Converting CO, to Sustainable Marine Fuels Using Bifunctional Catalysts

Maciej Walerowski, Lindsay-Marie Armstrong & Robert Raja

School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK

University of Southampton Southampton Marine & **Maritime Institute**

Decarbonising Marine Shipping

- Shipping responsible for 3% of global CO₂ emissions
- Challenging to electrify long haul maritime shipping
- Require synthetic, sustainable fuels

	•	•			
Vehicle and duty cycle compatibility		Synthetic fuels		Electricity	
Aviation	Short haul				
	Long haul	7			
Marine	Short journey	<u> </u>		<u> </u>	
	Long journey				
Refuelling and distribution challenge			■		■

Vehicle compatibility with different energy sources²

Dimethyl Ether as a Sustainable Marine Fuel

Producible via a circular carbon economy

Burns *more effectively* in an engine than diesel

Compatible with existing LPG infrastructure

12

Summary & Outlook

- Dimethyl ether is a sustainable, alternative marine fuel
- Bifunctional catalysts can convert CO₂ to DME in *one reactor*
- Nearby & more abundant active sites give a *cleaner reaction*
- DME market projected to double in next decade³

Our highly selective bifunctional catalyst could be used in a rapidly growing market

Bifunctional Catalysts for Dimethyl Ether Synthesis

Electron image of a cascade nanoreactor

- Tailor synthesis to adjust acid active site abundance & proximity
- Catalysts with more abundant acid sites: higher DME selectivity (less waste) & no toxic CO formation
- Proximate & more abundant acid active sites increase localised water concentration which *suppresses CO*forming reaction