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Abstract: Scanning electron microscopy (SEM) is a widely used method for the analysis

of concrete micro structure. To quantitatively analyze the SEM images with high efficiency

and accuracy, an automatic segmentation framework is proposed in this paper. The deep

segmentation algorithm is purposely optimized from PointRend based on the characteristic of
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SEM images to improve prediction accuracy, especially the performance around boundaries.

Moreover, the SEM images can be segmented without additional treatment. Cement paste

samples with 0.2 and 0.4 water-to-cement ratios are prepared and cured for 1, 3, 7, 14, and

28 days. Totally SEM images with 2267 labeled cement particles are included to build the

dataset. From the results of intersection over union and pixel accuracy, the proposed algo-

rithm outperforms the trainable waikato environment for knowledge analysis (WEKA) seg-

mentation, Fully Convolutional Networks (FCN), and the original PointRend method. The

segmentation results are used to calculate the hydration degree of two cement paste samples.

Good agreement is obtained with the hydration degree calculated by using nonevaporable

water in the samples for the 5 curing durations. At last, the shape of the cement particles

is analyzed. Irregularity and roundness of the cement particles do not change significantly

with an increase in curing duration.

1 Introduction

Concrete is the most widely used man-made material because of its excellent properties such

as stiffness strength and durability for buildings and infrastructure [1]. In a concrete mix,

the cement paste acts as a binder between the coarse and fine aggregates. Its heterogeneous

micro structure, i.e., phase assemblage and distribution of the cement particles and hydra-

tion products, governs the durability and mechanical properties of macroscale concrete [2].

Therefore, a quantitative characterization of the cement paste is critical for the analysis of

concrete hydration.
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A variety of methods have been employed to characterize micro structure of concrete such as

scanning electron microscopy (SEM) [3], mercury intrusion porosimetry (MIP) [4], nuclear

magnetic resonance (NMR) [5], and X-ray micro-computed tomography (CT) [6]. Among

these techniques, SEM is the most commonly adopted technique because of its high mag-

nification, precision and the lowest cost[7]. The SEM images are manually processed to

determine the water-to-binder ratio, slag fraction, and degree of hydration in hardened ce-

ment pastes based on subjective “point counting” [8, 9]. However, this visual-inspection

method is subjective and labor-intensive.

Quantitative micro structure analysis of different constituents in the SEM images requires

precise and reproducible segmentation, which involves partitioning the image into continuous

and homogeneous regions. Conventional techniques such as thresholding and edge detection

are adopted. Wong et al. [10] and Leite [11] segment cement-based materials from backscat-

tered electron images based on the grayscale histogram. The thresholds are selected from

the lowest inflection point of the grayscale histogram, but it is challenging to eliminate indi-

vidual judgment and bias when selecting the threshold values. An automated thresholding

method is proposed [12, 13] and morphological filters are combined with gray-level thresh-

olding [7, 14]. However, the threshold technique fails in classification when the gray level

of different phases overlaps with each other. Moreover, image resolution, magnification, and

noise of the SEM images, which vary with sample preparation and equipment operation,

strongly influence the selection of thresholds.

Edge detection is a challenging task in the segmentation of SEM images due to the noise and

similar grey scales between different phases of concrete. Therefore, image segmentation algo-
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rithms using appropriate filters have been applied to extract explicit features and reduce noise

on SEM images. Yang and Buenfeld [7] propose a method combining the grey-level thresh-

olding, filtering, and binary operations. Lee and Yoo [15] propose a segmentation method

based on Laplacian of Gaussian filter and watershed algorithm and global-local threshold

method. Feng et al. [16] propose a segmentation technique using the hybrid ridge signal

detector. However, prior knowledge is needed to properly select the salient features to ensure

versatility, and these algorithms are also highly influenced by the image quality.

Recent developments in computer vision and machine learning have made significant achieve-

ments in visual recognition. Machine learning-based models have been successfully applied to

image segmentation tasks for structural damage detection [17]. Bangaru [18] applies machine

learning methods such as K-NearestNeighbor(KNN) and Support Vector Machine(SVM) to

estimate the hydration degree of concrete based on SEM images. Pixel-based image seg-

mentation method based on machine learning associates each pixel to a unique class label

such as cement particle, hydration product, and pore region [19, 20]. However, the machine

learning classifier is trained based on the pixels selected on a particular image. Whether

the trained model is robust for other images with different processing and capturing condi-

tions is questionable. The precision of image segmentation has been improved significantly

by semantic segmentation algorithms based on deep learning such as convolutional neural

network (CNN), in which no explicit feature needs to be defined manually. Some researchers

[21, 22, 23, 24] apply primary deep learning segmentation to concrete samples. However,

complex treatment of samples such as coloring and pre-processing of images based on thresh-

old is inevitable. Moreover, the algorithms used are designed for popular datasets, such as
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COCO[25] or GTA5[26] but are not tailored for the SEM image of concrete samples. Such

coarse application ignores the characteristics of data in the civil engineering field and hinders

the performance of these deep learning algorithms.

In conclusion, previous researches either lack automation or are cumbersome and require

preprocessing of samples. Most of the segmentation results are not accurate enough for

quantitative analysis. The above-mentioned issues form the motivation for facilitating ob-

jective, adaptable, and automated algorithms for the segmentation of SEM images. The

contribution of this paper can be summarized as follows: This paper presents an automatic

deep learning-based segmentation algorithm for SEM images of cement paste. Secondly, the

algorithm is specially designed and improved based on the characteristics of SEM images.

And it performs better than other common methods, such as FCN [27] and TWS[28] in this

field. Finally, quantitative analysis can be implemented based on accurate segmentation.

The hydration degree of the paste samples at different curing duration is calculated and

compared to experimental results from loss-on-ignition (LOI) measurements. The irregular-

ity and roundness of the unhydrated cement particles are analyzed according to segmentation

results.

2 Methodology

The framework of this study is presented in Fig. 1. Two cement paste samples with different

water-to-cement (W/C) ratios are cured for five curing durations. Multiple SEM images of

the samples are taken, cropped, and labeled to generate a dataset for training and validation
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Figure 1: Framework for SEM image segmentation.

of a deep learning model. Thereafter, the trained model is used to segment unhydrated

regions. The segmented images are then used for the analysis of the cement particles and

the measurement of hydration degree. The steps are discussed in detail in this section.

2.1 Sample preparation and data collection

The two cement pastes used in the present study have 0.2 and 0.4 W/C ratios, respectively.

The cement pastes were mixed by using a 1 Liter Hobart planetary mixer. The fresh pastes

were mixed for 5 min until they became homogeneous and consistent. The samples were then

cast into ϕ20 × 30 mm cylindrical molds and compacted using a vibrating table. When no

significant amount of air bubbles escaped the surface, the samples were then covered with

a plastic sheet for 24 h prior to demolding. After removing the mold, all the samples were

stored in lime-saturated water for the duration of 3, 7, 14, and 28 days.

For each curing duration, one cylindrical sample was sectioned at the center part to produce

6



a cube block sample with a 5 mm side length. Thereafter, the samples were immersed in

99% isopropanol for 24 h to remove free water and oven-dried for another 24 h at 60 °C. Low

viscosity epoxy was then impregnated into the pores and voids of the samples to preserve the

delicate micro structure during grinding and polishing and to provide contrast under SEM

observation. The samples were polished with P320, P800, and P1200 emery papers for 30 s

each and then finely polished for 5 min with BUEHLER TexMet™ P polishing cloths and 1

µm MetaDi monocrystalline suspension.

Parallel samples were prepared from the same batch. A sample will be processed (hydration

stoppage, epoxy fixing, and polishing) for SEM observation at a certain curing duration, but

other samples will not be disturbed. Before SEM observation, the samples were coated with

gold for 40 s under vacuum. The SEM images were obtained under 15 kV at a magnification

of 1000× by using an SEM Phenom Prox G6 under backscattered electron (BSE) imaging

mode. Before taking each image, the brightness and contrast were calibrated to make the

histogram centered and ranged between the greyscale 0 to 255. Thirty-two images were

taken for each sample. The SEM images with the bottom label removed have a resolution of

3840×2400, which contained too many cement particles for labeling, and it was too large for

convolutional operation in the algorithm. Therefore, each picture was divided into 800× 800

pieces as shown in Fig.2. The smallest dimension of a particle that could be distinguished

had a size of 10 pixels, i.e., 10 × 0.135 µm/pixel. Therefore, the chosen magnification did

not seem to compromise the accuracy since the tiny cement particles were expected to have

fully hydrated.

Table 1 summarizes the organization of the dataset. 115 images were selected to build the
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Figure 2: Example of a SEM image and cropping

dataset, among which 61 and 54 images were from the samples with 0.2 and 0.4 W/C ratios,

respectively. The images were randomly mixed in a ratio of 4:1 for training and validation

sets. Only the cement particles were labeled by LabelMe as the region of interest (ROI), which

were also called instances as shown in Fig. 3. In this paper, we label the ROI manually, which

is the common way in the field of supervised learning. The advantage of the manual label is

their high accuracy, and we can view the manual label as ground truth. And the different

colors in Figure 3 mean different instances of ROI. The number of images after cropping is

shown in Table 2.
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Table 1: The organization of segmentation dataset.

Images Instances

Training set 92 1835

Validation set 23 432

W/C=0.2 61 1289

W/C=0.4 54 978

Table 2: The distribution of sample images.

Curing duration W/C=0.2 W/C=0.4

1 day 288 288

3 days 558 288

7 days 288 306

14 days 270 270

28 days 270 270

2.2 Configuration of network

Semantic segmentation is a hot topic in the field of deep learning. There are a large number

of algorithms focusing on segmentation tasks based on standard datasets like COCO and

Cityscapes[29]. However, the photos captured in daily life are vastly different from the SEM

images in the following aspects:

1. The SEM images in BSE mode are usually taken from finely polished samples with a

smooth surface. Most of the features are based on 2D shapes and pixel values, rather
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Figure 3: Example for labelling of the SEM image.

than 3D morphological information.

2. Unlike the data from the common dataset, the size of SEM images tends to be large

to maintain useful information, or the pictures can be compressed at the cost of image

quality and prediction precision.

3. Boundaries of the objects are irregular polygonals with zig-zags along the edges, which

cannot be well predicted by traditional algorithms.

In view of points 2 and 3, PointRend algorithm [30] is selected. The algorithm is a deep

learning module that treats segmentation as an image rendering problem. The algorithm is

specifically designed to compute high-resolution segmentation maps with a better boundary

detail since it adaptively divides the mask predictor into two sections, one for coarse predic-

tion and one for points prediction. The configuration of the network is shown in Fig.4. The

network architecture of PointRend is briefly introduced in this part.

• Feature extraction. For most deep learning models, the first step is to extract robust

features. In PointRend, ResNet50[31] is chosen as the backbone. Meanwhile, in order to
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fuse the information from different levels, FPN[32] is introduced to capture the features

at different levels. Then all the features, sizes from 4 × 4 to 64 × 64, are fused and

passed to the ROI Align layer to get a feature of 14 × 14. In the next step, a region

of interest (ROI) is proposed from the feature map. Here, the RPN network of Faster-

RCNN[33] is applied, which will generate a proposal based on anchors automatically.

These anchors uniformly distribute on the original picture, so the proposed ROI needs

to be mapped into feature space through the ROI layers.

• ROI align layer [34]. Now the feature map has the size of N ×C ×W ×H, where N is

the number of samples, C is the channel number, and W is the width and H the height.

As mentioned above, the proposed ROI generated from RPN is based on image space,

so the problem is how to convert the coordinates of the image space, X, Y , into the

coordinates of the feature space Xf , Yf . If the original image size is Worigin, Horigin, in

Faster-RCNN, the idea is to adjust the coordinates by ROI pooling.

Xf = round(X × W

Worigin

) (1)

However, in the segmentation task, the rounding error in the above equation is unac-

ceptable, so an ROI align layer is proposed, just by removing the rounding term. But

in this case, the coordinates in the feature space will not be integers, their values can

be calculated by bi-linear interpolation.

• Classifier. For each feature of ROI, it will pass a classifier to predict the category it

belongs to.

• Box predictor. Box predictor is used to measure the loss between predicted boxes and
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Figure 4: Configuration of PointRend for SEM segmentation.

ground truth.

• Mask coarse predictor. A relatively simple network, which requires smaller computation

and faster speed, is applied to predict a coarse mask prediction with the size of 7 × 7

or 14× 14.

• Mask point predictor. Points with the highest uncertainty will be predicted by mask

point predictor to which category they belong. Then refine the prediction result.

Based on the structure of the network, the total loss of PointRend can be formulated as:

Totalloss = classloss + regressionloss +maskloss + pointloss (2)

where classloss is the difference between the prediction instance class and the class ground

truth; regressionloss measures the deviation of predicted boxes and box ground truth; maskloss

calculates the error between predicted masks and mask ground truth; pointloss is the differ-

ence between specific points prediction results and ground truth.

In this study, the PointRend algorithm is improved in terms of gradient and uncertainty. By

the combination of gradient and uncertainty, the designed algorithm pays more attention to
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the boundaries of ROI and gets more accurate segmentation results and continuous bound-

aries compared to other methods. FCN [27] and Trainable Weka Segmentation (TWS) [28]

are also trained and evaluated based on the dataset. Their results are compared with the

segmentation results of the PointRend and the modified PointRend.

FCN can be viewed as a milestone of deep learning-based segmentation. By establishing

the space relationship between the feature layer and the input, segmentation results can be

obtained from interpolation. But prediction results based on interpolation are not precise

around boundaries, especially for images with large resolution [30]. FCN is a widely used

algorithm in the real application, including civil engineering. [22, 35, 36, 37, 38].

TWS is a machine learning tool that converts the segmentation problem into a pixel-level

classification problem and it is popular for the segmentation task in the real engineering

application. First, input pixels are manually labeled and applied as a training collection.

Certain training features are then selected. A fast random forest (RF) algorithm [39] is

applied as a classifier. After training the RF classifier, the images of the test group are

segmented. The detailed network configuration of TWS can be found in literature [28].

2.3 Estimation for the degree of hydration

The degree of hydration is estimated by two methods [8, 10]. The first method analyzes the

remaining percentage of cement particles from the segmented SEM image. Stereology pro-

vides practical techniques for extracting quantitative information about a three-dimensional

material from measurements made on two-dimensional planar sections of the material[40].
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It is an efficient tool in many applications of microscopy. Indeed, cement hydration is a

3-dimensional process, and the SEM images captures information on a cross section of the

samples. Nevertheless, the hydration degree was calculated based on volume fraction of the

cement particles, which can be obtained by measuring the area fraction on a polished plane

section and this is a classical application of stereology[40, 41]. The degree of hydration Ms

is estimated using Eq. (3) where VAH is the ratio of the volume of anhydrous cement deter-

mined through image analysis of the segmented image. VC is the volume of the total cement

paste calculated from the initial mix proportion. Loss-on-ignition (LOI) measurements were

also performed to compare with the results from the image analysis [42]. The degree of hy-

dration Mc is estimated using Eq. (4), where WB is the weight of the nonevaporable water.

WB∞ = 0.24 is the nonevaporable water content for a fully hydrated sample [43]. The paste

samples were oven-dried at 105 °C for 24 h to eliminate the free water. After recording the

dry weight, the samples were ignited in an electric furnace for 4 h at 900 °C. The weight

difference after 105 °C drying and 900 °C ignition was used as the nonevaporable water.

Ms = 1− VAH

VC

(3)

Mc =
WB

WB∞
(4)

2.4 Analysis of cement particles

With segmentation of the SEM images, the size distribution of the cement particles was ana-

lyzed. After training, the best algorithm among the FCN(76.95), TWS(58.31), PointRend(80.20),

and the modified PointRend(81.87) is chosen based on validation results. The segmentation
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results are binary images with 0 being the background and 1 being the cement particles.

Based on the segmentation results, a minimum circumscribed circle is applied to each ce-

ment particle. Its diameter is adopted as the size of the cement particle. Meanwhile, the

irregularity and roundness of the cement particle are also analyzed.

3 Improvement of PointRend

Before the discussion of the optimization of the original method, several concepts need to be

clarified first.

• Uncertainty. For each pixel in the feature map, it may belong to the background, or

it may belong to the object. And uncertainty measures the confidence of prediction

results. A prediction point with higher uncertainty is equivalent to lower confidence.

For instance, for a segmentation task with two classes, the goal is to separate foreground

from background. The uncertainty is defined as[30]:

uncertainty = −abs(logitsforeground) = −L1(logitsforeground, 0) (5)

Here, the logits mean the raw outputs of the network and the logits value will be fed

into the sigmoid function to get the probability for each category.

probability = sigmoid(logits) = sigmoid(net(input)) (6)

Actually, the above equation measures the L1 distance between 0 and the logits pre-

diction. And the logits prediction will be converted into probability as the final results,
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while sigmoid(0) = 0.5, which means the greatest uncertainty. For segmentation with

more than two classes, the uncertainty can be defined as:

uncertainty = −1× (mask[:, 0]−mask[:, 1]) (7)

Equation 7 estimates uncertainty as the difference between the top first and top second

predicted logits, e.g., mask[:, 0] and mask[:, 1].

It can be observed that the value of uncertainty is always smaller than 0 so that values

which are closer to 0 mean larger uncertainty.

• Point selection. If the size of the feature map is H×W , then in the first step, H×W×k

points will be generated uniformly, where k means the oversampling ratio. Secondly,

select H ×W × β points from the H ×W × k points based on the biggest uncertainty,

where β is the important sample ratio[30]. Lastly, select the rest H × W × (1 − β)

points randomly.

One of the key concepts of the PointRend algorithm is fine point prediction based on un-

certainty and prediction. The whole framework of PointRend can be summarized as follows.

Firstly, to generate a coarse prediction based on mask coarse predictor. Secondly, to select

top-k(H×W×β) points, which are generated by point selection, with the biggest uncertainty.

Thirdly, to predict the class information of these top-k points and compare them with the

ground truth to calculate the difference. Finally, to refine coarse prediction results based on

these top-k points and interpolation and repeat steps 2-4. Compared to other methods, such

as FCN and MaskRCNN[34], which directly enlarge the coarse prediction into the original

size, prediction results of PointRend are more precise and boundary is clear, especially for
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images with large resolution.

Moreover, after we consider the characteristics of SEM data and the concept of uncertainty,

we can make some optimizations to the algorithm according to our specific tasks. Our op-

timizations originate from such observations and assumptions: The SEM images, which are

taken from ground samples with a smooth surface, contain little 3D morphological informa-

tion so most of prediction results are based on 2D shapes and pixel values. Additionally,

most ROI areas are irregular and simply connected regions, which means that the accuracy

of outer boundaries determines the precision of segmentation results. Meanwhile, an obvious

pixel value difference can be observed around boundaries of different compounds. But it

is important to point out that not all obvious pixel value differences represent ROI areas.

Actually, for traditional methods that highly rely on pixel values, the performance is not

ideal due to the noise. Based on the above discussion, the idea is that the performance of

the segmentation network should be better if points on the boundary can be assigned with

larger uncertainties and then focus on their points loss. The optimized PointRend algorithm

is proposed as follows.

1. To generate coarse prediction and uncertainty points which is the same as the original

method. The size of coarse prediction and uncertainty points U(x, y) are H ×W and

H ×W × k respectively.

2. To calculate the gradient of each pixel in original images, G(x, y). Based on thresholds(th1

and th2, th1 < th2) and the Canny algorithm to calculate gradient maps GM(x, y) with

only 0 and 1.
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3. To calculate the original coordinates of uncertainty points in the image space and then

obtain gradients of these points based on bilinear interpolation from GM(x, y). The

gradients of these points can be named as GM ′(x, y) with the size of H ×W × k.

4. Element-wise multiply U(x, y) and −GM ′(x, y) to get U ′(x, y). Then select top-k

points with the biggest uncertainty from U ′(x, y). Finally to calculate the difference

of these points and ground truth as points loss to update the whole network by back-

propagation.

The framework of the optimized algorithm can be explained in Fig 5. The reason to convert

GM ′(x, y) to −GM ′(x, y) is that the values of original uncertainty are smaller than 0, and

points around boundaries are required to be assigned with a larger uncertainty. After the

multiplication, values of uncertainty points will be larger than 0, and points that are not

around the boundaries will be assigned with values close to 0.

4 Results and discussion

All of the code is implemented by Pytorch and experiments are performed on a single

GPU(RTX2080). All the initial parameters of the model are loaded from the model pre-

trained on the COCO dataset. This is a common way to improve the accuracy and efficiency

of the model in most cases. The training ends at a maximum iteration of 10,000 to ensure

sufficient optimization. A stochastic gradient descent (SGD) is adopted with a batch size of

8. A learning rate lr is set to be changed with the epoch and a momentum µj = 0.9.
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Figure 5: Framework of the optimized algorithm. Compared with the original uncertainty

map, only uncertainty around boundaries is retained after multiplication.

4.1 Performance comparison of algorithms

Two metrics i.e., Pixel accuracy (PA) and intersection over union (IOU) are used to evaluate

the prediction performance of the applied methods.

• PA (pixel accuracy). PA is a straightforward concept describing the ratio of the cor-

rected prediction pixels to the total number of pixels for one class, i.e.,

PA =
Numcorrect

Numtotal

(8)

• Intersection over union(IOU). IOU is a metric to measure the accuracy of object de-

tection or segmentation. As shown in Fig. 6, it is defined as the ratio of the area of

intersection and the area of the union. The IOU has a higher score when the predicted

bounding box overlaps more with the ground-truth bounding box.
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Figure 6: IOU reflects the degree of overlap of predicted boxes and ground truth.

Table 3 lists the results of PA and IOU of the four methods. In addition, an example of

the original BSE image and the segmented images by the four methods is illustrated in

Fig. 7. It is obvious that the accuracy of the deep learning methods (FCN and PointRend)

is much better than the pixel-based method TWS. The PA and IOU of the FCN model

were 4.48 and 18.64 points higher than that of the TWS model, respectively. As shown

in Fig. 7g, segmentation using TWS could not sufficiently distinguish the cement particles

and the hydration products due to similarities in brightness, texture, and color, resulting in

misinterpretation. Moreover, the particle boundaries cannot be well segmented clearly. In

general, TWS is a classical algorithm based on human designed features, i.e., the pixel values.

However, it is not a robust feature for segmentation tasks. And the rise of deep learning in

recent years proves that deep features are more robust compared with designed features.

From Fig. 7c and Fig. 7f, the disturbance of noise is lowered significantly in the prediction
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of FCN but an obvious jagged boundary can be observed. FCN is the milestone of deep

segmentation algorithm, but the algorithm simply calculate the segmentation results from

feature maps by interpolation. For example, the size of feature map is 14*14 and original

size of ROI is 56*56, then the interpolation is acceptable, but if the original size is 224*224,

then obvious zig-zag boundaries can be observed, just like what we show in Fig7.f. So for

images with large size, FCN can not perform well and it will ignore precise structure.

PA and IOU of the PointRend model increase by 0.27 and 3.25, respectively, from the FCN

model. By fine-points prediction and interpolation, a more precise segmentation can be

obtained from its results. Such improvement is more conspicuous for large resolution images

and PointRend is a more suitable algorithm for large images, such as SEM concrete images.

By recalculating the uncertainty map based on gradient, the modified PointRend model

further improves the segmentation accuracy by 0.51 and 1.67 for PA and IOU, respectively.

Compared with FCN, PointRend has a much more complex network structure and a more

refined feature extraction method. The ModPointRend we designed requires almost no more

computational consumption, and the network structure does not need to be changed. And

in this case, PointRend is 3.27 higher than FCN, and ModPointRend is 1.67 higher than

PointRend. It can be seen from Fig. 7a and Fig. 7d that the boundaries of the segmented

cement particles by our method are smoother and more continuous than the original one.

Such results are consistent with our improved algorithm design. Firstly, most of the points

in the region of interest will be assigned with lower uncertainty and less chance to be selected

for further point prediction, which leads to fewer holes in a prediction region. Secondly, more

attention is paid to boundaries and better results can be obtained.
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Figure 7: Comparison of the segmentation results generated by (a) Modified PointRend, (b)

PointRend, (c) FCN, (d) Details of modified PointRend, (e) Details of PointRend, (f) Details

of FCN, (g) TWS (h) Ground truth and (i) Corresponding SEM image
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Table 3: Segmentation accuracy of the four methods.

Metric PA IOU

TWS 90.97 58.31

FCN 95.45 76.95

PointRend 95.72 80.20

ModPointRend 96.23 81.87

To analyze the accuracy of the ModPointRend method in detail, a more detailed evaluation

system, average precision (AP) is introduced. AP is the average value of AP with a threshold

from 0.5 to 0.95 with an interval of 0.05. AP50 means the AP value of instances whose IOU

is higher than 0.5. Correspondingly, AP75 represents the AP value whose IOU is higher than

0.75, which is a stricter criterion than AP50 so its value would be lower than AP50. The

APs, APm and APl represent AP for an area smaller than 32 × 32, a moderate area larger

than 32 × 32 but smaller than 96 × 96, and a large area larger than 96 × 96, respectively.

The AP is explained in detail in reference [44].

Table 4: Comparison of accuracy between PointRend and PointRend modification.

Method AP AP50 AP75 APs APm APl

PointRend 51.18 74.66 61.80 7.09 49.44 74.64

ModPointRend 54.19 78.75 63.12 7.77 53.94 75.54

The AP results are listed in Table 4. Compared with IOU, AP is a more detailed metric

and provides more useful information. The scores of the ModPointRend are higher than

the original PointRend for all the metrics, especially the AP and AP50. However, the AP
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score decreases with a lower area. For APl and APm, the results of the ModPointRend are

around 75 and 50, respectively, which can be considered satisfactory for segmentation tasks.

But for APs, the score is lower than 10. This can be attributed to that the small ROIs

contain limited information, such as texture, color, and brightness. Therefore, it is difficult

for correct annotation based on visual judgment at the magnification of 1000. This can

mislead the training process of the network. At the same time, there is little information for

the model to make a prediction. If the cement particles are mistaken as hydration products

the true positive (TP) will be changed to the false positive (FP) during the calculation of AP.

Nevertheless, although the APs shows a lower score, the total area of the ROIs smaller than

32 × 32 only occupies a very low fraction and thus has a limited impact on the calculation

of the proportion of unhydrated area in the images with 800× 800 pixels.

4.2 Hydration degree of the cement paste samples

The W/C ratio is one of the important parameters for strength and durability properties

of hardened concrete. Since the modified PointRend model has excellent performance, it is

applied to the entire dataset consisting of a total of 346× 9 images for segmentation. Based

on reference [10], the total area covered by the frames is at least 3 times larger than the

requirement for a representative area. The segmented images are used to analyze the degree

of hydration by following the method described in Section 2.3. The estimated hydration

degree of the two cement pastes as a function of curing duration is compared against the

measured values from the LOI test in Fig. 8. It is clear that the degree of hydration

calculated by the two methods agreed very well, indicating the effectiveness and accuracy of
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this modified segmentation algorithm. With higher time and economic efficiency this image-

based method is promising in analyzing pore structure and phase distribution of the cement

matrix.

Figure 8: Hydration degree of the paste samples.

The percentage difference of hydration degree between the two methods for the sample W/C-

0.4 at 1, 3, 7, 14, and 28 days are 5.1%, 2.9%, 3.6%, 2.0%, and 0.4%, respectively. This

deviation is considered low as the variation between concrete samples is usually significant.

The short term (less than 14 days) degree of hydration is slightly higher measured by LOI

than that measured by image segmentation. This could be attributed to additional hydra-

tion during the 105 °C drying process, or decomposition of other volatile phases, such as

carbonates. The degree of hydration increased from around 40% to around 60% for the paste

sample W/C-0.2 and the corresponding degree of hydration is greater for the paste sample

W/C-0.4 as expected. It could also be noticed that the rate of hydration slowed down with

increasing curing duration. This trend is earlier for the sample W/C-0.2 due to the limited
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Figure 9: Example of a cement particle after 7 days of hydration.

water for hydration.

4.3 Analysis of cement particle

The ModPointRend is used to generate a mask for each cement particle. Two indexes, irreg-

ularity and roundness, are calculated from the masks to analyze the shape of the unhydrated

cement particles and are defined as follows:

I =
dmax

dmin

(9)

C =

√
4πA

P 2
(10)

where, dmax, dmin, A, and P are the diameter of the maximum inscribed circle, the diam-

eter of the minimum circumscribed circle, the area, and perimeter of the cement particles,

respectively. The values of irregularity and roundness indexes range from 0 to 1, with 1

representing a circle. The irregularity and roundness indexes of the cement particles as a
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Irregularity Roundness

Group Mean Std Mean Std

0.2-1 0.483 0.118 0.759 0.09

0.2-3 0.487 0.119 0.76 0.086

0.2-7 0.49 0.118 0.766 0.087

0.2-14 0.5 0.124 0.756 0.099

0.2-28 0.496 0.118 0.762 0.092

0.4-1 0.486 0.128 0.758 0.094

0.4-3 0.463 0.13 0.742 0.104

0.4-7 0.481 0.133 0.747 0.105

0.4-14 0.493 0.134 0.754 0.127

0.4-28 0.482 0.141 0.728 0.127

Table 5: Irregularity and roundness of cement particles in different groups.
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function of curing duration in the two samples with different W/C ratios are listed in Table

5. The mean value and standard deviation of these two parameters change marginally with

an increase in curing duration and the W/C ratio does not influence the shape of the cement

particles significantly. From Fig. 9, hydration happens evenly on the surface of the cement

particle after 7 days of hydration. This explains the unchanging shape of the cement particle

which shows a rough surface but not represented by the irregularity and roundness.

5 Conclusion

Previous quantitative analysis of micro structure always highly relied on human experience

and was labor-intensive with a low degree of automation. In this paper, we reviewed the

previous methods in this field for segmentation and analyzed their disadvantage as well as

the characteristics of segmentation of SEM images. We proposed a deep learning-based

framework for concrete SEM images segmentation, which is automatic and precise. An

optimized PointRend algorithm was proposed based on the characteristic of SEM images.

Its performance was compared with different algorithms under various evaluation metrics. It

was shown that our method is more accurate than the original method and other common

segmentation algorithms in this field. We also analyzed the relationship between curing time

and the shape parameters of concrete particles, which is impossible to obtain except for

SEM image segmentation. Deep learning-based segmentation demonstrated its power in this

research, and it will help us in future research of concrete design and understanding.
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