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1. Introduction

A key area of focus in the analysis of social networks concerns developing measures of

network centrality to identify which agents are the most important in the network accord-

ing to some desired criteria, owing to the ubiquity of social networks and the central role

they play in influencing agents’ behaviour. Beyond the traditional off-the-shelf centrality

measures that derive from the network’s topological properties (such as degree, between-

ness, or eigenvector centrality), it is also of interest for the social planner to consider

centrality measures that derive from strategic interactions among network players, espe-

cially when targeting the overall activity in the network in a Nash equilibrium. Studying

network games with payoff externalities due to strategic complementarities among play-

ers, Ballester, Calvó-Armengol, and Zenou (2006), in their seminal paper, develop the

‘intercentrality’ measure to characterise the key player whose removal results in the max-

imum disruption to the aggregate equilibrium activity.1 In addition to targeting a single

key player as in Ballester et al. (2006), it may be of interest for the social planner to

identify multiple key players to be eliminated for maximally reducing the overall network

activity, such as crime (or, equivalently, to be preserved for optimally increasing the net-

work output, for example, in R&D or financial networks, through steps like bailouts).

However, Ballester, Zenou, and Calvó-Armengol (2010), while extending the key-player

problem to its group analogue, prove that the key-group problem is NP-hard, meaning it

cannot be solved by any possible algorithm in reasonable (polynomial) time, as stated in

their Proposition 5.

In this paper, we propose an alternative strategy to the key group problem, for targeting

multiple players in a principled way, by exploiting network symmetries and focusing on

classes of players occupying similar network positions. Indeed, it is well-known in various

organizational contexts, such as those characterized by hierarchical structures like crime

networks or mafia organizations, that players’ network positions determine the roles they

fulfil within the organization.2 Consequently, rather than targeting the key group of

criminals, a sensible alternate policy for the social planner is to identify the key class of

1Zenou (2016) provides a comprehensive review of empirical applications of the key player measure,
including in criminal, R&D, educational, and financial networks, etc.
2Role similarity in social networks arising from players’ similar positions and interaction patterns is well-
established; see, for instance, Wasserman and Faust (1994) or Jin, Lee, and Hong (2011) for a review.
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criminals - a set of similar players in terms of their network positions and ties, and in

turn, their roles and contributions within the network - whose removal together results in

the maximal reduction in the overall network activity. Targeting players of a particular

class may require very different capabilities than going after a disparate group of network

players, and potentially offer economies of scale, which may be preferred by the social

planner. Perhaps a possible illustration of this alternative approach can be the recent and

significant shift towards the hugs, not bullets security strategy by the Mexican government

in its long-standing war on drugs. Instead of targeting the figureheads of cartels (the key

group in the network), their focus turned to addressing the underlying roots by lifting

low-ranking cartel associates (the key class of peripheral players) out of poverty, aiming

to diminish the attractiveness for them to engage in criminal activities.

In order to develop our key class analysis, we employ a graph-theoretic approach ex-

ploiting network (graph) symmetries to construct the network’s class structure, followed

by a game-theoretic analysis to identify the key class of players whose removal maximally

reduces the equilibrium network activity. Accounting for the symmetry in players’ network

positions in analysing their equilibrium behaviour is a special case of the more general

set-up of symmetric games as considered in Plan (2023). Studying the relative influence

of the symmetry-based classes on the equilibrium network outcome can be informative

for several situations. An important area of application, for instance, is for the class of

networks called “overlapping hierarchies”, as defined in Sadler (2022), which displays an

inherent hierarchical class structure. It includes the ‘hierarchical communities’ consid-

ered in Belhaj and Deröıan (2010) as well as the key network structure of nested-split

graphs, which is well-recognised in economics. Indeed, nestedness covers various empiri-

cal applications like in criminal and R&D networks, for which key class identification can

be informative, as we discuss in Section 2 (among other potential applications beyond

nestedness). In fact, it is interesting to note that for nested split graphs, the key class,

when made of players with the most links, also turns out to be the key group of players

(see Remark 5 in Section 5). We now describe the graph-theoretic and game-theoretic

components of our key class analysis in more detail.

Network classes are modelled via the concept of equitable partition: players are sorted

into classes, wherein class refers to cells of the equitable partition of the network. As
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defined in Powers and Sulaiman (1982), equitable partition requires that all players in

a class have the same number of links amongst themselves, and with members of other

classes. It generalises the well-known feature of network symmetry, which characterises

the structural invariance of networks when certain nodes are interchanged (see Remark 1

in Section 3 for an illustration). Indeed, Xiao, Xiong, Wang, and Wang (2008) call sym-

metry a “universal structural property of complex networks” and develop the statistical

framework for reproducing the symmetry found in real networks, along the lines of the

random network model by Newman, Strogatz, and Watts (2001).3 Furthermore, players

in a class have identical Bonacich centrality, a measure of their network embeddedness.4

In the context of network games, the Bonacich-Nash linkage obtained in Ballester et al.

(2006) assumes importance: they prove that players’ Bonacich centrality is proportional

to their equilibrium strategic behaviour. Hence, an equitable partitioned network reflects

a society divided into classes of players who enjoy the same influence in the society and

adopt identical actions in equilibrium, thus, in a related sense, having similar network

roles.

The network game is modelled using linear-quadratic utilities with bilateral externali-

ties, as introduced in Ballester et al. (2006), such that there exists strategic complemen-

tarity of efforts between pairs of linked players.5 Considering the network game under

equitable partitioning, rather than the original network game, brings out new insights

about the relative influence of groups formed by similarly positioned players, which is

used to characterize two class-based centrality measures. To do this, we establish and

exploit a relationship between the graph representing the overall network with the graph

3A well-noted source of network symmetry is the presence of tree-like regions common in large real
networks, arising from the network growth process via identical branches growing from the same vertices
(nodes). Such tree-like structures are known to have symmetry with almost absolute certainty, as proven
in Erdős and Rényi (1963), thus, lending a certain degree of symmetry to most real-world networks.
Symmetry is, however, not limited to networks with trees alone, as noted in Xiao et al. (2008).
4Bonacich centrality counts the total number of paths in the network originating from a node, discounted
by their length. One of its most well-known applications is the “PageRank” algorithm of Google search
engine for ranking webpages; see, for instance, the discussion on hub-based Katz centrality (another name
for Bonacich centrality) in Sargent and Stachurski (2024).
5Linear-quadratic utilities are used to model various social and economic phenomena. See e.g., Calvó-
Armengol, Patacchini, and Zenou (2009) who study effect of peer influence on education outcomes in
friendship network, Liu, Patacchini, Zenou, and Lee (2012) for criminal networks, or Goyal and Moraga-
Gonzalez (2001) for R & D collaboration among Cournot competitors.
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of its equitable partitioning, the so-called quotient graph, to show that the aggregate equi-

librium activity of classes is related to their position within the network. This result is

the class analogue of the key Bonacich-Nash linkage established in Ballester et al. (2006)

and forms the basis for the two class-based centrality measures proposed in this paper.

The first is the class-centrality index, to identify the most important class whose removal

results in maximal disruption in the overall network outcome. At first glance, it may seem

intuitive to think that this measure would select the class with the most players as the

key class. However, this is not always the case, since class-centrality reflects two kinds

of effects that removing a class has on the aggregate network outcome. The first is the

direct effect due to lesser contributing members in the resulting network after removing

a class. But in addition, there is also the indirect effect due to a change in the network

architecture which alters the peer influences and their intensity, as the links get altered

within and across classes. For instance, if the largest class has few direct links with other

classes and most indirect links in the network do not pass through it, then it may not be

the key class, especially if the indirect links in the network are strong (high attenuation

factor). Moreover, the index is relevant if there are more than one class of the largest size.

Class size, which is a model primitive for any given class structure within a network, can

still be an important factor for implementing targeting policies. In practice, this is not as

restrictive as it may seem: any given network typically displays multiple class structures

(in addition to the unique ‘coarsest’ equitable partition - see Remark 2 in Section 3.1), so

that the planner has sufficient flexibility in targeting different-sized classes, as we discuss

in Section 6.4. Additionally, we also propose a second measure aimed at reducing the

average network activity, as a ‘size-sensitive’ alternative to class-centrality, which selects

a class typically smaller than the one with the highest class-centrality, for any given

class structure. This is the per-capita class-centrality that characterises the class whose

removal reduces the per capita network activity by the most, which can be informative,

say in presence of planner’s resource limitations. A choice of the appropriate class-based

centrality measure between the two will ultimately depend on the planner’s preference.

The rest of the paper is organized as follows. Section 2 further motivates the relevance

of targeting a network class, Section 3 describes the network model and its equitable

partition, and Section 4 provides the Nash equilibrium analysis for class activity. Section
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5 introduces the class-based centrality measures, which are illustrated through examples

and real-world applications in Sections 6 and 7, respectively. Section 8 concludes the

paper. All proofs are presented in Appendix 1 and Appendix 2 illustrates how equitable

partition relates to role equivalence in networks.

2. Relevance of targeting a network class

A natural question that may arise is why we should target all players in a class rather

than, say, targeting the key group in which players are not constrained by any underlying

class structure. In this Section, we provide more intuition for empirical and theoretical

applications where our class-based centrality measures may be useful.

Note first that there is an obvious implementation advantage of identifying the key

class over the key group, whenever the planner wishes to target multiple network players:

the key group problem is classified as NP-hard and thus not computationally tractable,

while key class identification is applicable for any generic network based on identifying its

underlying (non-trivial) equitable partition, which can be found in polynomial-time using

well-established algorithms (see Remark 2 in Section 3.1).

Beyond computational aspects, key class identification offers a principled alternative

approach for targeting multiple network players, which can be informative especially since

several economic and social networks naturally display class-based structures. As men-

tioned previously, an important class of networks in this regard is Sadler (2022)’s ‘overlap-

ping hierarchies’. Note that in terms of ordinal centralities, the ‘weak centrality’ measure

of Sadler (2022) produces a total order of nodes for overlapping hierarchies graphs, and it

ranks all players in a class the same. But beyond focusing on individual players, given the

inherent class structure present in these networks, a class-based analysis for identifying

the key class for optimally influencing the equilibrium network outcome becomes relevant

for the social planner’s targeting policy. In particular, overlapping hierarchies generalise

the more familiar class of nested split graphs, found in several real-world networks like

criminal and R&D organisations which display class-based hierarchies.6 A key focus for

6Nestedness in networks refer to neighbourhoods of players of lower degree to be contained in the neigh-
bourhoods of higher degree players. See König, Tessone, and Zenou (2014) for an excellent discussion
on nestedness, including its theoretical modelling and empirical evidence in banking and trade networks.
Moreover, studying network formation with strategic complementarities in efforts, like in criminal activity
or R&D expenditures, Hiller (2017) shows that Nash equilibrium networks are nested split graphs.
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criminal networks, in fact, has been on identifying the key player to be removed for maxi-

mally reducing criminal activity (see, for instance, Lee, Liu, Patacchini, and Zenou (2021)

or Liu et al. (2012)). Extending this to targeting the key class will, of course, lead to a

larger disruption of the criminal activity. The ensuing disruption is also likely to be more

stable, in the sense that replacing a single player such as the head of a criminal organi-

zation may be easier than replacing an entire class of players who had well-established

interaction patterns (and relatedly, roles) within the criminal network. Moreover, going

after a homogenous class of similarly-positioned criminals can be relevant for the social

planner in that it offers a straightforward and methodical approach for targeting multiple

criminals in the network, as against eliminating a disparate group of crime figureheads,

especially if it is difficult to go after such a group. For instance, going after the leaders of

a mafia organisation may require very different capabilities than, say, going after a class of

similarly-connected, homogenous lower level criminals, in addition to issues in identifying

the disparate group of the organisation’s figureheads arising from algorithmic consider-

ations, as discussed previously. Other than ‘eliminating’ players, key class identification

is also relevant for targeting the players to be ‘preserved’. For instance, identifying the

key class of firms who are most crucial to their industry - in the sense that a break-up

of their well-established connections with other similarly-positioned firms will cause the

maximum disruption in the total activity for the remaining firms - is relevant for deciding

policies like bailout (similar to König, Liu, and Zenou (2019)’s study on R&D networks).

The notion of equitable partition, however, is general enough to include grouping struc-

tures other than nestedness. An interesting example relates to epidemics diffusion in

networks. Most studies for modelling epidemics diffusion use equitable partitioning for

clustering individuals into communities made of homogeneous individuals who are ex-

changeable or indistinguishable among themselves, since epidemics typically spread over

extremely large contact network of individuals, such that modelling the dynamics of the

disease’s spread at an individual level becomes computationally prohibitive (see, for in-

stance, Bonaccorsi, Ottaviano, Mugnolo, and Pellegrini (2015) and Ottaviano, De Pel-

legrini, Bonaccorsi, and Van Mieghem (2018)). In addition to tractability in modelling

achieved through a dimensionality reduction, given the sheer size of the networks over

which infectious diseases spread, controlling its spread via targeting the key community
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of homogeneous and densely-connected individuals, instead of a solo individual, has appeal

from a practically implementable policy perspective like isolation or lock-down measures.

Other than diffusion of epidemics, Banerjee, Chandrasekhar, Duflo, and Jackson (2013)

note that Ballester et al. (2006)’s key player index analytically informs the choice of ‘initial

injection points’ for information diffusion (in their case about microfinance). Additionally

accounting for the community structure within a large population to identify the key com-

munity for maximally advancing the reach of information can be crucial, for instance in

settings like studying voter behaviour; Ward (2021) notes the benefit for studying voting

behaviour via symmetry based dimensionality reduction techniques.

Key class identification in equitable partitioned network can be significant for vari-

ous theoretical applications as well. Examples include Allouch (2017), who considers

segregated group membership-based interaction in studying welfare effects of income re-

distribution on the private provision of public goods in social networks. Moreover, it

can contribute to the planner’s problem of optimal network formation, similar to Belhaj,

Bervoets, and Deröıan (2013)’s search for efficient networks, by suggesting which class to

target so as to optimally alter the group-based structure for attaining desired network

outcome.

3. The Network Model and Graph Theoretic Concepts

We consider a network g of n players. The associated (0, 1)-adjacency matrix is denoted

by G = [gij], where gij represents unweighted and undirected connection between players

i and j; for i ̸= j, it takes value of 1 if there is a link between the corresponding two

nodes in the network, and 0 otherwise. Further, gii = 0, meaning there are no loops in

g, and multiple links between any two nodes are ruled out by construction. Note that

Gk represents the number of paths of length k between any two nodes in the network; its

elements are denoted by g
[k]
ij .

3.1. Equitable Partition

Consider an equitable partition of the network g into m classes {V1, ..., Vm}, m ≤ n:

for every i, j ∈ 1, ...,m there is a non-negative integer πij such that each node in Vi has

exactly πij neighbours in Vj. An equitable partition results in a quotient graph π and the

corresponding m-square quotient matrix is represented by Π = [πij]. Note that unlike G,
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the quotient matrix Π need not be symmetric. Denote the (n ×m) indicator matrix by

X = [Xij], such that Xij = 1 if vertex i is in the class Vj, and 0 otherwise. Let the number

of members in a class Vi be denoted by ri, such that, denoting the (n× 1) vector of ones

by 1n, the vector r = XT .1n lists the number of members in each class. The following

property holds by definition:

GX = XΠ (3.1)

Also, the adjacency matrix G and the quotient matrix of its equitable partition, Π,

have the same spectral radius.7 That is, if ρ(A) denotes the largest absolute value of the

eigenvalues of square matrix A, then

ρ(G) = ρ(Π) = ρ.

Finally, denote Πk =
[
π
[k]
ij

]
where π

[k]
ij denotes the total paths of length k for any node in

class Vi with its neighbours in class Vj.

Remark 1. A concept closely linked to equitable partition is that of automorphism par-

tition (also called orbit partition), that is used to model symmetry in networks.8 We

illustrate via a simple example that equitable partition is a more flexible concept to spec-

ify the underlying class structure for any (connected) network than orbit partitions: the

existence of a non-trivial equitable partition is less restrictive than the existence of a non-

trivial orbit partition, since all orbit partitions are equitable as well, but the converse is

not true in general. To see this consider McKay’s graph shown in Figure 1(a).

There are 6 orbit partitions (other than the trivial identity partition in which each

node is an orbit in itself), σi, i = 1, . . . , 6, in the above example: σ1 : (7, 8); σ2 :

(1, 7), (2, 8), (3, 6), (4, 5); σ3 : (1, 7, 2, 8), (3, 6), (4, 5); σ4 : (1, 2); σ5 : (1, 2), (7, 8); σ6 :

(1, 8), (2, 7), (3, 6), (4, 5).9 These orbit partitions are equitable as well, but the equi-

table partition shown in Figure 1(a), which groups nodes (3, 6) in one class and nodes

7See Van Mieghem (2010), page 62, art. 62.
8Graph automorphism refers to adjacency preserving permutations of network vertices, which creates a
network partition, each of whose cells are called orbits. Orbits contain the equivalent nodes which, if
interchanged, preserve the network structure. For formal definitions, see, for instance, Xiao et al. (2008).
9Using the usual representation for automorphisms, we write the non-identity orbits – cells which contain
two or more equivalent nodes – inside a parenthesis.
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Figure 1. McKay’s Graph

(1, 2, 4, 5, 7, 8) in another, is not an orbit partition, since no automorphism maps the

outer nodes 1, 2, 7, 8 to the inner nodes 4, 5 (automorphisms must preserve cycles - see

Kudose (2009)). Thus, equitable partition can capture additional equivalences via pre-

serving the linkage structure within and among classes which is not always captured by

orbits, and which also has a direct role interpretation obtained from the sociology litera-

ture (see Appendix 2 for an illustration of how equitable partition compares with classical

notions of role equivalences in networks). This is better visualised in Figure 1(b): for

instance, considering it a notional supervisory network, nodes (3, 6) have equivalent role,

each supervising three candidates, and each node in the supervisee class of (1, 2, 4, 5, 7, 8)

is directly connected to the supervisor and with one other member among the supervisees.

But, in general, our theory applies to all orbit partitions of a network as well.

Remark 2. There exists a unique coarsest equitable partition for any graph g, as noted in

Section 1.2 in McKay (1981).10 From implementation perspective, polynomial-time algo-

rithms exist in literature for finding the equitable partition for any network; in our exam-

ples and illustrative applications, we use Everett and Borgatti (1996)’s exact coloration

procedure for finding the coarsest equitable partition, also known as ‘exact coloration’, for

any simple graph (order n3; see their ‘Excatre’ algorithm in p.326).11 Also, our theory is

relevant for networks with certain symmetry, which is widespread for real-world networks.

In particular, finding whether a network has non-trivial orbit partition is a polynomial-

time problem for any finite network (see Luks (1982)), and well-established open-source

10The binary relation ‘coarser’, as defined in McKay (1981), specifies a partial order over the set of all
equitable partitions, which forms a finite, and hence, complete lattice. Therefore, a coarsest equitable
partition exists from definition of a complete lattice.
11A simple graph is a graph without any loops or multiple edges.
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software tools like nauty by McKay and Piperno (2014) can be used for finding the orbit

partitions of networks, which are also equitable by definition.

3.2. Bonacich Centrality

Here, we provide the definition of Bonacich centrality which is relevant for our analysis.

Bonacich (1972)’s eigenvector-based centrality gives more importance to agents that have

‘important’ neighbours. The vector of Bonacich centralities, with a decay parameter a,

in g is given by:

b(g, a) = [In − aG]−1.1n =
+∞∑
k=0

akGk.1n (3.2)

where In denotes an n-square identity matrix. Note that the above expression is well-

defined for small values of a, specifically, if a is less than inverse of the largest absolute

eigenvalue of G. Recall that Gk represents the number of paths of length k between any

two players in the network. Hence, Bonacich centrality counts the total number of paths

emanating from player i in the network g, weighted down by their length.

4. Network Game: Nash Equilibrium Class Activity

We consider the network game with local payoff complementarities as in Belhaj et al.

(2013), which is a simplified version of the linear-quadratic utility function of Ballester

et al. (2006). Players {1, ..., n} in a network engage in a non-cooperative game, where the

strategy of each player is to decide the extent of efforts they exert. The utility of player

i is given by

ui(x1, ..., xn) = xi −
1

2
x2
i + λ

n∑
j=1

gijxixj

where xi ≥ 0 denotes the effort of player i, and λ > 0 measures the intensity of interac-

tions among pairs of players. Hence, the utility function consists of two components: an

idiosyncratic component made up of own efforts and an interaction component reflecting

strategic complementarities among connected players. Further, the linear-quadratic form

implies that utility is strictly concave in one’s own efforts.

In this setting of network game with linear-quadratic utility and payoff complementari-

ties, Ballester et al. (2006) establish the proportionality between players’ Nash equilibrium
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outcome and their Bonacich centrality. This is a key result which establishes the intu-

itive link between players’ equilibrium behaviour with their positions within the network.

Indeed, it can be shown that player i’s unique Nash equilibrium outcome for the game

described above, x∗
i , equals their Bonacich centrality bi(g, λ).

We are interested in equilibrium analysis for determining class activity when the net-

work of relative payoff complementarities has a partition structure as conceptualised by

the symmetry-based notion of equitable partition. Recall that each member of a class has

the same value of Bonacich centrality and, hence, adopts identical equilibrium strategy.

As such, note that the idea of network game under equitable partitioning applies beyond

the Ballester et al. (2006) framework and is a special case of a more general construction

as considered in Plan (2023). Indeed, consider any non-cooperative game with complete

information and a given set N of players, such that payoffs depend on a common vector

θ of parameters (θ = G in the Ballester et al. (2006) framework), and that players can be

partitioned so that N = V1 ∪ V2 ∪ . . . ∪ Vm, where i, k ∈ Vj iff the best-reply functions of

players i and k are identical for any vector θ of parameters. Any such game has non-trivial

symmetry groups, or classes, where reshuffling players is allowed within the classes, Vj ,

j = 1, . . . ,m, but not across classes (see Plan (2023)).

For equilibrium analysis, we first present the following Lemma. Let AT denote the

transpose of matrix A. Note that in what follows, in the Lemmas and Definitions that

pertain to any general network structure and its equitable partition, we use the symbol

‘a’ to denote the attenuation factor, which plays the role of ‘λ’ for the results obtained in

the context of the network game explained above.

Lemma 1. Let 0 < a ≤ 1/ρ so that [In − aG]−1 and [Im − aΠ]−1 are well-defined and

nonnegative. Then, [In − aG]−1X = X[Im − aΠ]−1.

Lemma 1 relates the overall network structure with its equitable partition. It enables to

express the equilibrium activity of classes in relation to the network’s partition structure.

For this purpose, define the following matrix

N(π, λ) =
[
Im − λΠT

]−1
=

∞∑
p=0

λp(Πp)T ,
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which is well-defined and nonnegative for λ ≤ 1/ρ . Its elements Nij(π, λ) =
∑∞

p=0 λ
pπ

[p]
ji

count the total number of paths of length p for any node in class Vj with the members

in Vi, weighted down by λp. Let y∗(π) = [y∗i ] denote the outcome vector for classes

at equilibrium, where y∗i is the sum of equilibrium outcomes of all players of class Vi,

i = 1, . . . ,m. Also, for a vector z ∈ Rp, we denote the sum of its entries as z = z1+· · ·+zp.

Theorem 1. The matrix N(π, λ) =
[
Im − λΠT

]−1
is well-defined and nonnegative when

λ ≤ 1/ρ. Then, the unique and interior Nash equilibrium class activity for the network

game characterised by ui, i = 1, . . . , n, played over the quotient graph π, is given by

y∗(π) = N(π, λ).r ≡ t(π, λ). (4.1)

In the above, N(π, λ).r is the vector of sum of Bonacich centralities of players in each

class. That the contribution of a class to the overall network activity is proportional to the

sum of its members’ Bonacich centralities is expected. But more importantly, equation

(4.1) links the equilibrium activity of a class with its position in the network of local

interactions between players of different classes through the matrix N(π, λ). Indeed, since

the matrix N(π, λ) represents the interactions among members of the classes specified by

the equitable partition network structure, equation (4.1) shows how the position of the

classes in the network influence their equilibrium behaviour. Hence, Theorem 1 can be

considered as the class analogue of the Bonacich-Nash linkage of Ballester et al. (2006).

5. The Key Class: Two Measures

The above analysis shows that the class outcome at equilibrium is related to its position

within the network when there exists payoff externalities among players. Removing a class

alters the network structure of bilinear influences, in addition to reducing the number

of players who contribute to the overall network activity, thus altering the equilibrium

network outcome. In this section, we propose two geometric measures to characterise

equilibrium outcome, in aggregate and in per-capita terms, upon removing classes. This

informs simple criteria for targeting the optimal class if the planner wants to optimally

alter the aggregate or the per-capita network activity, respectively.

Consider the game of Section 4 being played over the network g with symmetric square

adjacency matrixG = [gij], where gij ∈ {0, 1} for i ̸= j and gii is set to 0; its corresponding
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quotient network is π with quotient matrix Π = [πij]. Let a class j be removed from the

network. The corresponding partition matrix is denoted by Π−j, by setting the jth row

and jth column of Π to zero. Also, r−j is the class size vector associated with removing

class j by setting j-th coordinate of r to 0. The overall network activity upon removing

class j is the sum of the activities due to all remaining classes y∗(π−j) =
m∑

i=1, i̸=j

y∗i (π
−j).

The derivations of class-based centrality measures make use of the following Lemma,

which characterises all path changes in the quotient network when a class is removed.

Lemma 2. Let 0 ≤ a ≤ 1/ρ such that N(π, a) =
[
Im − aΠT

]−1
is well-defined and

non-negative. Let N(π−j, a) = [Im − a(Π−j)T ]−1. Then:

Nik(π, a)−Nik(π
−j, a) =

Nij(π, a).Njk(π, a)

Njj(π, a)
. (5.1)

The above result will be crucial for the key class problem, as it indicates the changes

in the number of paths between classes if a class were removed, as specified by Nik(π)−
Nik(π

−j), in terms of the intra-class and inter-class paths within the quotient network,

π.

5.1. Class-centrality

Class-centrality is concerned with identifying the class removing which results in an

optimal reduction in the aggregate network outcome. Formally, the planner’s objective is

to:

min
{
y∗(π−j)

}
or max

{
y∗(π)− y∗(π−j)

}
, j = 1, . . . ,m. (5.2)

Definition 1. Let there be a quotient network π that divides the network g intom classes,

with the associated partition matrix Π and a decay factor a > 0 such that [Im − aΠ]−1

is well-defined and non-negative. The class-centrality measure of class j is given by:

ej(π, a) =
tj(π, a).sj(π, a)

Njj(π, a)
, (5.3)

where N(π, a) =
[
Im − aΠT

]−1
, s(π, a) = 1T

m.N(π, a), and t(π, a) = N(π, a).r.
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The above index informs a simple criterion to characterise the key class j∗ to optimally

reduce (or increase) network outcome, as presented in the following Theorem.

Theorem 2. If λ ≤ 1/ρ, the class that solves max {y∗(π)− y∗(π−j)} is the j∗ for which

the class-centrality measure is the highest, that is, ej∗(π, λ) ≥ ej(π, λ) for all j = 1, ...,m.

Note that removing a class has a direct and an indirect effect on network activity.

Direct effect is by virtue of a reduction in the number of players who contribute to network

activity. Indirect effect is due to the fact that removing a class alters the network structure

such that the remaining classes adopt different equilibrium actions, thereby again altering

the aggregate network activity. Hence, the class with the most players need not be the

key class for reducing the aggregate network activity.

5.2. Per-capita Class-centrality

Other than bilinear influences, the size of a class, indeed, plays an important role in

determining the key class using the class-centrality index, which can have implications for

targeting policies, say, in presence of the planner’s budget constraints.12 In this Section,

we provide a relatively ‘size-sensitive’ alternative to class-centrality, which selects a class

typically smaller than the key class, for any given class-structure.

The per-capita class centrality provides a geometric measure for identifying the class re-

moving which results in maximum per-capita reduction in network activity. The planner’s

objective is:

min

{
y∗(π−j)

n− rj

}
or max

{
y∗(π)

n
− y∗(π−j)

n− rj

}
, j = 1, . . . ,m. (5.4)

Definition 2. For the quotient network and decay factor a as specified in Definition 1,

the per-capita class-centrality measure of class j is given by:

hj(π, a) =
n. (tj(π, a)/Njj(π, a)) .sj(π, a)− rj.t(π, a)

n(n− rj)
, (5.5)

where N(π, a) =
[
Im − aΠT

]−1
, s(π, a) = 1T

m.N(π, a), t(π, a) = N(π, a).r, and t(π, a)

denotes the sum of the coordinates of t(π, a).

12One way to deal with this limitation, as we discuss in Section 6.4, is to identify various equitable
partitions of a network with varying class sizes, and apply the class-centrality index for identifying the
key class for all the resulting partitions, choosing the one that best suits the planner’s objectives.
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Per-capita class-centrality hj(π, a) characterises the per-capita network activity upon

removing class j, in terms of the position that its players occupy within the partitioned

network. This informs a simple criterion for selecting the key class for optimally lowering

per-capita network activity from the planner’s perspective, as given by the following

Theorem.

Theorem 3. If λ ≤ 1/ρ, the class that solves max
{

y∗(π)
n

− y∗(π−j)
n−rj

}
is the j∗ for which

the per-capita class-centrality measure is the highest, that is, hj∗(π, λ) ≥ hj(π, λ) for all

j = 1, ...,m.

Similar to class-centrality, the per-capita measure also reflects the dual effects of lesser

contributing members as well as changes in the network structure of peer-effects, in deter-

mining the network activity of the resultant network upon removing a class. This interplay

of the direct and indirect effects is, in fact, at the heart of both the class-based centrality

measures: the basic idea is to remove a class and analyse how the ensuing alterations in

network ties and their intensities impact the equilibrium outcome level, repeating this for

all classes, such that the class that can maximally reduce the outcome, in aggregate or

per-capita terms, is the key class.

We provide a general result comparing the class sizes of the per-capita key class and the

key class in Proposition 1 below, which places an upper bound on the size of the former.

Proposition 1. The per-capita key class is less than or equal to the key class in size.

Since per-capita class centrality typically selects a class smaller in size than the key

class, it can be informative as a size-sensitive alternative to class-centrality.

Remark 3. Since there is a unique coarsest quotient network π associated with every

network g, the class-based centrality measures are generic indices applicable to any generic

network structure.

Remark 4. At the extreme case, when the cardinality of each class is 1 and equitable

partitioning is trivial, the key-class problem is equivalent to Ballester et al. (2006)’s key

player problem and both yield the same result. But, additionally to their intercentrality

measure for identifying the key player, the class-based centrality measures proposed here
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capture the relative influence of players occupying symmetric network positions, to inform

choice for targeting multiple players. The choice between the two measures, however, will

depend on the specific application and the planner’s objective.

Remark 5. In the presence of nestedness, which postulates that neighbourhoods of every

player is contained in the neighbourhoods of higher degree players, the degree partition

that characterises the nested split graph is the same as its equitable partition. Also, under

nestedness, the key class (which, say has a size of q) is also the key group of q players,

whenever the former is made of the players with the highest number of links, as shown

for the nested split graph example of König et al. (2014) in Figure 2.

Figure 2. Nested split graph: this figure is the network representation of
König, Tessone, and Zenou (2014)’s connected nested split graph illustration
(see their Figure 1 and the description therein). The nodes of same colour
represent cells of the equitable partition, which is also the degree partition
of nested split graph. The key class, as well as the key group of 2 players,
consists of nodes 1 and 2 (shown in red), who have the highest degree of 9.

Noting that players in a class have the same degree, this equivalence follows from Hiller

(2022), who shows that optimal targeting for eliminating any q players in nested split

graphs boils down to the simple criteria of ranking players by their number of links and

targeting the first q players. However, it is important to note that the key class may not

always consist of the highest degree players; for instance, a different class having more

lower-degree players with important direct or indirect links may, instead, turn out to be

the key class. In that case, the key group will be different from the key class. Indeed,
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our class-based centralities bring out new insights about the joint behaviour of similarly

positioned players with well-defined linkages, unlike the key group of players. Finally,

note that equitable partition is a concept general enough to incorporate other kinds of

grouping structures in networks beyond nestedness.

6. Examples and Discussion

In this section, we illustrate some important points related to the proposed class-based

centrality measures on four example networks. In the first three examples, we consider the

unique coarsest equitable partition of the given networks, and compare our two proposed

class-based centrality measures with other common centrality measures. In a fourth ex-

ample, we have considered various underlying class structures of the network (equitable

partitions other than the coarsest one) to illustrate how to approach targeting key classes

of varying sizes using our theory.

6.1. Example 1: Class-based centrality vs intercentrality

Figure 3 considers the 11-player network g with three classes, as used in Ballester et al.

(2006), and compares the proposed centrality measures with their intercentrality index,

another centrality metric from planner’s optimality concerns to identify the key player

type.

Class 1

Class 2

Class 3

7

11

10

1

2

3

4

5

6

8

9

Figure 3. Example network: class-based centrality vs intercentrality
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Table 1. Class-based centrality vs intercentrality

a = 0.1 a = 0.2

Class type ei hi ci ei hi ci
1 2.92 0.11 2.92 41.67 3.33 41.67∗
2 11.09 0.57∗ 3.28∗ 80.67 6.76∗ 40.33
3 12.96∗ 0.46 2.79 81.67∗ 6.33 32.67

ei and hi denote class-centrality and per-capita class-centrality, respectively.
ci denotes intercentrality measure of Ballester, Calvó-Armengol, and Zenou
(2006). The highest values are indicated by ‘∗’.

Table 1 computes centralities for two values of the decay factor a.13 We find that the

largest class (class 3) is also the key class for reducing overall equilibrium activity, for

both values of a. This is because along with having most members, this class is also quite

well-connected. It has direct links with class 2 (which, by being the link between the other

two classes, is the most central class - its players have the highest Bonacich centrality),

and indirect links with class 1. Hence, removing class 3 alters the network structure

in a way to cause maximal disruption in equilibrium contribution by remaining players.

However, in terms of per-capita network activity, class 2 becomes the most important one

since it is smaller than class 3 but has direct links with both classes 1 and 3, removing

which causes most damage to the network activity of the altered network, measured in

per-capita terms.

We also note that the key class, both for total and per-capita outcome reduction, mostly

differs from the player type with the highest intercentrality value. This is expected as

intercentrality depends on an individual level analysis of peer-effects between pairs of

players for characterising their importance, while class-based centrality internalises the

group-level dynamics among the members within a class as well, in addition to studying

the peer-effects across members of different classes. For the class with only one member

(class 1), there is no such intra-group dynamics per se, and its intercentrality ci as well

as class-centrality ei are the same, as also noted in Remark 4.

6.2. Example 2: Class-based centrality vs Bonacich centrality

In the above example, the class which was topologically most central was also the

key class for optimally reducing per-capita activity. It is, however, not necessary that

13Here, the maximum value of a in line with our centrality definitions is 0.227.
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removing the most central class in terms of position alone, that is, whose players have the

highest Bonacich centrality, will result in an optimal change in the structure of bilinear

influences so as to minimise the per-capita network activity. This is evident in the example

considered in Figure 4, borrowed from Allouch (2017) who considers segregation in social

networks.

7

8

Class 1
4 5

3 6

Class 2

Class 3

1

2

Figure 4. Example network: class-based centrality vs Bonacich centrality

The class-based centrality values for the three classes, along with the Bonacich centrality

for players in those classes is reported in Table 2, for two different values of a.14 For this

Table 2. Class-based centrality vs Bonacich centrality

a = 0.1 a = 0.2

Class type ei hi bi ei hi bi
1 3.41 0.14 1.39∗ 6.50 0.47 2.13∗
2 6.13∗ 0.24∗ 1.26 10.26∗ 0.72∗ 1.77
3 3.08 0.08 1.25 5.31 0.27 1.71

ei, hi and bi denote class-centrality, per-capita class-centrality and Bonacich
centrality, respectively. The highest values are indicated by ‘∗’.

simple network where two of the classes are of same size, the key class for total and

per-capita activity reductions turns out to be the same (class 2). Note that while class

1 is most centrally located, since its players, who have the highest Bonacich centrality,

form a bridge through which the other players are connected, it is not the key class,

for either optimally reducing total or per-capita network activity. This is because for

network activity, how removing a class alters the peer-effects within and across classes

matter. Taking this into account makes class 2 the key class.

14The largest value for a compatible with our definitions is 0.427.
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6.3. Example 3: Class-centrality need not be highest for the largest

class

In the above two examples, we find that the key class for inducing maximal disrup-

tion in total network activity is the one that has most members. While this was true

for the simplistic network structures considered in Figures 3-4, it will not, in general, be

the case. We consider the example in Figure 5, from Bonaccorsi et al. (2015)’s study of

epidemic outbreaks in networks with equitable partitions. Unlike the previous examples,

this network displays more complexity and variations in the indirect links between mem-

bers of various classes (features which are likely to be present in realistic networks). For

instance, it can be seen that even though all players in class 4 have the same number

of links amongst themselves and with class 2, the indirect links for players 8 and 11 are

different from others in their class: 8 has a direct link with node 3 of class 2, while all

its neighbours - 9, 10, 11 - have direct links with node 2, whereas all other nodes in class

4 (except 11) have one of their neighbours linking with the same node in class 2 as they

do, and the other two neighbours link with the remaining class 2 node. Node 11 also has

an analogous linkage pattern.

1

2

3

4

5

6

7

8

9

10

11
12

13

Class 1

Class 2

Class 3

Class 4

Figure 5. Example network: analysing class-centrality

Table 3 reports the centrality values for the aggregate and per-capita indices, for a = 0.1

and 0.2.15 We focus on the class-centrality ei which is informative for our purpose. Notice

15For this example, the maximum permissible value of a to satisfy our centrality definitions is 0.204.
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Table 3. Analysing class-centrality

a = 0.1 a = 0.2

Class type ei hi ei hi

1 4.40 0.21 514.35 39.08
2 8.81 0.45∗ 561.62∗ 42.79∗
3 9.59 0.22 540 39.80
4 12.40∗ 0.14 535.71 37.85

that for the lower value of a, the largest class (class 4) is also the key class, while with

a = 0.2, class 2 (which is much smaller in size than class 4) becomes key for optimally

decreasing overall network activity. This is because, with smaller value of a, the direct

effect due to class size is the dominant factor in determining the key class. But when

the indirect links become stronger, removing class 2, through which most of the indirect

links are formed, has the highest combined direct and indirect effects in determining the

aggregate network activity.

6.4. Example 4: Targeting classes of varying sizes

In the above three examples, we considered the coarsest equitable partition, which

yielded a key class (or its per-capita analogue) of a given size, for targeting purposes.

While class size is a model primitive (as determined by the underlying class structure for

any given network), there is still some amount of flexibility for the planner in deciding

what size of key class to target. The planner can do so by considering different equitable

partitions within the network, other than the coarsest one, each of which will have a

different class structure with varying class sizes. Applying our key class theory to the

different class structures will yield a key class (or its per-capita analogue) for all such

partitions, providing the planner with a range of different options for optimal classes with

varying sizes to choose from, depending on their preferences.

To make this idea precise, suppose the planner wants to target a class of size k (or a

smaller, but more optimal choice, in the sense that targeting the smaller class leads to a

larger disruption of the network activity). The planner must then consider such equitable

partitions which are coarsest up to size k, which we call as the k-coarsest equitable parti-

tions of the network. Note that while the coarsest equitable partition of any network is

unique, the k-coarsest equitable partitions need not be so. For instance, consider McKay’s
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graph in Figure 6, whose underlying equitable partitions are listed in Table 4. This net-

work has three 2-coarsest equitable partitions as shown by the first three class structures

in Table 4, while the next two class structures show the 4-coarsest and 6-coarsest equitable

partition (which is also the coarsest equitable partition for this network), respectively.

Figure 6. Example network: Analysing all class structures

Each of the partitions in Table 4 represents a distinct underlying class-structure. Table

4 further reports the corresponding key class and per capita key class for each of these

stratifications, along with the class-based centrality values, e∗i and h∗
i (maximum value of

the indices, among all classes in the concerned stratification). Decay factor, a, for all com-

putations is taken as 0.1. Note that implementing this algorithmically is straightforward

for any connected network, using existing algorithms from literature.16

Table 4. Analysing all class structures

Class structure e∗i h∗
i Key class Per-capita key class

(7, 8), (1, 2) 2.81 0.08 (1, 2) or (7, 8) 3 or 6

(1, 7), (2, 8), (3, 6), (4, 5)
3.68 0.18 (3, 6) (3, 6)

(1, 8), (2, 7), (3, 6), (4, 5)

(1, 7, 2, 8), (3, 6), (4, 5) 5.63 0.18 (1, 7, 2, 8) (3, 6)

(1, 2, 4, 5, 7, 8), (3, 6) 8.34 0.29 (1, 2, 4, 5, 7, 8) (1, 2, 4, 5, 7, 8)

Each row under ‘Class structure’ indicates a distinct class structure: the nodes inside paren-
thesis denote a class, all remaining nodes being identity classes (that is, the respective node
is also the ‘class’ in itself). e∗i and h∗

i denote highest class-centrality and per-capita class-
centrality values, respectively, among all classes in the corresponding class structure.

16As a simple way to implement this algorithmically, the planner can find all orbit partitions within a
network, each of which are also equitable by definition, in addition to the coarsest equitable partition.
Remark 2 mentions some relevant algorithms for finding these partitions. Note that the computational
cost for implementing our theory to all orbit partitions is of the same order as that of finding those
partitions, for which highly efficient C language based procedures exist (for example, the open-source
package nauty by McKay and Piperno (2014)).
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The above analysis suggests which class should the planner target, based on their

capacity for going after different sized classes, as summarised in Table 5 below.17 Focusing

on the key class for causing an optimal disruption to the overall network activity is

insightful. For targeting a class of, say, size 2, the planner must consider the 2-coarsest

equitable partitions (the first three class structures in Table 4). Selecting the largest e∗i

from among all such class structures yields (3, 6) as the optimal key class of size 2. The

planner can similarly target larger classes as shown in Table 5.

Table 5. Optimal class: Varying size

Size Key class Per-capita key class

2 (3, 6) (3, 6)

4 (1, 7, 2, 8) −
6 (1, 2, 4, 5, 7, 8) (1, 2, 4, 5, 7, 8)

Note that while considering the k-coarsest equitable partitions, it is not necessary that

the key class will be one of size k, as some other smaller but well-connected class can turn

out to be the key. In this case, since targeting the smaller-sized class should also be within

the planner’s budget and yields a greater reduction in total (or per-capita) output, this

class should obviously be targeted. There is still some restriction though, as the planner

will be bound by the underlying class structures present in the network. So, for example,

if the planner wants to target a class of size 3 for the network in Figure 6, there being

no such class, the planner must go for the next best and target the class of size 2 or 4.

A cost-benefit analysis from comparing the gain in e∗i from targeting larger classes, with

the planner’s specific associated costs, can be informative in this regard.

7. Two Illustrative Applications

In this section, we present two illustrative applications to show the applicability of

equitable partition and key class identification in real-world networks. For both the

applications, we find the coarsest equitable partitions for the respective networks using

Everett and Borgatti (1996)’s exact coloration algorithm. Also, the value of the decay

17Note that a key class of size 1 is simply the key player, as obtained from applying Ballester et al. (2006)’s
intercentrality measure. This comes out to be node 3 in Figure 6, which coincides with per-capita key
class of size 1 obtained from considering the first class structure in Table 4.
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factor a, in computing the centrality measures, is taken as 0.1, which lies within the

permissible range for our centrality definitions.

7.1. Informal office communication network

Social relationships among individuals in informal networks play a crucial role in shap-

ing individuals’ opinions and actions. Studying this in the context of an office setting,

Thurman (1979) conducted a 16 month study of informal communications among em-

ployees in an international organisation, taking a network approach to analyse social

relationships in the office and its role in influencing the office’s internal workings. During

this time, a few major disputes broke out in a sub-group of 15 employees. We revisit

Thurman (1979)’s informal office communication network to identify the most important

members in the network, who have the maximal impact on communications (and, in a

related sense, disputes) among the employees. As shown in Figure 7, the network con-

tains 15 nodes, with 33 undirected links, which represent interactions between individuals.

Further, it has 12 classes, which are highlighted by the different colours in the network.

Figure 7. Key players in Thurman (1979)’s office communication network
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We compute the class-centralities of all classes to identify the key class in this sample

network, and compare our findings with Ballester et al. (2006)’s intercentrality measure to

identify the key player. The key player comes out to be node 5 (highlighted in black), who

is, therefore, central to the communication flow within this network. This corroborates

Thurman (1979)’s observation that node 5 was “the center of (the) social circle”. The

key class (highlighted in red), however, is made of two different individuals, nodes 3 and

6 (who are, unsurprisingly, directly linked with the key player). This suggests that both

individuals 3 and 6 together have a greater influence on their peers, rather than node 5

alone (otherwise node 5 would also have been the key class). This can be informative

for setting dispute resolution tactics in the office: the application suggests that both

individuals 3 and 6 should be consulted as they are together likely to play a bigger role

than node 5, if the objective is to resolve the office disputes in an optimal manner.

7.2. PhD network

The application of office communication network, being small in size, allowed a con-

venient visualisation and interpretation of the key players problem. But it is of interest

to investigate if our equitable partition setting, and consequently the class centrality

measures, are applicable to more complex real-world networks, which is the aim of this

illustrative exercise. For the purpose of this exercise, we consider the large-scale PhD

network as analysed in MacArthur, Sánchez-Garćıa, and Anderson (2008) who study the

symmetry features of this network. The network consists of 1025 nodes with 1043 edges,

which represent connections among PhD students and their supervisors in Theoretical

Computer Science over several years (see MacArthur et al. (2008) or De Nooy, Mrvar,

and Batagelj (2018) for details). The network is displayed in Figure 8.

The coarsest equitable partition of this network has 511 classes; classes with size 9 or

more are highlighted with different colours in Figure 8. Note that finding the equitable

partition even for large networks is easy; Everett and Borgatti (1996)’s algorithm required

a few seconds to obtain the partition using personal laptop with configuration i7-7500U

CPU and 16 GB RAM. Here too, we find that the key player is different from the members

of the key class: the key player is highlighted by the colour black, while the key class

consists of 35 different players highlighted in red. Associations between PhD students
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Figure 8. Computer Science PhD network
Classes of size 9 or more are shown by different colours. Key player is in black, key class in red.

and their advisors can be important for creating and advancing scientific knowledge, and

the set of symmetrically-positioned players who play a similar role within the academic

network as specified by the key class can be informative in that regard, with the exact

utility depending on the planner’s specific objective.

Thus, while the exact applicability will, of course, depend on the specific setting under

investigation, the preceding two illustrative applications show that detection of classes

conceptualised by the idea of equitable partition is not restrictive for application in com-

plex real world networks, and the subsequent identification of the key class can be infor-

mative for the planner’s purposes.

8. Concluding Remarks

This paper approaches the multiple players targeting problem from a new perspective

of focusing on network classes made of players who occupy symmetrical network positions

and have well-defined linkage structures in the network, as captured via the notion of
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equitable partition. Studying the network game with local payoff complementarities under

equitable partitioning, we bring out new insights about the relative influence of network

classes in determining the overall activity in equilibrium. This analysis informs two novel

centrality measures to geometrically characterise the key class for the social planner who

wishes to optimally increase (or decrease) the aggregate or the per-capita network activity.

The class-based centrality measures can be informative for the social planner in several

scenarios, like in criminal or R& D networks. An interesting future work can be to develop

such applications for particular scenarios, for instance, for crime reduction in criminal

networks displaying hierarchical interaction patterns, or for devising bail-out policies in

R&D networks with well-established linkage structure among similarly positioned firms,

or for containing the spread of epidemics by isolating a community of similarly positioned

and linked individuals in the society. Also, in a recent work, Parise and Ozdaglar (2023)

have developed Graphon games, which can be thought of as the limits of sequences of

finite network games, providing a richer statistical framework for targeting over large

scale networks. It may also be worth exploring, in a future work, the key class problem

for Graphon games, especially since some Graphon counterpart concepts of equitable

partition have been provided (see, for example, Greb́ık and Rocha (2019)). Finally, while

class, here, has been defined through the symmetry-based notion of equitable partition,

an interesting and challenging future work would be to expand that idea and consider

other general partitioning of networks, for instance, as defined in Van Mieghem (2010),

in order to find the key class for general grouping structure in networks.
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Appendix 1: Proof Section

Proof of Lemma 1. Both the inverse matrices are well-defined and non-negative for 0 ≤
a ≤ 1/ρ. Then, since from (3.1) GkX = XΠk, we have

[In − aG]−1X =

[
∞∑
k=0

akGk

]
X =

∞∑
k=0

akXΠk = X

[
∞∑
k=0

akΠk

]
which proves the Lemma.

Proof of Theorem 1. The pure Nash equilibrium strategies x∗ ∈ Rn
+ for the network game

in Section 4 solves ∂ui/∂xi(x
∗) = 0, such that it satisfies the first order conditions:

[In − λG]x∗ = 1n

As shown in Ballester et al. (2006), the Nash equilibrium exists and is unique if the inverse

[In − λG]−1 exists, that is, when λ ≤ 1/ρ. Then, from definition of b(g, λ) in (3.2),

x∗ = b(g, λ).

Hence, from Lemma 1, we have

y∗(π) = XT .x∗ =
[
Im − aΠT

]−1
.XT .1n

Noting that XT .1n = r then proves the Theorem.

Proof of Lemma 2. Recall that the elements of Πp, π
[p]
ik , denotes the total paths of length

p for any v in class Vi with its neighbours in Vk. Let π
[p]

i(j0)k denote the total number of such

paths not containing the class j. Similarly, π
[p]
i(j)k denotes only such p-length paths that

contain class j. Then, denoting the ik-th element of (Πp)T as π
[p,T ]
ik and setting π

[0]
jj = 1,

for 0 ≤ a ≤ 1/ρ, we have

Nik(π, a)−Nik(π
−j, a) =

∞∑
p=1

ap(π
[p,T ]
ik − π

[p,T ]

i(j0)k).
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Note that

π
[p,T ]
ik − π

[p,T ]

i(j0)k = π
[p,T ]
i(j)k = π

[p,T ]
i(j)k.π

[0,T ]
jj (since π

[0]
jj = 1)

=
∑

r′+s′=p
r′≥1, s′≥1

π
[r′,T ]
ij .π

[s′,T ]
jk −

∑
r+s=p

r≥2, s≥1

π
[r,T ]
i(j)k.π

[s,T ]
jj .

The above identity specifies that total p-length paths from class i to k passing through

class j (that is, π
[p]
i(j)k) equals the sum of all paths from class i to j and from class j to k

of lengths r′ and s′(≥ 1), respectively, such that r′ + s′ = p (that is,
∑

r′+s′=p
r′≥1, s′≥1

π
[r′]
ij .π

[s′]
jk ),

excluding any double counting due to paths involving class j to j loops (which is given by∑
r+s=p

r≥2, s≥1
π
[r]
i(j)k.π

[s]
jj ). To clarify on this further, note that paths from class i to k passing

through j, of any given length p, can in part pass through two nodes belonging to class j

itself - which we call the j to j loop part of the overall path. Equating all p-length paths

from i to k via j as sum of paths from class i to j and from j to k (of total length p),

can result in a double counting of paths with j to j loops as these loops can either be

counted in the i to j portion (that is, i to j to j; overall i to j) or in the j to k portion

(that is, j to j to k; overall j to k). Hence, we need to subtract one set of such p-length

paths from i to k via j involving j to j loops, which is given by

(∑
r+s=p

r≥2, s≥1
π
[r]
i(j)k.π

[s]
jj

)
,

to ensure that there is no double counting.

Hence, we have

ap
∑

r+s=p
r≥2, s≥0

π
[r,T ]
i(j)k.π

[s,T ]
jj = ap

∑
r′+s′=p

r′≥1, s′≥1

π
[r′,T ]
ij .π

[s′,T ]
jk .

This equates to [Nik(π, a)−Nik(π
−j, a)].Njj(π, a) = Nij(π, a).Njk(π, a) which proves the

Lemma.

Proof of Theorem 2. Note that from Theorem 1, y∗(π) and y∗(π−j) are increasing in

t(π, λ) and t(π−j, λ), respectively. Hence, the planner’s objective function (5.2) can be

re-written as follows:

m∑
i=1, i̸=j

(ti(π, λ)− ti(π
−j, λ)) + tj(π, λ).
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In what follows, we drop arguments in function for simplicity of notation wherever con-

venient, and write ik-th element of N(π−j, λ) as N−j
ik . Since t(π, λ) = N(π, λ).r, we

re-write the above expression as:

m∑
i=1, i̸=j

[
m∑
k=1

Nikrk −
m∑

k=1, k ̸=j

N−j
ik rk

]
+

m∑
k=1

Njkrk

=
m∑

i=1, i̸=j

[
Nijrj +

m∑
k=1, k ̸=j

{
(Nik −N−j

ik )rk
}]

+
m∑
k=1

Njkrk.

Using Lemma 2, this becomes

m∑
i=1, i̸=j

[
Nijrj +

m∑
k=1, k ̸=j

{
Nij.Njk

Njj

rk

}]
+

m∑
k=1

Njkrk

=
m∑

i=1, i̸=j

[
m∑
k=1

Nij.Njk

Njj

rk

]
+

m∑
k=1

Njkrk =
m∑

i=1, i̸=j

[
Nij

Njj

tj

]
+ tj

Njj

Njj

=
tj
Njj

m∑
i=1

Nij

where the last line uses the equality tj =
m∑
k=1

Njkrk. Noting that
m∑
i=1

Nij = sj proves the

Theorem.

Proof of Theorem 3. As in proof for Theorem 2, the problem statement translates to:

max


∑m

i=1(ti(π, λ)

n
−

m∑
i=1, i̸=j

ti(π
−j, λ))

n− rj
≡ hj(π, λ)

 , j = 1, . . . ,m.

Dropping arguments in function for simplicity of notation and denoting the ik-th ele-

ment of N(π−j, λ) as N−j
ik , from t(π, λ) = N(π, λ).r such that ti =

m∑
k=1

Nikrk, we have

hj =
m∑

i=1, i̸=j

{
(n− rj)

∑m
k=1Nikrk − n

∑m
k=1, k ̸=j N

−j
ik rk

n(n− rj)

}
+

∑m
k=1Njkrk

n

=
m∑

i=1, i̸=j

{
nNijrj − rj

∑m
k=1Nikrk + n

∑m
k=1, k ̸=j

(
Nik −N−j

ik

)
rk

n(n− rj)

}
+

∑m
k=1Njkrk

n
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Using Lemma 2, this becomes

hj =
m∑

i=1, i̸=j

nNijrj − rjti + n
∑m

k=1, k ̸=j

(
Nij .Njk

Njj

)
rk

n(n− rj)

+
tj
n

=
m∑

i=1, i̸=j

nNijrj − rjti + n
{∑m

k=1

(
Nij .Njk

Njj

)
rk −Nijrj

}
n(n− rj)

+
tj
n

=
m∑

i=1, i̸=j

{
n(Nij/Njj)tj − rjti

n(n− rj)

}
+

tj
n

=
m∑
i=1

{
n(Nij/Njj)tj − rjti

n(n− rj)

}
.

Noting that
m∑
i=1

Nij = sj, then, proves the Theorem.

Proof of Proposition 1. The proposition is established via proof by contradiction.

Let class j and k (j, k ∈ 1, . . . ,m) denote the key class and the per-capita key class,

respectively, with corresponding class sizes rj and rk. Since removing class k minimises

the per-capita network outcome, we have, for any k ̸= j

y∗(π−k)

n− rk
<

y∗(π−j)

n− rj
. (A1.1)

Assume the following hypothesis:

rk > rj; k ̸= j. (A1.2)

Since j is the key class removing which minimises the overall network activity and, given

that a non-trivial class-structure exists, rj, rk < n , we have, for any j ̸= k:

y∗(π−j) < y∗(π−k) =⇒ y∗(π−j)

n− rj
<

y∗(π−k)

n− rj
=⇒ y∗(π−j)

n− rj
<

y∗(π−k)

n− rk

where the last inequality comes from noting that (n−rk) < (n−rj) from hypothesis (A1.2).

This contradicts (A1.1), thus, invalidating the hypothesis and proving the Proposition.
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Appendix 2: How equitable partition relates to role-equivalence in

networks

The intuitive relationship between the structural positions occupied by network players

and their network roles is well-established in the sociology literature; see, for instance,

Wasserman and Faust (1994). In this Appendix, we illustrate how equitable partition

relates to the notion of role-equivalence in networks, in comparison with other classical

role-equivalence concepts in literature.

Two of the classical notions of role-equivalence in networks are structural and regular

equivalences: while formal definitions can be found in Wasserman and Faust (1994),

simply put, structural equivalence stipulates equivalent actors to have identical ties to

and from identical nodes in the network, and regular equivalence theorises that actors

who have the same kind of ties with others are equivalent in terms of their roles in the

network. These notions of equivalences in networks are illustrated in the example below.

Equitable partition strikes a balance between these two ideas of role-equivalence, as we

illustrate in this Appendix, via a simple example.

2

5 6 7 8 9 1110 1312

1

43

Regular Equivalence

2

5 6 7 8 9 1110 1312

1

43

Structural Equivalence

2

5 6 7 8 9

1

43

13121110

Equitable Partition

Figure A2.1. Equitable partition vs classical role equivalence notions
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Figure A2.1 depicts a notional supervisory network: node 1 denotes an upper-level

manager who supervises three mid-level managers (nodes 2,3 and 4), node 2 has five su-

pervisees assigned to her (nodes 5 to 9), while nodes 3 and 4 supervise nodes (10,11) and

(12,13), respectively. As is common practice, equivalence is visualised by ‘coloration’ of

nodes in the graph; equivalent nodes have the same colour. The notion of regular equiv-

alence considers all mid-level managers to be equivalent, even though node 2 supervises

five individuals as against two each for nodes 3 and 4. Structural equivalence, on the

other hand, requires agents to be connected with the same to/from actors in order to be

equivalent. As opposed to these, the symmetry-preserving notion of equitable partition

takes into consideration the structural differences among actors occupying the same so-

cial position, in determining role-equivalent classes, while relaxing the strict identical ties

condition of structural equivalence: among the middle-level managers, nodes (3,4) are

assumed to play the same role, differently from that of node 2.

Hence, while the structural equivalence clearly presents a severely restrictive definition

of equivalence, regular equivalence suffers from the limitation that it does not distinguish

between the structural differences among actors occupying the same social position. In

comparison, equitable partition presents a reasonable level of compromise free from the

limitations of both.
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