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Abstract

This paper presents an integrated surgery scheduling and post-surgical bed planning problem for a standard

hospital setting. The setting gives rise to a general healthcare modelling problem with a number of innova-

tions with respect to the literature. The model includes multiple post-surgical recovery trajectories involving

possible stays at the intensive (ICU) or semi-intensive care unit (SICU) and allows the decision maker to as-

sign a bed allocation plan that considers the maximum length of stays at both SICU and ICU. The approach

is designed to ensure a seamless patient flow, avoiding surgery cancellations due to insufficient downstream

resources, and enables tactical planning that considers the long-term balance between demand and surgery

provision across all specialties. To validate the model and investigate the sensitivity with respect to model

parameters and the availability of resources, we use a series of experiments that were based on the actual

operation of a military hospital’s orthopaedic department. The results illustrate the demand pressures, as

an optimised allocation with the current demand and resources results in an occupation of 96.5%. We also

show that increases in demand should be matched by a similar percentage increase in operating theatre

capacity in order to keep the occupation below 100%.
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1. Introduction

The need to properly plan and manage resource intensive hospital services such as surgery provision has

been accentuated by the combination of ageing populations and limited budgets across the globe (e.g., Cylus

et al., 2022). Indeed, the literature on surgery scheduling has steadily increased over the last decade and it

includes a number of important literature reviews on the topic (Demeulemeester et al., 2013; Samudra et al.,

2016; Wang et al., 2021). However, since this is a complex problem, some specific issues still remain under-

explored or unaddressed. Integrated tactical planning covering both upstream (e.g., perioperative tests)

and downstream resources (e.g., post-surgical beds at different recovery units) is an example of the former

(Wang et al., 2021; Harris and Claudio, 2022); as well as the gap between theory and practice mentioned by

Wang et al. (2021). In contrast, tactical planning considering the integration of multiple post surgical units

across distinct hospital recovery pathways is an example of the latter. Also lacking is a focus on co-designing

the model with the healthcare partners considering the real-world need for decision support, with a view

to generating informative but parsimonious models that can be readily understood and adopted by medical

practitioners. We argue that this is an essential step to bridge the gap between theory and practice, as

quite often the models in the literature are very complex, yet also insufficient to provide the actual decision

support needed in a real-world application (Wang et al., 2021).

Among the models that consider some sort of post-surgical stay, an important issue is model complexity

and the required computational burden. This complexity often grows as a function of the maximum overall

post-surgical length of stay (e.g., Fügener et al., 2014; Santos and Marques, 2022), thereby hindering the

model’s applicability to post-surgical stays comprising multiple distinct units.

This paper proposes a general model that integrates surgery scheduling and bed allocation, with a number

distinguishing characteristics and novel contributions to the literature. Firstly, it tackles an integrated

surgery scheduling and bed planning problem that covers the whole patient trajectory, from surgery to

discharge, whilst covering multiple recovery pathways that may include intensive (ICU) or semi-intensive

(SICU) care prior to the final recovery in the Ward and posterior hospital discharge. In contrast to the

previous literature (e.g., Fügener et al., 2014; Thomas Schneider et al., 2020), however, the model remains

parsimonious and its complexity does not grow with the length of stay in the Ward. This is attained via an

innovative flow formulation that, unlike previous formulations derived from (Fügener et al., 2014; Fügener,

2015), need not consider the maximum patient stay across the post-surgical units. Instead, we need only

consider the maximum stay at either ICU or SICU to ensure that these vital units are planned accordingly

and do not hinder the flow of patients. The flow formulation is well suited to the large patient volumes and

longer stays at the ward, as these combine to produce a more stable and predictable output process that

can be modelled via steady-state flow equations. This results in a model that is simple enough to seamlessly

deal with the longer patient stays at the Ward, while informative enough to provide the required decision
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support to the decision makers.

Secondly, the model combines open block surgery scheduling, that allows different specialities to share

operating theatres, with bed capacity allocation at all three recovery units (ICU, SICU and Ward) to balance

input and output patient flows; and it does so by considering the empirical distribution of the lengths of

stay at ICU and SICU, thus introducing some robustness to the downstream planning. Thirdly, the weekly

schedule is integrated with the downstream capacity planning to ensure that the surgery plans remain viable

whilst demand and capacity constraints make sure that the capacity exceeds the demand for all surgical

specialties, thereby integrating tactical planning with the hospital’s long-term objective of decreasing the

waiting queues. This is vital to provide a better management of post-surgical flows, as the lack of an

integrated planning is known to generate additional challenges at the operational level, especially in the

ICU and SICU (Heider et al., 2022).

Bridging theory and practice, the present study is applied to a military hospital in Rio de Janeiro, Brazil.

The hospital partner required decision support with their tactical elective surgery scheduling planning for

the orthopaedic centre. However, although their surgical pathways follow a standard setting, the literature

lacked an integrated surgery scheduling and bed planning approach considering the post-surgical interaction

between ICU, SICU and the Ward, a further evidence of the gap between theory and practice in the field.

Hence, a new modelling approach was required, which was co-designed with the healthcare partner to better

fit their decision support needs, while remaining simple enough to be readily understood and utilised in

practice. It is this new modelling approach that we introduce in this study. The next subsection briefly

discusses the hospital setting.

1.1. The case study setting

The centre for orthopaedic surgeries at the hospital partner is a leading regional centre of its kind, with

a large demand for elective surgeries and a waiting queue which currently holds about 750 surgical patients.

Due to the size of the waiting queue, one of the concerns of the tactical planning to be proposed is that it

generates a schedule with some excess capacity relatively balanced across the medical specialities, to make

sure that the waiting queue for each speciality will decrease in the long-term. It is perhaps worth mentioning

here that, in public health systems such as Brazil’s and the UK’s (the latter with a current queue of over 7.5

million elective procedures (NHS, 2023) in England), improving efficiency is a means to improving patient

flow, thereby ensuring improved service and reducing the surgery queues across all specialities. Consequently,

we will focus on improving patient flow to meet the demand and reduce waiting times, which can only be

achieved via integrated planning. This may contrast with the focus on hospital profitability that motivates

a significant portion of the works in the area, see for example (Fügener, 2015; Moosavi and Ebrahimnejad,

2020).

The operating theatres are open from Monday to Friday, and are compatible with each of the seven
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orthopaedic specialities served at the hospital’s orthopaedic centre, namely: foot, hand, shoulder, knee,

spine, hip, and paediatric. Figure 1 illustrates the entire flow from hospital referral to discharge, with the

bottom part representing the flow at the surgical centre that is modelled in this study. Observe that, after

surgery, the patient is transferred to the postoperative recovery centre, where he/she stays until he/she is

ready for hospital discharge. The last two blocks in Figure 1 are detailed in Figure 2.

Figure 1: Patient flow from hospital arrival to hospital discharge.

Figure 2: Flow between operating theatre and recovery units.

Notice that Figure 2 details the downstream processes, i.e., the post-surgical care provided by the or-

thopaedic centre. It is a general, albeit fairly standard setting that includes three different recovery units:

the Intensive Care Unit (ICU), the Semi-Intensive Care Unit (SICU) - which is the hospital’s equivalent

of a high-dependency unit (HDU) - and the Ward. To the best of our knowledge, this setting remains

unaddressed in its entirety in the literature concerning tactical surgery scheduling. It generates a set of

patient pathways that can include visits to either ICU or SICU prior to the final recovery at the Ward and

subsequent discharge from hospital. While patients that do not require special care are immediately referred

to the Ward, those that do will visit either the ICU or the SICU depending on their individual requirements.

SICU receives patients that require special care but no permanent monitoring, whilst patients that require
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both will be referred to the ICU. It is worth mentioning that SICU and ICU are distinct units, which require

distinct resources. Therefore, it was a consensus between modellers and healthcare partners that the model

should consider them independently to provide more realistic and actionable real-life decision support.

The rest of the paper is structured as follows. The next section features a brief literature review that

contrasts our approach to the related literature. Section 3 introduces the proposed mathematical model

and explains its connection to the studied problem. To validate the proposed approach and to discuss its

implications, Section 4 introduces a set of experiments based on the operation of the hospital partner. The

experiments also analyse the variation of the resulting weekly surgery schedules and bed assignment plans

with changes in the operating theatre capacity and in the model parameters. Finally, section 5 concludes

the paper.

2. Literature review

The management of surgeries at the hospital level comprises two different classes of interrelated problems:

surgery planning and surgery scheduling (Zhu et al., 2019; Akbarzadeh et al., 2019). Whilst planning

typically involves determining a set of surgeries to be performed within a time horizon (e.g., Fügener et al.,

2014; Fügener, 2015), surgery scheduling determines the exact schedule of patients that will have surgery

at a given date (Akbarzadeh et al., 2019). These are widely studied problems that have been reviewed by

several authors in recent years (e.g., Samudra et al., 2016; Gür and Eren, 2018; Zhu et al., 2019; Wang et al.,

2021; Harris and Claudio, 2022). Like the majority of works in the area, this paper focuses on the planning

of elective surgeries.

Surgery planning problems can be divided into three different decision levels: strategic, tactical and

operational (e.g., Zhu et al., 2019; Wang et al., 2021; Harris and Claudio, 2022; Samudra et al., 2016).

Issues at the strategic level have a long-term time horizon and aim to improve the use of available hospital

resources and their distribution across medical teams (e.g., Choi and Wilhelm, 2014; Riise et al., 2016;

Fügener et al., 2017). The tactical level looks at a medium-term horizon (e.g., Fügener, 2015; Penn et al.,

2017; Britt et al., 2021; Heider et al., 2022) and aims to bridge the gap between the strategic and the

operational level. The latter, in turn, has a short-term time horizon such as the scheduling of surgeries for

a single day (e.g., Zhang et al., 2021; Younespour et al., 2019; Bam et al., 2017). This study addresses a

tactical-level surgery planning problem.

At the tactical level, a surgery planning problem is often referred to as a Master Surgery Scheduling

Problem (MSSP) and produces a cyclical schedule for assigning surgeries to different medical teams or

specialities over a given period, which often amounts to one week (Fügener et al., 2014; Fügener, 2015;

Thomas Schneider et al., 2020; Harris and Claudio, 2022). Many studies, however, consider only short-term

performance measures aimed at maximising profit (Fügener, 2015) or reducing financial costs such as those
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related to the use of resources or professional labour (e.g., Fügener et al., 2014; Abedini et al., 2016; Dellaert

and Jeunet, 2017; Roshanaei et al., 2017; Moosavi and Ebrahimnejad, 2020; Heider et al., 2022; Santos and

Marques, 2022; Tayyab et al., 2023), ignoring long-term issues such as reducing waiting queues across surgical

specialities. Our approach will link tactical planning with long-term goals by ensuring that the prescribed

capacity for surgeries exceeds the demand across each individual speciality - a sufficient condition for the

waiting queues’ long-term stability (Shortle et al., 2018).

Another important concept relates to the hospital’s strategic policy for assigning medical teams to

operating theatres. There are two main classes of policies for sharing operating theatres, namely open block

and closed block (e.g., Zhu et al., 2019; Wang et al., 2021; Harris and Claudio, 2022). Closed block policies

assign each operating theatre (OT) for exclusive use by a single medical team for a prescribed length of

time - often a day (e.g., Fügener et al., 2014; Fügener, 2015; Koppka et al., 2018; Guido and Conforti, 2017;

Roshanaei et al., 2020; Zhu et al., 2020; Heider et al., 2022). In contrast, open block policies allow OTs

to be shared between different medical teams or surgical specialities (e.g., Hashemi Doulabi et al., 2016;

Roshanaei et al., 2017; Tayyab and Saif, 2022). Whilst open block policies involve additional management

issues such as coordinating different medical teams or surgical specialities, they expand the number of

possible configurations of surgery sessions and can therefore promote a better usage of the OT capacity

(e.g., Siqueira et al., 2018; Britt et al., 2021). In our study, we chose the open block approach to allow

greater flexibility in the assignment of surgeries and promote a better usage of the OTs, as open block

policies are welcome by our hospital partner. It is also worth mentioning that open block policies allow for

a granular management of the number of weekly surgeries, thus aligning better with the long-term goal of

decreasing the surgery queues and waiting times across all specialities. Consider, for example, a speciality

with an average weekly demand of 4.5 surgeries and closed blocks comprising 4 surgeries within a MSS plan.

Whilst one block is not enough to meet the demand, two blocks will imply a spare capacity of three surgeries

a week for that speciality whilst blocking the equivalent surgery time for other specialities.

In terms of the types of models used in the problems, the majority of the literature use deterministic

models (e.g., Dellaert and Jeunet, 2017; Zhu et al., 2020; Tayyab et al., 2023). Some researchers use

stochastic modelling to account for uncertainties in the time required to perform each surgery (e.g., Dellaert

and Jeunet, 2017; Makboul et al., 2022) or in the patient’s recovery time after surgery (e.g., Fügener

et al., 2014; Fügener, 2015; Cappanera et al., 2014; Dellaert and Jeunet, 2017; Santos and Marques, 2022;

Thomas Schneider et al., 2020; Moosavi and Ebrahimnejad, 2020). Mathematical programming is the most

used solution method for tactical-level problems (Wang et al., 2021), but some authors also use simulation

(Cappanera et al., 2014; Koppka et al., 2018). To reduce the computational time for finding satisfactory

solutions, some authors use heuristics (Dellaert and Jeunet, 2017; Guido and Conforti, 2017; Zhu et al.,

2020; Moosavi and Ebrahimnejad, 2020; Tayyab and Saif, 2022).

This paper introduces a tactical-level integrated surgery planning and bed management problem with a
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number of important characteristics that differentiate it from the previous literature. Similarly to Siqueira

et al. (2018), we consider an integrated open block surgery planning problem which also assigns post-

surgical beds to surgical specialities, with a view to improving the patient flow by optimising the use

of downstream resources. To promote long-term equilibrium, the approach makes sure that the assigned

number of weekly surgeries exceeds the demand over the same period for each surgical speciality. Our study

innovates, however, by considering different routes of post-surgical recovery (see Figure 2) that include stays

at either the intensive care unit (ICU) or the semi-intensive care unit (SICU). In contrast to previous works,

which considered a single post-surgical route with a single step (Ward) or at most two sequential steps

(ICU and Ward), our approach gives rise to multiple distinct and concurrent post-surgical trajectories ( see

Figure 3 ), each with its own probability. This creates additional modelling challenges that we address with

a novel and hybrid approach that combines concepts of stochastic optimisation, robust optimisation, and

flow modelling, as detailed in Section 3.

To the best of our knowledge, this is the first surgery planning approach that considers the flow of

patients through a SICU - a link between the operating theatre and the ward that provides postoperative

care for patients who do not require permanent monitoring, but still demand dedicated care (Ekeloef et al.,

2019). Although previous literature considered the interplay between ICU and the ward in post-surgical

care (e.g., Fügener et al., 2014; Fügener, 2015; Moosavi and Ebrahimnejad, 2020; Thomas Schneider et al.,

2020; Santos and Marques, 2022), it is important to emphasise that SICU and ICU are distinct units that

demand distinct levels of service and resources, therefore they should be planned separately.

Considering SICU and ICU into the patient flow model is important not only because it renders the

model more realistic, but also due to the high financial cost of these units, whose demand comes mainly

from the operating theatres (Heider et al., 2020), and because of the significant difference in costs and

resources between ICU and SICU. Furthermore, the lack of postoperative ICU and SICU beds propagates

in the system, causing surgery cancellations and potential delays in subsequent surgeries. Whilst some

previous studies also considered the ICU in their model (e.g., Fügener et al., 2014; Fügener, 2015; Dellaert

and Jeunet, 2017; Anjomshoa et al., 2018; Makboul et al., 2022; Tayyab et al., 2023), to the best of our

knowledge the proposed model is the first to consider recovery routes that can include either an ICU or a

SICU stay, each with a given probability that depends on the surgical speciality, giving rise to multiple post-

surgical trajectories instead of the single post-surgical trajectory generally found in the literature. These

multiple pathways also elongate the post-surgical stays, which hinders the application of previous modelling

techniques, that grow in computational complexity depending on the maximum overall post-surgical length

of stay (e.g., Fügener et al., 2014; Santos and Marques, 2022), as they are based on the enumeration of all

possible post-surgical trajectories. Furthermore, while previous works considered fixed ICU capacities for

each speciality, our model also prescribes the allocation of the available beds at each post-operative unit

(SICU, ICU and Ward) to surgical specialities, to promote an optimised flow of patients. This is a significant
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distinction, as our approach derives an optimal bed allocation which improves the patient flow across all

specialities and results in better surgery schedules. This is not possible in previous approaches, as they

consider a fixed and prescribed bed allocation that does not necessarily make the best use of the available

bed capacity.

From the modelling standpoint, the collaboration and co-design with healthcare partners allowed us to

introduce a distinct approach that accounts for the whole post-surgical trajectory. Our model considers

each day in the patient’s trajectory at both ICU and SICU, in order to adjust for the worst case scenarios

and avoid surgery cancellations due to the lack of ICU or SICU beds. This means that the complexity of

the model depends on the length of the stay of patients at the ICU and SICU units, which is generally

limited. The Ward, however, allows a more flexible approach as the large patient volumes, added flexibility

and longer stays result in a more predictable and less volatile flow of patients, thus enabling a simpler and

less computationally demanding patient flow formulation at this unit. By doing that, we avoid the increased

complexity of the traditional modelling approach that is based on the influential work of Fügener et al.

(2014), which grows exponentially with the overall length of stay (including the Ward), rendering instances

with relatively long recoveries virtually intractable.

Finally, another important contribution of the approach is that it ensures a balance between input and

output at both the ICU and the SICU for each day of the planning horizon, by considering the overall length

of stay at these units. This confers some robustness to the resulting surgery and bed allocation plans, with

a view to improving patient flow and preventing surgery cancellations due to do the absence of downstream

resources.

Table 1 summarises the proposed approach according to the main classifications discussed above and

compares it to the related literature. Note that some papers address planning and scheduling separately

(e.g., Agnetis et al., 2014; Vancroonenburg et al., 2015; Zhu et al., 2020; Tayyab et al., 2023). First, at the

tactical level, they create schedules that assign surgeries to operating theatres; then, at the operational level,

they assign individual patients to scheduled slots. The next section introduces and discusses the proposed

mathematical model in detail.

3. Mathematical model

The proposed mathematical model covers the process from entry into the operating theatre to discharge

from the hospital. The parameters of the problem are described in Table 2, the modelling parameters are

in Table 3, and the decision variables are in Table 4.

8



Table 1: References - Surgery planning.
A
p
p
ro

a
ch

/
R
e
fe
re

n
c
e

A
g
n
et
is

et
a
l.
(2
0
14

)

F
ü
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problem Scheduling ✓ - - ✓ - ✓ - - ✓ - - - - - ✓ - ✓ ✓ ✓ - - ✓ ✓ - - ✓ -

Tactical ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Decision

level Operational ✓ - - ✓ - ✓ - - ✓ - - - - - ✓ - ✓ ✓ ✓ - - ✓ ✓ - - ✓ -

Closed block ✓ ✓ - - ✓ - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓ -
Strategy

Open block - - ✓ ✓ - ✓ ✓ - ✓ - - - - ✓ - - - - - - ✓ ✓ - - - - ✓

Deterministic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Mathematical

model Sthochastic - ✓ ✓ - ✓ - - ✓ - - - - ✓ ✓ ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓ - -

Simulation - - ✓ - - - - - - - - - ✓ - - - - - - - - - - ✓ - - -

Mathematical

programming
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Solution

method
Heuristic ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - ✓ - - - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - - ✓ - -

OT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ward - ✓ ✓ - ✓ - - ✓ - ✓ - ✓ - ✓ - ✓ - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ICU - ✓ - - ✓ - - ✓ - - - ✓ - - - - - - ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓

Considered

resources

SICU - - - - - - - - - - - - - - - - - - - - - - - - - ✓

OT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ward - - - - - - - - - - - - - ✓ - - - - - - - - - - - - ✓

ICU - - - - - - - - - - - - - - - - - - - - - - - - - - ✓

Shared

resources

SICU - - - - - - - - - - - - - - - - - - - - - - - - - - ✓

Financial

costs
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ - ✓ - ✓ ✓ - ✓ -

Objective

(reduce)
Wating

time
✓ - ✓ - - - - - - - ✓ ✓ ✓ ✓ ✓ - ✓ ✓ - ✓ ✓ ✓ - - ✓ - ✓

Table 2: Parameters of the problem.

Parameter Description

S = {1,...,Ns} Set of specialities

T = {1,...,Nr} Set of operating theatres available for surgeries

D = {1,...,Nd} Set of days available for performing surgeries

Opes Time, in hours, to perform surgery of speciality s ∈ S.

CT s Time, in hours, for preparing and cleaning of operating theatres for speciality s

Recwards Maximum time, in days, that the patient of speciality s ∈ S stays in the ward after surgery

Nicue Time, in days, that the patient of speciality s ∈ S stays in the ICU after surgery

Nsicus Time, in days, that the patient of speciality s ∈ S stays in the SICU after surgery

H Total hours available for performing surgeries in each operating theatre

Ints,d Time, in days, since the last surgery of the speciality s ∈ S, measured on the day d ∈ D

Dems Weekly demand for surgeries of speciality s ∈ S

Picus

Minimum percentage of surgeries of the speciality s ∈ S requiring patient recovery in the

ICU

Psicus

Minimum percentage of surgeries of the speciality s ∈ S requiring patient recovery in the

SICU

Bedsward Number of beds available in the ward

Bedsicu Number of beds available in the ICU

Bedssicu Number of beds available in the SICU

Ut,d 1, if the operating theatre t ∈ T is used on the day d ∈ D, 0, otherwise

Bs,d 1, if surgeries of speciality s ∈ S can be performed on the day d ∈ D, 0, otherwise
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Table 3: Modeling parameters.

Parameters Definiton

W Parameter limiting the number of beds allocated in the recovery units

M1

Arbitrarily large parameter that limits the number of daily surgeries of each speciality

at any operating theatre

M2 Arbitrarily large parameter that limits the number of daily surgeries of each speciality

Table 4: Decision variables.

Variables Definition

xtotals,t,d Total number of surgeries of speciality s ∈ S assigned to operating theatre t ∈ T , on day d ∈ D

xicus,t,d

Number of surgeries of speciality s ∈ S assigned to operating theatre t ∈ T , on day d ∈ D, which

require patient recovery in the ICU

xsicus,t,d

Number of surgeries of speciality s ∈ S assigned to operating theatre t ∈ T , on day d ∈ D, which

require patient recovery in the SICU

xwards,t,d

Number of surgeries of speciality s ∈ S assigned to operating theatre t ∈ T , on day d ∈ D, whose

patient recovery occurs directly in the ward

yicue Number of ICU beds allocated to speciality s ∈ S

ysicus Number of SICU beds allocated to speciality s ∈ S

ywards Number of ward beds allocated to speciality s ∈ S

zs,t,d 1, if operating theatre t ∈ T is allocated to speciality s ∈ S on day d ∈ D, 0, otherwise
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Figure 3 details the flow of patients from operating theatre to hospital discharge, considering their

multiple recovery pathways. Observe that patients of any given speciality can be referred to the ICU or

SICU after surgery in case they need SICU or ICU care. Otherwise, they will be directly referred to the

Ward. Finally, patients will be discharged from hospital after their recovery at the Ward.

Figure 3: Patient flow between the operating theatre and hospital discharge.

Equation (1) below introduces the optimisation problem to be solved:

Maximise
∑
s∈S

∑
t∈T

∑
d∈D

(Opes ∗ xtotals,t,d)−W ∗
∑
s∈S

(yicus
+ ysicus

+ ywards
),

subject to (2)− (18).

(1)

Observe that the left-hand side of Eq. (1) represents the total time effectively assigned to surgeries during the

planning horizon, whereas the right hand side is a weighted sum of the number of beds allocated. Therefore,

the aim is to maximise the utilisation of the surgical centre, whilst limiting the number of post-surgical beds

allocated across the different units. This is intended to help the decision-maker manage possible fluctuations

in the availability of downstream resources by maintaining a reserve of bed capacity to use when needed.

Constraint (2) ensures that the number of hours required to perform all surgeries assigned to an operating

theatre (OT) on a given day, including cleaning and preparation, never exceeds the hospital limit of H hours

(Table 2) on days in which the OT is available∑
s∈S

(Opes + CT s) ∗ xtotals,t,d ≤ (Ut,d ∗H) + CT ,∀t ∈ T, ∀d ∈ D, (2)

where CT is the median cleaning time across specialities. The parameter Ut,d (Table 3) on the right hand side

of expression (2) ensures that surgeries are only assigned on days when the OT is available. The last term

in the right-hand side of (2) represents an extra cleaning and preparation interval, as both the preparation

for the first surgery and the cleaning of the last one can be done outside of the working hours.

Constraints (3) and (4) below concern the allocation of operating theatres to surgical specialities and

their corresponding medical teams

M1 ∗ zs,t,d − xtotals,t,d ≥ 0,∀s ∈ s,∀t ∈ T, ∀d ∈ D; (3)
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∑
t∈T

zs,t,d ≤ 1,∀s ∈ S, ∀d ∈ D. (4)

Whilst (3) ensures that surgeries of speciality s can only be assigned to OT t on day d if theatre t is assigned

to speciality s on day D (zs,t,d = 1, see Table 4), constraint (4) guarantees that, if active on day d ∈ D, the

medical team responsible for surgeries of speciality s ∈ S will perform all their surgeries in a single OT. Note

that this constraint does not prevent different specialities sharing the same OT. Instead, it is a sufficient

condition to prevent any surgical speciality s ∈ S from being assigned two concomitant surgeries in different

OTs (inconsistent assignment). The parameter M1 (Table 3) is an arbitrarily large positive integer (“big

M”).

Elective surgical procedures follow a weekly schedule so that surgeries can only be assigned to the

speciality s on day d if a medical team of that speciality is available. Thus, constraint (5) states that

surgeries of speciality s ∈ S can only be performed on day d ∈ D if the corresponding medical team is

present ∑
t∈T

xtotals,t,d ≤ Bs,d ∗M2,∀s ∈ S, ∀d ∈ D. (5)

Note that the parameter Bs,d, (Table 2), on the right hand side of the inequality (5), prevents surgeries of

speciality s from being scheduled on days when the corresponding medical team is absent. The parameter

M2 (Table 3) on the right hand side of the inequality is also an arbitrarily large positive integer (“big M”),

and in this case it acts as a bound on the total number of surgeries of speciality s ∈ S assigned on day

d ∈ D.

For long-term management of the queues across all specialities, to prevent them from growing uncon-

trollably, constraint (6) establishes that the minimum number of surgeries of speciality s ∈ S assigned

throughout the week must exceed, in at least one unit, the weekly demand for surgeries of the respective

speciality, represented in Table 2 by parameter Dems:∑
t∈T

∑
d∈D

xtotals,t,d ≥ Dems + 1,∀s ∈ S. (6)

As a complement to constraint (6), and to avoid an excessive number of surgeries, constraint (7) states

that, for each speciality, the total number of surgeries over the planning horizon cannot exceed a prescribed

upper bound, namely one and a half times the demand over the same period rounded up∑
t∈T

∑
d∈D

xtotals,t,d ≤ 1.5 ∗Dems + 1,∀s ∈ S. (7)

This is intended to result on a relatively balanced schedule across all specialties, to ensure that an eventual

spare capacity in the OTs is not fully assigned to a small subset of specialities.

The remaining constraints model the post-surgical patient flow depicted in Figure 3, starting with equa-

tion (8) below:

xtotals,t,d = xicus,t,d
+ xsicus,t,d

+ xwards,t,d
,∀s ∈ S, t ∈ T, d ∈ D. (8)
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Eq. (8) establishes that the total number of surgeries of speciality s ∈ S assigned to operating theatre

t ∈ T on day d ∈ D, represented by the variable xtotals,t,d (Table 4), will be split between surgeries requiring

patient recovery in the ICU (xicus,t,d
), surgeries requiring recovery in the SICU (xsicus,t,d

) and surgeries

whose patients can be directly sent to the Ward (xwards,t,d
). Similarly to Thomas Schneider et al. (2020),

this extends previous models based on (Fügener et al., 2014) by allowing patients from a given speciality

to be allocated to multiple recovery units. But our model further innovates by including SICU stays and

more complex recovery pathways. It also allow us to plan downstream resource utilisation as advocated in

(Heider et al., 2022).

It is noteworthy that xicus,t,d
and xsicus,t,d

are auxiliary variables to help us plan the required ICU and

SICU bed capacity according to the expected number of surgeries requiring a stay at each of these units.

Constraints (9)-(10) ensure that we plan ICU (SICU) bed capacity for a minimum of Picus
(Psicus

) percent

of the total number of surgeries of each speciality s ∈ S on each day d ∈ D (see Table 2):

∑
t∈T

(
xicus,t,d

− xtotals,t,d ∗ Picus

100

)
≥ 0,∀s ∈ S, ∀d ∈ D; (9)

∑
t∈T

(
xsicus,t,d

− xtotals,t,d ∗ Psicus

100

)
≥ 0,∀s ∈ S, ∀d ∈ D. (10)

The modelling approach in Eq. (9)-(10) is a contribution of this work, and allows for a more realistic

planning of the post-surgical patient flow, considering that patients from any speciality can be routed to

multiple units with a given probability - and can henceforth follow multiple recovery trajectories.

To balance entries and exits in the special care units for each speciality, constraints (11) and (12) specify

that the number of patients of speciality s ∈ S who are in the ICU and the SICU, respectively, on day d ∈ D

is limited to the total number of beds allocated to that speciality. The left side of each constraint represents

the sum of the quantities of patients of speciality s ∈ S sent to ICU and SICU beds in the last Nicus
and

Nsicus
days (Table 2), respectively:

∑
t∈T

Nicus−1∑
k=0

xicus,t,d−k
≤ yicus

,∀s ∈ S,∀d ∈ D. (11)

∑
t∈T

Nsicus−1∑
k=0

xsicus,t,d−k
≤ ysicus

,∀s ∈ S, ∀d ∈ D. (12)

Notice that, by establishing Nicus
(Nsicus

) as the maximum length of stay at the ICU (SICU) for a

patient of speciality s ∈ S, we attain some robustness for the bed planning at these units, which will help

us guarantee that the weekly plan will not be hindered by the lack of downstream resources.

Constraint (13) states that if surgeries of speciality s ∈ S can be scheduled on day d ∈ D, then the total

number of new patients arriving at the ward is limited to the number of free beds for that speciality on that
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day

∑
t∈T

xwards,t,d
+
∑
t∈T

Ints,d−1∑
k=0

xicus,t,d−k−Nicus
+

∑
t∈T

Ints,d−1∑
k=0

xsicus,t,d−k−Nsicus
≤ (13)

≤ ywards

Recwards

∗ Ints,d,∀e ∈ E,∀d ∈ D, Ints,d > 0.

Note that the right hand side of the constraint represents the number of patients of speciality s leaving

the ward beds in the interval of Ints,d days (i.e., since the last day when surgeries of speciality s where

undertaken - see Table 2 ), where 1/Recwards is the average number of patients of this speciality discharged

daily per recovery bed.

The left hand side of (13) aggregates the patients who underwent surgery on day d and were transferred

directly to the ward, plus those who came from the special care units: those who have recovered in the ICU

and SICU for Nicus and Nsicus days, respectively, and who arrived at the ward in the last Ints,d days.

In complement, constraint (14) guarantees that in case new surgeries of speciality s ∈ S cannot be

performed on day d ∈ D (Bs,d = 0 and Ints,d = 0), the total number of patients of said speciality arriving

at the ward on this day does not exceed the average number of released beds:

∑
t∈T

xicus,t,d−Nicus
+
∑
t∈T

xsicus,t,d−Nsicus
≤ ywards

Recwards

,∀s ∈ S, ∀d ∈ D. (14)

The flow modelling approach in Eq. (13)-(14) is an innovation with respect to previous works (e.g.,

Fügener et al., 2014; Santos and Marques, 2022), and it allows the model to remain parsimonious whilst

considering the whole patient pathway. By looking at the flow of patients entering and leaving the ward, we

can account for large lengths of stay at this unit without the need to explicitly model the overall trajectory

of every patient on a daily basis - as in previous modelling approaches. The latter would render the model

impractical for large recovery periods within the ward, which are by no means uncommon in the experience

of our hospital partners.

Constraint (15) states that the number of patients of speciality s ∈ S arriving at the ward on day d ∈ D

is limited to the number of beds allocated to the speciality in question. Note that this figure is composed

of patients who came directly from the operating theatre, added to those from the special care units, who

had their recovery period in the Nicus
and Nsicus

days before:

∑
t∈T

xwards,t,d
+
∑
t∈T

xicus,t,d−Nicus
+
∑
t∈T

xsicus,t,d−Nsicus
≤ ywards , (15)

∀s ∈ S,∀d ∈ D.

Constraints (16), (17) and (18) establish that the totals of beds allocated across all specialities s ∈ S are

restricted to the quantities available in the hospital in each postoperative unit, represented by the parameters
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Bedsicu, Bedssicu and Bedsward (Table 2):∑
s∈S

yicus
≤ Bedsicu; (16)

∑
s∈S

ysicus
≤ Bedssicu; (17)

∑
s∈S

ywards
≤ Bedsward. (18)

Constraints (19) and (20) ensure that the decision variables that assign surgeries and allocate beds (Table

4) belong to the set of non-negative integers:

xtotals,t,d , xicus,t,d
, xsicus,t,d

, xwards,t,d
∈ Z+,∀s ∈ S, ∀t ∈ T, ∀d ∈ D; (19)

yicus , ysicus , ywards ∈ Z+,∀s ∈ S. (20)

Finally, constraint (21) states that the decision variable that allocates operating theatres (Table 4) is

binary, being equal to 1 if OT t ∈ T is allocated to speciality s ∈ S on day d ∈ D, or equal to 0 otherwise:

zs,t,d ∈ (0, 1),∀s ∈ S,∀t ∈ T, ∀d ∈ D. (21)

Next, in Section 4, we present some numerical experiments that validate our approach and provide some

insights into the effects of varying parameters such as the weekly demand for surgeries, the number of

available operating theatres across the week and the penalty for allocating extra beds in the post-surgery

units - SICU, ICU and Ward.

4. Numerical experiments

We start this section by introducing the baseline parameters for our experiments. These were obtained

from our military hospital partner and cover their operation from January to December, 2022. These are

the model parameters listed in Table 2, which will be detailed in the next subsection.

4.1. General parameters for the experiments

The number of daily working hours H at each OT is equal to 12 hours, whereas the surgery preparation

and cleaning time CT s is set to 30 minutes for all specialities; we should bear in mind that the cleaning up

of the last surgery and the preparation of the first one can be performed outside the OT working hours.

As previously mentioned, the hospital covers a set S comprised of 7 orthopaedic specialities. As for the

operating theatre availability, it varies across the week and the precise number of OTs available at each day
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will be individually introduced for each of the experiments. Hence, the set T of operating theatres will vary

across experiments, as well as the weekly availability of individual theatres. Finally, elective surgeries will

only be performed from Monday to Friday.

Table 5 shows the schedule of the medical team of each speciality during the week, represented in the

model by parameter Bs,d. The table conveys the availability of the medical teams during the week, with

Bsd = 1 if the medical team for speciality s is available on day d and Bsd = 0 otherwise. One can see, for

example, that the paediatric surgery team will perform surgeries only on Mondays and Fridays, whereas hip

surgeries can take place on any day from Monday to Friday.

Table 5: Weekly schedule of surgeries by specialities (parameter Bs,d).

Speciality / day Monday Tuesday Wednesday Thursday Friday

Hip 1 1 1 1 1

Spine 1 1 1 1 1

knee 1 1 1 1 1

Shoulder 1 1 1 1 1

Hand 0 1 0 1 1

Foot 1 0 1 1 0

Pediatric 1 0 0 0 1

Table 6 depicts the model parameter Ints,d for all specialities across the week. Recall that Ints,d

measures the interval (in days) since the last day that the medical team for speciality s was available to

perform surgeries. For the example, as the medical team for the shoulder speciality is available from Monday

to Friday - Table 5, Ints,d = 1 from Tuesday to Friday. On Monday, however, the parameter value is equal

to 3 days, representing the time elapsed between Friday and Monday.

Table 6: Time interval between surgeries of the same speciality (parameter Ints,d).

Speciality / day Monday Tuesday Wednesday Thursday Friday

Hip 3 1 1 1 1

Spine 3 1 1 1 1

Knee 3 1 1 1 1

Shoulder 3 1 1 1 1

Hand 0 4 0 2 1

Foot 4 0 2 1 0

Pediatric 3 0 0 0 4

The time required to perform a surgery of speciality s ∈ S, represented by the parameter Opes, and

the postoperative hospitalisation times in the different units, required for patient recovery in the respective

speciality, indicated by Recwards
, Nicus

and Nsicus
, are illustrated in Table 7.

Table 8 comprises a set of parameters that vary only with respect to the surgical speciality, namely: the

weekly demand for surgeries (Dems), the minimum percentage of surgeries that require recovery in the ICU

(Picus
) and the minimum percentage of surgeries that require recovery in the SICU (Psicus

).
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Table 7: Surgery and recovery time (Opes, Recwards , Nicus and Nsicus ).

Speciality Hip Spine Knee Shoulder Hand Foot Pediatric

Surgery time by

speciality (hours)
2.8 3 2 2 1.3 1.2 1.5

Length of post-surgical

stay in the ward (days)
2.2 2.5 2 2 1 1.1 1

Length of post-surgical

ICU stay (days)
7 7 4 4 1 1 1

Length of post-surgical

SICU stay (days)
1 1 1 1 1 1 1

Table 8: Demand and percentage in the ICU and SICU (Dems, Picus and Psicus ).

Speciality Hip Spine Knee Shoulder Hand Foot Pediatric

Weekly demand for surgeries 3.6 3.4 8 7.5 5.5 6 3

Minimum percentage of

surgeries requiring

patient recovery in ICU

50 50 15 15 0 0 0

Minimum percentage of

surgeries requiring

patient recovery in the SICU

50 50 25 25 0 0 0

Finally, Table 9 shows the number of beds available in the ICU (Bedsicu), in the SICU (Bedssicu) and

in the Ward (Bedsward).

Table 9: Beds in the ICU, SICU and Ward (Bedsicu, Bedssicu and Bedsward).

Post-surgical recovery bed Number of beds available

ICU 16

SICU 8

Ward 100

In the remainder of this section, we will introduce specific sets of experiments and discuss their results

and implications.

4.2. Experimental results

The series of experiments to be presented in the next subsections were run using the Gurobi Optimizer

version 9.1.2 (Gurobi Optimization, LLC, 2022) on a laptop computer with Windows 10 operating system,

2.27 GHz i5 processor and 8 GB RAM. To limit the execution time, we utilised a maximum gap of 2% when

searching for solutions using the branch and bound algorithm. The referenced value is expressed by Gap

= (UB−LB)
LB , where UB and LB are equivalent to the values of the upper (dual) bound and lower (primal)

bound, respectively.

4.2.1. Analysis of the effects of increasing operating theatre capacity

This subsection proposes the first set of experiments, which is comprised of experiments A1-A5. Starting

from the baseline instance (experiment A1), we gradually increase operating theatre availability and observe
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the effects of the increase on the resulting optimal weekly surgery schedule and bed allocation plans across

the ICU, the SICU and the Ward.

Table 10 shows the weekly demand for surgeries for all specialities s ∈ S; we also present the maximum

number of weekly surgeries which would be assigned as per constraint (7), which limits the weekly number

of surgeries to prevent an excessive bias in the weekly allocation. These parameters will remain constant

over experiments A1-A5.

Table 10: Demand and upper bounds for experiments A1-A5.

Speciality
Demand

(Dems)

Upper Bound

(1.5 * Dems + 1)

Pediatric 3 5.5

Spine 3,4 6.1

Hip 3,6 6.4

Foot 6 10

Hand 5,5 9.25

Shoulder 7,5 12.25

Knee 8 13

Table 11 details the OT availability for experiments A1 to A5; notice that the penalty for each post-

surgical bed allocated in the optimal solution is set to W = 1 in all experiments - see the objective function

(Eq. (1)). Experiment A1 utilises the minimum number of operating theatres to attain feasibility. For the

other experiments, OTs are gradually added along the week; each change of OT capacity with respect to

the previous experiment is illustrated in red in Table 11.

Table 11: Experiments A1 to A5.

Number of operating theatres available
Experiment

Parameter

W Monday Tuesday Wednesday Thursday Friday

A1 2 2 2 2 2

A2 3 2 2 2 2

A3 3 2 3 2 2

A4 3 2 3 3 2

A5

1

3 2 3 3 3

Let us start by analysing the optimal weekly Master Surgery Schedule (MSS) for experiment A1, depicted

in Figure 4. As the model does not specify the order of the surgeries, we set it up arbitrarily for the

optimal allocation. One can see an intense occupation of the surgical centre across the whole week. One

important measure related to the optimal MSS is the time assigned for surgeries, that corresponds to the

first summation in the objective function - Eq. (1), and amounts to 96.3 hours distributed across a total

of 49 surgeries. Another measure of interest is the total length of the OT sessions which adds up the time

elapsed from the outset of the first surgery to the end of the last surgery across all operating theatres. This

amounts to 115.8 hours in experiment A1, as it includes the preparation and cleaning operations performed

during the working hours. Finally, the overall occupation rate of a MSS represents the ratio between the total

length of the OT sessions and the total time available for surgeries in the whole surgical centre - measured
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as a percentage. As we have a weekly total of 120 hours available for surgeries (2 OTs, each with 12 daily

working hours, open five days a week), the overall occupation rate for experiment A is 96.5% - as the total

length of the OT sessions (115.8 hours) corresponds to 96.5% of 120 hours.

Figure 4: Weekly MSS for experiment A1.

Table 12 summarises the performance indicators discussed above for experiments A1 to A5, along with

the value of the objective function, the (optimality) gap and the time in seconds required to search for

solutions.

Table 12: Performance indicators for experiments A1 to A5.

Experiment

Time assigned

for surgeries

(h)

Total length

of the OT sessions

(h)

Weekly

surgeries

Objective

Function

(O F)

Overall occupation

rate

(%)

Gap

(%)

Computational

time

in seconds

A1 96.3 115.8 49 56.3 96.5 1.95 505

A2 104.9 126.4 54 63.9 95.8 1.88 1,335

A3 113.3 136.8 59 69.3 95 1.88 6,826

A4 114.5 138 60 71.5 88.5 0 2,679

A5 116 139.5 61 73 83 1.92 1,633

The results in Table 12 illustrate the effect of increasing the capacity for a fixed demand. As expected,

as we add more OT capacity, the overall occupation rate decreases, once the demand is kept constant in

experiments A1-A5. To illustrate the changes, Figures 5 and 6 show the weekly MSS for experiments A4

and A5. Indeed, one can see in Figure 5 a considerable decrease in occupation on Wednesday and Thursday

with respect to the MSS of experiment A1 (Fig. 4), whereas Figure 6 unfolds an additional decrease in OT

occupation on Friday.

Figure 7 shows the total number of surgeries for each speciality for experiments A1-A5. As expected,

one can see a gradual increase in the number of surgeries as more OT capacity is added, up to the time each

speciality reaches the respective upper bound in the number of surgeries, see Table 10. It is worth mentioning

19



Figure 5: Weekly MSS for experiment A4.

Figure 6: Weekly MSS for experiment A5.

that the number of weekly surgeries for spine and hip already reach the upper bound in experiment A1 and

remain there across all experiments.

We will now analyse the effect of the increase in OT capacity in the bed allocation for ICU, SICU and

Ward. Figure 8 depicts the bed allocation to surgical specialties across the three post-surgical units for
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Figure 7: Weekly surgeries for experiments A1-A5.

experiment A1. One can see that the largest number of ICU beds are allocated to hip and spine; this is

expected considering that these specialties feature the longest length of stay in the ICU (Table 8) as well

the largest likelihood of requiring an ICU bed (Table 9). Notice that shoulder and knee require more Ward

and SICU beds due to the large weekly demand, whereas hip and spine have lower demands but still require

a considerable number of Ward and SICU beds due to their extended lengths of stay.

Figure 8: Post surgical bed allocation for experiment A1. Figure 9: Post surgical bed allocation for experiment A5.
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Depicted in Figure 9, the bed allocation for experiment A5 requires a larger number of post-surgical

beds across all three units. This is expected, as this is the experiment with the largest operating theatre

capacity. Note that, for experiment A5, we need to allocate a total of 15 beds in the ICU, one unit less than

the amount provided by the hospital, as shown in Table 9.

Figure 10: Beds allocated by recovery unit for experiments A1-A5.

Finally, Figure 10 illustrates the change in the overall number of beds allocated across the post-surgical

units for experiments A1-A5. One can see a stable behaviour in the Ward and SICU, with a gradual increase

in the required number of ICU beds as the OT capacity increases.

In the next subsection, we analyse the necessary resource capacity to balance supply and increased

demand.

4.3. The effect of increases in weekly demand for surgeries

To investigate the sensitivity of the model with respect to demand increase, we evaluated the effect of

demand increases of 20%, 40%, 60% and 100% with respect to the baseline. For each demand increase, we

generated two experiments: one with the minimum number of OTs required to attain a feasible solution and

one with enough OT capacity to approach the upper bound in the number of surgeries for each speciality

(i.e., 1.5 times the demand plus one - Eq. (7)). The OT capacity and the demand multipliers (with respect

to Table 8) for the resulting experiments are depicted in Table 13. The bed capacities and remaining

parameters maintained the baseline values from experiment A1. One can see that we may need to roughly
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double the capacity of the OTs with respect to the baseline to accommodate an increase of 100% in the

surgery demand levels across all specialties.

Table 13: Experiments B1 to E2.

Number of operating theatres required
Experiment

Parameter

W Monday Tuesday Wednesday Thursday Friday
Demand

B1 3 2 2 2 2

B2
1

3 3 3 3 2
1.2 * Dems

C1 3 3 3 2 2

C2
1

4 4 3 3 3
1.4 * Dems

D1 3 3 3 3 3

D2
1

4 4 4 4 4
1.6 * Dems

E1 4 4 4 4 3

E2
1

6 5 5 6 6
2 * Dems

Table 14 shows the performance indicators for each experiment in Table 13. As expected, we observe

increases in the number of surgeries as OT capacity increases, with a corresponding decrease in the OT

occupation.

Table 14: Performance indicators for experiments B1 to E2.

Experiment

Time assigned

for surgeries

(h)

Total length

of the OT sessions

(h)

Weekly

surgeries

Objective

Function

(O F)

Overall occupation

rate

(%)

Gap

(%)

Computational

time

in seconds

B1 105.5 127.5 55 60.5 96.6 1.93 5253

B2 128 155 68 76 92.3 1.99 5852

C1 125.1 151.1 65 71.1 96.9 1.94 4232

C2 154.1 186.1 81 93.1 91.2 1.98 4069

D1 144.6 174.6 75 85.6 97 1.99 5631

D2 172.6 208.6 92 107.6 86.9 1.89 4068

E1 169.7 204.2 88 103.7 89.6 1.98 1536

E2 213.9 256.9 114 138.9 76.5 0.8 20

Figures 11, 12, 13 and 14 show the total number of weekly surgeries scheduled for each speciality in

experiments B1-B2, C1-C2, D1-D2 and E1-E2, together with the weekly demand and the upper bound in

the number of weekly surgeries.

Figures 15, 16, 17 and 18 illustrate the effect of the demand increase on the number of beds allocated

in ICU, SICU and Ward. One can notice a significant increase in the number of required ICU and Ward

beds as demand increases. The level of SICU beds, however, is kept stable as the overall probability of

using SICU beds is generally small across most specialties, with short projected lengths of stay. Overall,

while experiment B1 employs 45 post-surgical beds, experiment E2 requires 70 beds; which amounts to an

increase of 55%.

In experiments D1-D2 and E1-E2, where we observe, respectively, increases of 60% and 100% with respect

to the original demand, the current availability of beds in each recovery unit (Table 9) suffices to meet the

weekly demand for surgeries. However, to reach the upper bound in the number of surgeries, we needed to

allocate respectively one and two extra ICU beds with respect to the baseline.
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Figure 11: Demand, weekly surgeries and upper bounds for

experiments B1-B2.

Figure 12: Demand, weekly surgeries and upper bounds for

experiments C1-C2.

Figure 13: Demand, weekly surgeries and upper bounds for

experiments D1-D2.

Figure 14: Demand, weekly surgeries and upper bounds for

experiments E1-E2.

4.4. The effect of the penalty in the number of allocated beds

Recalling that parameter W in the objective function (Eq. (1)) effectively penalises the allocation of

post-surgical beds in the final solution, this section proposes a set of experiments to assess the effect of this

parameter on the allocation of ICU, SICU and Ward beds. To do that, we introduce experiments F1-F9,

based on the OT availability of experiment A4 (Table 11) of Section 4.2.

Table 15 conveys the results from experiments F1-F9, which cover different values of the penalty pa-

rameter W . Observe that all available beds across SICU, ICU and the Ward are allocated when W = 0.

This is expected, as no penalty is considered for allocating beds to specialities, therefore one can expect

the spare bed capacity to be distributed across the medical specialities. The same behaviour is observed

for small values of W , as one can see that the number of assigned surgeries and the total time assigned
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Figure 15: Beds allocated for experiments B1-B2. Figure 16: Beds allocated for experiments C1-C2.

Figure 17: Beds allocated for experiments D1-D2. Figure 18: Beds allocated for experiments E1-E2.

for surgeries remain constant up to W = 0.7. As W increases, however, one can expect a decrease in the

number of allocated beds, which in turn results in a decrease in the number of performed surgeries and

therefore in the total time assigned for surgeries. This is observed in Table 15, as these quantities display a

non-increasing behaviour with respect to parameter W , until they reach a lower limit. Indeed, one can see

that the solutions remain constant for W ≥ 6.1. This can be expected in general, as for large values of W

one can expect the optimal solution to allocate the minimum number of SICU, ICU and Ward beds that

ensure that the weekly schedule includes the minimum number of surgeries to satisfy and exceed the weekly

demand by one unit - Eq. (6).

Figure 19 summarises the evolution of the total time assigned for surgeries as we increase the penalty

parameter W . It conveys the non-increasing behaviour of the total time assigned for surgeries with respect

25



Table 15: Experiments F1 to F9 and performance indicators.

Results

Experiment
Parameter

W

Time assigned

for surgeries

(h)

Weekly

surgeries

Beds

allocated

Objective

Function

(O F)

Gap

(%)

Computational

time

in seconds

F1 0 116 61 124 116 0 10

F2 0.5 116 61 45 93.5 0.3 12

F3 0.7 116 61 45 84.5 0.1 16

F4 0.8 114.5 60 43 80.1 0 19

F5 0.9 114.5 60 43 75.8 0 19

F6 5 105.5 54 38 -84.5 0.2 30

F7 6 105.5 54 38 -122.5 0 15

F8 6.1 99.5 51 37 -126.2 0 11

F9 10 99.5 51 37 -270.5 0 14

to W . One can see that the maximum number of surgery hours is observed for small values of W , and that

the number of surgery hours gradually decreases as W increases, until we reach the minimum total number

of SICU, ICU and Ward beds that are required to meet and exceed the demand, from where the weekly

schedule will remain constant.

Figure 19: Evolution of weekly time assigned for surgeries with the penalty parameter W .

4.5. Implications to hospital operation

As illustrated in the results, the proposed formulation allows the hospital to plan the medium-term

(tactical) operation, whilst ensuring that the resulting strategy is in line with the hospital’s long-term goal

of decreasing waiting times and queue lengths. This is ascertained as the formulation guarantees that

the number of performed surgeries will exceed the average demand at each planning period - Eq. (6) for

each individual specialities. In turn, this guarantees long-term stability for the waiting queues across all
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specialities (Shortle et al., 2018).

Our approach avoids ever increasing queues that typically appear across neglected specialities, where

specialities are neglected due to an emphasis on the short-term utilisation of the operating theatres, or

prioritisation of some specialities over others without considering potential long-term effects of successive

weeks utilising unbalanced schedules. Managing the long-term queues, however, falls beyond the tactical

planning horizon addressed in this paper and involves striking a balance between the number of surgeries

in excess of the demand performed across all specialities. This is further complicated, as the capacity

utilisation is also limited by the availability of surgical teams, and creates an interesting number of issues

to be investigated in future research.

The proposed approach allows hospitals to anticipate the minimum increases in resources needed to

accommodate increased demand over a tactical planning horizon, shifting the focus from prioritising spe-

cialities and managing ever-increasing queues to maintaining a minimum level of resources that allows all

specialities to be fairly served, and ensures that all patients will have timely access to surgery over the

long-term, whilst also promoting an optimised use of both the operating theatre and the post-surgical beds.

5. Concluding remarks

This paper introduced a general integrated surgery scheduling and post-surgical bed planning problem

for a typical surgical centre configuration, including multiple surgery recovery units and multiple routes of

post-surgical care. The approach allows the decision maker to not only design an optimised tactical surgery

scheduling plan, but also to plan the post-surgical bed capacity in the intensive and semi-intensive care

units and in the ward, to ensure patient flow and therefore prevent cancellations due to the unavailability

of downstream resources, i.e., post-surgical care capacity.

Starting from the decision support required by the hospital partner, the model bridges the gap between

theory and practice by providing support for tactical planning in a realistic hospital setting, with a level of

generality not previously addressed in the literature. For each speciality, the model includes the probability

that a patient will need either intensive or semi-intensive care and considers the maximum stay at these

units, thereby providing some level of robustness in the bed planning. This is essential, as it helps us make

sure that the downstream resources suffice to ensure patient flow and avoid cancellations.

The integrated model will allow decision makers to experiment with the parameters and find out the level

of upstream and downstream resources needed to satisfy the demand for all specialities, whilst considering the

whole patient trajectory up to hospital discharge. Indeed, the demand and capacity constraints are designed

to ensure service provision for all specialities, thereby linking with long-term goals such as reducing waiting

queues while ensuring service provision for all patients who demand it.

Our experimental results illustrate the demand pressures, as an optimised allocation with the current
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demand and resources results in an occupation of 96.5%. We also show that increases in demand should be

matched by a similar percentage increase in operating theatre capacity in order to keep the occupation below

100%. Furthermore, experiments also illustrate that the hospital partner needs a minimum of about 100

weekly surgery hours to satisfy the weekly demand across all specialities and thus ensure that the waiting

queues across all specialties have a decreasing trend in the long-term.

The healthcare modelling approach proposed in this paper gives rise to a number of possible future

research avenues. One obvious albeit challenging extension is to consider the uncertainty in either the

surgery times or the lengths of stay in the ward. That would be a sensible step towards considering both

sources of uncertainty. One can also investigate extensions of the proposed model for surgical centres subject

to urgent or emergency surgeries. This is a challenging task as it would also involve the modelling of the

protocol to be followed in case of an emergency or urgent surgical request, which would determine for

example whether and which elective surgery would be cancelled to accommodate the extra demand, as well

as the capacity sharing between elective and non-elective procedures for both upstream and downstream

resources.
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Ekeloef, S., Thygesen, L.C., Gögenur, I., 2019. Short-and long-term mortality in major non-cardiac surgical patients admitted

to the intensive care unit. Acta Anaesthesiologica Scandinavica 63, 639–646. doi:10.1111/aas.13319.
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