1

2

3

6

7

8

Molecular Precursors for the Electrodeposition of 2D-Layered Metal Chalcogenides for Next Generation Electronics

- Philip N. Bartlett¹ (Email: <u>P.N.Bartlett@soton.ac.uk</u>), C. H. (Kees) de Groot², Victoria K. Greenacre¹,
 Ruomeng Huang², Yasir J. Noori², Gillian Reid¹ (Email: <u>G.Reid@soton.ac.uk</u>) and Shibin Thomas¹
 - 1. School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.

2. School of Electronics and Computer Science, University of Southampton, Southampton SO17

1BJ, UK.

9 Abstract

Two-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic layered 10 semiconductors, with general formula ME_2 (M = metal, E = sulfur, selenium or tellurium). Much current 11 research focusses on TMDCs for catalysis and energy applications; they are also attracting great 12 interest for next-generation transistor and optoelectronic devices. These high-tech applications place 13 stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of 14 mono-/few-layer materials. As a solution-based process, where the material grows specifically on the 15 electrode surface, electrodeposition offers great promise as a readily-scalable, area-selective growth 16 process. This review explores the state-of-the-art for TMDC electrodeposition, highlighting how the 17 choice of precursor(s), solvent, with novel 'device-ready' electrode geometries, influence their 18 morphologies and properties, thus enabling the direct growth of ultra-thin, highly anisotropic 2D 19 TMDCs and much scope for future advances. 20

21

22 [H1] Introduction

Semiconductors are integral to modern technology and the chips that provide the processing power that drive the devices that modern society relies on, such as smartphones, tablets, and PCs. Each chip contains billions of semiconducting transistors. The demand for smaller, faster and lower power devices places an ever-increasing demand on the development of nanoscale semiconductors.

2D-Layered transition metal dichalcogenides (TMDCs) are an exciting class of highly tunable and anisotropic semiconductors with considerable promise for implementation into next generation electronic and optical devices with novel architectures.¹⁻⁵ TMDCs have the general formula, ME₂ (M = transition metal, especially Mo, W, Ti, Zr, Nb, Ta; E = chalogen, *i.e.* sulfur, selenium or tellurium) (Figure 1); the notation, MX₂, where X = chalcogen = S, Se, Te, is also used by some communities. They adopt

layered structures, and each of the monolayers consists of 2D hexagonally packed E-M-E structures 32 (Figure 1a), where the metal atoms in the centre of the hexagonal plane are covalently bonded to the 33 chalcogen atoms above and below this plane. In a TMDC each metal atom is coordinated by six 34 chalcogens in either an octahedral or trigonal prismatic arrangement (Figure 1b). The monolayers are 35 stacked through van der Waals (vdW) interactions to form bulk TMDCs, with the formation of a variety 36 of polymorphs and polytypes dependant on the stacking sequence. The M-E-M bonding within the 37 layers is strong (covalent), while there is weak E···E vdW bonding between the layers. These layered 38 TMDCs exhibit extraordinary and unique layer-dependent physical properties when scaled down to 39 thicknesses of only a few-layers, or even a single monolayer. Their unique combination of robust intra-40 layer bonds and weaker inter-layer bonding contributes to the distinct and highly anisotropic 41 properties of TMDC materials. This means their electronic structures can be engineered through 42 carefully controlling the number of layers, crystal phase, heterostructures and composition (for 43 instance, the choice of metal and chalcogen). These versatile and highly tunable properties, together 44 with the range of TMDCs that can exist, continue to attract a great deal of fundamental and 45 technological research in fields ranging from electronics,⁶⁻⁸ optoelectronics,⁹⁻¹¹ sensing¹² and 46 catalysis,^{13,14} to energy storage (batteries, supercapacitors)¹⁵⁻¹⁸ and energy generation (photovoltaics, 47 thermoelectric generators).¹⁹⁻²¹ 48

Mechanical and liquid phase exfoliation (delamination from a bulk crystal) are commonly-used to prepare mono- and few-layer single crystalline TMDC flakes.^{22,23} This approach has been instrumental in revealing the unique properties of TMDCs, including their light-matter interactions, and many of the novel electronic and optical device structures that have been demonstrated.^{6,24} However, these methods are slow and require special care to avoid damage to the material, hence they are not suitable for producing devices on the scale necessary for mass-production in industry.

Production of mono-/few-layer TMDCs requires scalable and, ideally, area-selective [G] deposition 55 techniques that deliver the TMDC only onto or into specific pre-patterned regions of a wafer substrate. 56 Chemical vapour deposition (CVD),²⁵⁻²⁷ atomic layer deposition (ALD),^{28,29} and molecular beam epitaxy 57 (MBE)^{30,31} are currently the most common processing methods for the large-scale production of mono-58 and few-layer TMDCs. They can give high crystal quality, controllable thickness, and excellent 59 electronic properties at full wafer-scale. A wide range of monolayer and thin film TMDCs, such as 60 MoS₂, WS₂, WSe₂, VTe₂, have been obtained this way.^{9,32} These methods have also been used to 61 deposit TMDC heterostructures, such as WSe₂/MoS₂, WSe₂/MoSe₂ and MoS₂/WS₂.³³⁻³⁵ However, they 62 also have some drawbacks. For example, it is very challenging to grow large, single crystalline domain 63 TMDC layers with these methods. This is because they typically produce multiple nuclei on the 64

substrate simultaneously, hence the as-deposited materials are polycrystalline; the crystallinity can
 be increased by annealing at high temperatures.

It is also important to note that these growth methods are (usually) not area-selective. For TMDCs 67 grown on wafer-scale, various post-deposition processing steps, such as etching and patterning, are 68 therefore required to create the necessary nanoscale dimensions and architectures.³⁶ Such processes 69 are time-consuming, expensive and can introduce contamination and defects, which are detrimental 70 to the material quality and functionality. The current processes that are carried out post-deposition 71 to address this challenge have been the subject of an excellent review.³⁷ Advances in area-selective 72 CVD and ALD for certain mono-layer TMDCs on lithographically-patterned substrates have also been 73 reported.^{38,39} However, there is considerable interest in developing novel TMDC growth methods 74 capable of delivering high quality, patterned 2D-TMDC layers directly. 75

This article reviews the state-of the-art for the growth by electrodeposition of layered metal 76 chalcogenide materials for semiconductor applications, with particular emphasis on the prospects for 77 the scalable growth of ultrathin 2D TMDCs. Here, direct TMDC electrodeposition onto pre-defined 78 regions of the substrate is of particular interest. For a discussion of the electrodeposition of 79 semiconductor materials in general, the reader is directed to the reviews by Schlesinger et al⁴⁰ and 80 Lincot.⁴¹ A monograph on electrodeposition of a broader range of metal chalcogenides from across 81 the periodic table is also available.⁴² Among the most important considerations to deliver the precise 82 stoichiometries, structures and morphologies, are the choice of the molecular precursor(s), the 83 solvent, the nature and design of the electrode and the specific deposition parameters employed, 84 each of which will be discussed. Developments in the use of single source precursors (SSPs) [G] 85 (molecules or ions in which the directly bonded metal-chalcogen unit is already built-in), together with 86 emerging work on the electrochemical growth of TMDCs from the edge of nano-band electrodes, are 87 88 also highlighted.

89

90 [H1] Electrodeposition

Electrodeposition (also known as electroplating) is a technology that dates to the early 19th century and was first used to make printing plates and to apply decorative coatings such as silver plating on cutlery. Today it is often associated with large-scale engineering or decorative applications, such gold, nickel or chrome plating, with many thousands of electroplating businesses operating worldwide. It is widely used in printed circuit board manufacture, to grow thin films for the read heads in the manufacture of hard-disc storage drives⁴³ and to deposit metals and alloys. This application makes use of its ability to produce adherent, conformal coatings. Electrodeposition is also a key technology for fabricating nano-scale electronics over 12-inch diameter wafers where it is the key step used to make
 the Cu interconnects and vias that wire up the (*ca.* 0.13 trillion) transistors in high-performance
 microprocessors through the Damascene process.⁴⁴

101 [H2] Principles and criteria for electrodeposition

The choices of solvent, electrolyte **[G]**, salt and precursor for electrodeposition are governed by chemical constraints and there are often trade-offs that need to be made. There are important chemical factors that need to be considered when choosing the composition of the electrodeposition solution and in the design of precursor compounds. An excellent introduction to electrodeposition can be found in Paunovic and Schlesinger's book.⁴⁵

First, the choice of solvent determines the accessible potential range and is important because it can act as a competitor ligand for the molecular precursor compound(s), leading to formation of additional coordination species in solution.⁴⁶ The purity of the solvent is crucial since small amounts of electroactive impurities can have a considerable effect.

- Second, the choice of electrolyte has a significant effect. The electrolyte salt (C^+A^-) must not only 111 dissolve in the solvent, but also dissociate to form mobile cations (C⁺) and anions (A⁻) so that the 112 electrolyte solution is conducting. Its purity is again important because it is present at high (typically 113 > 0.1 M) concentration. Many electrolytes are available, and their properties vary with the choice of 114 cation and anion. For example, the choice of Cl⁻ as opposed to [BF₄]⁻ or a fluorinated tetra-arylborate 115 (BAr^F) anion, can have a considerable influence because of their differences in nucleophilicity. The 116 choice of the electrolyte can also limit the potential range, since the anion or cation can undergo 117 electrochemical oxidation or reduction (for example, at positive potential $Cl^- \rightarrow \frac{1}{2}Cl_2(g) + e^-$). 118
- Third, the choice of precursor is also crucial. The chosen precursor compound(s) must be both soluble 119 and stable in the electrolyte solution. Note that there can be ligand exchange, so there may be a 120 mixture of coordination species in solution (speciation). For example, for [NⁿBu₄]₂[TeCl₆] dissolved in 121 CH_2Cl_2 containing [NⁿBu₄]Cl, the Te(IV) exists as a mixture of complex anions in equilibrium with the 122 Cl^{-} anions from dissociation of [NⁿBu₄]Cl in the electrolyte solution.⁴⁷ This speciation can affect 123 electrodeposition because the different complexes have different redox potentials and can have 124 different electrochemical kinetics. The redox potential of the molecular precursor is an important 125 126 factor – ideally it should be within the available potential range of the electrolyte solution so that electrodeposition is not accompanied by considerable electrochemical decomposition of the 127 electrolyte. In general, this can be achieved through judicious choice of the ligands and the speciation 128 of the precursor.48 129

Finally, the counter electrode **[G]** reaction also needs to be considered since an equal, but opposite, current must be passing at the counter electrode. For aqueous solutions this can often be accommodated by the evolution of oxygen gas which bubbles from the solution, but for non-aqueous solutions and ionic liquids the counter electrode reaction needs more careful thought.

134 [H2] Electrodeposition - an alternative route to TMDCs

In comparison to CVD and ALD, in which the precursor species are delivered in the vapour phase (gas 135 phase) and the material growth is driven thermally, there has been much less work using 136 electrodeposition for the growth of 2D-TMDCs. However, electrodeposition offers a distinct set of 137 variables and parameters that can be optimised to control the growth of ultrathin, highly anisotropic 138 TMDC layers. Figure 2a illustrates the typical experimental set-up for electrodeposition using a three 139 electrode system, comprising a working electrode, counter electrode and reference electrode, to 140 141 maintain accurate control of the applied potential, along with indicative responses from some of the electrochemical experiments that are most relevant to this area of work (Figures 2b-d). Figure 2e 142 shows a typical response from a chronoamperometric electrodeposition experiment, where the 143 current is monitored as a function of time. 144

Most importantly, electrodeposition is inherently a localised (area-selective) process, providing the ability to grow the TMDC directly from a conductor into or onto a particular device architecture precisely where required. This capability is extremely attractive for the production of new TMDCbased nano-devices, as it would eliminate the need for post-deposition etching and patterning processes.

There have been many papers on the electrodeposition of TMDC materials from aqueous (usually 150 acidic) electrolytes often containing a different precursor to deliver each of the metal and the 151 chalcogen. However, in general, the specific molecular species (ions and/or molecules) that exist in 152 these electrolytes have not been determined and so the actual reactive chemical species in the 153 electrolyte are usually not known.^{49,50} As a result, the electrochemical processes that are observed 154 during TMDC electrodeposition are generally not thoroughly understood. Electrodeposition from 155 aqueous solution in these particular experiments also generally produces deposits that are irregular 156 and amorphous or polycrystalline. These are very suitable for (electro)catalysis, battery and super-157 capacitor applications, which has been the motivation behind most of this work to-date.⁵¹ For 158 example, in electrocatalytic water-splitting (the conversion of water into hydrogen and oxygen gas), 159 the presence of many nanocrystalline or amorphous TMDC particles is advantageous as the catalytic 160 reactions occur at defects and the edge sites of the 2D crystallites. However, these materials do not 161

display the highly anisotropic, extended 2D structures across the dimension scale (typically from a few nm² to tens of μ m²) required for future electronic and optical device applications.

In addition, aqueous electrolytes are inherently not well-suited for achieving fine control of 2D TMDC growth by electroreduction because of the generation of hydrogen gas, which dominates the voltammetric response at negative potentials. This can cause bubbles to form, and gives rise to a large, broad reduction wave in the voltammogram, which limits the potential window that can be used to drive the deposition of the TMDC itself.

When considering the fabrication of nano-devices using electrodeposition, the high surface tension of 169 water can also hinder the penetration of aqueous electrolytes into high aspect-ratio structures. There 170 are two other important considerations from a chemistry perspective. Firstly, the incompatibility of 171 acidic aqueous media with many potential precursors, severely limiting the use of moisture-sensitive 172 precursors that may otherwise be suitable for TMDC electrodeposition. Secondly, the Lewis basicity 173 of water can lead to H₂O displacing one or more of the ligands present in the original precursor 174 175 compound. This can cause the formation of multiple different species in the electrolyte solution, each of which will exhibit its own characteristic redox response. This is likely to result in more complicated 176 electrochemical responses and loss of the potential-control necessary for growth of high quality 2D 177 TMDC layers. 178

To explore 2D TMDCs for transistor and optical applications, several requirements need to be met to be able to deliver materials of sufficient quality. These include the need for large-scale production of single crystalline, mono-/few-layer TMDCs directly onto pre-patterned wafers, and control of the number and types of defects present. Other important considerations are the precise M:E ratio in the deposited material, the number of layers, and the ability to form heterostructures, since they will directly affect the functional properties of the TMDCs. Compatibility of the growth process with existing industrial manufacturing is also important if the process is to be adopted.

The high level of interest in these materials has also prompted efforts to explore alternative, complementary TMDC growth methods, including electrodeposition, to promote growth in the 2D plane. One reason for this is that precise control over heterostructure formation allows the development of hybrid devices that, for example, integrate sensing and computation components in one device,⁵² or for optoelectronic devices, where it improves both the responsivity and the response time of photodetectors.⁵³

- 192
- 193

[H2] Controlling morphology and crystallinity

Key considerations to achieve successful electrodeposition are the morphology and crystallinity of the 195 deposit. The choice of deposition conditions (such as potential, mass transport, temperature, and 196 concentration) will affect the morphology of the electrodeposited film and, in the case of the 197 deposition of alloys or compounds (as opposed to pure elements), the composition of the deposit. 198 The applied potential (which directly controls the energetic driving force for the deposition), and the 199 mass transport conditions (for example stirring, or more controlled mass transfer using a rotating disc 200 electrode, which replenishes the precursor concentration at the electrode) can be used to tune the 201 structure of the generated TDMC. The mass transport in solution regulates the supply of the precursor 202 molecules or ions and removal of any soluble by-products from the electrode surface. This can be 203 important if there are coupled chemical reactions that are part of the overall electrodeposition 204 205 process or where the ligands liberated during electrodeposition can change the local speciation at the electrode surface. For commercial plating baths it is not uncommon for specific technological 206 developments that achieve the required outcomes to be developed on a trial and error basis. 207

A common approach to altering the morphology of electrodeposited films is to use additives. These 208 are molecules that are added to the electrodeposition solution, generally at low concentration, that 209 210 strongly adsorb on specific sites at the surface of the growing deposit and either inhibit or accelerate the local rate of deposition. Two common classes of additives are brighteners [G] and levellers [G]. 211 Brighteners produce finely structured reflective deposits, whereas levellers reduce surface 212 irregularities by slowing deposition on surface protrusions. Another common approach is to use 213 pulsed deposition, in which the deposition potential is stepped between a high overpotential to favour 214 the formation of many nucleation sites, followed by a lower overpotential to grow material on the 215 nucleation sites at a slower rate. The control of electrodeposit morphology is a complex subject and 216 is beyond the scope of this review. The reader is referred to the specialist literature for more details.⁴⁰ 217

[H2] Electrode materials and designs

In principle, a wide range of conducting materials can be used as substrates (electrodes) for 219 electrodeposition. In practice, however, for fundamental electrochemical studies Pt, Au and glassy 220 carbon electrodes are readily available and are most commonly used in the laboratory because they 221 are convenient; they are robust, can be cleaned by polishing, and can be reused. For nano-electronic device applications, including metal chalcogenides, metals and alloys with high melting points and low 223 reactivity that act as a diffusion barrier are preferred. This prevents migration (diffusion) of atoms or 224 ions from the electrode into the deposit causing contamination. For nanodevice applications, TiN and 225 carbon, in the form of graphene, are particularly suitable as these can be patterned using conventional 226 nanofabrication processes. In the case of micro- and nano-fabricated structures, polishing of the 227

electrode surface, which is often undertaken in electrodeposition to reduce roughness and/or remove
 surface impurities, is impractical and other cleaning methods (plasma cleaning, electrochemical
 cleaning, *etc.*) must be used.

For fundamental studies of the voltammetry, disc electrodes, formed by encasing a wire or rod of the 231 electrode material in an insulating cylinder, are typically favoured since they have a well-defined 232 surface area and can be cleaned by polishing. These can be macroelectrodes [G] (diameter > 0.1 mm), 233 where mass transport is dominated by planar diffusion [G] (Figure 2b), microelectrodes [G] (diameter 234 < 50 µm), where radial diffusion [G] dominates (Figure 2c), and rotating disc electrodes, where the 235 rotation allows calculable and well-defined forced convective mass transport (Figure 2d). Of these, the 236 use of microelectrodes more closely corresponds to the mass transport conditions for deposition on 237 microfabricated structures. The use of microelectrodes also has the advantages of steady-state 238 diffusional mass transport and reduced *iR* drop [G] (reducing distortions in the electrochemistry 239 caused by poor control of the electrode potential as a result of high solution resistance), making them 240 a good choice for fundamental studies of the electrochemistry of the precursor compounds.⁴¹ 241

For device applications, electrode structures are fabricated on planar substrates (typically commercial 242 243 12-inch Si wafers) using a range of standard cleanroom nanofabrication techniques to deposit and pattern thin (10 - 100 nm) films of conductors and dielectrics. Industrially, electrodeposition 244 subsequently happens on a full-wafer scale, though in the research environment, the wafers are 245 usually diced before electrodeposition with limited further processing afterwards (see, for example 246 Ref. 41). Aggressive scaling down to nanoelectrodes and deposits is possible as the electrode 247 resistance and necessary current for electrodeposition scale identically, keeping a constant iR drop 248 independent of size.⁵⁶ 249

250 [H1] Solvents and speciation

A variety of solvents can be used for the electrodeposition of TMDCs and related layered metal 251 chalcogenides, from water to non-aqueous solvents (such as MeCN, DMF, DMSO, propylene 252 carbonate, CH_2Cl_2), to ionic liquids such as such as [bmim][BF₄] or [bmim][CF₃SO₃] (bmim = 1-butyl-3-253 methylimidazolium),⁵⁷ and deep eutectic solvents, such as choline chloride/ethylene glycol.⁵⁸ Acidic 254 aqueous electrolytes and other protic solvents, like alcohols and glycols, are often used for 255 electroplating materials onto large area surfaces and there are many reports describing the 256 electrodeposition of various ME₂ (M = Zr, Mo, W; E = S, Se, Te) or $M'_{2}E_{3}$ (M' = Sb, Bi) materials from 257 acidic aqueous electrolytes. Typical metal precursors are sulfate salts, such as Zr(SO₄)₂,⁵⁹⁻⁶² and oxo-258 anions, [MoO₄]²⁻⁶³⁻⁷⁸ and [WO₄]^{2-.79-82} For the M'₂E₃ materials, metal halides such as M'Cl₃,⁸³⁻⁸⁷ or oxo-259 halides, M'OCl,⁸⁸⁻⁹⁰ are often used. Typical chalcogen sources used in this area of work are Na₂S, 260 [S₂O₃]²⁻, thiourea, SeO₂, [SeO₃]²⁻, TeO₂ or [TeO₃]²⁻. The majority of MoS₂ and WS₂ materials produced 261

by electrodeposition from aqueous solution have been for use in electrocatalytic water-splitting to generate hydrogen. For these processes the catalytic reactions take place on the exposed edges of the TMDC rather than on the vdW surfaces, so the rough, nanocrystalline or amorphous deposits, with many exposed edges, that are typically produced from these electrolyte baths are advantageous.

Turning to non-aqueous solvents, MeCN is one of the most commonly used non-aqueous solvents for electrochemical studies. However, it is important to be aware that MeCN can also act as a ligand, changing the speciation of the initial precursor, for example in:⁹¹

269

$[Cu(H_2O)_x]^+ + n MeCN \rightleftharpoons [Cu(MeCN)_n]^+ + x H_2O$

Thus, it is important to consider the effect of the choice of solvent on the speciation of the precursor. 270 Room temperature ionic liquids (RTILs) and deep eutectic solvents have superseded water for the 271 electrodeposition of some chalcogenide materials. Examples include, TiS₂ (from TiCl₄ and Na₂[S₂O₃] in 272 a choline chloride/urea eutectic),⁹² and polycrystalline MoS₂⁹³ and Bi₂E₃⁹⁴ from RTILs. Theses solvents 273 can have wide potential windows,^{95,96} the option to access high electrodeposition temperatures (due 274 to their high boiling points) and reduce the problems associated with H₂ evolution that occur during 275 the deposition process from water and alcohols. However, ionic liquids can be difficult to purify 276 sufficiently for use in electrodeposition and, like water, also exhibit relatively high surface tensions.⁹⁷ 277

When thinking about the choice of solvent and effects on speciation, it is useful to classify different 278 solvents based on Kamlet and Taft's π^*, α and β parameters, where π^*, α and β describe the polarity, 279 Lewis acidity [G] and Lewis basicity [G], respectively (Table 1).⁹⁸ Suitable solvents, should be polar (π^* 280 \geq 0.55), aprotic ($\alpha \leq$ 0.2), and weakly coordinating ($\beta \leq$ 0.2).⁹⁹ This ensures that the electrolyte salt will 281 dissociate sufficiently to make the solution conducting and that the solvent will not coordinate 282 strongly with the precursor. The Taft solvent descriptors show that the commonly used non-aqueous 283 solvents, such as DMSO, ethylene glycol and ionic liquids, are more Lewis basic than solvents such as 284 $CH_2CI_2.$ 285

286

The so-called 'weakly-coordinating solvents', ⁹⁹ such as CH₂Cl₂, generally have low donor-power. This 287 reduces their tendency to compete as a ligand towards the dissolved precursors, leading to fewer 288 different species in the electrolyte. They can be beneficial for the deposition of TMDCs, where the 289 semiconducting behaviour is determined by the precise stoichiometry, structure, defect concentration 290 and morphology of the material. When considering these alternative (aprotic) solvents, the 291 electrochemical window of the solvent is a key factor, since this determines the potential range within 292 which electrodeposition can be performed cleanly without introducing impurities from solvent 293 degradation. The solvent donor properties also determine its compatibility with certain precursor 294 compounds. MeCN, CH₂Cl₂ and supercritical CH₂F₂ have been used to facilitate the electrodeposition 295 of various p-block elements, for example, elemental Te,¹⁰⁰ (sulfur-rich) WS₂ from [NH₄]₂[WS₄],¹⁰¹ 296 mono- and few-layer TMDCs from SSPs, and ternary GeSbTe alloys from electrolytes containing 297 multiple precursors.^{102,103} 298

[H1] Molecular precursors

To identify suitable molecular precursors for the electrodeposition of metal chalcogenides from 300 weakly coordinating solvents, several criteria need to be met. The precursor needs to be sufficiently 301 soluble in the low polarity solvents and dissociation of precursor salts should occur to produce well-302 defined ions. Additionally, the reduction potentials for the precursor molecules/ions should be well-303 defined and accessible within the potential limits of the solvent electrolyte used. These will be 304 dependent on the particular metal ion in the precursor, its oxidation state and the co-ligands present. 305 The nature and fate of the ions and ligands that are liberated during the deposition process must also 306 307 be considered to avoid undesirable chemical reactions in the electrolyte or precipitation of impurities during the deposition process. 308

This can be illustrated by considering the electrodeposition of elemental tellurium from 309 $[N^{n}Bu_{4}]_{2}[TeCl_{6}]$ salt in CH₂Cl₂ (Figure 3). The $[N^{n}Bu_{4}]^{+}$ cation aids solubility of the salt in the low polarity 310 CH₂Cl₂ solvent, and is not electrochemically active within the normal potential window of the solvent. 311 Hence, this system has a cathodic potential limit that is suitable for observing the electroreduction of 312 the $[TeCl_6]^{2-}$ anion. $[N^nBu_4]^+$ is also the same cation that is present in the $[N^nBu_4]Cl$ supporting 313 electrolyte. As the elemental tellurium is deposited from the [TeCl₆]²⁻ precursor, Cl⁻ anions are 314 liberated and released into the solution; these are the same as the anion of the supporting electrolyte, 315 therefore the ions present in the electrolyte do not change during the process.¹⁰⁴ It is important to 316 note that the higher concentration of Cl⁻ at the electrode surface can alter the local speciation (e.g. in 317 the Te case at low Cl⁻ electrolyte concentration) and this may change the chemistry of the 318 electrodeposition reaction. This general strategy has been used successfully for the electrodeposition 319

of a wide range of *p*-block elements from CH_2Cl_2 -based electrolytes, including Se, Te, Sb, Bi, Ga, In,¹⁰⁴ Sn,¹⁰⁵ and Pb.¹⁰⁶

In some cases, different oxidation states of the *p*-block ion in the halometallate salt precursors can also be accessed by varying the synthesis procedure. For example, while Te(IV) is present in $[TeCl_6]^{2-}$, Te(II) can be incorporated in the form of $[Tel_4]^{2-.47,107}$ Similarly, Ge(IV) can be incorporated in the form of $[GeCl_5]^-$ or $[GeCl_6]^{2-}$, whereas the $[GeX_3]^-$ anions (X = Cl, Br, I) contain Ge(II).¹⁰⁸ The choice of oxidation state and the nature of the halide ion (X⁻) in the precursors also allow the electrochemical reduction potentials of the *p*-block halide ions to be tuned. This is particularly important when combinations of these salts are required to deposit a binary or ternary chalcogenide material.

For each of the *p*-block halometallate precursors above, when performing electroreduction to deposit 329 the elemental form, the transfer of multiple electrons is required. For example, reduction of Te(IV) to 330 Te(0) involves a four electron reduction. While the literature often implies that this occurs by 331 simultaneous multi-electron reduction processes, in practice this is implausible based on Marcus 332 theory.¹⁰⁹ The electroreduction of Te(IV) to Te(0) has been investigated in some detail by using a 333 combination of electrochemical experiments in CH_2Cl_2 , together with density functional theory 334 calculations. This has led to a proposed catalytic process that involves the interaction of a 335 coordinatively unsaturated Lewis acidic species ([TeCl₅]⁻), produced via the equilibrium shown in 336 Figure 3a, with the filled *p*-type orbitals projecting out from the surface of the growing Lewis basic 337 Te(0) deposit (Figure 3b). It is proposed that this is followed by a sequence of one-electron transfer 338 processes to cause 'stepwise reduction' to elemental tellurium, accompanied by liberation of further 339 chloride ions from the tellurium.47 340

Two distinct strategies for molecular precursor development for the electrodeposition of metal chalcogenide materials from weakly coordinating solvents have been established. The first, and more commonly used to-date, uses 'multi-source precursors'. In this case, each element required for the target TMDC is delivered from a separate precursor compound. In the second approach both the metal and the chalcogen are bonded together and contained in a single molecular entity – 'single source precursors' (SSPs).

347 [H2] Electrodeposition using multi-source precursors

Electrodeposition of binary metal chalcogenides from multi-source precursors requires a combination of two different precursor compounds that form a chemically stable electrolyte, hence the compatibility of the individual salts in the solvent must also be considered. It has been found that combining the Bi(III) salt, [NⁿBu₄][BiCl₄], with the Te(IV) salt, [NⁿBu₄]₂[TeCl₆], in CH₂Cl₂ containing [NⁿBu₄]Cl supporting electrolyte forms a chemically stable electrolyte that allows the growth of the target Bi₂Te₃ thin film semiconductor under electrochemical control.¹ In contrast, combining the Ge(II) salt, [NⁿBu₄][GeCl₃], with the same Te(IV) salt, [NⁿBu₄]₂[TeCl₆], in CH₂Cl₂, gives an unstable electrolyte that undergoes a spontaneous chemical reaction, precipitating elemental Te. This is most likely caused by the chemical oxidation of the Ge(II) (to Ge(IV)) by the Te(IV), which is itself reduced to Te(0). However, swapping to the Ge(IV) precursor, [NⁿBu₄][GeCl₅] (or a [GeCl₆]^{2–} salt),^{102,103} in combination with [TeCl₆]^{2–} gives a stable multi-source electrolyte that can be used to electrodeposit germanium telluride under electrochemical control.

- This approach has also proven to be remarkably effective for the deposition of various ternary alloys 360 of GeSbTe onto TiN electrodes, which, although not a TMDC, is an important material for solid state 361 memory applications, using a multi-source electrolyte containing [GeCl₅]⁻, [SbCl₄]⁻ and [TeCl₆]^{2–} (Figure 362 4a).^{102,103} In this case, the cyclic voltammetry shows distinct reduction waves for each of the three 363 chlorometallate anions (Figure 4b). It is also possible to tune the composition of the alloy by adjusting 364 both the relative ratios of the precursor salts in the electrolyte and by altering the reduction potential 365 for the electrodeposition, allowing a range of alloy compositions to be accessed using this suite of 366 precursors. This strategy has also been used for the deposition of functional GeSbTe alloys into a range 367 of micro- and nano-patterned electrodes, by exploiting the area-selectivity inherent to 368 electrodeposition. These materials were then investigated for application in solid state memory where 369 their growth as thin films onto specific areas of pre-patterned arrays within geometrically constrained 370 3D nano- and micro-structures are advantageous for fast switching at low power and with high 371 endurance.111,112 372
- 373
- 374
- 375 [H2] Electrodeposition using single source precursors

Since SSPs contain pre-formed M=E bonds, they can result in better-defined solution speciation in the electrolyte, as well as a simpler voltametric response, compared to multi-source precursors. This can be beneficial for the controlled growth of mono- and few-layer TMDCs, where precise control of the deposition conditions is advantageous.

Ammonium (NH_4^+) salts of $[MoS_4]^{2-}$ and $[WS_4]^{2-}$ are commercially available and have been the subject of intense research interest for the electrodeposition of $MoS_2^{113-133}$ and $WS_2^{134-136}$ onto various electrode arrangements from aqueous electrolytes. The $[NH_4]^+$ cations (or H_2O in aqueous electrodeposition) serve as the proton source to remove the excess sulfur (as H_2S). Typically, the asdeposited metal sulfides produced from the metal tetrathiolate precursors in aqueous electrolytes have stoichiometries considerably higher than the 1:2 ratio required for the deposition of the metal

disulfide and these can be converted to polycrystalline ME₂ by high temperature annealing. They have 386 been produced electrodeposition for а range of applications, by including, 387 electrocatalysis,^{113,114,116,118,119,127,130} solar cells,^{120,122} battery materials,¹²³ supercapacitors¹²⁹ and 388 sensing.^{117,124} However, these conditions generally produce deposits that are rough and irregular and 389 therefore not well-suited for electronic or optical applications. $[MoE_4]^{2-}$ (E = S, Se) have also been used 390 as SSPs to deposit dense amorphous nanoparticles of MoS₂ and MoSe₂ from an ionic liquid for 391 hydrogen evolution catalysis.¹³⁷ The low costs associated with electrodeposition, coupled with its 392 scalability, are particularly attractive for these applications. 393

The suitability of SSPs based on other $[MS_4]^{x-}$ anions (Figure 5a) is of interest to explore the versatility 394 of this approach for electrodepositing other metal sulfide materials. For example, an aqueous 395 [NH₄][ReS₄] electrolyte has been implemented for the electrodeposition of ReS₂ onto 2D- and 3D-396 printed carbon electrodes for the photo-/electrochemical oxidation of water.¹³⁸ All of the $[ME_4]^{x-1}$ 397 precursors discussed so far produce the target metal chalcogenide under cathodic deposition (via 398 electroreduction). In contrast, it has been shown that Schlippes salt, Na₃[SbS₄]·9H₂O, can be used as a 399 SSP in aqueous alkaline solution to produce Sb₂S₃ films by anodic electrodeposition, according to the 400 equation: 401

402

20 H₂O + 2
$$[SbS_4]^{3-} \rightarrow Sb_2S_3 + 5 [SO_4]^{2-} + 40 H^+ + 36 e^-$$

In this unusual case, the reduction of the Sb^{5+} to Sb^{3+} is accompanied by oxidation of the liberated sulfide to sulfate. Interest in Sb_2S_3 thin films arises from their resistive memory switching behaviour.¹³⁹

As discussed, weakly coordinating solvents such as CH₂Cl₂ offers some advantages for TMDC 405 electrodeposition compared to using water. However, the commercially available $[NH_4]_2[MS_4]$ (M = 406 Mo, W) salts are poorly soluble in CH₂Cl₂. Therefore, it is necessary to change the [NH₄]⁺ cation to an 407 organic ammonium cation, such as [NⁿBu₄]⁺. The [NⁿBu₄]₂[MOS₄] salt exhibits good solubility in CH₂Cl₂, 408 and studies on their suitability as SSPs have been very promising. The deposition of MS₂ from these 409 sulfur-rich $[MS_4]^{2-}$ anions require the excess sulfur to be removed as H₂E. For the $[N^nBu_4]_2[MOS_4]$ 410 precursor in CH₂Cl₂, this can be achieved by the addition of a small amount of an organic proton 411 source, such as [NMe₃H]⁺. This enables the cathodic deposition of amorphous MoS_{2.3} thin films onto 412 TiN electrodes, which are converted to crystalline 2D MoS₂ by annealing.¹⁴⁰ However, the breakdown 413 of the proton source also occurs in a similar region to the [MoS₄]^{2–} reduction and dominates features 414 in the voltammetry, restricting the usable potential window in CH₂Cl₂ electrolytes. The reduction 415 process for the analogous [NⁿBu₄]₂[WS₄] salt is completely masked by the peak associated with the 416 breakdown of the [NMe₃H]⁺ cation in the cyclic voltammogram, therefore WS₂ has not been obtained 417 from this precursor.¹⁴¹ Alternative SSPs for WS₂ are not available commercially. 418

Although they are not available commercially, the corresponding tetraselenometallate anions of Mo and W, $[MSe_4]^{2-}$, can be synthesised using established literature methods.^{142,143} The $[N^nBu_4]_2[MSe_4]$ (M = Mo, W) salts also have good solubility in weakly coordinating solvents such as CH₂Cl₂. Analogy with the $[MoS_4]^{2-}$ ion, which is an effective SSP for MoS₂ electrodeposition, could suggest that the $[MoSe_4]^{2-}$ ion may be suitable as a SSP for the electrodeposition of 2D-layered MoSe₂ films. However, to achieve this, it will be necessary to identify an effective way to remove the excess selenium.

The need for a proton source to exploit these [ME₄]^{2–} salts as SSPs has stimulated efforts to synthesise 425 alternative precursors that contain the specific 1:2 metal:chalcogen ratio required for the target TMDC 426 427 semiconductor, since this removes the need for the proton source and simplifies the electrochemistry. The tungsten(VI) sulfide chloride, WSCl₄, can be converted to the *cis*-[WS₂Cl₄]²⁻ anion (Figure 5b), 428 which was originally isolated as its [PPh₄]⁺ salt,¹⁴⁴ and later as its [NEt₄]⁺ salt for electrochemical 429 studies.^{141,} Thin films of WS₂ have been obtained by cathodic electrodeposition onto a TiN electrode, 430 and further refinement of the experimental procedures allow 2D mono-and few-layer WS₂ growth 431 from this tailored SSP. However, the corresponding tungsten selenide chloride salt, [NEt₄]₂[WSe₂Cl₄], 432 has not been isolated from [WSeCl₄].¹⁴⁵ This is probably because the W=Se bonds are weaker than 433 W=S bonds and therefore less stable. However, cathodic electrodeposition using the neutral [WSeCl₄] 434 as the SSP (Figure 5b), in MeCN with NEt₄Cl supporting electrolyte, produces very thin and smooth 435 WSe₂ films.¹⁴⁶ Despite the 1:1 W:Se ratio in the precursor, production of the WSe₂ films does not 436 require the addition of any further selenium source. It is proposed, therefore, that the deposition also 437 involves Se atom transfer, according to the reaction: 438

$$2WSeCl_4 + 2e^- \rightarrow WSe_2 + WCl_6 + 2Cl^-$$

In the case of TMDC growth, the ability to deposit smooth, few- and mono-layer films is critical to 440 unlock their electrical and optical properties. While one way of achieving ultra-thin TMDCs in 441 electrodeposition is by controlling the deposition parameters, such as applied potential, time or 442 charge passed, an alternative route to achieve this is by electropolishing of deposited TMDCs, through 443 a top-down approach. Here, bulk TMDC materials could be thinned down to monolayers by 444 electrochemically ablating the top layers in an acidic LiCl solution.¹⁴⁷ The electropolishing relies on the 445 difference in activity of the edge sites and the relatively inert basal planes in the TMDCs, where the 446 corrosion of materials begins at the edges of the multilayer flakes and gradually progresses towards 447 the centre. Similar electropolishing strategies could be employed for electrodeposited TMDC films 448 where the growth results in bulk multi-layered thin films. This technique, combined with 449 electrodeposition, offers the prospect of an all-electrochemical pathway to achieve monolayer 450 TMDCs. 451

452 [H1] 2D TMDC growth onto a conductor

SSPs compatible with non-aqueous, weakly-coordinating solvents tend to result in better-defined 453 solution speciation, and, assuming that the deposition potential of the SSP is within the available 454 455 potential window, allow TMDC films with well-controlled thicknesses to be electrodeposited onto a variety of electrode substrates. Electrodeposition, being an area-selective deposition method, offers 456 growth control at the molecular scale by modulating the amount of charge passed during the 457 deposition process. One of the challenges for ultra-thin (sub-5 nm) TMDC films is the choice of 458 substrate. Since electrodeposition generally produces conformal coatings of the target material over 459 electrically-defined surface features, classical metal or glassy carbon electrodes are not ideal as the 460 variation in their surface roughness is large compared to the expected thickness of 2D TMDC films. 461 This affects the film's morphology and layer-ordering. Monolayer graphene can be considered as an 462 'ideal' electrode substrate for TMDC growth as it is an atomically thin and extremely flat 2D conductor, 463 therefore electrodeposition can occur on graphene without surface roughness issues.¹⁴⁸ 464 Electrodepositing the TMDCs on directly on top of graphene can also be used to produce 2D TMDC on 465 graphene heterostructures. By optimization of the deposition parameters, few-layer MoS₂/graphene 466 heterostructures have been produced from the $[N^nBu_4]_2[MoS_4]$ precursor in dichloromethane.¹⁴⁹ This 467 is a good example to demonstrate the nanoscale control that is possible using electrochemical 468 techniques to produce ultra-thin TMDC films and heterostructures. Figure 6a illustrates a graphene 469 electrode structure fabricated using the process in Figure 6b and implemented for ultra-thin TMDC 470 growth using SSPs in CH₂Cl₂ electrolytes.¹⁴⁹ Further work has focussed on deposition of monolayer WS₂ 471 on graphene. This was selected because the electrochemistry of the [NEt₄]₂[WS₂Cl₄] precursor salt (1:2 472 W:S stoichiometry) is less complicated compared to the 1:4 Mo:S ratio in the $[N^nBu_4]_2[MoS_4]$ 473 precursor. In the latter, the interference of the proton source (Me₃NHCI) is unavoidable. By controlling 474 the time duration of the deposition, it has been possible to electrodeposit WS₂ monolayers onto 475 patterned graphene electrodes, as illustrated in the transmission electron microscopy (TEM) image in 476 Figure 6c.150 477

In addition to graphene, in principle, a semiconducting TMDC itself can be used as a substrate for electrodepositing a different TMDC material on top, to achieve vdW heterostructures. Electrodeposition offers a unique advantage here, as the TMDC heterostructures can be electrochemically deposited by simply switching the electrolyte solution. If the material quality is sufficiently high, this 2D heterostructure electrodeposition method could be extended to produce *pn* junctions. An interesting target would be to deposit WSe₂ (*p*-type) on top of MoS₂ (*n*-type).

484

485

- 486
- 487
- 488
- 489
- 490

[H1] 2D TMDC growth over an insulator

As explained, traditionally, electrodeposition has been used to grow materials on top of conducting 492 surfaces (electrodes). However, in the case of TMDCs, this prevents the direct electrical 493 characterisation of the semiconductor material that is deposited, because the high conductivity of the 494 495 electrode will dominate the electrical response. Moreover, depositing a semiconducting TMDC film on a conductor also limits the film's applications in electrical devices such as transistors. For these 496 reasons, film transfer is required to enable electrical measurements of the electrodeposited TMDC 497 films. Therefore, novel electrochemical techniques that enable the deposition of 2D materials onto 498 insulating surfaces need to be developed. 499

500 One possible approach takes advantage of the strong anisotropy resulting from their 2D-layered structures, which helps to propagate the in-plane growth. This has been exploited to drive the TMDC 501 growth over an insulating substrate (e.g. SiO_2) as illustrated in Figure 7. It has been achieved by 502 constructing microelectrode structures, where the electrochemical growth starts at the edge of very 503 thin nano-band electrodes [G] and progresses out from the electrode and over the insulator, as 504 505 illustrated in the schematic in Figure 7a. Each individual electrode can be electrically-addressed separately, allowing deposition of one material (TMDC-1) from the left nano-band TiN electrode, and, 506 if desired, a different material (TMDC-2) from the right side, as illustrated in Figures 7b-d. The clean-507 room processes required to fabricate these unusual electrode structures are shown in Figure 7e.¹⁵¹ 508 The rationale for this design is that since the tops of the electrode surfaces are covered by an insulator 509 (SiO₂), only the extremely thin edges of the TiN nano-band electrodes (thickness sub-100 nm) are 510 exposed to the electrolyte. Therefore, after nucleation onto the electrode edges under 511 electrochemical control, growth progresses out over the insulating SiO₂ surfaces. This is promoted by 512 the inherent 2D anisotropy of the TMDC. Using this nano-band electrode structure it has been shown 513 that in-plane 2D growth of the MoS₂ across a 7 μ m wide SiO₂ channel is around 20 times faster than 514 the rate of inter-layer growth.¹⁵¹ Figure 7f shows a TEM image of a region of tri-layer MoS₂ (after 515 annealing) deposited in this way (i.e. where TMDC-1 = TMDC-2 = MoS₂). The amount of deposited 516 material, and thereby the extent of 2D growth can be tuned by varying the precursor concentration, 517 the duration of deposition or the quantity of charge passed during the deposition. 518

Using this nano-band electrode structure to drive the electrodeposition of the TMDC over the 519 insulator therefore facilitates the deposition of ultrathin 2D TMDC films onto 'device-ready' substrates 520 (suitable for developing 2D transistors). An additional advantage of the electrode configuration is that 521 it enables the direct characterisation of the electrical properties of the resulting films, without film 522 transfer. The current-voltage (i-V) measurements of the resulting MoS₂ films confirm the quality of 523 the deposited MoS₂, which were later used to demonstrate photodetector devices.¹⁵¹ Similar nano-524 band electrode structures have also been employed for the electrodeposition of WSe₂ from [WSeCl₄] 525 in MeCN,¹⁴⁶ resulting in smooth 2D WSe₂ thin films over the SiO₂ microchannels. This suggests that this is a versatile approach for the production of a range of ultra-thin TMDC semiconductors. 527

Nano-band electrodes could also provide a method for stacking 2D heterostructures, where the heterostructure can, for example, form a *p*-*n* junction, by growing different TMDCs from the left and right electrodes until the films overlap (Figure 7a). This can be achieved because each individual electrode shown in Figure 7b can be controlled separately so that the electrodeposition could be performed either simultaneously from both sides of the nano-band electrodes, or only from one side.

- 533
- 534
- 535

000

536

537

538

539

540 [H1] Conclusion and Outlook

Most of the existing literature on the electrodeposition of TMDCs has been focused on delivering 541 TMDC materials suitable for (electro)catalytic and energy (solar cells, batteries, supercapacitors) 542 applications, for which nanocrystalline or amorphous materials are ideal. Also, the majority of reports 543 use aqueous electrolytes containing multi-source precursors to deliver the target TMDC. However, it 544 has been shown that by using SSPs containing pre-formed metal-chalcogen bonds, in combination 545 with weakly coordinating solvents, where the solution speciation of the precursor is well-defined, 546 allows more precise control of the deposition potential and the material growth. Therefore, the 547 controlled electrochemical growth of ultrathin 2D-layered TMDCs is an emerging area of research with 548 good prospects for the scalable production of TMDCs for electrical and optical applications. Notably, 549 compared to CVD, where there has been a huge amount of work done, electrodeposition of 2D TMDCs 550 is still at the early stages of development, but we anticipate a considerable increase in research 551

interest in this area in the coming years. A key remaining challenge is that the range of molecular SSPs 552 with the necessary characteristics to specifically promote in-plane 2D TMDC growth is currently 553 limited. Therefore, new developments in inorganic synthesis are necessary to produce novel SSPs to 554 improve control of the TMDC material quality further and to extend the range of TMDCs that can be 555 electrodeposited. This will allow tuning of the electrical and optical properties for particular target 556 applications. For example, smooth 2D NbS₂ and NbSe₂ films are interesting targets due to their 557 intriguing magnetic properties, while transition metal ditellurides from SSPs are yet to be realised. A 558 recent review of transition metal chalcogenide halide chemistry may offer routes for other possible 559 SSPs.¹⁵² The precursor choice may also enable band-gap tuning. 560

Realising the potential of this emerging area requires further optimization of both the molecular 561 precursors to deliver the ME₂ layers and the electrodeposition process and conditions to form 562 uniform, high quality, single crystalline 2D-layered TMDCs, without the need to anneal post-563 deposition. This will require fundamental studies of the deposition mechanisms involved, including 564 the electrolyte solution speciation, the electrolyte-electrode interfaces, and the electrochemically-565 driven deposition mechanisms. Hence, this is the second area where much new research is needed, 566 567 through a combined approach bringing together experimental work (precursor synthesis and electrochemistry) and computational studies. Specifically, current computational work on 568 electrocatalytic H₂ evolution from TMDCs needs to be extended to DFT calculations of the precursor 569 solutions. This can then be combined with calculations on electrolyte/electrode interactions and the 570 individual deposition steps to provide further mechanistic insights. Performing the electrodeposition 571 at elevated temperatures may also increase the TMDC crystallinity because it increases the mobility 572 of intermediates on the growing TMDC surface and the rates of associated chemical reactions such as 573 ligand exchange or dissociation. To achieve this, other possible solvents with suitable solvent 574 575 parameters and higher boiling points could be employed.¹⁵³

Optimisation of the anisotropic (in-plane) growth [G] may be achieved by looking for molecular additives that adsorb onto the chalcogenide surface of the growing TMDC inhibiting multilayer growth in favour of monolayer growth. In the case of 2D TMDC growth over an insulator, the use of an insulating layer of hexagonal boron nitride matching the TMDC hexagonal structure may be beneficial. Electrochemical polishing also affords a possible way to thin electrochemically deposited multi-layer TMDCs down to mono- or few-layer samples.¹⁴⁷

To electrodeposit 2D materials with the electronic and optical characteristics necessary for novel devices it will be important to find ways to control the doping levels so that *n*-type and *p*-type materials can be produced. This may be possible through the addition of very small amounts of a chalcogen source to the electrolyte solution. Controlling the nucleation and growth will also be very
 important for producing high quality ohmic contacts.

In principle, electrodeposition can also provide sufficiently precise control for monolayer-by-587 monolayer growth of TMDC vertical heterostructures with sharp interfaces by switching the 588 589 electrolyte solution, similar to the electrochemical atomic layer deposition (EALD) method reported by Stickney and co-workers for germanium antimony telluride films,¹⁵⁴ or by the Schwarzacher group 590 for ultrathin layer-by-layer growth of metallic multilayers for magnetic materials.^{155,156} These provide 591 interesting lines of inquiry for exploiting electrodeposition towards future TMDC-based 592 nanoelectronic and photonic devices. Increasing understanding of how the precursor chemistry 593 influences the deposition process will be critical for all of these. 594

Looking forward, as the molecular precursor chemistry evolves, the ability to achieve a controlled 595 compositional gradient or a modulated composition within a single TMDC monolayer may be possible. 596 This may be achieved by exploiting the 2D growth from a nano-band electrode design and adjusting 597 the electrochemical potential during monolayer growth. For example, it may be possible to vary the 598 composition of MoS_{2-x}Se_x within a single monolayer. This might be achieved by combining two SSPs 599 with different redox potentials, one for monolayer MoS₂ electrodeposition the other for MoSe₂ 600 growth, in the same solution at appropriate concentrations Then, by altering the potential and/or 601 solution composition during the deposition process, drive the growth of one material or the other. 602 Electrodeposition is uniquely suited for this because one precursor solution can be swapped to a 603 604 different one very easily.

605 Acknowledgements

The authors thank the Engineering and Physical Sciences Research Council (EPSRC), UK for funding our work in this area, mainly through grants: EP/V062689/1, EP/P025137/1 and EP/N035437/1.

608 Author contributions

P.N.B. and G.R. conceived the idea and drafted the proposal. P.N.B., R.H., S.T. and G.R. wrote most of
the content. Y.J.N., C.H.D.G., R.H., V.K.G. and S.T. prepared the graphic concepts. All of the authors
edited and revised the manuscript.

612 Competing interests

613 The authors declare no competing interests.

614 Peer review information

- 615
 Nature Reviews Chemistry thanks Daniel Mandler, Andrew Mount, John Henry, Julie Macpherson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
- 617 References

618 619	1)	Chowdhury, T., Sadler, E. C. & Kempa, T. J., Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. <i>Chem. Rev.</i> 120 , 12563–12591 (2020).
620	2)	Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A., 2D transition metal
621		dichalcogenides. Nature Rev. Mater. 2, 17033 (2017).
622	3)	Yin, X. et al, Recent developments in 2D transition metal dichalcogenides: phase transition and
623		applications of the (quasi-)metallic phases. Chem. Soc. Rev. 50, 10087-10115 (2021).
624	4)	Choi, W., Choudhary, N., Han, G. H., Park, J., Akinwande, D. & Lee, Y. H., Recent
625 626		development of two-dimensional transition metal dichalcogenides and their applications. <i>Mater. Today</i> , 20 , 116-130 (2017).
627	5)	Chhowalla, M., Shin, H. S., Eda, G., Li, AJ., Loh, K. P. & Zhang, H., The chemistry of two-
628		dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263-375
629		(2013).
630	6)	Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S., Electronics and
631		optoelectronics of two-dimensional transition metal dichalcogenides. <i>Nature Nanotech</i> . 7 ,
632	7)	Wy E at a Vortical MoS, transistors with sub 1 nm gate lengths $Nature 602, 250, 264$
634	/)	(2022)
635	8)	Lin 7 <i>et al.</i> Solution-processable 2D semiconductors for high-performance large-area
636	0)	electronics. <i>Nature</i> , 562 , 254–258 (2018).
637	9)	Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A., Two-dimensional material
638		nanophotonics. Nature Photon. 8, 899–907 (2014).
639	10) Massicotte, M. et al, Picosecond photoresponse in van der Waals heterostructures. Nature
640		Nanotech. 11 , 42–46 (2016).
641	11) Yu, W. J. <i>et al</i> , Highly efficient gate-tunable photocurrent generation in vertical
642	10	Derve C. Dutte U.C. Cessi C. Davi D. & Khan D. Nenestructured McC. Peeed Advanced
643 644	12	Biosensors: A Review. ACS Appl. Nano Mater. 1 , 2–25 (2018).
645	13) Voiry, D., Yang, J. & Chhowalla, M., Recent Strategies for Improving the Catalytic Activity of
646		2D TMD Nanosheets Toward the Hydrogen Evolution Reaction. <i>Adv. Mater.</i> 28 , 6197-6206
647		(2016).
648	14) Yin, J. <i>et al,</i> Optimized Metal Chalcogenides for Boosting Water Splitting. <i>Adv. Sci.</i> 7 ,
649	15	1903070 (2020).
651	15	Molybdenum Disulfide for Energy Conversion and Storage Adv. Energy Mater 8 1703482
652		(2018).
653	16) Ma, Q. <i>et al</i> , 2D Materials for All-Solid-State Lithium Batteries. <i>Adv. Mater.</i> 34 , 2108079
654		(2022).
655	17) Wang, Z. <i>et al</i> , Unveiling highly ambient-stable multilayered 1T-MoS ₂ towards all-solid-state flexible
656		supercapacitors. J. Mater. Chem. A, 7, 19152-19160 (2019).
657	18) Acerce, M., Voiry, D. & Chhowalla, M., Metallic 1T phase MoS ₂ nanosheets as supercapacitor
658		electrode materials. Nature Nanotech. 10, 313-318 (2015).

659	 Nazif, K. N. <i>et al</i>, High-specific-power flexible transition metal dichalcogenide solar cells.
660	<i>Nature Commun.</i> 12 , 7034 (2021).
661	20) Pang, H. et al, Realizing N-type SnTe Thermoelectrics with Competitive Performance through
662	Suppressing Sn Vacancies. J. Am. Chem. Soc. 143 , 8538–8542 (2021).
663	 Sethi, V. <i>et al</i>, Tungsten dichalcogenide WS_{2x}Se_{2-2x} films <i>via</i> single source precursor low-pressure
664	CVD and their (thermo-)electric properties. <i>J. Mater. Chem. A</i> , 11 , 9635-9645 (2023).
665 666	22) Raza, A. <i>et al</i> , Advances in Liquid-Phase and Intercalation Exfoliations of Transition Metal Dichalcogenides to Produce 2D Framework. <i>Adv. Mater. Interfaces</i> , 8 , 2002205 (2021).
667	23) Zhang, Q., Mei, L., Cao, X., Tang, Y. & Zeng, Z., Intercalation and exfoliation chemistries of
668	transition metal dichalcogenides. J. Mater. Chem. A, 8, 15417–15444 (2020).
669	24) Busch, R. T. <i>et al</i> , Exfoliation procedure-dependent optical properties of solution deposited
670	MoS ₂ films. <i>npj 2D Mater. Appl.</i> 7, 12 (2023).
671 672	25) Wang, J. <i>et al</i> , Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method. <i>Mater. Today Adv.</i> 8 , 100098 (2020).
673 674 675	 26) Hoang, A. T., Qu, K., Chen, Z & Ahn, JH., Large-area synthesis of transition metal dichalcogenides <i>via</i> CVD and solution-based approaches and their device applications. <i>Nanoscale</i>, 13, 615-633 (2021)
676	 27) Li, H., Li, Y., Aljarb, A., Shi Y. & Li, LJ., Epitaxial Growth of Two-Dimensional Layered
677	Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. <i>Chem.</i>
678	<i>Rev.</i> 118 , 6134–6150 (2018).
679	28) Mattinen, M, Leskelä, M. & Ritala, M., Atomic Layer Deposition of 2D Metal Dichalcogenides
680	for Electronics, Catalysis, Energy Storage, and Beyond. <i>Adv. Mater. Interfaces</i> , 8, 2001677
681	(2021).
682 683	29) Cho, AH. et al, Stepwise growth of crystalline MoS ₂ in atomic layer deposition. <i>J. Mater. Chem. C</i> , 10 , 7031-7038 (2022).
684 685	30) Singh, D. K. & Gupta, G., van der Waals epitaxy of transition metal dichalcogenides <i>via</i> molecular beam epitaxy: looking back and moving forward. <i>Mater. Adv.</i> 3 , 6142-6156 (2022).
686	31) Choudhury, T. H., Zhang, X., Al Balushi, Z. Y., Chubarov, M. & Redwing, J. M., Epitaxial
687	Growth of Two-Dimensional Layered Transition Metal Dichalcogenides. Ann. Rev. Mater.
688	Res. 20, 155-177 (2020).
689	32) Li, J. <i>et al</i> , Synthesis of Ultrathin Metallic MTe ₂ (M = V, Nb, Ta) Single-Crystalline Nanoplates.
690	<i>Adv. Mater.</i> 30 , 1801043 (2018).
691	33) Gong, Y. et al, Two-Step Growth of Two-Dimensional WSe ₂ /MoSe ₂ Heterostructures. Nano
692	Lett. 15, 6135–6141 (2015).
693	34) Li, M. Y. et al, Epitaxial growth of a monolayer WSe ₂ -MoS ₂ lateral p-n junction with an
694	atomically sharp interface. Science, 349 , 524-528 (2015).
695	35) Zhou, J. et al, Morphology Engineering in Monolayer MoS ₂ -WS ₂ Lateral Heterostructures.
696	Adv. Funct. Mater. 28, 1801568 (2018).
697	36) Giri, A.; Park, G. & Jeong, U. Layer-Structured Anisotropic Metal Chalcogenides: Recent
698	Advances in Synthesis, Modulation, and Applications. <i>Chem. Rev.</i> 123, 3329-3442 (2023).

699 700	This article provides a detailed review of the various processes typically used to grow 2D TMDCs and the modulation of the films for various applications.
701 37) 702	Zhou, H., Zhang, C., Gao, A., Shi, E., Guo, Y., Patterned growth of two-dimensional atomic layer semiconductors, <i>Chem. Commun</i> . 60 , 943-955 (2024).
703 704	This work sets out the current state-of-the-art for patterning 2D semiconductors on the nanoscale.
705 38) 706 707	Balasubramanyam, S.; Merkx, M. J. M.; Verheijen, M. A.; Kessels, W. M. M.; Mackus, A. J. M. & Bol, A. A., Area-selective atomic layer deposition of two-dimensional WS ₂ nanolayers. <i>ACS Materials Lett.</i> 2 , 511-518 (2020).
708 39) 709	Parsons, G. N. & Clark, R. D., Area-selective deposition: fundamentals, applications, and future outlook. <i>Chem. Mater</i> . 32 , 4920-4953 (2020).
710 711	This article provides a review of area-selective deposition of 2D materials, with a particular focus on CVD and ALD techniques.
712 40) 713 714	Schlesinger, T. E.; Rajeshwar, K. & de Tacconi, N. R. Electrodeposition of Semiconductors. In <i>Modern Electroplating</i> ; Schlesinger, M., Ed.; Springer: New York, Chapter 14, pp 383–411 (2010).
715 41)	Lincot, D., Electrodeposition of semiconductors. Thin Solid Films, 487, 40-48 (2005).
716 42) 717	Bouroushian, M., Electrochemistry of Metal Chalcogenides. <i>Monographs in Electrochemistry</i> , Ed. Scholtz, F., Springer, Heidelberg (2010).
718 43) 719	Osaka, T., Electrodeposition of highly functional thin films for magnetic recording devices of the next century, <i>Electrochim. Acta</i> , 45 , 3311-3321 (2000).
720 44) 721	Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J. & Deligianni, H., Damascene Copper electroplating for chip interconnections, <i>IBM J. Res, Develop.</i> 42 , 568-574 (1998).
722 45) 723	Fundamentals of Electrochemical Deposition Second Edn, (Eds. Paunovic, M. & Schlesinger, M.), Wiley, ISBN 0-471-71221-3, 373 (2006).
724	This book provides a very useful introduction to the principles of electrodeposition.
725 46) 726	Black, A. W. & Bartlett, P. N., Selection and characterisation of weakly coordinating solvents for semiconductor electrodeposition. <i>Phys. Chem. Chem. Phys.</i> 24 , 8093-8103 (2022).
727 47) 728	Cook, D. A. et al, Tellurium electrodeposition from tellurium(II) and tellurium(IV) chloride salts in dichloromethane. <i>Electrochim. Acta</i> , 456 , 142456 (2023).
729 48 730 731	Bartlett, P. N., Cummings, C. Y., Levason, W., Pugh, D. & Reid, G., Halometallate Complexes of Germanium(II) and (IV): Probing the Role of Cation, Oxidation State and Halide on the Structural and Electrochemical Properties, <i>Chem. Eur. J.</i> 2 , 5019-5027 (2014).
732 49) 733	Aliyev, A. S.; Elrouby, M. & Cafarova, S. F., Electrochemical synthesis of molybdenum sulfide semiconductor. <i>Mater. Sci. Semicond. Processing</i> , 32 , 31-39 (2015).
734 50) 735	Zhang, L.; Wu, L.; Li, J. & Lei, J., Electrodeposition of amorphous molybdenum sulfide thin film for electrochemical hydrogen evolution reaction. <i>BMC Chemistry</i> , 13 , 88 (2019).
736 51) 737 738	Mohapatra, S., Das, H. T., Tripathy, B. C., Das, N., Recent Developments in Electrodeposition of Transition Metal Chalcogenides-Based Electrode Materials for Advance Supercapacitor Applications: A Review, <i>Chem. Rec.</i> 24 , e202300220 (2024).

739 740 741	 52) Zhang, Z., Wang, S., Liu, C., Xie, R., Hu, W. & Zhou, P., All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. <i>Nature Nanotech</i>. 17, 27–32 (2022).
742 743	53) Shin, G, H., Park, C., Lee, K. J., Jin, H. J. & Choi, S. Y., Ultrasensitive Phototransistor Based on WSe ₂ –MoS ₂ van der Waals Heterojunction. <i>Nano Lett.</i> 20 , 5741–5748 (2020).
744	54) Schlesinger, M. & Paunovic, M., Modern Electroplating, John Wiley & Sons, Inc. (2010).
745	55) Reeves, S. J., Noori, Y. J., Zhang, W., Reid, G. & Bartlett, P. N., Chloroantimonate
746	electrochemistry in dichloromethane, Electrochim. Acta, 354, 136692 (2020).
747	56) Huang, R. et al, Towards a 3D GST phase change memory with integrated selector by non-
748	aqueous electrodeposition. <i>Faraday Disc.</i> 213 , 339–355 (2019).
749 750 751	57) Szymczak, J., Legeai, S., Michel, S., Diliberato, S., Stein, N. & Boulanger, C., Electrodeposition of stoichiometric bismuth telluride Bi₂Te₃ using a piperidinium ionic liquid binary mixture, <i>Electrochim. Acta</i> , 137 , 586594 (2014).
752 753	58) Hansen, B. B. et al, Deep Eutectic Solvents: A Review of Fundamentals and Applications, <i>Chem. Rev.</i> 121 , 1232–1285 (2021).
754	59) Sargar, A. M., Patil, N. S., Mane, S. R., Gawale, S. N. & Bhosale, P. N., Optostructural and
755	electrical studies on electrodeposited Indium doped ZrS2 thin films. J. Alloys Cmpds. 474, 14-
756	17 (2009).
757 758	 Hankare, P. P. <i>et al</i>, Effect of annealing on properties of ZrSe₂ thin films. <i>J. Crystal Growth</i>, 294, 254-259 (2006).
759 760	61) Sargar, A. M., Patil, N. S., Mane, S. R., Gawale, S. N. & Bhosale, P. N., Electrochemical Synthesis and Characterisation of ZrSe ₂ Thin Films. <i>Int. J. Electrochem. Sci.</i> 4 , 887-894 (2009).
761 762 763	62) Rakkini, A. P. V. & Mohanraj, K., Influence of pH of the electrolyte on the formation and properties of electrodeposited ZrSe ₂ thin films. <i>Inorg. & Nano Met. Chem.</i> 52, 570-575 (2022).
764	63) Manyepedza, T., Courtney, J. M., Snowden, A., Jones, C. R. & Rees, N. V., Impact
765 766	Electrochemistry of MoS ₂ : Electrocatalysis and Hydrogen Generation at Low Overpotentials. J. Phys. Chem. C, 126 , 17942–17951 (2022).
767 768	64) Teli, A. M. <i>et al</i> , Electrodeposited crumpled MoS ₂ nanoflakes for asymmetric supercapacitor, <i>Ceram. Mater.</i> 48 , 29002-29010 (2022).
769	65) Strange, L. E., Garg, S., Kung, P., Ashaduzzaman, M., Szulczewski, G. & Pan, S.,
770	Electrodeposited Transition Metal Dichalcogenides for Use in Hydrogen Evolution
771	Electrocatalysts. J. Electrochem. Soc. 169, 026510 (2022).
772	66) Soram, B. S., Dai, J. Y., Thangjam, I. S., Kim, N. H. & Lee, J. H., One-step electrodeposited
773 774	MoS ₂ @Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. <i>J.</i> <i>Mater. Chem. A</i> , 8 , 24040-24052 (2020).
775	67) Mabayoje, O. et al, Electrodeposition of MoS _x Hydrogen Evolution Catalysts from Sulfur-Rich
776	Precursors. ACS Appl. Mater. Interfaces, 11 , 32879–32886 (2019).
777	68) Li, CD., Wang, WW., Jin, M., Shen, Y. & Xu, JJ., Friction Property of MoS_2 Coatings
778	Deposited on the Chemical-Etched Surface of Al–Si Alloy Cylinder Liner. J. Tribol. 140 ,
779	041302 (2018).

780 6 781	P) Quy, V. H. V. et al, Electrodeposited MoS ₂ as electrocatalytic counter electrode for quantum dot- and dye-sensitized solar cells. <i>Electrochim. Acta</i> , 260 , 716-725 (2018),
782 7	D) Erfanifan, S. <i>et al</i> , Tunable bandgap and spin-orbit coupling by composition control of
783	MoS ₂ and MoO _x (x = 2 and 3) thin film compounds. <i>Mater. & Des.</i> 122 , 220-225 (2017).
784 7	 Anand, T. J. S., Sanjeeviraja, C. & Jayachandran, M., Preparation of layered semiconductor
785	(MoSe ₂) by electrosynthesis. <i>Vacuum</i> , 60 , 431-435 (2001).
786 7	 Ponomarev, E. A., Neumann-Spallart, M., Hodes, G. & Lévy-Clément, C., Electrochemical
787	deposition of MoS ₂ thin films by reduction of tetrathiomolybdate. <i>Thin Solid Films</i> , 280, 86-
788	89 (1996).
789 7 .	 Poorahong, S., Izquierdo, R. & Siaj, M., An efficient porous molybdenum diselenide catalyst for
790	electrochemical hydrogen generation. J. Mater. Chem. A, 5, 20993-21001 (2017).
791 7 92	4) Kowalik, R., Kutyła, D., Mech, K., Żabinski, P., Wróbel, M. & Tokarski, T., Electrochemical Deposition of Mo-Se Thin Films. <i>ECS Trans.</i> 64, 23 (2015).
793 7 794	5) Dukstiene, N., Kazancev, K., Prosycevas, I. & Guobiene A., Electrodeposition of Mo-Se thin films from a sulfamatic electrolyte. <i>J. Sol. St. Electrochem.</i> 8, 330-336 (2004).
795 7 796	5) Kim, EK. et al, Epitaxial electrodeposition of single crystal MoTe ₂ nanorods and Li ⁺ storage feasibility. J. Electroanal. Chem. 878, 114672 (2020).
797 7	 Myung, N. et al, Electrosynthesis of MoTe₂ Thin Films: A Combined Voltammetry-
798	Electrochemical Quartz Crystal Microgravimetry Study of Mechanistic Aspects. J.
799	Electrochem. Soc. 167 116510 (2020).
800 7	B) Zhou, Y., Jia, L. Feng, Q., Wang, T., Li, X. & Wang, C., MoTe ₂ nanodendrites based on Mo
801	doped reduced graphene oxide/polyimide composite film for electrocatalytic hydrogen
802	evolution in neutral solution. <i>Electrochim. Acta</i> , 229 , 121-128 (2017).
803 7	P) Veeralingam, S., Durai, L. & Badhulika, S., Facile Fabrication of
804	P(Electrodeposition)/N(Solvothermal) 2D-WS ₂ -Homojunction Based High Performance Photo
805	Responsive, Strain Modulated Piezo-Phototronic Diode. <i>ChemNanoMat</i> , 5 , 1521-1530
806	(2019).
807 8	D) Devadasan, J. J., Sanjeeviraja, C. & Jayachandran, M., Electrodeposition of p-WS ₂ thin film
808	and characterisation. J. Cryst. Growth, 226, 67-72 (2001).
809 8	 Delphine, S. M., Jayachandran, M. & Sanjeeviraja, C., Pulsed electrodeposition and
810	characterisation of tungsten diselenide thin films. <i>Mater. Chem. Phys.</i> 81, 78-83 (2003).
811 8	 Devadasan, J. J., Sanjeeviraja, C. & Jayachandran, M., Electrosynthesis and characterisation
812	of n-WSe ₂ thin films. <i>Mater. Chem. Phys.</i> 77, 397-401 (2003),
813 8 814	3) Peng, Z. et al, Controllable (h k 1) preferred orientation of Sb ₂ S ₃ thin films fabricated by pulse electrodeposition. Sol. Energy Mater. Sol. Cells, 253, 112208 (2003).
815 8	 García, R. G. A., Cerdán-Pasarán, A., Perez, E. A. R., Pal, M., Hernández, M. M. & Mathews, N.
816	R., Phase pure CuSbS ₂ thin films by heat treatment of electrodeposited Sb ₂ S ₃ /Cu layers. <i>J.</i>
817	<i>Sol. St. Electrochem.</i> 24, 185–194 (2020).
818 8 819 820	5) Garcia, R. G. A., Avendaño, C. A. M., Pal, M., Delgado, F. P. & Mathews, N. R., Antimony sulfide (Sb ₂ S ₃) thin films by pulse electrodeposition: Effect of thermal treatment on structural, optical and electrical properties. <i>Mater. Sci. Semicond. Proc.</i> 44, 91-100 (2016).

821 822	86) Subramanium, S. <i>et al</i> , High-energy ion induced physical and surface modifications in antimony sulphide thin films. <i>Curr. Appl. Phys.</i> 10 , 1112-1116 (2010).
823 824	87) Yesugade, N. S., Lokhande, C. D. & Bhosale, C. H., Structural and optical properties of electrodeposited Bi ₂ S ₃ , Sb ₂ S ₃ and As ₂ S ₃ thin films. <i>Thin Solid Films</i> , 263 , 145-149 (1995).
825 826	88) Majidzade, V. A., Javadova, S. P., Jafarova, S. F., Aliyev, A. S. & Tagiyev, D. B., Electrochemical Deposition of Sb₂S₃ Thin Films. Russ. J. Appl. Chem. 95, 1627–1633 (2022).
827 828	89) Majidzade, V. A., Aliyev, A. S., Guliyev, P. H. & Babanly, D. M., Electrodeposition of the Sb₂Se₃ thin films on various substrates from the tartaric electrolyte. <i>J. Electrochem. Sci. Eng.</i> , 10 , 1–
829 830 831 832	 9 (2020). 90) Majidzade, V. A., Aliyev, A. S., Qasimogli, I., Quliyev, P. H. & Tagiyev, D. B., Electrical Properties of Electrochemically Grown Thin Sb₂Se₃ Semiconductor Films. <i>Inorg.</i> Mater., 55, 979–983 (2019).
833 834	91) MacLeod, D., Parker, A. J. & Singh, P., Electrochemistry of copper in aqueous acetonitrile, J. Soln. Chem. 10 , 757-774 (1981).
835 836 837	92) Asif, O., Azadian, F. & Rastogi, A. C., Titanium Disulphide (TiS₂) Dichalcogenide Thin Films as Inorganic Hole Transport Layer for Perovskite Solar Cells Synthesized from Ionic Liquid Electrodeposition, <i>MRS Adv</i> . 5 , 3555-3564 (2020).
838 839 840	93) Murugesan, S, Akkineni, A., Chou, B. P., Glaz, M. S., Vanden Bout, D. A. & Stevenson, K. J., Room Temperature Electrodeposition of Molybdenum Sulfide for Catalytic and Photoluminescence Applications. <i>ACS Nano</i> , 7 , 8199-8205 (2013).
841 842 843	94) Szymczak, J., Legeai, S., Michel, S., Diliberato, S., Stein, N. & Boulanger, C., Electrodeposition of stoichiometric bismuth telluride Bi ₂ Te ₃ using a piperidinium ionic liquid binary mixture, <i>Electrochim. Acta</i> , 137 , 586594 (2014).
844 845	95) Hayyan, M.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. & Mei, T. X., Investigating the electrochemical window of ionic liquids. <i>J. Indust. Eng. Chem.</i> 19 , 106-112 (2013).
846 847	96) Tiago, G. A. O.; Matias, I. A. S.; Ribeiro, A.P. C.& Martins, L. M. D. R. S., Application of Ionic Liquids in Electrochemistry – Recent Advances. <i>Molecules</i> , 25 , 5812 (2020).
848 849	97) Sedev, R., Surface tension, interfacial tension and contact angles of ionic liquids. <i>Curr. Opin.</i> Coll. Interface Sci. 16, 310-316 (2011).
850 851 852 853	98) Kamlet, M. J., Abboud, J. L. M., Abraham, M. H & Taft, R. W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, p*, a, and ß, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 48, 2877-2887 (1983).
854	This work sets out the parameters used to describe solvents and is a useful resource
855	bringing together the numerical values for a range of different solvents.
856 857	99) Black, A. W. & Bartlett, P. N., Selection and characterisation of weakly coordinating solvents for semiconductor electrodeposition. <i>Phys. Chem. Chem. Phys.</i> 24 , 8093-8103 (2022).

858 859	100) Bartlett, P. N. <i>et al</i> , A Versatile Precursor System for Supercritical Fluid Electrodeposition of Main-Group Materials. <i>Chem. Eur. J.</i> 22 , 302-309 (2016).
860 861	101) Fan, L. & Suni, I. I., Electrodeposition and Capacitance Measurements of WS ₂ Thin Films, <i>J. Electrochem</i> Soc 164 D681-D686 (2017)
960	102) Bartlett P. N. <i>et al.</i> Non-aqueous electrodenosition of functional semiconducting metal
863	chalcogenides: $Ge_2Sb_2Te_5$ phase change memory. <i>Mater. Horiz.</i> 2 , 420-426 (2015).
864 865	This work describes a method for the electrodeposition of GeSbTe thin films and nanostructures from a CH_2Cl_2 electrolyte using compatible multi-source precursors
866	103) Kissling, G. P. et al, Electrodeposition of a Functional Solid State Memory Material:
867 868	Germanium Antimony Telluride from a Non-Aqueous Plating Bath. <i>J. Electrochem. Soc.</i> 165 , D557-D567 (2018).
869 870	104) Bartlett, P. N. <i>et al</i> , Non-aqueous electrodeposition of p-block metals and metalloids from halometallate salts. <i>RSC Adv.</i> 3 , 15645-15654 (2013).
871 872	105) Lodge, A. W. <i>et al</i> , Electrodeposition of tin nanowires from a dichloromethane based electrolyte. <i>RSC Adv.</i> 8 , 24013-24020 (2018).
873 874	106) Bartlett, P. N. <i>et al</i> , Haloplumbate salts as reagents for the non-aqueous electrodeposition of lead. <i>RSC Adv.</i> 6 , 73323-72330 (2016).
875 876	107) Cook, D. A., Reeves, S. J., Zhang, W., Reid, G., Levason, W. & Bartlett, P. N., Cathodic stripping of elemental Te in dichloromethane, <i>Electrochim. Acta</i> , 465 , 142997 (2023).
877 878 879	108) Bartlett, P. N., Cummings, C. Y., Levason, W., Pugh, D. & Reid, G., Halometallate Complexes of Germanium(II) and (IV): Probing the Role of Cation, Oxidation State and Halide on the Structural and Electrochemical Properties, <i>Chem. Eur. J.</i> 2, 5019-5027 (2014).
880 881	109) Evans, D. H., One-electron and Two-Electron Transfers in Electrochemistry and Homogeneous Solution Reaction. <i>Chem. Rev.</i> 108 , 2113-2144 (2008).
882 883	110) Cicvaric, K. <i>et al</i> , Thermoelectric Properties of Bismuth Telluride Thin Films Electrodeposited from a Nonaqueous Solution. <i>ACS Omega</i> , 5 , 14679-14688 (2020).
884 885	111) Jaafer, A. H. et al, Flexible Memristor Devices Using Hybrid Polymer/Electrodeposited GeSbTe Nanoscale Thin Films. ACS Appl. Nano Mater. 5, 17711–17720 (2022).
886 887	112) Noori, Y. J. et al, Phase-Change Memory by GeSbTe Electrodeposition in Crossbar Arrays. ACS Appl. Electron. Mater. 3, 3610-3618 (2021).
888 889	113) Liang, T. et al, A facile approach to enhance the hydrogen evolution reaction of electrodeposited MoS ₂ in acidic solutions. New J. Chem. 46, 23344-23350 (2022).
890 891 892	114) Xue, J. et al, Enhanced photoelectrocatalytic hydrogen production performance of porous MoS ₂ /PPy/ZnO film under visible light irradiation. Int. J. Hydr. Energy, 46, 35219-35229 (2021).
893 894	115) Nisar, T., Balster, T. & Wagner, V., Mechanical transfer of electrochemically grown molybdenum sulfide layers to silicon wafer. <i>J. Appl. Electrochem.</i> 51 , 1279–1286 (2021).

895 896	116) Aslan, E. & Patir, I. H., Catalysis of hydrogen evolution reaction by <i>in situ</i> electrodeposited amorphous molybdenum sulfide at soft interfaces. <i>Mater. Today Energy</i> , 21 , 100742 (2021).
897	117) Chakraborty, B., Maity, I., Chung, P., Ho, M. & Bhattacharyya, P., Understanding the Highly
898	Selective Methanol Sensing Mechanism of Electrodeposited Pristine MoS ₂ Using First
899	Principle Analysis, IEEE Sensors J. 21, 15 (2021).
900	118) Shit, S., Bolar, S., Murmu, N. C. & Kuila, T., Tailoring the bifunctional electrocatalytic activity
901	of electrodeposited molybdenum sulfide/iron oxide heterostructure to achieve excellent
902	overall water splitting, Chem. Eng. J., 417, 129333 (2021).
903	119) Levinas, R., Tsyntsaru, N. & Cesiulis, K., The Characterisation of Electrodeposited MoS ₂ Thin
904	Films on a Foam-Based Electrode for Hydrogen Evolution. <i>Catalysts,</i> 10 , 1182 (2020).
905	120) Chang, CY., Anuratha, K. S., Lin, YH., Xiao, Y., Hasin, P. & Lin, JY., Potential-reversal
906	electrodeposited MoS_2 thin film as an efficient electrocatalytic material for bifacial dye-
907	sensitized solar cells. Sol. Energy. 206, 163-170 (2020).
908	121) Yagati, A. K., Go, A., Vu, N. H. & Lee, M. H., A MoS2–Au nanoparticle-modified
909	immunosensor for T ₃ biomarker detection in clinical serum samples. <i>Electrochim. Acta</i> , 342 ,
910	136065 (2020).
911	122) Gurulakshmi, M. et al, Electrodeposited MoS ₂ counter electrode for flexible dye sensitized
912	solar cell module with ionic liquid assisted photoelectrode. Sol. Energy, 199 , 447-452 (2020).
913	123) Lei, Y. et al, Synthesis of V-MoS ₂ Layered Alloys as Stable Li-Ion Battery Anodes. ACS Appl.
914	Energy Mater. 2 , 8625–8632 (2019).
915	124) Giang, H., Pali, M., Fan, L. & Suni, I. I., Impedance Biosensing atop MoS_2 Thin Films with
916	Mo-S Bond Formation to Antibody Fragments Created by Disulphide Bond Reduction.
917	<i>Electroanal.</i> 31 , 957-965 (2019).
918	125) Yang, L. et al, Efficient hydrogen evolution catalyzed by amorphous molybdenum sulfide/N-
919	doped active carbon hybrid on carbon fiber paper. Int. J. Hydr. Energy, 43 , 15135-15143
920	(2018).
921	126) Amin, R., Hossain, M. A. & Yahya Zakaria, Y., Interfacial Kinetics and Ionic Diffusivity of the
922	Electrodeposited MoS ₂ Film. ACS Appl. Mater. Interfaces, 10 , 13509–13518 (2018).
923	127) Chia, X., Sutrisnoh, N. A. A & Pumera, M., Tunable Pt–MoS _x Hybrid Catalysts for Hydrogen
924	Evolution, ACS Appl. Mater. Interfaces, 10, 8702–8711 (2018).
925	structural optical and electrical properties of MoS- electrodenosited opto staipless steel
920	mesh / Mater Sci 52 4635–4646 (2017)
928	129) Falola, B. D., Wiltowski, T. & Suni, J. L. Electrodeposition of MoS ₂ for Charge Storage in
929	Electrochemical Supercapacitors. J. Electrochem. Soc. 163. D568 (2016).
930	130) Ahn, H. S. & Bard, A. J., Electrochemical Surface Interrogation of a MoS ₂ Hydrogen-Evolving
931	Catalyst: In Situ Determination of the Surface Hydride Coverage and the Hydrogen Evolution
932	Kinetics. J. Phys. Chem. Lett. 7, 2748–2752 (2016).
933	131) Ponomarev, E. A., Tenne, R., Katty, A. & Lévy-Clément, C., Highly oriented photoactive
934	polycrystalline MoS_2 layers obtained by van der Waals rheotaxy technique from
935	electrochemically deposited thin films. Sol. Energy Mater. Sol. Cells, 52, 125-133 (1998).

- 132) Albu-Yaron, A., Lévy-Clément, C., Katty, A., Bastide, S. & Tenne, R., Influence of the
 electrochemical deposition parameters on the microstructure of MoS₂ thin films. *Thin Solid Films*, **361–362**, 223-228 (2000).
- 133) Ponomarev, E. A., Albu-Yaron, A., Tenne, R. & Lévy-Clément, C., Electrochemical Deposition
 of Quantized Particle MoS₂ Thin Films. J. Electrochem. Soc. 144, L277 (1997).
 - 134) Fan, L. & Suni, I. I., Polysulfide Reduction and Oxidation at MoS₂, WS₂ and Cu-Doped MoS₂ Thin Film Electrodes. J. Electrochem. Soc. 166, A1471 (2019).

941

942

943

944 945

955

956

957

958

959

960

961

962

963

964

965 966

967

968

969

970

971

- 135) Novčić, K. A., Iffelsberger, C., Ng, S. & Pumera, M., Local electrochemical activity of transition metal dichalcogenides and their heterojunctions on 3D-printed nanocarbon surfaces. *Nanoscale*, 13, 5324-5332 (2021).
- 136) Pu, Z., Liu, Q., Asiri, A. M., Obaid, A. Y., Sun, X., One-step electrodeposition fabrication of
 graphene film-confined WS₂ nanoparticles with enhanced electrochemical catalytic activity
 for hydrogen evolution. *Electrochim. Acta*, **134**, 8-12 (2014).
- 137) Redman, D. W., Rose, M. J., Stevenson, K. J., Electrodeposition of Amorphous Molybdenum
 Chalcogenides from Ionic Liquids and Their Activity for the Hydrogen Evolution Reaction.
 Langmuir, **33**, 9354-9360 (2017).
- 138) Ng, S., Iffelsberger, C., Sofer, Z, & Pumera, M. Tunable Room-Temperature Synthesis of
 ReS₂ Bicatalyst on 3D- and 2D-Printed Electrodes for Photo- and Electrochemical Energy
 Applications. Adv. Funct. Mater. **30**, 1910193 (2020).
 - 139) Wallace, A. G. *et al*, Anodic Sb₂S₃ electrodeposition from a single source precursor for resistive random-access memory devices. *Electrochim. Acta*, **432**, 141162 (2022).
 - 140) Thomas, S. *et al*, Electrodeposition of MoS₂ from Dichloromethane, *J. Electrochem. Soc.* 167, 106511 (2020).
 - 141) Thomas, S. et al, Tungsten disulfide thin films via electrodeposition from a single source precursor. Chem. Commun. 57, 10194-10197 (2021).
 - This work describes the preparation and electrochemistry of a stoichiometric SSP for the electrodeposition of WS_2 without the need for a proton source.
 - 142) O'Neal, S. C. & Kolis, J. W., Convenient Preparation and Structures of Selenometalates MoSe₄²⁻, WSe₄²⁻, and MoSe₉²⁻ from Polyselenide Anions and Metal Carbonyls. *J. Am. Chem. Soc.* **110**, 1971-1973 (1988).
 - 143) Kim, J. *et al*, A facile synthetic route to tungsten diselenide using a new precursor containing a long alkyl chain cation for multifunctional electronic and optoelectronic applications. *RSC Adv.* **9**, 6169–6176 (2019).
 - 144) Klingelhöfer, P. & Müller, U., Thiochlorowolframate von Wolfram(V) und -(VI). Die Kristallstrukturen von PPh₄[WSCl₄] und (PPh₄)₂[WS₂Cl₄]·2CH₂Cl₂. *Z. Anorg. Allg. Chem.* 556, 70–78 (1988).
- 145) Greenacre, V. K., Hector, A. L., Huang, R., Levason, W., Sethi. V. & Reid, G., Tungsten(VI)
 selenide tetrachloride, WSeCl₄ synthesis, properties, coordination complexes and application of
 [WSeCl₄(SeⁿBu₂)] for CVD growth of WSe₂ thin films. *Dalton Trans.* 51, 2400-2412 (2022).
- 146) Thomas, S. *et al*, University of Southampton, unpublished work.

976	147) Das, S. et al, A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of
977	Large-Area Monolayer Flakes of 2D Materials. Sci. Rep. 6, 28195 (2016).
978	This article describes a method for electropolishing multilayer (bulk) TMDC crystals to
979	produce monolayers.
980	148) Wan, X. <i>et al</i> , Controlled Electrochemical Deposition of Large-Area MoS ₂ on Graphene for
981	High-Responsivity Photodetectors. Adv. Funct. Mater. 27, 1603998 (2017).
982	149) Noori, Y. J. <i>et al</i> , Large-Area Electrodeposition of Few-Layer MoS ₂ on Graphene for 2D
983	Material Heterostructures, ACS Appl. Mater. Interfaces, 12, 49786–49794 (2020).
984	150) Noori, Y. J. <i>et al</i> , Electrodeposited WS ₂ monolayers on patterned graphene, 2D
985	Mater. 9 , 015025 (2022).
986	The article describes a method for the electrochemical growth of ultra-thin WS_2 over
987	graphene electrodes using a SSP and a dichloromethane electrolyte.
988	151) Abdelazim, N. et al, Lateral Growth of MoS ₂ 2D Material Semiconductors Over an Insulator
989	Via Electrodeposition. Adv. Electron. Mater. 7, 2100419 (2021).
990	This article describes the clean-room fabrication process for nano-band electrodes and
991	their application for the electrochemical growth of 2D MoS_2 over an insulating SiO ₂
992	surface.
993	152) Greenacre, V. K., Levason, W., Reid, G. & Smith, D. E. Coordination complexes and
994	applications of transition metal sulfide and selenide halides. Coord. Chem. Rev. 424, 213512
995	(2020).
996	153) Black, A. W., Zhang, W., Noori, Y. J., Reid, G. & Bartlett, P. N., Temperature effects on the
997	electrodeposition of semiconductors from a weakly coordinating solvent. J. Electroanal.
998	Chem. 944 , 117638 (2023).
999	154) Liang, X., Jayaraju, N., Thambidurai, C., Zhang, Q. and Stickney, J. L., Controlled
1000	Electrochemical Formation of Ge _x Sb _y Te _z using Atomic Layer Deposition (ALD), <i>Chem</i> .
1001	Mater. 23 , 1742–1752 (2011).
1002	155) Schwarzacher, W. and Lashmore, D. S., Giant Magnetoresistance in Electrodeposited Films,
1003	IEEE Trans. Magnetics, 32 , 3133-3153 (1996).
1004	156) Jyoko, Y. and Schwarzacher, W., Characterization of electrodeposited magnetic Co/Pt
1005	multilayered nanostructures, Electrochim. Acta, 47, 371-378 (2001).

- 1007 Tables:
- **Table 1.** The Taft solvent descriptors for some commonly used electrochemical solvents, together with
- those for the weakly coordinating CH_2CI_2 (π^* , α and β describe the polarity, Lewis acidity and Lewis
- basicity, respectively).^{98,99} Suitable solvents typically have $\pi^* \ge 0.55$, $\alpha \le 0.2$, and $\beta \le 0.2$.

Solvent	π*	α	β
MeCN	0.75	0.19	0.4
DMSO	1.00	0	0.76
Ethylene glycol	0.92	0.90	0.52
CH_2Cl_2	0.82	0.13	0.01

1011

1012

1013

1014 Figure captions

1015

Figure 1: Crystal structure of a 2D layered transition metal dichalcogenide (TMDC). a) an edge-view of
 the structure in a tri-layer with the layer dimensions; b) the octahedral and trigonal prismatic stacking
 arrangements present in different TMDC polytypes (blue = metal; green = chalcogen).

1019

Figure 2 Schematic showing a typical three-electrode electrochemical cell set-up for 1020 electrodeposition. (a) the three-electrode set-up showing the potentiostat that controls the potential 1021 between the working electrode (WE) and the reference electrode (RE) while recording the current that flows between the WE and counter electrode (CE). The RE acts as a fixed, reproducible, point 1023 against which to apply, or measure, the potential at the working electrode. This allows precise control 1024 over the driving force for electrodeposition. The three-electrode system can be used to carry out 1025 different experiments, including (b) macroelectrode cyclic voltammetry, (c) microelectrode 1026 voltammetry, and (d) rotating disc voltammetry. In all three techniques the potential of the working 1027 electrode is scanned back and forth at a constant rate and the current recorded. This enables the study 1028 and characterisation of the electrodeposition chemistry, the electrode reactions of the precursor, and 1029 the different processes (electron transfer, mass transfer, coupled solution chemical reactions, surface 1030 and adsorption processes, etc.) involved (see Ref. 54 for details). Negative currents in (b), (c) and (d) 1031 correspond to the deposition of material on the working electrode by reduction of the precursor in 1032 1033 solution. Positive currents, on the return scan to positive potentials, correspond to stripping (oxidation) of the deposited material from the working electrode surface. The three-electrode system 1034 can also be used to follow the electrodeposition current as a function of time (e). The amount of 1035 material deposited on the working electrode can be controlled, or monitored, by following the total 1036 charge passed and using Faraday's law of electrolysis. (The plotted curves (b to e) are taken from 1037

experimental results for deposition of Sb from $[SbCl_4]^-$ in CH_2Cl_2 containing $[N^nBu_4]Cl$ electrolyte in Ref. 55).

Figure 3 The molecular species involved in the deposition of elemental tellurium from reduction of $[TeCl_6]^{2-}$. (a) process involved in the reversible dissociation of Cl⁻ (green spheres) from the $[TeCl_6]^{2-}$ precursor in CH₂Cl₂, to give the Lewis acidic $[TeCl_5]^-$ anion with a vacant coordination site (grey orbital lobe); (b) a schematic showing a $[TeCl_5]^-$ anion bonding to the Lewis basic electrodeposited Te⁰ surface (orange spheres = Te) *via* interaction with a *p*-type orbital orthogonal to the growing surface. Redrawn from Ref. 47.

1046

Figure 4 Illustrating a multi-source precursor approach for the electrodeposition of ternary germanium antimony telluride alloys. (a) the structures of the three precursor anions, $[GeCl_5]^-$, $[SbCl_4]^$ and $[TeCl_6]^{2-}$; (b) a cyclic voltammogram (CV) recorded from the electrolyte containing these three chlorometallate ions in CH₂Cl₂ solution and containing $[N^nBu_4]Cl$ supporting electrolyte – from Ref. 102. The peaks corresponding to the reduction processes for each of the three reagents are labelled.

1052

Figure 5 Examples of single source precursors (SSPs) used for 2D-TMDC electrodeposition. (a) the [ME₄]^{x-} anions,;(b) the preparation methods for [WECl₄] (E = S or Se) and the [WS₂Cl₄]²⁻ anion.

Figure 6 Illustration of 2D- TMDC electrodeposition over a conductor (electrode). (a) Schematic showing the growth of a TMDC 2D layer onto a graphene electrode; (b) the fabrication process used to produce the microelectrodes; (c) transmission electron microscopy (TEM) image of a WS₂ monolayer deposited onto graphene using the electrode structure in (a) – from Ref. 150.

1059

1060

Figure 7 Schematic showing anisotropic growth of 2D-TMDCs from the edges of nano-band electrodes 1061 over an insulator (SiO₂). (a) concept diagram showing the 2D layer growing only from the exposed 1062 edges of the TiN nano-band electrode; (b) a TEM image showing an electrodeposited MoS₂ tri-layer 1063 grown using the electrode structure in (c), where MoS₂ is grown from the TiN band electrodes on both 1064 the left (TMDC-1) and right (TMDC-2); (c) illustration of the fabrication process steps (i) to (v) for the 1065 nano-band electrodes; (d) The design principle of a chip where micro-gap nano-band electrodes can 1066 1067 enable 2D TMDC electrodeposition over an insulator; (e) and (f) show low and high magnification microscope images of the micro-gap electrode arrays with TMDCs (blue) grown between the 1068 electrodes. Redrawn from Ref. 151. 1069

1070

1071

1072 Glossary

area-selective growth materials growth only on specific regions of a pre-patterned substrate

1074 1075 1076	anisotropic	growth	growth strongly favoured in one or two specific direction(s); in the case of TMDCs, this is typically from the edges of the growing layer (to produce a 2D sheet)
1077	microelectro	odes	an electrode with diameter < 50 μm
1078	macroelectr	odes	an electrode with diameter > 0.1 mm
1079 1080	SSP sir an	ngle source d containi	e precursor; a compound that can be used for depositing the target TMDC ng pre-formed metal-chalcogen bonds
1081 1082 1083	electrolyte	the soluti precurso form ions	on used for the electrochemical experiment, usually comprising the solvent, r(s) and a redox inactive cation-anion salt that dissociates in the solvent to s that carry the charge
1084 1085	nano-band e	electrode	an electrode structure where the conducting surface is in the form of a line < 100 nm deep, typically fabricated on a silicon substrate
1086 1087	brightener	a chemica material	al used in electrodeposition to increase the optical brightness of the deposited
1088 1089	leveller	a chemic material	al used in electrodeposition to increase the uniformity of the deposited
1090 1091	counter elec	ctrode	the electrode used to complete the circuit in the electrochemical cell. It has to pass an equal but opposite current from that at the working electrode
1092	planar diffu	sion dif	fusion in 1D to/from the electrode surface
1093	radial diffus	ion dif	fusion in 2D or 3D to/from the electrode surface
1094 1095 1096	<i>iR</i> drop		difference between the applied potential and the potential at the working electrode due to passage of current through solution, or other uncompensated resistance.

1097	
1098	
1099	
1100	
1101	Short summary
1102	Electrochemical methods to grow 2D metal chalcogenides are reviewed, emphasising the effects of
1103	the precursor(s), solvent and electrode designs. Emerging work using nano-band electrodes to
1104	promote in-plane 2D layer growth into 'device-ready' electrode structures is highlighted.
1105	
1106	