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Abstract: High-performance concrete (HPC) experiences significant degradation in its mechanical
properties after fire exposure. While various post-fire curing methods have been proposed to rehabilitate
thermally damaged concrete (TDC), the physical and chemical changes occurring during these processes
are not well-understood. This study examines the strength and microstructure restoration of HPC
through water and water–CO2 cyclic recuring. HPC samples were initially heated to 600 ◦C and 900 ◦C,
then subjected to water and cyclic recuring. Results indicate that the mechanical performance recovery
of thermally damaged HPC is significantly better with cyclic recuring than with water recuring. The
compressive strength of HPC samples exposed to 600 ◦C and 900 ◦C reached 131.6% and 70.3% of
their original strength, respectively, after cyclic recuring. The optimal recuring duration for substantial
recovery in thermally damaged HPC was determined to be 18 days. The strength recovery is primarily
due to the healing of microcracks and the densification of decomposed cement paste. These findings
clarify the physical and chemical processes involved in post-fire curing of HPC, highlighting the potential
of water and water–CO2 cyclic recuring in the rehabilitation of TDC.

Keywords: high-performance concrete; post-fire curing; carbonation

1. Introduction

Concrete is widely recognized for its inherent fire-resistant properties; however, its
mechanical performance significantly declines when exposed to high temperatures. Ele-
vated temperatures lead to the decomposition of hydration products, coarsening of the
pore structure, thermal cracking, and mineralogical phase transformations, all of which
contribute to the degradation of concrete’s mechanical properties [1–3]. The compressive
strength of concrete deteriorates rapidly under high-temperature conditions, leaving post-
fire structures with limited options: demolition and rebuilding or repair and reinforcement.
Reinforcing post-fire structures is typically both time-consuming and labor-intensive [4,5].
Crook et al. [6] demonstrated in 1970 that concrete subjected to a temperature of 620 ◦C
could regain its compressive strength through water recuring. Since then, researchers have
concentrated on exploring the self-healing capability of concrete after fire damage, aiming
to develop more efficient repair techniques to enhance the safety and reliability of post-fire
concrete structures [7–14].

Concrete decomposes through various mechanisms when exposed to high tempera-
tures. These processes include the breakdown of monosulfoaluminate (AFm) and ettringite
(AFt) between 110 and 150 ◦C, the decomposition of calcium hydroxide (Ca(OH)2, CH)
from 400 to 500 ◦C, and the dehydration and subsequent decomposition of the C-S-H
gel occurring between 200 ◦C and 900 ◦C [1,15–17]. Through techniques such as X-ray
diffraction analysis and scanning electron microscopy, Alonso et al. [18] and Wang et al. [19]
found that the decomposition products of the C-S-H gel, CH and AFt can rehydrate to form
new compounds during the recuring of TDC [20,21]. These rehydration products play a
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crucial role in repairing microcracks and coarsened pores caused by high temperatures,
thereby contributing to the restoration of concrete’s compressive strength [22–25]. Yim
et al. [26] observed a significant improvement in the mechanical properties of TDC when
cured in high-humidity environments or immersed in water, attributable to the increased
formation of rehydration products. Therefore, the selection of a recuring method [26], the
reactivity of rehydration phases [27], and the extent of high-temperature degradation [13]
are all critical factors that influence the effectiveness of recuring TDC.

Poon et al. [28] conducted experiments on HPC containing silica fume (SF) and fly
ash (FA), exposed it to high temperatures, and subsequently subjected it to water recuring.
Their findings highlighted that blended concrete exhibited superior recovery during recur-
ing compared to ordinary Portland cement concrete. The high-reactivity SiO2 in SF and FA
acted as a pozzolan, reacting with CH in HPC during recuring, and leading to increased
formation of C-S-H gel, which effectively filled microcracks and coarsened pores caused
by thermal damage, thereby enhancing the mechanical properties of the concrete [15,29].
Moreover, the consumption of CH in this process helped prevent potential secondary
damage from excessive CH generation in HPC with a high CaO content [30]. However,
incorporating high-reactivity SiO2 in HPC also resulted in the formation of phases with
lower calcium-to-silica ratios, such as γ-C2S, CS, and C3S2, under high-temperature con-
ditions, which reduced the recovery potential of HPC during water curing [31]. These
phases, prevalent in thermally damaged HPC, exhibit higher carbonation activity than
hydration activity [27,32,33]. Addressing this, Li et al. [22] proposed a water–CO2 cyclic re-
curing method for thermally damaged HPC, demonstrating superior recovery performance
compared to water recuring after exposure to temperatures of 800 ◦C and above.

Existing research has predominantly focused on the long-term recovery of mechan-
ical properties in thermally damaged HPC during curing, with limited attention to the
efficiency of strength recovery across different curing durations and the underlying mi-
crostructural mechanisms. Addressing these gaps, this study aims to elucidate the strength
development process and its micro-mechanisms during water and water–CO2 recuring
of HPC. HPC samples, incorporating SF as a supplementary cementitious material, were
exposed to temperatures of 600 and 900 ◦C, followed by water or cyclic recuring for up
to 30 days. Various characterization methods were employed at 3-, 6-, 18-, and 30-day
intervals to explore the relationships between compressive strength, changes in phase
composition, and microstructural development during the recuring process. This study
investigates influencing factors and mechanisms contributing to strength recovery in ther-
mally damaged HPC, identifying optimal recuring regimes and durations for effective
strength recovery. Section 2 of this paper will detail the experimental materials, sample
preparation, procedures, and characterization methods employed. Section 3 will analyze
results from compressive strength tests, X-ray diffraction, scanning electron microscopy,
and mercury intrusion porosimetry. Section 4 will discuss experimental findings, compare
them with previous research, and summarize conclusions.

2. Materials and Methods
2.1. Materials and Sample Preparation

The mixture proportions for the HPC samples are detailed in Table 1. The cementitious
components consist of CEM I 52.5 Portland cement produced by Huarun Cement Co.,
Ltd. located in Shenzhen, China, and SF97 silica fume produced by Linyuan Microsilica
Co., Ltd. located in Xi’an, China, with silica fume substituting 10% of the cement by
mass. The chemical compositions of the cement and silica fume are listed in Table 2. For
the preparation of the HPC samples, silica flour and sieved standard quartz sand were
employed as aggregates. The particle size of the silica flour and the sieved standard
quartz sand ranged from 15 to 293 µm and 0.08 to 1.18 mm, respectively. The particle
size distribution (D10, D50, D90) of the materials is presented in Table 3. The water-to-
binder ratio for the HPC samples was set at 0.36. To achieve the desired consistency
and workability, 6.1 kg/m3 of a polycarboxylate superplasticizer, produced by Master
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Builders Solutions located in Shanghai, China, with a 24% solid content was added. The
technical properties of the superplasticizer are presented in Table 4. Additionally, to prevent
explosive spalling during high-temperature exposure, 3.0 kg/m3 of polypropylene (PP)
fibers with a length of 12 mm and a diameter of 31 µm were incorporated into the HPC
samples. The samples, referred to as “mortar”, are labeled as “M” in subsequent figures in
the Results and Discussion Sections.

Table 1. The mix proportions of the HPC samples (unit: kg/m3, the quantity of materials required to
prepare 1 m3 of mortar).

Mix Design Cement Silica
Fume

Silica
Flour

Fine
Aggregates Superplasticizer Water Polypropylene

Fibers

Mortar 872.4 87.2 270.5 820.1 6.1 345.5 3.0

Table 2. The chemical compositions of the cement and silica fume.

CaO SiO2 Al2O3 Fe2O3 MgO K2O TiO2 SO3 SrO

Cement (%) 61.78 20.56 5.13 3.57 3.76 0.59 0.23 3.98 0.03
Silica fume (%) 0.11 97.70 0.16 0.07 0.44 0.23 - 0.99 -

Table 3. The particle size distribution of the materials (unit: µm).

Materials D10 D50 D90

Cement 1.26 11.91 37.81
Silica fume 0.48 0.62 0.80
Silica flour 58.05 112.51 170.71

Sieved standard quartz sand 148.85 343.72 842.42

Table 4. The technical properties of polycarboxylate superplasticizer.

Form Color Density Effective
Content pH Total Cl− Alkali Content Water

Reducing Rate

Liquid Yellow 1.1 g/mL 24.7% 5.4 ≤0.2% ≤4.0% ≥20.0%

The HPC material was prepared using a 20 L mortar mixer. To prevent powder
overflow during mixing, the dry materials were added in the following sequence: cement,
silica fume, silica flour, and standard quartz sand. These dry components were mixed at
140 rpm for 3 min to ensure uniformity. Subsequently, a mixture of superplasticizer and
water was added, and the blend was mixed at 140 rpm for 3 min. Once a homogeneous mix
was achieved, PP fibers were introduced, and the mixture was stirred at 285 rpm for 6 min.

After mixing, the HPC material was poured into 50 × 50 × 50 mm3 cubic molds in
two layers. The first layer was evenly spread using a spreader positioned vertically at the
top of the mold. The mold was then placed on a vibrating table and vibrated 60 times to
ensure proper compaction. Next, the second layer of mortar was added, spread evenly, and
subjected to 60 vibrations as well. After vibrating, the mold was removed, and the excess
material extending beyond the mold edges was scraped off using a metal ruler. Finally,
the surface of the samples was smoothed to ensure uniformity. The compaction procedure
of the HPC samples follows the ISO 679-2009 standard [34]. Following initial setting, the
samples were covered with plastic film to prevent surface shrinkage cracking and left to
stand for 24 h. After this period, the samples were demolded and submerged in saturated
limewater at 20 ± 3 ◦C for 89 days. Following the curing period, the samples were removed
for subsequent testing.

2.2. Heating and Recuring Regimes

After a 90-day curing period, the samples were heated to temperatures of 600 and
900 ◦C at a rate of 1 ◦C/min in a FO811C muffle furnace produced by Yamato Scientific
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Co., Ltd. located in Tokyo, Japan. Upon reaching the desired temperature, the samples
were maintained at this temperature for 1 h to ensure uniform temperature distribution.
Subsequently, the samples were allowed to cool naturally to ambient temperature inside
the furnace. The heating and cooling curve is depicted in Figure 1.
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Figure 1. Heating and cooling curve of the electrical furnace.

For water (W) recuring, the heated samples were immersed in lime-saturated water
for 3, 6, 18, and 30 days. For water–CO2 cyclic (C) recuring, the heated samples were
submerged in lime–saturated water for 3 days, then transferred to an environmental
chamber for another 3 days. The chamber conditions were set at 30 ± 1 ◦C, 40 ± 1%
relative humidity, and 20 ± 0.2% CO2 concentration. Low relative humidity was selected
to favor CO2 diffusivity and enhance carbonation efficiency in an unsaturated micropore
solution [35,36]. The cyclic recuring regime was applied for 3, 6, 18, and 30 days. The
experimental and research processes, as well as the sample testing methods used in this
study, are illustrated in Figure 2.
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2.3. Characterization Methods
2.3.1. Compressive Strength

Compressive strength tests on the HPC samples were performed in accordance with
ASTM C109/C109M-11 [37]. Following high-temperature exposure and the specified
recuring periods, the samples were tested using a 600 kN universal testing machine. A
constant loading rate of 2.4 kN/s was applied until the samples failed, and the maximum
load was recorded. Three HPC samples were tested for each condition. The standard
deviation of the strength values of the three cubic samples was calculated and represented
as error bars in the strength graphs.

2.3.2. X-ray Diffraction

X-ray diffraction (XRD) analysis was carried out using a Bruker D8 Advance X-ray
powder diffractometer produced by Bruker Corporation located in Billerica, MA, USA. XRD
patterns were obtained for the HPC samples before heating, after heating, and during the
recuring. Fitting analysis was conducted to identify phases and their relative proportions.
Post-recuring HPC samples were collected from the surface to a depth of 10 mm, then
ultrasonically cleaned and soaked in isopropanol for 24 h to halt further hydration. Samples
were dried in a vacuum oven at 40 ◦C, ground into a fine powder, and passed through a
200-mesh sieve. The internal standard method was employed for phase proportion analysis,
with ZnO incorporated into the powdered samples at a 10% mass ratio. The mixture was
homogenized using a mortar and pestle for 15 min. XRD scanning was performed from 5◦

to 65◦ at a rate of 2◦/min. Qualitative and quantitative analyses of the XRD patterns were
conducted using HighScore Plus.

2.3.3. Scanning Electron Microscopy

Scanning electron microscopy (SEM) tests were performed using a Phenom ProX G6
SEM produced by Thermo Fisher Scientific Inc. located in Waltham, MA, USA to observe
microstructural changes in the HPC samples. Samples for SEM tests were taken from a
depth of 3 to 8 mm from the surface. After extraction, the samples were pre-polished with
600-grit sandpaper, then soaked in isopropanol for 24 h to halt hydration. The samples
were dried in a vacuum oven at 40 ◦C, embedded in epoxy resin, and allowed to harden for
24 h. The hardened samples were polished with successive grades of sandpaper, 600-grit,
1200-grit, 2000-grit, and 1 µm diamond paste on a Buehler TexMet P polishing cloth using
a MoPao4S automatic grinding and polishing machine produced by Weiyi Experiment
Machine Manufacturing Co.,Ltd. located in Laizhou, China. To enhance conductivity, a
gold sputter coating was applied for 40 s using a Zhongke SBC-12 ion sputtering instrument.
Images were captured using a BSE imaging detector at ×1000 magnification and 15 kV
acceleration voltage.

2.3.4. Mercury Intrusion Porosimetry

Mercury intrusion porosimetry (MIP) was conducted using a Micromeritics Auto-
pore IV 9500 porosimeter produced by Micromeritics Instrument Corporation located in
Norcross, GA, USA to measure pore structure distribution in the HPC samples. Samples
for MIP testing were taken from a depth of 3 to 8 mm, ultrasonically cleaned, soaked
in isopropanol for 24 h, and dried in a vacuum oven at 40 ◦C. MIP tests covered a pore
diameter range from 5 nm to 360 µm, with a maximum pressure of 33,000 psi.

3. Results and Discussion
3.1. Compressive Strength

Figure 3a illustrates the compressive strength of the HPC samples after exposure to elevated
temperatures. The results indicate the compressive strength of the HPC samples decreased to
65.2% and 22.3% of their original values after exposure to 600 and 900 ◦C, respectively. The decline
in strength at 600 ◦C can be attributed to the decomposition of hydration products, such as AFt
and CH, alongside dehydration and recrystallization of the C-S-H gel. These processes lead to
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pore structure coarsening and microcrack formation [38,39]. At 900 ◦C, extensive decomposition
of the C-S-H gel causes significant shrinkage of the cement paste and further coarsening of the
pore structure, resulting in a severe loss of compressive strength.
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Figure 3. Compressive strength of the HPC samples (a) after heating at various temperatures; (b) at
various recuring ages after exposure to 600 ◦C and 900 ◦C.

Figure 3b depicts the recovery of compressive strength of thermally damaged HPC
during the recuring process. For HPC samples damaged at 600 ◦C, their compressive
strength can be restored to pre-damage levels through recuring. After water recuring, the
compressive strength reached 108.3 MPa, while cyclic recuring resulted in a compressive
strength of 123.3 MPa, which is 13.9% higher compared to water recuring. This enhanced
recovery during cyclic recuring is attributed to the carbonation process, which further
improves the micro-mechanical properties of the HPC samples. In the initial stages of
recuring for samples damaged at 600 ◦C, their compressive strength developed rapidly,
although the rate of strength recovery decreased over time. By the 18th day of both water
and cyclic recuring, compressive strength had recovered to 95.0% of the total recovery
observed at 30 days.

For HPC samples damaged at 900 ◦C, there was minimal recovery in compressive
strength during the initial 6 days of water recuring; however, the mechanical properties
of the HPC gradually improved from the 6th to the 30th day, ultimately achieving a
compressive strength of 48.9 MPa. During cyclic recuring, there was a notable increase in
compressive strength during the initial carbonation phase from the 3rd to the 6th day. The
first cycle of cyclic recuring showed the most substantial increase, reaching 97.7% of the
total recovery after three recuring cycles. After 30 days of cyclic recuring, the compressive
strength of the HPC samples reached 65.3 MPa, marking a 33.5% increase compared to the
samples subjected to water recuring. Detailed analysis of the changes in phase assemblage
and the microstructure of the HPC samples across different recuring durations is provided
in the subsequent sections.

3.2. Phase Assemblage

The XRD test results were qualitatively analyzed using HighScore Plus software
v3.0.5. CIF files of the phases present in the samples were imported into the software for
quantitative analysis. Given that 10% ZnO powder was intentionally added to the samples,
the internal standard method was employed to determine the content of crystalline and
amorphous phases in the samples. The XRD patterns and quantitative XRD (QXRD) results
were plotted using Origin, and the phases in the XRD patterns were labeled using Visio.

Figure 4 illustrates the XRD patterns and QXRD results of the HPC samples after
exposure to 600 ◦C and during the recuring process. Following exposure to 600 ◦C, the
diffraction peaks of AFt and CH disappeared completely, while the C3S peaks between 28◦

and 33◦ decreased, and a γ-C peak became evident. QXRD analysis revealed the presence
of 4.9% γ-C2S in the sample M-600, attributed to the partial decomposition of the C-S-H gel.



Materials 2024, 17, 3531 7 of 18

This decomposition led to the formation of β-C2S, which further transformed into γ-C2S
below 500 ◦C [40].
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After 6 days of water recuring (Figure 4b), the content of C3S and β-C2S in the HPC
samples decreased by 1.8% and 0.9%, respectively. Dehydration products and unhydrated
cement rehydrated to form 2.9% CH and 1.4% AFt. Between 6 and 18 days of the water
recuring, the rate of rehydration product formation declined, with only an additional 0.6%
CH and 0.4% AFt formed during this period. This trend aligns with the compressive
strength development, which also shows a gradual decrease in the rate of increase as the
recuring period extends.

For the sample M-600-C-6d, the carbonation process led to the generation of 6.3%
calcite and 1.8% vaterite after one cycle of cyclic recuring. From day 6 to 18 of the cyclic
recuring, an additional 2.0% calcite and 0.4% vaterite were generated, indicating a signifi-
cant decrease in the rate of carbonation product formation. Comparing the XRD patterns of
M-600-C-6d and M-600-C-18d, a noticeable decrease in the peak intensity of the rehydration
product CH is observed as the duration of cyclic recuring increases. This suggests that the
rehydration product CH is consumed by carbonation during cyclic recuring. Furthermore,
comparing the XRD patterns of M-600-C-18d and M-600-W-18d, the amorphous phase
content decreased after cyclic recuring, indicating that carbonation transformed the C-S-H
gel into CaCO3 and silica gel [41–43]. During cyclic recuring, carbonation promoted fur-
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ther rehydration of unhydrated cement by consuming hydration products, leading to an
increase in γ-C2S consumption and accelerating the consumption rate of β-C2S.

Figure 5 shows the XRD patterns and QXRD results of the HPC samples after exposure
to 900 ◦C and during the recuring process. After exposure to 900 ◦C, the amorphous phase
content in the HPC samples significantly decreased. The C-S-H gel underwent extensive
decomposition, resulting in the formation of a considerable amount of β-C2S, while β-C2S
partially transformed into α’-C2S above 690 ◦C [44,45]. The C3S completely disappeared
post 900 ◦C exposure due to the solid-phase reaction between C3S and high-silica content
phases, leading to the formation of low-calcium silicate β-C2S at high temperatures [46,47].
After exposure to 900 ◦C, the β-C2S content in the HPC samples increased by 51.1%, and
10.9% α’-C2S was generated.
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During water recuring of the HPC samples damaged at 900 ◦C, α′-C2S rapidly re-
hydrated to generate C-S-H gel and CH. Concurrently, CH reacted with silica fume to
form more C-S-H gel, increasing the amorphous phase content in the HPC samples. After
6 days of water recuring (Figure 5b), 0.7% CH, 0.4% AFt, and 2.5% AFm were formed, and
the amorphous phase content increased by 14.2%. Between 6 and 18 days, β-C2S slowly
hydrated, further increasing the amorphous phase and CH content in HPC. During this
period, the CH content in HPC rose by 2.9%. However, the main generation of AFt and
AFm occurred in the first 6 days of water recuring.
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Following the first cycle of cyclic recuring for HPC samples damaged at 900 ◦C, 9.8%
calcite and 2.7% vaterite were generated, alongside the rehydration products AFm and
AFt. From day 6 to 18 of the cyclic recuring, the rate of CaCO3 formation significantly
decreased, with only an additional 2% calcite formed during this period. Comparing the
XRD patterns of M-900-C-6d and M-900-W-6d, an increase in β-C2S consumption and a
lower amorphous phase content were observed in the HPC samples after cyclic recuring,
indicating the promoting effect of carbonation on β-C2S and C-S-H.

3.3. Microstructure Observations

The microstructure of HPC samples after heat exposure and subsequent recuring was
examined using backscattered electron (BSE) imaging mode on an SEM. Some of the BSE
images have been magnified by a magnification of 2000× and are displayed within blue–green
dashed boxes to clearly illustrate the changes in the pore structure. The micrographs of the
rehydration and carbonation products during the recuring process are presented within an
orange dashed box. Visio was used to compile and integrate the SEM images. Figure 6
provides SEM-BSE images depicting the microstructure of HPC at ambient temperature
and following exposure to temperatures of 600 and 900 ◦C. In the BSE images, the larger
and more uniform entities are identified as sand grains. The cement paste region consists
of brighter areas representing unhydrated cement particles and gray areas representing
hydration products. Darker regions indicate the presence of pores or microcracks. Before
exposure to high temperatures, HPC samples exhibited a dense microstructure with minimal
pores present in the matrix, primarily due to hydration shrinkage.
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After exposure to 600 ◦C, the HPC samples experienced dehydration shrinkage of the
cement paste, thermal expansion of aggregates [48], and numerous microcracks induced
by thermal stress. Additionally, the decomposition of hydration products such as AFt and
CH, along with the dehydration and recrystallization of the C-S-H gel [39], exacerbated the
deterioration of the HPC matrix. The formation of microcracks significantly reduced the
compressive strength of the HPC samples. After exposure to 900 ◦C, significant decompo-
sition of the C-S-H gel and phase transformations of unhydrated cement particles, along
with surrounding phases, further intensified the microstructural damage of HPC. This led
to additional coarsening of the pore structure and a significant increase in the number and
size of microcracks within the matrix (Figure 6c).

Figure 7 illustrates the microstructural changes in the HPC samples damaged at
600 ◦C during the recuring process at different stages. The dense pore network within
HPC, formed due to high-temperature exposure, facilitated water penetration into the
sample. During water recuring, dehydration products and unhydrated cement rehydrated
to form CH, AFt, and new C-S-H gel, which filled the pores induced by high-temperature
degradation. After 6 days of water recuring, a substantial amount of CH crystals was
observed filling the microcracks (Figure 7b). This filling of rehydration products, along
with matrix swelling due to water absorption, significantly increased the compactness of
the matrix. From day 6 to 30 of the water recuring, there was no significant change in the
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compactness of the HPC matrix (Figure 7c), which was consistent with the compressive
strength development.
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During the cyclic recuring of the HPC samples damaged at 600 ◦C, rehydration prod-
ucts such as CH and C-S-H underwent carbonation, leading to the formation of calcium
carbonate and silica gels within the matrix, which possess better mechanical properties
(Figure 7d) [49–52]. Calcium carbonate interacted with surrounding substances in the
HPC matrix through ionic and covalent bonds [53]. Additionally, the formation of high-
polymerization silica gel and calcium carbonate crystals effectively reduced the porosity
of the microstructure, significantly improving the micro-mechanical properties (indenta-
tion modulus and hardness) of the carbonated cement paste [54,55]. This enhancement
contributed to the overall mechanical properties of the HPC samples.

Figure 8 shows the microstructural changes in HPC samples after exposure to 900 ◦C
and during the recuring process. In the initial 6 days of water recuring, a significant amount
of AFm and AFt crystals were observed filling the microcracks (Figure 8b); however, due
to the presence of numerous pores between the AFm and AFt crystals and the limited
improvement in the matrix compactness, the compressive strength of the HPC samples
did not increase significantly. From day 6 to 30 of the water recuring, β-C2S continued
to hydrate, generating additional CH and C-S-H gel that filled the coarsened pores and a
few microcracks, leading to a marked improvement in the compactness of the HPC matrix
(Figure 8c) and, consequently, an increase in its compressive strength.

After 6 days of cyclic recuring for HPC samples damaged at 900 ◦C (Figure 8d), calcium
carbonate crystals were observed filling the pores between the AFm and AFt crystals within
the microcracks of the HPC samples. This increased the compactness of the HPC matrix.
The filling of pores by calcium carbonate contributed to the enhancement of the compressive
strength of the HPC samples. As cyclic recuring continued from day 6 to 30, further
hydration and carbonation occurred, leading to the formation of additional rehydration
and carbonation products that filled the pores (Figure 8e). This process increased the
compactness of the HPC matrix and consequently improved its mechanical properties.
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3.4. Porosity and Pore Size Distribution

The porosity of the HPC samples is categorized into three ranges: microcracks or coarse
pores (>1 µm); large capillaries (50 nm to 1 µm); and small capillaries (6 to 50 nm) [56–58]. The
results of the MIP tests and the corresponding pore classification were plotted using Origin.

Figure 9 depicts the changes in porosity of the HPC samples at ambient temperature
and after exposure to high temperatures. The HPC samples exhibited a high degree of
compactness with a unimodal pore distribution peaking at a pore diameter of 40 nm. After
exposure to 600 ◦C, the pre-existing pores in the HPC samples coarsened, resulting in a
trimodal pore distribution. Both the diameter and peak value of the initial pore distribution
increased, and new peaks emerged at 1.3 and 24.0 µm. These peaks correspond to the
microcracks generated in the matrix and pores formed from the melting of PP fibers,
respectively (Figure 9a). The increase in porosity, especially in coarse capillary pores and
microcracks due to thermal damage, resulted in a doubling of the total porosity compared
to the initial state. This rise in porosity is a key factor contributing to the reduction
in compressive strength [22]. Following exposure to 900 ◦C, the pore structure further
coarsened, with the pore distribution still exhibiting three peaks but shifting to coarser
sizes of 0.1, 5.0, and 21.0 µm (Figure 9a). The total porosity of the HPC samples increased
by a factor of 3.8 compared to ambient temperature conditions, leading to a substantial
decrease in compressive strength.

Materials 2024, 17, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 9. The pore size distributions and porosity categorized into three ranges for HPC samples 
after heating at various temperatures: (a) pore size distributions; (b) porosity. 

Figure 10a and c present the changes in pore size distribution for the HPC samples 
damaged at 600 °C during the water and cyclic recuring processes, respectively. The cor-
responding pore volume distribution charts are shown in Figure 10b,d. During the water 
recuring of the HPC samples damaged at 600 °C, the rehydration rate of dehydration 
products was high, and the matrix swelled due to water absorption, which significantly 
reduced the porosity of the HPC. After 3 days of water recuring, the peak pore size of the 
original distribution decreased, and the peak value was lowered (Figure 10a). The porosity 
of microcracks, large capillaries, and small capillaries was reduced by 1.0%, 7.8%, and 
2.9%, respectively. This increase in matrix compactness enhanced the mechanical proper-
ties of the HPC samples. From day 3 to 6 of the water recuring, the rate of porosity reduc-
tion slowed, with no significant peaks in the pore size distribution chart, indicating a re-
finement of the pore structure and further improvement in the mechanical properties of 
the HPC samples. From day 6 to 30 of the water recuring, the rate of porosity reduction 
significantly decreased, with the total porosity of the HPC decreasing by only 1.0% during 
this period; consequently, the matrix compactness did not further increase, leading to al-
most no improvement in the compressive strength of the HPC samples. 

Figure 9. The pore size distributions and porosity categorized into three ranges for HPC samples
after heating at various temperatures: (a) pore size distributions; (b) porosity.



Materials 2024, 17, 3531 12 of 18

Figure 10a and c present the changes in pore size distribution for the HPC samples
damaged at 600 ◦C during the water and cyclic recuring processes, respectively. The
corresponding pore volume distribution charts are shown in Figure 10b,d. During the
water recuring of the HPC samples damaged at 600 ◦C, the rehydration rate of dehydration
products was high, and the matrix swelled due to water absorption, which significantly
reduced the porosity of the HPC. After 3 days of water recuring, the peak pore size of
the original distribution decreased, and the peak value was lowered (Figure 10a). The
porosity of microcracks, large capillaries, and small capillaries was reduced by 1.0%, 7.8%,
and 2.9%, respectively. This increase in matrix compactness enhanced the mechanical
properties of the HPC samples. From day 3 to 6 of the water recuring, the rate of porosity
reduction slowed, with no significant peaks in the pore size distribution chart, indicating a
refinement of the pore structure and further improvement in the mechanical properties of
the HPC samples. From day 6 to 30 of the water recuring, the rate of porosity reduction
significantly decreased, with the total porosity of the HPC decreasing by only 1.0% during
this period; consequently, the matrix compactness did not further increase, leading to
almost no improvement in the compressive strength of the HPC samples.
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During cyclic recuring of the HPC samples damaged at 600 ◦C, the carbonation process
further densified the HPC matrix. Dehydration products rehydrated to fill microcracks and
coarsened pores, while rehydration products and existing C-S-H gel underwent carbonation,
forming calcium carbonate, silica gel, and other substances. This process further reduced
the porosity between the gels [55]. After one cycle of cyclic recuring, the total porosity of the
HPC samples (M-600-C-6d) was lower than that of the HPC samples after 6 days of water
recuring (M-600-W-6d) (Figure 10b,d). This increase in matrix compactness significantly
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enhanced the mechanical properties of the HPC samples, with the improvement being
more pronounced than in HPC samples subjected to water recuring.

Figure 11a,c present the changes in pore size distribution for the HPC samples dam-
aged at 900 ◦C during water and cyclic recuring processes, respectively. The corresponding
pore volume distribution charts are shown in Figure 11b,d. During the first 6 days of water
recuring (M-900-W-6d), the formation of AFm and AFt crystals filled the microcracks in
the HPC, reducing the peak value of the pore distribution at 2.5 µm. This led to a slight
refinement of the pore structure but the overall porosity of the HPC samples remained
relatively high, resulting in minimal improvement in the mechanical properties of the HPC
samples. From day 6 to 30 of the water recuring (M-900-W-30d), the hydration of β-C2S
formed CH and C-S-H gel, which had higher micro-mechanical properties and filled the
pores. This significantly reduced the number of pores larger than 1 µm. The porosity of
microcracks, large capillaries, and small capillaries decreased by 2.0%, 2.2%, and 1.2%,
respectively, thereby enhancing the compressive strength of the HPC samples.
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During cyclic recuring of the HPC samples damaged at 900 ◦C, the carbonation
process could densify the HPC matrix to a greater extent than the hydration process. After
6 days of cyclic recuring, HPC samples (M-900-C-6d) exhibited a significant reduction in
the pore distribution peak at 0.12 µm (Figure 11c), with the porosity of microcracks and
large capillaries decreasing by 4.7% and 18.0%, respectively. This led to a high degree
of compactness in the HPC matrix. The formation of AFm and AFt in the HPC samples
reduced pore diameters, and the carbonation process produced calcium carbonate, which
further filled the interstitial pores among AFm and AFt crystals as well as the remaining
coarsened pores and microcracks, significantly increasing the compactness of the HPC
samples. After 30 days of cyclic recuring, a minor pore distribution peak was present only
at 17 nm in the HPC samples (M-900-C-30d-O), and the total porosity decreased by 5%.
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During cyclic recuring of 900 ◦C thermally damaged HPC samples, the ongoing processes
of rehydration and carbonation contributed to the increase in matrix compactness, further
enhancing the compressive strength of the HPC samples.

3.5. Discussion

The compressive strength of the HPC samples showed notable recovery under both
recuring regimes, with cyclic recuring showing significantly greater strength recovery
compared to water curing [22].

After exposure to 600 ◦C, a small portion of the C-S-H gel in the HPC underwent
complete decomposition [14,40], while C3S remained largely preserved due to its limited
solid-phase reaction with SF at this temperature [46,47]. During water recuring, Ca2+

and OH− ions from saturated lime water diffused into the HPC through microcracks.
Concurrently, ions leached from cement particles, particularly C3S, causing supersaturation
in the pore solution and promoting CH formation within the microcracks and coarsened
pores. The C-S-H gel, which lost only physically bound water, rapidly rehydrates during
recuring, leading to volumetric expansion [38]. Rehydration and absorption effectively
filled the microcracks and coarsened pores, rapidly enhancing the mechanical properties of
the HPC samples. By the end of a 3-day water curing period, HPC achieves compressive
strength comparable to that of undamaged HPC. During cyclic curing, CO2 infiltrated
the microcracks, reacting with Ca2+ ions in the pore solution to precipitate CaCO3. This
process reduced the ion levels, facilitating leaching of Ca2+ ions from cement particles and
CH [41]. The C-S-H gel also underwent decalcification [42,59], evidenced by decreased
amorphous phases from day 0 to 6. The crystallization and precipitation of CaCO3 within
the microcracks and paste significantly enhanced the mechanical properties of the HPC
samples, resulting in a 10.1% increase in the compressive strength for M-600-C-6d compared
to M-600-W-6d (Figure 3b). From day 6 to 18, the rate of product formation in HPC
decreased. The SEM and MIP results confirmed that the initial recuring period was critical
for microstructure repair. After 18 days, the compressive strength recovery of the HPC
samples under both water and cyclic recuring surpasses 95% of the total recovery seen
after 30 days; therefore, 18 days can be considered the optimal recuring duration for HPC
damaged at 600 ◦C.

After exposure to 900 ◦C, most of the C-S-H gel in the HPC completely decomposed,
leaving a significant amount of β-C2S distributed throughout the paste [14,31]. Due to
severe damage to the compactness of the HPC matrix and the development of numerous
coarse pores within the paste, ions in the HPC pore solution reacted extensively with SF
originally embedded in the C-S-H gel during water recuring. This led to the reduced
crystallization of CH in the early recuring stages and higher production of the C-S-H gel.
The C-S-H gel primarily precipitated within the cement paste, while AFm and AFt crystals
predominantly formed within the microcracks [22,60]. Due to the high porosity of the HPC
samples exposed to 900 ◦C, the limited amount of AFm and AFt cannot effectively fill the
microcracks and coarse pores [61], resulting in minimal improvement in the compressive
strength during the initial 0 to 6 days of water recuring. As continuous hydration of β-C2S
progresses, CH and additional C-S-H gel are generated, effectively filling microcracks and
coarse pores and significantly enhancing the compressive strength of HPC samples during
this stage. During cyclic curing, CO2 permeated the pore solution and reacted primarily
with Ca2+ ions leached from C2S to form CaCO3 and silica gel. This accelerated the reaction
rate of β-C2S in the HPC, with CaCO3 precipitating and filling voids between AFm and AFt
in microcracks and cement paste, refining the pore structure during the initial carbonation
phase (3 to 6 days). Compressive strength notably increased during this stage; however,
from the 6th to 18th day of cyclic recuring, the rate of rehydration and carbonation product
generation in HPC significantly decreased, resulting in a slower rate of pore filling and
compressive strength growth. The compressive strength of the HPC samples exhibited a
slow growth trend during the 30-day water recuring period, whereas cyclic recuring not
only enhanced the level of compressive strength recovery but also accelerated its rate of
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strength recovery. The optimal cyclic curing period for 900 ◦C thermally damaged HPC is
18 days.

Based on the mechanical property and microscopic test results detailed in Section 3.1
to Section 3.4, the impact of recuring products in the pore structure of the HPC samples
and the recovery of compressive strength exhibited a strong correlation. A quantitative
correlation fitting of compressive strength and porosity of the HPC samples was conducted,
depicted in Figure 12. Consistent with prior research [14,26,31], there is a robust linear
relationship between porosity and the compressive strength of HPC samples. The deviation
of 900 ◦C thermally damaged HPC under cyclic recuring from the trend line in Figure 12
may stem from variations in carbonation depth. This suggests potential discrepancies in
porosity between the surface and the core of the HPC samples. Consequently, the porosity
and compressive strength data for M-900-C-6/30d were excluded from the trend line fitting.
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4. Conclusions

This study explored the compressive strength recovery process of high-performance
concrete (HPC) subjected to thermal damage and subsequently treated using water and
water–CO2 cyclic recuring methods. A range of characterization techniques, including X-ray
diffraction (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry
(MIP) were employed to analyze the phase composition and microstructure of HPC samples
at various stages: before heating, after heating, and during the recuring period. This study
identified optimal recuring regimes and durations for HPC subjected to different levels of
thermal damage, elucidating the underlying mechanisms of HPC recuring recovery.

1. Both water and water–CO2 cyclic recuring methods can effectively improve the
compressive strength of thermally damaged HPC. Cyclic recuring can accelerate the
recovery rate of compressive strength of HPC and improve the overall degree of
strength recovery. The optimal recuring period for HPC samples exposed to 600 and
900 ◦C under cyclic recuring conditions is 18 days;

2. The primary reason for the compressive strength recovery of thermally damaged HPC
is the filling of microcracks and coarsened pores, which increases matrix density. The
analysis of HPC porosity and compressive strength reveals a strong linear correlation
between the two variables;

3. Compared to water recuring, the formation of carbonation products such as CaCO3
and silica gel within the microcracks and cement paste in HPC under cyclic recuring
can indeed further enhance its compressive strength. The amounts of rehydration
and carbonation products follow the same trend as the development of compressive
strength and matrix density.

For future research, enhancing the carbonation depth during cyclic recuring will
be crucial for improving the strength recovery of thermally damaged HPC. Exploring
how temperature variations unevenly affect strength recovery across cross-sections during
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actual component damage and recovery processes will enhance the application of recuring
methods in practical engineering contexts.
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