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by Giorgio Cerro

The exploration of fundamental particles and their interactions has been central to
particle physics for centuries, evolving from ancient philosophical concepts to
rigorous scientific inquiry. The Standard Model (SM), formulated in the 1960s,
represents a monumental achievement in describing three of the four fundamental
forces and predicting the properties of elementary particles. Despite its successes, the
SM leaves several critical questions unanswered, including issues related to quantum
gravity, the hierarchy problem, mass generation, and the cosmological
constant.High-energy particle collisions at facilities such as the Large Hadron Collider
(LHC) have been instrumental in advancing our understanding of the subatomic
world. These collisions generate vast amounts of data, necessitating sophisticated
analysis techniques, including clustering and anomaly detection algorithms, to
unravel the complexities of particle interactions. The integration of artificial
intelligence (AI) and machine learning (ML) into high-energy physics represents a
transformative shift in data analysis. By leveraging advanced algorithms, Al enhances
the speed and precision of data processing, offering new pathways for discovery and
optimisation. This thesis addresses two primary objectives: first, the development of a
novel jet clustering algorithm using machine learning that adheres to physical
constraints, providing transparency and interpretability compared to traditional deep
learning approaches; and second, the application of innovative methods to mitigate
performance bias in synthetic data through the exploitation of inherent data
symmetries. The structure of this thesis encompasses a comprehensive exploration of
the theoretical underpinnings of jets, the impact of machine learning on high-energy
physics, the application of spectral clustering techniques, the influence of physical
variables on advanced ML models, and strategies for reducing bias in synthetic
datasets. Through these contributions, this work aims to enhance the analytical
capabilities in particle physics and further our understanding of the universe’s

fundamental nature.
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Chapter 1

Introduction

The quest to understand the universe at its most fundamental level has been a driving
force in particle physics for centuries. The concept of matter being composed of
indivisible particles dates back to ancient Greece, but it wasn’t until the late 19th
century that this philosophical notion transformed into scientific inquiry, ushering in
an era of groundbreaking particle discoveries—from the electron in 1897 to the Higgs
boson in 2012 at the Large Hadron Collider (LHC).

Our most comprehensive understanding of these fundamental particles and their
interactions is encapsulated in the Standard Model (SM), a theoretical framework
developed in the 1960s by Sheldon L. Glashow, Steven Weinberg, and Abdus Salam.
The SM is a remarkably successful quantum field theory that describes three of the
four known fundamental forces: the electromagnetic, weak, and strong interactions. It
has not only organised the known elementary particles into a coherent structure but
has also accurately predicted the existence and properties of new particles, solidifying

its position as a cornerstone of modern physics.

However, despite its triumphs, the Standard Model is not the final word. It leaves
several profound questions unanswered and is widely considered an effective theory,

valid only at lower energy scales. Among the most pressing puzzles are:

* quantum gravity: the SM describes three of the four fundamental interactions at
quantum level, but it does not include gravity, for which no satisfactory

treatment of a QFT is known;

* hierarchy problem: it is not clear why there are vastly different energy and mass
scales into the SM, namely the electroweak scale Mgy ~ 102 GeV and the
reduced Planck scale Mp ~ 10" GeV (with Mp = 1/+/87G in natural units);
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* mass generation problem: while SM successfully explains how particles acquire
mass, it does not explain why they have the masses they do and why there is

such a wide range of masses in the particle spectrum;

¢ cosmological constant: the vacuum energy density predicted by the SM is much
smaller than the observed cosmological constant of the universe. These are only
few of the puzzling problems we face; other issues concern for example the
strong CP problem, the origin of the parameters of the SM, the mass of the Higgs

boson, the nature of dark matter and dark energy, and others.

High-energy particle collisions are the crucible of modern particle physics, serving as
the primary tool for investigating the fundamental building blocks of matter and their
interactions. At facilities like CERN’s Large Hadron Collider (LHC), Fermilab’s
Tevatron (now decommissioned), and KEK’s SuperKEKB, particles such as protons or
electrons are accelerated to nearly the speed of light before being smashed together in
powerful collisions. These collisions unleash a cascade of secondary particles,
including rare and exotic species that exist only fleetingly.

The analysis of these complex collision events is a monumental undertaking, requiring
a sophisticated toolkit of techniques. Clustering algorithms are employed to group
particles into jets, collimated sprays of particles that originate from the fragmentation
and hadronisation of quarks and gluons. Tagging algorithms are used to identify
specific particle types based on their characteristic properties, such as energy
deposition, decay products, and interaction patterns. Anomaly detection algorithms
are leveraged to sift through vast amounts of data in search of rare events that could
signal new physics beyond the Standard Model. Each of these techniques plays a
crucial role in extracting meaningful information from the intricate tapestry of particle
collisions, enabling scientists to piece together the underlying dynamics of the
subatomic world.

The advent of artificial intelligence (Al), particularly machine learning (ML), is
transforming the landscape of high-energy physics. The field is characterised by
enormous datasets, often petabytes in size, generated by high-luminosity colliders
and large-scale detector systems. Traditional analysis methods, while powerful, can be
computationally intensive and time-consuming, often requiring significant human

intervention.

Al offers a paradigm shift in data analysis by leveraging advanced algorithms to
automate and accelerate various tasks. Machine learning models can be trained on
vast datasets to recognise patterns, classify particles, and even predict the outcomes of
complex interactions. This not only enhances the speed and efficiency of analysis but
also opens up new avenues for discovery. Al-powered algorithms can identify subtle
anomalies in data that might otherwise go unnoticed, potentially revealing hints of



new particles or phenomena. Furthermore, Al can aid in the design of more efficient
detectors and optimise data collection strategies, further pushing the boundaries of
experimental capabilities. The integration of Al into high-energy physics research
promises to unlock new insights into the fundamental nature of the universe and

usher in an era of data-driven discovery.

However, as physicists embracing these powerful tools, we must remain vigilant and
remember that our primary goal is to explain nature by providing reasonable
explanations for observed phenomena. Therefore, in the work presented in this thesis,
we focus on two main objectives: first, to propose a novel algorithm for jet clustering,
utilising a well-known machine learning method that has been adapted to respect
physical constraints. Unlike many deep learning methods, this algorithm is not a black
box; it is designed to be transparent and easy to explore and understand. Second, we
employed innovative methodologies to reduce the performance bias on synthetic data
in some state-of-the-art neural networks. This was achieved by exploiting the

availability of large datasets and leveraging the inherent symmetries in the data.

This thesis is structured as follows:

1. Theoretical Framework of Jets: An overview of the theoretical foundations
related to jets, collimated sprays of particles produced in high-energy processes,
including methods to observe, detect, and study them. This section provides the
necessary background on the physics of jets and their significance in
high-energy physics (HEP), covering both the underlying principles and the
experimental techniques used in their analysis.

2. Machine Learning in High-Energy Physics: Exploration of how machine
learning is revolutionising data analysis, with an overview of state-of-the-art
models addressing challenges in HEP. This includes discussions on clustering,
tagging, anomaly detection, matching, and simulation, highlighting the role of
machine learning in enhancing the precision and efficiency of data processing in
complex HEP experiments.

3. Spectral Clustering for Jet Physics: Presentation of our recent work on spectral
clustering, an ad hoc implementation aimed at improving jet clustering [8]. This
section discusses the competitive results of this approach compared to standard
techniques, offering insights into its potential advantages despite its slower
computational performance. The implications of these findings for future jet
analysis are also considered. Main contributions:

¢ Introduction of a Spectral Clustering Method for Jets: A novel alternative to
traditional jet clustering algorithms, using multidimensional

representations of particle kinematics.



Chapter 1. Introduction

Infra-Red Safety Confirmation: Demonstration of the method’s robustness
against IR divergences, ensuring its theoretical soundness.

Performance Comparison with Anti — kr: Detailed evaluation showing
competitive performance in reconstructing relevant final states in MC

simulations of complex processes.

Parameter Independence: Evidence that the method does not require
process-specific parameter adjustments, unlike the anti — kr algorithm,

which relies on cone size tuning.

Applicability to Diverse Scenarios: Demonstrated utility across different
physics scenarios, emphasizing the method’s adaptability and potential to
simplify jet clustering in high-energy physics.

4. Obscuring Physics Variables: An examination of advanced machine learning

methods, particularly graph neural networks, with a focus on how physical

variables influence these models [9]. This chapter delves into the complexity of

integrating physical principles into machine learning models and the challenges

of ensuring that these models generalise well while maintaining interpretability.

The potential for such methods to obscure or enhance the understanding of

underlying physical phenomena is critically analysed. Main contributions:

Introduction of JetLOV Framework: A novel composite model that
combines MLP and LundNet to explore physics-agnostic representations in
jet tagging.

Demonstrating Physics Independence: Evidence that high-performance jet
tagging can be achieved without relying on pre-computed physical

variables, emphasizing the network’s capacity to learn new representations.

Addressing Model Dependence: Insights into mitigating the dependence
on pre-defined physics features through generalization and training on

diverse datasets.

Trade-off Analysis: A critical exploration of the balance between leveraging
domain knowledge and allowing machine learning models to

independently discover patterns.

Implications for Interpretability and Generalization: Advancing the
discussion on how machine learning can obscure or enhance the
understanding of underlying physical phenomena, with significant
implications for the future of jet physics and high-energy physics.

5. Reducing Bias on Synthetic Data: A detailed investigation into the use of

unsupervised methods for exploring and learning symmetries in data, with the

goal of reducing bias in the performance of models trained on synthetic data.

This section discusses the significance of identifying and mitigating biases that



arise from synthetic datasets, which are often used to supplement complicated

and noisy real-world data in HEP. Main contributions:

Application of VICReg to Graph Neural Networks: Introduction of an
unsupervised learning method to address biases in synthetic datasets used
in high-energy physics.

Balancing Performance and Bias Mitigation: Demonstration of a trade-off
between slightly reduced jet tagging performance and improved

generalization across datasets with different biases.

Leveraging Unlabelled Data: Highlighting the potential of pre-training on
unlabelled data and fine-tuning on minimal labelled data to improve model

adaptability and resilience.

Generalization Across Simulations: Insights into how this approach
enhances model robustness across diverse simulation conditions, reducing

dependency on specific dataset characteristics.

Foundation for Future Work: Establishing a framework for further
exploration and refinement, with the goal of developing bias-resistant
models that maintain high performance in real-world applications.






Chapter 2

Jet Physics

Jet physics is a crucial aspect of high-energy particle physics, providing essential
insights into the fundamental interactions occurring at the smallest scales. This
chapter delves into the mechanisms behind jet formation, the algorithms used for jet
clustering, and the application of these concepts at the Large Hadron Collider (LHC).

2.1 Jet Formation

Due to Quantum Chromodynamics (QCD) colour confinement, quarks and gluons
cannot exist in isolation and are only found as hadronic bound states. In high-energy
collider experiments, these partons undergo multiple processes, ultimately
manifesting as sprays of colourless hadrons known as jets. This section will cover the

fundamental stages of jet formation, including parton showering and hadronisation.

2.1.1 Parton Showering

The first step in jet production is parton showering, which is a sequence of small-angle
splits from a parton. The probability of a parton (denoted X) emitting a quark or gluon
is given by:

dE do
P(X = Xg) ~as | —— (2.1)
E 6
where «; is the coupling, 6 is the angle of emission, and E is the outgoing energy. As
the equation suggests, the probability diverges at low 0, indicating that emissions are
more likely to occur at small angles. This leads to a series of collimated emissions,

forming the initial stages of jet development.
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Generalising to various kinds of splittings, the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [10-13], which encodes the behaviour of partons in hadron
collisions via the parton distribution functions (PDF) f(x, it), at some energy scale .,
can be written down

fzxu 2/ T P o) 22)

z 2711

Here, the sum over j accounts for all possible types of partons that can split, and P;;(z)
are the splitting functions that describe the probability of a parton j splitting into a
parton i, where i takes a fraction z of the total momentum of j. The splitting functions
for various processes - such as a quark (or antiquark) radiating another quark (or
antiquark), a quark splitting into a gluon and a quark, a gluon splitting into a

quark-antiquark pair, or a gluon radiating another gluon - are given by:

Pyy(z) = Cr <[11‘|;7;2]++§5(1—z)>, (2.3)

o = (L=, o

Pgy(z) = Tr (22 + (1 — 2)?), (2.5)

Py(z) = Cy <1f +1;+z(1—z)> +5(1—z)11cf‘_64"fTR. (2.6)

In the preceding equations, z and (1 — z) are again the energy fractions, with Cr = %,

Cqp=3and T = % being the QCD “colour factors” and 7 being the number of

fermions coupling to the gluons.

This repetitive splitting leads to the formation of parton shower, where the partons are
collinear and soft, causing the final partons to be collimated in the direction of the
initial ones. As energy of the initial collision decreases and approaches Agcp, quarks
and gluons can no longer exist as separate entities and perturbative theory fails due to
the running of the QCD coupling constant a,. This leads to the generation generation
of stable colourless hadrons (such as kaons and pion) from coloured partons, a process
known as hadronisation. The end result of parton showers and hadronisation is

collimated sprays of hadrons known as jets.
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In this context, the term [%] employs the plus distribution notation, which
+

regulates the divergence of % as z — 1. For our particular case, the plus distribution

is defined as:

1 1+ 22 T 1472 11422
+

where g(z) is a smooth test function. The second term subtracts the contribution at z =
1, ensuring the integral is finite. This regulation is crucial in QCD because the

1+22
1-z

divergence of would otherwise lead to undefined results in physical calculations.

The 6(1 — z) term in the splitting function accounts for soft-collinear singularities and
ensures proper normalization of the splitting process. Together, these components

make Py, (z) well-defined and physically meaningful for parton splitting probabilities.
Colour and Spin Propagation

Parton showers use a branching structure where each splitting creates “daughter”
partons from a “mother” parton. This genealogy is crucial for tracking the evolution
of the shower, implementing momentum conservation and propagating colour and
spin information.

In parton showers, the propagation of colour and spin information is crucial for
accurately modelling the evolution of quarks and gluons. As partons split, the colour
charge must be conserved and properly distributed among the daughter particles.
This affects the subsequent radiation patterns and hadronisation process. The spin of
the parent parton influences the angular distribution of its daughters. Incorporating
spin effects leads to more accurate predictions of jet substructure and particle
correlations.

Types of Parton Showers

There are several approaches to implementing parton showers [14], each with its own
characteristics:

¢ Angular-Ordered Showers [15; 16]. Angular-ordered showers implement colour
coherence by ordering emissions according to their angular separation from the
initiating parton. In this scheme, emissions are ordered in decreasing angle,
meaning that soft emissions tend to occur at larger angles relative to the direction
of the initial parton. This ordering accurately captures wide-angle soft gluon
effects, which are critical for understanding phenomena such as jet broadening
and the evolution of jet structures. The angular ordering helps to maintain the
physical characteristics of the emitted particles, ensuring that they exhibit the

expected correlations that arise from the conservation of colour charge.
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¢ pr-Ordered Showers [17; 18]. In contrast to angular-ordered showers,
pr-ordered showers arrange emissions based on their transverse momentum.
This approach simplifies the implementation of the showering algorithm, as
emissions are generated in order of decreasing pr. However, while this method
can provide a computationally efficient way to model parton showers, it may
necessitate additional corrections to fully account for colour coherence effects
that are naturally incorporated in angular-ordered schemes. Consequently, the
pr-ordered approach may lead to discrepancies in the predictions of observables

that are sensitive to colour correlations.

* Dipole Showers [19]. Dipole showers represent emissions as arising from colour
dipoles rather than individual partons. This framework inherently incorporates
some of the coherence effects observed in parton showers, as the interactions
between dipoles account for the colour structure of the emitted particles. Dipole
showers can simplify the momentum conservation equations, making them
more straightforward to implement in simulations. Additionally, this approach
allows for a more natural incorporation of both soft and collinear emissions,
providing a flexible framework that can be adapted to different aspects of the

parton showering process.

Higher-Order Accuracy

Parton shower algorithms are primarily based on leading-order (LO) approximations,
but significant advancements have been made in incorporating higher-order
corrections. These corrections are computed using fixed-order perturbative QCD,
where the cross-section is expanded in powers of the strong coupling constant, as. The
terms in this expansion, known as next-to-i-leading order (N'LO), account for
additional emissions or virtual corrections at each order. Recent breakthroughs have
enabled precise calculations at NNLO and even N®LO accuracy for specific processes,
such as Higgs production via gluon-gluon fusion. However, at small scales, large
logarithmic corrections arising from soft or collinear emissions can dominate and
invalidate fixed-order predictions. To address this, resummation techniques are
employed to account for these logarithms systematically, restoring theoretical
accuracy. Furthermore, matching and merging schemes combine fixed-order precision
with parton showers, providing reliable predictions across a wide phase space while

maintaining infrared and collinear safety.

2.1.2 Hadronisation

Hadronisation is the process by which partons transform into hadrons. This
non-perturbative phenomenon occurs when the energy scale of the partons falls below
Agcp. During hadronisation, quarks and gluons form colourless hadrons through the
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creation of quark-antiquark pairs and gluon emissions, leading to the formation of
mesons and baryons. The resulting hadrons are then detected as jets in collider
experiments, providing a crucial link between the theoretical framework of QCD and
observable phenomena in high-energy physics.

As we have established, the QCD coupling a5 runs with the energy scale Q. Inside a
detector, the primary interaction vertex where the accelerated partons collide is at
high energy, placing us in the perturbative regime of QCD where quarks and gluons
are (almost) free. By the time particles reach the detector, however, we are at larger
distance scales, and hence lower energy scales, where quarks and gluons are strongly
coupled, and perturbation theory no longer holds. This is where hadronisation (also
referred to as fragmentation) occurs, resulting in coloured partons forming stable

colourless hadrons (such as pions or kaons) which are eventually detected.

A key concept for approaching hadronisation models is the local parton-hadron
duality (LPHD) [20], which states that there is a similarity between global jet features
computed at the parton level (after showering, but before hadronisation) and those
measured after hadronisation. This concept is fundamental in understanding how
theoretical predictions at the parton level translate to observable jet characteristics in
experiments. In Appendix A, we show a simple exercise that demonstrates the LPHD.
This is achieved using a novel metric used in jet physics is the Earth Mover’s Distance
(EMD) [7; 21], which is based on the Wasserstein distance [22], a measure of how
“distant” two probability distributions are from one another. The Wasserstein distance
is particularly effective for comparing distributions by quantifying the minimum
“cost” to transform one distribution into another. In the case of jets, we refer to this
metric as the Earth Mover’s Distance because it measures the amount of energy
(analogous to “earth”) that needs to be moved from one jet to match another in the
eta-phi space. This makes the EMD especially useful for comparing energy
distributions between particles in jets, capturing their physical differences in a

meaningful way.

2.1.2.1 Longitudinal Tube Model

A particular simple example of a hadronisation model is the longitudinal tube model
[23], where hadrons arising from a pair of colour-connected partons are confined to a
cylinder in (y, pr). Here y is the rapidity coordinated definite by [24]

_ L (E£Pe
y—zln(E_pz), (2.8)

for a particle with energy E and momentum along the z—axis (taken to be the beam
line in colliders) pz, and

pr =/ (P3 +pj) (2.9)
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being the magnitude of the momentum vector in the x — y plane, with the
four-momentum defined as p = (E, px, py, p-). Defining the hadron density p(pr), the

energy and momentum for a jet are written as

Y
E= / dyd*pro(pr)pr coshy = Asinh Y (2.10)
0

Y
P = / dyd®prp(pr)prsinhy = A(coshY —1) ~ E — A
0

where we are integrating over a tube of length Y, and

A= [ @prp(pripr (2.11)

sets the scale for hadronisation. Notice that the jet momentum P receives a negative
hadronisation correction of relative order A /E = 2A/Q for a two-jet configuration of
total energy Q. Thus one generally expects hadronisation effects to scale with energy
like 1/Q. From these equations we expect a mean-square hadronisation contribution
to jet mass of

< M?>=E>—P?~ AQ. (2.12)

Comparing the perturbative predictions for jet masses with experiment, one finds that
a hadronisation correction corresponding to A ~ 0.5 GeV is required. Note that this
implies a fairly large jet mass in addition to the perturbative contribution.

2.1.2.2 String Model

Another method to describe the hadronisation process is the String Model [25-29],
which is most easily described for e*e™ annihilation. A schematic picture can be seen
in Figure 2.1. The produced quark and antiquark move out in opposite directions,
losing energy to the colour field, which collapses into a string-like configuration
between them. The string has a uniform energy per unit length, corresponding to a
linear quark confining potential, which is consistent with quarkonium spectroscopy.
The string may be broken up starting at either the quark or the antiquark end, or both
simultaneously (the breaking points have space-like separations, so their temporal
sequence is frame-dependent), and it proceeds iteratively by g7 pair creation, as in

independent fragmentation.

If we label the initial quark antiquark pair as qog, then after a splitting we produce a
new quark pair g17,, which are organised into bound states g0, and 417,. The newly
produced hadron %(qo, §,), carries a fraction z of momentum modelled by the

distribution . .

1-2z "

L A=2)
z

f(z) (2.13)
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FIGURE 2.1: Parton shower with string hadronisation model for e*e™ — hadrons [1].

where a and b are parameters tuned via experimental data.

2.1.2.3 Cluster Model

A key feature of the parton branching process is the preconfinement of colour, which
plays an important role in hadronisation. Preconfinement ensures that, after the
perturbative phase of jet development, pairs of colour-connected neighbouring
partons tend to form clusters with relatively small masses. These clusters have a mass
distribution that rapidly decreases at high masses and remains independent of the
energy scale Q?, meaning it behaves similarly regardless of the energy of the collision.
Importantly, this mass distribution is universal, applying across different energy
scales and processes [30].

This property forms the basis of cluster hadronisation models. After the perturbative
parton showering process, where quarks and gluons are emitted, colour-singlet
clusters of partons are formed. These clusters are created by grouping nearby
colour-connected partons into colour-neutral combinations, known as preconfinement
clusters. As these clusters have relatively low masses due to preconfinement, they can
then decay into the final observed hadrons (such as pions, kaons, etc.). This process
effectively bridges the gap between the high-energy parton-level dynamics and the
low-energy hadronic states observed in experiments.

The most straightforward mechanism for the formation of colour-singlet clusters
following parton branching involves the non-perturbative splitting of gluons into g3
pairs. Neighbouring quarks and antiquarks can then combine to form singlets. The
resulting cluster mass spectrum is again universal, with a steep decline at high
masses. Its exact shape is determined by the QCD scale A, the cut-off scale t(, and, to a
lesser extent, the specifics of the gluon-splitting process. Typically, cluster masses are

about two to three times /f. A schematic representation of this process is shown in
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Figure 2.2, which illustrates the cluster hadronisation of the same parton shower
depicted in Figure 2.1.

FIGURE 2.2: Parton shower with cluster hadronisation model for ete™ — hadrons [1].

2.2 Jet Clustering Algorithms

In high-energy particle collider experiments, the large-distance behaviour of QCD
results in parton showering and fragmentation, which produce collimated sprays of
colour-neutral hadrons detected by the experiments. However, jets are not
fundamental objects in the theory. To study them, we need a precise definition, which
is achieved through jet clustering algorithms.

Jet clustering algorithms map the complex detector environment, containing these
sprays of hadrons, back to the original hard interactions. Once defined, jets can be
tagged based on the originating parton, allowing us to infer the nature of the

underlying interactions.

For example, consider the Standard Model production of a single Higgs boson
decaying into a bb pair. If the Higgs is produced at rest, the outgoing b-quarks will be
back-to-back, forming two well-resolved jets. These jets can be b-tagged (a process
discussed later). By plotting the invariant mass of the dijet system (combining the two
b-jets), we should observe a peak around the Higgs boson mass.

Assuming we can accurately identify these jets as originating from b-quarks (thus
labelling them as b-jets), we can construct the invariant mass of the dijet system to
determine the source of the bb pair. By generating a sample of Monte Carlo events, we
can predict the mass distribution for a pair of b-jets from a Higgs boson, as illustrated
in Figure 2.3. The definition of jets in this context is achieved using a jet algorithm,
which will be reviewed in the next section.
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FIGURE 2.3: The my; distribution from the decay of an SM Higgs boson (my = 125
GeV).

2.21 Sterman-Weinberg Jets

The Sterman-Weinberg clustering jet algorithm [31], introduced by George Sterman
and Steven Weinberg in 1977, is one of the earliest jet algorithms (in particular cone jet
algorithms) developed to identify and study jets in high-energy physics experiments.
This algorithm is particularly significant because it laid the groundwork for
subsequent jet definition methods. The Sterman-Weinberg algorithm works by
identifying clusters of particles within a cone of fixed opening angle and requires a
certain fraction of the total energy to be contained within these cones. Specifically, it
defines a jet as any group of particles whose total energy within a cone of half-angle §
exceeds a threshold Enin. Additionally, the algorithm stipulates that the energy
outside the cones but within a broader region must not exceed a small fraction € of the

total energy. Mathematically, this constraint can be expressed as:

Eoutside S eEtotaI/ (2- 14)

where E,siqe is the energy outside the jets, and Ei, is the total energy of the event.
This can be seen in Figure 2.4. This method is infrared and collinear safe, we will talk
about this more in the next section, meaning it is not sensitive to the addition of soft
particles or the splitting of a particle into collinear fragments, making it robust for
practical applications. The Sterman-Weinberg algorithm, while conceptually simple,
has been instrumental in advancing the understanding of jet formation and has
influenced the development of more sophisticated jet algorithms used in
contemporary particle physics research.
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FIGURE 2.4: Diagrammatic representation of Sterman-Weinberg cone jets.
2.2.2 JADE Algorithm

The first example of a sequential recombination algorithm is the JADE algorithm [32].
These algorithms work by iteratively combining the final state particles. An intuitive

way to understand this is by imagining the reversal of the showering process, tracing
back to the parton from which the jet originated.

To implement such an algorithm, we must define a distance measure between a pair of
particles i and j. For JADE, we use

. mj;  2EE;(1 — cos” 6;)

) 2
Etot Etot

(2.15)

where E;; represents the energy in the entire event. The algorithm then proceeds as

follows:

1. Calculate the all the pairwise distances d;;.
2. Find the pair with the minimum d;;, referred to as ipand jo.
3. Define a cut off distance measure d,.

4. If d;j;, < do, particles ip and jp are combined into a single new object called a
pseudojet z with four-momentum equal to the sum of the two merged particles’

four-momentum: p, = p;, + Pio-

5. Repeat steps 1-4 until d;,;, > do, at which point all the remaining particles are

ijo
declared jets.

The distance measure vanishes for both collinear pairs (8;; — 0) and for soft particles
(Eij — 0). In practice, as the algorithm processes an event, it prioritises clustering

regions with collinear and soft emissions. However, this can potentially cause issues
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where two widely separated soft particles (E;, E; — 0) are clustered before another
pair, since the energy of both particles is accounted for in d;.

Clearly, this algorithm is significantly more computationally intensive than cone
algorithms but offers advantages in the performance. The flexibility of having a single
input parameter dy allows the JADE algorithm to handle multijet events effectively,
which can be challenging for cone algorithms.

2.2.3 kr Algorithm

Following the development of the JADE algorithm, the next significant sequential
recombination algorithm to emerge was the k7 Algorithm [33; 34]. This algorithm was
primarily developed for use in e"e~ — hadrons events and represents an incremental

improvement over JADE rather than a complete redesign.

The main issue with the JADE algorithm was that its distance measure d;; could cause
wide-angle, soft particle pairs to be clustered before more appropriate choices. To
address this, the kr algorithm introduced a modified distance measure:

2min(E?, E2)(1 — cos 6;;)
dij = d é? ) . (2.16)
(0]

In this modification, the product E;E; is replaced by min(EZ, E]Z) The use of the min
function ensures that only the energy of the softer particle in the pairiand jis
considered, which prevents widely separated soft particles from being clustered
together prematurely. Instead, particularly soft particles are more likely to be
clustered with nearby neighbours.

The algorithm proceeds similarly to the JADE algorithm, iteratively clustering pairs
that minimise d;; until all remaining pairs exceed the cutoff dy. This adjustment allows
the kr algorithm to handle soft emissions and wide-angle particles more effectively,

resulting in more accurate jet clustering.

2.24 Generalised k1 Algorithm

An enhancement to the clustering methods discussed earlier involves refining the
distance measure to better capture the similarities between particles. The generalised
form of the kr algorithm achieves this by modifying the distance metric:

min(pf, pr, ) AR,
dij = 2 ! (2.17)
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Here,

ARE = (yi —yj)* + (¢ — ¢7)° (2.18)
represents the angular separation between particles i and j, where y and ¢ denote the
rapidity and azimuthal angle of the particles, respectively. The parameter R serves as
an input that determines the scale of the clustering, analogous to dy in the JADE
algorithm, while 7 is a tunable parameter chosen a priori. The clustering process
follows the same steps as previously mentioned: creating a distance matrix,
identifying the closest pair of particles, merging them, and repeating until a stopping

condition is met.

Despite the seemingly minor change in the distance measure, this modification
significantly improves performance and leads to two of the most widely used and
robust clustering algorithms: the anti-kt algorithm and the Cambridge-Aachen

algorithm. These algorithms are distinguished by different choices of the parameter n.

2.24.1 The Anti-kT Algorithm

The anti-kt algorithm [5; 33; 35], a variant of the kr algorithm, arises when the
parameter n is set to -1. This specific choice inverts the behaviour of the distance
measure, prioritising the clustering of high-energy particles first. The anti-kr
algorithm effectively reverses the original kt approach, which weighted the distance
measure by the minimum energy of the particle pair to prevent widely separated, soft
particles from clustering together.

This inversion leads to the formation of jets with well-defined, conical shapes, making
the anti-kt algorithm particularly stable and reliable for reconstructing jets in
high-energy physics experiments. Its robustness in maintaining jet shapes has made it
a preferred method in many analyses, especially in environments where precise jet
reconstruction is crucial.

2.2.4.2 The Cambridge-Aachen Algorithm

In contrast, the Cambridge-Aachen algorithm [36] emerges when the parameter 7 is
set to 0. This choice results in a purely geometric distance measure, which depends
solely on the angular separation between particles, without considering their energies.

The Cambridge-Aachen algorithm clusters particles based on their relative angles,
making it highly suitable for studying jet substructure and exploring the internal
dynamics of jets. Its focus on angular proximity rather than energy allows for a
detailed examination of the finer details within jets, providing insights into complex
jet structures that are not as easily captured by energy-based clustering methods.
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2.2.4.3 Variable-R Jets

A key parameter that appears in all the sequential recombination algorithms
discussed so far is R , which is responsible for the stopping condition and is related to
the cone size. This parameter needs to be chosen a priori; however, not all jets fit
neatly into a single cone size, making the choice of this parameter challenging.

In fact, a rule of thumb for selecting a good value is to approximate the cone size using
the following relation:

2m
R~ —, (2.19)
pPr
where R depends on the jet’s transverse momentum pr and its mass m. For hard (high
pr) jets, one can expect tightly compact, narrow cone jets, while for softer (low pr) jets,
the resulting jet constituents are more spread out. Therefore, a jet definition that

accounts for this behaviour should be able to accurately cluster jets of different sizes.

A novel solution, the variable-R algorithm [37], removes the need to settle on a single
fixed cone, which might not be suitable for multi-jet events involving boosted objects.
The distance measure is modified as follows:

min(pf, pt, ) AR,
ij = 5 (2.20)
Re ff (p T; )
where R, s replaces the fixed input parameter R in traditional algorithms:
R - £ 2.21
eff<pT,') pT' (2.21)

We immediately notice that the new measure R,s; encodes the dependence shown in
the equation above, where p is a dimensionful input parameter, generally set to match

the pr scale of the jets in the event being clustered.

The algorithm proceeds in the same way as the generalised kt algorithm.
Additionally, we note the appearance of 7 in d;j, which allows the Variable-R

algorithm to be modified to mimic the anti-kt or Cambridge-Aachen algorithms.

Some recent works [38; 39] compare the performance of this method with the
traditional generalised kr algorithm, with a particular focus on the 2HDM model, a
beyond Standard Model solution.
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2.2.5 Modern Clustering Methods

All the clustering methods discussed so far are foundational for jet clustering, being
among the oldest, most robust, and most reliable techniques. In recent years, with the
exponential growth of Machine Learning, the physics community has begun
implementing new models that leverage the vast amount of data and computational
resources necessary to train sophisticated algorithms. In Section 3, we will explore
some of these methods in detail. Additionally, we will discuss a recently developed
method, Spectral Clustering for Jet Clustering, in Section 4.

While some of these new methods exhibit high performance, the physics community
still tends to prefer and use these time-tested clustering methods due to their
simplicity, interpretability, and speed. Despite the revolutionary advancements in Al
and computational techniques, physicists strive to keep pace by developing
increasingly sophisticated models. However, it is crucial to recognise that in physics,
“good” is not enough. As we aim to represent and explain the natural world, we must
incorporate physical constraints into our models, as discussed in Section 2.2.6. This is
not always the case with newer methods, making it imperative to balance
performance with adherence to fundamental physical principles.

2.2.6 Infrared and Collinear Safety

Insensitivity to soft or collinear emissions is a crucial attribute for jets, known as
infrared (IR) safety. Formally, a soft emission refers to the emission of a massless
particle with very low energy. As the energy of the emitted particle approaches zero,
the probability calculation diverges, making perturbative calculations impossible.
However, since a massless particle with zero energy is unobservable, this does not
pose a practical problem. Similarly, a singularity arises when a particle undergoes
collinear splitting, producing two particles with the same momentum direction. This
decay is also undetectable because two particles in the exact same location with the
same combined momentum will be measured as indistinguishable from the original
particle [40].

There are three primary reasons for requiring an algorithm that maintains the

measurable properties of jets in the presence of IR radiation [41]:

1. If a jet clustering algorithm were sensitive to soft or collinear splittings, it would
be impossible to make reliable predictions about jet properties using (QCD).
Such sensitivity would undermine many important theoretical comparisons,
making IR safety essential for adhering to the general properties of jet
definitions established with the "Snowmass Accords” [42].



2.3. Jetsat LHC 23

2. Monte Carlo simulations are based on probabilities calculated from QCD. These
simulations must be tuned and compared to experimental data using
measurable quantities. If a simulation’s accuracy suffers in the IR limit, it
becomes unreliable. Therefore, jets derived from Monte Carlo data must be
designed to be independent of the IR behaviour of the simulation.

3. The specific energy at which a soft particle becomes undetectable or a collinear
splitting becomes indistinguishable depends on the detector used. This
dependency complicates the predictions of an IR-unsafe algorithm, as its
behaviour would be unique to each detector.

Cone algorithms, which have not been examined in detail here, often face challenges
with infrared and collinear (IRC) safety. Fortunately, the sequential recombination
algorithms discussed thus far are IRC-safe. IRC safety remains a relevant concern for
recent algorithms, particularly within the context of Machine Learning, where
controlling the model’s behaviour can be complex. A key question is whether to
prioritise a clustering method that offers superior performance but lacks IRC safety, or
to choose one with potentially lower performance but adheres to this fundamental
constraint. In Section 4, we will investigate a novel clustering technique and discuss
how IRC safety has been integrated into the algorithm’s design. Meanwhile, in Section
3, we will examine a modern Graph Neural Network developed specifically for jet
tagging, with a focus on ensuring IRC safety within its architecture.

2.3 Jets at LHC

So far we have been discussing jets and their reconstruction from a theoretical point of
view. However, it is important to understand how jets originate in an experimental
setup since they hold the key to discovering new physics and particles at the LHC. In
this section, we will review the concept of jets at the LHC, with particular emphasis on
the CMS detector phenomenology.

2.3.1 The Particle Detector

The LHC is the world’s largest and one of the most powerful particle colliders,
featuring a 27 km circular ring of superconducting magnets. Inside the detector, two
high-energy proton beams collide, producing hadrons that emerge from parton
showers and hadronisation, dispersing in all directions from the primary vertex. The
detector’s cylindrical shape around the beamlines helps confine the particles and
captures emissions close to the beamline.
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Several concurrent experiments operate at the LHC, including ALICE, ATLAS, CMS,
and LHCb, each with distinct objectives. Without going into details of the description
of the various components of a detector, as we are mainly interested in its geometry,
Figure 2.5 shows what a detector looks like, for example the CMS (Compact Muon
Solenoid) detector [43].
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FIGURE 2.5: A pictorial representation of the CMS detector [2].

Muon

For the geometry of the detector, the beamline is considered the z-direction. The
angular coordinates are the rapidity y, defined in Equation 2.8 and the pseudorapidity
11, defined as

n=—In (tan 9) = 1ln (W> . (2.22)
2) 2 \lpl=p:
In the pseudorapidity definition, E is replaced with the magnitude of the
three-momentum |p|, making it a massless approximation of rapidity. Both quantities
measure the momentum an object has in the z-direction. The angle 6 is the angle
relative to the beamline (z-direction). Another crucial coordinate around the beamline

is the rotation angle ¢, which starts from the x-axis and rotates in the x-y plane. In
Figure 2.6 we can see an illustration of the ranges for the values of the two variables.

2.3.2 Jet Tagging

To properly analyse the underlying physics at the LHC, jet taggers are employed to
extract detailed information about the original partons from which the final state jets
originated. This is a crucial yet complex task that has seen significant performance
improvements with the advent of Machine Learning (ML) supervised methods. For
example, CMS results from a few years ago demonstrated a 15% increase in tagging

efficiency after incorporating ML techniques [44]. This marked the beginning of a
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FIGURE 2.6: Demonstration of the psuedorapidity # (A) and of the azimuthal angle ¢
(B) with respect to the beamline of an event at the LHC.

rapid advancement in the field, with the most advanced algorithms now achieving

exceptionally high performance.

Typically, the first step in testing a new method is to address a simple binary
classification problem. In many cases, this involves distinguishing between jets
originating from W bosons or Top quarks against those from QCD jets. A more
challenging task is to accurately classify quark jets versus gluon jets, as the differences
in their substructures are more subtle and harder to distinguish. State-of-the-art
machine learning models, as discussed in Section 3, can achieve an accuracy exceeding
95%, which is nearly perfect. However, in practical applications with real data, rather
than synthetic data generated by simulation software, these impressive performance
metrics often decline significantly. This drop in performance is a common issue for

any model deployed in a production environment.

Several factors contribute to this performance degradation. First, real-world scenarios
require handling multi-class classification tasks, which are inherently more complex
than binary classification. Additionally, the data encountered in actual experiments is
much messier, introducing a level of noise and variability not present in synthetic
datasets. Furthermore, errors in the clustering methods themselves can adversely
affect tagging performance.

Despite these challenges, continuous improvements in ML models and techniques
hold the promise of bridging the gap between theoretical performance and practical
application. Ongoing research focuses not only on enhancing the accuracy and
robustness of jet taggers but also on integrating physical constraints and domain
knowledge into the models, ensuring that they remain grounded in the underlying
physics principles.
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2.3.3 Jet Contamination Sources

So far, we have discussed the reconstruction of jets at the LHC in the simplest
scenario, where the incoming radiations originate from the hard interaction of interest.
However, the LHC environment is filled with additional hadronic events and
unwanted radiation, complicating the jet reconstruction process. These unwanted
contributions come from several sources, such as Pile-Up (PU), Multi-Parton
Interactions (MPI) and the Soft Underlying Event (SUE).

2.3.3.1 Multi-Parton Interactions

Multi-Parton Interactions refer to the phenomenon where multiple independent
scatterings occur between partons within a single proton-proton collision. Although
the primary hard scattering is the focus of most analyses, these additional, softer
interactions can contribute extra hadronic radiation, filling the detector with
low-energy particles that overlap with the jet. MPI can introduce spurious energy into
jets, affecting both their reconstructed mass and substructure.

The complexity of modeling MPI is crucial for accurate jet reconstruction, as it must be
accounted for in both simulations and data. Tools like PYTHIAS [45] are often used to
simulate MPI, with specific “tunes” designed to better reproduce experimental results
by adjusting parameters such as the parton distribution functions and parton shower
models [46]. Additionally, jet grooming algorithms like trimming and pruning help
mitigate the contributions of MPI by removing soft and wide-angle radiation that is
more likely to come from MPI than the hard scatter.

2.3.3.2 Underlying Event

The Underlying Event is the collection of particles produced by the remnants of the
initial proton-proton collision that are not directly involved in the primary hard
scattering. These remnants consist of soft hadrons from the break-up of the initial-state
protons, and while their energy is typically low compared to the jet from the hard

scatter, they are numerous and can affect the overall energy deposition in the detector.

UE contributes an isotropic, soft energy background that can inflate the energy scale of
jets, making it essential to remove or correct for these contributions to accurately
measure jet properties. Theoretical models and event generators like HERWIG [47]
and PYTHIA [45] include parameters for tuning the UE, ensuring that it is well
modelled in simulations [48]. In addition to jet grooming techniques, specific UE
subtraction methods are used to estimate and remove the energy contribution from

UE, leaving behind the more relevant signal from the hard scatter.
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2.3.3.3 Pile-Up

Pile-Up results from multiple proton-proton collisions occurring in the same bunch
crossing. In high-luminosity environments like the LHC, where dozens of interactions
can occur simultaneously, PU introduces a large number of soft particles, especially
low-energy hadrons, which contaminate the detector and overlap with jets of interest.
PU introduces both charged and neutral particles into the jet cone, increasing its

reconstructed transverse momentum (pr) and distorting its substructure.

Mitigation of PU is critical for accurate jet reconstruction. The Pile-Up Per Particle
Identification (PUPPI) algorithm is one of the most effective tools used at the LHC to
reduce PU contamination. PUPPI assigns weights to each particle based on its
likelihood of originating from PU events by considering both its kinematic properties
and proximity to the primary interaction vertex [49]. The method helps suppress
contributions from PU, allowing for a clearer identification of the jets from the hard
scatter.

2.3.4 Jet Grooming

When reconstructing jets at the LHC, the presence of additional radiations can obscure
the features relevant to the analysis, complicating the task of distinguishing the hard
scattering products from unwanted background radiation. This separation is
particularly challenging for hadronic final states, where soft radiation from sources
such as Multiple Parton Interactions (MPI), the Underlying Event (UE), and Pile-Up
(PU) can significantly contaminate the jet structure. The overlapping nature of these
background contributions can inflate the energy of jets, blur their boundaries, and

hinder the identification of meaningful physics signals.

More generally, separating the hard scattering events from these unwanted
contributions—often referred to as “junk”—poses a significant challenge. This is
especially true in the case of hadronic final states, where the inherent complexity of
the LHC environment exacerbates the difficulties. The presence of soft and collinear
radiation from Multiple Parton Interactions can create a dense background of
additional particles that overlap with the jets of interest. Moreover, the Underlying
Event can generate a fluctuating and non-uniform distribution of soft particles that
further complicate the identification of hard scatterings. Pile-Up events, resulting
from multiple simultaneous proton-proton collisions, add yet another layer of
complexity by contributing additional jets and particles that can obscure the features
of the primary jet.

These overlapping contributions can lead to an inflation of jet energy,

misidentification of jet boundaries, and the dilution of signal characteristics, making it
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challenging to extract the meaningful physics signals that are critical for analyses. As
a result, it is essential to apply cleaning techniques to isolate the relevant jets and
mitigate these unwanted contributions. Jet grooming and PU subtraction methods are
employed at the LHC to refine the jet structure, ensuring that only particles pertinent
to the jet substructure study are retained.

In this section, we briefly discuss some key grooming and PU subtraction methods
that help disentangle the true jet signal from the complex environment of the LHC,
allowing for more accurate analyses of hadronic final states.

2341 Jet Trimming

Jet trimming, introduced in [50], is a technique designed to clean up fat jets by
removing soft and wide-angle radiation. This method involves reclustering the
constituents of a fat jet using a smaller radius parameter R and keeping only a subset

of subjets that pass a certain transverse momentum (pr) threshold:

PTi > feutNnard (2.23)

where f.,; is a fixed cut-off parameter chosen arbitrarily and Ay, is some hard scale
chosen depending upon the kinematics of the event. The trimmed jet is formed by
summing the remaining subjets that meet this criterion. The rationale is that radiation
from hard interactions of interest should be concentrated in clusters, and reclustering
with a smaller R helps isolate this radiation from unwanted contributions. While the
kr algorithm is commonly used for this purpose, the Cambridge/Aachen and anti-kr

algorithms can also be employed to recluster the constituents into subjets.

2.3.4.2 Jet Pruning

Another effective grooming method is jet pruning [51]. Jet pruning addresses the issue
of soft, wide-angle emissions that can significantly affect the resultant jet mass and,

consequently, the ability to extract meaningful physics from jet variables.

Pruning operates by first reclustering the jet constituents using the
Cambridge/Aachen (CA) algorithm. The algorithm then iteratively unravels the
clusters, forming a series of splittings. For a specific splitting k — ij, two key

parameters are computed:

, — min(pr, pr)) (2.24)

Prk
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This parameter measures the relative softness of the emissions and is compared with
an input value z.,;. Additionally, the angular separation AR;; of the splitting is

measured against a cut-off value:

AR;; > Dewy (2.25)

For pairs of splittings ij that satisfy z < z.ys and AR;j > Dy, the softer particle (the
one with lower pr) is removed, and the process continues until a sufficiently hard
splitting is found. This method helps in reducing the influence of soft and wide-angle

radiation, leading to a cleaner and more accurate jet structure.

2.3.4.3 Softdrop

More recently, the pruning algorithm has been modified into the so-called Softdrop
algorithm [52]. Softdrop follows a similar procedure to pruning but employs a
different criterion for removing particles. The condition for retaining a pair of particles
ij in Softdrop is that they satisfy:

i i PTj AR\ "
min(pric 1) >zmt( f> : (226)

pri+ Pt Ro

where the softer of i and j is removed if the condition is not met. In this equation, z.,;
and g are input parameters that can be tuned to optimise Softdrop performance. This
method allows for a flexible approach to grooming, where adjusting z.,; and p enables
fine-tuning to retain more of the relevant jet substructure while removing unwanted

soft and wide-angle radiation.

2.3.4.4 PU Mitigation Techniques

One of the widely used methods for mitigating pile-up is the Pile-Up Per Particle
Identification (PUPPI) algorithm [49]. PUPPI capitalises on the ability to trace back the
interaction vertex from which charged tracks originate, allowing the removal of
charged tracks that come from vertices displaced from the primary interaction point of
interest. However, since charged particles account for only about 60% of the emissions
in a proton-proton (pp) interaction, it is also necessary to address the neutral radiation

arising from PU events.

The PUPPI method starts by defining a shape parameter, &, to estimate the likelihood
that a particle originates from a PU event. This parameter is calculated as:
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Pt
;= log ( Z ARZ'®<Rmm S ARi]' S Ro)) , (227)
jE€event )

where O is the Heaviside function, Ry;n is the minimum cut-off that governs the
collinear splittings from 7, and R( defines the cone surrounding the particle i. The
parameter « can be plotted to identify particles originating from PU events.

The neutral PU particles usually exhibit similar patterns to the charged ones, allowing
for effective distinction from particles of interest. This identification procedure
significantly minimises the impact of PU events, enhancing the ability to isolate and

study particles originating from the primary interaction.

Moreover, PUPPI incorporates information from both charged and neutral particles to
create a more comprehensive picture of the event. By doing so, it enhances the
accuracy of jet reconstruction and subsequent analyses. The algorithm uses local shape
variables, such as «, to assign weights to each particle, effectively suppressing those
likely to be from PU while retaining those from the primary interaction. This method
not only cleans up the jets but also preserves the essential features needed for detailed
physical analyses, making it a crucial tool in high-energy physics experiments.

Overall, PUPPI and similar PU mitigation techniques are vital for ensuring that
analyses conducted at the LHC and other high-energy physics experiments are
accurate and reliable, free from the distortions introduced by extraneous PU

interactions.

2.3.5 Jet Structure and Substructure
2.3.5.1 Jet Shapes Variables

There are predictions that can be made for the distributions of jets from QCD. Event
shape variables are an example of this. Comparisons between various MC event
generation algorithms show the shape variables measured on jets to be relatively
insensitive to the details of the MC simulation used [53]. Thus, these variables are
good comparisons, even including the uncertainties of simulation. Here, 6 common
shape variables are described;

* Jet mass: a jet’s momentum is the combined 4-momentum of all reconstructed
particles assigned to the jet. The invariant jet mass spectrum is simply the
invariant mass of the momentum of one or more of the jets. It can be calculated
for more than one jet in each event, or just of the highest pr jet of each event.
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¢ Thrust: is a description of how much of the jet momentum goes along the
dominant axis. It is calculated as
2y ipi- 1
T — min 2= Pt (2.28)
e Yilpil
where i sums over all jets, or sometimes only a subset of the jets, in the event.

The factor of 2 being customary, but sometimes omitted.

¢ Thrust major and minor: measures of thrust in other directions. Thrust major is

defined as

. 2).ipi-fim
Ty = min —“—L————, 2.29
M vehrin=0 Y |pil (2.29)

so it is the same as thrust, only its axis, 1), is required to be perpendicular to the

thrust axis, ;. Thrust minor has its axis, 71, perpendicular to both 7; and 7. Its

axis is 71, = 7; X 11, thus no minimisation is needed. It is calculated as
_2)pic iy

T,=——— 2.30
¥ pil (2:30)

* Oblateness: this is a property also used in earth science to describe the shape of
the earth. It is calculated from the thrust major and the thrust minor as [54]

Op = Tt — T (2.31)

Conceptually, this measures how squished the event is.

* Sphericity: heuristically this can be seen as a measure of how far the event
deviates from a spherical configuration. It is calculated by first constructing the
momentum tensor;

pipP
58 = LiPiPi (2.32)
i | pil

where «, B are x, y or z, thus S*Pisa3 by 3 tensor, and the sum over i sums over

all momentum vectors of the jets (or some subset). By calculating the
eigenvalues of the momentum tensor, A; > A, > A3, the event sphericity can be
written as S = 3 (A, + A3) [55]. This is equivalent to calculating

(2.33)

. 3Yi(pi — pifs)?
S = .
e 2i(p)?

The vector 11, is referred to as the sphericity axis [56].

* Spherocity: has a definition that at first glance appears similar to sphericity [56]

b (AL = ping) )
S —m1n< ] > (2.34)

S



32 Chapter 2. Jet Physics

However, on closer inspection, it becomes clear that taking the square out of the
sum means that jet momentum vectors going in opposite directions will cancel.

This is now measuring how spherical and how balanced the event is.

These quantities are sensitive to IR behaviour, and so having IR safe jets is required to

make predictions about their distributions.

2.3.5.2 N-Subjettiness

N-subjettiness [57] is a powerful and widely-used method for analysing the
substructure of jets in high-energy physics. This parameter is designed to quantify
how consistent a jet is with the hypothesis that it contains a certain number of subjets,
offering insight into the jet’s internal composition.

The N-subjettiness of a jet k, denoted as Ty, is defined by the following measure:

1 .
TNk = dio ZPT’i min (ARZ])/ (235)

jéEsubjets of jet k

where the label j identifies the candidate subjets inside jet k for which Ty is being
computed, and the sum iterates over all constituent particles i within jet k. The
restriction j € subjets of jet k ensures that the min function considers only those
subjets associated with jet k. The min(...) function selects the subjet j with the
smallest angular distance AR to a given constituent particle i. The leading factor dy

normalizes this measure and is given by:

dy =) priR, (2.36)

where R is the characteristic radius parameter used during the jet clustering process.

Interpreting Ty is straightforward: the value of Ty indicates how much the jet k
deviates from being composed of exactly N subjets. A smaller Ty value implies that
the jet is well-aligned with the hypothesis of having N subjets, meaning the jet’s
radiation is concentrated around these subjets. Conversely, a larger Ty, value suggests
significant radiation exists away from the N candidate subjets, indicating the presence
of additional substructure or more complex internal dynamics.

For example, if for a given jet k, we compute Ty, > 0, this indicates substantial
radiation not aligned with the two candidate subjets, suggesting a more complex
internal structure. On the other hand, if 13, ~ 0, it implies that most of the radiation
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within jet k is concentrated around the three candidate subjets, consistent with the jet
having a three-pronged structure.

The ability to discern the internal structure of jets using N-subjettiness makes this
method a crucial tool in particle physics, particularly for distinguishing between jets
originating from different sources. For instance, quark and gluon jets typically exhibit
different N-subjettiness distributions due to their differing radiation patterns.
Moreover, jets originating from heavy particles, such as top quarks or W bosons, often
exhibit specific substructure signatures that can be effectively captured and analyzed
using N-subjettiness. This capability is especially valuable in searches for new
physics, where distinguishing signal jets (like those from new particles) from
background jets (such as those from QCD processes) is critical.

Overall, N-subjettiness provides a quantitative and interpretable means of probing the
fine details of jet structure, making it an indispensable technique in the study and

identification of jets in high-energy particle collisions.
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Chapter 3

Machine Learning in High Energy
Physics

The unprecedented scale and complexity of data generated by modern particle physics
experiments, such as those at the LHC, have outpaced traditional analysis methods.
Machine learning has emerged as a vital tool in this context, offering powerful
solutions for event reconstruction, jet tagging, anomaly detection, and more. By
leveraging ML techniques, particularly advanced models like Graph Neural Networks
(GNNs), researchers can efficiently analyse vast datasets, uncovering patterns and
insights that are crucial for advancing our understanding of high-energy physics.

3.1 The Big Challenge in HEP

Modern particle physics experiments, such as those conducted at the LHC at CERN,
generate unprecedented amounts of data. The LHC, the world’s largest and most
powerful particle accelerator, can produce petabytes of data annually. Up to about 1
billion particle collisions can take place every second inside the LHC experiment’s
detectors. It is not possible to read out all of these events in real-time. Therefore, a
‘trigger” system is employed to filter the data and select events that are potentially

interesting for further analysis.

Even after the drastic data reduction performed by the experiments, the CERN Data
Centre processed an average of one petabyte (one million gigabytes) of data per day
during LHC Run 2. The LHC experiments plan to collect more data during LHC Run 3
than they did in the first two runs combined. This increase means that the computing
challenge during Long Shutdown 2 was to prepare for storing and analysing more
than 600 petabytes of data (600 million gigabytes), which is equivalent to over 20,000
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years of 24 /7 HD video recording [58]. This data encompasses billions of collision
events, each containing intricate details of particle interactions and decay processes.

Traditional data analysis techniques, which have served the field of high energy
physics well in the past, are now facing significant challenges due to the sheer volume
and complexity of the data. Standard methods rely heavily on manual tuning and
predefined criteria, which become increasingly difficult to manage as data grows in
scale and complexity. The process of sifting through this massive dataset to identify

significant events or rare phenomena is akin to finding a needle in a haystack.

Moreover, the complexity of the data itself poses another layer of difficulty. Each
collision event can produce a multitude of particles, whose interactions need to be
meticulously tracked and analysed. This task demands not only substantial
computational resources but also sophisticated algorithms capable of discerning
subtle patterns and correlations within the data. A classic example is the difficulty
presented by pileup, where multiple proton-proton collisions occur in the same bunch

crossing, making it challenging to disentangle individual particle tracks.

Given these challenges, there is a pressing need for innovative approaches that can
handle large-scale data efficiently and effectively. Machine learning emerges as a
powerful solution to this problem. Unlike traditional methods, machine learning
algorithms are designed to learn from data, recognising patterns and making
predictions without being explicitly programmed for each task. This capability makes
ML particularly well-suited for analysing complex and high-dimensional data typical
in HEP.

By leveraging machine learning, researchers can automate the analysis process,
enabling them to uncover insights that would be difficult, if not impossible, to detect
through conventional means. Machine learning models can be trained to identify
specific signatures of interest, classify events, and even detect anomalies that may
indicate new physics phenomena. This adaptability and efficiency make machine

learning an indispensable tool in the modern particle physicist’s toolkit.

In summary, the massive data output from contemporary particle accelerators
presents a significant challenge to traditional analysis techniques. Machine learning
offers a promising avenue to meet this challenge, providing the means to extract
meaningful insights from the data deluge and pushing the boundaries of our
understanding in high energy physics.

3.2 Machine Learning as a Solution

Machine learning is a subset of artificial intelligence focused on developing

algorithms that allow computers to learn from and make predictions based on data.
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Unlike traditional programming, where explicit instructions are provided to achieve a
specific outcome, machine learning algorithms identify patterns and relationships
within data autonomously. This capability to learn and adapt without being explicitly
programmed for each task makes ML particularly powerful for handling large and
complex datasets.

In the context of high energy physics, machine learning has become an invaluable tool
for analysing the massive amounts of data generated by particle accelerators. Machine
learning algorithms can be trained to recognise complex patterns in particle physics
data that might be difficult, if not impossible, for humans to discern. For instance,
identifying rare particle interactions or distinguishing between different types of
particles based on their decay signatures requires analysing a vast number of variables
simultaneously. ML excels at such high-dimensional data analysis, making it an ideal

solution for these challenges.

Machine learning techniques can be broadly categorised into supervised and
unsupervised learning, each offering unique advantages for different types of
problems in HEP.

Supervised Learning

Supervised learning involves training a model on a labelled dataset, where the correct
output (label) is provided for each input example. The model learns to map inputs to
outputs by minimising the difference between its predictions and the actual labels. In
HEP, supervised learning is often used for tasks such as classification and regression.
For example, classifiers can be trained to identify whether a collision event
corresponds to a specific particle type or to predict certain properties of particles
based on their observed behaviours.

Example Application:

¢ Jet tagging, where jets resulting from particle collisions are classified as
originating from quarks, gluons, or other particles, can benefit from supervised
learning. By training on a labelled dataset of jets, the model can learn the
distinguishing features of each type, improving the accuracy of event
classification. We will talk more about this in Chapter 5.

¢ Jet Clustering, where events, which are the results of particle collision will be
grouped into jet clusters, identifying and removing the background noise from
the jets. We will talk more about this in Chapter 4.

Unsupervised Learning

Unsupervised learning, on the other hand, deals with unlabelled data. The goal is to
uncover hidden patterns or structures within the data without prior knowledge of the
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outcomes. This approach is particularly useful for exploratory data analysis and
anomaly detection in HEP. By clustering similar data points or identifying outliers,
unsupervised learning algorithms can reveal new insights and potentially discover

unknown physics phenomena.

Example Application:

¢ Anomaly detection in collision events can be approached using unsupervised
learning. By identifying events that significantly deviate from the norm,
researchers can pinpoint rare or unexpected occurrences that might indicate new
physics beyond the Standard Model.

¢ Jet Tagging, same example as in the supervised method, but this time the we

leverage symmetries to learn about different types of jets, Chapter 5.

3.3 Applications of Machine Learning in HEP

Machine learning has become an indispensable tool in high energy physics, offering
novel solutions to a wide range of challenges. From event reconstruction to anomaly
detection, ML algorithms are transforming how physicists analyse and interpret vast
amounts of data. In this section, we explore several key applications of machine
learning in HEP: event reconstruction, jet classification, anomaly detection, and

simulation and data generation.

3.3.1 Event Reconstruction

Event reconstruction involves interpreting the raw data collected from particle
detectors to infer the properties and trajectories of particles produced in collisions.
Traditional methods rely on deterministic algorithms and manual tuning, which can
be limited in handling the complexity and volume of data produced by modern
experiments. Although these methods do not require any training, which can be an
advantage, they are limited in that they cannot extrapolate hidden features or
symmetries from the data.

In Chapter 4, we will discuss a novel ML method used for reconstructing events,
specifically clustering the final state particles into jets. The main advantage of this new
method, spectral clustering, is that it projects the particles into a new space by
considering their distances in the collider. In this new embedding space, a different
metric can be used to infer the proximity of particles that belong to the same cluster.
Although it is a relatively slow algorithm, it achieves impressive results,
outperforming the most robust and popular clustering methods. Unlike most popular



3.3. Applications of Machine Learning in HEP 39

machine learning models, especially deep learning models, it is not a black box,
allowing for further studies to better understand the clustering process.

If we are willing to trust a black box, other ML algorithms, particularly deep learning
models, can achieve extremely high performance. These models are adept at handling
the high-dimensional and noisy data typical in event reconstruction and are capable of
extracting hidden features from the data. The advantage of these methods is that they
can be trained on huge amounts of data, from which they can infer and learn hidden
or not immediately visible features, helping the model resolve events and cluster

particles effectively.

Various models can be used depending on how the event data is represented, as
discussed in Section 3.4. Some of the most popular include Graph Neural Networks
[59-61], which are particularly useful because the particles in the event can be
naturally described as a graph if connections are made between them, for example,
based on their distances. These models are extremely helpful as they can handle
events of different sizes, with each event containing a different number of particles.
Other methods include Convolutional Neural Networks, which are useful if we want

to represent the data as an image [62].

3.3.2 Jet Classification

Jet classification, or jet tagging, is the process of identifying the origin of jets produced
in high-energy collisions. Jets can originate from various particles, such as quarks,
gluons, or more complex objects like top quarks and Higgs bosons. Accurate

classification is crucial for understanding the underlying physics of collision events.

For this specific task, deep learning methods are by far the most powerful and reliable.
The concept is as simple as training a neural network to distinguish an image of a dog
from an image of a cat. In our case, instead of presenting millions of animal images,
the dataset comprises millions of jets. Typically, models are initially trained for binary
classification, such as distinguishing W boson (or top quark) jets from QCD jets. Once
again, Graph Neural Networks are state-of-the-art for solving classification problems,
as we will explore later in this chapter. Before representing jets as graphs became
popular, several studies focused on representing jets as images, which is why many
Convolutional Neural Networks perform exceptionally well for this task [63; 64].

With the recent introduction of one of the most effective architectures ever
invented—transformers—the current best-performing model is ParT [65]. This
complex model achieves impressive results in classifying several classes. These
remarkable results have been achieved not only due to the powerful architecture itself
but also thanks to the incredibly large datasets used and the resources required to

train such a model over a long period, which necessitates many GPUs.
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3.3.3 Anomaly Detection

Anomaly detection in high-energy physics is a crucial technique aimed at identifying
rare or unexpected events in particle collision data that deviate from known physics
processes. This approach is particularly valuable for discovering potential new
particles or interactions without relying on specific theoretical models. However,
anomaly detection in HEP faces significant challenges, including the need to process
vast amounts of high-dimensional data, the rarity of potential anomalous events, and
the complexity of background processes. Machine learning techniques have emerged
as powerful tools to address these challenges, offering the ability to analyse complex
data patterns, handle high-dimensional spaces, and identify subtle deviations from
expected behaviours. [66] provides a comprehensive review of different approaches to

anomaly detection.

3.3.4 Anomaly Matching

Anomaly matching is a technique in HEP that builds upon anomaly detection
methods to not only identify unusual events but also to categorise and match them to
potential new physics scenarios. The primary challenge in anomaly matching lies in
developing algorithms that can effectively search the parameter space of theoretical
models to fit the model to the anomaly. Machine learning techniques are becoming
increasingly popular as they are well-suited to address these challenges due to their
ability to learn complex patterns and relationships in high-dimensional data. [67]
provides a comprehensive review of the machine learning techniques used in anomaly

matching.

An approach we worked on leverages machine learning based on a multi-objective
active search method called b-CASTOR [68] (an adaptation of the constraint active
search [69]), which achieves high sample efficiency and diversity due to the use of
probabilistic surrogate models and a volume-based search policy, outperforming
competing algorithms, such as those based on Markov-Chain Monte Carlo (MCMC)
methods [70; 71]. Additionally, a remarkable result is the use of Gaussian Processes
[72] to create a surrogate model, which avoids the repeated use of physics software to
evaluate data points, significantly speeding up the search and providing data with

uncertainty.

3.3.5 Simulation and Data Generation

Simulation is an essential part of high-energy physics, providing synthetic data crucial
for experiment planning, detector design, and hypothesis testing. Traditional

simulation methods, such as those employed in well-established software packages
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like Pythia [45; 73] and Herwig [47], use Monte Carlo methods [74] to model the
complex processes occurring in particle collisions. These simulations are highly
detailed and accurate, allowing researchers to predict the outcomes of various
high-energy interactions. However, they are computationally intensive and can
become a bottleneck in large-scale studies, especially when vast amounts of data are
required for comprehensive analyses.

Pythia and Herwig are among the most widely used tools in the HEP community for
event generation. They simulate the physics of particle collisions, including the parton
shower, hadronisation, and decay processes, based on well-understood theoretical
models. These programs rely heavily on Monte Carlo simulations, a method that uses
random sampling to simulate the probabilistic nature of particle interactions. While
these traditional methods are robust and have been indispensable in the field, they
require significant computational resources, particularly when generating large

datasets or running simulations for complex event topologies.

Given these challenges, machine learning methods have emerged as powerful tools
for data generation. Generative models, such as Generative Adversarial Networks
(GAN ) [75] and Variational Autoencoders (VAEs) [76; 77], offer a promising
alternative to traditional simulation techniques. These models can learn from existing
datasets and generate high-fidelity synthetic data that closely mimics the properties of
actual collision events. The main advantage of using ML-based generative models is
their ability to produce large-scale datasets more efficiently, reducing the

computational load and accelerating the simulation process.

For example, [78] demonstrated the potential of GANSs in generating realistic jet
images, offering a complementary approach to traditional methods. Similarly, [79]
explored the use of VAEs. These models not only speed up data generation but also
introduce new possibilities for creating diverse datasets that can be used for training
and validating other ML models in HEP. Moreover, ML-generated data can be

fine-tuned to explore rare scenarios.

3.4 Representations of Jets

Jets, collimated streams of particles resulting from high-energy processes, are
fundamental objects of study in high energy physics. Accurately representing jets is
crucial for analysing their properties and behaviours. Various representations have
been developed to capture the complex structure of jets, each with its advantages and
challenges. Below, we explore four common representations: jet images, point clouds,

trees, and graphs.
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3.4.1 Jets Images

Jet images represent jets as two-dimensional histograms or images, where the pixel
intensities correspond to the energy deposits of particles within a detector. This
approach leverages techniques from computer vision, making it possible to apply
convolutional neural networks (CNNs) [80] for jet classification and analysis.

¢ Advantages: Jet images allow for the application of mature image processing
techniques and deep learning models developed for image recognition tasks.
This can lead to high accuracy in tasks like jet tagging.

¢ Challenges: One limitation of jet images is the potential loss of information due
to discretisation when converting continuous particle data into pixel values.

Additionally, the spatial resolution is limited by the pixel size.

Jet images were first introduced in [3] and have since been utilised and refined by
subsequent studies [81-83]. The initial step in creating jet images is to approximate the
calorimeter as a single-layered grid. For example, cells of Ay x A¢ = 0.1 x 0.1
spanning [—2.5,2.5] in 7 and [0, 27| in ¢ can be used to show the amount of transverse
momentum (pr) carried by the particle position in each cell.
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FIGURE 3.1: Image [3] of the average jet with a transverse momentum (pr) of approx-
imately 200 GeV, shown (A) before pre-processing and (B) after pre-processing, where
the new coordinate system (Q1 — Q2) is introduced following the rotation.

Pre-processing is paramount to accurate jet image classification. In addition to
standard physics pre-processing steps, several image-specific augmentations can
enhance model performance. These augmentations help the CNN recognise
symmetries during training. Typical augmentations include:
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* Rotation: Rotation is performed to account for the stochastic nature of the decay
angle relative to the # — ¢ coordinate system.

¢ Translation: The jet image is translated such that the energy centroid or leading

subjet is centred in the same pixel.

* Reflection: The image is reflected over the vertical axis, ensuring that the side of

the image with maximal transverse energy always appears on the right side.

These augmentation techniques are illustrated in Figure 3.1.

3.4.2 Point Clouds

Point clouds represent jets as a collection of points in space, where each point
corresponds to a detected particle with attributes such as momentum, energy, and
spatial coordinates. This representation maintains the continuous nature of particle

data and can be processed using techniques from 3D data analysis.

¢ Advantages: Point clouds preserve detailed information about each particle,
allowing for more precise analysis of jet substructure. Furthermore, point cloud
methods can handle the unordered nature of particle sets, ensuring that the
order of the particles does not affect the analysis.

¢ Challenges: Handling variable-sized point clouds and ensuring efficient
processing can be computationally demanding. Moreover, processing large
point clouds requires significant computational resources. Finally, developing
robust algorithms to process point clouds requires addressing issues related to
permutation invariance and local neighbourhood structures.

Jets can be effectively analysed as point clouds, capturing the full kinematic and
spatial details of particles. The paper [21] introduces a novel approach to processing
and learning from collider events using point clouds. This method respects the
variable-length and unordered nature of particle sets, addressing the limitations of

traditional neural network architectures.

In their work, they introduce Energy Flow Networks (EFNs) and Particle Flow
Networks (PFNs). EFNs specifically target infrared and collinear safety by
incorporating particle energy or transverse momentum as weights in the summation
over particles. PFNs, on the other hand, provide a more general framework that
allows for the inclusion of various particle-level features such as charge and flavour.

To create input data as point clouds, each particle in a jet is represented by its features,

such as transverse momentum, rapidity, and azimuthal angle. These features form a
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multidimensional point for each particle, which collectively constitute the point cloud
of the jet. The network architecture processes these point clouds by mapping each
particle to an internal latent space and summing these representations to form an
overall event representation. This approach preserves the permutation invariance and
variable length properties of the particle sets, making it well-suited for jet physics

applications.

3.4.3 Trees

Tree representations of jets model the hierarchical nature of particle showers. In this
approach, jets are represented as binary or multi-branch trees, where each node
represents a particle, and branches represent the splitting processes during the jet

formation.

* Advantages: Tree structures naturally align with the physical process of jet
formation, making them intuitive for modelling particle decays and splittings.
Recursive neural networks and tree-based models can exploit this hierarchical

information effectively.

¢ Challenges: Constructing accurate tree representations requires detailed
tracking of particle interactions and decay processes. Ensuring that the tree
structure faithfully represents the underlying physics can be complex, especially

in dense jet environments.

Tree representations of jets are typically constructed by re-clustering the jet
constituents using classical clustering algorithms. These algorithms, which are greedy
in nature, merge pairs of particles iteratively until a complete tree structure is formed.

Here is an outline of the process:

¢ Initial Jet Constituents: The starting point is the set of particles that form the jet,

each characterised by its four-momentum.

¢ Clustering Algorithm: Algorithms such as kr, Cambridge/Aachen, or anti-kr
are applied. These algorithms determine which pairs of particles to merge based
on distance metrics that favour the merging of nearby particles.

¢ Binary/Multi-Branch Tree Formation: At each step of the clustering process, the
closest pair of particles is merged into a single pseudo-particle. This process is
repeated iteratively, creating a binary or multi-branch tree that traces back the

merging steps.
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* Tree Nodes and Branches: Each node in the tree represents a particle or
pseudo-particle, and each branch represents the merging of two particles,
reflecting the hierarchical nature of the particle shower.

Tree-based representations have been used in various studies to enhance jet analysis.
One notable example [84] uses recursive neural networks (RNNs) [85] are applied to
tree structures. This study demonstrates that different tree topologies can lead to
different performances in jet tagging tasks. The hierarchical structure of the tree
allows the RNN to capture complex dependencies and patterns in the jet substructure,

improving the accuracy of particle identification and classification.

Another innovative application is LundNet [86], which employs graph neural
networks to augment tree representations. LundNet embeds the tree into the Lund
Plane, a theoretical framework that organises the splittings in a jet according to their
scales. By augmenting the tree with additional features in this embedding, LundNet
effectively captures the intricate details of the jet formation process. More details on

this approach will be discussed in Section 3.5.3.

In summary, tree representations provide a powerful and intuitive way to model the
hierarchical nature of jets, and when combined with advanced machine learning

algorithms, they offer significant improvements in jet analysis and classification tasks.

3.4.4 Graphs

Graph representations of jets capture the relational structure between particles by
modelling them as nodes connected by edges. Each node represents a particle, and
edges encode the relationships (e.g., proximity, kinematic correlations) between

particles.

¢ Advantages: Graphs provide a flexible and powerful way to model complex
dependencies and interactions between particles. Graph neural networks can be
employed to learn from these relational structures, offering state-of-the-art

performance in various jet analysis tasks.

¢ Challenges: Designing effective graph architectures and determining
appropriate edge connections are non-trivial tasks. Computational efficiency and

scalability can also be concerns when dealing with large and complex graphs.

Graph representations of jets can be constructed by defining particles as nodes and

their relationships as edges. One common method to establish these relationships is
by using the k-nearest neighbours (kNN) algorithm in the # — ¢ space, as shown in
Figure 3.2.
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FIGURE 3.2: An example of a graph representation of a particle event, where particles
are nodes and the edges represent relationships established using the k-nearest neigh-
bours algorithm in the 7 — ¢ space.

¢ Initial Jet Constituents: Start with a set of particles that form the jet, each
characterised by their kinematic properties (e.g., transverse momentum pr,

pseudorapidity 1, and azimuthal angle ¢).
¢ Defining Nodes and Edges:

— Nodes: Each particle in the jet is represented as a node in the graph.

— Edges: Use the kNN algorithm to determine the edges. For each node,
identify the k nearest particles in the 17 — ¢ space, creating edges between
them. The distance metric typically used is AR = /(Ay)? + (A¢p)?, where
An and A¢ are the differences in pseudorapidity and azimuthal angle,

respectively.

¢ Edge Features: The edges can also be augmented with features such as the
distance AR or kinematic correlations between the connected nodes, providing
additional information to the GNN.

Graph-based representations can be applied both for clustering the entire event or for

tagging individual jets. When used for clustering the entire event, graphs can model

the interactions and relationships between all particles in the event. This holistic

approach allows for comprehensive analysis of the event structure, aiding in tasks
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such as event classification and anomaly detection. For jet tagging, graphs are
constructed for individual jets, focusing on the relationships between particles within
the jet. This localised graph structure enables precise identification of the jet’s origin
and characteristics. GNNs can exploit these relational structures to enhance the
performance of jet tagging algorithms. Graphs will be discussed in more details in
Section 3.5.

3.5 Focus on Graph Neural Networks (GNN5s)

3.5.1 Definition of a Graph
A graph G is formally defined as an ordered pair (V, E) where:

¢ V: A finite, non-empty set of vertices (also called nodes or points). This set
represents the objects or entities within the system being modelled. We denote

the cardinality of this set as |V|, representing the number of vertices in the graph.

* E: A set of edges (also called links or arcs), where each edge is a connection
between two vertices in V. Mathematically, an edge is typically represented as an
unordered pair u, v, where u and v are distinct vertices in V. The cardinality of
this set, |E|, indicates the number of edges in the graph.

v w

FIGURE 3.3: A simple example of a graph.

In Figure 3.3 we can see an example of a simple graph G whose vertex set V(G) is
u,v,w,z, and whose edge set E(G) consists of the edges uv, uw, vw and wz.

Types of Graphs

Graphs can be classified based on the properties of their edges:

¢ Undirected Graph: Edges have no direction, meaning the edge u,v is equivalent

to v,u. The relationship between connected vertices is symmetric.
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¢ Directed Graph (Digraph): Edges have a specific direction. The edge (u,v)
indicates a connection from vertex u to vertex v, but not the reverse. The

relationship is asymmetric.

* Weighted Graph: Each edge is assigned a numerical value or weight,
representing the strength, cost, or some other property of the relationship
between the vertices it connects.

¢ Simple Graph: An undirected graph with no self-loops (edges connecting a
vertex to itself) and no multiple edges between the same pair of vertices.
Basic Graph Notation
Before continuing, just some basic notation for simplifying further reading:
¢ Adjacency: we say that two vertices u and v are adjacent if there is an edge
connecting them

¢ Neighbourhood: The neighbourhood of a vertex v is the set of all vertices

adjacent to v.

* Degree: In an undirected graph, the degree of a vertex is the number of edges
incident to it (i.e., the number of edges connected to it). In a directed graph, we
distinguish between in-degree (number of incoming edges) and out-degree
(number of outgoing edges).

Graphs as a Universal Representation

Graphs offer a versatile framework for modelling complex systems, enabling precise
analysis and algorithm development for tasks like clustering, classification, and
prediction. Interestingly, almost anything can be represented as a graph:

¢ Images: Pixels as nodes, edges connecting neighbouring pixels based on

proximity or similarity.

¢ Text: Characters, words, or tokens as nodes, edges connecting them based on

sequence or co-occurrence.

* Molecules: Atoms as nodes, bonds as edges, potentially weighted by bond
strength.

¢ Particle Jets: Particles as nodes, edges representing interactions or proximity.

In the following chapters, we’ll delve deeper into the power of graph representations,
especially when it comes to analysing the complex structure of particle jets
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3.5.2 Graph Neural Networks

A Graph Neural Network is a machine learning model designed to operate on data
structured as graphs. Graphs consist of nodes (entities) connected by edges
(relationships), making them a natural way to represent many real-world datasets,

from social networks to molecular structures.

At its core, a GNN takes two primary inputs:

* Node Embedding (X): These are vector representations of the nodes, capturing
their individual features or attributes.

¢ Adjacency Matrix (A): This matrix encodes the connectivity of the graph,
indicating which nodes are linked by edges.

The GNN then processes these inputs through a series of layers, typically referred to
as convolutional layers in the context of Graph Convolutional Networks (GCNs).
Each layer updates the node embedding to incorporate information from the
surrounding neighbourhood within the graph. This process continues iteratively,
producing intermediate “hidden” representations (H;) at each layer. The final layer
outputs the final node embedding (Hg), which now encapsulate information about

each node and its context within the broader graph structure.
We can express each layer of a GCN as a function F[-] with parameters ®:

Hy = F[X, A, ¢o]
H, = F[Hy, A, 1]

Hg = F[Hk-1, A, ¢px—1]

where X is the input, A the adjacency matrix, Hy contains the modified node
embedding at the k" layer, and ¢, denotes the parameters that map from layer k to
layer k + 1.

Permutation Equivariance

A fundamental property of graphs is that the indexing of nodes is arbitrary. The
structure remains the same regardless of how we order the nodes. Therefore, it’s

crucial that GNNSs respect this permutation invariance.

In other words, each layer of the GNN must be permutation equivariant. This means
that if we permute (reorder) the nodes in the graph, the resulting node embedding at

each layer will be permuted in the same way. This ensures that the GNN's output is
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consistent with the underlying graph structure and does not depend on arbitrary node

ordering.
Parameter Sharing

Fully connected networks applied to images can be inefficient, as they require learning
object recognition at each image position independently. Convolutional layers offer a
more suitable approach by processing every image position uniformly. This reduces
the number of parameters and imposes a bias that enforces consistent treatment of

different image regions.

A similar rationale applies to nodes within a graph. Learning with separate
parameters for each node would require the network to independently grasp the
meaning of connections at every position, necessitating extensive training on graphs
with identical structures. Instead, constructing a model with shared parameters for
every node not only reduces the parameter count but also enables knowledge sharing

across the entire graph.

Convolution operations involve updating a variable through a weighted sum of
neighbouring information. This can be interpreted as each neighbour sending a
message, which is then aggregated to form an update. While images involve fixed-size
square regions around each pixel, graphs present varying neighbour counts and no
consistent spatial relationships. Therefore, unlike images, there’s no inherent notion of
weighting information from one node differently based on its relative position to

another.
Tasks

Supervised learning tasks on graph data generally fall into three distinct categories,
each with unique goals and applications within the field of jet physics, Figure 3.4.

¢ Graph-Level Tasks: In these tasks, the goal is to predict a property or label for
the entire jet, treating it as a single entity. The model considers both the jet’s
internal structure (how its constituent particles are connected) and the features
of these particles to make a holistic prediction.
Example: Jet Tagging. A classic example of a graph-level task is jet tagging.
Here, the objective is to determine the origin of a jet, distinguishing between jets
originating from specific particles (e.g., W bosons, top quarks, Higgs bosons)
and those arising from background processes like QCD. The model analyses the
relationships between particles within the jet, as well as their individual
properties (such as energy and momentum), to assign a probability for each
possible jet origin.
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FIGURE 3.4: Common tasks for graphs. In each case, the input is a graph represented
by its adjacency matrix and node embedding. The graph neural network processes the
node embedding by passing them through a series of layers. The node embedding at
the last layer contain information about both the node and its context in the graph. a)
Graph classification. The node embedding are combined (e.g., by averaging) and then
mapped to a fixed-size vector that is passed through a softmax function to produce
class probabilities. b) Node classification. Each node embedding is used individu-
ally as the basis for classification (cyan and orange colours represent assigned node
classes). c) Edge prediction. Node embedding adjacent to the edge are combined (e.g.,
by taking the dot product) to compute a single number that is mapped via a sigmoid
function to produce a probability that a missing edge should be present.

* Node-Level Tasks: Node-level tasks focus on making predictions about the
individual particles within a jet. This involves assigning a label or value to each
particle based on its features and its interactions with other particles in the jet.
Example: Particle Identification and Clustering. In jet physics, node-level tasks
are commonly used for particle identification. By examining a particle’s
properties and its role in the jet’s structure, a GNN can classify it as a quark,
gluon, or other fundamental particle. Similarly, node-level predictions can be
employed for clustering particles within a jet, grouping them based on their

shared characteristics or relationships.

¢ Edge Prediction Tasks: Edge prediction tasks focus on the relationships between
particles within a jet. The goal is to predict whether a connection (edge) exists
between two particles or to estimate the strength of an existing connection.
Example: Jet Substructure Analysis. Edge prediction can be applied to analyze
the substructure of jets. By predicting which particles are most likely to be
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directly related through the underlying physics processes, we can gain insights
into the jet’s origin and the dynamics of the particle collision that produced it.
Additionally, the strength of predicted edges can offer valuable information
about the hierarchical structure within the jet.

3.5.3 Jet Taggers with the use of GNNs.
3.5.3.1 ParticleNet

ParticleNet, a pioneering approach introduced in [87], has emerged as a leading
architecture in the realm of Graph Convolutional Neural Networks for jet tagging
tasks in high-energy physics. Its unique strength lies in its innovative representation
of jets as “particle clouds,” unordered sets of particles analogous to point clouds in
computer vision. This representation intrinsically respects the permutation symmetry
inherent in particle physics data, a crucial aspect often overlooked by traditional
methods.

A key innovation of ParticleNet is its integration of Dynamic Graph CNN (DGCNN)
[88], where the graph structure is dynamically updated after each EdgeConv block.
This continuous refinement of particle neighbourhoods enhances the model’s ability
to capture evolving relationships between particles as it learns higher-level

representations.

At the heart of ParticleNet’s architecture is the Edge Convolution (EdgeConv)
operation. This operation is designed to learn on graphs where nodes represent
particles and edges connect each particle to its k nearest neighbours. By learning a
shared function that transforms the features of each particle and its neighbours,

EdgeConv ensures permutation invariance while effectively capturing local particle
()

interactions. The EdgeConv operation for each node x; "/, at step (I) for its update at

step (I + 1) has the form:

(I+1)

x; /= max (O- (x](l) - xfl)) +o- xz.(l)) (3.1)

JEN ()

where N (i) is the neighbour of x;, and ® and ® are linear layers. In Figure 3.5 we can
see how an EdgeConv can be constructed explicitly. In this case it consists of three
layers for this shared MLP, each consisting of a linear layer followed by a batch
normalisation (BN) [89] and a ReLU activation [90]. Then, an aggregation step is
performed for the node by taking an element-wise average of the learned edge
features of all the incoming edges. A shortcut connection [91] is also added to take the
original node features into account directly, and the node feature is then updated to
the new value.
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ParticleNet employs multiple EdgeConv blocks, Figure 3.5, in a hierarchical manner,
enabling the network to learn features at various scales. The initial block utilises
spatial coordinates (pseudo-rapidity and azimuth) to define particle neighbourhoods,
while subsequent blocks leverage learned features as coordinates. This dynamic
approach allows the network to adapt its understanding of particle relationships as it
progresses through deeper layers, capturing both local and global jet features. After a
few EdgeConv blocks, a global average pooling is applied to read out information
from all nodes in the graph. This is followed by a fully connected layer before the final
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FIGURE 3.5: (A) The structure of the EdgeConv block. (B) The architecture of Parti-
cleNet on the right.

It is worth mention that the input data for this model consists of only the kinematic
information, i.e. the 4-momentum (px, py, pz, E) , of each constituent of the jets. Based
on these information, the features are enlarged with other variables derived from the
4-momentum, which are listed in Table 3.1. The (A, A¢) variables are used as
coordinates to compute the distances between particles in the first EdgeConv block.
They are also used together with the other five variables, logpr, logE, Zog%, log%
and AR, to form the input feature vector for each particle.
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Variable Definition
Ay difference in pseudo-rapidity between the particle and the jet axis
A¢p difference in azimuthal angle between the particle and the jet axis
log pr logarithm of the particle’s pr
log E logarithm of the particle’s energy
log L logarithm of the particle’s pr relative to the jet pr
p
log % logarithm of the particle’s energy relative to the jet energy
AR angular separation between the particle and the jet axis < (An)? + (Aqb)2>
q electric charge of the particle
isElectron if the particle is an electron
isMuon if the particle is a muon
isChargedHadron | if the particle is a charged hadron
isNeutralHadron | if the particle is a neutral hadron
isPhoton if the particle is a photon

TABLE 3.1: Variables used by ParticleNet for jet tagging, including kinematic and par-
ticle identification features (these only used for the quark-gluon tagging task.

ParticleNet’s efficacy has been demonstrated through its state-of-the-art performance
on benchmark jet tagging tasks, including the identification of top quarks and the
discrimination between quark and gluon jets. In the top tagging task, ParticleNet
significantly outperforms previous methods, achieving a background rejection rate at
30% signal efficiency that is roughly 1.8 and 2.1 times better than the Particle Flow
Network (PFN) [21] and P-CNN models [92], respectively. It even surpasses the
performance of the deep ResNeXt-50 model [91], which is considerably more complex.

Furthermore, ParticleNet’s lightweight design, with significantly fewer trainable
parameters than ResNeXt-50, makes it computationally efficient and well-suited for
real-time applications in high-energy physics experiments. Its success has not gone
unnoticed, as evidenced by its adoption by the CMS collaboration for jet tagging tasks.

Beyond jet tagging, ParticleNet’s particle cloud representation and dynamic graph
approach hold promise for a wide range of applications in particle physics. Its ability
to model complex interactions and capture intricate patterns in data could prove
invaluable in areas such as pileup identification, jet grooming, and jet energy
calibration. As research in this field progresses, ParticleNet is poised to remain a key
player in unlocking the potential of machine learning for unravelling the mysteries of
the universe.

3.5.3.2 LundNet

LundNet, a graph neural network introduced in [93], is designed for jet tagging tasks
in high-energy physics experiments. It leverages the Lund plane representation of jets
[86], which maps the radiation patterns within a jet onto a two-dimensional plane. In
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this representation, each node in the graph corresponds to a Lund declustering, a step
in the jet clustering algorithm that splits a jet into two subjets. The nodes carry
kinematic information about the splittings, such as the transverse momentum of the

softer subjet and the angle between the two subjets.

The construction of the Lund plane [86] representation begins by reclustering the jet’s
constituents using the Cambridge/Aachen algorithm, Figure 3.6. This algorithm
sequentially merges pairs of particles that are closest in angle, starting with the two
closest and iterating until all particles are combined into a single jet. Each step of the

reclustering process corresponds to a node in the Lund plane tree.

In k:t
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FIGURE 3.6: The Lund plane representation of a jet (left) where each emission is po-
sitioned according to its A and kt coordinates, and the corresponding mapping to a
binary Lund tree of tuples (right).

The kinematic information associated with each node, denoted as tuple T(i), is defined

as follows:
T = {kr,A,z,m, ¢} (3.2)

where:

* kr = prpA is the transverse momentum of the softer subjet (b) with respect to its

emitter (a+b) in the collinear limit,

A is the angular distance between the two subjets in the rapidity-azimuth plane,

o 7y — _PTb

= ——2— is the momentum fraction of the softer subjet,
PTatPTh

m is the invariant mass of the two subjets,
e ¥ =tan! (%) is the azimuthal angle around the harder subjet’s axis.
LundNet utilises the EdgeConv operation, introduced in Section 3.5.3.1, to process the

information in the Lund plane graph. EdgeConv operates on each node and its

neighbours, transforming their features into a new set of features. This process is
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repeated through multiple layers, allowing the network to learn complex patterns in
the jet’s radiation. In Figure 3.7 we can see how this translates to a tree structure.
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FIGURE 3.7: Illustration of the EdgeConv operation on a node of the Lund tree.

The architecture of LundNet consists of six EdgeConv blocks, followed by a global
average pooling layer and fully connected layers for classification. The input features
for each node are the kinematic variables associated with the Lund declustering, such
as the transverse momentum, angle, and mass of the subjets, the one described in

Equation 3.2

LundNet has been shown to outperform other state-of-the-art jet taggers, particularly
in identifying top quark jets. This is attributed to its ability to effectively capture the
complex radiation patterns within jets, which are crucial for distinguishing between
different types of particles. The model’s performance is further enhanced by its use of
the full Lund plane, including both primary and secondary emissions, which provides
a more complete picture of the jet’s substructure.

In addition to its superior performance, LundNet is also computationally efficient,
requiring significantly less training time than other GNN-based taggers. This is due to
the efficient representation of jets in the Lund plane and the use of the EdgeConv
operation, which avoids the need for computationally expensive nearest-neighbour
searches. If we compare the LundNet model to ParticleNet, although the architecture
is quite similar (they roughly have the same number of parameters, just less than 400
thousand), the training time of LundNet is 0.472 [ms/sample/epoch], only 15% of the
training time of ParticleNet.

3.5.3.3 The Energy-Weighted Message Passing Neural Network (EMPN).

The Energy-weighted Message Passing Neural Network (EMPN) [4] is a graph neural
network architecture designed for jet tagging tasks in high-energy physics. Its key
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innovation lies in its inherent infrared and collinear (IRC) safety, a crucial property for
theoretical consistency in perturbative QCD calculations.

In the context of jet physics, IRC safety means that the network’s output should
remain unchanged under soft (low-energy) or collinear (small-angle) emissions from
particles within the jet. This is achieved in EMPN through a novel message-passing
mechanism that incorporates energy weights. In order to achieve this important
feature, three steps are needed: graph construction, message-passing and the node

readout.

In order to be infra-red and collinear safe, an observable has to be equal in the
presence or absence of soft or collinear particles. This applies to the construction of the
graph as well, i.e. the graph constructed by the presence of a soft or a collinear particle
should be equal to the one constructed in its absence. A k-nearest neighbour graph
would not allow for an IRC safe message-passing since adding a particle in the
vicinity of a node could change the neighbourhood drastically. As can be seen in
Figure 3.8, when a particle g splits into particles r and s, the extra particle b, which was
previously in the neighbourhood, is now excluded. Therefore, the only way to
construct the graph and preventing from changing the structure of the
neighbourhood, is to draw a radius Ry around each particle and create the connections
with all the other particles that have an euclidean distance in the (7, ¢)-plane less than
Ro. Details of how this is a good choice can be found in [4].

Once the graph has been constructed, the message function in EMPN is defined as
plays the crucial role on keeping the network IRC safe. The updated node features are
given by:
W = Y o(p,p)). (3.3)
JENT]
where N[i] represents the set of neighbouring nodes for node i, and ®)(p;, p;) is the

message function between nodes i and j at layer [.

The message passing needs to be defined such that it is zero whenever the
contribution comes from a soft particle, and it is equal to the sum of two particle
whenever these are the product of a collinear split. Therefore, for a splitting g € N|i]
tor,s € N'[i], the requirements for the message function ® are:

IR Safety: ®(p;,p;) -0 as z, —0 (3.4)
Csafety: (pi, pr+ps) = P(pi,pr) + P(pi,ps) as Ay — 0. (3.5)

where z, is the energy fraction of particle r and where A,; denotes the angular distance
between the two particles r and s. In order to respect these conditions, we need to
define a scale function for each particle contributing to the update of the particle’s



58 Chapter 3. Machine Learning in High Energy Physics

3-nearest neighbours (open)

/\/(z):{a,b7 q} N' () = ;{a, r, s}

i q o

R, Radius neighbours(closed)

q

- N[l] = {iv a,b, Q} N' [l] = {ia a,b,r, 5}

FIGURE 3.8: A k-nearest neighbour graph in the (1, ¢)-plane will have a different
structure when any particle g splits to r and s. The set S denote the particles in the
jet when there is no splitting, while S’ denotes the particles with g splitting. We show
the directed edge connection to i from its three nearest neighbours with red on either
side. The neighbourhood set N(7) has b in it, however when g splits, N’(i) does not
contain b. Therefore, the graph’s structure prevents a smooth extrapolation between
the two scenarios in the infra-red and collinear limit. This is not the case for a radius
graph with radius Ry in the (1, ¢)-plane, which is shown with black connections. We
also include the self-loop of i, by using the closed neighbourhood sets N[i] and N'[i],
since the node i could also split into two particles [4].

feature:

P
W = =, (3.6)
! ZHGN p th
where pr is the transverse momentum of particle j, and the denominator normalizes
this contribution by the total transverse momentum of all particles in the
neighbourhood N/[i], such that the contribution is weighted according to the
proportion of its transverse momentum compared to the entire momentum of the
neighbourhood. Hence, the updated node features that satisfy the IRC safety

condition, can be written as:

i
= Y 0ol (p,p)). (3.7)
jeNT]
where w](N[iD ensures that the contributions of particles are weighted proportionally

to their transverse momenta.

Finally, the graph readout needs also be of the form:

g =) wih (3.8)
ieG
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where w; is similarly defined to ensure that the graph-level representation respects
IRC safety

The EMPN architecture consists of multiple layers of energy-weighted message
passing, followed by a global pooling operation and fully connected layers for
classification. The authors apply EMPN to three jet tagging tasks: quark/gluon
discrimination, W boson vs. QCD jet tagging, and top quark vs. QCD jet tagging.

The results demonstrate that EMPN achieves state-of-the-art performance on all three
tasks, outperforming previous methods such as Energy Flow Networks [21].
Moreover, the authors demonstrate that EMPN is robust to variations in the jet
clustering radius and the number of message-passing layers, indicating its stability
and generalisability.

The key novelty of EMPN lies in its inherent IRC safety, which is a significant
advancement in the application of GNNSs to jet physics. By ensuring that the network
output is insensitive to soft and collinear emissions, EMPN provides a more
theoretically sound and reliable approach for jet tagging. This is crucial for reducing
uncertainties in new physics searches and measurements of particle properties at the
LHC.

Furthermore, EMPN’s strong performance on benchmark tasks demonstrates its
potential for real-world applications in high-energy physics experiments. Its ability to
effectively capture the underlying physics of jet formation and evolution makes it a

valuable tool for exploring the frontiers of particle physics.
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Chapter 4

Eigenspace Projection for Jet
Clustering

In this chapter, we delve into the methodology introduced in [8], which presents an
innovative approach to jet clustering through Spectral Clustering. Unlike
conventional methods, such as anti-kt [35], that operate within the confines of the
2-dimensional eta-phi space, the key premise of this approach lies in projecting events
into a novel feature space based on the kinematics of the constituent particles. This
transformation allows for a fresh perspective on event structures, ultimately

enhancing clustering performance significantly.

4.1 Introduction

In high-energy physics, accurately reconstructing the jets formed by particle collisions
is crucial for understanding the underlying physics processes. Jets are collimated
groups of particles resulting from the hadronisation of quarks and gluons. Traditional
jet clustering algorithms, like the anti-k7 algorithm, operate in the eta-phi space (a
cylindrical coordinate system adapted to the geometry of particle detectors). While
effective, these methods can sometimes struggle with complex event structures,

particularly when jets overlap or have varying densities.

Spectral Clustering is a powerful technique that has gained popularity across various
tields, including machine learning and image processing. This method involves
representing the data points as a graph, where each point is a node, and edges
between nodes are weighted by an affinity measure reflecting their similarity. By
computing the eigenvalues and eigenvectors of the graph’s Laplacian matrix, the data
is projected into a new space—known as the embedding space—where the clustering

structure becomes more apparent.
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The primary advantage of Spectral Clustering lies in its ability to adapt to the intrinsic
structure of the data. This adaptability stems from the way it constructs the similarity
graph and uses the spectral properties of the graph to determine clusters. Unlike
traditional methods that rely on fixed geometric criteria, Spectral Clustering uses the
eigenvalues and eigenvectors of the Laplacian matrix to capture the global structure of
the data, allowing it to identify clusters based on the natural relationships within the
data. This makes it particularly robust to variations in jet shapes and densities, which
is beneficial in high-energy physics, where the kinematic properties of particle

collisions can vary widely.

In this chapter, we detail our implementation of Spectral Clustering tailored
specifically for jet physics. We discuss the necessary modifications to the standard
algorithm to accommodate the unique challenges of particle physics data.
Additionally, we present a comprehensive comparison of our results against
traditional jet clustering methods, highlighting the improvements in clustering

performance.

By projecting events into a novel feature space, our approach provides new insights
into jet structures and offers a significant enhancement in clustering accuracy. The
following sections will delve into the theoretical foundations of Spectral Clustering,

describe our implementation in detail, and present the results of our analysis.

4.2 Method

In this section, we first introduce the original version of Spectral Clustering, detailing
its principal features and elucidating the reasons behind its popularity and robustness
as a clustering method. Subsequently, we present our modified version, specifically
tailored for particle physics data. To enhance performance and ensure adherence to
fundamental physics principles, several necessary modifications have been
implemented. These adaptations not only improve the algorithm’s accuracy but also
optimise its application to the complex datasets characteristic of particle physics

research.

421 Embedding into the Eigenspace

An excellent and comprehensive description of the theory behind spectral clustering
can be found in [94]. This section provides a concise summary and highlights its

application in jet clustering within particle physics.

Spectral clustering is an advanced method that transforms a set of data points into a

new space, known as the embedding space, where the clusters are more
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distinguishable. The transformation relies on the eigenvectors and eigenvalues of a

Laplacian matrix derived from the data, which gives the method its name.

In spectral clustering, the input data is represented as a graph. This graph consists of
nodes, which in our case represent particles, and edges, which represent the
relationships between these particles. The edges can be weighted, meaning they carry
a positive value known as affinity. Affinity quantifies the likelihood that the nodes
connected by the edge belong to the same cluster. For jet clustering, this translates to
the likelihood that the particles originated from the same parton shower.

The strength of spectral clustering lies in its ability to capture the global structure of
the data through spectral properties of the graph, making it particularly robust in
scenarios with complex data distributions. This robustness is why we decided to
implement this method to jet clustering, where traditional methods like the anti-kt
algorithm may struggle with overlapping jets or varying jet densities.

Before delving into the theoretical foundations of spectral clustering, it’s useful to
visualise its effectiveness. Figure 4.1 compares the jets produced by the spectral
clustering algorithm to those produced by the well-known Cambridge/Aachen (CA)
algorithm across three different events. These events are selected to represent various
challenging scenarios for jet formation algorithms.

Event 1 features jets with uniform density that blend smoothly into each other,
illustrating how spectral clustering can maintain clear boundaries in homogeneous
conditions. Event 2 presents three jets in very close proximity, showcasing the
algorithm’s capability to distinguish and accurately separate closely spaced jets. Event
3 contains jets of variable density, demonstrating spectral clustering’s adaptability to
different jet shapes and densities. These examples highlight why spectral clustering is
a compelling method for jet formation, offering superior performance in diverse and

challenging environments.

By transforming the original particle data into an embedding space that better reveals
the underlying cluster structure, spectral clustering provides a powerful tool for
high-energy physics. Its ability to handle complex, high-dimensional data makes it an
invaluable method for accurately identifying jets, ultimately enhancing our
understanding of particle collisions and the fundamental processes of the universe.

The theory.

The theory behind constructing the embedding space in spectral clustering is based on
relaxing the optimization criteria that aim to best partition nodes into separate,
disconnected subgraphs by grouping them into clusters. In a typical non-physics
application, we start with points having coordinates, which need to be divided into a

predetermined number of clusters, s. These points are represented as nodes in a
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FIGURE 4.1: Behaviour of the spectral algorithm is compared to the well known

Cambridge-Aachen algorithm using three events from our dataset. Each row contains

an event, each column is a clustering algorithm. Circle colour indicates jet member-
ship, filled circles indicates a b-quark jet.

graph, and the edge joining nodes i and j is assigned a weight 4; ;, which increases
with the probability of i and j belonging to the same cluster.

To identify clusters, the graph is partitioned into subgraphs G, where k = 1, ...,s. The
goal is to ensure that points connected by high-affinity edges remain in the same
subgraph, while also avoiding clusters of very uneven sizes. This is achieved by
minimizing the Normalized Cut (NCut) objective, which balances the cut size and the
cluster size. NCut is defined as:

1 5 W (Gy, Gk)

NCut= 3 L —01(Gy)

(4.1)
k
where W(Gy, Gy) is the sum of all the edge weights that must be dropped to separate
the cluster Gy from the rest of the graph, Gy, so that W(Gy, Gx) = Ycq, jec, i, and

vol(Gy) is the volume of Gy, defined as the sum of the weights of all edges connected

to nodes in Gi. The denominator is used to penalise the formation of small clusters.
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In order to determine which point will go in which G, a set of indicator vectors must
be found. Membership of cluster Gy will be recorded in the indicator vector hy:

1/+/vol(Gy) if point i € Gy,
hy, = (4.2)

l 0 otherwise.

To find these indicator vectors the graph is represented by the graph Laplacian, L, a
square matrix with as many rows and columns as there are points. To construct this
Laplacian we define two other matrices, an off diagonal matrix A;; = (1 — ¢;;)a; ; and
a diagonal matrix D;; = ¢}, ;4. Then the symmetric Laplacian can be simply
written as

L=D:(D—A)D. (4.3)

Considering just one cluster, Gy, when the Laplacian is multiplied by its indicator
vector, the result is the term that NCut seeks to minimise for that cluster,

1

W(Gk/ Gk)

1( k) i€Gy,jeGy

To obtain the sum of all the terms, stack the indicator vectors into a matrix,
hyLhy = (H'LH ), and the NCut aim described earlier becomes the trace

1 W(G, G
NCut(Gy,Gy,...,Gy) = 5 Z V(O]é(Gk)k)
k=1

= Tr(H'LH), (4.5)

where H'H = .
Relaxation problem.

However, if we relax the requirements on the indicator vectors & in eq. 4.2, allowing
elements of h to take arbitrary values, then the Rayleigh-Ritz theorem provides a
solution. Trace minimisation in this form is done by finding the eigenvectors of the

Laplacian L with smallest eigenvalues,

. xHLx
Amin = Min o
[|x|[#0 XX

(4.6)

where x is the relaxed indicator vector and an eigenvector of L.

Notice that L is a real symmetric matrix and, therefore, all its eigenvalues are real. Due
to the form of the Laplacian, there will be an eigenvector with components all of the
same value and its eigenvalue will be 0. This corresponds to the trivial solution of
considering all points to be in one group. The next ¢ = s eigenvectors of L, sorted by
smallest eigenvalue, can be used to allocate points to s clusters. These eigenvectors are

then used to determine the position of the points in the embedding space. Each
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eigenvector has as many elements as there are points to be clustered, so the
coordinates of a point are the corresponding elements of the eigenvectors. The
standard method above is designed to form a fixed number of clusters, but typically
we do not know how many jets should be created in an event. We will create an
alternative algorithm, beginning with the principles of spectral clustering and
adjusting to the needs of the physics being studied. Using the positions in embedding
space, the points can be gathered agglomeratively, so that we do not need to choose a

predetermined number of clusters.
Distance in the embedding space

When the relaxed spectral clustering algorithm is used to create an embedding space,
points in each group will be distributed in this embedding space. Each point can be
seen as a vector, its direction indicating the group to which this point should be
assigned. Changes in magnitude of the vectors cause the Euclidean distance between
the corresponding points to grow, however, an angular distance is invariant to

changes in magnitude, therefore it is a suitable measure to use.
Information in the eigenvalues.

When clusters in the data are well-separated, the affinities between groups approach
zero, and consequently, the eigenvalues will also be closer to zero. A small eigenvalue
indicates that the corresponding eigenvector effectively separates particles based on

their affinities. This information can be leveraged for clustering.

In traditional spectral clustering, the desired number of clusters, s, is predetermined.
The embedding space is formed by selecting the ¢ = s eigenvectors with the smallest
eigenvalues, excluding the trivial eigenvector. The resulting embedding space has c

dimensions.

However, when forming jets, the number of clusters in the dataset is not known a
priori, making it difficult to determine the appropriate number of eigenvectors to
retain. We cannot simply set c = s. While choosing an arbitrary, fixed number of
eigenvectors is possible, it is not optimal. A better approach is to select all non-trivial
eigenvectors associated with eigenvalues smaller than a limiting value, Aj;,;. For a
symmetric Laplacian, the eigenvaluesare 0 < A1 < A < ... <A, <2,and Ay is
related to the quality of forming k clusters [95]. Removing eigenvectors with
eigenvalues close to zero would discard valuable information, while keeping those
with eigenvalues close to two would increase noise. Therefore, values of 0 < Ayjir < 1
are sensible choices, and the specific choice within this range is not critical. In this
way, the dimensionality of the embedding space will vary based on the number of

non-trivial eigenvectors with corresponding A < Ayt

We can further leverage the information contained in the eigenvalues to refine the
embedding space. The dimensions of this space are not of equal importance, as
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eigenvectors with smaller eigenvalues typically capture more meaningful cluster
structure. We can account for this by scaling each eigenvector by a power, 3, of its
corresponding eigenvalue. Let x,; denote the i-th component of the n-th eigenvector,
which satisfies the eigenvalue equation:

ZLi,jxﬂj = }\nxm‘. (4.7)
j

where L; ; are the elements of the Laplacian matrix. We then define the coordinates of

the j — th point in the c-dimensional embedding space as:
mj = ()\;ﬁhlj, cey )\;ﬁhq) (4.8)

This scaling effectively compresses the magnitudes of the vectors m; in the n-th
dimension by a factor of /\5. Consequently, the larger the eigenvalue A, the greater

the compression applied to that dimension.
Stopping conditions

When employing a recursive clustering algorithm such as the generalised kr
algorithm, a robust stopping condition is essential. Initially, a stopping condition
based on the smallest distance between points in the embedding space was explored.
However, this approach proved unstable, as it was not possible to define a single
threshold suitable for all events.

The minimum separation between the last two points joined before forming the final
jets varies considerably across events, rendering it an unreliable stopping criterion. In
contrast, the average distance between points before this last joining is more stable,

being influenced by two opposing factors:

¢ Increase in Average Distance: As points are merged in a fixed-dimensional
embedding space, the average distance between the remaining points increases.
In physical space, this increase would roughly correspond to the decreasing

number of points.

¢ Decrease in Embedding Space Dimensions: As fewer high-affinity combinations
remain, the number of dimensions in the embedding space decreases, leading to

a reduction in average distance.

These opposing effects create a balance in the average distance within the embedding
space. As points merge, the average distance initially rises, but when only low-affinity
combinations remain, the diminishing dimensionality of the embedding space
counteracts this rise. This self-regulating behavior makes the mean distance in the
embedding space a natural and effective stopping criterion. The validity of these

assertions is supported by empirical evidence presented in 4.3.3.
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4.2.2 Spectral Clustering for Jet Physics

This section delves into the spectral clustering methodology applied to the selection

and merging of pseudojets. The algorithm presented here leverages the mathematical

framework of spectral clustering to efficiently group pseudojets based on their spatial

and kinematic properties. This approach facilitates a refined analysis of particle

collisions by identifying and merging pseudojets into jets in a manner that respects

underlying physical principles. The process involves constructing a normalised

Laplacian matrix, computing eigenvectors and eigenvalues for embedding pseudojets,

evaluating distance metrics in the transformed space, and applying stopping

conditions to finalise jet formation. Detailed steps and mathematical formulations are

provided to elucidate the procedures used to dynamically adjust clusters and manage

varying particle interactions, ultimately enhancing the accuracy and interpretability of

jet clustering in high-energy physics experiments.

¢ Graph Construction and Affinity Calculation:

We begin by constructing a graph where nodes represent pseudojets. The edges
between nodes are based on the spatial proximity of these pseudojets and are
weighted by an affinity metric, which reflects their closeness. The distance d(t); ;

between pseudojets i and j at step t is defined as:

d(t);j =\ (W(1) — y(£))2 + 8(@ (1), 9(1)))2, (49)

where y(t); and ¢(t); denote the rapidity and the angle in the transverse plane of
the pseudojet i at step ¢, respectively, and ¢ represents the distance measure for
the cyclic coordinate. Unlike many traditional jet clustering methods, there is not
any transverse momentum pr dependence. The affinity between two pseudojets
is then computed:

a(t);;j = exp(—d(t)iy/ov), (4.10)

where & = 2 is the standard Gaussian kernel as used in [96]. With this choice of
the affinity functions, pseudojets become more similar as the distance becomes
shorter.

Affinity Pruning and Noise Reduction:

To enhance the clarity of clustering, affinities between pseudojets that are far
apart are set to zero, preserving only the kyy nearest neighbors for each
pseudojet. This pruning step significantly reduces noise and focuses the

clustering process on the most likely candidates for merging.

Construction and Dynamics of the Normalised Laplacian:
Now it is time to create the normalised Laplacian matrix, which is proportional

to —a(t);j in the i row and j* column. For ease of notation, let z(t); be a
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measure of the contribution of pseudojet j to a cluster. Before the first merge,
z(1); = ¥k a;jx- Define three square matrices: A(t);; = (1 — J;)a(t);;, known as
the adjacency matrix; B(t);; = ;Y a(t);x, known as the degree matrix; and
Z(t);; = 0;;z(t);, which normalises the Laplacian. The Laplacian is then
expressed as:

L(t) = Z()"2(B(t) — A(t))Z(t) 2. (4.11)

With each merging step, the Laplacian matrix reduces in size by one row and one
column, corresponding to the reduction in particle numbers. If pseudojets i and j
from step t — 1 merge to form pseudojet i at step ¢, their sizes update as follows:

z(t); = s;(t— 1) (z(t = 1) +z(t = 1);) + (1 — s;(t — 1)) b(t);. (4.12)

. The sizes for all other pseudojets adjust accordingly:

z(t)y = s(t)z(t — 1), + (1 — s(t))by. This mechanism ensures that the size of a
pseudojet accumulates over time, but resets when soft or collinear particles
merge into it. To manage these merges, singularity factors are introduced:

K

sii(t) =1-— - - , 413
ii(t) K +min(pr(t — 1)), pr(t —1);)d(t —1);; (4.13)
where « is a constant, here chosen to be 0.0001.
Spectral Embedding of Pseudojets Using Laplacian Eigenvectors:
The eigenvectors of the Laplacian
L(t)h(t)g = A(t)gh(t)g, q=1,...,c (4.14)

are used to create the embedding of the pseudojets. The eigenvector
corresponding to the smallest eigenvalue represents the trivial solution, which
would cluster all the points into a single group. All non-trivial eigenvectors,
corresponding to eigenvalues less than a predefined limit,

A(t)e < Aimit < A(f)c, 1, are retained. If no eigenvectors meets this criterion, the
clustering process terminates at this point. Each eigenvector is divided by its
corresponding eigenvalue raised to the power of 8. To prevent zero division
errors, the smallest eigenvalues are clipped to 0.001, such that

Ay = min(Ag,0.001). (4.15)

This operation to compresses the dimensions containing less information. The
embedding space is then formed with the eigenvectors having as many elements
as there are pseudojets. The coordinates of the j pseudojet at step ¢ are defined
as follows:

m(t); = AL(8) Phi(t)j, ..., AL(E) Phe(t);. (4.16)
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¢ Calculation of Distance Metrics in the Embedding Space:
The embedding space utilises angular distances as the most appropriate metric
for measuring distances between pseudojets. This is mathematically expressed
as:

ORI F—

[[m(8)il[[[m (2)j]]

where ||m|| represents the Euclidean norm of m. The scaling factor s(t); ; is

d'(t);; = s(t); arccos (

designed to ensure that soft and/or collinear particles are merged early in the
clustering process. This early merging is crucial as it resets the size of the
pseudojets based on their recent merging history.

¢ Stopping condition: The clustering process incorporates a stopping condition to
determine when to halt merging. This condition is evaluated by comparing the
mean of the square roots of the distances d'(t); ; to a threshold parameter R.

Mathematically, this is represented as:

S . (CZ_ o D (0 < R, (4.18)

i#j

where c is the number of pseudojets currently considered. If this condition is
satisfied, the two pseudojets with the smallest embedding distance are merged.
The two pseudojets are combined using the E-scheme: a new pseudojet, which
will replace the other two, has a 4-momenta equal to the sum of the two joiners
pseudojets’ 4-moments, i.e. p(t + 1), = p(t); + p(t);.

When the mean of the distances in the embedding space exceeds the threshold R, all
remaining pseudojets are promoted to jets. Jets containing fewer than two tracks are
classified as noise and removed from further consideration. This procedure
dynamically forms a variable number of jets from a variable number of particles,
adapting to the specific data characteristics of each event. An illustrative example of
the constructed first embedding space is shown in Figure 4.2. This visualisation
effectively highlights how the embedding space delineates the clusters, providing a
clear depiction of the clustering dynamics.

4.2.3 Hyperparameters

Unlike most deep learning methods currently used in particle physics, spectral
clustering does not rely on extensive arrays of learned parameters. Instead, it uses a
small, interpretable set of parameters. The optimal values for these parameters were
identified by conducting scans and observing how changes affected the formation of
jets.
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FIGURE 4.2: Example of the construction of the embedding space with Spectral Clus-
tering at the first step. To the left, the white plots show the particles in the events as
points on the unrolled detector barrel. The colour of each point indicates the jet is is
assigned to., filled circles are b-jets. On the right, three grey plots show the first 6 di-
mensions of the embedding space and the location of the points within the embedding

space.

Section 4.2.2 discusses six parameters: 0y, &, kNN, AMimit, B, andR. Although there are

more parameters than those used in the generalised kr algorithm, they do not require

precise values to achieve good performance. Detailed explanations of these

parameters are provided.

* 0, is a scale parameter in physical space. It represents an approximate average

distance between particles in the same shower, or alternatively, the size of the

neighbourhood around each particle. It is closely related to the stopping

parameter for the generalised kt algorithm Ry, as both influence the width of
the jets formed. The value of should be of the same order of magnitude as Ry..

« changes the shape of the distribution used to describe the neighbourhood of a
particle. Higher values reduces the probability of joining particles outside ¢. In

particular, « = 2 defines a Gaussian kernel.
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* knn dictates the minimum number of non-zero affinities around each point.
Lower values create a sparser affinity matrix, reducing noise at the potential cost
of lost signal. Values above 7 are seen to have little impact.

® Ajimit is @ means of limiting the number of eigenvectors used to create
dimensions in the embedding space. Only eigenvectors corresponding to
eigenvalues less than Ay, are used. Thus, the number of dimensions in the
embedding space can be increased with a larger values of Aj;,;;. However, as the
eigenvalues will be influenced by the number of clear clusters available, there
will not be the same number of dimensions in each event. Values of

0 < Ajimit < 1 are sensible choices.

¢ B accounts for variable quality of information in the eigenvectors, as given by
their eigenvalues, in such a way that the dimensions of the embedding spaces
corresponding to higher eigenvalues are compressed, as they contain lower

quality information.

* R determines the expected spacing between jets in the embedding space. As the
number of dimensions in the embedding space grows with increasing number of
clear clusters, it will not results in the same or similar number of clusters each

time.

To assess the impact of varying parameters on clustering behaviour, scans were
conducted on a small sample of 2,000 events with numerous parameter
configurations. Instead of employing more sophisticated methods, a straightforward

random scan was utilised.

Using Monte Carlo (MC) truth information, we can establish a success metric. For
each target object (e.g., a b-quark), MC truth reveals which visible particles in the
detector originated from that object. Often, a detected particle may have been
produced by more than one object, such as a particle from a bb pair; in these instances,
both originating objects are considered jointly. The complete set of visible particles
emanating from these objects is termed their descendants. The objective in jet
clustering is to encapsulate all descendants in the same number of jets as there were
originating objects. Thus, the descendants of a bb pair should ideally be encapsulated
within exactly two jets. This approach of using MC information was also explored in
previous studies [59], particularly for jets that originate from a colour singlet hard
particle, such as a W boson. Furthermore, we aim to identify jets arising from systems
with a colour charge. By allowing descendants from groups of interacting showers to
be clustered in any configuration that yields the correct number of jets, we circumvent
the necessity of uniquely associating each descendant with a specific object, such as a
b-quark, which is impractical for colour-charged objects as noted in [59].
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Jet finding algorithms can err in two primary ways during the task of reconstructing
objects from their descendants. The first error occurs when some descendants are
omitted, resulting in jets with less mass than expected. The second error involves the
inclusion of unrelated particles, such as initial state radiation or particles from other
interactions, which increases the jet’s mass erroneously. Although these mistakes
might cancel each other in the total mass calculation of the jet, they are undesirable
individually. Therefore, separate metrics are developed for each error type: ”Signal
mass lost” quantifies the mass discrepancy caused by missing descendants, and
”Background contamination” measures the excess mass due to unrelated particles. To

address these issues, a “Loss” function is constructed as a weighted combination:

Loss = \/ w(Background contamination)? + (Signal mass lost)?, (4.19)

where w is a weight that balances the preference between minimising “Signal mass
lost” and reducing “Background contamination”. In scenarios using an anti-k
algorithm, adjusting w can decrease “Signal mass lost” at the cost of increasing
”Background contamination”. We have chosen to compare this with Ry = 0.8 because
our sample dataset features well-separated jets and minimal background noise. For
this setup, the weight w is set to 0.53 to reflect these conditions.
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FIGURE 4.3: The generalised k7 algorithm has 2 parameters that can be varied. The
stopping condition, Ry, and a multiple for the exponent of the pr factor. When the
exponent of the pr factor is —1 the algorithm becomes the anti-k7 algorithm.

An illustration of this evaluation using the generalised kt algorithm is shown in
Figure 4.3, where it is evident that various pr exponent values can yield satisfactory
results, though there is a slight preference for suppressing ”Signal mass lost” to

achieve clearer mass peaks.

For spectral clustering, which involves managing more than two variables,

two-dimensional slices of the parameter space are analysed. These slices represent the
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best-performing combinations and are displayed in Figure 4.4, using the same colour
scale as Figure 4.3 for easy comparison. As shown, the parameter choices are not
finely tuned, as many configurations lead to successful outcomes. For instance,
parameters like a, knn, B and Ajiy,ir show flexibility, performing well across a broad
range of values. Even parameters such as R and, notably, o show significant signal
“Loss”, say for R = 1.35 and ¢, = 0.4, this happens in very narrow ranges.
Definitively, the parameters set for the remainder of the study are « = 2, kyny = 5,

R =126, =14,0,=0.15and Aj,; = 0.4.
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FIGURE 4.4: The spectral clustering algorithm has 6 parameters that can be varied
(described in the text).

4.3 Results and Limits

In this section, we present the results of applying the spectral algorithm to physics
data. We compare the performance of our method with benchmarks obtained using
both the anti-kt and the CA algorithms at two different jet radii, Ry, = 0.4 and

Ry, = 0.8.

To evaluate the behaviour of our model, we used three datasets. The first two uses a
2-Higgs Doublet Model (2HDM) setup !, as described in details in [97], and the last is
purely a Standard Model (SM) processes:

1We will not delve into the details of this physics model as our focus is to demonstrate the performance
of the spectral clustering method on physics data.
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» Light Higgs: A SM-like Higgs boson with a mass of 125 GeV decays into two
light Higgs states with mass 40 GeV, which further decay into bb quark pairs.
The process is gg,95 — Hizsgey — NaoGevhaocey — bbbb.

* Heavy Higgs: A heavy Higgs boson with a mass 500 GeV decays into two SM-like
Higgs states with mass 125 GeV, which further decay into bb quark pairs. The
process is 29,99 — Hs00Gev — h125Gth125 — bbbb.

* Top: A tf pair decays semileptonically, i.e. one W* decays into a pair of quark
jets jj and the other into a lepton-neutrino pair Iv, /. The process is
88,49 — tt — bbWTW~ — bbjjlv,,,

We selected these datasets because the events each contain four distinct jets,
presenting a high multiplicity, which serves as another metric for testing our method.

The data, comprising a total of O(10°) events for each process, was generated using
MadGraph [98] for the partonic processes and Pythia [45] for the showering. Instead
of a full detector simulation, we applied particle cuts to mimic detection: the
reconstructed particles must have a pseudorapidity || < 2.5 and a transverse
momentum pr > 0.5 GeV. The events are required to have pr > 15/30/50 GeV,
depending on the dataset.

4.3.1 Mass Peak Reconstruction

Once we have clustered the particles in an event, as we expect to end up with more
than one jet, we need to tag each jet to the particle it most closely resembles. To

achieve this, we introduce a tagging distance metric based on the Monte Carlo truth:

dtag = \/(yquurk - yjet)z + (5(¢quark1 ‘Pjet))zr (4.20)

with y being the pseudorapidity and ¢ the angular distance, where 6 (¢guark, Pjet) is a
distance measure accounting for the periodic nature of the ¢ component, ensuring the
difference remains less than 27t. After clustering and identifying the b quarks, we
combine them to recreate the heavier particle, based on the dataset, i.e., either into
Higgs or Top quarks.

In Figure 4.5, three selections are plotted for the Light Higgs MC sample. We display
events where all four b-jets are combined into the total invariant mass of the event,
thus reconstructing the mass of the SM Higgs boson. Each event also contains two
light Higgs states. These are differentiated by the mass of the particles (generated by
them) that pass the particle cuts. The light Higgs boson reconstructed from the 2b-jet
system with the greater mass visible to the detector is termed the “Light Higgs with
stronger signal,” while the one reconstructed with less mass visible is called the “Light
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Higgs with weaker signal.” The correct jets for each Higgs mass reconstruction are
identified using MC truth, ensuring accurate pairings. (If two such dijet systems are
not found, the event is not included in the plots). Overall, it can be seen that spectral
clustering forms the best peaks, narrow and close to the correct mass. In fact, its
performance is comparable to that of anti-k7 with Ry, = 0.8 and is clearly better than
the Ry, = 0.4 option. The parameters for spectral clustering were specifically chosen
to minimise a loss that was based on the performance of CA with Ry, = 0.8 in this
Light Higgs dataset. Given this, the similarity of the mass peaks is not surprising. It

will be more interesting to see how the algorithm performs on a different dataset.
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FIGURE 4.5: Three mass selections are plotted for the Light Higgs dataset. From left to
right we show: the invariant mass of the 4b-jet system, of the 2b-jet system with heav-
iest invariant mass and of the 2b-jet system with lightest invariant mass (as defined in
the text). Three jet clustering combinations are plotted as detailed in the legend. The
spectral clustering algorithm is consistently the best performer in terms of the narrow-
est peaks being reconstructed and comparable to anti-kt / CA with Ry, = 0.8 in terms
of their shift from the true Higgs mass values, with anti-kt / CA with R = 0.8 being
the outlier.

In Figure 4.6 the exercise is repeated for the Heavy Higgs MC dataset. All the
parameters of spectral clustering are the same as in the Light Higgs MC sample yet we
note that its performance is still excellent, with very sharp peaks at the correct masses,
although the three clustering algorithms are overall much closer in performance. So,
we are again driven to conclude that spectral clustering is probably the best performer
overall with the added benefit of not requiring any adjustment of its parameters to

achieve this.

Finally, in Figure 4.7, the W and t mass peaks for semi-leptonic tf decays are shown.
Three mass reconstructions are given. The hadronic W is reconstructed from the jets
that come from the quarks it decayed to. Correct decisions about which quarks
correspond to which particle in the hard process are made by using information in the
MC: this is to prevent performance evaluation of clustering to be confounded by
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FIGURE 4.6: Same as Figure 4.5 for the Heavy Higgs dataset. Here, the performance
of the spectral clustering and anti-kt (with both 0.4 and 0.8 as jet radii) clustering
algorithms is much closer to each other.

mismatching. To tag a jet with a quark we use the tagging distance measure dy,g. The
W will always decay to a pair of quarks, which may be captured in one jet or separate
jets. If either of the these quarks are too far away from the closest jet to tag it, that is
diag ¢ 0.8, then it is not associated with any jet and the hadronic W is not reconstructed.
The mass of the hadronic top is then reconstructed in events where the hadronic W
could be reconstructed and the b-jet from the hadronic top is also found. The leptonic
top is then reconstructed in events where a b-jet from the top is combined with the
reconstructed W which decays leptonically. The leptonic reconstruction of the W uses
the momentum of the electron p;, the missing transverse momentum p#s* (identified
with that of the neutrino) and the longitudinal neutrino momentum (pj, which is
unknown) in a quadratic equation, (p; + pPpiss + pv)* = m3,, of which only the real
solutions are plotted. In this case, it can be seen that spectral clustering is adapting to
jets of a different radius. In fact, while before its behaviour had mostly resembled
anti-kt with Ry, = 0.8, it has now moved closer to the case with Ry, = 0.4.
(Semi-leptonic top events would typically be processed using anti-kt with Ry, = 0.4.)
The peaks of spectral clustering are not quite as narrow as those from anti-kr with Ry,
= 0.4, but they improve on Ry, = 0.8 and their location is substantially correct.

4.3.2 Multiplicity

Jet multiplicities, that is, the number of reconstructed jets found per event, are given
for the anti-kt , CA and spectral clustering algorithms. These can be seen for the three
datasets in Figure 4.8. Herein, it is seen that spectral clustering produces the best
multiplicity (i.e., most events where 4 jets are found) for Top events while for the Light
Higgs and Heavy Higgs MC samples it creates a multiplicity closer to that of anti-kr
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FIGURE 4.7: Three mass selections are plotted for the Top dataset. From left to right
we show: the invariant mass of the light jet system, of the reconstructed leptonic W
(as described in the text) combined with a b-jet and of the hadronic W combined with
the other b-jet. Three jet clustering combinations are plotted as detailed in the legend.
The spectral clustering algorithm consistently outperforms anti-kt with jet radius 0.8
and is slightly worse than the anti-kt /CA one with Ry, = 0.4, but only in terms of

sharpness, not of location of the mass peak.

/CA2 with Ry, = 0.4 than Ry, = 0.8, the first of these being the best performer of the
two. This study provides evidence that spectral clustering, unlike anti-kt , adapts to

the different final states without having to adjust its parameters. The anti-kr algorithm

suggests 0.4 to be the best choice for all datasets, but this is in tension with the fact that

different masses from different datasets do require the anti-k7 parameters to be

adjusted, as we saw in the previous section.
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FIGURE 4.8: Jet multiplicities for the anti-kT and CA (for two Ry, choices) and spectral
clustering algorithms on the Light Higgs, Heavy Higgs and Top MC samples. For all
such datasets, the hard scattering produces 4 partons in the final state, so maximising
a multiplicity of 4 jets indicates good performance.
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4.3.3 Stopping Condition

To support the assertions made in Section 4.2.2, Figure 4.9 examines the behaviour of
the mean distance during clustering. Clustering is performed on the Light Higgs
dataset described earlier, using the spectral algorithm parameters specified at the end
of Section 4.2.2.
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FIGURE 4.9: Mean distance between pseudojets in the embedding space during clus-
tering for 2000 events. (Top) Mean distance vs. the number of remaining pseudojets.
Lines are yellow until the mean distance exceeds the stopping condition (R = 1.26),
then turn green. The dotted line represents the average across all events. (Bottom)
Changes in mean distance due to merging pseudojets (blue) and reduction in embed-
ding space dimensionality (red). Dotted lines show the respective averages.

The upper panel of Figure 4.9 displays the mean distance between pseudojets for 2000
events, plotted against the number of remaining pseudojets. Each line is coloured
yellow until its value first exceeds R = 1.26 (the stopping condition), after which it
turns green. In practice, the spectral clustering algorithm would typically halt at the
end of the yellow segment when the stopping condition is met. However, the green

section is included here to illustrate the behaviour beyond this point.

The transition from yellow to green occurs with approximately 3 to 13 pseudojets
remaining, confirming that a mean distance stopping condition does not enforce a
fixed number of jets per event. Notably, the mean distance increases smoothly for most

of the clustering process, becoming erratic only when fewer than 5 pseudojets remain.
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The lower panel delves into the factors influencing the mean distance. Again, each of
the 2000 events is represented by a solid line. The blue lines depict changes in mean
distance due to merging pseudojets. While merging typically increases the mean
distance as the embedding space becomes sparser, there are occasional configurations
where the mean distance decreases (blue lines dip below zero). The plot indicates that
such configurations are less frequent than those that increase the mean distance.

The red lines in the lower panel show changes in mean distance due to a reduction in
the dimensionality of the embedding space. This invariably decreases the mean
distance, keeping the red lines at or below zero. Since not every algorithm step
reduces dimensionality, the red lines for an event are often zero.

These two factors, the merging of pseudojets and the reduction in dimensionality,

balance each other to produce a relatively stable trend in the mean distance.

(Note: A rare third possibility exists where the number of dimensions in the
embedding space increases. This is not depicted in the plot, as the corresponding line
would be indistinguishable from y = 0 and would clutter the figure.)

4.3.4 Run Time

One of the most crucial aspects of evaluating a new algorithm is its runtime and
memory requirements. Typically, finding an optimal trade-off between performance
and efficiency is key to selecting the best algorithm. In this section, we will discuss one
of the significant limitations of this novel algorithm: the runtime.

Currently, the preferred methods for clustering particles into jets are the general kr
algorithms [5], which operate at an impressive time complexity of O(nlogn). This
efficiency sets a challenging benchmark. In contrast, Spectral Clustering involves
eigenvalue calculations, an O (n?) operation, representing a significant bottleneck.
This requirement renders our algorithm less competitive compared to the k; family.
The initial steps of the spectral algorithm are similar to those of the generalised kr,
and thus, they are expected to share the same runtime. However, the implementation
used in this work does not incorporate the improvements that evolved generalised kr
from O(n?) to O(nlogn). Consequently, these initial steps operate at O(n?). Adding
the eigenvector calculations further compounds the complexity, leading to a total
expected runtime of O(n*) with a naive implementation.

However, following this logic, the results presented in Figure 4.10 are quite surprising.
We tested the execution times of the two distinct algorithms on datasets with varying
numbers of particles. Interestingly, the spectral algorithm actually runs in O(n%), not
O(n*), despite no specific optimisations being applied. The implementation of the
spectral algorithm is a basic Pythonic implementation.



4.3. Results and Limits 83

— cubic
quadratic
® Spectral50)et
AntiKTp4Jet

10° 4

Time (seconds)

1072 4

© 60 8 100 120 140 160 180 200
Particles in event
FIGURE 4.10: The run time of spectral, compared to a naive implementation of gen-
eralised k7 (without the performance refinements in [5]), on datasets of varying size,
i.e. events with increasing number of particles. Cubic and quadratic fits are shown for
each dataset respectively. This shows that spectral runs in O(n3), instead of the the
expected O(n).

Thus, the improvements that reduce the algorithm’s complexity from O(n*) to O(n?)
must be attributed to the intelligently designed libraries used. The eigenvector
calculation was performed using the function scipy.linalg.eigh from scipy [99]. This
function optimises the calculation by imposing two criteria: firstly, it requires that the
input matrix be Hermitian, a condition met by the Laplacian matrix used in our tests;
secondly, it allows the specification of the desired range of eigenvalues. As detailed in
Step 5, Section 8.2.2, our spectral algorithm requires only the eigenvectors
corresponding to a pre-specified range of eigenvalues. These optimisations appear to

yield an O(n) runtime improvement.

There are several ways to enhance the speed of this algorithm, ranging from refining
the code for greater efficiency to implementing it in a lower-level programming
language, such as C, or optimising the algorithm itself—perhaps by finding a method
to avoid recomputing the Laplacian Matrix at every step. Although many approaches
have been proposed, they slightly deviate from the scope of our work; therefore, no

further investigations have been pursued.
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Chapter 5

Obscuring and Enhancing Jet
Variables for Tagging

In this chapter, we delve into the latest research on how obscuring or leveraging
physics knowledge affects the performance of machine learning models for the
specific task of jet tagging.

We introduce JetLOV [9], an enhanced Graph Neural Network that achieves
remarkable results by relying exclusively on the model’s output, effectively replacing

traditional physics reasoning with a machine learning black box.

5.1 JetLOV: Enhancing Jet Tree Tagging through Neural
Network Learning of Optimal LundNet Variables

Machine learning has played a pivotal role in advancing physics, with deep learning
notably contributing to solving complex classification problems such as jet tagging in
the field of jet physics. In this experiment, we aim to harness the full potential of
neural networks while acknowledging that, at times, we may lose sight of the
underlying physics governing these models. Nevertheless, we demonstrate that we
can achieve remarkable results obscuring physics knowledge and relying completely
on the model’s outcome. We introduce JetLOV, a composite comprising two models: a
straightforward multilayer perceptron (MLP) and the well-established LundNet [93].
Our study reveals that we can attain comparable jet tagging performance without
relying on the pre-computed LundNet variables. Instead, we allow the network to
autonomously learn an entirely new set of variables, devoid of a priori knowledge of
the underlying physics. These findings hold promise, particularly in addressing the
issue of model dependence, which can be mitigated through generalisation and

training on diverse data sets.
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5.2 Bias in Synthetic Data

Jet tagging constitutes a fundamental yet intricate aspect of jet physics. Its primary
objective is the accurate identification of high-energy particles responsible for
initiating cascades, ultimately leading to the formation of particle clusters known as
jets. Within this context, it is imperative to distinguish between various types of
particles that can trigger such events. However, the complexity is amplified when
dealing with extreme energy regimes, making the task of correct identification
exceedingly challenging. Machine learning has made significant strides in aiding the
physics community in improving models and achieving remarkable results in jet
tagging. Some of the most recent state-of-the-art models, as discussed in Section 3.5,
such as Particlenet [87] and LundNet [93] rely on Graph Neural Networks. Our focus
in this experiment centres on assessing the performance of LundNet, a model that has
excelled not only due to its complexity and sophistication but also because of the
pre-processing of input data fed into the neural network.

LundNet utilises the Lund plane projection to transform the tree-like structure of jets
into meaningful input features for each node in the tree [86]. By considering the
four-momentum of the two particle’s descendants, LundNet computes a set of five
variables known as LundNet variables. These variables encode essential information
about the energy distribution and flow within the tree structure. While it is often the
case that more complex architectures yield superior classification performance, they
often grapple with the issue of model independence. Recent findings, as presented at
the BOOST 2023 workshop on behalf of the ATLAS collaboration [100], have
underscored the challenges of generalisation for intricate taggers. These models tend
to be sensitive to the specifics of synthetic data generation, where variations in
simulation software, such as PYTHIA [73] and HERWIG [47], can significantly impact
the outcomes; different softwares have their own algorithms for simulating physics
processes, for example the parton shower and the hadronisation steps.

Motivated by the quest for model independence in physics, we introduce JetLOV, a
composite of two models which are first trained separately and then put together for
further training on the jet tagging: RegNet (a Multilayer Perceptron network) is the
one responsible for learning new set of variables to feed into the second part of the
model, LundNet, which is responsible for the tagging. JetLOV aims to discover a new
set of variables that can yield state-of-the-art performance. This approach paves the
way for future endeavours where RegNet can be leveraged to learn variable sets that
are independent of the data type provided. Our objective is to train the model to
achieve model independence, offering a promising path forward in the realm of
physics modelling.
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5.3 Experiment

The experiment is divided into two distinct steps. The initial step is dedicated to the
training of the RegNet component (coded using Pytorch 1.7 [101]) and involves a
regression task aimed at learning the five LundNet variables [86; 93], defined in
Section 3.5.3.2, for each particle denoted as “k” based on the four-momentum vectors

1”2 USTUN
1

of their two descendants, and ”j”:

(p;,p{,) — (Inkt, InA,Inz, In m,l/J)k (5.1)

RegNet, which takes the form of a MLP, is designed with five distinct branches, each
responsible for independently learning one of the five variables. The branches
handling “Ink;” and “Inm” comprise a series of channels with dimensions (8, 128) and
(128, 5), interconnected by ReLU activation functions. In contrast, the branches
responsible for “InA,” “Inz,” and ”1,” which involve more intricate functions, employ
a sequence of channels with dimensions (8, 128), (128, 128), and (128, 5), also
incorporating ReLU activation functions for effective learning. This pre-training is
performed in order to ensure that when we attach the second part of the architecture,
which is already trained as well, we start not too far off the minimum. Our
investigation confirms the necessity of this pre-trained part for achieving high
performance, as the non pre-trained RegNet fails to discover such optimal local

minima.

In the second step we attach RegNet to the pre-trained LundNet model. In this way
when we feed the data into the first model, it produce the input for the second, which
then produce the final output, i.e. the probability for classifying the type jet. Once the
prediction is compared with the target, we do the back propagation all the way back
in order to update the weights of the full model. The goal is to minimise the Cross
Entropy Loss and achieve a good performance. We look at five metrics: accuracy, area
under the ROC curve (AUC), background rejection at three signal efficiencies (0.3, 0.5
and 0.7).

5.4 Dataset

The data set is taken from [102]. In this project we worked only on the W-tagging, a
standard binary classification problem, which consists of two classes: the signal (the
W-jets, pp — WW process, and W required to decay hadronically) and the
background (the QCD-jets, pp — jj). Jets are clustered using the anti-kt algorithm [35]
with a radius R = 1.0 using FastJet 3.3.2 [5; 103], and are required to pass a selection

cut, with transverse momentum pt > 500 GeV and rapidity |y| < 2.5. In each event,



88 Chapter 5. Obscuring and Enhancing Jet Variables for Tagging

only the two jets with the highest transverse momentum are considered, and are

saved as training data if they pass the selection cuts.

5.5 Results

For the regression part, we trained the RegNet model with a data set of 100k events
(50k signals and 50k backgrounds) and a smaller validation data set of 10k events. The
training has been done over 100 epochs, until we reached a satisfying Mean Squared
Error (MSE) Loss. In Figure 5.1 we can see the plots between target and prediction for
each of the LundNet variables, the performance has been evaluated on a total number
of particles of approximately 15000 and achieved a MSE of 0.037. All of them follow
the expected linear trend, although it seems that the Neural Network struggles a bit

on learning the third variable In(z).
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FIGURE 5.1: For each one of the LundNet variables we plot the prediction from the

RegNet’s outputs. We also report the Mean Squared Error (MSE) and the Mean Ab-

solute Percentage Error (MAPE). The overall MSE for all the five variables is 0.037 on

approximately 15000 points. Blu dots are the data points while the orange lines are the
function f(x) = x.

For the classification, we have used an equally balanced data set of 1M events for the
training, and 100k for the validation and 100k for the testing. The training, performed
on a Nvidia GTX 1080 Ti graphics card with a minibatch size of 256, has been run for
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30 epochs, with an initial learning rate of 0.001, and a scheduler that lowered the
learning rate by a factor of 10 after the 20th and the 25th epochs. For the optimisation
we have chosen to use Adam optimiser [104]. The best model is chosen when the
highest validation accuracy has been reached. In Table 5.1, we can see that the models
achieve same performances, with slightly preference of LundNet on higher signal
efficiency and a preference of JetLOV for lower signal efficiency.

AUC Acc. 1/epates=03 1/epates=05 1/epates=0.7

LundNet 0.938 0.872 4545.4 602.4 70.2
JetLOV 0.938 0.872 6250.8 555.6 63.9

TABLE 5.1: Results of several metrics for the two models (LundNet and JetLOV) for

the W-tagging problem. The first column gives the area under the ROC curve, the

second gives the accuracy, and the later three show the background rejection (1/€p)

at three different signal efficiencies (es), 30 %, 50 % and 70 % respectively. For each
metric, larger values indicate better performance.

After training, our primary focus shifted towards the learned variables from the initial
part of the model that feed into the second part. We aimed to assess the extent to
which these learned variables differed from the original LundNet variables. To
conduct this analysis, we employed Canonical Correlation Analysis (CCA) [105] to
compare the original LundNet variables with the set learned by JetLOV.

CCA is a statistical method used to understand the relationship between two
multivariate sets of variables. It finds linear combinations of the variables in each set
such that the correlation between these combinations is maximized. Essentially, CCA
identifies the directions in which the two sets of variables are most strongly correlated.

The results of this analysis, conducted on a dataset comprising 500 events, revealed a
CCA value of 0.522, which indicates an absence of any significant correlation between
the two sets of variables.

Delving deeper, we further investigated the matter using Singular Vector Canonical
Correlation Analysis (SVCCA) [106] between the output layers of the fully trained
LundNet model before and after its attachment to RegNet.

SVCCA extends CCA by combining it with Singular Value Decomposition (SVD). This
approach not only considers linear correlations but also effectively handles
high-dimensional data by reducing noise. SVCCA finds the most correlated directions
(like CCA) but applies SVD first to reduce the dimensionality, making the analysis
more robust, especially in neural network settings where high-dimensional activations

are common.

This comparative analysis is visualised in Figure 5.2. The image, which is a matrix
displaying all pairwise SVCCA values, shows no values close to 1 (excluding the input

and the output layers), indicating little to no correlation between the parameters of
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each layer of the network. This suggests that we have successfully identified a
minimum point in our training process that meets the performance requirements for
jet tagging. However, it is remarkable that the set of variables discovered at this
minimum point deviates substantially from the original LundNet variables.

This intriguing outcome suggests that in certain cases, Machine Learning models can
excel without relying on physics-derived features. While this may be advantageous as
it hints at the potential for uncovering unconventional insights, there is a notable
trade-off. The balance must be carefully struck between model interpretability and
performance. Physics-based features are often interpretable, allowing researchers to
comprehend the rationale behind a model’s predictions. Conversely, when models
learn novel features, they may become more opaque or ‘black-box,” presenting
challenges in interpreting their decision-making processes.

SVCCA analysis
-07

(

-\.Qo 0.096 e} 0.7 069 069 068 0.64

- 0.6

T " A . ¥ %
I O

TP

FIGURE 5.2: SVCCA analysis for each pair of the layers of the fully trained LundNet
model before and after being combined with RegNet. Rows correspond to the model
before being attached to RegNet, while cols correspond to the model after.
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Chapter 6

Reducing the Bias of Machine
Learning Models’ Performance

In this chapter, we explore the application of a novel unsupervised learning method to
reduce bias in machine learning models” performance when trained on synthetic data.
By capturing symmetries in the data, this approach seeks to enhance the robustness of
neural networks while mitigating biases introduced by varying simulation or physics
models. Additionally, we examine the interplay between bias and generalisation,
focusing on how domain shifts between training and test datasets impact model
performance. Our investigation highlights the importance of reducing reliance on
simulation-specific features to improve the applicability of machine learning models

to real-world data.

6.1 Bias and Generalisation: Understanding Domain Shifts

Bias in machine learning models refers to systematic deviations in performance caused
by differences in the training data distribution compared to the test or deployment
scenarios. In the context of HEP, this bias often arises due to the use of synthetic
datasets generated by different physics models or simulation tools. These differences
can lead to significant performance degradation, particularly when the models
encounter real-world data that may diverge from the training data distribution.

On the other hand, generalisation ability refers to a model’s capacity to perform well
on unseen data, particularly when the data distribution differs from the training
set—a phenomenon often referred to as the domain shift problem. In HEP, domain
shifts manifest when machine learning models are trained and tested on datasets

generated using different showering algorithms or event generators. The goal is to
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train models that remain stable and reliable across such shifts, enabling consistent

performance across diverse physics scenarios.

Addressing bias and improving generalisation are closely intertwined but not
identical tasks. Bias mitigation focuses on reducing the dependence on
simulation-specific features or artefacts, while improving generalisation entails
designing models or training schemes that can adapt to or remain robust against
variations in the data distribution. Together, these efforts aim to produce models that
can accurately interpret real-world experimental data despite the intrinsic differences
from synthetic training datasets.

6.2 Comparison Between Twin Events

As mentioned in Section 5.2, complex and highly performing jet taggers often lack
stability when trained and tested on data generated with different software or
different physics models. This is a significant limitation, as ultimately, we seek a
model that is robust when working with real-world data.

In our investigation, we focused on the impact of varying showering models within
PYTHIA. Specifically, we generated samples using both the angular-ordered [15; 16]
and pr-ordered [17; 18] showering methods.

Angular-ordered parton showers arrange emissions based on the angle of emission
relative to the initial parton direction. This approach is motivated by the concept of
angular ordering, which aligns with colour coherence effects in QCD. Emissions in
this model are naturally angular ordered due to colour coherence, providing a
physical picture of QCD radiation that is particularly effective at simulating soft and
collinear emissions. However, it can be less straightforward to accurately model
harder emissions, where the transverse momentum (pr) of the emissions becomes

more critical.

In contrast, pr-ordered parton showers arrange emissions based on the transverse
momentum of the emitted parton. This method is more intuitive in terms of
momentum scales and excels in simulating high transverse momentum processes and
hard scatterings. The pr-ordered approach offers a clearer separation of scales in
parton emissions, making it particularly suitable for processes involving high
transverse momentum. Nonetheless, this model may not fully capture the angular
correlations induced by colour coherence, potentially affecting the accuracy of soft

and collinear emission simulations.

Figure 6.1 illustrates the discrepancy in ROC curves for the same model (LundNet)
trained five times on a dataset of 500k jets and tested on an unseen dataset of 50k jets.
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FIGURE 6.1: LundNet performance on two distinct showering models. The results are
averaged over 5 runs per model.

The curves represent the averaged performance across the five training runs. To
highlight the impact of the showering model, we have annotated the plot with the
background rejection values at three key signal efficiencies: 0.3, 0.5, and 0.7.
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FIGURE 6.2: LundNet trained on dataset number 1 and then tested on dataset number
1 and dataset number 2. Results are averaged over 5 runs per model.
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In contrast, Figure 6.2 illustrates the performance discrepancy of the LundNet
architecture when trained on dataset number 1 and then tested on both datasets 1 and
2. Each curve represents the average performance across five independent training
runs. We observe a significant percentage error between the two curves, indicating the
model’s sensitivity to the specific dataset used for training.

By analysing model performance across datasets generated with these two distinct
showering methods, we aim to understand the extent to which domain shifts in
simulation inputs affect bias in machine learning models. Our proposed unsupervised
learning method leverages symmetries in the data to reduce simulation-specific
dependencies, thereby improving generalisation across domain shifts. This approach
not only mitigates bias but also enhances the adaptability of models to diverse
datasets, bridging the gap between synthetic and real-world data.

6.3 Exploring Symmetries

Variance-Invariance-Covariance Regularisation (VICReg) [6] is a novel self-supervised
learning method designed to explicitly prevent the collapse problem in representation
learning, where models learn to produce trivial or constant outputs. This is achieved
through two regularisation terms applied to the learned embedding. In contrast,
popular alternative approaches like Contrastive Learning [107] demonstrate strong
performance but require a large number of contrastive pairs for effective training.
While Contrastive Learning has been successfully applied in jet physics through
models like JetCLR [108], which leverages symmetries in jet data for tasks like jet
tagging, VICReg offers a distinct advantage by not requiring negative samples or a
large batch size.

The following results focus on adapting VICReg to GNNs. This adaptation

necessitates four key components:
¢ Augmented data Each data point requires an augmented copy to provide
diverse training examples.

¢ Encoder A neural network (in our case a GNN) that transforms input data into a

latent representation.

¢ Projector/Decoder: A network that projects the latent representation into a

higher-dimensional space, aiding in the separation of different features.
* Loss Function: A three-term loss function composed of:

— Invariance: Minimises the mean squared distance between embeddings of

augmented pairs, encouraging similar representations.
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- Variance: Promotes diversity among embeddings of different samples
within a batch.

— Covariance: Reduces correlations between different dimensions of the
embeddings, further preventing collapse.

Method

VICReg utilises a joint embedding architecture, which can be either symmetric or
asymmetric. Typically, a Siamese network architecture is used where two branches
share weights and consist of an encoder fy and an expander hy. The encoder outputs
representations for downstream tasks, while the expander maps these representations
into an embedding space where the loss function is computed. The expander serves to
eliminate differing information and expand the dimension non-linearly to reduce
dependencies between variables of the representation vector. This can be seen in
Figure 6.3.

Given a data point i sampled from a dataset D, two different views x = t(i) and

x" = t'(i) are produced using random transformations. These views are encoded by fj
into representations y = fy(x) and y’ = fy(x’), which are then mapped by 5, to
embeddings z = hy(y) and 2" = hy(y').
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FIGURE 6.3: VICReg [6]: joint embedding architecture with variance, invariance and
covariance regularisation. Given a batch of data points I, two batches of different
views X and X' are produced and are then encoded into representations Y and Y’. The
representations are fed to an expander producing the embeddings Z and Z’. The dis-
tance between two embeddings from the same data point is minimised, the variance
of each embedding variable over a batch is maintained above a threshold, and the
covariance between pairs of embedding variables over a batch are attracted to zero,
decorrelating the variables from each other.

The loss is computed on these embeddings and consists of three terms: variance,

invariance, and covariance.

The loss function in VICReg is defined as:

L(Z,Z")=As(Z,Z") + ulo(Z) +0(Z")] + v[c(Z) + ¢(Z)] (6.1)
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where A, u, and v are hyperparameters that control the contribution of each term to
the total loss and Z = [z3,...,z,) and Z' = [Z], ..., z},] denote batches of data points.
The three terms are defined as follows:

* Invariance Term: This term ensures that the embeddings of augmented pairs are
close to each other by minimising the mean squared distance between them.

/ 1 al 1112
Z') = NZHZi—Zin (6.2)
i=1
where N is the number of samples, z; and z; are the embeddings of the i-th

sample and its augmented view, respectively.

* Variance Term: This term promotes diversity among embeddings of different
samples within a batch by ensuring that the standard deviation of each
dimension in the batch is above a given threshold 7.

d
E; x(0,7 — S(Z,€)), (6.3)
where S is the regularised standard deviation defined by:
S(x,e) =/ Var(x) +e€ (6.4)

where d is the dimensionality of the embeddings, and Var(z/) is the variance of
the j-th dimension of the embeddings z in the batch.

¢ Covariance Term: This term reduces correlations between different dimensions
of the embeddings by minimising the sum of the squared off-diagonal elements

of the covariance matrix.

= Z (6.5)
i#j
where C(Z) is the covariance matrix of Z (the indices run over the dimensions of
the embeddings):
CZ)= " Y (a-2)—-2)7, where z=1) z 6.6)
_n—ll:1 1 1 7 _n:1 1+ .

This comprehensive loss function ensures that the model learns meaningful and

diverse representations without collapsing to trivial solutions.

In the next section, we will delve deeper into the application of these methods to jet
tagging, exploring how VICReg can be adapted and optimised for use with Graph
Neural Networks in this domain.
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6.4 Experiment

In our work, we utilize a dataset of 500,000 events (balanced between signal and
background) as augmented data. Crucially, groups of 2 jets within this dataset share
the same hard scattering process, acting as “twin” samples. This differs significantly
from the approach in [108], where data augmentation (e.g., rotations) is performed
during training. In our case, the augmentation is done beforehand, due to the
computationally expensive nature of re-showering events. Before delving into the
complexity of using different re-showering methods, we generate the data
re-showering the same hard scattering using a different seed. We do this with the two
showering models, therefore we end up with two datasets: pt-ordered dataset and

angular-ordered dataset.

For the encoder, we employ a stack of EdgeConv layers, proposed in [88], similar to
the architectures used in ParticleNet [87] and LundNet [93]. Specifically, the EdgeConv
blocks have (32, 32), (64, 64), (128, 128), and (128, 128) channels, respectively. These are
followed by a two-layer Sequential network, with a ReLU in between, that expands
the aggregated graph node features into a 256-dimensional space. The input data can
be either 4-dimensional (for LundNet trees) or 5-dimensional (for KNN graphs).

A key strength of this unsupervised approach lies in its task formulation. We train the
model to recognise “twin jets,” or jets sharing the same hard scattering process. While
learning this task, the model implicitly separates signal jets from background jets in
the latent space. This separation allows us to achieve good tagging performance using
only a simple linear classifier on top of the learned representations.

Model Acc. AUC 1/egateg=0.3 1/egates=0.5 1/eg ates=0.7
V-LundNet 0.888 0.944 463.3 183.3 46.2
V-ParticleNet 0.879 0.940 345.6 105.8 37.3

TABLE 6.1: Results of several metrics for the two models (V-LundNet and V-

ParticleNet) for the W-tagging problem. The first column gives the area under the

ROC curve, the second gives the accuracy, and the later three show the background

rejection (1/€p) at three different signal efficiencies (€5 ), 30 %, 50 % and 70 % respec-
tively. For each metric, larger values indicate better performance.

As shown in Table 6.1, the two models, V-LundNet and V-ParticleNet, were evaluated
for the W-tagging problem, with V-LundNet outperforming V-ParticleNet across all
metrics. We can see that passing as input LundNet trees, it clearly outperforms the
other ways to pass the data as inputs, i.e. as plain graphs in the eta-phi space or

passing tree with learnable features.

Although these are good results, they are not comparable to the state-of-the-art
LundNet model, in fact, as we can see from Fig. 6.4, the supervised method, where we
train on labels, outperforms the unsupervised one, where all we ask is to recognised

pairs of twin-jets.
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FIGURE 6.4: LundNet (supervised method) outperforms V-LundNet (unsupervised
method).

6.5 Hyperparameter Tuning

Hyperparameter tuning is a critical step in the machine learning model development
process. Unlike model parameters, which are learned during the training process,
hyperparameters are set prior to the commencement of training and influence the
behaviour and performance of the model. Properly tuning these hyperparameters can

significantly improve the accuracy and efficiency of the model.

Hyperparameters are configurations that guide the training process of machine
learning algorithms. They include aspects like learning rate, batch size, number of
layers in a neural network, and more. Finding the optimal combination of these
hyperparameters can be challenging due to the vast search space and the

computational resources required.

Hyperparameter tuning involves systematically searching through a set of possible
values for the hyperparameters and selecting the combination that yields the best
performance on a validation set. The objective is to enhance the model’s

generalisation ability, ensuring it performs well on unseen data.

Several methods are commonly used for hyperparameter tuning, each with its own
advantages and trade-offs. The most prevalent methods are grid search, random

search, and Bayesian optimisation.
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Grid Search is one of the simplest and most exhaustive hyperparameter tuning
methods. It involves defining a finite set of values for each hyperparameter and
evaluating the model performance for every possible combination of these values.
Although grid search explores all possible combinations within the specified ranges,
ensuring that the best combination is found, provided it lies within the grid, it is
extremely computationally expensive. Moreover, it is quite inefficient as it may
evaluate many combinations that do not contribute significantly to performance

improvement.

Random Search [109], as the name suggests, involves randomly selecting values for
each hyperparameter from specified distributions. The model is then evaluated on
these randomly chosen combinations. It is more efficient than grid search, indeed it
can often find good hyperparameter combinations with fewer iterations because it
does not evaluate the entire search space. It is suitable for high-dimensional
hyperparameter spaces. Random search may miss the optimal combination of

hyperparameters, especially if the search space is vast and sparsely sampled.

Bayesian Optimisation [110] is a more sophisticated hyperparameter tuning method
that builds a probabilistic model of the objective function and uses this model to select
the most promising hyperparameters to evaluate. It systematically explores the search
space and focuses on areas where the optimal hyperparameters are more likely to be
found. Bayesian optimisation often finds the best hyperparameters in fewer iterations
compared to grid and random search. It is more complex to implement and
understand compared to grid and random search and it can be computationally

expensive, especially for high-dimensional spaces.

In the context of our research, we can distinguish the hyperparameters into two sets:
those aimed at improving the performance of the model, which refer to the
architecture (e.g., learning rate, batch size, number of neurons), and those related to
the stability of the training, specifically the scaling factors for the three terms in the
loss function. In the initial stage of the project, our primary objective was to
investigate the efficiency of the new methodology, so we focused solely on the second

set of hyperparameters.

In the original work [6], the exact tuning procedure is not detailed. However, it is
mentioned that to ensure stability in training, the value for the covariance loss should

be very low compared to the other two, which are then chosen to be equal.

Since this is an unsupervised method, selecting the right metric can be quite
challenging. Therefore, we decided to leverage the fact that in the second step, we
could use the model to perform a classification task. With the help of the Optuna
package [111], we conducted a simple random search for these three hyperparameters.
We retained the best set of values whenever the trained architecture performed better

on the classification dataset. After a few searches, we confirmed that the optimal
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values for the three parameters are: 1 for the scaling factor for the covariance loss and
25 for the other losses.

6.6 Tuning on Smaller Datasets

Thus far, the unsupervised model has been trained solely on the task of recognising
“twin jets” (jets sharing the same hard scattering process). To compare it against
traditional supervised methods, we attached a single linear layer to learn the
distinction between signal and background classes. Interestingly, this linear classifier
does not require the full dataset used to train the underlying GNN; it achieves
comparable performance with a significantly smaller subset. In fact, using only 10% of
the original training set (50k jets instead of 500k) results in a negligible change in

performance, as can be seen in Table 6.2.

Model Acc. AUC 1/egateg=0.3 1/egates=0.5 1/ep ateg=0.7
V-LundNet-500k 0.888 0.944 463.3 183.3 46.2
V-LundNet-50k  0.888 0.944 438.4 162.9 45.0

TABLE 6.2: Results of several metrics for the V-LundNet models comparing tuning

performance using the full dataset of 500k jets against a smaller subset of only 50k. As

shown, there are negligible differences, highlighting the surprising advantages of this
method for generalising across various types of data.

This approach of using smaller datasets for fine-tuning has significant implications for
the generalisability of machine learning models in high-energy physics. By effectively
leveraging pre-trained models and applying minimal fine-tuning, we can achieve

robust performance across different datasets and physics simulations.

For instance, in our investigation, we focused on the impact of varying showering
models within PYTHIA. Specifically, we generated samples using both the
angular-ordered and pr-ordered showering methods. If a model trained on jets
produced by one showering method can accurately classify jets from another, it
demonstrates strong generalisability. This is particularly important because different
parton shower models can produce varying jet structures, and a model that performs
well across these variations is more likely to be robust when applied to real-world
data.

To further illustrate this, consider the scenario where additional data is generated
using a different Monte Carlo generator, such as HERWIG. Instead of retraining the
model from scratch on this new data, we can leverage the pre-trained model and
apply fine-tuning with a relatively small amount of HERWIG-generated data. This
process significantly reduces the computational resources and time required for

training while maintaining high classification accuracy.
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Such adaptability is critical in high-energy physics, where the ability to generalise
across different datasets and simulation models can lead to more reliable and efficient
data analysis. The use of unsupervised learning to pre-train models, followed by
supervised fine-tuning on smaller datasets, represents a powerful strategy for
developing robust jet taggers that perform well across a range of conditions and data

sources.

By adopting this approach, we not only enhance the model’s performance but also
ensure that it remains flexible and capable of adapting to new data with minimal
retraining. This is particularly useful in experimental physics, where obtaining large

labelled datasets can be challenging and time-consuming.

This approach is closely related to transfer learning [112], a common technique in
machine learning that involves transferring knowledge from one domain to another to
reduce training complexity. Transfer learning allows a model trained on one task to be
adapted for a different but related task with minimal retraining. In the context of
high-energy physics, transfer learning has been demonstrated effectively in previous
studies. For example, in [113], it was shown that a model trained on a top tagging
dataset could be adapted for W-tagging without the need to retrain from scratch. This
technique underscores the efficiency and versatility of transfer learning in developing
adaptable and high-performing models in jet physics.

6.7 Exploring the Embedding Space

Figure 6.5 visualises the latent space representations learned by both LundNet and
V-LundNet. The goal is to explore how well these models generalise across different
datasets. We fed 10,000 jets from each of the two datasets into both models, even
though the models were trained solely on dataset 1. The t-SNE dimensionality
reduction algorithm [114] was used to project the 256-dimensional latent spaces down

to two dimensions for easier visualisation.

t-SNE (t-distributed Stochastic Neighbour Embedding) is a machine learning
algorithm specifically designed for visualising high-dimensional data by reducing it to
two or three dimensions. It works by converting high-dimensional Euclidean
distances into conditional probabilities representing similarities between data points.
The algorithm minimises the divergence between these probability distributions in the
original high-dimensional space and the low-dimensional projection, making it
particularly effective for revealing structure and clustering similar data points

together.

The figure shows a notable similarity in the overall structure of the latent spaces for
both datasets, despite the models being trained only on dataset 1. This suggests that
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the models capture generalisable features, explaining the small performance gap
observed when switching datasets for classification. The analysis of these latent
spaces gives us insight into how well the models can generalise across different data
distributions, a key property for robust jet tagging.
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FIGURE 6.5: Projection of 10,000 jets from both dataset 1 (training set) and dataset 2
into the latent spaces learned by LundNet and V-LundNet. These 256-dimensional
latent representations were reduced to two dimensions using t-SNE for visualisation.
The figure highlights how the latent space structure remains consistent across datasets,
suggesting that the learned representations generalise well beyond the training data.

6.8 Conclusion

In this chapter, we embarked on an initial exploration of a novel approach to
mitigating bias in synthetic data using an unsupervised learning method, specifically
through the application of VICReg to Graph Neural Networks. The results, though
preliminary, are promising. While the performance in traditional jet tagging tasks has
seen some reduction compared to state-of-the-art supervised methods, this trade-off is
a potential pathway to reducing performance gaps caused by training on biased

synthetic datasets.
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The ability to learn from unlabelled data and fine-tune models on a minimal amount
of labelled data is a crucial aspect of this solution. By leveraging a pre-trained model
and applying targeted fine-tuning, we can significantly enhance generalisability
across different datasets and simulation conditions, all while maintaining a robust
performance.

This work represents just the beginning of our efforts to address the challenge of bias
in synthetic data. There is ample room for improvement, and further refinement of
this methodology may lead to more substantial reductions in performance disparities.
As we continue to develop and refine these techniques, the ultimate goal remains to
build models that not only perform well but are also resilient to the biases inherent in
the data on which they are trained.
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Chapter 7

Conclusions

In this thesis, we have delved into the intricate and fascinating world of jet physics,
exploring the formation, clustering, and tagging of jets in high-energy particle
collisions. Our work has underscored the transformative power of machine learning
in enhancing our understanding of these complex phenomena, particularly through
the application of GNNs. Our journey has traversed both foundational theory and
cutting-edge research, culminating in the development of novel algorithms aimed at

unravelling the secrets of the subatomic realm.

We began by establishing a solid theoretical framework for jets, tracing their origins
from the fundamental interactions of quarks and gluons to the collimated sprays of
hadrons observed in detectors. We delved into the mechanisms of parton showering
and hadronisation, highlighting the inherent challenges and intricacies involved in
accurately modelling these processes. The complexity of jet formation necessitates
robust clustering algorithms, and thus, we examined traditional methods like the
anti-kt algorithm alongside more recent approaches based on spectral clustering. In
doing so, we emphasised the importance of infrared and collinear safety, ensuring that
our algorithms remain consistent with the underlying principles of QCD and particle

physics.

The advent of machine learning, particularly GNNSs, has revolutionised the field of jet
physics. We have demonstrated how GNNs can effectively capture the complex
relationships between particles within jets, leading to significant advancements in jet
tagging and clustering tasks. Throughout this thesis, we explored state-of-the-art
GNN architectures such as ParticleNet, LundNet, and EMPN, each with its unique
strengths and applications. These models have shown remarkable performance in
distinguishing between different types of jets, identifying the origins of particles, and
even uncovering subtle anomalies that could hint at new physics beyond the Standard
Model.
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Our research has contributed to this exciting frontier by developing and rigorously
evaluating novel algorithms for jet clustering and tagging. In Chapter 4, we
introduced a spectral clustering method that operates in a transformed feature space,
offering improved performance compared to traditional methods. This approach
leverages the power of eigenvectors and eigenvalues to capture the intrinsic structure
of particle collisions, resulting in more accurate and robust jet clustering. We also
provided a comprehensive analysis of how different hyperparameters affect the
algorithm’s performance, offering valuable insights for future optimisations and

practical implementations.

In Chapter 5, we delved into the integration of physics knowledge with machine
learning for jet tagging tasks, introducing JetLOV—a model designed to learn optimal
variables for LundNet without relying on pre-computed physics features. This work
highlighted the ability of machine learning to discover effective representations of jet

data, even without explicit guidance from traditional physics-based features.

In Chapter 6, we shifted our focus to methods aimed at reducing bias in GNN-based
jet taggers. Here, we employed unsupervised learning techniques, specifically
VICReg, to exploit the inherent symmetries in jet data. This approach proved effective
in mitigating model dependence, ensuring consistent performance across different

datasets and simulation models, and enhancing the generalisability of our algorithms.

Throughout this thesis, we have consistently emphasised the importance of balancing
performance with adherence to fundamental physics principles. While machine
learning offers powerful tools for data analysis, it is crucial to ensure that our models
remain grounded in the underlying physics. This involves integrating physical
constraints, such as infrared and collinear safety, into our algorithms and rigorously
evaluating their behaviour in diverse scenarios. By striking this balance, we can
harness the full potential of machine learning to advance our understanding of jet

physics, ultimately leading to new discoveries in high-energy physics.

Looking ahead, the future of jet physics research is exceedingly bright. The
continuous advancements in machine learning, coupled with the ever-growing data
volumes from experiments like the LHC, promise to revolutionise our understanding
of the subatomic world. As we continue to develop more sophisticated algorithms
and explore innovative representations of jet data, we can expect to uncover deeper
insights into the fundamental forces and particles that constitute our universe. The
integration of machine learning with theoretical physics holds the potential to not
only push the boundaries of current knowledge but also to open up entirely new
avenues of exploration, leading to groundbreaking discoveries and an expanded

understanding of the cosmos.

In conclusion, this thesis has made significant contributions to the field of jet physics

by bridging the gap between traditional physical theories and modern machine
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learning techniques. The methodologies and algorithms developed here provide a
solid foundation for future research, ensuring that as we advance into the next era of
particle physics, our tools remain as rigorous, interpretable, and effective as possible.
The synergy between machine learning and high-energy physics will undoubtedly
play a pivotal role in the next generation of scientific discoveries, helping us to

decipher the profound mysteries of the universe.
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Appendix A

Demonstration of Local
Parton-Hadron Duality Using the
Earth Mover’s Distance in Jet
Physics.

In this appendix, we present a straightforward and insightful exercise that illustrates
the concept of local parton-hadron duality (LPHD), as discussed in Section 2.1.2. This
exercise utilises a novel metric in jet physics, known as the Earth Mover’s Distance
(EMD) or Energy Mover’s Distance, which has been explored in several studies
[115-119]. The exercise was proposed by [7], following the introduction of EMD in jet
physics by [21].

Intuitively, EMD is a metric that measures how “difficult” it is to move a pile of dirt
from one location, A, to another, B. The lower the value, the easier the task. When
applied to distributions, such as in jet physics where points are dispersed in space, it
becomes non-trivial to quantify the difficulty or even determine the optimal way to
redistribute energy from distribution A to distribution B. Figure A.1 shows an
example of how to rearrange the energy of one jet to another. A specific variant of the
EMD has been introduced, enabling comparison between events with different total
energies. The EMD represents the minimum “work” required to transform one event
E into another Ey by transferring energy f;; from particle i in one event to particle j in
the other:

0.
EMD(e, €') = rr}in Zfl]% (A1)
i

1

L Ei—)E
T

subject to the following conditions:
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fii >0 Y fi <E, Y fy <Ej  Yiify = Emin, (A2)
] 1

where i and j index particles in events € and €’, respectively, E; is the particle energy,
0;; is an angular distance between particles, and E;;, = min(}; E;, ) E]’) is the smaller
of the two total energies. R is a parameter that controls the relative importance of the
two terms. Note that either energy or transverse momentum can be used.
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FIGURE A.1: The optimal movement to rearrange one top jet (red) into another (blue).

Particles are shown as points in the rapidity-azimuth plane with areas proportional to

their transverse momenta. Darker lines indicate more transverse momentum move-

ment. The energy mover’s distance is the total “work” required to perform this rear-
rangement [7].

The EMD can be related to additive IRC-safe observables through the
Kantorovich-Rubinstein duality theorem [120]. By applying this theorem to the
variant of EMD discussed here, it is possible to demonstrate how EMD constrains
hadronisation modifications of jet angularities A = }; pr;6;, where 6; is the

rapidity-azimuth distance to the jet axis. Consequently, we expect that:

AN = |A(€) — A(€')| < EMD(g, €). (A.3)

To carry out this exercise, events are required at two stages of the generation process:
before and after hadronization. Particle physics generator software, such as Pythia

[45], can simulate the entire process asynchronously, providing access to both stages.

The dataset consists of proton-proton collision events at the LHC, generated using
Pythia 8.235 [45] at /s = 14 TeV, including hadronisation and multiple particle
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interactions. Anti-kr jets [35] with a jet radius of 1.0 are clustered using FastJet 3.3.1
[103], and up to two jets with pr € [500,550] GeV and |y| < 1.7 are selected. This pr
range represents an intermediate energy level for jets at the LHC, allowing sensitivity

to both terms in Eq. A.1. The jets are longitudinally boosted and rotated to centre the

jet four-momentum at (y, ¢) = 0 and to vertically align the principal component of the

constituent transverse momentum flow in the rapidity-azimuth plane. This step

removes the dependence of the EMD on these jet isometries.

Figure A.2 presents the results obtained using the Python Optimal Transport library

[121] to compute the EMDs between events.
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FIGURE A.2: Two-dimensional histogram of the EMD between 30k QCD jets before

and after hadronisation versus the corresponding angularity modification. The red

region is excluded based on the bound, shown as a dashed red line. The bound is
clearly satisfied and is nearly saturated for EMD < 10 GeV [7].
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