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Abstract

This paper proposes a novel test for the hypothesis of economic convergence. We ex-

tend the standard definition of convergence based on the parity condition and say that two

economies converge if the time series of economic output are positively cointegrated and

cotrended. With this definition in place, our main contribution is to propose a test of pos-

itive cointegration that does not require estimation of the cointegrating relationship, but

is able to differentiate between positive and negative cointegration. Once the possibility

of positive cointegration is established in a first stage, we test for cotrending in a second

stage. Our sequential proposal enjoys an excellent performance in small samples due to

the fast convergence of our novel test statistic under positive cointegration. This is illus-

trated in a simulation exercise where we report clear evidence showing the outperformance

of our proposed method compared to existing methods in the related literature that test for

economic convergence using cointegration methods. The results are particularly strong for

sample sizes between 25 and 50 observations. The empirical application testing for economic

convergence between the G7 group of countries over the period 1990-2022 confirms these

findings.
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1 Introduction

One of the main areas of interest in economic growth theory in the last decades is the study

of the differences in economic output across regions and over time. This topic, that has been

broadly labeled as economic convergence, has several interpretations and definitions, see Durlauf

et al. (2009). Thus, β−convergence, see Baumol (1986), DeLong (1988), Barro (1991), and

Mankiw et al. (1992), refers to the concept of catching up. This notion is tested using cross-

sectional regression analyses and tries to disentangle whether initial levels of income per capita

are inversely related to subsequent growth. A second notion is σ−convergence, that refers to the

decrease in the dispersion of income per capita across economies over time. Regression-based

studies on this type of convergence are proposed in Friedman (1992) and Cannon and Duck

(2000), among many others. This literature connects with a statistical approach to convergence

based on time series analysis. Bernard and Durlauf (1995, 1996) were the first to define cross-

country output convergence in terms of the limit of expected output gaps. These authors

propose two definitions of convergence which directly focus on the transience or permanence

of contemporary output differences. Based on these definitions, these authors propose testing

for cross-country convergence using cointegration techniques and focused, in particular, on

testing the stationarity of the output gap, see also Pesaran (2007). In this setting, the absence

of economic convergence is due to the presence of (deterministic or stochastic) trends in the

output gap.

A suitable regression approach that captures both scenarios is the Augmented Dickey-Fuller

(ADF) test for trend stationarity. The hypothesis of convergence is tested through the com-

posite hypothesis of stationarity of the output gap and the hypothesis of cotrending of the

deterministic components. Pesaran (2007) tests these hypotheses sequentially with the unit

root hypothesis being tested first and, once rejected, the second stage consists on testing the

statistical significance of the time trend. An interesting alternative proposed in Silva-Lopes

(2016) is to use the ADF test without linear time trend. This idea takes advantage of the re-

sults in Perron (1988) and Campbell and Perron (1991) showing that the ADF test with only an

intercept in the set of deterministic regressors has power that goes to zero (as the sample size T

increases) in case the output gap is a trend stationary process. Thus, under trend stationarity,

the ADF test does not (wrongly) reject the null of unit root. Then, rejection with this ADF

test is informative about economic convergence, which makes unnecessary the second step of

Pesaran (2007). Note that, however, this approach does not allow us to identify the reason

behind the lack of economic convergence (presence of a unit root or trend stationarity of the

output gap).
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These tests of economic convergence are, however, invalid if the definition of convergence is

extended to accommodate the existence of common trends and not only the parity condition

in the relationship of log per capita output across economies. In these cases, the cointegration

relationship between the output variables needs to be estimated and the critical values of the

ADF tests need to be corrected for the presence of estimation effects and/or deterministic trends,

see Phillips and Ouliaris (1990) and Hansen (1992). In this context, a suitable method to test for

economic convergence is developed in Hansen (1992). This author extends the work in Phillips

and Ouliaris (1990) by deriving the asymptotic critical values of two classes of cointegration

tests under the presence of deterministic components in the unit root processes and cointegration

equation. The unrestricted version of Hansen’s (1992) approach estimates simultaneously the

coefficients associated to the deterministic and stochastic trends. Cointegration is tested through

the stationarity of the residuals and cotrending through the statistical significance of the trend

coefficient using a t-test based on a fully-modified ordinary least squares (FM-OLS) estimator

of the corresponding trend parameter. Note, however, that tests based on the hypothesis of

cointegration are necessary, but not sufficient, to test for the presence of economic convergence,

which also requires that the time series of economic output commove by means of a positive

cointegration parameter (or coefficients of the cointegrating vector with different signs). It could

be argued the graphical inspection is informative about the type of cointegration (positive or

negative), but the presence of common deterministic characteristics (for example upward trends)

might lead to an erroneous conclusion. In this sense, a formal procedure able to differentiate

both cases appears to be relevant.

We propose an alternative methodology to test the hypothesis of economic convergence which

takes into account the positive nature of the possible cointegrating relationship. Also, our test

for positive cointegration is not based on OLS residuals, therefore avoiding the normalization

issue, that is the choice of dependent variable in the regression from which residuals are obtained.

This user-chosen normalization is critical in residual-based cointegration testing.

Our approach is sequential as in Pesaran (2007); we first focus on testing for the presence

of a positive cointegration relationship between the time series of economic output under the

possible presence of idiosyncratic deterministic components. If there is positive cointegration,

in a second step, we test for the presence of a common deterministic trend between observables.

The main idea behind the first step of our method is to exploit the distinct behavior of the

empirical correlation coefficient between two unit root processes under positive, negative or

trivial cointegration, or under absence of cointegration (see, e.g., Johansen, 2012). In the first

scenario, under general conditions, the sample correlation tends to 1 (in probability) as T → ∞;
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in the second, it tends to −1; in the third, it tends to 0; finally, under no cointegration, the

sample correlation converges in distribution to a particular random variable.

Interestingly, our proposed test statistic, which is a simple linear function of a sample cor-

relation, does not require estimation of the cointegration relationship. Thus, an important

advantage of the proposed procedure compared to residual-based cointegration tests is that the

test statistic is invariant to the presence of serial correlation in the innovations, although, in

general, its limiting distribution is not pivotal, so critical values need to be approximated either

by a plug-in method or by bootstrap.

The performance of the proposed sequential method is assessed in finite samples in a Monte-

Carlo simulation study for a battery of unit root processes with innovations exhibiting mutual

dependence and serial correlation and it is compared to other methods proposed in the literature.

The empirical size and power of our proposal are very satisfactory, specially in sample samples

of 25 to 50 observations. In particular, the comparison with the unrestricted cointegration test

developed in Hansen (1992) shows clear advantages under general forms of dependence, but the

performance of our method is also comparable and even superior in some instances to Pesaran’s

(2007) test, which considers the cointegration coefficient to be known.

The small-sample differences in statistical power between the different cointegration methods

are also illustrated in an empirical application to GDP data from the G7 group of countries over

the period 1990-2022. The tests are applied to all pairwise combinations of the seven countries

plus an index containing the average output of OECD countries. The results empirically confirm

the lack of power of standard tests for small sample sizes, so the empirical evidence strongly

suggests absence of convergence between the GDP levels of major industrialized economies

during the last thirty years. These results contrast with the results of our procedure, which

are more favourable to the existence of economic convergence between countries with similar

economic systems.

The rest of the paper is organized as follows. Section 2 introduces our definition of economic

convergence based on the concept of common trends that extends conventional definitions based

on the parity condition. The section also reviews existing econometric methodologies to test for

economic convergence. Section 3 proposes a novel methodology to test for economic convergence

based on a test of positive cointegration that does not require estimating the cointegration

relationship. Section 4 presents an exhaustive Monte Carlo simulation exercise that studies its

finite-sample performance and is also compared against existing approaches to test for economic

convergence in the time series literature. In Section 5, we analyze the possibility of economic

convergence for the group of G7 countries using various approaches. Section 6 concludes. The
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proofs of the main results of the paper are in a mathematical appendix. Tables and figures are

collected at the end of the manuscript.

2 Convergence in output

This section adapts the definition of economic convergence based on the existence of common

trends in Bernard and Durlauf (1995, 1996). Our definition extends the conventional notion

of convergence based on the stationarity of the output gap. The section also reviews popular

approaches to test for economic convergence between pairs of economies.

2.1 Definition of convergence

Bernard and Durlauf (1996) and Pesaran (2007) derive an empirical representation of the dy-

namics of log per capita output from a stochastic neoclassical growth model. These authors

consider the problem of output convergence in a sample of n economies, and suppose that the

logarithm of per capita output of unit i at time t, xit, satisfies the following dynamics

xit = ci + πit+ λ′
ift + uit, (1)

with prime denoting transposition, where ∆ft = vt is a m × 1 vector of common components,

λi is the associated vector of factor loadings and uit is the idiosyncratic component, assumed to

be specific to unit i. For cross-country output convergence it is necessary that the idiosyncratic

components uit are stationary. Pesaran (2007) assumes that ft and uit are independently

distributed with zero means. Hobijn and Franses (2000) propose a similar specification for the

dynamics of log per capita output but consider a pair of innovations (uit, vt) that are covariance

stationary and allow for the presence of mutual and serial correlation between the innovations.

To illustrate the concept of convergence in time series, we focus on pairs of observables, x1t

and x2t. Clearly, if c1 = c2, π1 = π2 and λ1 = λ2, we obtain output convergence between x1t

and x2t as defined in Bernard and Durlauf (1995, 1996) and Hobijn and Franses (2000). This

relationship implies that the two economies are identical almost in every respect, including their

saving rates and initial endowments. In this case, x2t−x1t = εt, with εt = u2t−u1t a zero-mean

stationary sequence. Pesaran (2007) relaxes this definition of convergence and introduces the

idea of probabilistic convergence. The processes x1t and x2t converge if for some positive δ and

a tolerance probability ν ≥ 0,

lim
T→∞

P{|x2,t+s − x1,t+s| < δ| ℑt} > ν, (2)

at all horizons s = 1, 2, ...,∞, where ℑt is the information set at time t. We extend these

concepts of convergence as follows.
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Definition 1. The unit root processes x1t and x2t in (1) converge if there exists a positive

coefficient β such that x2t − βx1t is stationary in levels.

Thus, there is economic convergence if the dynamics of output have common (stochastic

and deterministic) trends and commove (β > 0).

2.2 Convergence tests

The empirical literature of testing for the presence of convergence in output has focused on

testing the stationarity of the output gap dt = x2t − x1t, see Bernard and Durlauf (1995,

1996) and Pesaran (2007), that consider different versions of the ADF test. In this setting, the

absence of economic convergence is due to the presence of a deterministic or stochastic trend in

the output gap. A suitable ADF test regression that captures both scenarios is

∆dt = c0 + π0t+ ρddt−1 +

p∑
j=1

γj∆dt−j + w
(1)
t , (3)

where ∆ = 1 − L, L being the lag operator, with c0 and π0 the parameters associated to the

deterministic components, ρd the autoregressive coefficient, p the number of stationary lags

required to remove the effect of serial dependence and γj the coefficients associated to the sta-

tionary components. The hypothesis of convergence is tested through the composite hypothesis

of stationarity of the output gap (ρd < 0) and cotrending of the deterministic components

(π0 = 0). Pesaran (2007) tests these hypotheses sequentially with the unit root hypothesis be-

ing tested first and, once rejected, the second stage consists on testing the statistical significance

of the time trend. This test uses the standard Dickey-Fuller critical values obtained under the

presence of a linear time trend.

An interesting alternative proposed in Silva-Lopes (2016) is to use the ADF test without

linear time trend:

∆dt = c0 + ρddt−1 +

p∑
i=1

γi∆dt−i + w
(2)
t . (4)

This author takes advantage of the results in Perron (1988) and Campbell and Perron (1991) to

exploit the fact that the ADF test with only an intercept in the set of deterministic regressors

has power that goes to zero as the sample size increases in case the output gap is a trend

stationary process. Thus, under trend stationarity, the ADF test does not (wrongly) reject the

null of unit root, which makes unnecessary the second step of Pesaran (2007).

These specifications can be extended to test for economic convergence under the conditions of

Definition 1. This implies estimating the cointegration relationship between the nonstationary

time series x1t and x2t. In this case, the relevant testing procedure is in the same spirit of
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the original two-stage Engle-Granger (EG) test, see Engle and Granger (1987). However, in

contrast to this seminal study, see also Phillips and Ouliaris (1990) that derive the asymptotic

critical values of the EG test when the parameters are estimated, the processes x1t and x2t can

contain a time trend. In this context a suitable method to test for economic convergence is to

apply the unrestricted test of cointegration developed in Hansen (1992), based on estimating

by OLS the equation

x2t = c0 + π0t+ βx1t + w
(3)
t , (5)

and checking stationarity of the OLS residuals by means of ADF or Phillips’ Z (α), Z (t) tests.

Then, if the unit root hypothesis is rejected, cotrending can be assessed by exploring the sta-

tistical significance of the FM-OLS estimator of π0.

3 A new test of economic convergence

We propose a novel sequential strategy for the hypothesis of economic convergence. First, we

introduce a new test for the existence of a positive cointegration relationship between x1t and

x2t under the presence of deterministic trends. This is the main contribution of the present

paper. In a second stage, we test for cotrending between the corresponding time trends.

We generalize the setting of Pesaran (2007) in expression (1) and consider the following

data generating process to analyze economic convergence. Let vt = (v1t, v2t)
′ be a vector

of innovations that is defined as a zero mean and α−mixing random sequence with mixing

coefficients αm such that
∑∞

m=1 α
(ξ−2)/4ξ
m < ∞, suptE|v′tvt|ξ < ∞ for some ξ > 2, and Ω =

lim
T→∞

1
T E[STS

′
T ] > 0 for St =

∑t
j=1 vj , see Phillips (1986). Then, the observables are generated

as

xit = ci + πit+ Sit, for i = 1, 2, (6)

where, either

∆Sit = vit, for i = 1, 2, (7)

or, for some β ∈ R,

∆S1t = v1t, S2t = βS1t + v2t. (8)

Clearly, under (7), x1t and x2t are not cointegrated because Ω is nonsingular, whereas, under

(8), x1t and x2t are cointegrated. Conditions β > 0 and β < 0 entail positive and negative

cointegration, respectively, while if β = 0 x1t and x2t are trivially cointegrated (after detrending

x2t is stationary).

To test for economic convergence we also require cotrending between the deterministic

trends. The hypothesis of cotrending is given by π2 = βπ1 in (6), thus, the composite hy-

7



pothesis of economic convergence (positive cointegration and cotrending) implies that x2t =

c0 + βx1t + v2t, with β > 0 and c0 = c2 − βc1. Note that the case of positive cointegration with

a time trend is considered under the hypothesis of no economic convergence and, in this case,

the dynamics of x2t are driven by

x2t = c0 + π0t+ βx1t + v2t, (9)

with π0 = π2 − βπ1 ̸= 0.

The above models can be extended to include higher order time trends, see Hansen (1992),

as part of the definition of cotrending. However, for consistency with Pesaran (2007), we restrict

to the convergence setup discussed by this author.

3.1 Testing for positive cointegration

The main advantage of our proposed approach is that the test does not require estimation of

the cointegration coefficient β and it differentiates between convergence given by β > 0, and

cointegration without convergence given by β ≤ 0. As mentioned before, graphical analysis

might be informative about positive or negative cointegration, but the presence of deterministic

components may obscure the assessment about the type of cointegration (positive or negative).

Let dt(β) = x2t − βx1t define a modified output gap with x1t and x2t. In the first stage the

hypothesis of interest can be written as

H0 : dt(β) ∼ UR, for all β ∈ R, or dt(β) ∼ TS, for some β ∈ (−∞, 0] ,

HA : dt(β) ∼ TS, for some β ∈ R+,

with UR denoting the unit root character of the modified output gap and TS denoting trend

stationarity (understood in a wide sense, so it covers the case where there is no trend in the

modified output gap). The null hypothesis covers two states of nature: Either the observables

are not cointegrated, or they are, but cointegration is not positive1.

In the same spirit of Hansen (1992), Bernard and Durlauf (1995, 1996) and Pesaran (2007),

we propose a test of positive cointegration that accommodates time trends as part of the spec-

ification of the unit root processes and the cointegration relationship. Let x̃it be the detrended

process of xit defined as x̃it = xit − xi − π̂i
(
t− 2−1 (T + 1)

)
, for i = 1, 2, with xi the sample

mean and π̂i the OLS estimator of πi obtained from the regression of xit on (1, t). Similarly,

1H0 is equal to the null hypothesis found in the literature on time series convergence, see Bernard and Durlauf

(1995, 1996) and Pesaran (2007) as seminal examples, and usually tested using the ADF test. An alternative is

to consider the null hypothesis as convergence between the time series. In this case, the difference between time

series is stationary under the null hypothesis. This hypothesis is tested using the KPSS test and multivariate

versions of it, as shown in Hobijn and Franses (2000) and Pesaran (2007).
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let σ̂2
x̃i

= T−1
∑T

t=1 x̃
2
it be the sample variance such that the standardized unit root process is

yit = σ̂−1
x̃i

x̃it. The proposed test statistic for the hypothesis of positive cointegration is

D̂T =
1

T

T∑
t=1

(yit − yjt)
2 = 2 (1− ρ̂ij) , (10)

with ρ̂ij = T−1
∑T

t=1 yityjt and i, j = 1, 2 used interchangeably, noting that ρ̂ij is the sample

correlation between x̃it and x̃jt.

Proposition 1. Let xit, for i = 1, 2, be two cointegrated unit root processes defined in

expressions (6), (8), with β > 0. Then, D̂T = OP (T
−1) as T → ∞.

Nicely, the convergence of the statistic to zero is at a rate T , so, as shown in the simulation

section below, this feature leads to important power improvements compared to existing coin-

tegration methods allowing for time trends. Also, by construction, the test (10) is robust to the

presence of deterministic components. We next study the asymptotic behaviour of D̂T under

H0.

Proposition 2. Let xit, for i = 1, 2, be two unit root processes as in Proposition 1, but with

β < 0. Then, D̂T = 4 +OP (T
−1) as T → ∞.

Proposition 3. Let xit, for i = 1, 2, be two unit root processes as in Proposition 1, but with

β = 0. Then, D̂T = 2 +OP (T
−1/2) as T → ∞.

In contrast, if the time series x1t and x2t are non-cointegrated, the test statistic D̂T has the

following limiting distribution.
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Proposition 4. Let xit, for i = 1, 2, be two unit root processes defined in expressions (6), (7).

Then,

D̂T
d→ 2 (1 +BπAπ1Aπ2 −BπZ12) , (11)

with

Z12 =

∫ 1
0 W1(r)W2(r)dr −

∫ 1
0 W1(r)dr

∫ 1
0 W2(τ)dτ[∫ 1

0 W1(r)2dr −
(∫ 1

0 W1(r)dr
)2]1/2 [∫ 1

0 W2(r)2dr −
(∫ 1

0 W2(r)dr
)2]1/2 ,

Aπi =
√
12

[∫ 1
0 Wi(r)

2dr −
(∫ 1

0 Wi(r)dr
)2]−1/2 ∫ 1

0

(
r − 1

2

)
Wi(r)dr for i = 1, 2, Bπ = (1 −

A2
π1
)−1/2(1−A2

π2
)−1/2, and W1(r) and W2(r) two Brownian motions such that V ar (Wi(r)) = r,

i = 1, 2, with correlation coefficient λ12 characterized by the long run correlation between the

innovation sequences v1t and v2t.

The above result reveals three important insights. First, the limit of the test statistic under

the null hypothesis either collapses (to 4 or 2) or depends on the long run correlation between the

innovation sequences v1t and v2t. Second, if the innovations are mutually independent then the

asymptotic distribution in (11) is parameter free and critical values can be tabulated. Finally,

the test is robust to the presence of serial correlation in the innovations vit for i = 1, 2.

In general, the innovations are mutually correlated invalidating the use of universal critical

values. In this setting, plug-in methods and bootstrap techniques can be applied to approximate

the distribution of the test under the null hypothesis. The following algorithm shows how to

approximate the distribution of the test using bootstrap methods and obtain a valid p-value.

Algorithm

1. Construct v̂t = ∆xt −∆x, where ∆x is the sample mean of ∆xt.

2. Estimate the long run covariance matrix Ω using the Newey-West estimator, so

Ω̂ =
1

T

T∑
t=1

v̂tv̂
′
t +

1

T

M−1∑
j=1

kj

T∑
t=j+1

(
v̂tv̂

′
t−j + v̂t−j v̂

′
t

)
, (12)

where M denotes the relevant number of lags contributing to the long run variances and

covariances and kj = 1−M−1j is the Barlett kernel.

3. Generate the error sequence v
(b)
t drawn from the distribution N(0, Ω̂) for t = 1, ..., T +L,

where L is an integer and for b = 1, . . . , B. Then, setting z
(b)
0 = 0, generate z

(b)
t =

z
(b)
t−1+ v

(b)
t for t = 1, ..., T +L and define the bootstrap observable sequence as x

(b)
t = z

(b)
t−L

for t = 1, ..., T . Note that the first L observations are discarded to mitigate the effect of

the initialization z
(b)
0 = 0.
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4. Compute the bootstrap version of the standardized unit root processes y
(b)
it , for i = 1, 2

and t = 1, . . . , T . Let x̃
(b)
it be the detrended process of x

(b)
it , defined as x̃

(b)
it = x

(b)
it − x

(b)
i −

π̂
(b)
i

(
t− 2−1 (T + 1)

)
, for i = 1, 2, with x

(b)
i the sample mean of the bootstrap sample x

(b)
it ,

and π̂
(b)
i the OLS estimator of πi obtained from the regression of x

(b)
it on (1, t). Similarly,

let σ̂
(b)2
x̃i

= T−1
∑T

t=1

(
x̃
(b)
it

)2
be the sample variance such that the standardized unit root

process is y
(b)
it =

(
σ̂
(b)
x̃i

)−1
x̃
(b)
it .

5. Compute the bootstrap test statistic D̂
(b)
T = 2

(
1− ρ̂

(b)
12

)
, with ρ̂

(b)
12 = T−1

∑T
t=1 y

(b)
1t y

(b)
2t

the correlation between the standardized bootstrap samples.

6. Repeat the above steps for b = 1, . . . , B.

The p-value obtained from the bootstrap distribution of the test D̂T , conditional on the

realization (x1t, x2t)
′, t = 1, ..., T , can be approximated by

p̂B =
1

B

B∑
b=1

1
(
D̂

(b)
T ≤ D̂T

)
.

The null hypothesis H0 is rejected against HA if p̂B < α, with α the significance level of the

test.

It is important to note that under H1 the statistic D̂T converges in probability to 0, but

also the limiting distribution from which critical values are obtained collapses to 0, so the power

properties of the test are uncertain. However, we conjecture that the bootstrap critical values

converge to zero at a slower rate than D̂T under H1. In fact, we believe that the rate of

convergence to zero of those critical values is at most the nonparametric convergence rate of

Ω̂ in (12) to Ω. This is slower than OP

(
T−1

)
, hence the test is consistent. Our Monte Carlo

results support this conjecture.

3.2 Testing for cotrending

Once the hypothesis of no positive cointegration is rejected, the second step of the sequential

method to test for economic convergence is to asses for the existence of cotrending. In view

of (9), cotrending is equivalent to π0 = 0, that is precisely the hypothesis that we test in the

second stage by means of the usual Wald test. We adopt Hansen’s (1992) approach and base

our test statistic (t-ratio) on fully-modified OLS estimation of (9) (see Theorem 6 of Hansen,

1992).
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4 Finite-sample properties of convergence tests

This section carries out a Monte Carlo simulation exercise that studies the finite-sample proper-

ties of the tests of economic convergence discussed above for different data generating processes

(DGPs). In all cases, we test the null hypothesis of absence of economic convergence against

the alternative of economic convergence. The observables x1t and x2t are constructed as in (6),

(7), (8) with vt = (v1t, v2t)
′ being generated as

vt = Φvt−1 + εt, (13)

where Φ is a diagonal matrix with parameters ϕi, i = 1, 2, in the main diagonal and εt =

(ε1t, ε2t)
′ is an independent and identically normally distributed bivariate vector with E (εt) = 0,

V ar (ε1t) = V ar (ε2t) = 1, and Cov (ε1t, ε2t) = ρ. Note that, in the cointegrated cases,

x2t = c0 + π0t+ βx1t + v2t, (14)

with c0 = c2 − βc1, π0 = π2 − βπ1.

To explore the performance of the above tests of economic convergence under different

DGPs, we simulate several processes that are indexed by the persistence parameters {ϕ1, ϕ2}

and mutual correlation coefficient ρ. These parameters are calibrated using the empirical values

obtained from the analysis of the time series of log output for the G7 group of industrialized

countries, see Table 3. To simplify the simulation section, we consider only two possible values

of the persistence parameter ϕ1 = {0.5, 0.7} and the cross-correlation coefficient ρ = {0.5, 0.8}.

The persistence of the cointegration error is ϕ2 = 0.6. Figures 1-4 present empirical power

curves for different combinations of these parameters. The choice of sample size is intended

to illustrate the performance of these methods in small samples and closely corresponds to the

sample sizes used in the empirical application in Section 5. A more comprehensive simulation

exercise including T = 100 is available from the authors upon request. Empirical size and

power are computed as rejection probabilities at 5% significance level obtained from M = 1000

simulations.

The hypothesis of no economic convergence is represented in the simulation exercise as two

cointegrated unit roots with cointegrating parameter β = 1 that do not cotrend, except for

π0 = 0 (left panels) or as two cotrending processes (so π0 = 0) that may cointegrate (if β < 0)

or noncointegrate, which will be labelled as β = 0 (right panels)2. The hypothesis of economic

convergence is characterized by positive cointegration and cotrending (β > 0 and π0 = 0) and

2The case of two non-cointegrated unit roots that do not cotrend is less interesting because is farther from

the alternative hypothesis of economic convergence than the two composite hypotheses that are studied here.
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is implemented as the intersection of both hypotheses. DGPs under the null and alternative

hypotheses are generated as follows. The left panels cover 12 DGPs; x1t is generated from

(6)-(7), with c1 = 0.432 and π1 = 0.417 (two random numbers drawn from a Uniform U [0, 1]

random variable) and x2t is generated from (14) with β = 1, c0 = 0 and π0 = (0.5j − 3)π1

for j = 1, . . . , 12. All processes are generated under the null hypothesis of no convergence

except the process characterized by π0 = 0 that lies under the alternative hypothesis. The

right panels cover 9 DGPs indexed by j = 1, . . . , 9. The process x1t is generated from (6)-(7)

with c1 = 0.432 and π1 = 0.417, as before, and x2t is generated from (14) with β ≡ β(j)

that takes values between −1 and 2; c2 = c2(j) = β(j)c1 and π2 = π2(j) = β(j)π1 such that

c0 = π0 = 0. For β = 0, both x1t and x2t are generated from (6)-(7) with c2 = c1 and π2 = π1.

The processes with β ≤ 0 are generated under the null hypothesis of no convergence and the

processes characterized by β > 0 lie under the alternative hypothesis. The dependence between

the innovations of the processes x1t and x2t is driven by expression (13).

We consider four tests of economic convergence in Figures 1-4: (i) an extension of Pesaran

(2007)’s test assuming that β is known. In this method we estimate the deterministic trend

and test the hypothesis of stationarity using the trend stationary version of the ADF regression

equation. The empirical rejection rates are plotted with a dotted line with +; (ii) the unre-

stricted approach of Hansen (1992) where stationarity is checked by ADF on OLS residuals

obtained from (9) and no cotrending is taken as statistical significance of the FM-OLS estima-

tor of π0 in the same equation. Results for this method are plotted with a dashed line with ♢;

(iii) corresponds to the version of Silva-Lopes’ (2016) approach (denoted SL hereinafter) that

estimates the cointegration relationship. This is the only one-step approach. Its correspond-

ing results are plotted with a solid line with ⋆; (iv) corresponds to our novel test of economic

convergence. This test combines our proposed approach for positive cointegration based on the

statistic D̂T and the test for the time trend obtained from the unrestricted regression equation

(5). Therefore, the second stage of this composite test is the same of method (ii) and obtained

from a t-test using FM-OLS estimators of the regression coefficients. This method is plotted

with a thick solid line with ◦.

We proceed to discuss the results of the simulation exercise. Left panels of Figures 1-4 report

the empirical size of the different tests for π0 ̸= 0 and the empirical power of the test for π0 = 0.

The power curves show that most tests are undersized, the only exception is method (iii), given

by the SL approach, that reports an empirical size close to the nominal value of 5%. The power

of the tests is low for small sample sizes (T = 35) with the only exceptions of the SL approach

and our proposed procedure based on the test D̂T . Unreported results show that most methods
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exhibit strong power to reject the null hypothesis for T = 100. The performance of the tests is

also sensitive to the relative degree of persistence in the innovations. Power values for processes

characterized by ϕ1 < ϕ2 (Figures 1-2) are below those obtained for processes with ϕ1 > ϕ2

(Figures 3-4). In fact, a closer inspection to the power properties of the different tests reveals

that the only methods with power to detect economic convergence for ϕ1 = 0.5 and ϕ2 = 0.6

are the SL method (iii) and our proposed approach. This result holds across different values of

the cross-correlation coefficient ρ.

Right panels of Figures 1-4 report empirical size for β ≤ 0 and power for β > 0 for the

different testing methods. As expected, for β < 0, all methods but (iv) are heavily oversized

since they are not designed to differentiate between positive and negative cointegration. For

β > 0, the performance of the tests varies depending on the persistence of the innovations

(as discussed above) increasing for ϕ1 > ϕ2 with respect to ϕ1 < ϕ2, as noted by a referee.

Interestingly, the best performing methods are our proposed approach and the SL method.

Empirical power increases with the sample size across testing methods.

One major implication of this simulation exercise is the poor small-sample performance of

methods (i) to (ii) under general forms of persistence and correlation between the innovations.

The poor performance of these methods is mainly attributed to the low power of the cointe-

gration tests carried out in the first stage. This finding is very relevant for two reasons. First,

many empirical applications of economic convergence are based on annual data and, hence, are

characterized by small sample sizes. Second, these tests are the main tools used in the empirical

time series literature to test for economic convergence using cointegration methods.

5 Empirical application

The differences in statistical power across testing methods shown in the simulation section

suggest that standard methods to test for economic convergence using cointegration methods

may not yield reliable results in small samples. This is illustrated in this section with data

on gross domestic product (GDP) from the G7 group of countries over the period 1990-2022

(sample size is 33 observations). This period starts with the reunification of Germany, thus, the

group of countries are Canada, France, Germany, Italy, Japan, Great Britain, and USA. Data are

collected annually from the OECD website (https://data.oecd.org/gdp/gross-domestic-product-

gdp.htm). We consider data on log output in millions of US dollars (top panel of Figure 5) and

per capita terms (bottom panel of Figure 5). Both panels show evidence of a positive linear

trend and comovements in economic output across all G7 countries.

Table 1 reports the FM-OLS estimates of the cointegration parameter β obtained from the
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unrestricted regression (9) for both types of log output series. This regression is a necessary

step for the testing procedures (ii) and (iv) above but not for (i) and (iii). In fact, for the

first method given by Pesaran’s (2007) convergence test, we assume β = 1 and test for the

parity condition between output series. The top panel presents the results for log GDP in

millions of dollars. The parameter estimates are around one for those pairs involving the OECD

but not for the remaining pairs. Interestingly, the cointegration coefficient is negative for all

pairs of countries that include Germany. This empirical evidence highlights the importance of

the deterministic trend in driving the comovements observed in Figure 5 for this region. For

other countries such as France, Italy and Japan the cointegration coefficient is far from the

parity condition. In contrast, Great Britain reports a coefficient near the parity condition when

compared against the USA, Canada and the OECD but not against the remaining countries,

including France, Germany and Italy. These results may still provide empirical evidence of

economic convergence in our framework, characterized by the presence of positive cointegration

even if the cointegration coefficient is different from one. The results for per-capita output are

qualitatively similar.

Table 2 presents FM-OLS parameter estimates of the slope coefficient π0 obtained from

the regression equation (9). The magnitude of the coefficients for π0 is very small across pairs

of countries except for Germany. As discussed above, the deterministic trend seems to be

the driving force of the positive trend in output observed for this country. For the remaining

pairs, the magnitude of the linear time trend coefficient is, in general, below 0.02 in absolute

value. Nevertheless, once we account for the standard error of the parameter estimates we find

overwhelming statistical evidence against the hypothesis of cotrending except in a few cases.

This result holds for both the log GDP in millions of dollars and the per-capita counterpart.

These results are formalized in Table 3 that reports the rejection outcomes of the different tests

of economic convergence discussed above.

The top panel of Table 3 reports the estimates of the persistence parameter of an autore-

gressive process of order one fitted to the innovations v1t and v2t in (6)-(7) and (9), respectively.

There is, indeed, serial correlation in the innovations to the unit root processes (column 1)

driving the dynamics of the log GDP in millions dollars. Persistence is low for Italy (0.125)

and France (0.190) and quite high for USA (0.627). The remaining cells report the AR(1) pa-

rameter estimate characterizing the persistence of the cointegration errors between the different

pairs of countries. These errors are rather persistent with values ranging between 0.5 and 0.85

for cointegration relationships between Japan and GBR, USA and OECD. The bottom panel

of Table 3 reports the cross-correlations between the pairs (εi, εj) after filtering out the serial

15



dependence in the innovation sequences. The results suggest that there is, indeed, strong de-

pendence between the whitened innovations of nominal log GDP between most industrialized

economies. Similar results are obtained for log GDP in per capita terms and omitted for space

considerations.

Table 4 presents the results of the four composite tests of convergence introduced above.

The table is divided into two panels with the top panel for the analysis of log GDP measured in

millions of dollars and the bottom panel for the analysis of log GDP per capita. The cells in Table

4 are given by arrays with four binary entries 0/1 that correspond to the nonrejection/rejection

outcomes, respectively, of the tests of economic convergence. Nonrejection of the null hypothesis,

reported as a zero in the cell entry, is interpreted as evidence of no convergence. The first entry

in the array corresponds to Pesaran’s (2007) test of the output gap; the second entry corresponds

to Hansen’s (1992) test of cointegration and cotrending obtained from the unrestricted residuals.

The third entry of the cells uses the ADF test for level stationarity and corresponds to the SL

method. The fourth entry corresponds to our proposed procedure given by the test D̂T for

positive cointegration and a Wald test for the presence of a time trend in the cointegration

regression equation (9). All of the tests are computed at a 5% significance level.

The outcomes of the tests provide overwhelming evidence against the presence of pairwise

cross-country economic convergence. The results vary depending on whether we consider nomi-

nal levels of output or per-capita levels. Furthermore, in line with the findings obtained from the

simulation exercise, the only tests reporting empirical evidence of economic convergence are SL

and our approach. The first test finds economic convergence between France and Great Britain

and Germany and Great Britain. The second test finds empirical evidence of economic con-

vergence between Canada and France, Canada and Great Britain, and Canada and USA. The

results for log output in per-capita terms uncover economic convergence between France and

Great Britain, and France and the OECD index using the SL test. Our procedure also finds

evidence of convergence in per-capita output for the pairs Great Britain, USA and Canada,

Japan.

6 Conclusion

This paper extends the standard definition of economic convergence given by the parity condi-

tion. This is done by allowing a flexible characterization of the convergence hypothesis based

on the concept of common trends in output introduced by Bernard and Durlauf (1995, 1996).

According to this novel definition, two time series of economic output converge over time if

the pairs are positively cointegrated and the corresponding deterministic components cotrend.
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With this definition in place, the paper has proposed a composite test of economic convergence

given by sequentially testing for these two hypotheses. In the first stage, positive cointegration

is tested using a novel statistic exploiting the differences in the asymptotic properties of the

sample correlation between cointegrated and non-cointegrated processes. In the second stage,

we apply a Wald test for the hypothesis of cotrending in a cointegration regression equation

with trend.

The main novelty of our proposed approach resides in the first stage. The proposed test

possesses some appealing features such as invariance to the choice of dependent variable, con-

vergence at a rate T , and no need of estimation of the cointegration coefficient. The test

accommodates very general forms of mutual and serial dependence in the sequence of innova-

tions and exhibits an excellent performance in small samples. The critical values of the test of

positive cointegration are obtained either by a plug-in approach or by bootstrap.

A Monte Carlo simulation exercise comparing the finite-sample performance of existent

methods to test for economic convergence based on the presence of cointegration confirms the

outperformance of our proposed procedure in small samples and the overall poor performance of

well behaved methods such as Pesaran (2007) and Hansen (1992). This is illustrated with data

on gross domestic product from the G7 group of countries over the period 1990-2022. Existing

methods provide overwhelming evidence against the existence of economic convergence among

any of the countries in the G7 group. In contrast, the application of our proposed procedure

is slightly more favorable to the hypothesis of convergence for countries such as France, Great

Britain, Canada, and USA.
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Mathematical appendix

Proof of Proposition 1. For an arbitrary process at let a = T−1
∑T

t=1 at. Simple algebra

shows that

xit − xi = πi

(
t− T + 1

2

)
+ Sit − Si, for i = 1, 2.

Furthermore, let x̃it denote the detrended time series such that

x̃it = xit − xi − π̂i

(
t− T + 1

2

)
= − (π̂i − πi)

(
t− T + 1

2

)
+ Sit − Si, (15)

with π̂i denoting the OLS estimators of πi of the centred variables xit − xi on t− 2−1 (T + 1).

Then,

x̃2t − βx̃1t = −(π̂0 − π0)

(
t− T + 1

2

)
+ v2t − v2, (16)

with π0 = π2 − βπ1, π̂0 = π̂2 − βπ̂1. By construction of the OLS estimators π̂i, we obtain

π̂i − πi =

∑T
t=1(Sit − Si)

(
t− 2−1 (T + 1)

)∑T
t=1 (t− 2−1 (T + 1))2

, (17)

so, given that,

1

T 3

T∑
t=1

(
t− T + 1

2

)2

→ 1

12
, as T → ∞, (18)

and
T∑
t=1

(Sit − Si)
(
t− 2−1 (T + 1)

)
= Op

(
T 5/2

)
,

it immediately follows that π̂i − πi = Op

(
T−1/2

)
. Also,

π̂0 − π0 =

∑T
t=1[(S2t − S2)− β(S1t − S1)]

(
t− 2−1 (T + 1)

)∑T
t=1 (t− 2−1 (T + 1))2

=

∑T
t=1(v2t − v2)

(
t− 2−1 (T + 1)

)∑T
t=1 (t− 2−1 (T + 1))2

= Op(T
−3/2),

because
T∑
t=1

(v2t − v2)
(
t− 2−1 (T + 1)

)
= Op

(
T 3/2

)
.

Noting (10), we examine the behaviour of

ρ̂12 =

∑T
t=1 x̃1tx̃2t(∑T

t=1 x̃
2
1t

∑T
t=1 x̃

2
2t

)1/2 =

β
T∑
t=1

x̃21t +
T∑
t=1

x̃1t (v2t − v2)(∑T
t=1 x̃

2
1t

∑T
t=1 x̃

2
2t

)1/2 (19)

by (16). Also, using again (16), it can be easily shown that the denominator of (19) isβ2

(
T∑
t=1

x̃21t

)2

+ dT

 1
2

,
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where dT is a remainder term such that dT = Op

(
T 3
)
. Then

ρ̂12 =
βT−2

∑T
t=1 x̃

2
1t + T−2

∑T
t=1 x̃1t (v2t − v2)(

β2
(
T−2

∑T
t=1 x̃

2
1t

)2
+ T−4dT

) 1
2

=

 βT−2
∑T

t=1 x̃
2
1t(

β2
(
T−2

∑T
t=1 x̃

2
1t

)2) 1
2

+
T−2

∑T
t=1 x̃1t (v2t − v2)(

β2
(
T−2

∑T
t=1 x̃

2
1t

)2) 1
2

 (20)

×

(
β2
(
T−2

∑T
t=1 x̃

2
1t

)2) 1
2

(
β2
(
T−2

∑T
t=1 x̃

2
1t

)2
+ T−4dT

) 1
2

. (21)

Results in the proof of Proposition 4 imply that T−2
∑T

t=1 x̃
2
1t tends in distribution to a positive

(almost surely) random variable (see (23) and (24) below). Then, (21) tends in probability to

1, because T−4dT = op (1). Also, because β > 0, (20) equals

1 +
T−2

∑T
t=1 x̃1t (v2t − v2)(

β2
(
T−2

∑T
t=1 x̃

2
1t

)2) 1
2

= 1 +Op

(
T−1

)
,

because
1

T 2

T∑
t=1

x̃1t (v2t − v2) = Op

(
T−1

)
.

Then,

ρ̂12 = 1−Op

(
T−1

)
,

so, by (10), the proposition follows.

Proof of Proposition 2. The proof is almost identical to that of Proposition 1, with the only

difference that β < 0. This implies that

ρ̂12 = −1 +Op

(
T−1

)
,

which completes the proof.

Proof of Proposition 3. In this case

x̃2t = −(π̂0 − π0)

(
t− T + 1

2

)
+ v2t − v2.

Then, by previous results it is simple to show that
∑T

t=1 x̃1tx̃2t = Op (T ), whereas T
−2
∑T

t=1 x̃
2
1t

tends in distribution to a positive (almost surely) random variable and T−1
∑T

t=1 x̃
2
2t tends

in probability to a positive constant (the variance of v2t). These results imply that ρ̂12 =

Op

(
T−1/2

)
, to conclude the proof.
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Proof of Proposition 4. In view of (10), the limiting distribution of the test statistic D̂T is

determined by that of ρ̂12 = T−1
∑T

t=1 y1ty2t. First, letting S0
it = Sit − Si, i = 1, 2, by (15) and

(17),

1

T

T∑
t=1

x̃1tx̃2t =
1

T

T∑
t=1

S0
1tS

0
2t − (π̂1 − π1)

1

T

T∑
t=1

S0
2t

(
t− T + 1

2

)
− (π̂2 − π2)

1

T

T∑
t=1

S0
1t

(
t− T + 1

2

)

+ (π̂1 − π1)(π̂2 − π2)
1

T

T∑
t=1

(
t− T + 1

2

)2

=
1

T

T∑
t=1

S0
1tS

0
2t − (π̂1 − π1)(π̂2 − π2)

1

T

T∑
t=1

(
t− T + 1

2

)2

. (22)

Similarly, we study the sample variance terms, thus, for i = 1, 2,

σ̂2
x̃i

=
1

T

T∑
t=1

x̃2it =
1

T

T∑
t=1

(S0
it)

2 − 2(π̂i − πi)
1

T

T∑
t=1

S0
it

(
t− T + 1

2

)
+ (π̂i − πi)

2 1

T

T∑
t=1

(
t− T + 1

2

)2

= σ̂2
S0
i
− (π̂i − πi)

2 1

T

T∑
t=1

(
t− T + 1

2

)2

,

where σ̂2
S0
i
= T−1

∑T
t=1

(
S0
it

)2
. Simple algebra shows that σ̂x̃i

= σ̂S0
i

(
1− Â2

πi

)1/2
, with

Âπi =
(π̂i − πi)

σ̂S0
i

(
1

T

T∑
t=1

(
t− T + 1

2

)2
) 1

2

,

so σ̂x̃1
σ̂x̃2

= σ̂S0
1
σ̂S0

2

(
1− Â2

π1

)1/2 (
1− Â2

π2

)1/2
. Then, by (22),

1

T

T∑
t=1

y1ty2t = (1− Â2
π1
)−

1
2 (1− Â2

π2
)−

1
2

(
T−1

∑T
t=1 S

0
1tS

0
2t

σ̂S0
1
σ̂S0

2

− Âπ1Âπ2

)
.

Using the functional central limit theorem and the continuous mapping theorem, see Phillips

(1986),

1

T 1/2
σ̂0
Si

d→ λi

(∫ 1

0
Wi(r)

2dr −
(∫ 1

0
Wi(r)dr

)2
)1/2

, (23)

with λi the long-run standard deviation of the innovation vit. Also,

1

T 2

T∑
t=1

S0
1tS

0
2t

d→ λ1λ2

(∫ 1

0
W1(r)W2(r)dr −

∫ 1

0
W1(r)dr

∫ 1

0
W2(τ)dτ

)
,

so, by the continuous mapping theorem,

T−1
∑T

t=1 S
0
1tS

0
2t

σ̂S0
1
σ̂S0

2

=
T−2

∑T
t=1 S

0
1tS

0
2t

T−1/2σ̂S0
1
T−1/2σ̂S0

2

d→ Z12.

By similar techniques, in view of (17) and (18),

T 1/2(π̂i − πi)
d→ 12λi

∫ 1

0

(
r − 1

2

)
Wi(r)dr,
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so

Âπi

d→ Aπi =

√
12
∫ 1
0

(
r − 1

2

)
Wi(r)dr[∫ 1

0 Wi(r)2dr −
(∫ 1

0 Wi(r)dr
)2]1/2 . (24)

Collecting these results

1

T

T∑
t=1

y1ty2t
d→ Bπ(Z12 −Aπ1Aπ2),

where Bπ = (1−A2
π1
)−1/2(1−A2

π2
)−1/2 so the proof follows immediately.
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Table 1: FM-OLS parameter estimates for the coefficient β obtained from model (5).
Robust standard errors are in brackets.

log GDP in millions of dollars

x2t/x1t CAN FRA GER ITA JPY GBR USA OECD
CAN 1.412

(0.231)
−0.703
(0.480)

1.045
(0.188)

1.204
(0.204)

1.055
(0.106)

0.940
(0.076)

1.600
(0.089)

FRA −0.078
(0.349)

0.743
(0.096)

0.520
(0.180)

0.575
(0.101)

0.451
(0.109)

0.845
(0.124)

GER −0.007
(0.205)

−0.592
(0.129)

−0.351
(0.151)

−0.380
(0.103)

−0.399
(0.214)

ITA 0.530
(0.201)

0.606
(0.100)

0.544
(0.126)

0.966
(0.046)

JPY 0.674
(0.043)

0.596
(0.048)

0.946
(0.031)

GBR 0.849
(0.075)

1.290
(0.129)

USA 1.547
(0.171)

log GDP per capita

x2t/x1t CAN FRA GER ITA JPY GBR USA OECD
CAN 1.310

(0.269)
−1.070
(0.675)

0.836
(0.111)

1.619
(0.290)

0.899
(0.080)

1.179
(0.067)

1.785
(0.137)

FRA −0.135
(0.410)

0.658
(0.069

0.590
(0.225)

0.445
(0.093)

0.564
(0.115)

0.870
(0.104)

GER −0.080
(0.164)

−0.443
(0.180)

−0.294
(0.087)

−0.337
(0.119)

−0.245
(0.230)

ITA 0.555
(0.290)

0.518
(0.052)

0.723
(0.061)

1.056
(0.057)

JPY 0.428
(0.053)

0.505
(0.029)

0.815
(0.034)

GBR 1.232
(0.097)

1.429
(0.208)

USA 1.385
(0.136)
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Table 2: FM-OLS parameter estimates for the coefficient π0 obtained from model (5).
Robust standard errors are in brackets.

log GDP in millions of dollars

x2t/x1t CAN FRA GER ITA JPY GBR USA OECD
CAN −0.014

(0.010)
0.070
(0.018)

0.011
(0.006)

0.013
(0.005)

−0.001
(0.004)

0.003
(0.003)

−0.025
(0.004)

FRA 0.044
(0.013)

0.017
(0.003)

0.028
(0.005)

0.017
(0.004)

0.021
(0.005)

0.005
(0.005)

GER 0.037
(0.006)

0.053
(0.003)

0.052
(0.006)

0.054
(0.004)

0.055
(0.009)

ITA 0.019
(0.005)

0.006
(0.004)

0.008
(0.005)

−0.009
(0.002)

JPY −0.002
(0.002)

0.000
(0.002)

−0.014
(0.001)

GBR 0.005
(0.003)

−0.013
(0.006)

USA −0.023
(0.007)

log GDP per capita

x2t/x1t CAN FRA GER ITA JPY GBR USA OECD
CAN −0.012

(0.010)
0.072
(0.025)

0.009
(0.003)

−0.007
(0.007)

0.000
(0.003)

−0.007
(0.002)

−0.030
(0.005)

FRA 0.040
(0.015)

0.016
(0.002)

0.021
(0.006)

0.019
(0.003)

0.016
(0.004)

0.004
(0.004)

GER 0.039
(0.005)

0.048
(0.005)

0.048
(0.003)

0.048
(0.004)

0.046
(0.008)

ITA 0.016
(0.007)

0.011
(0.002)

0.005
(0.002)

−0.009
(0.002)

JPY 0.010
(0.002)

0.008
(0.001)

−0.003
(0.001)

GBR −0.006
(0.003)

−0.015
(0.007)

USA −0.016
(0.005)
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Table 3: Persistence of cointegration errors and cross-correlations for log GDP in US dollars.

Autoregressive parameters from AR(1) processes
ϕ1 ϕ2

x2t/x1t CAN FRA GER ITA JPY GBR USA OECD
CAN 0.393 0.561 0.536 0.748 0.583 0.531 0.364 0.185

FRA 0.190 0.579 0.541 0.644 0.553 0.440 0.537

GER 0.168 0.692 0.239 0.338 0.349 0.387

ITA 0.125 0.692 0.680 0.550 0.668

JPY 0.347 0.816 0.768 0.850

GBR 0.287 0.356 0.762

USA 0.627 0.504

Cross-correlations (ρ) between innovations v1t and v2t

x2t/x1t CAN FRA GER ITA JPY GBR USA OECD
CAN 0.307 0.679 0.327 0.588 0.405 0.526 0.255

FRA 0.774 0.291 0.697 0.516 0.550 0.431

GER 0.706 0.661 0.690 0.720 0.684

ITA 0.805 0.697 0.716 0.604

JPY 0.494 0.612 0.414

GBR 0.420 0.142

USA 0.205

Top panel reports the autoregressive coefficient of fitting an AR(1) process to the innovation processes.

Column 1 (ϕ1) presents the persistence parameter of the innovations from fitting process (6)-(7)

applied to the time series of log GDP output for each country. The remaining coefficients in the top

panel report the autoregressive coefficient ϕ2 of fitting an AR(1) process to the cointegration error from

process (9). Bottom panels report the cross-correlation coefficient (ρ) between the serially uncorrelated

innovations (εit, εjt) after filtering out the serial dependence.
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Table 4: Rejection outcomes of cointegration tests for G7 countries (1990-2022).

log GDP in millions of dollars

x2t/x1t CAN FRA GER ITA JPY GBR USA OECD
CAN 0,0,0,1 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,1 0,0,0,1 0,0,0,0
FRA 0,0,0,0 0,0,0,0 0,0,0,0 0,0,1,0 0,0,0,0 0,0,0,0
GER 0,0,0,0 0,0,0,0 0,0,1,0 0,0,0,0 0,0,0,0
ITA 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0
JPY 0,0,0,0 0,0,0,0 0,0,0,0
GBR 0,0,0,0 0,0,0,0
USA 0,0,0,0

log GDP per capita

x2t/x1t CAN FRA GER ITA JPY GBR USA OECD
CAN 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,1 0,0,0,0 0,0,0,0 0,0,0,0
FRA 0,0,0,0 0,0,0,0 0,0,0,0 0,0,1,0 0,0,0,0 0,0,1,1
GER 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0
ITA 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0
JPY 0,0,0,0 0,0,0,0 0,0,0,0
GBR 0,0,0,1 0,0,0,0
USA 0,0,0,0

Each cell is characterized by an array with four binary entries 0/1 that are interpreted as

nonrejection/rejection outcomes of the tests of economic convergence. The first entry in the arrays

corresponds to Pesaran’s (2007) test of stationarity of the output gap. The second entry is for test (ii)

corresponding to Hansen’s (1992) unrestricted approach. The third entry corresponds to the SL test in

(iii). Finally, entry (iv) is the outcome of the test proposed in this paper based on the joint hypothesis

of positive cointegration and cotrending.
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Figure 1: This figure reports the empirical rejection rates out of 1000 simulations of the null hypothesis
of no economic convergence at 5% significance level. The innovation process (13) is characterized by
the parameters ϕ1 = 0.5 and ρ = 0.5; ϕ2 = 0.6. The left panels consider 12 DGPs; x1t is generated
from (6)-(7), with c1 = 0.432 and π1 = 0.417 and x2t is generated from (14) with β = 1, c2 = c1 and
π0 = (0.5j − 3)π1 for j = 1, . . . , 12. The right panels consider 9 DGPs indexed by j = 1, . . . , 9; x1t is
generated from (6)-(7) as before and x2t is generated from (14) with β(j) = j−5 for j ̸= 5, c2(j) = β(j)c1
and π2(j) = β(j)π1 such that c0 = π0 = 0. For j = 5 (β = 0), x2t is also generated from (6)-(7) with

c2 = c1 and π2 = π1 such that c0 = π0 = 0. Thick solid line with ◦ for D̂T ; Dotted line with + for
the Pesaran (2007) test given by β known; Dashed line with ♢ for the unrestricted model (5) in Hansen
(1992); Solid line with ⋆ for the SL approach. Top panels for T = 35 and bottom panels for T = 50.
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Figure 2: This figure reports the empirical rejection rates out of 1000 simulations of the null hypothesis
of no economic convergence at 5% significance level. The innovation process (13) is characterized by
the parameters ϕ1 = 0.5 and ρ = 0.8; ϕ2 = 0.6. The left panels consider 12 DGPs; x1t is generated
from (6)-(7), with c1 = 0.432 and π1 = 0.417 and x2t is generated from (14) with β = 1, c2 = c1 and
π0 = (0.5j − 3)π1 for j = 1, . . . , 12. The right panels consider 9 DGPs indexed by j = 1, . . . , 9; x1t is
generated from (6)-(7) as before and x2t is generated from (14) with β(j) = j−5 for j ̸= 5, c2(j) = β(j)c1
and π2(j) = β(j)π1 such that c0 = π0 = 0. For j = 5 (β = 0), x2t is also generated from (6)-(7) with

c2 = c1 and π2 = π1 such that c0 = π0 = 0. Thick solid line with ◦ for D̂T ; Dotted line with + for
the Pesaran (2007) test given by β known; Dashed line with ♢ for the unrestricted model (5) in Hansen
(1992); Solid line with ⋆ for the SL approach. Top panels for T = 35 and bottom panels for T = 50.
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Figure 3: This figure reports the empirical rejection rates out of 1000 simulations of the null hypothesis
of no economic convergence at 5% significance level. The innovation process (13) is characterized by
the parameters ϕ1 = 0.7 and ρ = 0.5; ϕ2 = 0.6. The left panels consider 12 DGPs; x1t is generated
from (6)-(7), with c1 = 0.432 and π1 = 0.417 and x2t is generated from (14) with β = 1, c2 = c1 and
π0 = (0.5j − 3)π1 for j = 1, . . . , 12. The right panels consider 9 DGPs indexed by j = 1, . . . , 9; x1t is
generated from (6)-(7) as before and x2t is generated from (14) with β(j) = j−5 for j ̸= 5, c2(j) = β(j)c1
and π2(j) = β(j)π1 such that c0 = π0 = 0. For j = 5 (β = 0), x2t is also generated from (6)-(7) with

c2 = c1 and π2 = π1 such that c0 = π0 = 0. Thick solid line with ◦ for D̂T ; Dotted line with + for
the Pesaran (2007) test given by β known; Dashed line with ♢ for the unrestricted model (5) in Hansen
(1992); Solid line with ⋆ for the SL approach. Top panels for T = 35 and bottom panels for T = 50.
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Figure 4: This figure reports the empirical rejection rates out of 1000 simulations of the null hypothesis
of no economic convergence at 5% significance level. The innovation process (13) is characterized by
the parameters ϕ1 = 0.7 and ρ = 0.8; ϕ2 = 0.6. The left panels consider 12 DGPs; x1t is generated
from (6)-(7), with c1 = 0.432 and π1 = 0.417 and x2t is generated from (14) with β = 1, c2 = c1 and
π0 = (0.5j − 3)π1 for j = 1, . . . , 12. The right panels consider 9 DGPs indexed by j = 1, . . . , 9; x1t is
generated from (6)-(7) as before and x2t is generated from (14) with β(j) = j−5 for j ̸= 5, c2(j) = β(j)c1
and π2(j) = β(j)π1 such that c0 = π0 = 0. For j = 5 (β = 0), x2t is also generated from (6)-(7) with

c2 = c1 and π2 = π1 such that c0 = π0 = 0. Thick solid line with ◦ for D̂T ; Dotted line with + for
the Pesaran (2007) test given by β known; Dashed line with ♢ for the unrestricted model (5) in Hansen
(1992); Solid line with ⋆ for the SL approach. Top panels for T = 35 and bottom panels for T = 50.
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Figure 5: Top panel reports the dynamics of logarithm of Gross Domestic Product measured in millions
of dollars for G7 countries over the period 1990 to 2022. Bottom panel reports the dynamics of GDP
measured in per-capita terms. Data are obtained from OECD website.
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