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Shipwrecks constitute a significant amount of underwater archaeological sites that are 
likely to be increasingly discovered due to developments in autonomous marine survey 
methods and continued offshore development (Papageorgiou, 2018). Moreover, the 
increasing availability, spatial coverage, and resolution of marine remote sensing data is 
creating pressure on current archaeological workflows to identify potential underwater 
(Mayer et al., 2018; Wölfl et al., 2019). As a result, archaeological prospection studies are 
embracing semi-automated methods to identify archaeological sites and features in 
remote sensing imagery (Fiorucci et al., 2020) including in underwater contexts (Character 
et al., 2021).  
 
This research proposes a unique workflow that integrates two different semi-automated 
methods, raster-based extraction and machine learning, to identify shipwrecks in 
bathymetry data (seabed elevation) across large areas of the United Kingdom’s 
continental shelf. All aspects of the geospatial analysis were completed using ArcGIS Pro 
software.  
 
The first method (Raster Extraction) is a topographic inference approach which identifies 
shipwrecks based on their value signatures in different raster data visualisations. The 
results of this method are then used to filter the larger testing dataset for areas of high 
shipwreck potential, over which machine learning detection models are run.  
 
The second method uses several machine learning algorithms trained to detect 
shipwrecks using different visualisations of bathymetry data. This includes a pre-trained 
detection model from ESRI (2021) as well as custom models created for this research. The 
performance of each method was evaluated against an existing shipwreck database 
(UKHO) and manual review. 

Using an existing shipwreck database (UKHO), a total of 253 shipwreck anomalies were identified in the testing data across an area of around 
900 km2. These anomalies were split into two classes when evaluating the performance of each method; conspicuous (i.e. visually prominent) 
and ‘possible’ shipwrecks. This latter group was only able to be identified as wrecks using the UKHO database and typically were much 
smaller, less visually distinct features.  
 
The Raster Extraction method was able to identify 78% of all anomalies in the testing area and performed particularly well on the conspicuous 
shipwreck class, with 98% being detected. This method had a low precision score (11%) but is still useful as a filtering step as it helps reduce 
the amount of data prior to further assessment using machine learning. The machine learning (ML) results have interesting variations across 
model networks and datasets. The best-performing ML model on all shipwreck features is an SSD trained on a curvature dataset, which 
identifies 73% of all features with 47% precision. The best ML model for identifying conspicuous wrecks is an SSD trained on a shaded relief 
(colourised hillshade) dataset which, despite a lower precision of 28%, detects 90% of these shipwrecks. 

 
Overall, this research outlines a unique workflow combining both traditional (Raster Extraction) and new machine learning methods to 
overcome some of the challenges of semi-automated detection of archaeological features in large marine datasets. 

Hillshade Curvature Shaded Relief ESRI 

Accuracy 1: All Features (n = 197) 

F-RCNN SSD F-RCNN* SSD F-RCNN SSD M-RCNN 

Recall 0.70 0.20 0.47 0.73 0.75 0.73 0.55 

Precision 0.13 0.01 0.45 0.47 0.20 0.42 0.24 

F1 Score 0.22 0.02 0.46 0.57 0.32 0.53 0.33 

Accuracy 2: Conspicuous Shipwrecks (n = 105) 

Recall 0.90 0.21 0.70 0.85 0.90 0.90 0.72 

Precision 0.09 0.01 0.36 0.29 0.13 0.28 0.17 

F1 Score 0.16 0.01 0.48 0.43 0.23 0.43 0.27 

Accuracy 1: 
 All Features (n=256) 

Accuracy 2:  
Conspicuous Shipwrecks (n=107) 

Recall 0.78 0.98 

Precision 0.11 0.06 

F1 Score 0.20 0.11 

*Training Epochs = 50 
*Network Backbone: ResNet50 
*Network Backbone: ResNet34 

No. Training Images = 8,956 
No. Training Shipwrecks:  
Conspicuous/ Possible = 573/441 

SSD = Single Shot Detector 
F-RCNN = Faster Region CNN 
M-RCNN = Mask Region CNN 
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