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Introduction

The UK requires means to achieve a net zero carbon economy. Hydrogen is among the best candidates for solving this issue but has innate storage and transport difficulties in its natural state. Therefore, it requires liquid
storage and transport vectors for use on a large scale, such as the shipping industry. Ammonia is currently one of the top contenders for this due to its high hydrogen content and existing routes of synthesis.

Ammonia can be cracked by applying heat to release the hydrogen where it is required. This can be done through the autothermal coupling of ammonia decomposition (+45.9 kJmol™") and oxidation (-317 kimol™") which has
been shown to provide enough heat to allow for external temperature and energy input requirements to be reduced [1]. Ruthenium-based catalysts have shown the greatest activity for this reaction.

Aims and Objectives

The aim of this project is to recreate the overlap between ammonia decomposition and oxidation at low temperature and to characterize the temperature of the nanoparticle surface across the catalyst bed. This is done by x-ray
absorption spectroscopy and utilises the relationship between temperature and the mean squared disorder parameter (02). Linear combination fitting can be used to determine the composition at different temperatures, which is
done by characterising the magnitude of the oscillations produced in the EXAFS (Extended X-ray absorption fine structure).

This information can then be used to evaluate the efficiency of the paired reaction and methods can be considered to improve it, particularly in respect to reactor design and gas flow parameters. Additionally, bimetallic catalysts
can be used to reduce the amount of ruthenium needed, as it is rare and expensive.

Results and Discussion
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Further Work

Future work will involve running validation experiments for the XAS data with mass spectrometry to monitor the reactions, experiments to improve the overlap of ammonia oxidation and decomposition by altering reaction
conditions and catalyst parameters, further XAS experiments to determine the mechanism behind the autothermal reaction, and investigations into improving the overall efficiency. The latter point may involve running fluid
dynamics simulations to find suitable potential reactor designs.
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