
Probabilistic Methods for Improved Self-consistency of Doppler Velocity Log Range-Based Bathymetry

Sam Fenton, Blair Thornton, Christine Evers, Christine Currie, Adam Prugel-Bennett

Motivation - Underwater Navigation

Position error accumulation is a problem for underwater robot navigation. **SLAM** is employed to bound this error – but requires extra sensors. DVLs are already present on most vehicles, so could be used to gather low-resolution bathymetry information for **loop closure**. The challenge is that **DVL** measurements experience **terrain bias**.

2 Aims and Objectives

- Develop acoustic model of DVL terrain-slope bias
- Demonstrate that this improves mapping selfconsistency

Mapping Process & Selfconsistency Comparison Measurement Split data into east/west uncertainty (with or transects **Eastward Trajectory** without acoustic model uncertainty) Gaussian process Calculate Negative Log regression surface Likelihood of resulting maps prediction Likelihood NI.I. = 298.92Surface based on Surface based on eastward data ___ GP Prediction westward data ___ GP Prediction Eastings (m)

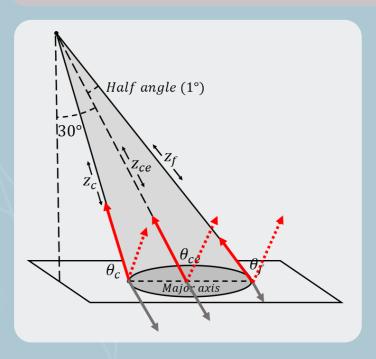
5 Conclusion and Future Work

Applying an acoustic model to DVL range data improves the self-consistency of resulting maps. This work lays the foundation for using DVL range data for loop closure in bathymetry-based SLAM.

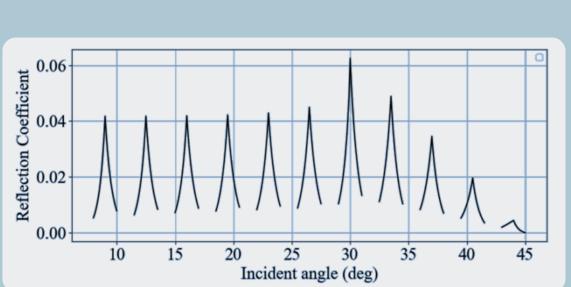
Doppler Velocity Log (DVL)

DVLs use acoustic signals to track vehicle velocity over the seafloor. **BUT** they also provide low resolution bathymetry information

©Sonardyne International (1)


Terrain Bias

Error between the expected and measured acoustic reflection due to the incident angle of the beam interacting with the seafloor.


3 Method

Compare the self-consistency of maps built using the acoustic model vs. without.

Acoustic model

- The acoustic signals can be treated as a cone. Different parts of the signal have different intensities and reflection behaviour
- Use acoustic
 theory to predict
 the spread of
 the reflected
 acoustic signal
 at different
 incident angles.
- This informs the measurement uncertainty

4 Results

Maps built using the uncertainty from the acoustic model showed lower NLL metric, meaning greater

self-consistency.	Without acoustic model	With acoustic model
NLL	404.02	298.92