, despite the existence of skyrmions, po-
tentially causing it to be overlooked when analysing solely based on experimental

SANS data.
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FIGURE 6.9: Spin configurations for an example realisation (first
row) and averaged macroscopic properties, Ny and M, (second row)
along a hysteresis loop in a ‘clean’ system (H, = 0.001), at T = 0.5.

6.4.2 Magnetic behaviour of ‘Dirty” Systems - H, = 0.1

We now consider the “dirty” system, characterised by a substantial level of defect,
H,; = 0.1. The evolution of spin configurations at T = 1.0, illustrated in Figure 6.10,
show a more gradual proliferation of skyrmions in the system, starting from a sin-
gle skyrmion (Sk(+)) at the nucleation point (H = —0.28), to a disordered array of
skyrmions (DSkL(+)) of varying shapes and sizes (H = —0.12). Both the diversity in
skyrmion shapes and sizes in the vicinity of defects, as well as the subsequent disor-
dering of the skyrmion lattice, have been documented in numerous prior studies[19,
20, 24, 152, 216].

One important characteristic of highly defective materials is the significant dif-
ference in the peaks in reciprocal space (inset of 6.10) from those observed in clean
systems. Specifically, a ring pattern emerges for both the DSkL(+) and meander-

ing domain state, contrasting sharply with the six peaks observed in SkL(+) and the
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FIGURE 6.10: Spin configurations for an example realisation (first
row) and averaged macroscopic properties, Ny and M, (second row)
along a hysteresis loop in a ‘dirty” system (H, = 0.1) at T = 1.0.
two peaks observed in the clean helical phase. This ring pattern prevents the differ-
entiation between the meandering domain and DSKL(+) using SANS data, and the
presence of skyrmions can be missed in experimental results.

The macroscopic parameters in Figure 6.10 have notably different behaviour
from the ‘clean” system in Section 6.4.1, now exhibiting a more gradual change in
the parameters, as opposed to the discontinuous jump between the various phases.
For ‘clean’ systems, even the introduction of a small level of defects can smear the
first order transition of defect-free systems, and this blurring is amplified at higher
defect levels. Consequently, by H, = 0.1, the helical/meandering domain phase
is undetectable solely from Ny, M, and even the FFT pattern, despite the distinct
lack of skyrmions in the real space configuration at H = 0.04. Ny no longer has
a constant value of 0, characteristic of a pure spin spiral state, instead defects con-
tinuously divide the meandering domains throughout the field sweep, leading to a

varying Ng. As a result, now only 3 phase transitions are apparent, two of which are
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between the uniform and skyrmion state, and the final transition is from skyrmion
with cores in +z to a phase with skyrmion cores in —z. Even with a machine learn-
ing approach, explored in Chapter 7, identifying macroscopic parameters that can
detect the intervening non-topological phase, clearly observable in ‘clean” systems,

remains a challenging task.

FIGURE 6.11: Phase diagram for a ‘dirty” system with H, = 0.1, with
skyrmion number, N, averaged over 1000 realizations, as a function
of temperature, T, and applied field, H.

The complete H — T phase diagram for the ‘dirty” system, depicted in Figure 6.11,
showcases similar skyrmion pockets seen in the ‘clean’ case. However now, there is
a more pronounced blurring between the boundaries of these regions and the non-
topological phases, leading to a broader skyrmion area in the H — T space, with
greater variation in Ng. This expansion of the phase region is similarly observed in
experimental setups, where the material is subjected to mechanical strain[16], epi-
taxial stress[253], or impurity doping[13, 17, 40], potentially leading to an increased
level of defects®. These findings affirm that the underlying defect field is a major

contributor to the enlargement of the skyrmion region.

6See Chapter 4 for further details.



6.5. Phases along a varying defect level 87

6.5 Phases along a varying defect level

We investigate system behaviour under varying levels of defect, H, € [0.001,0.1],
with the evolution of the spin configurations at negative Zeeman fields illustrated in
Figure 6.12. The first spin texture depicts the initial nucleation of the skyrmion state
(also called the skyrmion nucleation boundary), and the final configuration is the
helical/meandering domain state at H = 0. At lower levels of defect, the initial con-
figuration is the full hexagonally-ordered skyrmion lattice with its characteristic six
peaks in FFT. This phase remains relatively stable until at higher fields, skyrmions
begin merging, likely mediated by a Bloch point’[191], before it switches abruptly to
a spin spiral state, with two FFT peaks.

At higher defect levels (H, = 0.025), we now only observe a single skyrmion at
the nucleation boundary, occurring at a lower Zeeman field, but the full lattice nucle-
ates at the subsequent field step. Thus it appears that defects can shift the uniform-
skyrmion transition boundary, stabilising the skyrmion lattice at lower fields. Unfor-
tunately, defects also encourage the annihilation of more skyrmions at lower fields
compared to ‘cleaner’ systems, though some skyrmions continue to persist down to
H = 0, leading to a mixed state of domains and skyrmions. For higher defect levels
(Hs = 0.05), the nucleation of skyrmions to the full lattice occurs over a lower but
wider range of fields, and the final lattice structure is less ordered and contains fewer
skyrmions than the ‘clean’ system. Consequently, this random distribution of de-
fects, which is common in sputtered thin films, is detrimental for device prototypes
where the skyrmions represent data particles®. The unpredictability of skyrmion
nucleation and annihilation due to defects undermines data reliability, and the re-
duction in the number of skyrmions decreases the density of stored data. Therefore,
our work seeks to identify the critical defect level below which the arrangement of
skyrmions remains ordered.

From these preliminary studies, we map a hypothetical phase diagram for our
dataset as a function of the Zeeman field, H, and the level of defect, H, (Figure 6.13).
Our objective is to find a macroscopic property capable of delineating these phases,

exhibiting a sharp transition at all phase boundaries for hysteresis loops at low H,

7See Chapter 4 for more information on the skyrmion decay process.
8See Chapter 4 for more information on the impact of defects on skyrmion device prototypes.
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FIGURE 6.12: Evolution of the spin configuration along a hystere-

sis loop for T = 1.0, between the skyrmion nucleation bound-

ary and H = 0, for a single realisation with defect levels, H, ¢
{0.01,0.025,0.05}.

levels, while the transition would be more gradual for higher H,; levels. Moreover,
there should be a smooth transition along H, as the system progresses from the
OSKL to the DSKL, or from the clean helical state to a mixed state of meandering
domains and skyrmions. To simplify our analysis, we focus solely on the transi-
tion boundary between OSKL and DSKL along the skyrmion nucleation boundary,
k, rather than at a fixed external field. This simplifies our analysis because ‘dirty’
systems only exhibit one or a few skyrmions here, making them easier to identify
than the mixed states present at higher fields. Additionally, the nucleation bound-
ary provides a more consistent phase path when comparing systems with different
Hamiltonian parameters, which may have differing phase regions. The next section
introduces the macroscopic variable under consideration: the spin-spin correlation

mapping between adjacent spin textures along a hysteresis loop.
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H j A Hysteresis Path

FIGURE 6.13: A hypothetical phase diagram of the spin system as a
function of the external field, (H), and the level of defects, H,. At low
levels of H,, we expect the system to pass through the uniform state,
the OSKL, a helical state, and then back to a reversed OSkL, and the
reversed uniform state. At high H,, the system smoothly transitions
from the uniform state to a disordered array of skyrmions, which then
becomes a mixed state of meandering patterns and skyrmions, before
reverting back. k is the skyrmion nucleation boundary, and H, ., is
the OSKL-DSKL transition point at this boundary.

6.6 Mapping the spin-spin correlation along the field sweep

The correlation between two spin configurations provides maximal information about
any differences in the configurations. This information is summed across all lattice
points to generate a single value characterising the degree of spin change. If we

consider the spin texture as a line of spins (an N x 3 vector),

S1x  Sly Siz

s= |7 v ©6.1)

SNx SNy SNz|
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these textures are first normalised to eliminate dependency on lattice size,

s = 5 (6.2)

VI ST-Si
where s is the normalised line of spin vectors, and the spin-spin correlation is calcu-

lated as follows,
N

Q(L,2) =1—Y (si1-si2) (6.3)

i
Here, s;; denotes the normalized spin vector of configuration j at lattice point i.
When YN (s;1 - 5;2) = 1, indicating no spin direction change between configurations
1 and 2, we subtract this from 1, ensuring that Q(1,2) = 0 in this scenario. We
choose this measure, since this detects all local changes between two spin configu-
rations. Computing Q is equivalent to finding the squared change in length of the

spin configuration vector”’,

1
Q=5 |51 — 52| (6.4)

To map the nucleation boundary, we compute Equation 6.3 along the hysteresis
loop between configurations at adjacent Zeeman fields, Q(H, H + 6H), as shown in
Figure 6.14 for various H, (rows) and different realizations (columns). Initially, the
hysteresis loop contains consecutive uniform states with no spin changes, resulting
in Q = 0. The first instance when this value falls below 1 (within a tolerance of
1 x 10%) marks the transition from the uniform to the skyrmion state at the nucleation
boundary (highlighted by a yellow cross in Figure 6.14). In the ‘clean’ scenario,
the SKL nucleates fully, resulting in a large initial signal in the spin-spin correlation
behaviour (6.14(A-C)). Conversely, for the ‘dirty” system, the appearance of only a
single or a few skyrmions at the nucleation point leads to a much smaller signal
(6.14(G-I)). The spin configuration at the nucleation point is plotted below the spin-
spin correlation curve. For intermediate levels of defect, such as H, = 0.02, some
realisations exhibit a full SKL at the nucleation point (6.14(D,E)), while others only
display a single or a few skyrmions (6.14(F)). This behaviour occurs near the critical
H,, which marks the OSKL-DSKL transition boundary.

We further note that the spin-spin correlation exhibits a varying number and size

st — sall = /IIs1]l + [[s2]l — 251 - s2 = /2(1 = s1 - 52) = v/2Q
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Ns, :40.00, 0.597 Nsk 40.00, 0.598 Nsi : 39.00, 0.600

Ns,:37.00, 0.488 N :36.00, 0.478 Nsk :36.00, 0.479

Nsk 2.00, 0.015 Nsk 1.00, 0.006 Nsk 1.00, 0.007

FIGURE 6.14: The spin-spin correlation, Q, between spin configura-

tions at H and H + 6H along the hysteresis loop for one example in

the “clean’ (top row) and “dirty” (bottom row) cases. The yellow cross

indicates the first point at which the Q is no longer 0 (i.e. there is a

change in spin direction). In the ‘clean’ case, the full skyrmion lat-

tice nucleates leading to a large deviation from 0, but in the “dirty”

case, only a single skyrmion appears which results in a much smaller

change in Q.

of peaks as the level of defect varies. In the ‘clean’ case, the four major peaks identify
the four transition boundaries between the five phases in the system. The smaller
peaks correspond to certain structural changes such as the merging of skyrmions, or
the movement of spin spiral branches. As the level of defects increase (H, = 0.02),
the amplitude of the major peaks decrease, especially for intermediate skyrmion-
helical transition, and the number of minor peaks begin to rise. The initial phase
transition to the skyrmion state still exhibits a sharp signal, but, in certain realisa-
tions, defects smear the first-order transition, resulting in cases of a single skyrmion
rather than the full lattice. Further increases in the defect level significantly dimin-
ishes the uniform-skyrmion transition signal and it is difficult to determine if any of

the peaks represent a phase change. These large defects have rendered the system

more ‘fluid’, with skyrmions/meandering structures continuously nucleating and
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merging along the hysteresis loop, rarely maintaining a stable configuration (Q is
rarely 0 here). The skyrmion nucleation boundary (yellow cross) therefore serves as
the most consistent reference point for comparison across these multiple different

defect levels.
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FIGURE 6.15: Histograms of the Q at the nucleation point at various

defect levels, H, € [0.001,0.1]. The ‘clean” and ‘dirty’ cases have an

approximately unimodal distribution centered at 0.6 and 0.015, re-

spectively. In intervening defect levels, the means of the distribution

separate even further since skyrmions are likely to nucleate both as a

full lattice or singly. The histograms have been fitted with a mixture
of two Gaussians, given by the dashed black line.

To identify the OSKL-DSKL transition, we use value of Q at the skyrmion nucle-
ation boundary, Qs, and present a histogram of these values in Figure 6.15 for all
realisations and at various H,. This histogram is fitted to a mixture of two Gaus-

sians, modelled as follows,

(6.5)

Model(x) = p(x, A1, p1,01) + p(x, Az, 42, 02) (6.6)

Here, A;, yi, and o; represent the amplitude, mean, and standard deviations of
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distribution i. The histogram for the ‘clean’ case is almost a unimodal distribu-
tion, with the means of both Gaussians approximately coinciding at 0.6. For the
two modes, configurations with y; = 0.597 correspond to a clean hexagonal lattice
of 40 skyrmions, while > = 0.601 also contains an ordered lattice, but with two
pairs of skyrmions merged to form elongated structures. Similarly, the ‘dirty” case
also exhibits an almost unimodal distribution, with an average mean of 0.015. The
two significant modes correspond to a 7 skyrmions (¢; = 0.0010) and 2 skyrmions

(41 = 0.021).
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FIGURE 6.16: Evolution of the two means, y; and y», for the fitted

mixture of Gaussian model, given as a function of the level of defects,

H; The grey dashed line plots yp — p1, which is maximal in the region
0.012 < H,; < 0.4 (dotted vertical lines).

At intermediate H,, values, the modes of the distributions diverge, as some re-
alisations initially nucleate the full SKL, while others generate only one or a few
skyrmions. For lower defect levels (H, = 0.02), the system tends to relax to the
full SKL, resulting in a larger peak centered at 0.48. As the level of defects increases
(Hs = 0.03), the height of this peak decreases, while the peak at 0.017 rises, indicat-
ing a higher likelihood of the system relaxing to a state with a few skyrmions. The
evolution of y; and y» as a function of the defect level is illustrated in Figure 6.16.
This graph demonstrates that the difference between 1 and y; is most pronounced
when 0.012 < H, < 0.4, which encompasses the location of the OSKL-DSKL transi-
tion boundary.

To analyse the distribution splitting behaviour, we partition Qg into two ranges
so that every realisation at all defect levels falls into one of these categories: 0 <

bucket; < 0.35 and 0.35 < bucket, < 0.7. We then record the occurrences where
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FIGURE 6.17: A) The evolution of the number of realisations where

peak height fall in 0 < bucket; < 0.35 (N;) and 0.35 < bucket; < 0.7

(N>) as a function of the defect level, for various lattice sizes, L €

[20,80]. The intersection of N7 and N, occurs at Hy ¢ro5s which marks

the critical defect level at L. B) Hy cross as a function of L, which is

fitted to an exponential decay, resulting in a critical defect level of
Hy crit = 0.02056.

Qs falls into each range, denoted as N; and N, for each H,. The results are given
in Figure 6.17A for various lattice sizes ranging from L = 20 to L = 80. Here,
the intersection of N; and N, marks the critical H, level, signifying when the RP
field is sufficiently strong to disrupt the OSKL. As the lattice size (L) increases, the
transition in N7 and N, becomes steeper, and the intersection occurs at a lower H,.
The behaviour of the critical H, as a function of L follows an exponential decay

(6.17B), where a least squares fit yields the following relationship,

f(L) = 0.036e %3 1 0.021 (6.7)
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Extrapolating to L = oo, the critical point is estimated as H, it = lim; o f(L) =
0.021.

The above analysis was conducted for a specific material with Hamiltonian pa-
rameters J,, = 0.5 and J;,, = 0.5. To broaden our scope, we extend this investigation
across a range of parameters, and since the critical H,, likely varies with the skyrmion
size (proportional to J.x/ J4,), we focus our parameter variation solely on J.,. Unfor-
tunately, changing J., can potentially shift the boundaries of the skyrmion pocket,
causing field sweeps at T = 1 to no longer intersect with the lower skyrmion pocket.
Therefore, the first step is to identify these boundaries as a function of J,y.

We begin by determining the simulation temperature as follows,

1- T,(0.5)

Simulated T (Jex) = T.(0.5) — T1(0.5)

(Tu(]ex) - Tl(]ex)) + Tl(]ex)/ (6-8)

Here, T,y (Jex) represents the lower and upper temperature boundaries of the lower
skyrmion pocket at ]y, occurring at the SkL-helical transition and the SkL-paramagnetic
transition, respectively.

To identify the upper temperature boundary at J.x, we generate 200 realiza-
tions of hysteresis loops at temperatures around Tpin u < Tu(0.5) < Tmax,u at
H, = 0.001, spanning fields from H = [—0.1,0], where Tmax, u is selected such that
the field sweep passes through the paramagnetic state, and Tpin, 4 is through the
SkL. We iterate temperature from Tmax, u t0 Tmin, v, and the temperature of the first
occurrence where N > 0 is recorded as the upper boundary for a particular real-
isation. Similarly, to determine the lower boundary, we simulate hysteresis loops
around Tpin 1 < Ti(0.5) < Tmax, 1, Where T 1 is in the helical state and T,y 1 is
through the SkL, and record the first occurrence of Ny > 10 when iterating through
[Timin, 1> Tmax,1]- We use a threshold of Ny = 10 because Ng might not reach zero
during the transition out of the skyrmion pocket, since the adjacent phase could
be a meandering pattern, where the structure extremities could be counted as half-
skyrmions. After identifying the boundaries per realisation, we average these to
determine the true upper and lower temperature boundary for a specific /..

The findings are given in Figure 6.18, showcasing the upper temperature bound-

ary denoted by the red line and the lower temperature boundary represented by
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FIGURE 6.18: A rough approximation of the skyrmion pocket bound-

aries in T for various exchange strengths, [,y € [0.4,0.6]. The hatched

area is the skyrmion pocket region, above which is paramagnetic state

at high temperatures, and the state below the pocket contains either

helical structures or mixed states with isolated skyrmions. The black

dashed line is the simulation temperature at which we will run our
analysis for computing H ¢y

the green line, both varying with respect to J.x. The skyrmion pocket lies between
these boundaries, with a paramagnetic state existing above Ty (Jex), and either a he-
lical state or meandering state below Tj(Jex). The black dashed line traversing the
skyrmion pocket corresponds to the simulation temperature calculated using Eqn.
6.8.

The analysis conducted in Figure 6.17 has been extended to various exchange
strengths, J.» € [0.4,0.6], where hysteresis loops were generated at the simulated
temperature (Figure 6.18). The resulting H, . in Figure 6.19, exhibits a general
trend of decreasing with increasing J... This observation suggests that larger skyrmions
are less robust to material defects, likely because the RP field tends to align spins
with the z-axis, and therefore even a small positive defect point coupled with a
strong J.x can overcome the negative Zeeman field, leading to the formation of a
skyrmion core. Conversely, a smaller J,, necessitates a much larger RP defect point
to achieve a similar effect. These observations suggest that thin film heterostructures
with a large DMI (smaller skyrmions) may mitigate the impact of defects, although
the increased perpendicular magnetic anisotropy, which aligns spins with the RP
field, could present challenges. This highlights the possiblity of tuning material pa-

rameters to optimise for stability against defects.
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FIGURE 6.19: The critical H, as a function of the exchange strength,
Jex, and therefore as a function of skyrmion size which is propertional
to Jex/ ] - For this analysis, the DMI strength is fixed at J;,, = 0.5.

6.7 Conclusion

Mean field analysis reveals the significant impact of defects on the formation of or-
dered skyrmion lattices, resulting in a gradual proliferation of skyrmions within the
system and the emergence of a disordered array instead of an instantaneous first-
order transition to a regular skyrmion lattice. Such configurations manifest as ring
patterns in the small-angle neutron scattering output data, indistinguishable from
the FFT of meandering domains or mixed skyrmion states. These differ significantly
from the characteristic six peaks of a skyrmion lattice, and therefore may go unno-
ticed in experimental data. Our research underscores that these materials can still
host skyrmions despite the presence of defects, though this may not be always evi-
dent from experimental results.

Additionally, we identify a phase transition from an OSkL to a DSKL as a func-
tion of the defect level, pinpointing the transition boundary, H, iy, which signifies
the minimal level of defect permissible to form an OSKL. This boundary decreases
at higher J.y, indicating that larger skyrmions are less resilient to defects, but also
highlights that careful material tuning could mitigate the impact of these defects.
Subsequent chapters use machine learning techniques to precisely identify these de-

fect locations as well as the phase transition boundaries.
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Chapter 7

Unsupervised Classification of

Phases in Materials with Defects

7.1 Motivation

The macroscopic properties of Heisenberg systems with DMI, such as skyrmion
number, average magnetisation and the reciprocal space peaks, were insufficient
to uniquely determine all phases in ‘clean” systems. The presence of defects fur-
ther exacerbated these difficulties, as it blurred all first-order transitions, ultimately
obscuring the helical phase consisting of meandering domains. To address these dif-
ficulties, we turn to unsupervised dimensionality reduction techniques to explore
the space of all transformations of the spin vectors, in order to identify parameters

that can classify all phases, particularly the OSkL and DSKL states.

7.2 Method

Our study uses two methods, principal component analysis (PCA) and variational
autoencoders (VAE). PCA is ideal for situations where a linear transformation of the
input components is sufficient to cluster the data. In contrast, VAE provides greater
flexibility by allowing nonlinear transformations of the underlying features, and we
can further enhance this method through the use of CNNs, which exploits the spatial

information in the input to reduce the number of model parameters. VAEs become
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essential for classifying phases in complex magnetic materials where linear trans-
formations are insufficient. For instance, skyrmion number is a nonlinear transfor-
mation that can distinguish topological phases, and VAE may generate similarly

complex parameters. Detailed explanations of both methods are given in Chapter 3.

7.3 Classifying Ising Phases

7.3.1 Dataset

We begin by evaluating the effectiveness of these dimensionality reduction tech-
niques on classifying the phases in the well-understood Ising model. Our dataset
includes magnetic lattices of varying sizes (L € [8,16,32,64]), where L is the length
of the square lattice. The lattice contains binary spin variables (s; € —1,1), which is
relaxed through a Monte Carlo simulation consisting of 10000 equilibrium steps and
100000 Monte Carlo steps (MCS). Thermal statistics are collected every 1000 MCS,
resulting in 100 snapshots of the final spin configuration, and the dataset includes
46 temperature points within the range of T € [0.1,5] at H = 0, with 100 realisations
at each temperature. Representative magnetic configurations collected at different
temperatures are depicted in Figure 2.1a, and thermal properties are shown in Fig-
ure 2.1b. The dataset is divided into a training set and test set of 24,000 and 6,000

example configurations in each.

7.3.2 Classifying Ising phases using PCA

The following section analyses the effectiveness of PCA on classifying the phases in
the Ising model. This model takes as input a matrix X representing the MC spin
textures taken at all temperatures, where each row corresponds to a flattened vector
of the configuration (with dimensions L x L). The model is fitted using only the
training data, and subsequently, both the training and test datasets are projected
onto the linear subspace identified by the model. Notably, the test dataset is only
transformed by the PCA components extracted from the training set to prevent any

potential data leakage into the model.
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FIGURE 7.1: a) The cumulative sum of variance explained by each
additional component of the PCA model, and the b) log eigenvalue
of each component of the model for Ising lattice size L = 64.

We selected the maximum number of components to fit the PCA model to com-
prehensively assess the percentage of variance explained by each additional princi-
pal component (Figure 7.1). As anticipated, the retained variance sharply increases
with the initial few components before levelling off. The eigenvalue of the first prin-
cipal axis significantly surpasses all others, indicating that the key phase information
is captured by the first component.

Figure 7.2A illustrates the test data at L = 64, projected onto the subspace spanned
by the first two principal components, (po, p1). This plot reveals three distinct re-
gions: a central red cluster representing disordered Ising lattices at high tempera-
tures (paramagnetic), flanked by two blue clusters indicating ordered Ising lattices
at low temperatures (ferromagnetic). Figure 7.2B displays the same latent space,
but now the color corresponds to the average magnetisation, thereby further distin-
guishing the spin-up (red) from the spin-down (blue) ordered states. Configurations
captured at T = 2.2!, depicted in dark grey, form two clusters positioned between
the red (high T) and blue (low T) regions in Figure 7.2B, suggesting that one state
contains more spin-up clusters while the other contains more spin-down clusters.
A histogram of the transformed dataset along the first principal axis, po, displayed
above the latent space figure, identifies the three main spin states identified by the
ML algorithm. Notably, only the first principal component, characterised by the

largest eigenvalue, effectively distinguishes between these different configurations.

LThis is the temperature closest to T, = 2.2691 in our dataset.
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FIGURE 7.2: The test datasets transformed into the subspace spanned

first the first two principal components, where the colors represent

the A) temperature, and B) average magnetisation. Histograms are
shown along the first, py, and second, p;, principal axes.

We examine the weight matrices of the first principal component (pg) to under-
stand the features learned by PCA for clustering the different phases within its latent
space. The weight matrix of the first principal component contains values which are
uniformly constant at approximately wy = % [1,...,1], thereby implying that each
spin variable contributes equally in the transformation, pg = wy - X;. The average of

the principal component, py, for each temperature is computed as,

(px) = %Z’wk'xi’- (7.1)

This characteristic resembles the calculation of the thermally-averaged order param-
eter, m = Ly (% E}-\’ sj>, implying that PCA has captured this parameter. Indeed,
(po) exhibits a comparable power-law behavior to m (see Figure 7.3a) with perfect
correlation between the two, as shown in Figure 7.3c.

The second principal component, (p;), mirrors the behaviour of susceptibility, x,
with a peak at the critical boundary, T.. By applying a finite size scaling argument,
where T, scales inversely with L, we determine a critical temperature of T, = 2.139+
0.042 through a least-squares fit (Figure 7.3d). This result closely aligns with the true
value of 2.2691, underscoring PCA'’s effectiveness in delineating the phases.

Consequently, PCA, an unsupervised machine learning method, successfully
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%, and a least squares fitting predicts a critical temperature of T, =
2.139 £+ 0.042.

condenses the spin texture information into a single value, highly correlated with
the order parameter, which enables phase identification without additional knowl-
edge of the system’s Hamiltonian. However, PCA’s limitation to linear transfor-
mations excludes non-linear features, potentially restricting its ability to summarise
phase information in complex Heisenberg systems. This presumption arises from
our observation in Chapter 6 where Ny serves as the most reliable indicator of a
phase transition along a field sweep, representing a non-linear transformation of the
spin configuration. Therefore, in subsequent sections, we use VAEs, first testing the
methodology on the Ising model, and then applying it on the more complex Heisen-

berg systems, covered in Chapter 6.
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7.3.3 Classifying Ising phases using VAE

In this section, we test the VAE method for its effectiveness in classifying the Ising

2. The encoder and decoder of the VAE uses convolutional layers to ex-

phases
tract spatial information from the spin textures while minimising computational
overhead. It comprises three convolutional layers in the encoder and filter sizes
of {32,64,64}, all with a stride of 2 and a relu activation function, which is con-
densed to 16 nodes in a Dense layer. The latent space dimension was set to 2, thus
the Dense layer produces two means (},1) and standard deviations (¢p,/1). Finally,
a latent variable, z;, is sampled and input into the decoder, which reverses the en-

coder layers, producing a reconstruction of the original spin configuration. The full

architecture is shown in Figure 7.4.

Encoder Decoder

X 32 64 o4 64 64 32 X
16 16

®®

@6 GG

x = Input spin texture Conv

X = Reconstructed spin texture D Dense

Zg ~ N(VO/UO) UpC

21 ~ N (31, 01) pConv
O Single Node

FIGURE 7.4: VAE architecture used to classify phases in the Ising
model. The Ising spin configuration is compressed to two dimensions
(zo, z1) which contain the maximum information about the state.

The resulting latent space of the VAE for the test dataset is illustrated in Fig-
ure 7.5, in terms of the means (A,C) and standard deviations (B,D) of z. In the top
plots, colour denotes temperature (A, B), while the bottom plots illustrate the av-

erage magnetisation of the spin texture (C, D). Similar to PCA, spin textures of the

2See Chapter 3 for more information about the variational autoencoder.
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FIGURE 7.5: Latent space of the Ising model (L = 64): The test

datasets are transformed into the means (A,C) and standard devia-

tions (B,D) of the latent variables, with the colors representing the
temperature (A,B) and average magnetisation (C,D).

paramagnetic, and the two ferromagnetic states with spin-up and spin-down con-
figurations, all occupy different regions of the latent space, with the paramagnetic
state (M = 0) forming a wide elliptical area in the mean space and the two ferro-
magnetic states extending out as branches from this state. Unlike PCA, however,
which orders its principal components such that most of the phase information is
condensed in the first component, both latent variables are required to pinpoint a
phase. Given only the pg of a configuration, it would be difficult to identify whether
it is in the paramagnetic, spin-down or even spin-up phase depending on the value
of pp. Conversely, these phases can be differentiated exactly using only po from PCA,
with a linear relationship between pg and the system magnetisation. Nevertheless,
from inspection, we see that the VAE is successful in differentiating the Ising phases,
with these phases identified via yg and 4. If we plot these variables individually, as
we do below, we will see a clear discontinuity occuring at the critical temperature.

The temperature-dependent behaviour of the means and standard deviations,
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Latent Variables in Ising Model (L = 64)

A B C -4 D
2 o =
Sl § & "
i -7
-2 ) 6 ,
05 [ F 15 F -3 |y G P H
X
o oo | _ 10 ;\, - \\ 55 \
=1 X 3 05 \ B \5 o] \
w8 \ 0.0 X \ —6.0 \
= \ c \ c s i s \
8 ’6' W g 03 llk g X g 65 1
s -15 "H = 10 II = !g‘ = }
20 \U‘( -15 W T — -1.0 I’Ssmm
20 175
! = K o L
I 150 \_,\ / . *‘\ 07 ,H
o 15 | 125 \ o \ ~ 06
b | Jf :-1100 "\ 'b e " t-J 05 I' il
. 10 ?Z \ . I . . 141
b= \ T ors X T 10 X T o4 L |
= * +— +— = |
n i n n | n X %
05 ,f 050 0s 03 V'
e 025 M 02
2 4 2 4 2 4 2 4
T T T T

FIGURE 7.6: Latent variables of Ising model (L = 64): The indi-

vidual means (A,B) and standard deviations (C,D) of the encoder are

shown as a function of temperature. The second and third row shows
the means and standard deviations of /1 and o /1.

given in Figure 7.6, shows a clear distinction between the phases from their distri-
bution. At high temperatures above T, the paramagnetic phase occupies a wide
range of values in all four latent variables with a unimodal distribution. For illus-
trative purposes, we depict distributions of only y; in Figure 7.7. Below T, this la-
tent variables split into two branches representing either the spin-up or spin-down
ferromagnetic state, exhibiting a bimodal distribution, with each branch showing a
smaller spread. As seen in Chapter 6, this splitting of the distribution is a character-
istic signal of a phase transition.

By taking the means and standard deviations of the four latent variables (7.6(E-
L)), we can pinpoint the exact temperature boundary of the two phases. Many of
these measures exhibit similarities either to the behaviour of the order parameter,
m (F-H, J-K), or the magnetic susceptibility, x (I). However, due to the stochastic
nature of the training process and the non-convexity of the error landscape, these
latent variables are not perfectly correlated to m or x, as observed with the PCA
variable py (Figure 7.3c). Additionally, different runs of the training process may
identify different behaviours for the latent variables, reducing the comparability of

these parameters across different lattice sizes, L. Regardless, using the standard
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FIGURE 7.7: Distribution of y1 with A) a bimodal distribution at tem-

peratures below T; (T = 1.5) and B) a unimodal distribution at tem-

peratures above T, (T = 2.5). C) There is a positive correlation be-
tween the mean of y1 and the order parameter, m.

deviation of y (7.6I), we identify the Curie temperature as T, = 2.2 at L = 64, which
closely approximates the true value of 2.2691.

Despite the increased complexity inherent in VAEs from their non-linearity and
stochastic learning process, the model demonstrates its capability of accurately dif-
ferentiating the Ising phases and identifying the critical transition boundary. In the
next section, we use the VAE to classify phases in the more complex magnetic sys-

tems covered in Chapter 6.

7.4 ‘Clean’ and ‘Dirty’ Heisenberg System

In this section, we test the performance of the VAE in clustering the different phases
present in both ‘clean” and ‘dirty” Heisenberg systems. Our previous analysis in
Chapter 6 highlighted a clear first-order phase transitions among all states in ‘clean’
systems, easily identifiable due to the Ny behaviour along the field sweep. However,
distinguishing between the phases in ‘dirty” systems proved more challenging, as
the skyrmions continuously merged into meandering domains, forming a mixed
state with a smoothly varying Ng. Our objective is to assess whether the VAE can

provide better differentiation of phases in ‘dirty” systems.



108 Chapter 7. Unsupervised Classification of Phases in Materials with Defects

7.4.1 Model and Dataset

The VAE encoder architecture comprises five zero-padded Conv2D layers with fil-
ters in [32,64,128,128,128], employing the selu activation function®. Once again,
we generate 2 values for the means and standard deviations of the latent variables,
and once z is sampled from these distributions, the decoder reverses the encoder
architecture to generate a reconstruction of the spin texture.

We use the hysteresis data outlined in Chapter 6 at T = 1.0 and H, = 0.001.
This dataset is divided into training and test sets with a ratio of 80% to 20%, respec-
tively. For simplicity, only the z-component of the spin configuration is considered,
where s; , is set to 0 if less than 0, and to 1 otherwise, at each lattice point i. The
reconstruction loss is calculated as the binary cross-entropy (Equation 3.6) between
the reconstructed spin texture and the original at each lattice point. The network is
trained using the Adam optimizer for 4000 epochs, with an EarlyStopping callback
used to halt training if the validation loss change drops below 0.001. Additionally, a
ModelCheckpoint callback is implemented to save the weights of the model with the

lowest validation loss.

7.4.2 Results
Classifying phases in “Clean’ Systems - H, = 0.001

Figures 7.8(A,C) and (B,D) illustrate the resulting latent space, represented by the
means and standard deviations respectively, where the color denotes the external
field in the top plots (A, B) and it signifies the skyrmion number in the bottom plots
(C, D). Ng partitions the latent space, delineating the five observed phases in the
field sweep, particularly highlighting the uniform states, which form isolated clus-
ters separate from the others.

Interestingly, despite the VAE lacking prior knowledge of the field sweep proto-

col and the dataset being randomised, it effectively encodes the phase progression

3The selu (Scaled Exponential Linear Unit) activation function can be mathematically defined as
follows,
x ifx>0

selu(x) = A {rx(exp(x) -1) ifx<0 72)

where & =~ 1.6733 and A ~ 1.0507.
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FIGURE 7.8: Latent space of ‘clean’ systems: The test datasets are

transformed into the means (A,C) and standard deviations (B,D) of

the latent variables, with the colors representing the external field
(A,B), and skyrmion number, (C,D).

in the latent space partitioning: spin textures generated at negative fields predom-
inantly occupy the positive y1 region, and vice versa. Moreover, the sequential ar-
rangement of SkL(+), the helical state, and SkL(-) mirrors the field sweep procedure
precisely. This is likely due to the VAE keeping similar clusters closer together and
it learns that the transition between SkL(+) and SkL(-) is facilitated through the he-
lical phase. Such learning might stem from the presence of mixed phases*, where
the system contains both skyrmions and spin spirals, rather than an instantaneous
switch from SkL(+) to the helical phase. Without these mixed phases, we speculate
that the clusters would be completely disentangled.

Additionally, we note that the SkL(+) occupies a larger region of the latent space
compared to the helical /SkL(-) state, implying a greater diversity in the potential
manifestations of SKL(+) from the uniform state, for example different lattice orien-
tations. Conversely, the diminished size of the helical and SkL(-) regions indicates

fewer pathways for these states to emerge from the SkL(+).

4This is due to non-zero defect level used to generate ‘clean’ systems
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Latent Variables in 'Clean' Systems - Hy;=0.001
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FIGURE 7.9: Latent variables of ‘clean’ systems: The test datasets

are transformed into the means (A,C) and standard deviations (B,D)

of the latent variables, with the colors representing the external field
(A,B), and skyrmion number, (C,D).

The field-dependent behavior of the latent variables (LVs), shown in Figure 7.9
together with their means and standard deviatons, reflects the partitioning observed
in the latent space. Specifically, the LVs remain relatively stable for the uniform states
(both in £z), while exhibiting varying but consistent distributions for the skyrmion
and helical states as a function of H. The abrupt shifts in LV distribution indicate
first-order phase transitions. These LVs are more effective in distinguishing hystere-
sis phases compared to our macroscopic properties; while Ny failed to differentiate
between the two uniform and helical states, and the spin-spin correlation (Chap-
ter 6) proved overly sensitive to local changes such as skyrmion merging, the LVs
uniquely distinguishes each of the five phases. Additionally, the local peaks in stan-
dard deviation for ¢y can effectively pinpoint the transition fields at each boundary
(Figure 7.10A), aligning closely with the fields identified by Ny, as shown in Table

7.1.
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FIGURE 7.10: A) Standard deviation of the VAE latent variable, o1,

and B) Ny are a function of Zeeman field, H, for the ‘clean’ sys-

tem. The vertical dashed lines correspond to the transition fields at
the boundary of various phases.

Transition Fields in “Clean’ Systems

Uniform(-) — Skyrmion(+) -0.13 -0.12
Skyrmion(+) — Helical 0.02 0.02
Helical — Skyrmion(-) 0.16 0.18
Skyrmion(-) — Uniform(+) 0.28 0.29

TABLE 7.1: Comparison of transition fields in ‘clean’ systems between
the VAE Std. - 01, and the manual computation of Ng.

Classifying phases in ‘Dirty’ Systems - H, = 0.1

We performed a similar analysis for ‘dirty” systems, with the latent space illustrated
in Figure 7.11. In this case, only the Unf(-) is distinctly separate from the others,
while the cluster representing Unf(+) overlaps with other phase clusters, though
still converging to a single point in the latent space. For the intermediate states, the
latent datapoints form a continuous surface that, similar to the ‘clean” case, reflects
the hysteresis protocol through its partitioning. Once again, y; appears to exhibit
some correlation with the Zeeman field.

One notable observation is that the VAE better distinguishes textures at negative
fields than positive ones, with a broader spread of the contiguous surface at negative
fields, and a more gradual change in Ny (Figure 7.11(C, D)) across the cluster. Con-
versely, the surface at positive fields is much smaller in both y and ¢. The challenge
of differentiating positive spin textures is particularly evident in the N surface for

o: from Unf(-) cluster, it exhibits a smooth, continuous branch up to the point with
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‘Dirty' Systems - H;=0.1
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FIGURE 7.11: Latent space of “dirty” systems: The test datasets are

transformed into the means (A,C) and standard deviations (B,D) of

the latent variables, with the colors representing the external field
(A,B), and skyrmion number, (C,D).

the maximum number of skyrmions in +z, Sk(+), followed by a wide cluster con-
taining textures with varying skyrmion numbers, and then a much narrower branch
with fewer skyrmions. Interestingly, Ny does not appear disordered in y space, in-
dicating that  may be learning the skyrmion number (or the external field), while o
seems to distinguish the mixed phase consisting of Sk(+), meandering domains, and
Sk(-) as a distinct entity. The broadness of this phase suggests a variety of configura-
tions that the mixed state can adopt, and conversely, the shrinking of this region to a
narrower branch at even higher fields, albeit with a non-zero Ny, suggests there are
fewer configurations of isolated skyrmions compared to mixed states.

Upon analyzing the distributions of the y and ¢ components with respect to
H (Figure 7.12), the previously observed discontinuous changes in distributions
with Ny are no longer apparent. Specifically, in the standard deviation plots of
o, only two turning points are identifiable, corresponding to phase transitions into

and out of the uniform state. This observation aligns with our earlier hypothesis in
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FIGURE 7.12: Latent variables of “dirty” systems: The test datasets

are transformed into the means (A,C) and standard deviations (B,D)

of the latent variables, with the colors representing the external field
(A,B), and skyrmion number, (C,D).

Chapter 6 about the smearing of the first-order transitions between the intermedi-

ate phases[254-256]. Similar to the ‘clean’ case, we can pinpoint the transition field

boundaries around the uniform state and compare them against the behavior of Ny

(Figure 7.13 and Table 7.2). The high level of agreement between the two suggests

that the VAE effectively clustered these phases with an accuracy that was compara-

ble to our manual methods, which were based on our understanding of the system.
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FIGURE 7.13: A) Standard deviation of the VAE latent variable, oy,

and B) N are a function of Zeeman field, H, for the ‘dirty” system.

The vertical dashed lines correspond to the transition fields at the
boundary of various phases.
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Transition Fields in ‘Dirty’ Systems

Uniform(-) — Skyrmion(+) -0.26 -0.24
Skyrmion(-) — Uniform(+) 0.35 0.33

TABLE 7.2: Comparison of transition fields in ‘dirty’ systems between
the VAE Std. - 0y, and the manual computation of Ng.

7.5 Classifying Ordered vs. Disordered SkL
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FIGURE 7.14: Latent space of systems along skyrmion nucleation

boundary: The test datasets are transformed into the means (A,B) of

the latent variables, with the colors representing the defect level (A),

and skyrmion number (B). The individual latent variables are plotted

as function of defect level for yg (C), y#1, along with their respective

means, (E-F) and standard deviations, (G-H). The color of these dia-
grams represent Ny.

If the VAE is relatively accurate at classifying phases within both ‘clean” and
‘dirty” systems, it should be proficient in distinguishing spin textures along the
skyrmion nucleation boundary as a function of defect level. A comprehensive analy-
sis of these spin textures can be found in Chapter 6. To summarise, the initial switch-

ing configuration either comprises a full regular skyrmion lattice or a few individual
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skyrmions, depending on the defect level. Our dataset contains all these spin config-
urations, with 1000 realizations at each defect level in H, € [0.001,0.1], which was
once again shuffled and divided into training and test sets with a ratio of 80% to
20%. The resulting latent space for y is illustrated in Figure 7.14(A, B).

Here, we observe two distinct clusters: one exhibiting a high number of skyrmions
and the other featuring only a few, with a slight overlap between them. Config-
urations with Ng > 20, predominantly originating from very low defect levels,
are positioned along the outer periphery of the upper cluster. In contrast, the in-
ner data points contain fewer skyrmions, likely representing a partially nucleated
skyrmion lattice, a phenomenon commonly observed around relatively low defect
levels, H, ~ 0.01. Notably, the bottom cluster of H, in (A) reveals that while cer-
tain realizations at very low defect levels yield a few skyrmions at the nucleation
boundary, the top cluster shows that there are no instances of generating a com-
plete array of skyrmions from a high defect level. This supports our previous ob-
servations, that higher defect levels always leads to a more gradual proliferation of
skyrmions, whereas certain instances at low defect levels can yield a few skyrmions
at the switching point, potentially followed by a transition to a fully ordered lattice at
subsequent field points. The data points at the intersection of the two clusters occur
at approximately the critical defect level, which can be determined from the defect-
dependent behaviour of the latent variables. Specifically, we observe an increase in
the spread of y; (H), with a peak corresponding to H, iy = 0.024.

In Chapter 6, we established that the OSKL-DSKL phase transition can be iden-
tified solely through the spin-spin correlation between the configuration at the nu-
cleation boundary and a uniform state. Since this is a linear transformation, PCA
should theoretically suffice in differentiating these phases. Unfortunately, due to the
large size of the training dataset (1.2 TB), using the PCA model from scikit-learn
is not feasible, as it requires loading the full dataset into memory. Instead, we re-
purpose the VAE model, removing any sources of non-linearity in the function, and
the sampling layer such that the model directly outputs z. The loss function now
only contains the reconstruction error between the true and predicted configura-
tions. This autoencoder performs a dimensionality reduction that is similar to PCA,

but does not enforce the constraint that the latent variables should be ordered by
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FIGURE 7.15: PCA subspace of systems along skyrmion nucle-
ation boundary: The test datasets are transformed into the subspace
spanned by the first two principal components (A,B), with the colors
representing the defect level (A), and skyrmion number (B). The in-
dividual principal components are plotted as function of defect level
for po (C), u1, along with their respective means, (E-F) and standard
deviations, (G-H). The color of these diagrams represent Ng.

their variance levels. To resolve this, we feed these reduced variables into a PCA
with two principal components, leading to a rotation of the latent space to align the
tirst component with the axis of maximum variance.

The resulting latent space, displayed in Figure 7.15, shows that the first principal
component (pp) is sufficient in distinguishing between the OSKL and DSKL phases.
Similar to the VAE latent variables, we observe a significant spread of the distribu-
tion of pg as a function of H, (C), where the peak of the standard deviation of py
identifies the same critical defect level as the VAE, H, .,y = 0.024. This value is
relatively close to the true critical defect level, H, iy = 0.02056, determined via a
finite-size analysis in Chapter 6. Consequently, both VAE and PCA demonstrate the
capacity to distinguish the OSKL from the DSKL phase solely from the configuration
at the skyrmion nucleation boundary. However, further analysis that reveals that
this ability does not extend to other paths in the phase space along varying defect

levels.



7.5. Classifying Ordered vs. Disordered SkL 117

OSkL DSkL

FIGURE 7.16: Latent space of the means for OSkL and DSkL, with the
color representing the defect level.

We extend our study to identifying the H, . along any phase trajectory at a
constant field, with the key focus being on distinguishing an OSKL from a DSKL,
using configurations with a similar number of skyrmions. To achieve this, we be-
gin with a simple dataset comprising of only OSKL at very low defect levels, H, €
{0.001,0.002,0.003}, and DSKL at high defect levels, H, € {0.08,0.09,0.1} at H =
0.2. An example configuration of each phase is displayed in Figure 7.16. Surpris-
ingly, the VAE fails to differentiate these phases, as indicated by the overlapping
clusters in the latent space of Figure 7.16. Our use of CNNs, which have limited
receptive fields and therefore struggle to capture long-range order, may have con-
tributed to this. This limitation resembles the Pathfinder problem in which CNNs
can learn local features, such as the outline of an object, but encounter difficulty in
learning distant connections, such as whether two points in an image are linked by a
path[257]. Some studies have addressed this issue by implementing network modifi-
cations, such as horizontal gated recurrent units[257] or skip connections[258]. How-

ever, we defer the implementation of such changes to future work.
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7.6

Classification of all Phases in Materials with Defects

Our analysis has revealed at least one limitation of the VAE—its inability to distin-

guish between OSKL-DSKL phases from configurations of ordered and disordered

arrangements of skyrmions. To uncover any additional issues, we systematically ex-

plore all phases present in our materials and compare the clustering performance of

the VAE with our manual approach using Ny and FFT images. For this study, we

compile a dataset containing 1000 realizations of all potential phases listed below:

Unf(-): Uniform state with spins pointing in —z. Taken at H, = 0.001, H = —0.9.
Unf(+): Uniform state with spins pointing in +z. Taken at H, = 0.001, H = 0.9.

SKkL(+): OSKL where the cores of the skyrmions point in +z. Taken at H, = 0.001,
H = -0.1.

SKL(-): OSKL where the cores of the skyrmions point in —z. Taken at H, = 0.001,
H=02

DSkKL(+): DSKL where the cores of the skyrmions point in +z. Taken at Hy = 0.1,
H=-0.1.

DSKkL(-): DSKL where the cores of the skyrmions point in —z. Taken at H, = 0.1,
H=02

Sk(+): Isolated skyrmions where the cores point in +z. Taken at H, = 0.1, H = —0.25.
Sk(-): Isolated skyrmions where the cores point in —z. Taken at H, = 0.1, H = 0.32.

Mixed: A mixed state of meandering domains an skyrmions, Sk(-). Taken at H, = 0.1,
H =0.13.

Helical: Helical state. Taken at H, = 0.001, H = 0.1.

Meandering: Meandering domains, which nucleate from Unf(-) at low temperatures.
Taken at H, = 0.001, H = 0.01, T = 0.5.
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FIGURE 7.17: Example realizations of the spin configurations for all

possible phases in our system. The inset shows the reciprocal space

from FFT and the final column contains the distribution of N over
all 1000 realizations.
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We took all configurations at T = 1.0 unless specified otherwise. Example spin
textures of these phases are shown in Figure 7.17, together with their FFT reciprocal
space and Ng. It is worth noting that due to the small level of defect in ‘clean” sys-
tems, certain realisations might not be representative of the phase: for instance, the
second realization of SkL(+) is not a fully ordered SkL, as evidenced by the smeared
FFT peaks. Additionally, the helical state might include Sk(-) at locations where the
spin spirals separate, e.g. the fourth realisation for Helical in Figure 7.17.

The latent space representation of this diverse set of phases, shown in Figure
7.18, highlights the VAE’s ability to differentiate all phases with distinct clusters,
with the exception of SkL(+)-DSkL(+) and SkL(-)-DSKL(-). Although the VAE cannot
capture the LRO in skyrmion lattices, it can still distinguish between the spin spirals
in the Helical state and the meandering domains. The smaller separation of LRO
information in the Helical state compared to the SkL may cause this difference, with

the latter’s LRO information likely extending beyond the CNN’s receptive field[257].

57 B v
41 SkL(+)
Helical
34 SkLi-}
v unf(+)
— 24 )
:1 Meandering
14 Sk{+)
DSkL(+)
0 Mixed
DSkL(-)
—11 N Sk(-)
-4 -2 0 2 4 6
Ho

FIGURE 7.18: Latent space of all phases: The test dataset is trans-
formed into the means of the latent variables, where the colors repre-
sent the phase type.

Furthermore, we observe that the VAE learns to distinguish individual compo-
nents (skyrmions and meandering domains) separately, as evidenced by the Mixed
state forming its own distinct cluster separate from Sk(-), DSkL(-), and the Meander-
ing state. Had the VAE solely relied on N, the Mixed state would cluster with Sk(-);
conversely, if it solely detected the presence of meandering domains, it would clus-

ter with the Meandering state. Thus, the VAE variables potentially serve as better



7.6. Classification of all Phases in Materials with Defects 121

02 === Group 1: Unf(-)
< Group 2: SkL(+), DSkL(+)
o - Group 3: Helical
Group 4: SkL({-), DSKL(-)

0.0 1 Y + ¢ i;}k Group 5: Unf(+)

N Group 6: Meandering
0.2 v Group 7: Sk(+)
- --- Group 8: Mixed
N --- Group 9: Sk(-)
-0.4
c T BT 2F T
SITXREEXISEG
2 wn n X Z n
n T =h i a
i
=

FIGURE 7.19: 1D VAE of latent variables: Distribution plots of the

VAE reduced variable, z, from pg/1, 00,1, where the vertical dashed

lines correspond to the mean at each phase. If the dashed line extends

across the whole diagram, then multiple real phases are grouped to-
gether.

phase indicators than Ng.

Additionally, while the VAE path in y; no longer reflects a real phase path, it still
encodes the Zeeman field progression, transitioning from the Unf(-) state at very low
u1 to Unf(+) at the highest y1. Once again the broader clusters, observed at lower
fields, suggest a greater variety in configurations in the initial nucleation of Sk(+)
and DSKL(+)-SkL(+) compared to later Sk(-) and DSKL(-)-SkL(-) phases.

We condense the learned information further from /1, 09,1 into a single vari-
able, z, using a VAE composed of dense layers with (32,16) nodes in the encoder.
The distributions of z for each phase are illustrated with violin plots in Figure 7.19.
We categorise similar VAE phases based on whether the mean of one phase, (p;),
falls within 0.1 standard deviations of another phase, (p;), resulting in only two
phase groups with multiple phases, SkL(+)-DSkKL(+) and SkL(-)-DSKL(-). These are
highlighted by the full vertical dashed lines in Figure 7.19. All other groups consist
of only a single phase, yielding 9 distinct phases detected by the VAE.

We evaluate the classification performance of the VAE against our manually
computed parameters, Ny and FFT. The FFT analysis yields a 50 x 50 image rep-

resenting the reciprocal space of the spin texture, where peaks correspond to the
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FIGURE 7.21: Ng of all phases: Distribution plots of the PCA re-

duced variable, p, from /1, 07/1, where the vertical dashed lines cor-

respond to the mean at each phase. If the dashed line extends across
the whole diagram, then multiple real phases are grouped together.

spatial frequencies of repeated textures such as skyrmions or spin spirals. To facil-
itate comparative analysis, we simplify this to a single variable by setting all pixels
above a certain threshold intensity (Iinresh = 0.00006Imax) to 1, and the rest to zero,
and then summing over the matrix (Figure 7.20). In highly ordered SkL phases,
Y FFTpeac = 6, reflecting the six peaks in the image, a clean helical phase should
yield }_ FFTpeax = 2, while progressively dirty systems (DSKL(+), Mixed, Meander-
ing) exhibit a ring structure with much larger areas. Conversely, the uniform and
isolated skyrmion states should have the smallest pixel areas, as they lack LRO spin
structures. It is worth noting that due to the small level of defects in ‘clean’ systems,
there may be some smearing of the sharp peaks in SkL(+) and Helical states, leading
to larger than expected areas.

Categorising the phases using the same method applied to the VAE p param-
eter, Ny results in 5 distinct groups, where 10 of the 11 phases are clustered with
other phases (Figure 7.21). For instance, the first group, characterised by Ny ~ 0,
contains the 4 non-topological phases (Unf(+), Helical, and Meandering), whereas
the VAE distinguishes these as distinct phases, and thereby outperforms N;. Addi-
tionally, N struggles to differentiate the Mixed state from Sk(-), as the average N
values for these phases are almost identical. This difficulty arises because the ends
of the meandering domains in the Mixed state are considered half-skyrmions, which

shrink to isolated skyrmions (Sk(-)) at higher fields, resulting in no change in Ng. In
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FIGURE 7.22: FFT of all phases: Distribution plots of the PCA re-

duced variable, p, from y /1, 0 /1, where the vertical dashed lines cor-

respond to the mean at each phase. If the dashed line extends across
the whole diagram, then multiple real phases are grouped together.

contrast, the VAE effectively distinguishes these phases, with a notable difference
in p values for the two clusters. Coupled with these difficulties, Ny also faces the
same challenge as p in failing to differentiate SkL(£) from DSKL(+)°, thus offering
no advantage over the VAE parameter.

When considering the FFT results, this metric categorises phases based on the
level of LRO detected in the real-space configuration (Figure 7.22), also resulting in
5 distinct group. The first group comprises systems with no LRO, including Unf(+)
and Sk(%), with an average peak area of 0. However, our VAE outperforms this
metric by demonstrating a smaller difference in p between Sk(+) and Unf(-), but
a significant difference between Unf(+) and Sk(-), while still maintaining separate
clusters in the latent space (7.19). The smaller difference for Unf(-)-Sk(+) arises from
the greater number of ways Sk(+) can emerge from Unf(-), resulting in a wider area
spanned by Sk(+) in the latent space, which is therefore closer to Unf(-). Conversely,
because Sk(-) forms a denser cluster, there is a sharper distinction between the Sk(-)
and Unf(+) in the latent space.

The three phases characterised by LRO, SkL(+) and Helical, form the second
phase group in the FFT analysis. These phases exhibit a broad distribution in peak
area due to the smearing effect caused by a small amount of defect present in ‘clean’

systems, leading to a large standard deviation that captures all three state into a

5The standard deviation of the SKL(-) phase was relatively high, leading to a group with DSKL(-)
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single group. DSKL(+) and Mixed form another group distinguished by their dis-
tinctive ring pattern in FFT. Although DSKL(-) exhibited a similar ring pattern, it
was likely not grouped with these phase due to slightly more order in the structure
at this particular field (H = 0.2), attributed to the smaller skyrmions in the system.
DSKL(+) featured more elongated skyrmion structures, resulting in a peak are closer
to that of the Mixed state.

In summary, although the FFT and Ny measures yield 5 distinct phase groups,
the VAE generates 9, showing its superiority in phase classification compared to our
manual methods, even in the absence of contextual information, such as the interac-
tions in the Hamiltonian. However, our analysis shows that it is not foolproof, as it
encounters difficulty in distinguishing between the phases where LRO information
is distant, for example SkL(%)-DSkL(%). Consequently this leads to difficulties in

identifying the H, ., for all phase paths except at the skyrmion nucleation bound-

ary.

7.7 Conclusions

In conclusion, our systematic study of VAE reveals its capability of generating prop-
erties from spin textures that more uniquely characterise its phases compared to con-
ventional properties. However, it still struggles to classify phases that exhibit LRO
over a wider distance, such as in skyrmion lattices. This limitation does not imply
the absence of a phase transition between OSkL and DSKL but rather indicates that
the CNNSs in our VAE struggle to encode spatially distant information. Similar limi-
tations have been observed in other studies, suggesting that implementing necessary
network modifications could enable the VAE to successfully differentiate all phases
in materials with defects. While several studies have found success in using the VAE
for phase classification[259-264], our findings emphasize the importance of careful
model design, as an off-the-shelf approach may not ensure full differentiation of all

phases.
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Chapter 8

Supervised Learning of Defect

Fields

8.1 Motivation

Standardising the manufacturing process of sputtered thin films is imperative for
the development of skyrmion-based devices, as defects can significantly disrupt the
formation of densely packed OSKL. Consequently, the implementation of online de-
fect detection is essential. While certain studies have leveraged a convolutional neu-
ral network (CNN) to predict global Hamiltonian parameters[265-267], our method
aims to identify the complete localised defect field across the lattice. This enables a
more comprehensive analysis of the defect distribution and its influence on magnetic
behavior.

We use a deep learning architecture, based on U-Net!, that learns the relation-
ship between the spin texture and the localised defects, where defects are mod-
elled as random pinning fields?. Expanding upon this framework, our objective
is to identify all system parameters—whether local (L) or global (G)—that can accu-
rately reproduce a specific texture. For instance, in a real polycrystalline material,
site-dependent uniaxial anisotropy, Ji € RN+*Nr, exchange strength, Jo, € RN+~*Ny,

and a global DMI strength, J;,,, may be present. Consequently, we seek to learn the

1Gee Chapter 3, Section 3.4 for more information on the U-Net.
2See Chapter 2 for more information on defect modelling.
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mapping f defined as:
Jk
f(X) = | Jex | - (8.1)

]dm

where X is the spin texture. Notably, if in future, the mean field model can be
calibrated to experimental data, then this neural network can be trained using ex-
perimental real-space spin configurations, offering a means of extracting material

parameters without the need for trial-and-error fitting of the Hamiltonian.

8.2 Learning the RP Field (1L)

8.2.1 Model and Dataset

2-layer U-Net

Input
Spin Texture (Ly, Ly, 1)

—_—
—[ET Conv (@ Ly

U
5 ] MaxPool (L. i,
8 1 1
5 Conv (JLy, 1Ly,2x)
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o
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>
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L 1
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RP Field (Ly, Ly, 1)

FIGURE 8.1: 2-layer U-Net architecture.

We initially focus on learning a single localized parameter (1L): the defect field,
H,;. To accomplish this, we repurpose the U-Net model, originally designed for
image segmentation tasks®, as a general mapping function between a 2D input (the
true defect field) and a 2D output (the predicted defect field). Our model is a simpli-
tied version of the original U-Net consisting of 4 units in the contracting path, each

containing a 3 x 3 convolutional layer followed by a 2 x 2 max pooling layer, which

3For more details, refer to Chapter 3, Section 3.4.



8.2. Learning the RP Field (1L) 129

reduces the dimensions of the input by half in the x and y directions. The expand-
ing path reverses this procedure, including the skip connections to the appropriately
sized matrices from the encoder path. The final layer is a 1 x 1 convolutional layer
leading to a single-channel output with a sigmoid activation function that predicts
the RP fields. Although Figure 8.1 illustrates a simple two-layer architecture, our
model comprises four blocks with convolution layers containing [32, 64, 128, 256]
nodes, and uses a LeakyReLu activation function®, over the standard ReLU, to prevent
dying nodes®. The loss function, used for training, is the sum of the mean squared

error (MSE) of the RP field at each lattice point,

loss = Y_(Yij — Yij)%, (8.3)

ij
where Y;; and ]?ij are the true and predicted RP fields respectively, and Y;j, Yii €
R4 We crop the original 50 x 50 dimensions to 48 x 48 in order to to get well-
behaved sizes during downsampling and upsampling, and only consider the z-

component of the spin texture to reduce the complexity of the problem. Additionally,

both the input and output are normalised to values within the range [0, 1].

H;=0.025 H,=0.001

H;=0.1

FIGURE 8.2: Five example spin configurations from our training set
at H, € {0.001,0.025,0.1} along the skyrmion nucleation boundary.

4The LeakyReLu activation function can be mathematically defined as,

x ifx>0
LeakyReLU(x) = {txx fx <0 (8.2)

where: « is a small positive constant, typically 0.01.
5Dying nodes occur due to the vanishing gradient problem, where the gradients are small and
therefore when these are back-propagated to the earliest layers, these weights may not be updated.
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Figure 8.2 shows some examples of skyrmion spin textures at H, € {0.001,0.025,0.1}.
The dataset only considers configurations at the skyrmion nucleation boundary,
where low-H, yields a full hexagonal lattice of skyrmions, high-H, results in only
a single or a few skyrmions, and intermediate-H,, have realisations exhibiting a full
lattice or only a few skyrmions (see Chapter 6). The input dataset, containing 36,000
spin textures captured at 18 ¢ points with ¢ € [0.001,0.1] and 2000 realizations for
each, was shuffled and partitioned with 50% allocated to the training dataset, and
25% each to the validation and test datasets. The validation dataset was used for
architecture and hyperparameters optimisation and was excluded from the training
process. In particular, the number of layers, number of nodes in each layer, and
model parameters which minimised the validation loss was chosen as the optimal

network.

8.2.2 Results
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FIGURE 8.3: Convergence of the loss function over the 1855 epochs
for the training and validation dataset. The grey dashed line shows
the difference between the validation and training loss.

The model was trained using the stochastic gradient descent optimiser (see Chap-
ter 3) with a learning rate of 0.1 over 4000 epochs, and an EarlyStopping checkpoint
which terminates the training when the total change in the validation loss is below
0.00001. A ModelCheckpoint saves the network weights when the total loss of the
validation dataset is at its lowest. All models in this chapter use this training pro-

tocol and checkpoints unless specified otherwise. The model converges after 1855
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epochs, with similar performance on both the training and validation set, as indi-
cated by the loss function in Figure 8.3. The EarlyStopping checkpoint prevents

overfitting, yielding an optimised model with a total MSE of 0.004180 on the test set.
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FIGURE 8.4: An example prediction of the RP field on unseen spin
texture in a ‘clean’ system, H, = 0.001. A) The input spin configura-
tion, x, B) the true RP field, y, C) the RP field predicted by the model,
7, D) the pixel-wise difference between the true and predicted fields,
y — #, and E) a distribution of this difference. The color scale is iden-
tical for the true and predicted RP fields (B,C), but due to the small
sizes of the defects, the difference between the two is magnified.

Figures 8.4-8.5 shows an example prediction of the RP field on an spin texture
from the test dataset for a ‘clean’ (8.4) and ‘dirty” (8.5) system. Despite being an
unseen input, the model accurately predicts the RP field at the pixel level, with min-
imal differences between the true (y, B) and predicted field (i, C) at most lattice sites
(D). However, the mean square error (3;(yij — ;)?) along each axis (top and left of
D), reveals discrepancies at the system boundaries. This could stem from the splic-
ing of the original input and RP field from 50 x 50 to 48 x 48 matrices, required by
the U-Net, or due to the zero-padding implemented by TensorFlow’s convolutional
layers, which may not preserve periodic boundary conditions.

Furthermore, the y — # plot of the ‘dirty” system (8.5D) shows an imprint of
the original skyrmions, indicating that the U-Net struggles to learn the defect field
from these structures. This is to be expected, as we hypothesise that defects exert a

more localised influence on uniform spins, embedding themselves directly into the
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FIGURE 8.5: An example prediction of the RP field on unseen spin

texture in a “dirty” system, H, = 0.1. A) The input spin configuration,

x, B) the true RP field, y, C) the RP field predicted by the model, {, D)

the pixel-wise difference between the true and predicted fields, y — 7,
and E) a distribution of this difference.

y y

FIGURE 8.6: Comparison of random patches of the RF field between
the true values (first column) and the predicted values (second col-
umn) for the ‘clean’ (H, = 0.002) and “dirty” (H, = 0.1) cases.

H,=0.002

0.1

z-component of the spins, whereas they are more likely to alter the shape, stability,

or location of topological particles, rather than its internal structure. Nevertheless,
2

the error distribution (E), fitted with a Gaussian (AeTZM), reveals that the average
pixel difference (y) is approximately only 6.72% of the original RP field in the ‘dirty’
system. For comparison, smaller patches of the RP field are plotted in Figure 8.6
for different defect levels, showing a high degree of similarity between the true and
predicted values, especially in the ‘dirty” case.

We evaluate the U-Net’s performance across different defect levels by analysing
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the error distributions, illustrated in Figure 8.7. To ensure comparability, the MSE
score, giving the summed pixel by pixel squared difference, has been normalised by
squared sum of the true RP field, facilitating a comparison against a baseline predic-
tion of 0. As defect levels increase, the MSE decreases significantly, highlighting the
U-Net’s improved ability to predict the defect field in such systems. This is likely
attributed to a combination of higher-defect configurations containing mostly uni-
form regions, which are more sensitive to defects, and a stronger defect signal. These
findings suggest that the training dataset should include more spin configurations

at low defect levels to enhance prediction accuracy in these systems.
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FIGURE 8.7: The distribution of difference, y — #, for random exam-

ples from the test dataset at different H, levels. The inset shows the

input spin texture and the legend gives the (y, o) values of the fitted
—-p?

Gaussian (Ae 20?2 ), together with the scaled MSE.

At the intermediate defect level (H, = 0.025), we observe differing spreads in
the error distribution depending on the input spin texture: a skyrmion lattice re-
sults in a wider distribution, while single skyrmions lead to a narrower distribution.
As a function of defect level, both the spread, captured by the fitted o, and MSE
demonstrate a split in their distributions (see the inset of Figure 8.8A and Figure

8.8B), with a relatively unimodal distribution in ‘clean” and ‘dirty” systems (8.8(C, E,
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FIGURE 8.8: A) The normalised MSE and B) the fitted ¢ as a function
of H, for all inputs in the test set, illustrating the split from a uni-
modal distribution to a bimodal one at intermediate H,,. Histograms
of the (C-E) MSE, and (F-G) ¢ showing a unimodal distribution at low
and high H, (C,E,EH), and a bimodal one at H, = 0.025 (D,G).

F, H)), that becomes bimodal at intervening defect levels (8.8(D, G)), close to the crit-
ical OSKL-DSKL transition boundary. This is the most interesting outcome from the
U-Net analysis, where ¢ and MSE mirrors the behaviour of the spin-spin correlation
observed in Chapter 6, lending further credibility to the existence of a phase tran-
sition dependent on defect level (H, ), particularly considering previous studies
have observed a similar degradation in parameter estimation accuracy near transi-
tion boundaries[268].

While a simple U-Net successfully predicts the localised defect field for spin tex-
tures generated by a specific set of Hamiltonian parameters (Jex, J4;), real materials
may possess intrinsic interaction strengths that differ significantly from those simu-
lated in our study. Unfortunately, when evaluating the same model on spin textures

generated under different Hamiltonian parameters (J.x € {0.4,0.45,0.55,0.6}), we
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FIGURE 8.9: A) The full error distribution, y — f, and B) U-Net

MSE evaluated at different [,;. Example predictions at H, = 0.001

for Jox = 0.4 (C-G) and J.x = 0.6 (H-L), displaying the imprinted
skyrmion lattice in the predicted RP field.
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FIGURE 8.10: A) The full error distribution, ¥ — #, and B) U-Net

MSE evaluated at different J,r. Example predictions at H, = 0.001

for Jox = 0.6 (C-G) and Jox = 0.6 (H-L), displaying the imprinted
skyrmion lattice in the predicted RP field.

observe a significant degradation in accuracy. For instance, example predictions for

‘clean’ systems at J,, = 0.4 (Figure 8.9) and J., = 0.6 (Figure 8.10) show sharp im-

prints of the skyrmion lattice in the predicted RP field (#), particularly pronounced

at lower J,x. We hypothesise that this error arises from the variation in skyrmion
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sizes (proportional to Jex/ J4n), making it challenging for a model trained on fixed-
size skyrmions to accurately predict RP fields for skyrmions of different sizes. Fu-
ture research may explore the implementation of scale and rotation invariant filters,
extending the model’s capability to predict defect maps across a wider range of pa-
rameters. However, in our study, we take a different approach by modifying the

architecture to enable the prediction of both the local RP field and the global J,.

8.3 Learning the RP Field and /., (1L, 1G)

8.3.1 Model and Dataset

The following section explores an extension of the U-Net architecture to concurrently
learn both a local parameter (1L), the RP field, and a global parameter (1G), the
exchange strength, through the integration of a secondary branch originating from
the bottleneck (Figure 8.11). Following the final convolution layer, this additional
branch flattens the layer and subsequently reduces the number of nodes through k
Dense layers, each comprising 1, nodes, before finally generating a prediction for
Jex- Meanwhile, the first branch executes the same up-convolution procedure as
previously to predict the RP field. The updated architecture is illustrated in Figure
8.11.

Extended U-Net

Input
Spin Texture (Ly, Ly, 1)

L 1]
T Conv (L, Ly, )

[

- [ MaxPool (. L,

S 1 oo Flatten
I UpConv (1,9
ettt Dense

L |
Output
RP Field (Ly, Ly, 1)

Output
Jex

FIGURE 8.11: The extended U-Net architecture, with two branches.

The first branch is the original 2-layer U-Net, predicting the RP field,

while the second branch extends from the bottleneck by flattening the

nodes in the convolution layer and then applying successive Dense
layers, before outputing a single value for .



8.3. Learning the RP Field and [, (1L, 1G) 137

To train the model, we construct a loss function by combining the MSE of the RP

field with the MSE of [, as follows:

N

loss = 7Y (V;j — ¥ij)* + (2 - 2)?, (8.4)
i
where Y;; and lAfij are the true and predicted RP fields as before, and Z, Z are the true
and predicted exchange strength, J.,. The parameter oy can be adjusted to scale the
loss from the RP field relative to the loss in J,y. Inputs and outputs are again nor-
malised, whilst maintaining the relative weighting between each output parameter.
More specifically, parameter p € {J.x, H;,} is scaled across all realisations as follows,
ps = P — Pmin ,

Pmax — Pmin

Penin = min ( min (Jox), min (FL,) ), 8.5)

Pmax = max (max (Jex ), max (HZ,i)).

We train the model on spin configurations at the skyrmion nucleation boundary
across 14 distinct H, values within the range [0.001,0.1] along with 5 J.x values in
[0.4, 0.6], each comprising 2000 realisations. Example realisations of the dataset at
these various points are illustrated in Figure 8.12. The dataset contains 140,000 con-
figurations, which are then shuffled and divided into training, validation and test

sets with sizes of [70,000, 35,000, 35,000], respectively.

—
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o

FIGURE 8.12: Example spin configurations from our training set at
Jex € {0.4,0.5,0.6} and H, € {0.001,0.025,0.1}.

We optimise the hyperparameters () and architecture (number of layers and

nodes in the U-Net and Dense branches) by identifying settings with the lowest
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validation loss, and then evaluate our optimal model’s performance on the unseen

test set. The optimised model is characterised by the following parameters: ¢ = 2,

U-Net architecture = [16, 32, 64, 128, 256], Dense architecture = [256, 128, 64, 32, 16],

resulting in a test loss of 0.0206645. Details of the tuning results are given in the

Appendix, Section A.3.

8.3.2 Results
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FIGURE 8.12: Each row shows the input and output for a pair H,-J,
where H, € {0.002,0.1} and Jox € {0.4,0.6}. The first column shows
the input spin configuration, second and third columns are the true
and predicted RP field, fourth column is a histogram of the pixel-
by-pixel difference between the true and predicted RP field, which
has been fitted to a Gaussian distribution (black line). The true and
predicted .y are also given, along with the normalised MSE.
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Figure 8.12 showcases example predictions for ‘clean” and ‘dirty” systems at J.x €
{0.4,0.6} from the test set using the optimised model. Due to the inclusion of these
parameters in the training set, the model has learned to predict both the RP field and
Jex for different skyrmion sizes and we now no longer see the skyrmion imprint the
predicted RP field. Once again, we see a high prediction accuracy for not only the
localised RP field but also the exchange strength, however, as noted previously, this

accuracy (normalised MSE) decreases for lower defect and ., levels.
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FIGURE 8.13: A surface plot of the averaged MSE as a function of H,
and Jey.

The behaviour of the normalised MSE, averaged over all datapoints and strati-
fied by H, and J.x (Figure 8.13), reveals a clear deterioration in performance with
decreasing values of both parameters. As J,; decreases, the skyrmions shrink in size
allowing for more skyrmions to exist within the lattice. Consequently, smaller J,,
in ‘cleaner” systems leads to an increased number of skyrmions, which are less sen-
sitive to the defect field than uniform regions, thereby contributing to the increase
in MSE. Nevertheless, even at the highest MSE levels, the average difference in the

defect field at all lattice points is close to zero, indicating a relatively high prediction

accuracy (Figure 8.12).
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FIGURE 8.14: A comparison of the true switching configuration with
the results using the predicted U-Net parameters, together with the
N hysteresis behaviour for various pairs of (Jex, Hy).

To further validate our findings, we feed the predicted RP field and J., as in-
puts for the mean field algorithm, and compare the resulting spin configuration and
hysteresis behaviour with the original data. Figure 8.14 compares the true switch-
ing spin configuration with that generated from the predicted U-Net parameters,
together with Ny behaviour along the field sweep for different J,, and H,. Al-
though the predicted RP field fails to exactly reproduce the correct spin texture at
the switching point, particularly in ‘clean’ systems, it generally mirrors the hystere-
sis behaviour seen in the true RP field case. Specifically, ‘clean” systems, although
producing only a few skyrmions at the nucleation boundary, eventually transitions
to the full OSKL state at the subsequent field step with a constant Ng. ‘Dirty” sys-
tems, simulated by the predicted U-Net parameters, also follow the expected behav-
ior from true parameters, exhibiting a smooth Ny behaviour along the field sweep,

with the nucleation boundary occurring at a lower field.
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The discrepancies in the switching configuration likely stem from minute differ-
ences in the RP fields, where locations with slightly higher predicted defect values
may nucleate individual skyrmions at earlier field steps, as opposed to the full lat-
tice for ‘clean’ systems. Furthermore, we note that the skyrmions in the original and
predicted configurations appear to be of similar sizes, and, according to Ny, approx-
imately a similar number of skyrmions nucleate in the full OSKL. This confirms that

the predicted J,, leads to topological particles similar to those observed with the true

Jex-
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x e =06
= 0.21
Ll H :
2 ‘ ST
011 o X .
| %&&é .é
00, M A
0.002 0.025 0.1

Ho

FIGURE 8.15: Boxplots of the scaled MSE on Ng; stratified by J.» and
H,.

To quantitatively compare the hysteresis behaviour in Ny between the true pa-
rameters and U-Net predicted parameters, we compute the MSE of the Ny, nor-
malising by the area under the Ng; curve to enable comparison against a baseline
prediction of Ngx = 0. Similar to the U-Net MSE (Figure 8.13), this measure also
reveals a decline in performance at lower defect levels, but contrastingly also shows
a decline in performance with increasing J.r. This aligns with our understanding
from Chapter 6, where larger skyrmions (higher J.x) were found to be more sensi-
tive to the underlying defect field, and therefore even a small percentage change can
pin a skyrmion to a different location, leading to a change in the arrangement of
skyrmions, and therefore a change in Ng.

Nevertheless, assessing performance using MSE - N provides a more reliable
indicator than the U-Net MSE, as it evaluates the actual magnetic behaviour desired
for simulation. Notably, this metric remains relatively low across all ],y and H,,

indicating that the U-Net demonstrates high accuracy in predicting both global and
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local Hamiltonian parameters capable of reproducing mean field behaviour.

8.4 Learning parameters of polycrystalline materials (2L, 1G)

8.4.1 Model and Dataset

\Voronoi

—— Jex()= —0.9(10)7°2 + 1

2 4 6

— Jut)=0.8t"14

T T T

2 4 6
Thickness (t)

FIGURE 8.16: A) Examples of the Voronoi tessellation of the lattice

thickness (first column), with the generated random-bond Jx (second

column) and the random anisotropy, J; (third column). B) Thickness
dependence of the average /.y and J.

We increase the complexity of the extended U-Net by introducing a second localised
parameter, (2L, 1G). To mimic real materials more closely, we replace the random
pinning model with a random anisotropy model, accompanied by bond defects in
the exchange strength. These constitute our two local parameters (J; and J.y), along
with one global parameter, the DMI strength (J,,).

Experimentally, thin film polycrystals contain regions of varying thickness with
different anisotropy and isotropic exchange strengths. Many studies find that Ji
tends to increase with decreasing film thickness due to heightened surface effects[269,
270], while conversely, exchange strength decreases owing to the reduced number
of interactions along the sample thickness[271]. To simulate these polycrystals, we
tessellate the lattice to vary its thickness throughout the structure. Using the freud
package[272], we generate a Voronoi diagram with periodic boundary conditions,

containing the regions for two different thicknesses (see Figure 8.16). Each cell
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within this diagram is assigned a thickness value randomly sampled from the range
[1,6]. From these thickness values, we derive the average J.» and J; parameters for
their respective regions, modeled with a power-law behavior illustrated in Figure
8.16B. While this behavior is not directly calibrated from empirical data, it is based
on our experimental understanding of such systems, enabling us to evaluate the ca-
pabilities of the extended U-Net. Additionally, we introduce defects into the system
through a pinning field on J.x and Ji, drawn from A (0, ¢), using a randomly gener-
ated defect level, ¢ € [0.001,0.05]. Figure 8.16A illustrates the Voronoi tessellation
alongside the local ], and Jj fields.

Our dataset contains the switching spin configuration for 8000 realisations of the
local parameters across 5 DMI strengths in the range J;, € [0.4,0.6], resulting in
40000 configurations. This dataset was divided into training, validation, and test
sets, with proportions of 50%, 25%, and 25%, respectively. The outputs were min-
max normalized, retaining their relative scales, following the approach in (1L, 1G)

with the following minimum and maximum values,

Pmin = Min (min (Jex ), min (Ji), min (]dm)) 66

Pmax = mMax (max (]ex)rmax (]k)/max (]dm))

We train the same optimised architecture and hyperparameters as in (1L, 1G), result-

ing in a test set MSE of 0.02341.

8.4.2 Results

An example prediction from the test set is depicted in Figure 8.17. The figure shows
the input spin texture as the first image, followed by the true and predicted exchange
strength (J.x and J.,) in the top row, and the true and predicted anisotropy (J; and
jk) on the bottom row. The true and predicted values of the global DMI strength
(Jam and J,,,) are given in the title, along with the total MSE normalised against a
baseline of 0.5.

In addition to examining site-specific values of the local parameters, we consider
the distributions of J.x and J; (final column of 8.17) in our analysis. This is essential

since precise variations in these parameters cannot be experimentally determined,
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and instead only their averages can be roughly approximated across different thick-
ness regions using the sample magnetisation[273]. The distributions of J.x and Ji
offer insights into several aspects of the sample, including the number of different
thicknesses (modes), the average interaction strengths in these regions, and the de-
fect level in the system (spread about each mode). We determine the average inter-
action strengths by fitting the true and predicted distributions to a mixture of two

Gaussians, modelled as follows,

p(x, A, p,0) = Ae 25, 8.7)

Model(x) = p(x, Ay, p1,01) +p(x, Az, 2, 02), (8.8)

where A;, i, and o; represent the amplitude, mean, and standard deviations of dis-

tribution i.
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FIGURE 8.17: Two example predictions from the test set. The first
image shows the input sp in configuration, the next two images are

Dll DI2 0‘3 D‘-ﬂ
the true and predicted J.x (top row) and J (bottom row). The final
column is a histogram of the pixel-by-pixel difference between the
true and predicted /.y (top row) and Ji (bottom row).

The most notable outcome of the U-Net predictions is the presence of skyrmion
imprints, particularly evident in J,, and somewhat visible in J,. Similar imprints
were only observed in other models when tested with unseen skyrmion sizes, such
as the (1L) model trained with J,, = 0.5 but evaluated at different J.x (see Figures
(Figure 8.9 and 8.10)). We suspect a similar issue here, where the relatively smaller
training dataset in comparison to the number of free Hamiltonian parameters may

result in uncommon skyrmion sizes caused by a specific set of parameters and defect



8.4. Learning parameters of polycrystalline materials (2L, 1G) 145

level. Consequently, these configurations are not adequately learned by the model,
leading to lower prediction accuracy. This decline in performance is further evident
in the histograms for the true and predicted J.,, where the inaccuracies result in
a wider distribution in J,, about the specific mode corresponding to the skyrmion
imprints, and an underestimation of this average exchange strength.

To further explore the degradation of model performance with number of free
Hamiltonian parameters, a comparative study was conducted on all U-Net varia-
tions using a randomized sample of 18,000 examples for training and 9,000 samples
each for validation and testing. To ensure comparability, the model architectures are
adjusted to roughly contain a similar number of model weights®, and were trained
for 1000 epochs. Finally, the test set MSE is normalised by the number of weights
and number of output parameters. The results, summarised in Table 8.1, clearly
show a decrease in model performance as the number of Hamiltonian parameters
increases, implying that a progressively larger dataset is needed to maintain similar

performance levels with increasing model complexity.

U-Net Model Comparison

(1L)[2304] 1,592, 451 0.0157523 4.6957 x 10712
(1L, 1G)[2305] 1,538,373 0.0352776 9.9487 x 1012
(2L, 1G)[4609] 1,456, 001 0.2229303 3.1242 x 10~

TABLE 8.1: Performance comparison between the different U-Net
variants with an increasing number of input Hamiltonian parame-
ters.

Nevertheless, despite the smaller dataset, the U-Net retains its capacity to accu-
rately identify both the localised and global parameters, inclusive of their relative
scale, even within a material composed of varying thicknesses. In the next section,
we benchmark this model against simpler networks to identify the specific compo-

nents that contribute to parameter estimation.

®Exact matching of the number of weights was not feasible due to the requirement of CNN filter
sizes to be in powers of 2 for optimised training on a GPU.



146 Chapter 8. Supervised Learning of Defect Fields

8.5 Benchmark Models

8.5.1 Comparing U-Net to other networks

We evaluate the performance of our extended U-Net in comparison to other avail-
able models through several benchmark tests. Initially, we examine the simplest sce-
nario involving a single localised parameter (1L) and compare our standard U-Net
with alternative models, including a neural network solely comprising Dense lay-
ers (DenseNet), a fully convolutional network (FCN) lacking the U-Net’s symmetric
architecture and skip connections’, and a U-Net variant without skip connections
(U-Net-NoSkip).

Given the complexity of these alternative architectures, they may struggle to
progress beyond predicting a constant normalised value of 0.5 for all RP field values,
due to the vanishing gradient problem. However, since 0.5 is a relatively accurate
(normalised) prediction for systems with low defect levels, this issue is not reflected
in the MSE. To address this, we also compute the ratio of MSE of the true RP fields

relative to 0.5, against the MSE of the predicted RP fields relative to 0.5.

Y (Y — 0.5)

Score = =
Yij(Yij = 0.5)?

(8.9)

This score tends to 1 when the difference between the true and predicted RP fields
is zero, but results in a larger value if predictions, Yi]-, are close to 0.5.

The results of the benchmark tests are given in Tables 8.2-8.4 for both MSE and
the Score, with the final row showing the results of the U-Net used in Section 8.2.
In FCN, the value enclosed in brackets denotes the stride of the convolutional layer,
and for the U-Net-NoSkip, a 2 x 2 MaxPool follows every convolutional layer except
the last.

The score indicator demonstrates that FCN and U-Net-NoSkip significantly out-
perform DenseNet, indicating the necessity of convolutional layers for effectively
learning localised parameters. The DenseNet suffers from the vanishing gradient
problem, where the model’s depth and complexity cause gradients propagated to

earlier layers to become exceedingly small, resulting in minimal adjustments to these

7For more information, refer to Chapter 3, Section 3.4.
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DenseNet

(512, 256, 128, 64, 32) 0.333539 10179.3993
(128, 64, 128) 0.333983 4788.7693
(128, 64) 0.333952 2727.7160
(64, 32) 0.333646 5323.1361
U-Net 0.004180 1.11794

TABLE 8.2: Performance comparison for various DenseNet architec-
tures using MSE and Score, against the standard U-Net network.

FCN
(32[1], 64[1], 128[2], 256[2]) 0.313781 14.0541
(32[1], 64[1], 128[2]) 0.256848 4.332644
(16[1], 32[2], 64[2]) 0.318490 22.0412
(16[1], 32[1], 64[2]) 0.259481 45367
(16[2], 32[2]) 0.330277 355.5465
U-Net 0.004180 1.11794

TABLE 8.3: Performance comparison for various FCN architectures
using MSE and Score, against the standard U-Net network.

U-Net-NoSkip

(64,128, 256, 512, 1024) 0.330219 350.7250
(32, 64, 128, 256, 512) 0.330091 367.3465
(16, 32, 64, 128, 256) 0.329793 364.0035
(32, 64, 128, 256) 0.329848 389.0372
(32, 64, 128) 0.330202 364.1737
(16, 32, 64) 0.330218 312.7810

(16, 32) 0.187955 3.8886

(32, 64) 0.136675 2.8746

U-Net 0.004180 1.11794

TABLE 8.4: Performance comparison for various U-Net architectures
with no skip connections using MSE and Score, against the standard
U-Net network.

layers” weights. Additionally, the early stopping criterion terminates training when
weight changes are minimal, effectively locking weights to their initial random val-
ues and leading to RP field predictions of 0.5. In contrast, convolutional layers re-
duce the number of trainable parameters, thereby mitigating the vanishing gradient

issue.
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(16[1], 32[1], 64[1]) (16[1], 32[1], 64[2]) (16[1], 32[2], 64[2])
MSE :0.04188 MSE :0.25948 MSE :0.31849

FIGURE 8.18: FCN example predictions: A comparison between the

true RP field (A), and the predictions FCN architectures with an in-

creasing level of downsampling: (16[1], 32[1], 64[1]), (16[1], 32[1],
64[2]), (16[1], 32[2], 64[2]).

While convolutional layers are essential for learning localised parameters, the
consecutive downsampling via strided convolution followed by up-convolution in
the final layer of the FCN often introduces checkerboard artifacts in the predicted
RP field (refer to Figure 8.18). This figure displays an example random pinning field
alongside predictions from three different FCN networks with increasing levels of
downsampling: (16[1], 32[1], 64[1]), (16[1], 32[1], 64[2]), and (16[1], 32[2], 64[2]). The
network without downsampling, (16[1], 32[1], 64[1]), employs a final convolutional
layer with just one filter instead of an up-convolution. This setup preserves spatial
information, yielding high prediction accuracy across all lattice sites. However, the
absence of downsampling results in a higher number of trainable weights, which
slows down convergence.

Introducing downsampling with a stride-2 convolutional layer accelerates train-
ing, but it leads to checkerboard artifacts in the predicted RP field, with accurate
predictions occurring only at every other lattice site. These artifacts stem from the
striding of the up-convolution, causing uneven overlap of the kernel over lattice
sites, resulting in better predictions at frequently visited sites and predictions closer
to the average (0.5) at less frequently visited sites[274]. With two convolutional lay-
ers using stride 2 (final column), the final up-convolution uses a stride of 4, result-
ing in sparser overlapped lattice sites and more inaccuracies. To summarise, the
inclusion of convolutional layers in the FCN somewhat resolves the vanishing gra-
dient problem of DenseNets, leading to accurate predictions at certain lattice sites
and, consequently yields a higher Score (Table 8.3). But the loss of information from

downsampling prevents pixel-perfect predictions of the localised parameter.
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The checkerboard artifacts of FCN can be resolved through the symmetric down-
sampling and upsampling of the U-Net architecture. Figure 8.19 illustrates an ex-
ample prediction from two different U-Net architectures ((16, 32) and (16, 32, 64)),
where the left-most images depict the input spin texture and the target (true) RP
field, followed by the predictions on the right. Here, the figure shows the predicted
RP field from (16, 32) (top row), and (16, 32, 64) (bottom row), in a network without
(first column) and with (second column) skip connections.

NoSkip Skip

Input Spins MSE :0.19159 MSE :0.02268

(16, 32)

True RP MSE :0.33624

(16, 32, 64)

FIGURE 8.19: U-Net example predictions: The left-hand images
shows the input spin configuration(top) and true RP field (bottom),
whereas the right-hand side displays the predictions from networks
of size (16, 32) in the first row and (16, 32, 64) in the second row, with-
out (first column) and with (second column) skip connections.

A relatively small architecture of (16, 32), featuring a single MaxPool and no skip
connections, exhibits enhanced performance compared to the FCN, with a test set
MSE of 0.1910996. Visually, we no longer observe the presence of checkerboard ar-
tifacts, likely because upsampling occurs in successive steps with smaller stride as
opposed to the single step in FCN, with only one learnable filter. This leads to an
increased filter overlap over all lattice sites, resulting in more accurate predictions.
However, the absence of skip connections leads to a deterioration in prediction qual-
ity, due to information loss from the MaxPool. The filters of the convolutional layers
learn specific input features, such as circular structures, but the downsampling ob-

scures the exact feature location, resulting in minor inaccuracies in the predicted
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field.

With an increase in network complexity to (16, 32, 64), the model fails to predict
the local RP field, further exhibiting a sharp imprint of the original skyrmion from
the input. This decline in model performance can be attributed to the two MaxPool
layers, which increases the level of information loss. Skip connections are, therefore,
essential for learning the localised parameters of a complex model, owing to their
ability to transfer detailed information learned in the encoder path to the upsam-
pling layer, bypassing the MaxPool.

The benchmark tests performed thus far underscores the importance of convolu-
tional layers, a symmetric network, and max-pooling layers for efficiently learning
a localised parameter. In the next section, we compare the performance of the ex-
tended U-Net, which predicts both local and global parameters, with a fully U-Net

architecture excluding the extended branch.

8.5.2 Comparing a full U-Net to the extended U-Net

Performance Comparison between Full and Extended U-Net

Extended 4609 0.112897 0.0044719 0.1074786 0.0009469
Full 6912 0.108245 0.0034053 0.1024386 0.0024015

TABLE 8.5: A comparison of the normalised test set MSE between the
full and extended U-Net, across all parameters (Norm. MSE), and its
individual components, (Norm. MSE - Jex/[i/ | 1)-

The final benchmark test compares a full U-Net, which incorporates the global
parameter as an additional channel resulting in site-dependent predictions, with the
extended U-Net that provides a single prediction for the parameter. Both models are
trained using the dataset from (2L, 1G), and their prediction accuracy for each pa-
rameter is evaluated using MSE normalised against a baseline of 0.5 and by the num-
ber of model parameters. Given its increased complexity, the full U-Net takes longer
to converge, requiring 1627 epochs compared to 438 epochs for the extended U-Net.
However, despite the extended U-Net’s faster training, it demonstrates a similar

performance to the full U-Net when evaluated using the total MSE across all param-

eters of the test set (Table 8.5): the extended U-Net has an MSE of 0.112897, while
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FIGURE 8.20: The distributions of normalised MSE for each parame-
ter (Jox, Jx, Jam) in the extended U-Net (A-C) and the full U-Net (D-F).

the full U-Net has an MSE of 0.108245. Assessing the individual components of the
normalised MSE for each output parameter (Figure 8.20 and Table 8.5), we observe
a decline in accuracy of the ], parameter using the full U-Net, offset by a slightly
higher accuracy in predictions for the localised parameters, J.x and Ji. In summary,
although both architectures are adept at parameter estimation, the extended variant

achieves better accuracy for global parameters, with faster convergence.

8.6 Conclusions

In conclusion, we have demonstrated that the U-Net network can be successfully
repurposed for local Hamiltonian parameter estimation, with a high accuracy at all
lattice sites, and with an additional extension to the model, global parameters can
also be simultaneously learned. However, we encountered a number of challenges in
using fully convolutional networks, including a minor deterioration in prediction ac-
curacy when estimating parameters from skyrmion structures, especially for unseen
skyrmion sizes, and the requirement for a larger dataset as the number of learnable
Hamiltonian parameters increases. Despite these challenges, local and global pa-
rameters can be accurately predicted even in materials of varying thicknesses, only

achievable using our variant of the U-Net architecture. Specifically, the success of
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the network can be attributed to the use of convolutional and max-pool layers, es-
sential for improved convergence and overcoming the vanishing gradient problem,
along with the symmetric nature of the architecture and skip connections, result-
ing in pixel-perfect predictions of local parameters. In future, we hope that such a
model can be used to predict the Hamiltonian parameters directly from experimen-
tal LTEM data, after such systems are initially manually calibrated to the mean field
Hamiltonian. Once calibrated, these neural networks can be used to pinpoint exact

defect locations within a sample.
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Chapter 9

Conclusions and Future Research

Within the scope of skyrmion research, experiments have shown material defects to
have adverse and unpredictable effects, both on skyrmion dynamics and their equi-
librium properties. We explored the ground states of magnetic systems at thermal
equilibrium, using mean field approximation over a broad range of external fields,
temperatures, and varying levels of defect. We demonstrated that the mean-field
model is capable of reproducing experimental data of Fe,GeTe, two-dimensional
van der Waals magnet, which adds the credibility to the overall results reported in
this thesis.

Instead of studying the role of individual defects, as has been previously re-
ported in many studies, we set out to investigate the effect of entire statistical dis-
tribution of defects on the formation of skyrmion lattices. Thereby, the defects were
here modelled as a quenched random pinning field, following Gaussian statistical
distribution with zero-mean, varying only in z (H,; ~ N (0,H,)). In the future,
however, we aim to refine our approach by modelling defects as fluctuations in
anisotropy, or DMI[20, 204, 209, 210, 213, 214, 218, 220-227], in accordance with
ab-initio studies[228].

In a comprehensive study for ‘clean’ systems, we observed an instantaneous
switch to a hexagonal skyrmion lattice, whereas ‘dirty” systems exhibited a grad-
ual nucleation of skyrmions, forming a disordered array and blurring the first-order
phase transition. After further analysis, we hypothesised the existence of a phase
transition from the OSKL to DSKL, driven by the material defects. By mapping the

spin-spin correlation (Q) of configurations along the field sweep, we identified the
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transition boundary and found that larger skyrmions demonstrate heightened sen-
sitivity to defects, with a lower critical defect level needed to disrupt the OSKL.

Through our calculations of Q, we distinguished OSkL and DSKL phases, how-
ever our values were sensitive to minute changes in spin texture and required further
post-processing for clear phase differentiation, where the specific post-processing
method differs depending on phase transition. For example, in determining H, .,
we found the skyrmion nucleation boundary and corresponding spin-spin correla-
tion across all defect levels. Then, we pinpointed the defect level with the greatest
variability in Q and extrapolated to an infinite-sized lattice. In contrast, through
deep learning (DL) methods we replaced the manual approach with backpropaga-
tion to identify macroscopic properties for phase classification.

Our study used variational autoencoders (VAE) to identify latent variables used
to differentiate the majority of phases found in materials with defects. Of these
phases, only OSKL and DSKL could not be differentiated using VAEs, primarily
due to the use of convolutional layers, which resulted in a loss of long-range in-
formation. Consequently, our research highlights the necessity of careful network
design. Layers that simplify the architecture could potentially discard crucial phase
information, and an overly complex VAE network may struggle to learn the latent
representation effectively.

However, the VAE parameters can differentiate OSkL from DSKL via the con-
figuration at the skyrmion transition boundary, and therefore the critical H, can be
determined. H, . offers an approximate gauge for the permissible defect amount
in the material while maintaining a tightly-packed skyrmion lattice, thereby pro-
moting increased data density in prospective storage devices. Another crucial as-
pect underlying all devices, including the racetrack, logic gates and neuromorphic
computing, is the ease and reliability of skyrmion transportation. We hypothesise
that below H, .+, skyrmions move along relatively predictable trajectories, shrink-
ing and avoiding small defects when necessary. Conversely, in the presence of large
defects above H, .,i;, we expect significant deviation of skyrmion trajectories, even
potentially causing skyrmion annihilation. However, the investigation into the dy-
namics of skyrmions in materials with defects is beyond the scope of our work and

we leave this aspect to future studies.
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Our final study involved solving the inverse problem of accurately identifying
the underlying defect field solely from the spin configuration, achieved through
training a U-Net-based network in a supervised manner. The combination of convo-
lutional layers, max-pool layers, the symmetric network, and the skip connections
are all crucial components of the U-Net, enabling accurate pixel-wise defect detec-
tion. To enhance the model’s capabilities, we extended it with a secondary branch
at the network bottleneck, enabling the prediction of an additional global parame-
ter, such as lattice-wide DMI strength. This extended U-Net is capable of predicting
any number of local and global Hamiltonian parameters, even in a polycrystalline
material with regions of varying thicknesses, however larger datasets are required
for training as the complexity increases. While our study focused on parameter esti-
mation, the model’s versatility allows for its potential extension to diverse problems
requiring the prediction of both local and global properties, for example Lee et al.
similarly repurposes U-Net to estimate the magnetic effective field from spin tex-
tures[275].

In conclusion, by studying statistical distributions of pinning sites, we observed
significant changes in the phase boundaries, including a novel disorder-driven phase
transition. We developed various methods to identify the different critical transi-
tions, including the spin-spin correlation mapping and deep-learning techniques.
Finally, due to impact of defects on skyrmion nucleation and dynamics in experi-
mental systems, we solve the inverse problem of identifying defect locations using

the U-Net model.
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Appendix A
Appendix

A.1 Derivation of the CW-MF Model

In this chapter, we show the full derivation of the Curie-Weiss mean field (CW-MF)
model for an Ising system.

The Ising model is given as,

1 N N
Hising = —5 Yo Y Jisisi—uHY s, (A.1)
i j€inn i

with the following partition function,
1
Zn = Trs, exp [,B (2]ijsisj + ,uHs,)] . (A.2)

The derivation of the Curie-Weiss model begins by decomposing the spin into

the mean field, m;, and the fluctuation about the mean field, ds; = (s; — m;),
s; = m; + Js;. (A.3)
Substituting this into the interaction term, gives,

SiSj = (m; + (551')(711]‘ + (SS]') (A.4)

A~ mimj + mi5S]’ + Tl’ljési, (A.5)

where, in the final line, we have neglected fluctuations about the mean field. Using
the fact that the mean field is site-independent (due to the translational invariance of

the model), and that }_; m(s; — m) = Y ;m(s; — m), the Ising spin Hamiltonian thus
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reads,

N N
—5 2 Y Jij(m® - 2m(s; —m)) — pH Y s (A.6)
i g i
N N N N
mZZZI ]mZZsi—yHZsi, (A7)
[ 1

i

I\)\’—‘

N
_ 2 _ .
= Em JzN — (Jmz + uH) ;Sl, (A.8)

where we have replaced }; by z, the coordination number. The partition function

can therefore be written as,

Zn = Try, (ﬂﬂ(s)) — "N T, (exp [B(mz + uH)si), (A.9)

with the notation simplified using Einstein summation. The exponential term in the

trace is linear in s;, so this expression is simply a sum over non-interacting spins,

/5[m zN

Zn=¢e 2 Y .. Y (exp[B(Jmz+ uH)s;]) (A.10)
s1=£1 sy==%1
) N
— < Y exp[B(Jmz+ ],tH)sl]> (A.11)
Slzil
— ™™ (2.cosh (B(Jmz + uH)))V. (A.12)

The free energy in the thermodynamic limit is,

F=— lim f;\llnzN %]zmz _ ;m 2cosh (B(Jzm + uH))], (A.13)

and magnetisation is therefore,

1 0F
m= “uoH tanh (B(Jzm + puH)). (A.14)

This is the self-consistency equation for magnetization.
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A.2 Derivation of HS-MF Model

In Chapter 2, Section 2.4.2, we briefly outlined the steps taken to derive the mean
field model using the Hubbard-Stratonovich identity. In this section, we show the

full derivation for both the Ising model and the Heisenberg model.

A.21 Ising Model

We will first consider the Ising model given below,

N
Hz‘sz‘ng =—5 Z Z ]1]5 Sj— ,”HZSZ'~ (A.15)

i j€inn

The partition function for this model is,

1
Zn = Trg exp |:ﬁ <2]ij5i5]' + ]/lHSi>:| . (A.16)

The Hubbard-Stratonovich transformation explained in Section 2.4.2, is rewritten

here for convenience,

L ina /°° ﬁ exp [~ 7 %iAi; + xibi] dx;. (A.17)
VIA| —eo T V2r

The HS transformation seeks to simplify the exponential term containing the bi-

linear isotropic exchange interaction,

o N — L (17 . g
e%]ijsisj _ / exp 217[)1(] )z]l,b] + lplsl] d¢i, (A18)
VI V2
where we have used to following replacements,
bl' =5, (A19)
(A7) = T, (A.20)

Xi ‘= 1,[]1'. (A21)
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Substituting the exponential back into the partition function, we find,

,1)i].)¢jTrSke,5(¢i+VH)Si)dll]i‘ (A22)

1 o N 1
- - —29i(BUJ
v= T LT

The exponential has been made linear in terms of s; and as such can be inter-

preted as a system of non-interacting spins. Therefore, this can be simplified,

Trskeﬁ(ll)i+VH)Si): Z Z eBWitpH)s; (A.23)
s1=+1 sy==%£1
N
T X ebtns (A.24)
i s=%1
N
= [ J2cosh[B (i + uH)]. (A.25)

We would like to rewrite this trace in exponential form for future simplifications. So

using the fact that x = ¢"* and In (xy) = Inx + Iny, we see that,

Trs, PP #H)s) — exp lln (ﬁZCOSh B (i + yH)])] (A.26)
N
= exp [Z In (2cosh [B (i + yH)])] . (A.27)

Thus we can write partition function as,

1 o N
T — —BLWi i) gy, A28
v o LT ! o
where L(v;, Ji;, pH) is the action,
1 1 1N
L, Jij wH) = S9i(J )iy — B Y_In(2cosh B (y; + pH))). (A.29)

This was the result derived in the main thesis. This is a functional integral and the
partition function is still describes the Ising model in an exact form. We will now
apply the saddle point approximation, which assumes that the integrand can be

approximated by its maximal value.

o N _
/ He_ﬁ‘c(wu]l]/VH)dwl ~ e_.B‘C(lpi/Iij/VH) (A30)
—o0
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where ¢; is the value of the auxiliary field at the maximum of the FI. The partition
function is now,
1

7N = e~ PLWiJiyuH). A31
MNeRT] A

We can calculate the value of 1; by maximising the exponential in terms of ;, i.e. by

minimising the action, £,

oL

ag; = Uiy — Ltanh (B(yi + pH)) = 0. (A32)

With some rearranging and relabeling, the auxiliary field is given by,
%; = )_ Jijtanh (B({; + uH)). (A.33)
j
We would now like to calculate the local magnetisation at site, 7, as a function of this

auxiliary field. We know that magnetization can be found from the free energy by,

oF

~5H (A.34)

m; =

Using the partition function, we can find the relationship between the free energy

and the saddle point approximation,

7 = e_:B]: ~ e_ﬁ‘c(lpi/]ij/VH), (A35)

F = L(¢i, Jij, uH). (A.36)

Therefore, magnetization is calculated as,

m; = —%5(1/31', Jij, wH) (A.37)
9 1‘-(]—1)--‘»— lﬁm (2cosh B (¢; + uH)]) (A.38)
=~ T3H 2¢’l i B i B(pit+u .
N
= Ztanh (B(¢;i + uH)). (A.39)

We can rearrange this to find another equation for ;,

N
i = ;Ztanhl m; — uH. (A.40)
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Dependence on ¢; can be eliminated by equating Equation A.33 to Equation A .40,

and substituting A.40 into the remaining i parameter.

Y Jijtanh (B(¢; + uH)) Ztaﬂh m; — uH (A41)
j
2]1] tanh tanh m] Etanh m; — uH (A.42)
j
Y Jim; = ; Y tanh™'m; — uH (A.43)
j i
N N
m; =) _tanh (B(uH + ) _ Jijm;)) (A.44)
! ]

This is the self-consistency equation for magnetization derived via the Hubbard-

Stratonovich method.

A.2.2 Heisenberg Model
Finding the Function Integral Partition Function

We will now apply the same transformation to the Heisenberg model, which is given

below,

I\J\H

N
Hheisenberg Z Z Ul] Si - S] +D1] 51 X §j ] VZH Si- (A45)
i j€ip

The isotropic exchange strength, J;; and antisymmetric Dzyaloshinskii-Moriya vec-

tor, D;; can be combined into a general matrix,

xx Xy Xz
]ij Dij,z _Dl]y

I = |-D¥ ]iyjy DY |, (A.46)

ij,z ij,x

zX zYy 2z
L D1]y _D1]x ij

This matrix is non-zero only for nearest neighbour interactions, and is zero other-

wise. It is also evidently both symmetric and invertible!. The Hamiltonian is now

IThese are the requirements needed in order to apply the HS transformation.
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given as,

1
%heisenberg = _E(si : ]Iij : S]) — uH; - s;, (A47)

in which Einstein summation has been used to simplify the notation. The partition

function for this model is,

Zn = Trg, ex 1si-l[,-ws —uH;-s; ||, (A.48)
r €XP 5 i Sj)—H

where the trace operation is a sum over all possible spin configurations, sy. Applying

the same HS identity from Equation A.17 on the exchange exponential term gives,

1 e NoeXp [—%lﬁi'(ﬁ_lﬂi}l)'lﬁjﬂla-si
NC ey 7 e A

1
25 Plijsj —

where ; are the auxiliary fields. With this, the partition function now reads?,

— 3¢ (B )‘P;Tr e(‘l’zﬂlﬁH si (A.50)
%mﬁ/ "
/ H 2¢1 IB]Il] ¢]Tr e(ﬂ(¢1+]’lH s Tt ﬁd¢l (A51)
m (2m)3’
24’1 RIS ﬂ,lnTrskexp(/S(¢i+.”Hi))'si)dQ (A.52)
m/
Hi) 40). (A.53)
S 1K
_ i

In the second line, we made a substitution, ¢; = B then the third line simplifies the
integral notation using a volume element, d() = (271)*% [TV d¢;, and evaluates the
determinant, ],BI[]*% = (|BI| )~z = ,B*% II|~2. Here, I is the identity matrix and we
assume that I is a 3 x 3 matrix. The initial substitution of ¢; yielded an integration
element [TN Bdp; = BTIY d¢p;, since there are 3 conjugate variables, ¢;, to match

the 3 spin components. The constant factor thus simplifies to ﬁ% 1I|~2

2In the Ising model, spins are constrained to take discrete values, s; € {—1,1}, and thus a trace
over non-interacting spins can be simplified further using the cosh identity. The Heisenberg model,
however, has no such constraints and this results in a more complex partition function.
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We have thus derived the function integral form of the partition function, and

the action is given by,
Lo L B+,
['<¢i/]1ij/ ‘uH) = Egbl . I[ij . ¢] - B In Trske ! R (A.54)

Equations A.53 and A.54 can now be used to derive key properties of the mag-

netic system.

Finding magnetic moment and internal energy

From thermodynamic relations, the magnetic moment at site i can be found in terms

of the partition function,

oF 1 190Z
M= SH = Wp 7 oHy (A.59)

where F is the free energy given by, 7 = —% InZ. Substituting our FI partition

function (Equation A.53) into the above equation, we find that

1[%, dﬂg—}%efﬁc
Cu [T dQeBL

m; = (A.56)

Thus, the magnetic moment at i is completely specified by the action. The internal
energy of the system can also be derived in similar fashion: from thermodynamics

functions,
onzZ 192

U=""p ~"Zop

(A.57)

Once again, we substitute Equation A.53 into the above equation to get the following

formula for internal energy,

3 JTLdO(L+ BEE)ePE

U= s
27 [T d0e L

(A.58)

Saddle Point Approximation

Having rewritten the partition function as an FI and derived key properties in terms

of the action, we can now apply the saddle point approximation. As before, we
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assume that the main contribution to #2; and U is from the maximum of the expo-
nential term, i.e. the minimum of the action, £. The minimum of £ in terms of the

auxiliary variable is found by setting 5 9L 0,

oL _
N T ]Iijlfpj

59 (Trs eP(PitiHi)si) = 1BTry, s; eP(PituHi)si — (A.59)
i

B

and therefore,
TI'S S e‘B(‘Pﬁ"ﬁH)

; TI‘ e,B(‘P/JFVH) Sj

(A.60)

Thus the auxiliary field variables have been written as a set of non-linear equations
coupled by the interaction matrix I[;;. To find the magnetic moment in terms of these

conjugate variables, we must first expand the action about the mean field solutions,

bi,
1 9°L
L=L+55 ¢18¢]5¢15¢’ (A.61)

Substituting this into our equation for magnetic moment, (Equation A.56), yields,

1 JZe a0 ((a%) + > e~ BLA+..

i = . T 00 o (A.62)
1L [d0e Pt 1ar (A.63)
T poH; [% dQePL+-  poH, '
The magnetic field derivative of the action gives,
i

Tr. s;eB(@itiHi)-si
S - (A.65)
Trske.B(‘Pt"".qu) Si

and therefore the magnetic moment is,

B Trsisig,g(&iJfﬂHi)'si

B Tr,,eP(PitiHi)si - (A.66)

In comparison to the equations over the field variables, (Equation A.60), we obtain

the following relation,
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This can be used to conveniently eliminate dependence on the field variables in

Equation A.66,
T s;eP Wit s

e Trsieﬁ(]lifmf+VHi)'5i (A.68)

This is the set of self-consistent equations for magnetic moment, in a magnetic sys-
tem with a more complex Hamiltonian. Performing a similar derivation on the in-
ternal energy, results in the mean-field Hamiltonian which describes the interactions
of mean-field spins, ;.

We start by inputting the Taylor expansion of the action into our derived formula

for internal energy,

3 [dO(L + e PE

U=+ Jo dQePE (46
3 AL [ dQe P

- _ﬁ+(£+5ﬁ)7ffwdne—ﬁf (A.70)

0-r+ 532, (A71)

where in the last line, the factor — % has been absorbed into I/ since it is independent

of the field variables. The beta-derivative of the action gives,

AL 1Tee (§; + pH,) - sieP$rtrH)s
9p a p Trskeﬁ(tﬁierHi)-s,-

1 _
i Trskeﬁ("’i“‘Hi)'s"] (A.72)

and therefore internal energy is approximated by,

N S Trs, (¢, + nH;) - 5;eP(PitHHi)s;
1
= Erﬁi . ]Iij . 11_1]‘ —m; - I[l']‘ . 11_1]‘ — uH; - m; (A.74)
1
= —514711' . ]Il']' . 1171] — uH; - m; (A.75)

In the second line, we made the substitution, ¢; = I;jm; and simplified the trace with
Equation A.68. If we decompose the interaction matrix into its constituent parts, we

find the mean field Hamiltonian over the mean field spin solution,

N N
U=Hur = —%2 Y [Jij(m; - 1) + Dij - (1i; x 1)) — ) Hi-m;  (A76)

i jEiun i
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Differentiating this with respect to the mean field moment, we find
yH; = ——— = ]1]1’}71] — Di]‘ X 1171] — uH;. (A.77)

This is the effective field term which acts on every spin, i, and is the argument of the

exponentials in the mean field moment.

Tt
_ TrsisieﬂVHi'Si

. _ A78
1 Tr, ePus (A.78)

Thus we have derived a formula for the mean field spin in terms of a local effective
field, and the algorithm for solving such an equation would be to simply calculate
the effective field at point i, and then calculate the new moment from Equation A.78.
Unfortunately calculating Equation A.78 would be resource intensive since this in-
volves a trace over all the individual spins. Instead in the next section, we simplify

this equation further using more mathematical tricks.

Iterative Algorithm

First, the sum over all spins can replaced with an integral, Tr;, — f ds

dssePrHis

I i (A.79)
fdseﬁyHi-s

‘que = ]l'jifl]' — Dij X rﬁj — yHi (A.80)

For further simplifications, we make the simple assumption that a stable spin config-
uration corresponds to the minimum of the thermodynamic internal energy (Equa-
tion A.76). Thus to evaluate stability, we can consider infinitesimal variations in the
internal energy, U — U + 6U, which are the result of variations in the magnetic mo-
ment, m; — m; + 6m;. The variation in internal energy, calculated from Equation
A.76 and only keeping first-order terms in 61, is given by U = —H; - 5m;. o1
can be considered as a small rotation in the vector, which in its most general form is
om; = m; x 60. This signifies a small rotation of #2; about the axis specified by 46.
Therefore, internal energy can be written as U = —H; - (1i1; x 660) = (r; x H;) - 56.

Internal energy minima corresponds to 6/ for any 6, and thus we find the following
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stability condition,
m;x Hi =0  (or (m; || H})) i=1,..,N (A.81)

This set of coupled equations indicates that in stable configurations the magnetic
moment at site i is aligned to the effective field at that point, H;. Exploiting this

property and multiplying (dot product) Equation A.79 by the effective field, gives

. [dsH; - sePrHis
HS 171, = i
l | dsePrHi-s

(A.82)

Since we expect that in stable states, Hf and m; are aligned, we can assume that
H; -m; = |Hj||m;| and that H; - s = H; cos 0, where 0 is the angle between H; and
s, and |s| = 1. _

[ dsH cos GePHi cos?

el
’HiHmi‘ a fdse.BHchos(?

(A.83)
Dividing both sides by H; and integrating over spherical coordinates, yields,
17| = L(Bp|H) (A.84)

where L(x) = coth (x) — x~! is the Langevin function. To obtain the vector form, we

note that that #2; must align with the effective field, Hj,

7€

_ o\ H;
m; = L(Bu|H;|) =z (A.85)
|H;]|
yﬂf = ],‘]'1’}_1]' — D,‘]' X Wl]' — ]lHl' (A.86)

Equations A.85 and A.86 are the final results of the full HS derivation for the mean
tield model. They represent the simplest algorithm for computing the MF ground
state: for every spin, H; is first computed for all the nearest-neighbour and single
spin interactions, then the Langevin function is evaluated to find the new spin mo-

ment, 1;°.

3From the main algorithm in Section 2.4.2, we see that the new spin moment actually only contains
a small fraction of the moment calculated by L added to the old spin. This is to control the rate of
convergence.
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A.3 Tuning the Extended U-Net

In this section, we present the hyperparameter tuning results of the (1L, 1G) ex-
tended U-Net model, tested in Chapter 8. In particular, we tune the <y in the loss
function, and the number of layers/nodes in the U-Net and Dense branches. The

results are given in Tables A.1-A.3.

Hyperparameter Tuning of

0.1 0.0257813

1 0.0207061

2 0.0198380

10 8.0847902
2500 12.4036674

TABLE A.1: Loss on the validation set for different values for hyper-
parameter <y in the extended U-Net architecture.

Tuning U-Net Branch Architecture

(16, 32) 8.1087703

(32, 64) 0.0457296

(8, 16, 32, 64) 1.4887293

(16, 32, 64, 128) 1.2743723

(32, 64, 128, 256) 2.0644283

(64, 128, 256, 512) 1.6617354

(16, 32, 64, 128, 256) 0.0156831
(32, 64, 128, 256, 512) 0.0225782
(64, 128, 256, 512, 1024) 0.0261728

TABLE A.2: Loss on the validation set for different number of layers
and nodes in the U-Net branch of our architecture.
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Tuning Dense Branch Architecture

(32, 16) 0.0202541

(64, 16) 0.0171578

(64, 32) 0.0185938

(128, 64) 0.0183323

(64, 32, 16) 0.0215993

(128, 64, 32) 0.0223834

(128, 64, 32, 16, 8) 0.0202563
(256, 128, 64, 32, 16) 0.0154065
(512, 256, 128, 64, 32) 0.0170458

TABLE A.3: Loss on the validation set for different number of layers
and nodes in the Dense branch of our architecture.
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