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ABSTRACT Visual seafloor imaging using autonomous underwater vehicles (AUVs) has become an
established method for seafloor mapping and monitoring. With AUVs now achieving multiweek endurance
and several hundred kilometers of range on a single charge, image quality assessment (IQA) on-board vehicles
in the field is necessary for robust data acquisition given the sensitivity of underwater imaging surveys
to environmental conditions. This research develops a metric to assess seafloor image quality in situ, and
demonstrates its use for quality assurance during a 21-day, shore-launched AUV campaign that visited three
sites up to 170 km from shore. The metric was transmitted via satellite communication along with vehicle
telemetry to shore-basedAUVoperators during regular surfacing intervals without relying on physical vehicle
recovery. The method was implemented on the seafloor laser scan and strobed imaging system BioCam,
deployed on the Autosub Long Range (ALR) AUV (also known as Boaty McBoatface) in the North Sea.
Several tens of hectares of seafloor imagery were collected, and image quality scores were transmitted. This
information was used to retask the AUV and maximize the quality of acquired images within operational
constraints. Data products generated from the collected imagery show the improvements achieved that would
otherwise have been missed. This highlights the importance of remote awareness of data quality to facilitate
longer and consecutive mapping missions without reliance on physical vehicle recovery.

INDEX TERMS Autonomous underwater vehicles (AUVs), environmental monitoring, image quality, low-
bandwidth communication, photogrammetry.

I. INTRODUCTION

THE past ∼40 years have seen the development of var-
ious autonomous underwater vehicle (AUV) mapping

techniques [1], [2] to enable large-scale, high-resolution
monitoring of seafloor environments. In particular, camera-
equipped AUVs operating several meters off the seafloor can
gather millimeter-resolution images in which human-made
objects and benthic organisms can be identified, over mul-
tihectare regions of the seafloor. These are valuable for

surveying marine protected areas (MPAs) that require regular
monitoring of their ecosystem health, and for inspecting the
increasing amount of seafloor infrastructure that exists, with
growing recognition of the need to monitor their environmen-
tal impacts. The push toward offshore renewables, demand
for subsea cables to support the Internet, and legal require-
ments for decadal monitoring of decommissioned offshore oil
and gas infrastructure suggest the need for seafloor imaging
surveys will continue for the foreseeable future [3]. While
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traditional methods using sampling and drop cameras provide
information that cannot be replicated using AUVs, they do
not scale well to large-area surveys as they rely on ships
and manual labor. Seafloor imaging lends itself better to
automation, where images gathered by AUVs can be post-
processed to generate products such as mosaics [4], [5], and
3-D reconstructions [6], [7], [8] that show areas larger than a
single image footprint. Further analysis by human experts or
machine learning algorithms [9], [10] can determine seafloor
substrate type, taxonomy, and distributions of seafloor organ-
isms, as well as detect anthropogenic influences such as litter,
sabotage, or degradation of infrastructures. High-resolution
imaging surveys can also capture temporal changes through
precisely targeted repeat area surveys that are noninvasive and
achieve sufficient cover to guarantee spatial overlap despite
navigational uncertainties [11]. Laser scan microbathymetry
is an effective complement to strobed color photography as
it can simultaneously map topography at millimeter-order
resolution alongside visual features to capture fine details
such as cables, natural depressions, and trawlmarks that often
are hard to spot in strobed color images [12].
Offshore AUV surveys typically deploy from crewed ships

that use several orders of magnitude more energy than
an AUV, accounting for most of the cost, logistical chal-
lenges, and carbon footprint of monitoring. AUVs have also
been deployed from autonomous surface vehicles (ASVs)
[13], [14], with recent investments in full ocean-going lean
crewed ships with AUVpayloads [15]. However, autonomous
launch and recovery adds complexity and limits operations
to relatively calm weather windows. Recently, long-range
and endurance AUVs have demonstrated shore-launched
offshore surveys without the use of a support vessel for
transport [16], [17], [18], [19]. Such AUVs open the oppor-
tunity for ship-free seafloor visual mapping of sites hundreds
of kilometers offshore. In addition to cost and carbon sav-
ings, shore-deployed long-range AUVs are more robust to
poor weather conditions. Close to shore the wave height and
wind speed are generally lower than on the open sea, and
once deployed, AUVs can shelter at depth if necessary to
avoid strong winds and waves that can prevent traditional
ship-based deployment and recovery operations. However,
such missions introduce several new challenges for data
acquisition, analysis, and robust operation without physical
intervention.

The impact of water turbidity on image quality makes cam-
era surveys more sensitive to environmental conditions than
acoustic surveymethods (e.g., side-scan sonar andmultibeam
sonar). Typically, turbidity is not known before deployment
and can vary locally and temporally, making the choice of
observation altitude in long-range, long-endurance surveys
a challenge. This is compounded by long-range flight-style
AUVs being less maneuverable, and traveling faster than
the hover-capable AUVs typically used for detailed imaging
surveys [20], [21], [22], [23], [24], [25], [26]. They therefore
need to operate at higher altitudes to reduce the risk of
collisions and cannot accurately follow complex terrains at

a constant target altitude. Both factors increase the variabil-
ity of image quality and sensitivity of data they acquire to
environmental variables (i.e., terrain complexity and water
turbidity).

Various approaches have been developed to correct for
attenuation, color shift, and backscatter in underwater
images [6], [10], [27], [28], [29]. Although these improve
tolerance to image degradation, they cannot compensate
for information that is lost through attenuation or masked
by backscatter of the light from vehicle-mounted strobes
if the water turbidity and/or the mapping altitude is too
high, or if the camera signal is weak or not resolved suffi-
ciently high. With these requirements in mind, the University
of Southampton and Sonardyne International developed the
BioCam [30] mapping device with high-power strobes (2 ×

200 000 lumen) and line lasers (2 × 1 W), and cameras
with a high dynamic range (79.7 dB). This allows data to
be collected from higher altitudes than conventional imag-
ing systems and improves robustness to the impact of the
large range of altitudes expected when mapping from high-
endurance flight-style AUVs such as the Autosub Long
Range (ALR; also known as Boaty McBoatface) developed
by the National Oceanography Centre (NOC), Southampton,
U.K. [18], [19].

In addition to hardware design, it is also necessary to
modify operational workflows. During traditional ship-based
AUV imaging, operators often assess the quality of images
between deployment cycles and can adjust camera parameters
(camera exposure and strobe intensity) and target altitude
if navigational data indicates it is safe to do so. This also
identifies hardware failures (e.g., of the illumination sources)
to avoid taking unnecessary risk and effort by continuing to
deploy a compromised setup.

To achieve similar goals with long-range AUV campaigns,
it is necessary to assess the gathered data between dives and
regularly feed it back to remotely located AUV pilots, who
can, in turn, adjust mapping altitude or device settings, or nav-
igate it back to shore early if there is any failure of hardware
(e.g., illumination light sources). This also requires indica-
tors about navigational performance to determine whether
changes in observation altitude would be safe. While for
ship-based missions or deployments close to shore full image
and navigation data can be downloaded and assessed between
dives, this is not possible in offshore missions without a
support vessel. Data can be transmitted via satellite when
the AUV is at the surface; however, with uplink speeds of
pressure-tolerant communication antennae typically in the
order of kilobits per second and often intermittent connec-
tions, it is not practical to transmit entire uncompressed
images and vehicle data.

Various approaches have been proposed for compress-
ing underwater images for transmission over low-bandwidth
communication links, such as acoustic modems. Early on,
Hoag et al. [31] and Eastwood et al. [32] proposed using the
discrete wavelet transform (DWT) for compressing subsea
photographs and videos for transmission over an acoustic
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uplink. Kaeli et al. [33] demonstrated an algorithm for
selecting representative images while collecting seafloor
photographs to be sent to a surface vessel, along with
semantic maps. Murphy et al. [34] presented broadcasting
of automatically selected, progressively compressed photo-
graphic and SONAR images, as well as sensor data over
networks of underwater acoustic relays. Ahn et al. [35]
demonstrated image selection and dropout-resistant image
compression using a reduced-size color palette for trans-
mission over acoustic links. These methods enable adaptive,
remote-supervised missions for mapping particular types of
substrates or objects of interest on the seafloor, as seafloor
images are available to operators in near real-time. While
these show what has been observed, the quality of the gath-
ered imagery can be difficult to assess, due to the effects
of compression, and the number of transmitted images can
be low in case of slow or intermittent communication. For
applications where the area to be mapped is defined from
the outset, or if the communication throughput is very low
or unstable, transmitting the quality of the gathered imagery
together with compressed navigational data is more suitable.

Traditionally, the mean opinion score (MOS) based on the
judgment of several human observers has been regarded as
the best method for assessing the quality of images [36].
However, apart from being time-consuming and not suited to
autonomous applications, the MOS is subjective and there-
fore not generally repeatable. To overcome these limitations,
various image quality assessment (IQA) algorithms have
been developed. Some of these, so-called full-reference IQA
algorithms, compare images to a perfect, not distorted version
of the image as reference, while blind or no-reference IQA
algorithms compute a score without such reference, only
based on a single image.

The blind image quality index (BIQI) [37] is a two-
stage no-reference IQA algorithm that identifies the types
of distortions in an image and combines their respec-
tive impacts on quality based on natural scene statistics
(NSSs). Distortion identification-based image verity and
integrity evaluation (DIIVINE) [38] extends BIQI with a
larger set of NSS, demonstrating comparable correlation
with human perception to full-reference IQA algorithms.
The learning-based blind image quality measure (LBIQ) [39]
uses machine learning to map natural image measures and
texture statistics to subjective image quality scores, achieving
a good correlation with human judgment-based scores. The
popular blind/referenceless image spatial quality evaluator
(BRISQUE) algorithm [40] computes statistics of pixel inten-
sity distributions and determines how natural an image is
by comparing its coefficients to those of a model generated
from training images. The natural image quality evaluator
(NIQE) [41] like BRISQUE also uses a space domain NSS
model, but does not rely on human-judged images for training
or modeling of image distortions. Perception-based image
quality evaluator (PIQUE) [42] is an opinion-unaware no-
reference IQAmethod that estimates the quality for blocks of

pixels while also computing and over-all score by pooling the
separate block scores.While these algorithmswere developed
considering degradation influences characteristic for images
taken in air, underwater images also suffer from shifts in
color balance, changing lighting across the scene depending
on the distance from the camera, haze from backscatter, and
marine snow. These influences are often stronger than image
compression artifacts, sensor noise, and blur of objects out-
side the depth of field, typically considered in conventional
IQA algorithms. For this reason, IQA algorithms specially
for underwater images have been developed.

Many earlier underwater IQA algorithms are based on fea-
ture engineering, where a combination of features designed
by humans are assessed and combined to generate a score.
The underwater color image quality evaluation (UCIQE)
algorithm [43] combines statistical measures of chroma,
contrast, and saturation to compute a score. The underwa-
ter image quality measure (UIQM) [44] and the frequency
domain UIQA metric (FDUM) [45] each defines a quality
measure using the colorfulness, sharpness, and contrast of
underwater images. The colorfulness, contrast, and fogden-
sity (CCF) [46] algorithm further accounts for backscatter.
The no-reference underwater IQA based on multifeature
fusion in color space (NMFC) [47] method uses morpho-
logical and statistical parameters of distributions of intensity
and color, and the contrast, sharpness, and naturalness
(CSN) index method [48] uses multiple contrast coefficients,
sharpness, and locally mean subtracted contrast normalized
coefficients to determine image quality. More recent methods
have used feature learning, where features are algorithmically
identified from patterns in the data. The cross-spatial feature
interactions and the cross-scale information complementarity
(SISC) [49] method uses the ResNet CNN to analyze under-
water images at different resolutions to compute a quality
score. Prior-based underwater enhanced IQA (PBUIQA) [50]
uses a convolutional neural network (CNN) to estimate ambi-
ent light, water depth, absorption, and scattering coefficients,
as well as the object-camera distance map from a raw image
to assess the quality of the color image obtained after color
correction.

Many underwater IQA algorithms assess the quality of
images after color correction, rather than raw images [43],
[44], [45], [46], [47], [48], [49], [50]. This leads to a coupling
between raw image quality and the performance of the color
correction algorithms, which is undesirable for real-time
applications where the aim is to maximize the quality of
raw data being acquired. Many algorithms are also geared
toward the typical scenes a diver would photograph; often
naturally lit and taken from oblique perspectives with an ani-
mal or object as its subject. However, images acquired using
AUVs typically look vertically down on the seafloor and
are illuminated using vehicle-mounted strobes. Such images
may also lack distinct objects, showing just the substrate
of the seafloor. This makes many established IQA methods
unsuitable for systematically obtained wide-area photograph
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surveys. In addition, marine snow increases the measured
contrast and spectrum of intensities in artificially lit images,
raising the issued score of many published methods, even
though it degrades the quality of seafloor imagery.

To address these challenges, a simple but robust algorithm
was developed that works with downward-looking raw
strobed and laser scan seafloor imagery. It aims to express
image quality information such as images with a few bytes
of data. We demonstrate its use when sent via satellite com-
munication along with filtered navigation data to provide
sufficient information for making informed decisions for
AUV piloting. Baseline data was collected using the ALR
AUV equipped with the BioCam seafloor imaging system
during the DY152 cruise in the Celtic Sea in July 2022 [12].
The image assessment algorithm was first used to inform
decisions on a shore-launched science campaign as part of
the AT-SEA project in September and October 2022 in the
North Sea, where two decommissioned oil exploration sites
and one MPA were mapped. The campaign comprised two
deployments of the same setup as during the DY152 cruise,
each lasting approximately ten days, covering a total distance
of over 1000 km with no support vessel.

In the remainder of this article the image quality metric
is described in Section II and data postprocessing algorithms
are explained in Section III. The seafloor mapping device and
AUV used to demonstrate the effectiveness of the proposed
image metric are introduced in Section IV, along with details
on the software integration and the data flow. Results from the
21-day shore-launched campaign are provided in Section V,
followed by a discussion and conclusion in Section VI.

II. IN SITU IMAGE QUALITY METRIC
A. CONSIDERATIONS OF LIGHT PROPAGATION IN
WATER
The limiting factor for the quality (and so largest range) of
strobe-lit underwater images is typically backscatter, which
is optical noise from light scattered toward the camera in the
volume of water where the camera’s field of view (FOV) and
the light cones from the strobes overlap, as shown in Fig. 1.
Scattering occurs when light interacts with water molecules
or suspended particles, where the latter can have a much
larger contribution to the total amount of scattering. This is
typically the case in waters near continents where particle
density is high due to sediment influx from river run-off,
industrial discharge, or ship traffic in shallow waters. Light is
scattered in all directions, at varying proportions depending
on the particle size and wavelength. For imaging applications
the impact is threefold: Light scattered out of the light source-
object-camera path (out-scatter) does not reach the camera
and so leads to a reduction in the direct signal. Light scattered
toward the camera before reaching the seafloor (backscatter)
is added to the image of the scene, appearing as haze or
fog; or bright spots if reflected off large particles of marine
snow. Light scattered at small angles (forward scatter) also
contributes to the image of the scene, however, due to the

FIGURE 1. Illustration of various paths that can be taken by
emitted light from an underwater strobe or a sheet laser to the
lens of a camera. The rays from the direct light path project the
underwater scene on the camera sensor, whereas backscatter
adds spurious light, reducing the signal-to-noise ratio of the
image. Backscatter occurs where the camera’s FOV and the
volume illuminated by a light source overlap. The orange
hatched area marks the overlap of the camera’s FOV with the
light cone of a strobe and the purple area shows the overlap
with the volume of water illuminated by a sheet laser.

change in direction of the light path it blurs the image. From
that follows the image formation model for the irradiance at
the camera [51]:

Etotal = Edirect + Eforwardscatter + Ebackscatter. (1)

While blurring from forward scattering limits the achiev-
able optical resolution and can impact the performance of
high-resolution camera systems, the reduced signal-to-noise
ratio from the decreased direct signal compared to haze from
backscatter is the more limiting factor for most imaging
systems unless the water turbidity is very low. The intensity
of the direct signal decreases with increasing distance to the
seafloor due to absorption and out-scattering inwater, but also
due to the spreading of light according to the inverse square
law.

Underwater laser scanners, where a laser line is projected
onto the seafloor and observed from a camera separated by a
certain distance, are also subject to the effects of scattering.
However, because of the smaller overlap of the camera’s FOV
with the laser light sheet as opposed to the light cone in the
case of strobed photographs (see Fig. 1), the relative amount
of backscatter is significantly smaller. For setups where both
types of images are taken sequentially, strobed images are
more sensitive to environmental factors, and so constrain the
maximum altitude from which sufficient quality data can be
acquired.

B. DEFINITION OF METRICS
To estimate the image quality, we propose a laser projec-
tion image-derived quality metric. We assume that the line
laser projector(s) is/are aligned with the camera as shown in
Fig. 2(a), so that the laser line projections appear as horizontal
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lines across the images when scanning a flat area of seafloor.
Because turbidity affects the laser line images mainly through
out-scatter and less through backscatter, the brightness of
the laser line is representative of the water turbidity and
reflectivity of the seafloor. It is therefore an indicator for the
expected quality of strobed images, as well as the laser line
images themselves that can be acquired by a given system
andmapping altitude. In contrast to optical backscatter (OBS)
point turbidity sensors, the proposed method measures the
direct rather than the backscattered component of light reach-
ing the sensor. Although these properties are related, they
depend on the particle size, which is normally not known.
In addition, OBS sensors do not take the reflectivity of the
seafloor into account, which also influences the signal-to-
noise ratio in seafloor photographs.

We define the quality score for the laser-projection-based
underwater IQA (LUIQA) as the maximum value in a region
of interest (ROI) covering the entire height and the central d
pixel columns in an image of a raw (unprocessed) laser line
projection image Ilaser

q = max
u∈

[
w−d
2 ,w+d

2

]
∀v

(Ilaser (u, v)) (2)

where w is the width of the image (aligned with the
across-track direction of the vehicle), d is the width of the
ROI, and u and v designate the pixel coordinates across and
down relative to the top left corner of the image, as shown
in Fig. 2. While the vertical position of the laser line in the
images depends on the vehicle altitude and the bathymetry,
using the entire height of the image guarantees that the laser
line is captured (as long as it is not occluded, e.g., due to
steep terrain features). This provides a direct quality estimate
of laser images and indirectly also of strobed images taken
at roughly the same time (for the system considered in this
research there is a laser line image taken within 0.1 s for
every strobed image). However, the quality score does not
pick up on potential physical problemswith the strobed image
collection, such as saturation or failure of the strobes to trig-
ger. To convey this type of information for remote operations,
an engineering score e for strobed images is defined as

e = mean
u∈

[
w−d
2 ,w+d

2

]
∀v

(Istrobed (u, v)) (3)

where Istrobed is a raw strobed image, assumed to have the
same dimension as images of the laser projection.

While the ROI covers the entire height of the image, the
width is limited to the d columns in the center, as the area
below the vehicle’s axis is illuminated most evenly and so
leads to a uniform performance across different altitudes, and
reduces the computational load. The impact of the width of
the ROI on the quality measure was investigated using a set
of randomly sampled images acquired by the AUV-camera
system described in Section IV in the Greater Haig Fras MPA

FIGURE 2. Considered mapping system setup with examples of a
laser line image and a strobed image. (a) Configuration of
image acquisition system with the camera FOV shown in blue,
the laser projections in green, and strobes in yellow, as well as
an example of a monochrome image of the laser projections
and an example of a strobed color photograph (after debayering
and color correction). (b) Monochrome image of the laser line
projections with an ROI with d = 100 indicated in green and the
image coordinate system and dimension in brown. (c) Raw
strobed image (color image prior to debayering) with an ROI
with d = 100 indicated in green and the image coordinate
system and dimension in brown.
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during RRS Discovery’s DY152 cruise whilst maintaining
a constant altitude from the seabed. With the quality score
q defined as the maximum brightness inside the ROI, it is
designed to identify the brightness of a pixel showing the laser
line projection. If the ROI is narrow, the chances of particles
suspended in the water occluding the laser line projection are
increased. On the other hand, larger particles in the water can
also appear as bright spots in the image if they happen to be in
the plane illuminated by the laser, and in the camera’s FOV.
Widening the ROI increases the chances of picking up such
outliers. Fig. 3(a) shows that the quality scores are stable for
narrow ROI widths of around 10 pixels (i.e., covering 0.32◦

across), with outliers appearing increasingly for widths larger
than 100 pixels (i.e., covering 3.2◦ across).
As the engineering score e for strobed images is based on

the average brightness within the ROI, it is less sensitive to
outliers but as Fig. 3(b) shows, changing the width of the ROI
leads to a scaling effect. The reason for the reduction in the
mean brightness and so of the engineering score when widen-
ing the ROI is that lens vignetting causes the brightness of
the images to fall off with increasing distance from the center
of the image. However, the shape of the result is the same
within a reasonable approximation, and as long as the same
ROI width is used for reference and real-time collected data,
the conclusions that can be drawn are not affected. For these
reasons, the width d of the ROI was set to 10 pixels for both
types of score, as it reduces the probability of picking up
bright outliers in the laser line images while also being robust
against occlusions and keeping the computational load low
for real-time computation.

While the strobed images are in general uniformly illu-
minated, the laser line projections are narrow visual features
originating from a point source. This makes them susceptible
to occlusions, e.g., due to fish or large particles in the water
column blocking part of the light path, or terrain features
obstructing the view of the camera onto the laser projection.
Such occlusions often only affect part of the laser projection.
By applying the maximum operator on the entire ROI, the
score picks up on the unobstructed part of the laser line in
the event that part of it is blocked, whereas a measure using
an averaging operator (e.g., mean-of-maximum-per-column)
would lead to conflating brightness values from obstructed
and nonobstructed areas. While it can still happen that the
laser projection is not visible at all or an object in the water
column leads to a bright spot inside the ROI, the unexpectedly
low or high scores would stand out clearly as outliers in a time
series and so could be ignored by operators.

C. REFERENCE SCORES
Reference data from two locations in the southwest
approaches with different water turbidities was collected with
the ALR-BioCam setup during the DY152 research cruise
in the Greater Haig Fras MPA with medium1 level of water

1For the sake of simplicity we refer to the different turbidities at the
surveyed sites discussed in this article as ‘‘low,’’ ‘‘medium,’’ and ‘‘high.’’
These are used as relative classifiers.

FIGURE 3. Quality and engineering scores for a set of images
using different widths d of the ROI used to compute the score.
(a) Image quality scores based on laser line images. (b) Image
engineering scores based on strobed images.

turbidity and South West Deeps (East) MPA with a low
level of turbidity. Fig. 4 shows the image scores from both
sites plotted against the image acquisition altitude above
the seafloor. For both types of scores there is a clear trend
for decreasing scores with increasing altitudes, as expected,
as light spreads and gets attenuated with increasing light path
length and so reduces the signal from the seafloor. However,
the level of turbidity strongly influences the rate at which
images degrade with increasing altitude, as is apparent in
the images from the different sites and which is correctly
reflected in the quality scores.Meanwhile, engineering scores
indicate that the strobes wereworking correctly, without over-
exposing the photographs, as all scores are well above readout
noise levels (approximately 300 for the cameras used), yet far
from saturation (65 535). Unlike the laser line image-based
quality scores, the strobe-based engineering scores are not
as distinctly different in water of different clarity, because
in turbid waters where the direct signal is lower, increased
backscatter adds to the average brightness.
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FIGURE 4. Quality and engineering scores from two different sites (medium turbidity: Greater Haig Fras MPA and low turbidity: South
West Deeps (East) MPA). The images below the plots show examples from four locations, where neighboring laser lines and strobed
images are from the same location. The enlargements of the strobed photographs show the varying levels of marine snow appearing
as blurred white or reddish spots, with a high density in image DS and lower densities in BS and CS. The sharp white spots in AS are
fragments on the seafloor, rather than floating particles.
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FIGURE 5. Examples of strobed color photographs taken under different conditions. The quality scores when these images were taken
were 502, 710, 1007, 2025, and 5020 (from left to right). The enlargements show decreasing levels of blurred bright spots from marine
snow with increasing quality scores.

The photographs in the bottom half of Fig. 4 show that
images taken at the same altitude (A and D) have vastly
different image qualities depending on the turbidity of the
water with sharp, bright laser line projections (A) and clear
views of sand ripples and shells in one location, but at the
same altitude in a different location faint blurred laser line
projections (D) and strobed images which are bright on aver-
age, but dominated by marine snow and turbidity throughout
the image. On the other hand, images taken from different
altitudes (B and C) but in waters of different clarity can be
similar in quality with intermediate brightness of the laser
line projections and strobed color images that despite some
marine snow appearing as bright dots, offer relatively clear
views of the seafloor. Hence the laser-based image quality
metric is an effective indicator of image quality for both
strobed and laser line illuminated images.

While the method generalizes to any seafloor mapping
system collecting laser projections and strobed imagery, the
correlation of image score to image quality is characteristic
for each setup. Based on the scores for the data collected
during the DY152 cruise, these values were determined for
the BioCam on ALR setup used to demonstrate the proposed
method. Fig. 5 shows strobed images with the corresponding
quality scores indicated. The figure shows that for values
around 500 the images are very turbid and so are not usable
to identify any objects or creatures in them. For values
around 700 structures can be recognized, in particular around
the center of the image, but marine snow is dominant. For
scores around 1000 structures such as sand ripples and
objects such as rocks are clearly visible across the entire
image. Small objects such as shells can be recognized, but
marine snow is also present, in particular around the bor-
ders of the image. For scores around 2000 structures and
objects are well visible across the entire image, with some
marine snow. For scores around 5000 and above images are
clear with negligible effects of turbidity. The images in the
figure were color corrected with the algorithm described
in Section III-B.

III. DATA POSTPROCESSING
A. GENERATION OF DIGITAL 3-D RECONSTRUCTIONS
OF THE SEAFLOOR
While images are assessed for quality in real-time, they are
processed to generate data products in postprocessing. The
algorithm described in [8] is used to generate digital 3-D
reconstructions of the scanned seafloor based on the laser line
and the strobed color photographs. It uses the images of the
laser line projection to compute high-resolution bathymetry
and the shape of objects on the seafloor, and therefore relies
on the line projections being sufficiently clear. After con-
verting the raw strobed photographs to color images with
the algorithm described below, they are used to map the
color information to the 3-D reconstruction of the seafloor.
While the algorithm itself does not depend on the quality
of the strobed color photographs, it is important for users
of those reconstructions that the strobed photographs are of
sufficient quality for organisms, objects, and properties of the
seafloor substrates to be discernible in the texture maps that
the algorithm generates.

B. COLOR BALANCING OF STROBED PHOTOGRAPHS
The color images are debayered, attenuation corrected and
color balanced based on the method described in [52].
It applies the gray world assumption over the entire image
dataset while accounting for the individual distance to the
seafloor for every pixel using the 3-D reconstructions to
compensate for wavelength-dependent attenuation over the
distance the light has traveled in water.

C. AUTOMATIC CLASSIFICATION OF STROBED IMAGES
In order to automatically classify the mapped areas into
areas of the same types of substrate, demersal communities,
or areas with similar types of artificial objects, the color pho-
tographs are classified using the algorithm described in [9].
It ingests the color-balanced seafloor photographs and is
tolerant to limited amounts of image noise, but its ability to
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reliably classify images degrades if the quality of photographs
that it is presented with decreases. The algorithm identifies
clusters in the latent space representation of the images result-
ing from applying a CNN, and based on this prompts the user
to label a number of images that allow it to best delineate
the boundaries between classes of similar images. Provided
with this information it trains a kernel support vector machine
(SVM) with a radial basis function (RBF) to assign labels to
all images based on their latent space representation [53].

IV. SEAFLOOR MAPPING DEVICE AND AUV
A. BioCam
The seafloor mapping device ‘‘BioCam’’ described in [30]
with specifications noted in Table 1 and pictured in Fig. 6
was used to demonstrate the algorithms. It consists of a main
housing, two LED strobes, two sheet lasers, and a laser safety
float switch. It is designed to be mounted to an AUV sup-
plying power and communication for sending start and stop
commands, while strobed images and images of the laser line
projection are recorded internally. During data collection, the
lasers are triggered simultaneously at 10 Hz and the projected
lines are captured by a monochrome camera. The strobes are
triggered every 3 s and the images are recorded with both
monochrome and color cameras. During exposures when the
strobes fire, the lasers are not triggered to avoid the laser pro-
jections appearing in the strobed images. The high dynamic
range cameras make it possible to correct for strongly varying
lighting conditions in postprocessing without having to adapt
the exposure or gain during image collection. The duration
of both the strobes and lasers can be varied to adapt to
different operating conditions. BioCam communicates with
theAUV either via serial (RS232) communication or Ethernet
to receive commands, send status updates, and synchronize
clocks. The status update that is sent once a minute contains
the latest image scores, as well as the number of images,
current mode, remaining disk space, and CPU and camera
temperatures. This information can be used by the AUV,
or forwarded to AUV pilots during communication windows,
to ensure correct operation of the camera system and monitor
data quality.

B. AUTOSUB LONG RANGE
ALR is a class of ultralong range AUVs developed at the
NOC, that can operate for weeks to months in the ocean,
depending on their payload. There is a 6000 m depth-rated
variant, ALR6000, with up to two months’ endurance [18]
and a 1500 m depth-rated variant, ALR1500, with an
endurance of up to six months [19]. The vehicles are 3.5 m
long, 0.8-m diameter, and weigh approximately 1.2 tons. The
ALR6000 is built around two 0.71-m outer diameter forged
aluminum pressure vessels, the forward of which houses the
batteries and the aft contains the primary electronics. Sur-
rounding the pressure vessels is a polypropylene boat frame
skinned in a free-flooding glass-reinforced plastic fairing,
to provide a hydrodynamic shape. In the free flooding areas

FIGURE 6. BioCam setup on ALR. The main housing containing
the cameras and electronics is mounted centrally. Sheet lasers
and LED strobes are mounted one each at the front and the
back of the vehicle.

forward, aft, and between the pressure vessels there is volume
available for science payloads.

C. MECHANICAL INTEGRATION OF BioCam INTO ALR
BioCamwas integrated into the 6000m rated version of ALR.
The polypropylene boat frame was redesigned to permit the
BioCam camera unit to be installed centrally in the floodable
space between the two main pressure spheres, in order to
maximize the separation between the main housing and the
strobes and lasers. To maintain the stiffness characteristics
of the ALR replacement and additional syntactic foam was
designed to counteract the low-slung mass of the BioCam.
Bespoke hydrodynamic fairings were produced to minimize
drag penalties associated with the installation of the BioCam.
In addition, an ADCP was mounted in a forward-looking
configuration, to provide information on terrain in front of the
AUV. Fairings installed between the forward-looking ADCP
and the forward strobe assembly, on the ALR abort drop
weight, and a Perspex cover over the rear strobe reduce the
total drag by almost 10%, compared to not having the fairing,
which is important to enable large range deployments to be
planned with the desired contingency margin.

With a minimum hotel load, the 6000 m rated ALR has
a range of up to 1800 km and an endurance of two to three
months. Equipped with BioCam these values are reduced, but
by turning BioCam on only when ALR has reached the area
of interest, mapping sites several hundred kilometers from the
launch and recovery location can be reached.

D. ALR ONBOARD CONTROL SYSTEM (OCS) AND
INTEGRATION WITH BioCam
The ALR OCS has been developed using the robot operat-
ing system (ROS) middleware [54]. It adopts a conventional
three-layer control architecture, comprising of a supervisory
layer consisting of a mission executive, a mission layer
responsible for converting mission goals to instantaneous
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TABLE 1. BioCam specifications.

control demands, and the vehicle layer which performs
real-time control and communicates with hardware devices.

ALR has been developed to support a range of science
applications and has been successfully operated both from
research vessels and launched from shore. To support this
variety of operating modes the vehicle is equipped with three
communication channels, WiFi for near operator command
and control (C2) on the surface, acoustic communications for
near operator C2 subsurface, and Iridium satellite commu-
nications for over the horizon C2 when the AUV is on the
surface utilizing Iridium short burst data (SBD) messages.
Iridium SBD messages are utilized for satellite communica-
tion because of their short transmission time, which makes
them robust for AUVs operating in rough conditions where
antenna wash over is a regular occurrence. However, reliance
on SBDmessages for over-the-horizon operation does restrict
the available bandwidth; the ALRs 9522B modem provides
1860 bytes uplink and 1920 bytes downlink in a single mes-
sage. For each communication method the human–machine
interface is provided by the Oceanids C2 system [55].

Across all communication channels, four distinct message
types are currently supported. While designed primarily for
the Iridium channel, the size of the message can be tailored
to match the available channel constraints as follows.

1) Instant Commands (Uplink): Used to manage payload
power and settings and trigger specific preprogrammed
behaviors (e.g., ‘surface,’ ‘stop’ or ‘abort’).

2) Mission Scripts (Uplink): Contain a sequence of
maneuvers that the AUV will conduct sequentially.
Typically a mission script will comprise of a dive,
followed by a sequence of tracks defining a trajectory
between two waypoints for the AUV to traverse at a
specific depth/altitude followed by a surface maneuver.

3) Status Messages (Downlink): Status messages provide
an instantaneous snapshot of the AUVs state includ-
ing parameters such as the pose of the vehicle or
the distance to the current target during a mission.
A limited amount of space can also be used to send
deployment-specific payload data. Status messages are
transmitted periodically by the vehicle on all the avail-
able channels (WiFi, acoustic, and satellite), with an
independently configurable transmission period and
content for each channel.

4) Mission Summary (Downlink): This message is auto-
matically generated and sent on completion of a
mission. As the name suggests, it provides a summary
of the behavior of the AUV during a mission, and one
of its main aims is to provide the operator with a quick
and effective means to assess the performance of the
vehicle during amission when piloting over the horizon
(i.e., when access to the complete onboard logs is not
available). Mission summaries contain both statistics
of engineering and payload data collected throughout
the whole mission (such as the maximum depth or the
average battery voltage), and an additional series of
statistics computed over smaller time intervals obtained
by subdividing the total mission into 54 sections of
equal length. The number of sections was determined
to maximize the data slices that can fit into a single
Iridium message, which together offer a sufficiently
fine-grained resolution for simple remote analysis of
the vehicle behavior. Both the average and minimum
altitude in each section are transmitted to facilitate
efficient assessment of the safety of low-altitude map-
ping operations. The altitudes are encoded in a custom
format where the resolution is dropped to 10 cm, which
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FIGURE 7. Flow of information for image scores transmitted via
summary messages.

is sufficient for safety-relevant assessment, but reduces
the number of bits occupied in the transmitted bit-
stream. Fields are reserved to enable the integration of
deployment-specific data. On missions where BioCam
is used, these fields are populated with the latest Bio-
Cam image scores for each of the 54 time windows.
These are retrieved from the logged scores that BioCam
sends to ALR once per minute throughout the mission,
and transmitted with the other vehicle data, as illus-
trated in Fig. 7.

E. OVER HORIZON OPERATION OVERVIEW
During operations, the AUV is programmed to carry out a
mapping dive, where the mapping altitude is set by identify-
ing the most suitable tradeoff between the swath-width of the
camera’s FOV and resolution per pixel for the mission, fac-
toring in expected visibility but also vehicle safety to ensure
the AUV does not collide with the seafloor or objects on it.
If after the dive the spread of the image scores received via
satellite communication is at satisfying levels compared to the
reference scores in Section II-C and the minimum altitudes
are close (within approximately 0.5 m) to the set altitude, the
following dives can be carried out with the same settings.
However, if the image quality scores are low, the mapping
altitude may be lowered for the next dive, if there is sufficient
margin in the altitude keeping and other information about
the dive site suggests it is safe to do so. On the other hand,
if the altitude data shows unexpectedly low values or if image
scores suggest lighting hardware failure, the AUV may be
sent back to shore early for analysis of the full data.

FIGURE 8. AUV track of the two-legged deployment out of
Lerwick, Shetland. The crosses indicate where the AUV was at
0:00 of the indicated date (month-day in 2022).

V. RESULTS
In September and October 2022, ALR-BioCamwas deployed
on two shore-launched deployments from Lerwick on Shet-
land, U.K., to monitor two decommissioned oil extraction
sites and one MPA. The aim of the campaign was to
demonstrate gathering data for environmental monitoring of
offshore sites without a support vessel. The survey areas were
up to 170 km from the launch site. The campaign was split
into two legs, where the surroundings of the decommissioned
rig at the North West Hutton oilfield were visited on the first
leg and the decommissioned production site at the Miller
oilfield, as well as the Braemar PockmarksMPA in the second
leg, as shown in Fig. 8. Multiple dives were carried out at
each decommissioned site, between which ALR transmitted
data via Iridium SBD packages while at the surface. Dives
were planned based on multibeam echosounder (MBES)
bathymetry maps collected during a survey by MRV Scotia
operated byMarine Scotland Science in June 2021 and charts
provided by BP. Since artificial structures still protruded from
the seafloor in the areas of interest, missions were initially
planned with a mapping altitude of 5 m above the seafloor.
This was relatively high considering the expected visibility at
the sites, but was set to minimize the risk of the AUV getting
stuckwith no ship in the vicinity to track the vehicle’s position
underwater or salvage the AUV.

After being towed out of the harbor by a small boat, ALR
transited at 30 m depth at an in-water speed of between
0.5 and 0.6 m/s toward the dive sites, and surfaced once per
day to obtain a GPS fix, report telemetry to the pilots and
take updates for the next waypoint. On leg 1 of the campaign,
it reached the remains of the North West Hutton oil plat-
form after four days. After completion of the first 12-h long
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FIGURE 9. Plot of navigational data and image scores transmitted by the AUV over satellite communication and full data downloaded
postrecovery of the vehicle. The enlargement on the left shows details of the first dive at the NW Hutton site and the enlargement on
the right data from the three dives at the Miller site.

mapping dive (M78), the mission summary containing the
subsampled BioCam image quality and engineering scores
as well as telemetry data of the AUV was transmitted by
satellite communication, shown in the enlargement at the
bottom left in Fig. 9. The telemetry data showed good altitude
keepingwith theminimum recorded altitudeswithin expected
bounds, giving confidence in the performance of the AUV.
The image scores showed that the lasers and strobes were
working fine, but that the image quality was below ideal
levels. If possible, the mapping altitude would be lowered in
such a case. However, because of the presence of artificial
objects protruding vertically from the seafloor in the area, the
same mapping altitude was kept for the remaining dives at
that site (M79–M82) for safety reasons.

After successfully completing all three planned grid map-
ping dives, ALR returned to Shetland after 8 days and
18 hours of continuous operation and 453 km of distance

traveled. It was recovered, recharged and the full AUV navi-
gation and BioCam imagery data was downloaded. Fig. 10(a)
shows the image quality scores transmitted via satellite com-
munication while at the site, which are consistent with the
scores from the full dataset downloaded after recovery of
the AUV. It also shows that for a given mapping altitude
the quality scores are in general lower than for the medium
turbidity reference data and significantly lower than those
for the low turbidity reference data. Water turbidity at a
given location changes due to influences such as weather and
tidal currents, which explains why the average quality scores
change between dives despite the dive sites and the data
acquisition altitudes being the same. The full AUV navigation
data were also downloaded, which showed good altitude
keeping throughout all dives, confirming what the heav-
ily downsampled data transmitted via satellite had already
indicated.
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TABLE 2. Statistics of ALR-BioCam dives. NWH: North West Hutton, MIL: Miller, BPM: Braemar Pockmarks MPA.

FIGURE 10. Laser image scores for two sites mapped during the
INSITE AT-SEA deployment. The crosses are the values
transmitted via satellite communication, with the larger crosses
indicating their average. The dots are the full data downloaded
postrecovery of the AUV. (a) Scores from three dives at the NW
Hutton site. (b) Scores from three dives at the Miller site.

ALR-BioCamwere then deployed on the second leg where
they first mapped another former oil exploration site at the
Miller oilfield, before mapping several transects in a single

dive in the Braemar Pockmarks MPA. At the time of deploy-
ment a large storm with predicted 100 km/h wind speeds
and 7 m wave height was approaching Shetland. The AUV
was deployed before the weather window shut while the sea
was still calm and programmed to head toward the survey
site, but to stay at depth while the storm passed. The dark
blue shaded area in Fig. 9 highlights the time window of
the storm, with the depth-below-sea surface measurements
varying slightly during this period, due to the large waves
at the surface. The summary of image scores received via
satellite communication after the first dive (M93) from an
altitude of 5 m at Miller shown as blue crosses in Fig. 10(b)
again reported lower than ideal image quality scores. As the
navigation data confirmed reliable altitude keeping, with
the lowest recorded distance over ground consistently larger
than 4.4 m as the purple markers for dive M93 in Fig. 9,
the mapping altitude was set to 4.6 m for the second dive
(M94) and to 4 m for the third dive (M95) at the site. While
the first reduction in altitude did not lead to a noticeable
difference in reported image quality, which could be due
to small changes in the water turbidity, the second, bigger
reduction in altitude led to a clear improvement as the pink
markers in Fig. 10(b).
ALR was then piloted to a third site, Braemar Pockmarks,

where it conducted another dive (M97), mapping at a 5 m
requested altitude. The AUV ended the dive early, and the
satellite transmitted data showed the AUV had flown below
the minimum acceptable altitude for longer than the 10 s
persistence triggering an early surface, which, as became
clear after downloading the data postrecovery, was due
to the sudden change in topography at a deep pockmark.
The satellite-transmitted compressed navigation data showed
good altitude keeping and performance up until the sudden
altitude underrun. The limited data at the spatial and temporal
resolution that could be transmitted by satellite communi-
cation did not provide sufficient detail to remotely identify
the cause of the unexpected behavior and no further dives
were conducted at the site, as per the protocol outlined in
Section IV-E. ALR was piloted back to Shetland where it was
recovered after having covered 560 km in 12 days and 19 h
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TABLE 3. Comparison of transmitted image scores to those logged on the device.

FIGURE 11. Top view of the reconstruction of the Miller dive site with strobed color photographs from different altitudes (5 m: dive
M93, 4.6 m: dive M94, and 4 m: dive M95) showing the same areas. There is a clear reduction in image noise and improvement of
image detail in the photographs taken from the lower altitudes, which is reflected in the image score.

and conducted four dives, on top of the five dives from the
first leg, as listed in Table 2, bringing the total mapped area
to over 89 hectares.

Table 3 shows the means (µ) and standard deviations (σ )
of the quality and engineering scores when the AUV was at
depth during the main mapping dives (not including M79
and M81, which were transits between grid-survey areas).
The Student’s t-test values (t) show that the distributions
of the transmitted score samples align with the distributions
of the much larger number of scores logged on the device.
Although the standard deviation of the transmitted score
samples is in general higher than for the logged scores, this
is expected, as the standard deviation decreases with the
increasing number of samples. While a narrow distribution of

image scores implies uniform conditions, a high variance is
indicative of diverse seafloor cover ormultiple substrate types
that are well visible in the camera images. For example, scat-
tered shells on a silty seafloor as observed at the Miller site
(see Fig. 11) can lead to this. This effect is more pronounced
for the quality score, as only a small area of the seafloor is
illuminated by the sheet laser, and the presence or absence
of bright objects in this area has a significant influence on
the score for a particular image. It is also more pronounced
in clearer imaging conditions, as turbidity has the effect of
lowering the image contrast. Provided that the transmitted
scores show no obvious signs of outliers, its average score
is therefore a reasonable indicator even when the variance is
relatively high.
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FIGURE 12. Three-dimensional reconstruction of the seafloor at the North West Hutton site mapped during dives M78 to M82 with
texture and microbathymetry maps at different zoom levels. The image in the center at the top shows the georeferenced classification
of the seafloor photographs and the pie chart to its right the portion of each class within the mapped area for different distances from
the former location of the platform.

Fig. 11 shows a top view of the reconstruction of the
Miller site generated based on the data from the three dives
at the site, generated from the full data downloaded after
recovering the AUV. Photographs taken of the same location
from different mapping altitudes show the change in image
quality reflected in the level of detail visible and the amount
ofmarine snow in the final processed images, highlighting the
importance of ensuring the raw collected data is of sufficient
quality.

While the strobed color photographs from the NW Hut-
ton dive site suffered from higher levels of noise than at
the Miller site, its strong visual features, including artificial
structures, pipes, and large organisms found at the site are
clearly discernible also in the less optimal conditions as
shown in Fig. 12. In addition, the 3-D relief of the seafloor
and the objects on it was more pronounced and was mapped
by the laser line-based 3-D reconstruction algorithm in high
detail, virtually undisturbed by the higher level of turbidity,
as the laser line images are less affected by it. The 3-D

reconstruction shows a guide base from the decommissioned
oil and gas infrastructure, as well as several tens of meters of
pipes, but also scores of ∼1-m length common ling (Molva
molva) nesting in the area. While it is not obvious from the
photographs alone, the 3-D reconstruction shows that the fish
live in burrows with diameters up to 1.5 m and depths of up
to 20 cm. Other features observed at the site were boulders
from rock dumps, discolored sediments, and seafloor cables,
among others.

As an example of automated information extraction from
mapping data, the algorithm described in Section III-C was
used to automatically classify the seafloor photographs. The
georeferenced results are shown at the top-center of Fig. 12
with representative images for each class shown below. This
enables further data analysis and statistics of the mapped
area. The pie chart in the top-right of the figure shows an
example where the relative distribution of identified classes
at different distances from a point (in this case the former
location of the oil platform) are identified. Data is split into
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TABLE 4. Comparison of data volume and theoretical transmission time and associated energy consumption per image for different
formats. The JPG and JPEG XL data sizes were determined for a quality setting of 40, and the BPG data size for a quality setting of
30 applied on the set of images from the DY152 cruise. The transmission times assume Iridium SBD messaging with one 1960 B SBD
message being sent every 20 s (an optimistic estimate in ideal conditions). The associated energy consumptions assume a power
consumption of 10 W for the satellite modem and do not account for the power consumption of any other sensors or actuators.

bands of distance, each of which covers a range of 400 m
and is represented by one ring of the chart. The orange
and light green classes, which both represent sediments, are
dominant in the entire mapped area, but closer to the former
location of the platform the algorithm identified a signifi-
cantly higher ratio of images belonging to the black class
representing discolored sediments, as well as images belong-
ing to the blue and turquoise classes, representing boulders
and man-made objects such as pipes, respectively. It has
previously been shown that the ability of CNN-based image
classifiers to correctly label data degrades with increasing
image noise [56], [57], [58]. This highlights the importance
of quality-controlling the imagery during data collection to
generate this kind of results.

During the 21-day-long campaign covering 1013 km in
total, the AUV consumed 21.3 kWh of battery power, cor-
responding to approximately the energy contained by 2 L
of diesel. An equivalent survey deploying an AUV from
a research vessel (2000–4000-ton class) would complete
the survey faster, approximately five days including transit
between sites provided the weather conditions are favorable,
but at the same time would use in the order of 10 000 L
of fuel per day [59] to power the ship. The shore-launched
deployment reduced the fuel consumption andCO2 emissions
by approximately three orders of magnitude, and while this
reduced the ability for real-time data assessment, the satellite
transmitted stats were sufficient to make the correct mission-
critical decisions.

VI. CONCLUSION AND DISCUSSION
Data from the 21-day-long seafloor mapping campaign
demonstrates how the image quality score defined in
Section II and forwarded to AUV pilots via the workflow
explained in Section IV provides a robust way to make
informed over-horizon operational decisions for following
dives to acquire raw data in the quality suitable for extracting
usable and useful information in postprocessing. The pro-
posed measure adds minimal computation overhead and a
small amount of payload data that needs to be transmitted via
satellite communication, but provides sufficient information
to adjust mission parameters and at the same time provides
information about the correct functioning of lighting and

cameras. As the algorithm directly works on the raw images,
it does not conflate the image quality with the performance of
the image reconstruction algorithm or its parameters. Com-
pared to transmitting compressed or uncompressed images,
the image scores reduce both the time an AUV needs to spend
at the surface for transmitting data, as well as the energy
consumed for that, as shown in Table 4. AUV mission plan-
ners and pilots take many factors including vehicle dynamics
and sensor properties into consideration for balancing the
quality and amount of collected data with potential risks to
the mission. The in-field vehicle performance details and
payload data quality information provided by the proposed
method delineate how well this balance is kept. It assists
remote piloting of AUVs by providing the necessary feed-
back for making informed decisions, which with traditional
approaches to AUV surveys used to be available only after
recovery of the vehicle. It enables multiweek offshore cam-
paigns without a support vessel to collect similar quality data
as previously done on surveys with a research ship to support
AUV operations.

Collecting data in the North Sea at sites up to 170 km from
the launch site without a support vessel led to significant sav-
ings of fuel and emitted greenhouse gases, as well as reducing
operational logistics and cost. In addition, the AUV could
be deployed despite a large storm approaching and make
progress on its way to the survey site without being affected—
by staying at depth during the time window when the storm
passed, something that would not be possible with a small
surface vessel. To the best of our knowledge, this was the first
time that a former offshore drill site had been visuallymapped
without a support vessel. The collected imagery gave valuable
insights on the distribution of seafloor organisms, infrastruc-
ture, and seafloor sediments in themapped areas. Acting upon
the transmitted scores led to a clear improvement of the raw
data, reflected in the clarity of the processed images from
the Miller site, where the transmitted data after the first dive
showed good vehicle performance, but flagged low image
quality. The decisions taken by the AUV operators based on
this led to the collection of better raw data and ultimately to
higher quality output from the survey. While the method has
been demonstrated with sheet lasers, it could potentially also
be applied in a similar fashion on camera systems with laser
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pointers, such as scaling lasers. However, the narrower beam
would make it more susceptible to occlusions, and further
studies would have to be conducted to determine potential
applications.

Pressure to save costs and to progress toward the net
zero goals motivate the development of noninvasive, eco-
nomical, and environmentally sustainable survey practices.
While these are not likely to fully replace traditional survey
methods, increasing the range of ship-free data acquisition
methods that can gather useful information can reduce the
duration or frequency of traditional surveys. While satellite
communication has seen the coverage and communication
speed increase, the significantly higher data acquisition rate
(8.3 MB/s for the system used in this research) compared to
satellite transmission rate (1.1 kB/s for the system used in
this research) for compact, deep dive compatible antennae
means that full, uncompressed data cannot be transmitted in
the foreseeable future and methods for compressing data will
continue to play an important role. The proposed method also
has potential real-time applications where the AUV could
change the altitude or lighting and camera settings as a func-
tion of the returned score, without the human in the loop.
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