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The ocean is a major sink of both CO, and heat, having absorbed approximately a third
of cumulative carbon emissions to data and 93% of the additional heat contained in
the climate system. Whilst not straightforward, it is possible to identify this additional
carbon in the ocean, allowing the quantification of the global and regional ocean carbon
sinks. However, for a number of reasons, it is far more difficult to decompose heat

changes in an analogous fashion in order to identify the ‘excess” heat.

In this work, two new and related techniques are developed for the identification of
excess heat. The first removes the ‘anthropogenic’ carbon signal from total carbon
changes, leaving changes in carbon which are not driven by increased atmospheric
CO;. By relating the remaining changes in temperature and carbon, the redistributed
temperature is identified, and the excess isolated by residual. This technique is ap-
plicable to additional tracers, for example salinity. This technique is demonstrated in
the NEMO GCM, finding significant excess salinity changes generally precede excess
temperature changes, but that excess temperature changes dominate later in the model
run.

Previous work has also shown that changes in anthropogenic carbon and excess heat
are linked by a transient response coupling, and are therefore linearly related. By com-
bining the previous technique and this transient response coupling, a second technique,
which does not require an explicit carbon decomposition is developed. This technique
is then applied in the Subtropical North Atlantic, and to the full GLODAP dataset, to
produce global fields of excess heat and salinity accumulation. As expected, excess heat
content increases smoothly with time, with the majority of excess heat accumulation in
the upper thousand metres. Additionally, the rate of excess heat storage is higher in
the Atlantic than in other ocean basins, in agreement with previous studies. Patterns of
excess salinity storage are less spatially uniform and exert a strong influence on excess
density changes, suggesting that changes to the water cycle may impact ocean circula-

tion to a similar or greater degree than additional heat content.
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Chapter 1

Introduction

1.1 Motivation

As a result of continuing anthropogenic CO, emissions, atmospheric CO, levels con-
tinue to rise, driving an increase in global temperature. However, the global ocean acts
as a brake on both of these processes, ameliorating both increases in atmospheric CO,

concentrations and increases in global mean temperatures.

The global ocean is a major sink of anthropogenic CO, emissions, currently absorbing
approximately a quarter (Le Quéré et al., 2018), and having absorbed approximately
a third of all anthropogenic CO, emissions to date (Khatiwala et al., 2013). Further-
more, it is expected to absorb up to 80% of all anthropogenic carbon emissions on
multi-centennial timescales (Archer et al., 1997). It is therefore hard to overestimate

its importance to the global carbon cycle and atmospheric CO, concentrations.

The ocean is similarly important for the global heat budget, having stored over 93%
of the heat accumulated in the earth system over 1961-2008 due to top of atmosphere
flux imbalances (Church et al., 2011), significantly ameliorating the effects of global
warming. However, as a result of the added heat content of the ocean, sea levels are
expected to rise significantly over the coming centuries (Pardaens et al., 2011). This is
anticipated to cause significant disruption to many societies: over 10% of the worlds
population live in the Low Elevation Coastal Zone (LECZ), the contiguous area along
the coast with less than 10m of elevation (McGranahan et al., 2007). Compounding this,
sea levels are not projected to rise uniformly: previous modelling studies indicate low
latitude sea level rise (SLR) will exceed the global mean by up to 20% (Perrette et al.,
2013), in large part due to the thermal expansion of seawater (thermosteric sea level
rise) (Pardaens et al. (2011), Church et al. (2013)), with enormous implications for fu-
ture economic development (Hinkel et al., 2014). As at least 14% of the population in
developing economies live in the LECZ, where SLR is projected to be greatest, ocean
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heat uptake and SLR therefore have enormous implications for global development
(Hinkel et al., 2014), coastal nations, and their populations. It also has important im-
plications for the future of marine ecosystem health: ocean warming has a direct effect
on marine life as a driver of deoxygenation (Oschlies et al., 2018), as well as through
increased stratification (Gruber, 2011). The uptake of carbon similarly affects marine
life through its role in ocean acidification (Gruber, 2011).

In its preindustrial state, ocean heat and carbon are closely coupled (Sarmiento and
Gruber, 2006), mostly due to the strong temperature dependence of CO, solubility in
water. CO; is more soluble in cooler waters, and therefore the highest concentrations
of DIC (Dissolved Inorganic Carbon, the total carbon concentration of seawater exclud-
ing biological carbon), is highest in cool waters. This leads to a close linear relationship
between the temperature of water and its carbon concentration: the carbon content of
water decreases by approximately 9umol/kg for every degree. However, CO, does
not simply dissolve in water: dissolved CO, also reacts with water, forming carbonate
and bicarbonate ions. As a result of this unique chemistry, the concentration of DIC in
seawater is far higher than might be naively be expected from equilibration with the at-
mosphere: in fact, the preindustrial ocean carbon pool (the total amount of carbon con-
tained in the ocean preindustrially) was approximately sixty times larger than that of
atmospheric CO; (38 thousand petagrams of carbon, PgC for the ocean versus 610 PgC
for the atmosphere) (Graven, 2016). In fact, the oceanic carbon pool is so much larger
than the atmospheric carbon pool that it was thought until the 1950’s that virtually all
anthropogenic CO, emissions would be absorbed by the ocean almost instantaneously:
it was largely due to the interest of the US military in detecting surreptitious Soviet nu-
clear tests it was discovered that atmospheric CO, was in fact increasing (Weart, 1997).
It was subsequently realised this was due to the oceans limited ability to sequester the
additional CO, released to the atmosphere by the burning of fossil fuels (Weart, 1997).
However, the large oceanic pool of DIC, coupled with the sensitivity of CO; solubility
to temperature, means that carbon and global climate are closely linked: previous stud-
ies have found changes in CO; concentrations as a response to ocean circulation change
to be a primary driver of glaciation and deglaciation (Shakun et al. (2012), Shackleton
(2000)), although others suggest a more limited influence (Imbrie et al. (1993), Alley and
Clark (1999)), or indeed the opposite causality (Toggweiler and Lea, 2010). Regardless
of the mechanisms linking preindustrial ocean carbon content and global climate, it is
well known that ocean circulation presently exerts a strong influence on the ocean’s

uptake of anthropogenic carbon (DeVries et al., 2017).
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In the same way that the ocean and its circulation is important for global CO, con-
centrations due to its large pool of carbon, the enormous heat capacity of the ocean
in comparison to the atmosphere (over 1000 times larger), means that it also plays a
key role in regulating global climate through its storage and transport of heat (Schmitt,
2018). For example, though both the ocean and atmosphere contribute similarly to the
transport of heat from low to high latitudes (Ferrari and Ferreira, 2011), a large fraction
of atmospheric heat transport is in fact achieved through the transport of moisture by

the atmosphere, which is supplied by the ocean (Yang et al., 2015).

There are numerous indications that both the patterns and scale of heat and carbon se-
questration by the ocean are tightly coupled. The uptake of both are strongly influenced
by ocean circulation (Sarmiento et al. (1992), DeVries et al. (2017)), with greatest seques-
tration in regions of deep and intermediate water formation, notably the North Atlantic
and Atlantic sectors of the Southern Ocean. This is the simple result of the physics of
ocean heat and carbon uptake: once a parcel of water is entrained below the mixed
layer, the layer of water in the upper ocean that can be considered to be in contact with
the atmosphere, its properties are essentially fixed, save for mixing, radioactive decay

and biological activity.

Changes to surface air temperature (SAT) as a result of anthropogenic activities are
known to be linearly related to cumulative carbon emissions, for both local and global
temperature changes (Leduc et al. (2016), Gillett et al. (2013)), with this linear relation-
ship controlled predominantly by the uptake of heat and carbon by the ocean (Goodwin
et al. (2015), Ehlert et al. (2017), Katavouta et al. (2018), Katavouta et al. (2019)). This
relationship is known as the transient climate response to cumulative carbon emissions
(TCRE), and its uses include, for example, calculating the carbon emissions remaining
to limit warming to 1.5 degrees relative to preindustrial (Damon Matthews et al., 2021).
Understanding the relationship between ocean heat and carbon uptake therefore repre-
sents a valuable opportunity to better quantify the effects anthropogenic CO, emissions

on the global climate and to understand how to limit climate change to safe levels.

Although the coverage, both spatial and temporal, of ocean observations continues to
increase rapidly (Davis et al., 2019), observational data remain relatively sparse spa-
tially and temporally, particularly at depth. In CMIP3 models, deep ocean heat uptake
was shown to be a major contributor to the uncertainty in transient global warming
(Boé et al., 2009), with this uncertainty compounded by the lack of observational con-
straints (Karspeck et al., 2017). An improved understanding of deep ocean heat uptake
contributing to a better understanding of transient climate change again underscores
the importance of understanding the global ocean uptake of heat and carbon for global

climate change.

Work extending the TCRE to a regional transient response (RTCRE) (Leduc et al., 2016)

indicates that although a large range of SAT increase rates are observed depending
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on location, there is a great deal of geographic coherence. This would indicate, as-
suming tight coupling between SST and SAT changes due to the large heat capacity
of water, that we would expect similar geographic coherence in any relationship be-
tween changes in ocean temperature and carbon content. Bronselaer and Zanna (2020)
investigated such a relationship, finding a near-linear global relationship between in-
creases in ocean heat and carbon content (Bronselaer and Zanna, 2020). They labelled
the parameter linking the two the carbon-heat coupling, a. This can be observed at a
range of scales: both increases in global ocean heat and carbon inventories, and in local
ocean excess temperature (temperature changes propagated from surface temperature
changes) and anthropogenic carbon (DIC changes resulting from equilibration with in-
creased atmospheric COy) are linearly related. Bronselaer and Zanna (2020) argues that
this relationship ought be globally uniform thanks to the responses of seawater car-
bonate chemistry and radiative forcing to rising atmospheric CO,. However, there are
are indications that there may be some regional variability in this ratio (Turner et al.
(2022), Bopp et al. (2015), Davila et al. (2022)), and that it may be necessary to better
understand the drivers of this regional variability in order to properly understand how
ocean heat and carbon uptake are linked. It appears to be the case that at high latitudes,
ocean heat uptake is increased relative to carbon uptake. It is unclear from previous re-
search why this is the case. It may be due to the polar amplification of warming (the
Arctic is warming significantly faster than the global mean): for example, Leduc et al.
(2016) finds greater SAT changes above the ocean at high latitudes than low. Alterna-
tively, it may be driven by differing mechanisms of ocean heat and carbon uptake at
high and low latitudes. Bopp et al. (2015) found that total subduction of anthropogenic
carbon through the base of the mixed layer was significantly more variable than air-sea
fluxes, and was generally reduced at high latitudes, relative to the global mean. Such
a mechanism would indicate that the different processes contributing to the transport
of anthropogenic carbon into the ocean interior are a key factor in driving regional
variability in this analogous relationship between changes in ocean heat and carbon

content.

In addition to transient warming, SLR and global energy budgets also rely on esti-
mates of deep ocean heat uptake for closure, and so improving our understanding of
deep ocean heat uptake is key to improving our estimates of these quantities (Purkey
and Johnson (2012), Domingues et al. (2008), Murphy et al. (2009)). Linking carbon
uptake to heat uptake as an additional constraint therefore represents an opportunity
to improve our estimates of SLR and global energy balance: the field of decomposing
the increases in carbon in the ocean is far more developed than analogous decomposi-
tions to heat changes, and so linking the two represents an avenue for improving our

understanding of ocean heat uptake.

Though previous research into the TCRE has emphasised the importance of the ocean

both in setting its magnitude and controlling the linear relation between warming and
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emissions, how this transient response manifests in the ocean remains an understudied
problem. Bronselaer and Zanna (2020) use this transient response framework in order
to explain whether ocean heat content change is due to changes in surface forcing (ex-
cess heat), or due to changes in circulation (redistributed heat), but do not consider the
implications for transient climate change, nor the potential for spatial variability in the
transient link between changes in ocean heat and carbon content. Similarly, Williams
etal. (2021) uses the correlation imparted by this transient response between changes in
ocean temperature and carbon, along with the anticorrelation of the background tem-
perature and carbon fields, to identify regions where changes in ocean temperature and
carbon result predominately from either changes in ocean circulation or from the up-
take of excess heat and anthropogenic carbon by the ocean. An improved framework in
which to understand this oceanic response therefore represents an enormous opportu-
nity, with implications for understanding sea level rise, transient global warming and
ocean circulation change. It may also represent an opportunity for improved model
evaluation by providing a new metric with which to understand model performance

and biases.

1.2 Ocean Tracers

Ocean tracers are, at the most basic level, properties of a water parcel which may be
used to ascertain the location at which the parcel was formed: that is, subducted from
the ocean surface. They also enable the study the changes such a parcel has undergone
as it is transported throughout the global ocean: advection, mixing, biological activity,
etc. Tracers include physical properties such as temperature and salinity, and biogeo-
chemical properties such as silicate and nitrate, amongst many others. Tracers have
been used to infer and quantify ocean circulation for centuries, with Capt. Henry Ellis
tirst discovering the deep waters of the Subtropical Atlantic to be much cooler than the
surface in 1751 (Ellis and Hales, 1751). It was later hypothesised by Count Rumford
that this water must have come from much higher latitude, pioneering the use of tem-
perature as a tracer to determine ocean circulation. Over the years, the use of tracers
has allowed us, to a large extent, to describe the general circulation of the ocean. One
commonly used description is that of the “Great Ocean Conveyor” of Broecker (1991):
an adaptation of this is shown in Figure 1.1. Though extremely oversimplified, it cap-
tures several key features of global ocean circulation: the formation of deep and bottom
water in the North Atlantic and Southern Oceans, and the return of water from depth

to the surface in the Indian and Pacific oceans.

The use of tracers in the determination of ocean circulation is extensive and well devel-
oped, and as such there are a number of classifications of tracers, though categories are

not necessarily mutually exclusive. Examples include:



6 Chapter 1. Introduction

~" "Heatrelease ™~
0 atmuspher_ew

Atlantic
Ocean

Pacific Ocean

COLD AND SALTY DEEP CURRENT
“ e e e

Heat release
to atmosphere

Great Ocean Conveyor Belt

FIGURE 1.1: The Great Ocean Conveyor belt, a simplified schematic of ocean circu-
lation. Deep water forms in regions where heat is lost to the atmosphere: these are
shown by shading. Deep water formation is indicated by a change of colour from blue
to red, and deep water returning to the surface by a change of colour from red to blue.
Reproduced from https://pubs.usgs.gov/pp/p1386a/gallery2-fig31.html.

¢ Passive: Tracers which do not affect ocean circulation. Chemical tracers such as
phosphate, silicate, nitrate etc. are all passive, whereas physical tracers such as
temperature, salinity and potential vorticity are generally not passive, though it is
common to treat perturbations to physical tracers as passive. Non passive tracers
are referred to as active.

¢ Conservative: Tracers which do not exhibit time or state (pressure, temperature)
dependence. Tracers such as chlorofluorocarbons (CFCs) are conservative, as they
exhibit no in situ interactions or decay. However, CFCs can also be treated as a

transient tracer, as they have a time dependent surface input.

¢ Transient: Tracers which exhibit time dependence, often in the form of radioac-
tive decay, but also due to time dependent surface conditions as noted above.
Radiocarbon (Carbon-14) is a commonly used transient tracer.

Other classifications of tracers exist, though are not discussed further.

1.2.0.1 Carbon in the ocean: Dissolved Inorganic Carbon, Anthropogenic and Nat-
ural Carbon

Unlike in the atmosphere, Dissolved Inorganic Carbon (DIC) in the ocean is not well
mixed at global scales, nor are changes in its distribution entirely attributable to in-
creased atmospheric CO,. In its preindustrial state, atmospheric CO; is thought to have
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been well mixed to within a few parts per million (ppm), compared to a global mean of
approximately 286ppm (Meinshausen et al., 2017). Although anthropogenic activities
have caused an increase in both the amplitude of the seasonal CO; cycle (Graven et al.,
2013) and the difference between Northern and Southern hemisphere concentrations
(Meinshausen et al., 2017), atmospheric CO; is still well mixed to within a few ppm,
compared to a global mean of approximately 410ppm presently. As such, atmospheric
CO; is well described, both presently and historically, by a single number, the annual
global mean COs.

Such a simple description of carbon in the ocean is not possible, for a number of rea-
sons. Atmospheric CO, records extend back millions of years thanks to ice core records,
such as those used in Meinshausen et al. (2017). No such record exists for DIC, and so
its preindustrial state must be estimated indirectly. In addition to DIC, organic car-
bon is also found in the ocean: Particulate Organic Carbon (POC), for example, which
comprises the remains and excretions of small marine organisms, which sink upon
their death. As these remains sink, they are consumed by heterotrophs, creating a cas-
cade to smaller excretions, eventually returning to inorganic nutrients. Thus, POC is
transformed into DIC, an interaction which must be accounted for to understand the
global distribution of DIC. This particular process is known as the soft tissue pump, al-
though other interactions occur in the ocean carbon system: for example the Carbonate
Pump, in which the hard carbonate shells of marine organisms (Particulate Inorganic
Carbon, PIC) are similarly remineralised at depth due to the increased pH of deeper
waters. The soft tissue and carbonate pumps are collectively referred to as the biolog-
ical carbon pump, without which preindustrial CO, concentrations would have been
approximately 50% higher (Sarmiento and Gruber, 2006) than they were.

Another important control on the distribution of DIC in the ocean interior is the sol-
ubility pump (Williams and Follows, 2011). The solubility of CO, is a strong inverse
function of temperature. However, as previously noted, the deep waters of the global
ocean are formed at high latitude, where water masses are cool and therefore dense
enough to subduct to depth. Thus, DIC generally increases with depth, even discount-
ing the effects of the biological pumps: this effect is known as as the solubility pump.

As a result of these complex interactions between physical, chemical and biological
processes, the distribution of DIC in the global ocean is far more heterogeneous than
that of atmospheric CO,, with concentrations ranging from less than 2000ymol/kg in
surface waters to more than 2400umol/kg in the deep North Pacific. Figure 1.2 gives an
indication of this complex distribution. In general, concentrations of DIC increase from
the surface to depth. Concentrations are also visibly higher in the deep North Pacific
than the deep North Atlantic. This is due to the patterns of deep water formation: deep
water in the Pacific can be hundreds to thousands of years old, and so has accumulated
more DIC through the biological carbon pumps. This pattern of older waters having
higher sDIC (DIC normalised to a salinity of 35) concentrations can also be seen in the
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North Atlantic: here, Antarctic Bottom Water (AABW) sits below North Atlantic Deep
Water (NADW) at depths greater than approximately 4000m. Above NADW, at depths
of approximately 1000m, Antarctic Intermediate Water (AAIW) is found. Both AAIW
and AABW take longer to reach this region than NADW: thus, due to its greater age,
higher DIC concentrations are seen in AAIW and AABW than NADW (Touratier et al.,
2005).
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FIGURE 1.2: A map of sDIC, DIC normalised to a salinity of 35, from shipboard ob-

servations during WOCE (the World Ocean Circulation Experiment (Thompson et al.,

2001)) (top), and the location of the shipboard observations (bottom). Normalising to

constant salinity helps to remove the effect of freshwater fluxes on DIC distributions.
Reproduced from Sarmiento and Gruber (2006).

If we wish to understand what controls the distribution of DIC in the ocean, we must

tirst separate it into its different constituent components. This is a crucial step in the
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identification of anthropogenic carbon, C,,,. Due to heterogeneity of preindustrial
DIC distributions, the complexity of processes controlling the exchange of CO; be-
tween atmosphere and ocean (Wanninkhof, 2014), the chemical indistinguishably of
Canth from other carbon pools, and the complex in situ biogeochemical interactions of
the ocean carbon cycle, a number of techniques exist which aim to separate present
day DIC into the component due to increased atmospheric CO; (C,nen) and changes in
the distribution of the background DIC distribution due to changing ocean dynamics
(Cnat). These techniques, though differing in their details, fall broadly into two cat-
egories: Back calculation techniques and Transit Tracer based techniques (Khatiwala
et al., 2013).

Back calculation techniques rely on an understanding of the ocean carbon cycle, and
the different reservoirs of carbon which DIC may be decomposed into. Several different
combinations and definitions of the carbon reservoirs may be used (see Williams and
Follows (2011)), though all are essentially different combinations of a commonly used

‘base set’, which is given here. We may decompose DIC into 5 “pools’ as follows:
DIC = DICL), 4+ DIC. + DICsyf; + DIC4jse0. + DIC 11 (1.1)

Each term is now described in turn:

e DICLL: The DIC content which a parcel of water would have, if allowed to equili-
brate with the preindustrial atmosphere, at its present potential temperature and
salinity. This comprises the bulk of all DIC (approximately 2000umol/kg), and is

referred to as Saturation Carbon.

* DIC,,s;: The DIC content due to the remineralisation of soft tissue, referred to as
Soft Tissue Carbon. It ranges approximately 0-200umol/kg, depending on depth
and the age of a water parcel: surface waters and the deep North Atlantic have
concentrations near to zero, whilst concentrations of over 200umol/kg are seen

in the intermediate North Pacific.

e DIC,,,;: DIC content due to the remineralisation of calcium carbonate. The distri-
bution is broadly similar to that of DIC, ¢;, but with lower concentrations, ranging
from zero up to approximately 60pumol/kg.

* DICyjseq: DIC content due to the disequilibrium of a parcel of water with the
overlying atmosphere, when subducted away from the surface. It is referred to
as Disequilibrium Carbon, and unlike other carbon reservoirs, may be positive or
negative. Calculating its local magnitude can be extremely difficult, and so it is
often combined with the DIC,,,;, term as the term DIC,,;.

¢ DIC,,: Anthropogenic Carbon, usually referred to simply as Cypin 0r Cant. This

is broadly similar to DICL!, but accounts for the increased CO, content of the
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atmosphere: we may write DIC,;; = DICEL + C . Concentrations range from
zero in deep, unventilated waters, up to around 80 ymol/kg in surface, well ven-

tilated waters.

In back calculation techniques, observations of the current ocean state are used to re-
move the soft tissue, carbonate and saturation carbon, leaving DIC,,;. This is then de-
composed for C,ny, and the disequilibrium carbon. Back calculation techniques include
AC* (Gruber et al., 1996), TrOCA (Touratier and Goyet, 2004), (pC% (Vazquez-Rodriguez
etal., 2009) and eMLR(C") (Clement and Gruber, 2018) (though the eMLR(C") technique

actually calculates changes in C,, and so requires an initial distribution estimate).

Unlike back calculation techniques, transient tracer based techniques instead begin
with estimates of ocean transport calculated using transient tracers, and aim to prop-
agate the history of atmospheric conditions into the ocean to obtain estimates of Cyn,
inventories. Such techniques generally assume C,4, to be a conservative tracer, since
Canth concentrations are only a fraction of that of DIC. As such, its interaction with
the biological carbon pump is a minimal, 2" order term. Examples include the TTD
(Transit Time Distribution) (Hall et al., 2002), and Green’s Function based implemen-
tations of surface histories, such as the Transport Matrix Method (TMM) (Khatiwala
et al., 2005).

Like DIC, the distribution of C,ny, is also very heterogeneous, predominately due to
its time dependent history and strong dependence on ocean circulation. An estimated
distribution of the additional C,.y, uptaken by the ocean from 1994-2007 (using the
eMLR(C’) technique) is shown in Figure 1.3, which is broadly representative of the
total C,ny, distribution in the global ocean.

As a result of the myriad of C,y, estimation techniques, there are numerous discrep-
ancies between techniques, though globally integrated inventories tend to agree much
more closely (Khatiwala et al., 2013), (Wang et al., 2012). This is shown in Figure 1.4.
Near global inventories from data based methods agree to within 20% (experimental
uncertainty), but regional estimates can differ by up to 50%, particularly in the North
Atlantic and Southern Oceans. Importantly, C,,, accumulation tends to be greatest in
regions of deep water formation, as illustrated in Figure 1.1. In fact, ocean circulation is
well known to be a leading order control on regional patterns of CO, fluxes and Cypy,

accumulation (Sarmiento et al., 1992).

1.2.1 Changing ocean dynamics: Excess and Redistributed Tracers
1.2.1.1 Excess and Redistributed Temperature

Though the art of decomposing changes in DIC into C,ny, accumulation and changes

in other carbon pools remains imperfect, it is relatively well developed, largely thanks
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FIGURE 1.3: The increase in C,y, between 1994 and 2007 in the global ocean. Con-

centrations are highest in the subtropical gyres, and decay rapidly at depth in both the

Indian and Pacific Oceans. Concentrations of C,,y, at abyssal depths in the Atlantic

are much higher due to it’s importance in deep water formation: deep waters in the

Atlantic tend to be ventilated more recently than those in the Pacific and Indian, and

thus show faster increase rates in their inventories of C,,y,. Adapted from Gruber
etal. (2019).

to the well understood biogeochemical processes controlling it. Attempting to analo-
gously decompose temperature changes is more difficult: reliably identifying whether
a change in temperature is due to dynamical variability or warming of a water mass
can be extremely difficult. A framework which allows us to identify the drivers of these
changes is known as the excess-redistribution decomposition, where ‘excess’ changes
are changes in an ocean tracer resulting from changes in surface forcing, whereas ‘re-
distributed” changes are the changes in a tracer resulting from perturbations to ocean

circulation. The notion of an ‘excess’ tracer is closely related to the principles used
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FIGURE 1.4: Estimates of C,,y, column inventories in 1990, reproduced from Khati-

wala et al. (2013). Panels (a)-(c) show estimates from data based techniques, (d) esti-

mates from the TMM method using an MITgem ECCO configuration, and (e)-(h) ESM
CMIP historical run estimates.

in the transient tracer based estimates of C,ny,, in particular the GF technique: by be-

ginning with a description of ocean circulation, we may propagate changes in surface

conditions into the ocean interior: changes in a given tracer due to the propagation of

the surface signal by the steady state ocean circulation are described as ‘excess’. Thus,

the anthropogenic carbon estimated by transient tracer based estimation techniques is

closely related to the excess carbon content of the ocean. The utility of this framework

is that it can be extended to any ocean tracer, not just carbon: the tracer best studied

under this framework thus far (after carbon) is temperature.
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As an illustration of this, consider a velocity-temperature field, T, which may be writ-
ten as two initial fields, plus small perturbations:

T=700+7, (1.2)

where 7 is the initial field and ¢ the perturbation, and likewise for T. Then, the total

perturbation of this velocity-temperature field may be written as
(3T) =0T — GyTo = GoT' + T To + T (1.3)

In Equation 1.3, the term 7T’ is referred to as excess temperature, and 7' T referred to
as redistributed temperature. The 7'T’ term is small and therefore may be neglected.
Note that 7 is nonzero as it is a function of T’, and therefore T’ is not a passive tracer.
However, it is often useful to treat T’ as a passive tracer, as this approximation remains
valid in a number of circumstances (Church et al., 1991), (Jackett et al., 2000), (Rus-
sell et al., 2006). In others, for example estimates of regional ocean heat uptake, this
simplification cannot be made (Banks and Gregory, 2006), (Xie and Vallis, 2012).

As heat is not a passive tracer, heat uptake will act to modify ocean circulation, and so
¥ is in general nonzero. This is problematic in understanding heat uptake as the terms
7'Typ and U1’ are of similar magnitude, with the redistributed temperature term T’
often dominating changes in ocean temperature, particularly on decadal and shorter
timescales. Observationally identifying excess and redistributed heat changes can there-

fore be very difficult, and is an active area of research.

One solution is to use models and impose artificial conditions in order to deconvolve
excess and redistributed heat change. Two main conceptual approaches are used to
this end. The first is to force model dynamics to remain the same throughout a climate
change run, effectively setting 7 = 0 in Equation 1.3, despite the uptake of heat. The
second is to use a “Passive Anomalous Tracer” (PAT), which observes the same physics
as the temperature field, but has no preindustrial field, and does not itself affect the
evolving ocean circulation (instead, model dynamics respond to the co-evolving tem-
perature field). This is analogous to forcing Ty = 0 in Equation 1.3. Importantly, the
two techniques are subtly different: the PAT technique will incorporate a second order,
v'T’ term, whilst the fixed circulation technique will not.

Figure 1.5 shows both heat and PAT uptake, from CMIP5 1pctCO2 runs. Of note are
the significantly higher PAT uptake relative to heat in the North Atlantic and Arctic
oceans, and lower uptakes across much of the Pacific and South Atlantic than heat. The
patterns also strongly resemble those of C,,y, uptake from 1.4 as ocean circulation (and
deep water formation) is a leading control on the uptake of both heat and carbon. The
differences in the Atlantic are largely representative of the effect of heat uptake on ocean
dynamics: the Atlantic Meridional Overturning Circulation (AMOC), transports heat
northward throughout the entire Atlantic, and weakens as the North Atlantic warms
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a) Heat uptake

0 4 8 12 16 20

FIGURE 1.5: Column inventories of total heat and PAT (Passive Anomalous Tracer)
uptake: climate change - control runs, reproduced from Banks and Gregory (2006).

(Buckley and Marshall). As such, heat uptake in the North Atlantic is associated with
a reduction in northwards heat transport. The temperature change resulting from this
heat transport change can be loosely thought of as a warming in the South Atlantic, and
a cooling in the North Atlantic. Thus, ocean circulation changes act to reduce horizontal
gradients in heat uptake. Whilst the response of dynamical change can not be described
in such a simple fashion in other ocean basins, the processes are heuristically similar:

see for example Newsom et al. (2022).
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1.2.1.2 A general excess tracer

Extending Equation 1.3 to a general tracer, Q, and velocity field, ¥, we obtain
(9Q) = 9Q — 50Qo = 5oQ + 7' Qo +7'Q, (1.4)

where again the subscript 0 indicates the stable equilibrium component, and the primed
component the perturbation, with the sum of the two denoting the perturbed field:

Q=Q+Q, (1.5)

and likewise for ¥. Following Winton et al. (2013), we may define a Redistribution

Number for the tracer Q, denoted R, as follows:

_ v'Qo
-~ 0Q”

Ro (1.6)
where v" and v represents magnitudes of our initial and perturbation velocity vectors,
respectively. Thus, Rg is an estimate of what fraction of the change in Q is due to
the change of the velocity field acting to redistribute the background field of the initial
equilibrium, and what fraction is due to the addition of the perturbed component of
Q, advected by the equilibrium velocity field. An illustration of this is shown in Figure
1.6, in which the model dynamics are either fixed to preindustrial conditions (7' = 0),
or allowed to vary freely. It can easily be seen that the pattern of heat uptake is changed
substantially, particularly in the Atlantic. Fixed current heat uptake strongly resembles
that of PAT in Figure 1.5. Though carbon shows some differences between runs, pat-
terns are largely similar. Note this is the total carbon field, DIC, and not anthropogenic

carbon, C, -

When estimating R, scales for each quantity must be used. For perturbations, this is
approximately the size of the largest perturbation at any point in the ocean. For the
background quantity, a natural scale to use is the range of values seen preindustrially.
Estimating the ratio v'/vg is somewhat harder but can be done: details are given in
Winton et al. (2013).

Computing redistribution numbers for Temperature, DIC and C,4, give redistribution
numbers of Rt ~ 3.6, Rpic ~ 0.6 and Rc, ,, = 0. This implies that on a global scale, the
majority of observed temperature changes are due to redistribution, which is not the
case for DIC. The redistribution for C,q, is 0 as C 4, is constructed in order to be zero
preindustrially, and so Qp is by definition zero for C,,y,. This differing impact on heat
and carbon as ocean circulation changes has important implications for understanding
the link between heat and carbon inventory changes: whilst the distribution of excess

heat and carbon are expected to be similar, this is not the case for redistribution.
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FIGURE 1.6: The effect of fixing currents or allowing them to vary with changing con-
ditions under climate change model simulations, for DIC and heat content. Repro-
duced from Winton et al.. Thick black lines denote the zero contour.

1.2.1.3 Excess and redistributed salinity

Though Section 1.2.1 has focussed predominantly on how the preindustrial fields of
ocean temperature and carbon respond to changes in circulation and the implications
for understanding ocean heat and carbon uptake, the formulation is applicable to any
ocean tracer. Temperature is not the only variable that impacts ocean circulation, with
salinity also playing a fundamental role in controlling ocean circulation. So far, un-
derstanding ‘excess’ and 'redistributed” salinity in the same way remains a gap in our
understanding of the response of ocean dynamics to anthropogenic global warming:
Zika et al. (2021) notes that their reconstruction of material warming from observations
(closely related to excess heat) also produces a material salinity change, but do not anal-
yse this material change, and Turner et al. (2022) investigates whether modelled salinity
change is due to either excess or redistribution of the preindustrial salinity field, but be-
yond this, the problem remains fundamentally unstudied.
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As with temperature, salinity may change due to changes in surface fluxes, or due
to changes in circulation. Whereas for temperature these surface fluxes are predomi-
nately the result of increased radiative forcing due to strengthening of the greenhouse
effect, excess salinity is controlled by the response of atmospheric freshwater transport
to the warming atmosphere and surface ocean. Previous model experiments, as well
as observational studies of historical sea surface salinity (S5SS) changes, indicate that
the general pattern of ocean salinity change is that the fresh gets fresher and the salty
gets saltier, as patterns of SSS become amplified (Stott et al. (2008), Durack and Wijffels
(2010), Terray et al. (2012), Pierce et al. (2012), Skliris et al. (2014), Zika et al. (2018)). This
is demonstrated in Figure 1.7: the patterns of SSS trends (Figure 1.7c) are reasonably
well captured by the response of SSS to water cycle amplification (Figure 1.7d). Net
freshwater fluxes are typically out of the ocean in the subtropical gyres (Panel a), and
the highest sea surface salinities are generally found in these regions (Panel b), with
the North Atlantic significantly saltier than the North Pacific. Generally, observations
of trends in SSS show increasing salinity in these already salty regions, and freshening
in fresher regions. Panels (d)-(h) show the response of sea surface salinity to idealised
modelled forcings, for more details see Zika et al. (2018).

Unlike temperature, for which there is a large net flux of excess heat into the global
ocean, globally integrated excess salinity changes are expected to be small: the only
significant potential sources of a global net flux of excess salinity being the melting of
the Greenland and Antarctic ice sheets, which act to freshen the global ocean by the ad-
dition of freshwater. This is a key distinction between excess heat and salinity: whilst
excess heat accumulates in or is removed from the ocean due to to the addition or re-
moval of heat, excess salinity changes are due to the addition or removal of freshwater,
not salt (excess salt and excess salinity are theoretically distinct, unlike excess heat and
excess temperature). As such, changes in excess salinity can be considered to be driven
by the atmospheric response to climate change, rather than the ocean response as is the
case for temperature. As the ocean has a much larger heat capacity than the atmosphere
and longer timescales for response, we therefore expect excess salinity to be more easily
detected than excess temperature, particularly for historical observations for which the
global mean warming is small. This is already well known in the context of changes
in sea surface salinity: Stott et al. (2008), Terray et al. (2012), Pierce et al. (2012) and
Skliris et al. (2014), who suggest the salinification of the subtropical North Atlantic and
freshening of the Western Pacific Warm Pool may constitute an early fingerprint of an-
thropogenic forcings.

In addition, it might be expected that the contribution of redistributed salinity to salin-
ity change is smaller than that of redistributed temperature to temperature change:
returning to the redistribution number 1.6, we may note that the range of preindustrial
salinity values spans a smaller range than that of temperature. However, the size of

the perturbations to surface salinity values is also different, and so it is not necessarily
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a) Mean surface water flux (COREII)

b) Observed mean sea surface salinity
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FIGURE 1.7: Surface water fluxes, sea surface salinity, and the response of sea surface

salinity to various forcings, reproduced from Zika et al. (2018).
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the case that the redistribution number is smaller for salinity than for temperature. We
do expect negligible trends in the globally integrated excess salinity, except for a slight
freshening due to the melting of the Greenland and Antarctic ice sheets (Antonov et al.
(2002), Wadhams and Munk (2004)).

1.2.1.4 Excess DIC and Anthropogenic Carbon

In Section 1.2.1.2, it was noted that the redistribution number for C,,y, is zero as an-
thropogenic carbon is defined to be zero preindustrially. From this, it may appear than
excess DIC and anthropogenic carbon are the same quantity. Whilst closely analagous,
this is not precisely the case: these differences are now explored. Returning to Equation

1.4, and including labels for the excess, redistributed, and preindustrial components:

Q= (do+7)(Q+Q)= ©Q + TQ +5Q +7Q, (1.7)
. ~— ———— e ——
Preindustrial ~ Redistributed Excess

we see that, for our arbitrary tracer Q, our definition of excess and redistributed Q is
purely transport based: redistributed Q is simply the change in Q due to anomalous
transport of the preindustrial field. Following Williams et al. (2021), we may therefore
write the change in excess and redistributed Q explicitly as

Qu(t) = /t: (Fb— (F0+7) - vQ')dt, (1.8)

and

Qr(t) = —/t: (5’ : VQo)dt, (1.9)

where Fj, is the anomalous surface flux in Q, ty is a preindustrial time, and # is a generic

time.

Now consider the global mean value of Q,: the net velocity of the global ocean is zero,
and so this quantity must be zero at all times. This result can also be intuited from con-
sidering the redistribution of a parcel of water from one location to another: warming
at one location must be compensated for by equivalent cooling at another when the
locations of two parcels of water are exchanged. As a result, all changes in the global
inventory of Q must be the result of excess Q, rather than redistributed Q.

Now instead consider the response of the ocean carbonate system to both increasing at-
mospheric CO, and the consequent warming of the ocean. As noted in Section 1.2.0.1,
anthropogenic carbon is the carbon content of a parcel of water resulting from its equi-
librium with the increased atmospheric carbon content. However, at the same time, the
warming of a parcel of water will reduce the amount of CO, which may dissolve in it
due to the inverse temperature dependence of CO; solubility. Thus, saturation carbon
will outgas in response to ocean warming. This effect constitutes a net loss of DIC in
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response to ocean warming, separate from the changes in the ocean DIC inventory due
to anthropogenic carbon: thus, anthropogenic carbon and excess DIC must differ. This
effect is demonstrated in Figure 1.8, where the effect of increasing C,,y, and outgassing
Csat on the global mean DIC inventory is shown. Note that the size of the preindus-
trial pool of DIC is not to scale: it is in fact significantly larger than the anthropogenic

contribution.

Divergence of C,, and Excess DIC

Preindustrial DIC
7 Canth
4 Excess DIC
Qutgassing Csat

Carbon Pool Inventory Change

Time

FIGURE 1.8: The difference between excess and anthropogenic carbon: the global C 1,

inventory slightly exceeds that of excess DIC, as some Cg,t outgasses in response to the

ocean warming. This diagram is not to scale: preindustrial carbon concentrations far
exceed those of anthropogenic carbon.

As a result of this outgassing of Csat, excess DIC and anthropogenic carbon do differ
systematically. However, on short timescales (sub decadal), the change in the two can
be considered to be approximately equivalent. This is also the case for historic obser-
vations, where the reduction in Cs, is small, but this approximate equivalence will
become less accurate over time as the ocean continues to warm.

1.2.1.5 Redistributed DIC and Natural Carbon

As a result of the close analogue between excess DIC and C,y,, there also exists a nat-
ural analogue between redistributed DIC and natural carbon (Cyat), the pool of carbon

which remains when anthropogenic carbon is subtracted from total carbon.

Returning to Equation 1.1,
DIC = DIC), + DIC.y, + DICsyf; + DIC4isq + DIC 11, (1.1)
we may group the first four pools into “Natural Carbon”:

DIC = Cnat + Canth/ (110)
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where Cy,; is therefore defined as
Crat = DICL); 4 DIC 4 + DICs) ¢ + DICjseq- (1.11)

However, unlike C,4,, there are 2 issues with Cy,; as an analogue to redistributed DIC:

1. Redistributed DIC is defined to globally integrate to zero, however this is not the
case for Cpat (see Figure 1.8).

2. Cynth is defined to not contain any biologically driven carbon, whereas Cpa¢ is.

For the issue of redistributed DIC integrating globally to zero but changes in C,4; not
doing so, it might be noted that this is also an issue with the use of C,ny, as an ana-
logue to excess DIC. However, whilst C,, will always be an overestimate (though
not necessarily a large overestimate) of excess DIC, as in both will generally increase
with atmospheric CO,, this is not an issue: the patterns of both will be largely similar,
with Cyn, generally slightly exceeding excess carbon. However, this is not the case
for redistributed DIC and Cpat: as redistributed carbon and temperature are defined
to globally integrate to zero, patterns of reduced or increased natural carbon due to
redistribution will be substantially and meaningfully altered if we find a trend in the
global mean value of redistributed carbon content: for example, regions which should
exhibit a slight decrease will instead show a slight increase. In general, in a warming
climate, we expect the global pool of Cyt to decrease as saturation carbon outgasses
due to the reduced solubility of CO, in warmer waters. One solution to this problem
is to ‘repartition” some C,ny, back into our natural carbon pool to obtain an ‘adjusted
natural carbon’ pool, correcting for this outgassing of saturation carbon. This process

is described in detail in Chapter 3.

The second issue is more subtle, as it requires an understanding of the degree to which
changes in biology alter the distribution of Cpat On a variety of timescales. Whilst
changes in the strength of the biological carbon pump control the strength of the ocean
carbon sink on millennial timescales and are therefore key to regulating atmospheric
CO; concentrations, for our purposes, we are interested in their response to anthro-
pogenically forced climate change, as well as their natural variability, on much shorter
timescales: yearly to centennial. For the analogy between redistributed carbon and
natural carbon to remain valid, we do not necessarily require that the strength of the
biological carbon pumps remains constant: only that the trend in the carbon content
of a parcel of water due to changes in the strengths of the biological carbon pumps re-
mains small compared to the trend in the carbon content of a parcel of water due to the

change in its saturation carbon content. We may write this as

d

d d
(I

Csat(r)D > <’ECcarb(r> + ﬁcsoft(r)bl (1-12)
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where angle brackets represent an expected scale of change over a time period of in-
terest, and modulo signs represent the absolute value of a quantity at a fixed spatial
location, r. Therefore, so long as the scale of changes due to saturation carbon change
are much larger than those due to biologically driven carbon change, over our period
of interest, we can consider Cpat to be an appropriate approximation for redistributed

carbon.

Finally, we may also note that changes in the soft tissue and carbonate DIC content at
fixed spatial location may change not only due to changes in the soft tissue and carbon-
ate pumps, but due to changes in ocean circulation: that is, soft tissue and carbonate
carbon may be redistributed in the same way as saturation carbon. Thus, the condition
stated in Equation 1.12 are can be relaxed to the component of the change in the soft
tissue and carbonate carbon inventories due to time integrated changes in the strength
of the biological carbon pumps, rather than the total change in the soft tissue and car-
bonate carbon. As the size of these carbonate pools is generally much smaller than
that of saturation carbon, and that the magnitude of the change in the biological carbon
pumps is generally thought to be small, we can consider the approximation of redis-
tributed DIC with natural carbon change to be generally appropriate (Couldrey (2018),
Chapter 4).

1.2.2 Thesis Structure and Scope

Due to the importance of the global ocean for both heat and carbon uptake under tran-
sient climate change (Khatiwala et al. (2012), Zanna et al. (2019)), and its importance
in setting both the magnitude and form of the relationship between carbon emissions
and global warming (Goodwin et al. (2015), Ehlert et al. (2017)), an improved under-
standing of the link between changes in ocean heat and carbon content represents an
opportunity for improved understanding of the global climate response to continued
anthropogenic carbon emissions. In addition, recent work has shown that the covari-
ability of the background and added/excess heat and carbon in the ocean can be lever-
aged in order to understand whether regional ocean changes in heat content are due
to circulation change or due to the accumulation of excess/added heat (Bronselaer and
Zanna (2020), Williams et al. (2021)).

In this work, both the mechanisms coupling changes in ocean heat and carbon content,
as well as the potential uses of these couplings are explored in detail. This is performed
both in a Ocean General Circulation Model (OGCM), and also applied to observations.
Additionally, the techniques which will be developed, though initially designed for the
decomposition of temperature, will also be applied to salinity, as it is also a key driver
of ocean circulation, and responding strongly to anthropogenic climate change.
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This first chapter has provided a brief introduction to ocean tracers, and their decompo-
sition in an excess/redistribution framework. It has also given a brief introduction into
the decomposition of temperature, salinity, and carbon, in both the excess/redistribu-
tion framework, and also the more traditional decomposition of DIC into its constituent
pools.

In the second chapter, theories and mathematical structures which relate temperature
and carbon in the ocean, as well as the atmosphere, will be introduced. This will show
why excess temperature and anthropogenic carbon are so closely linked, as well as why
this link is expected to be temperature dependent. The covariability of the background
temperature and carbon fields will then be explored, introducing the notion of a redis-
tribution coefficient: a number which informs how we expect two tracers to covary as
a result of ocean circulation change. The two relationships between the excess/anthro-
pogenic components, and the background components, are then combined, showing
how the excess and redistributed temperature, salinity, and DIC can be obtained di-

rectly in temperature-carbon space.

In the third chapter, the relationship between redistributed temperature and salinity
and natural carbon are explored in depth, using the NEMO OGCM. Relevant theory
introduced in the second chapter is expanded in greater detail, and it is shown how this
approach can be used to determine the mechanisms of ocean temperature and salinity
change. This chapter was previously published in Ocean Sciences (Turner et al., 2022),
and the material is broadly the same; however, some changes to the order of the content

have been made, due to the extensive appendices in the published work.

In the fourth chapter, the assumptions made in Chapter 3 are explored in greater depth,
in order to explore the limitations of the validity of the decomposition. Techniques
which would enable this the extension of this method are proposed, and the validity
of some assumptions are tested explicitly. However, implementation of these proposed

techniques is left for future work.

In the fifth chapter, the temperature-carbon space approach described in Chapter 2 is
explored in detail, for the A05 hydrographic section: a well observed ocean location,
which is known to be important for both heat and carbon uptake and storage. The
theory introduced in Chapter 2 is expanded, and the sensitivity of results to the choice
of parametrisations utilised is explored. Uncertainties are explored in detail, and it is
shown how this technique can reliably identify excess carbon through comparison with

previously existing anthropogenic carbon estimates.

In the sixth chapter, the approach explored in detail in Chapter 5 is applied to the global
ocean, to produce global estimates of excess heat and salinity accumulation, using the
GLODAP dataset (Lauvset et al., 2021). The implications of these global excess heat
and salinity accumulation fields are then explored in detail. Chapter 7 then presents

some final conclusions, as well as investigating how the work presented here might be
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extended in future to improve understanding of ocean heat and carbon uptake. Finally,

Appendix A describes the mapping software used in chapters five and six.
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Chapter 2

Theory: Transient Climate
Responses, Carbon-Heat Coupling,
Redistribution Coefficients and
Temperature-Carbon Space

In this Chapter, the notion of a Transient Climate Response is introduced and explored.
Transient Climate Responses refer to the reliable ways in which certain climatic pa-
rameters change in response to a change in forcing. The Transient Climate Response
to Emissions (TCRE) is first introduced, followed by a less commonly used emergent
relationship between changes in ocean heat and carbon content under anthropogenic
climate change, known as the Carbon-Heat coupling. This Carbon-Heat coupling al-
lows for the identification of excess heat from anthropogenic carbon. Following this, a
new derivation for this Carbon-Heat coupling, which allows for this coupling to vary
in space is presented. Biogeochemical reasons for this spatial varying coupling are
explored, before an approach which allows for the explicit identification of this spatial
variability is then introduced and explored. This method uses orthogonal assumptions,
aiming to understand how the spatial distribution of two tracers covary in the ocean:
in this case, to understand the redistribution of heat from natural carbon. Finally, these
two methods for understanding how heat and carbon covary in the ocean are combined

into a single method in Temperature-Carbon space.
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2.1 Transient Climate Responses

2.1.1 The Transient Climate Response to cumulative carbon Emissions (TCRE)

Equilibrium climate sensitivity is a metric which has been used in a number of climate
studies in order to estimate the response of the climate system to an instantaneous
doubling of atmospheric CO, from preindustrial levels (Cubasch et al.). It is defined as
the global mean temperature change after the climate equilibrates to this doubling of
atmospheric CO,. This measure was of historical utility as it enabled estimates of the
response of the climate system to anthropogenic forcing, at a time when computational
power was significantly more limited than it is presently.

A more realistic measure of climate change is the Transient Climate Response (TCR).
This is defined as the global mean surface air temperature change for an AOGCM
(Atmosphere-Ocean General Circulation Model) at the time of CO; doublingina 1%/yr

CO, increase experiment.

Beginning with CMIP5 (the Coupled Model Intercomparison Project, phase 5), a global
coordination effort to produce robust estimates of climate change using a range of mod-
els, climate change experiments have been performed using emission driven scenarios
to estimate atmospheric CO, and climate change, as well as just specifying atmospheric
CO, as was the case in CMIP3 (Taylor et al., 2012) (N.B. There was no CMIP4). This
allowed for the extension of the Transient Climate Response to that of the Transient
Climate Response to Cumulative Carbon Emissions (TCRE), incorporating a more real-
istic response of the terrestrial biosphere and ocean to emissions. Note that some early
literature regarding the TCRE is referred to as the ‘Carbon Climate Response” (CCR),
such as Matthews et al. (2009).

The TCRE is known to be both approximately constant over time, and approximately
independent of emissions scenario, (Matthews et al., 2009), (Zickfeld et al., 2009), (Allen
et al., 2009), with a value of 0.7-2.0K/1000PgC (Gillett et al., 2013): this is shown in
Figure 2.1. This linearity is known to be predominantly a result of ocean processes
controlling the planetary response to carbon emissions (Goodwin et al., 2015), (Ehlert
etal., 2017), (Katavouta et al., 2018), (Katavouta et al., 2019).

Following Goodwin et al. (2015), we may write a perturbation to the ocean, atmosphere

and terrestrial carbon system as
M6CO; + VODIC(t) + 0lier = Lem (1), (2.1)

where M is the molar volume of the atmosphere, V' the volume of the ocean, I, the

amount of carbon in the terrestrial biosphere and I, cumulative carbon emissions.
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Assuming biological activity remains unchanged, we may write

6DIC(t) = 6DICqu(t) + 6DIC (), (2.2)

where DIC, (t) is the saturated DIC concentration of a water parcel brought to equilib-
rium with the atmosphere at time t, and DIC,,(t) the residual DIC concentration: the
total DIC concentration, minus DIC,: and DIC due to the biological pump, which may
be positive or negative. Now, defining the buffered carbon inventory of the ocean, I3,
as _

VDIC

I, =1 _, 2.3
b=Iat+—5 (2.3)

following Goodwin et al. (2009), where is I4 total preindustrial atmospheric CO,, VDIC
the total ocean carbon inventory and B the global mean Revelle/Buffer factor (Sarmiento
and Gruber, 2006). B is defined as

~ DIC aCO;
- CO, 9DIC’

(2.4)

and relates the change in DIC for a parcel of water at the oceans surface for a given
change in CO2. Here, CO; refers to atmospheric CO, in ppm (parts per million), and
DIC global mean DIC in ymol/kg. Combining Equations 2.1-2.4, we obtain:

I,6In COy(t) = Low(t) — VSDIC(t) — 8lper (). (2.5)

Since I, ~ const, DIC,;(tp;) ~ 0 and 61l ~ 0, where tp; denotes a preindustrial time,

we may write
Iem<t> + Iusat(t)
Ip ’

AlnCO, = (2.6)

where I (t) = —VDIC,s(t). We therefore see that the change in atmospheric CO,
levels is set predominantly by the response of the ocean. Goodwin et. al. then note that
the radiative forcing due to atmospheric CO; is a logarithmic function of atmospheric
CO; concentrations (Myhre et al., 1998), and so obtain a theoretical linear relationship

between emissions and global mean surface warming.

Additional work has been done on extending this warming to emissions approach to
local surface area temperature (SAT) change (Leduc et al., 2016), and to a range of other
variables, such as surface ocean pH (Steinacher and Joos, 2016). A result of particular
note from Leduc et al. (2016) is that in general, high latitude, ocean RTCRE’s deviate
more from the relatively uniform value seen above much of the ocean surface, typi-
cally showing greater warming: this is shown in Figure 2.2. Ocean values are only
approximately 2/3 of land values, though the fractional spread between models is sim-
ilar. However, both the expected warming and their uncertainties are highest, in gen-
eral, over the Arctic ocean. An implication of this is that we may expect to see greater

warming, relative to carbon uptake, in these high latitude regions. As these regions are
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FIGURE 2.1: Global mean warming (a) in response to a 1%/year CO, increase, and
deviations from a linear relationship (b), from 15 CMIP5 models. Here, CO, emis-
sions are calculated rather than prescribed. All models show approximately linear
behaviour over a large range of emissions (3EgC = 3000PgC): current emissions total
approximately 600PgC (Stocker et al., 2013). Reproduced from Gillett et al. (2013).

crucial for deep ocean heat uptake, we may therefore expect to see a greater ratio of
warming to C,ny, uptake in the high latitude and deep ocean than we do in the upper
ocean and at lower latitudes.
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FIGURE 2.2: Maps of the ensemble mean RTCRE (a), for the ensemble shown to the
left of panel (c). Panels (b) and (c) show land and ocean mean RTCRE values for each
model. Reproduced from Leduc et al. (2016).

2.1.2 An oceanic analogue to the TCRE

So far, little research has been performed into understanding an ocean analogue to the
TCRE. Bronselaer and Zanna (2020), the only paper to investigate such an analogue, la-
belled it the carbon-heat coupling, a(t). Similarly to Goodwin et al. (2015), they derive
a theoretical value from the interaction of ocean carbonate chemistry with increased
atmospheric CO;, and the radiative forcing of CO,. By approximating this ratio as
globally uniform, they are able to use patterns of C,,y, storage to approximate those of
excess heat storage. However, Turner et al. (2022) was able to show that this approxi-
mation may not be entirely appropriate due to variability in the ratio of heat and carbon
uptake at high latitude, as discussed in the previous section. In this section, the deriva-
tion of «(t) by Bronselaer and Zanna (2020) is presented. In the following section, an
alternative derivation which produces a slightly different result but allows for spatial
variability in the carbon-heat coupling. The two approaches are then contrasted. Note
that a slightly different notation to that presented in Bronselaer and Zanna (2020) is

used here, however, the formulations are equivalent.



Chapter 2. Theory: Transient Climate Responses, Carbon-Heat Coupling,
30 Redistribution Coefficients and Temperature-Carbon Space

From Myhre et al. (2013) we may express the change in global mean surface air temper-

ature (SAT) as

R(t) — N(t)
1 ,

where R(t) is TOA radiative forcing at time t, N(¢) the net heat flux into the earth

system and A the climate feedback parameter. A is defined as T; = 1/A, where T, is

AT(t) = (2.7)

equilibrium climate sensitivity. We may then rearrange for
N(t) = R(t) — AAT(t), (2.8)
and note virtually all heat flux into Earth system goes into the ocean, such that

H(t)

N~ =3

= R(t) — AAT(t), (2.9)
where H(t) is cumulative global heat uptake and At the time elapsed since preindus-
trial time. Note that there is a factor of A, the Earth’s surface area, in the derivation
given by Bronselaer and Zanna (2020), which has been absorbed into N(t) for conve-
nience. We then use the form of the dependence of R(t) on atmospheric CO;:

R(t) = aAlnCO4(t) = aln (g&ﬁ))) (2.10)

where f( refers to preindustrial time, usually taken to be either 1765 or 1850. a is a
constant with value 5.35W/m?.

Now, using 2.10, we can rewrite the above as

A

N(t) ~ A(:) = aAInCO,(t) — AAT(t), (2.11)
and rearrange for
A(t) = (aAlnCOQ(t) - AAT(t))At (2.12)

Now, we take the Buffer/ Revelle Factor, which was previously defined as:

~ 3CO, DIC

~ CO, 9DIC’ (1.16)
We may rewrite this in the form
dln CO,
~ dlnDIC’ @13)

using the identity
dnx = 8; (2.14)
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Assuming that the ratio DIC/B remains approximately constant, we can take 6 — A
and rearrange to obtain

B
AInCO,(t) = D—ICADIC. (2.15)
Inserting this into Equation 2.12, we get
A(t) = (aiADIC - /\AT(t))At (2.16)
DIC

Now, we need to make another assumption: that total DIC change is the same as the
global C,,4, inventory: Contn = V,ADIC, where Vj is the global ocean volume. The
limitations of this assumption have been discussed in Section 1.2.1.4. This allows us to
write

A B .

A = (‘Lcm - AAT)At, (2.17)
Iy

where I, is the global ocean preindustrial carbon inventory. Now, we can simply di-

vide by the C,n, uptake to get the ratio of cumulative heat uptake to carbon uptake,

~

obtaining «(t):

a(t) = (az - A(t)CATt}EZ))At. (2.18)

&(t) thus relates the global inventory of excess heat and anthropogenic carbon:

- (()
“(t) B szth(t) (2.19)

In this approximation & increases linearly with time (ignoring the C,,, term), and so &
may be estimated as
1 dH déanth
&(t) = =—— ,
(t) 2 dt dt

where estimates of the rates of change of the global ocean heat and carbon inventories

(2.20)

are at the present time. To obtain the factor of 1/2, note that under a linear approxima-
tion, we may write

dI:I déunth

dt dt

A()_l @ déﬂnth
2] dt dt

] ) (2.21)
t

to

where t is a preindustrial time and t is the present day. Noting that the preindustrial
rates of change are zero, we obtain the expression given by Equation 2.20.

Bronselaer and Zanna (2020) then use a value for dC,,y,/dt from DeVries (2014) of
2.6£2% PgC/yr, and 17.44+3.64 Z]J /yr from Zanna et al. (2019) to obtain a contempo-
rary estimate of & of 41.7=+ 9.6 MJ/mol (their Figure 2a, observations, white dot, repro-
duced in Figure 2.3). This corresponds to approximately 0.01+£0.0025 K/umol/kg.
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FIGURE 2.3: Obeservational and model estimates of &, reproduced from Bronselaer
and Zanna (2020).

2.2 Deriving the carbon-heat coupling

In Section 2.1.2, the derivation of the carbon-heat coupling by Bronselaer and Zanna
(2020) was presented. Here, a derivation which allows for spatial variability by making

slightly different assumptions is also given. The two approaches are then contrasted.

Equations 2.7 and 2.10 may be combined to obtain
1
AT(t) = XaAlnCOz(t) —eN(t). (2.22)
Then, rearranging Equation 2.15 into the form

ADIC = DTgcAlnCOZ, (2.23)



2.2. Deriving the carbon-heat coupling 33

we may divide Equation 2.22 by Equation 2.23 to obtain

AT B 1 eN(H)
ADIC DIC)L{a " AlnCO, } (2.24)

Note thatin Equation 2.24, AT (t) refers to the change in global mean surface air temper-
ature (SAT), not sea surface temperature (SST). We therefore need to apply a coupling

factor, labelled k:
ATss B k{a— eN(t) } 225

ADIC ~ DIC A Aln CO,

Here, the subscript SS has been added to AT in order to make it clear this is a change

in SST. k is defined as
_ ASST

~ ASAT’
where ASST and ASAT refer to global mean changes.

k (2.26)

In order to estimate a value for ATss/ADIC, we need estimates of all the quantities
used in Equation 2.25. Steinacher and Joos (2016) investigated the transient response of
a number of earth system parameters, including global mean SST and SAT, to carbon
emissions in a large ensemble modelling experiment. They found that over this ensem-
ble, global mean SST changes by 1.30K/1000PgC, and global mean SAT by 1.75K/1000PgC,
with both quantities having uncertainties of approximately 35% (in general, greater
SAT changes are seen over land than sea, and thus this does not indicate a change in
the air-sea temperature difference - it merely represents the different regions consid-
ered in these metrics). A naive calculation therefore gives k = 0.74 = 49%. However,
due to the large heat capacity of seawater and extent of coverage of the global ocean,
global mean SST and global mean SAT show strong covariability (see for example Li
et al. (2020)). A better estimate of the uncertainty on k is therefore obtained by compar-
ison of the change in the ratio k over the different periods for which global mean SST
and SAT changes are computed in Steinacher and Joos (2016): this gives k = 0.72 4+ 0.03.

Estimates for all quantities other than the ratio B/DIC may be found Winton et al.
(2010), Table 2, and Myhre et al. (1998). They are as follows:

1/A=34+£017K

a=5.354 0.54 Wm™?

e=1.34£0.07

N(t) ~ const = 1.29 + 0.06 Wm™

Aln CO, =041

Note that although N() is time dependent, it can be treated as a constant. Values of 280

and 420 ppm have been used for preindustrial and present day CO,, and uncertainty
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in this ratio is assumed to be negligible. Winton et al. (2010) gives these values at the
time of CO;, doubling, but as they are all time independent, except N (t), which we may
approximate as constant, their values should hold.

The ratio B/DIC may be estimated using GLODAPv2 data: this gives 2034umol/kg
for DIC and 11.2 for the Buffer Factor in the upper 20m of the ocean, with a combined
uncertainty of approximately 30%. This comprises the largest source of uncertainty in
our estimate of ATsg/ADIC.

Using these values, we obtain an estimate for a of 0.0195=+ 0.006 K/ (ymol/kg), at cur-
rent atmospheric CO; levels. This is, as expected, double the value obtained for & by
Bronselaer and Zanna (2020) (after transforming units): the surface ocean is in direct
contact with the overlying atmosphere, and so we expect this time evolving ratio to be
exactly that obtained by comparing the rate of heat and carbon uptake by the ocean,
whereas the global ocean mean value will be half this.

In this form, provided that the ratio B/DIC remains constant, we see that we expect
the value of ATss/ADIC to asymptote. This approximate asymptotic behaviour is also
seen in Bronselaer and Zanna (2020) (Extended Data, Figure 2), but is less clear from
their formulation, which has a linear time dependence that is balanced by a increas-
ingly large negative contribution. Assuming this constant B/DIC ratio, Equation 2.25

asymptotes to AT -
Ss _

ADIC _ DICA™

(2.27)

We may therefore assume that the ratio of changes in DIC and temperature will, as
changes in atmospheric CO, become large, be linked by a constant ratio, provided that
the ratio B/DIC is fixed. From Egleston et al. (2010) we see that we may alternatively
define the Buffer Factor as

DI
B= bIc , (2.28)
YDIC
where ypic is defined as
dnCO,\ 1
e = (Fpie) (2:29)

Therefore, provided pjc is a linear function of DIC, the ratio B/DIC remains constant.
From Egleston et al. (2010) (Figure 2, reproduced in Figure 2.4) we see that we may ap-
proximate changes in ypjc from present values of around 2000 ymol/kg as being lin-
early dependent on DIC until global mean surface concentrations reach approximately
2200 umol/kg. This is not expected to happen until approximately the end of the 215
century following a RCP8.5 scenario (Riahi et al., 2011) and so whilst the asymptotic
behaviour of Equation 2.25 does break down, it remains a valid approximation both
historically and over the coming decades (Schwalm et al., 2020).

It is clear that these two equations describing the ratio of temperature to carbon change

are intimately linked, with Equation 2.25 relating the instantaneous ratio of warming to
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FIGURE 2.4: The various buffer factors explored in Egleston et al. (2010), and re-

produced here. The DIC buffer factor (ypic, purple line) can be approximated as

linearly dependent on DIC until global mean surface DIC values of approximately
2000umol/kg.

carbon increase for a ‘global mean parcel of water” at the oceans surface, and Equation
2.19 relating the ratio of global heat and carbon content change.

An advantage of the form given by Equation 2.25 is that it straightforwardly allows
for variability in the ratio ATss/ADIC: consider an arbitrary parcel of water, rather
than the global mean parcel of water. For such a parcel, k, (the parcel value of k) may
vary significantly: for example, as a result of the polar amplification of warming or the
latitudinal variability of B/DIC, we might expect parcels of water subducted at high
latitudes to have intensified warming or decreases C,,, uptake and therefore higher
values of k, than the global mean. Thus, we may expect a greater ratio of heat uptake
to carbon uptake in water masses formed at high latitude. However, Bronselaer and
Zanna (2020) provide an argument for a globally uniform ratio «(t): this argument is

now explored.

Consider the change in the surface ocean partial pressure of pCO,, ApCO,, which is a
function of temperature (T), salinity (S), alkalinity (Alk), and DIC:

9 9 d 9
ApCO, (DIC, Alk,S, T) = g};% ADIC + ggﬂczz AAIK + paCTO2 AT + pacsoz AS
(2.30)
~ apCOQ apC02 8pCO2
~ TS ZADIC + T2 Aalk+ BT, (2.31)

where the contribution from changes in salinity (addition or removal of freshwater)

is negligible compared to changes due to changes in temperature, alkalinity or DIC.



Chapter 2. Theory: Transient Climate Responses, Carbon-Heat Coupling,
36 Redistribution Coefficients and Temperature-Carbon Space

Over the timescales for which anthropogenically driven climate change is significant
(Bronselaer and Zanna (2020) show changes at the time of CO, doubling), these changes
are dominated by changes in DIC. Using the definition of the Buffer Factor,

apCOZ DIC
= — 1.1
pCO, 9DIC’ (1.16)
we may rewrite the DIC term as
dopCO, B Bpic

where I have relabelled B — Bpjc. Now, similarly defining an Alkalinity Buffer Factor
(following for example Egleston et al. (2010)) as

_ 0pCO, Alk
Baik = pCO, JAIK’ (2.33)
and using the empirical relationship derived by Takahashi et al. (1993):
IPCO2 _ 0423 x pCO,, (2.34)
oT
we may rewrite Equation 2.31 in the following form:
B B
ApCO, = pCO, (0.0423AT + —< ADIC + —AK AATK). (2.35)

DIC Alk

However, Bronselaer and Zanna (2020) instead provide the form

_ Bpic Baik Bak
PCO; = pCO, (0.0423AT + SXEADIC + LAEDIC + —AEAlL), (2.36)

or equivalently,

pCO, = pCO;, (0.0423AT + %DTI(C:ADIC +2Ban)- (2.37)

Note also the change on the left hand side of Equation 2.35 to Equation 2.36: this is
reproduced from Equation 7 of their paper, and appears to be simply a typographical
error. However, it is unclear whether the change in variables from ADIC and AAlk
to DIC and Alk, respectively, is also a typographical error or intentional: that the pre-
sented equation contains two uncancelled fractions (DIC/DIC and Alk/Alk) and an
uncollected term (2BAji) suggests they are typographical errors. It therefore appears to
be the case that Equation 2.36 is in error. Bronselaer and Zanna (2020) then goes on to
discuss how patterns of dpCO,/dDIC are set by background ocean chemistry, and so

changes in DIC are controlled predominately by background ocean chemistry.

The study then states that patterns of ADIC are strongly correlated with added tem-

perature, with a correlation coefficient of 0.64, but that CFC changes are not strongly
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correlated with added temperature, and that this discrepancy arises from the lack of
chemical buffering of CFC’s. Whilst a correlation of 0.64 between changes in added
temperature and ADIC at the time of CO, doubling is a relatively strong correlation,
it is plausible that imperfect correlations result from spatial variability in the local &
value. Without an explicit plot of changes in surface temperature and DIC in their
fixed simulation circulations, it is impossible to know whether this is the result of sys-
tematic variability, or simply due to noise. Personal communications with Laure Zanna
indicate investigation into the patterns of a did find higher values at high latitudes.
However, the study did not attempt to quantify this variation, finding the assumption

of a globally uniform carbon-heat coupling to be sufficient for their purposes.

As such, whilst the assumption of a globally uniform & is a useful approximation, it is
insufficient for the purposes of this study, which will aim to quantify how the carbon-
heat coupling varies explicitly. In Chapter 5, it will be shown at A05, in the subtropical
North Atlantic, that a temperature dependent ar and a uniform a7 value do not pro-
duce meaningfully different results. In addition, Chapter 6 will also show that results
at 108S, in the Southern Ocean, are not strongly affected by the choice of a uniform or
temperature dependent « value either. However, a better understanding of variability
in this coupling ought to produce better estimates of excess heat accumulation from

changes in anthropogenic carbon.

The arguments provided above would provide a natural and simple explanation for
the near-linear relationship between changes in ocean heat and carbon content, were
the ocean simply a parcel of water in continuous contact and equilibrium with the
atmospheric forcing. However, this is not the case for the real ocean: both heat and car-
bon are transported into the ocean by a number of processes. In the subtropical gyres, a
major storage region for both heat and carbon (Sabine et al. (2004), Zika et al. (2021), the
approximation of the ocean as being in continuous contact with the atmosphere is rea-
sonable. It is less clear that this is the case in the deep ocean and at high latitude. Deep
waters are typically formed from convective events, for example in the Labrador Sea,
constituting a major pathway for the transport of heat and carbon to the deep ocean
Lazier et al. (2002). Here, deep convective events typically require severe winters, thus,
we might expect the near-linear relationship between excess heat and carbon uptake to
be broken in the deep ocean.

There are, however, a number of pieces of evidence which suggest that we might ex-
pect this relationship between ocean heat and carbon uptake to persist into the deep
ocean. It is well known that the patterns of ocean heat and carbon storage are strongly
linked by ocean circulation: model simulations indicate storage of both excess heat
and anthropogenic carbon by North Atlantic Deep Water (NADW) (Sarmiento et al.
(1992), Banks and Gregory (2006), Winton et al. (2013)). Using observations, Mauritzen
et al. (2012) found that density compensated anomalies ocean temperature are impor-
tant for ocean heat uptake in the Subpolar North Atlantic. This requires anomalously
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high salinities, in addition to anomalously high temperatures, in order to propagate a
warming signal into the deep ocean. They also note that such warm and salty condi-
tions have been found since approximately the mid 1990s. Thus we may well expect
warming and salinification of NADW formed over the past 25 years, in addition to

increased C,,y, concentrations.

Finally, though these deep convective events act on short timescales and are typically
associated with rapid cooling of surface waters, these events typically form well mixed
water: Labrador Sea Water is characterised by a minimum in the vertical density gra-
dient (Talley and McCartney, 1982). Thus, this strong mixing is likely to smooth out
variability in local conditions, leading to a relatively homogeneous water mass with
coherent signals in the temperature and carbon content change. Though we may not
expect these changes to be related in a way which perfectly aligns with the global mean
ratio « (as discussed in the following section), in combination, these pieces of evidence
suggest we do indeed expect to see a broad and consistent linkage between temper-
ature and carbon increase in the high latitude and deep ocean. Indeed, the results of
Bronselaer and Zanna (2020) depend on this linkage between temperature and carbon

existing in the high, as well as low latitude ocean.

2.21 Evidence for a temperature dependent carbon-heat coupling

As noted in the previous section, though Bronselaer and Zanna (2020) makes an argu-
ment for a globally uniform « value, this appears to be a useful approximation rather
than a robust result. Several lines of evidence which suggest that is may be more ac-
curate to approximate « as temperature dependent are now considered. Importantly,
these arguments do not require a to depend on temperature explicitly: only for the
intrinsic variability in « to be able to be parametrised usefully as temperature depen-
dent. Potential issues with the global uniformity of Bronselaer and Zanna (2020) have
already been discussed, and so will not be further explored. Some results from Turner
et al. (2022), which basis for Chapter 3, are also alluded to: as such, whilst an overview
of the arguments presented there are given here, they will not be explored in detail at
this point. However, some details which underlie the arguments in Chapter 3 will be
expanded upon here, as the arguments presented there are relatively terse.

The work discussed here was performed by Dr. Pete Brown for the TICTOC project
proposal (https://projects.noc.ac.uk/tictoc/), and implies that we may expect a
near linear relationship between ar and background water temperature. The previ-
ously discussed approaches which aim to understand the relationship between warm-
ing and carbon content changes all begin with a description of climate system param-
eters, and aim to establish a relationship between changes in global ocean heat and
carbon content from these general climate parameters. Alternatively, a semi-empirical

approach might be taken: this is the approach discussed here.
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CO2sys is a software package which allows for the computational determination of car-
bonate system parameters (Van Heuven et al., 2011). It has a number of uses, however,
here only one is considered: calculating DIC change from projected temperature and
CO; changes. By providing CO2sys with the relevant parameters of a number of water
masses and a projected warming and CO, change, the associated DIC change may be
evaluated. These projected changes are shown in Figure 2.5. Though there is a notable
difference in the expected coefficients for the higher and lower end of the expected
global mean warming, two patterns are clearly apparent. Firstly, there is an extremely
good near linear dependence on water mass temperature of the coefficient relating the

change in temperature and DIC. Secondly, all these coefficients increase with time.
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FIGURE 2.5: The projected ratio of DIC change to warming, for a number of water

masses. For each bar, the middle point represents the expected coefficient for the ex-

pected global mean temperature change associated with a given atmospheric CO; con-

centration, the top point the expected coefficient for the upper limit of uncertainty in

the global mean temperature change associated with the same atmospheric CO, con-
centration, and vice versa for the lowest points.

The linear dependence is striking: for the ratios of change over 1980:2050, a linear fit
gives a R? value of 0.98. This strongly suggests a linear relationship between back-
ground temperature and the constant «. In addition, the arguments of Bronselaer and
Zanna (2020) rely on making a number of assumptions about carbonate chemistry in or-
der to derive a theoretical global uniformity in a. CO2sys does not make such assump-
tions, instead directly calculating changes associated with this warming. It therefore
ought to better capture the response of the carbonate system to increasing atmospheric
CO,.

Subsequent idealised CO2sys investigations reveal that this apparent temperature de-
pendence appears to be due to the relationship between the background carbonate
chemistry and temperature. CO; is more soluble in cooler waters, and thus they ex-
hibit higher DIC values: this is the solubility pump. As a result, surface DIC concen-
trations tend to vary latitudinally, with higher surface DIC values found in the cooler
waters near the poles. However, surface alkalinity concentrations are less latitudinally
variable, and so the surface DIC to alkalinity ratio varies with latitude. This leads to
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a strong correlation between the surface buffer factor and temperature due to the in-
fluence of temperature on DIC concentrations (Sarmiento and Gruber, 2006). However,
this is just a correlation: temperature does not directly drive buffer factor variations, in-

stead influencing the buffer factor through its influence on surface DIC concentrations.

Due to their (generally) higher buffer factors, cool waters tend to have a reduced capac-
ity to sequester additional carbon. This leads to a reduction in the total carbon change,
which is anticorrelated with the initial carbon content. Thus, ADIC is proportional to
the background temperature of water. As a result, the carbon change content of warmer
waters is larger than that of cooler waters, and so the coefficient A8/ ADIC is smaller in
warmer waters than in cooler ones. This dependence is therefore well approximated as
being temperature dependent (though this temperature dependence is not direct), and
is shown in Figure 2.6, where the initial distribution of DIC values as a function of tem-
perature (bottom edge of the shaded region) exhibits a stronger dependence on temper-
ature than the distribution at a concentration of 1000ppm (top edge of shaded region).
The distributions shown in Figure 2.6 are calculated using CO2sys in order to estimate
DIC from a temperature, pCO, and using a fixed alkalinity of 2300uymol/kg. Global
mean warming due to climate change is included in the calculation: it is parametrised
as a linear function of pCO,.

ADIC: Background Distribution Dependence
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FIGURE 2.6: The dependence on initial temperature and DIC of DIC changes: cooler,

higher carbon waters are less able to take up additional carbon, and so their carbon

content changes less for a given change in pCO,. Contours of constant pCO, are indi-

cated with both thick black and dashed grey lines: the thick black lines show the initial
and final contours of constant pCO, (280ppm and 1000ppm respectively).
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I now return to the pattern scaling argument, which we may observe from the results
of Leduc et al. (2016). Recall Equation 2.25:

ATSS - B k EN(t)
ADIC DICA{” AInCO, (’ (1.36)

which importantly refers to temperature change for a global mean parcel of water. For

simplicity, we may define

. ATsg
AT = ADIC’ (2.38)

where the label dt reflects the analogy between this quantity and the carbon-heat cou-

pling of Bronselaer and Zanna (2020). Now, we may note that as Equation 2.25 refers to
a global mean parcel of water, we may straightforwardly extend this to a local relation-
ship by carbon and temperature changes by allowing the SST:SAT coupling constant k

Ass o B k(?){,Z eN(t) } (2.39)

to vary spatially:

ADIC'’ ~ DIC A ~ AlnCO,

where 7 reflects an arbitrary location in the surface ocean. By spatially resolving k, we
can then consider the pattern scaling approach utilised by Leduc et al. (2016) to instruct
our understanding of how we expect changes in sea surface temperature to vary spa-
tially, and therefore where we might expect to patterns to emerge. Additionally, we
may consider k to include all spatial variability in the ratio B/DIC, allowing the use of
global mean values in Equation 2.39.

Returning to Figure 1a from Leduc et al. (2016) (reproduced in Figure 2.7), we see again
that in general, RTCRE values exceeding approximately 1.5 degrees warming per ter-
atonne of carbon emissions are typically found only at high latitudes. This implies,
all other surface changes being constant, a greater warming at high latitudes than low
latitudes. We would therefore expect larger values of &t in cooler waters in the ocean,
which form at these high latitudes. One notable exception to the greater warming seen
at higher latitude in Figure 2.7 is in the Gulf Stream and Grand Banks region, where
high RTCRE values are seen despite being at mid latitude. This likely reflects a shift
in the position of the Gulf Stream: SAT’s are strongly controlled by SST’s, and so a
northward shift in the position of the Gulf Stream will lead to significant warming at
the locations it shifts to.

This plot from Leduc et al. (2016) provides one plausible explanation for why we might
expect to see larger values of &7 in cooler waters: intensified heat uptake at high lat-
itudes. An alternative explanation is now explored: reduced carbon uptake at high
latitudes. It is important to note at this point that the previous explanation of intensi-
tied heat uptake does not explain the near linear dependence of at values seen in Figure
2.5, as only a global mean warming was applied to each water mass here. Thus, whilst



Chapter 2. Theory: Transient Climate Responses, Carbon-Heat Coupling,
42 Redistribution Coefficients and Temperature-Carbon Space
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FIGURE 2.7: The map of RTCRE values from Leduc et al. (2016), also reproduced in
Figure 2.2. RTCRE values refer to SAT change at a given spatial location per teratonne
of carbon emissions.

variations in the background carbonate chemistry response are considered there, if in-
tensified heat uptake at high latitude does in fact drive larger values of a1, we would

expect to see a stronger temperature dependence than suggested by Figure 2.5.

Consider the patterns shown in Figure 2.8. Whilst patterns of air-sea C,,y, fluxes are
relatively uniform (panel a), the patterns of C,, subduction through the base of the
mixed layer (panel b) are far less so. In general, C,py, subduction through the base of the
mixed layer is lower than air-sea C,y, fluxes at high latitude, as well as at the Equator.
These regions of reduced C,y, subduction are, in general, where the effects of vertical
mixing and advection are in opposition. As a result of this, we would expect a reduced
Canth flux into the ocean interior at high latitudes, relative to surface fluxes. Such a
mechanism would act to increase the variability of heat and carbon uptake: a globally
uniform surface distribution could become far more variable in the ocean interior due
to such a mechanism. As the arguments of Bronselaer and Zanna (2020) concern only
the ocean surface, it is plausible that their arguments are correct here, but become less

valid after propagation into the ocean interior.

Davila et al. (2022) directly investigated the propagation of C,.y, though the mixed
layer into the ocean interior, and its spatial variability. They found that ventilation of
Canth into the ocean interior was significantly less efficient at high latitude to low, but
that purely Buffer Factor driven effects are insufficient to account for this: thus, whilst
the simple CO2sys experiments presented above may partially explain the indicated
temperature dependence, there are likely other contributing factors.

Finally, the findings of Turner et al. (2022), presented in Chapter 3, indicate similarly
that higher values of a are found in high latitude waters. The method of diagnosing
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FIGURE 2.8: Maps of anthropogenic carbon fluxes (a), total C,y, subduction through

the base of the mixed layer (b), and the contributions to subduction from advection

(), vertical mixing (d) and eddy induced transport (e). Reproduced from Bopp et al.
(2015).

excess temperature presented there does not rely on the assumption of a globally uni-
form & value, instead diagnosing changes in redistributed temperature from changes
in natural carbon, and calculating excess temperature by residual. It therefore allows
for the direct calculation of local « values. The results there strongly imply that higher
values of « are found at high latitudes, as well as potentially in regions of deep water
formation. This result is in general agreement with the CO2sys calculation presented
in Figure 2.5, and the results of Bopp et al. (2015) and Davila et al. (2022) suggest a
plausible mechanism for this. In addition, the results of Leduc et al. (2016), Davila et al.
(2022) and the CO2sys calculations imply together that this temperature dependence
may in fact be even stronger than estimated here. As such, it appears to be very likely
that a is not in fact a globally uniform constant, but exhibits spatial variability which
may be accurately parametrised as a temperature dependence. However, whether it is
necessary to account for this temperature dependence is less clear, and is investigated
in Chapters 5 and 6 in more detail.

2.3 Redistribution and Natural Carbon

If the local ratio of excess heat to anthropogenic or excess carbon uptake is unknown,
it is not possible to readily identify excess heat from anthropogenic carbon. However,
provided that we retain the analogy between anthropogenic carbon and excess heat,
we must also retain an analogy between natural carbon changes and redistributed heat,
and it therefore ought to be possible to relate these two quantities in order to estimate
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the redistribution of heat. By differencing total changes in heat content and redistribu-
tion, we should therefore be able to estimate the excess heat.

A benefit of this redistribution first approach is that provided the assumptions used are
orthogonal to those relating excess temperature and anthropogenic carbon, it allows
the explicit validation of the assumptions necessary to use anthropogenic carbon to es-
timate excess heat. Additionally, the redistribution of a parcel of water fundamentally
differs from the addition of excess tracer to this parcel of water, as the redistribution
of a parcel of water ought not to alter its properties, save for the effects of mixing. In
fact, it is this property which motivated the development and use of the water mass
framework: by considering the properties of water in tracer space, the effects of ocean
circulation can be removed. This is the approach of Zika et al. (2021), who applied
these water mass considerations to directly estimate material heat content change, a
quantity closely analogous to excess heat. This means that by understanding the prop-
erties of redistribution, we may also understand the effects of ocean circulation change

on multiple tracers.

In other words, there is no (known) clear relationship between changes in excess salin-
ity and anthropogenic carbon. However, because redistribution does not alter the prop-
erties of a parcel of water, there should be a relationship between the redistributed
salinity and the redistributed carbon. If we can understand the nature of this relation-
ship, we ought to be able to estimate the redistribution of salinity by changes in ocean
transport - and therefore also estimate the excess salinity. Even more usefully, this is

not limited to salinity - it is in principle extensible to any ocean tracer.

I now explore how we may decompose the changes between two general tracers at a
point in the ocean, before showing how we may apply this to temperature and car-
bon. This principle will be explored in greater detail and in a more intuitive fashion
in Chapter 3. However, it is useful to understand the mathematical underpinning of
relationship between the two, and how the relationship between excess temperature
and anthropogenic carbon and the relationship between redistributed temperature and
natural carbon change can be considered to be two limits of the same equation, and in

some sense analogous.

Recall the definition of the excess and redistributed components of an arbitrary tracer,
Q, following Winton et al. (2013), who break the tracer Q and the transport v up as
follows (note now I use a slightly diferent notation to the previous definition and collect
terms explicitly):

71Q=(3+7)(Q+Q)= 0 + TQ +7Q+7Q, (2.40)
Preindustrial ~ Redistributed Excess

where 7 and Q refer to the preindustrial, steady state components of 7and Q, and 7 and

Q' the perturbations. Note that these components may be either on short timescales (for
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example seasonal variability), or longer timescales (for example centennial timescale
AMOC decline). We may now wish to show how changes in two arbitrary tracers, Q;
and Q», are related. Following Williams et al. (2021), we may write changes in Q in the
following fashion:

Q |
We now note that we have defined 7 and Q as the steady state, preindustrial compo-
nents: thus

<, (2.42)

and therefore
F=7-VQ, (2.43)

where the surface forcing F may also be decomposed as F = F + F'. Now expanding

Equation 2.41 using the decomposition of Equation 2.40, and collecting terms, we find

Q"

= —F _-3.VQ' —v-VQ (2.44)
at N—— e N ——
Excess Redist

Now, consider the case where the excess term can be considered negligible: we have

0Q oQ -

\e, (2.45)

ot ot

In this case, the relationship between changes in Q; and Q; due to only to redistribu-

tion, as measured at fixed spatial location, is given by

Q1 /0Q, U -V

== = 4
ot ot v -V, (2.46)

I will label this quantity a redistribution coefficient, x,: it relates the changes in Q; and
Q2 due to redistribution: .

Ky = w (2.47)

v VQ2

As we have defined our terms, o' is the non steady state component of ocean transport,
comprising all transport except mean flow. As previously stated, it therefore includes
short timescale velocities, such as seasonal perturbations to mean velocities, and longer
timescales velocities. A natural question might therefore be: how sensitive is x, to our
choice of velocity perturbation, o’. In other words, does knowing «, for seasonal pertur-
bations to velocity inform us of the relevant value of x, for perturbations to the oceans
velocity field on centennial timescales: is the coupling between the redistribution of Q;

and Q» timescale invariant?

We know that, from the way we have defined our terms, Q1 and O, are constants:

they have no time dependence. Therefore, all potential time dependence in x, must
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come from the time dependence in v’. To make this explicit, we may split our velocity
perturbation into short timescale perturbations and longer timescale perturbations:

v =0+, (2.48)

where 7 represents short timescale (hourly to subdecadal) velocity perturbations, and
# longer timescale velocity perturbations (decadal and longer) (N.B: This cutoff timescale

is entirely arbitrary, the choice of cutoff will be justified later). We can therefore write

(55 + 771) ’ VQ:l
(Ts +71) - VQ2

K = (2.49)
From this, we may see that «, is time invariant in two situations: if the velocities ¥;
and 7 are parallel, or if the normal vectors VQ; and VQ; are parallel. The first case is
trivial: simply let ¥; = a¥,;, where a is an arbitrary scalar constant. The factor of 1 +a
in the numerator and the denominator cancels, and the expression for x, now must be
time invariant.

To demonstrate the second case is more involved. For any velocity vector 7, we may
decompose it as the component perpendicular to the gradient of a scalar tracer field Q,
and the change parallel to the gradient of this field:

where 5H is defined as
BN /o)
and 7, is defined as
. 7xVQ
As, by definition,
v, -VQ=0, (2.53)
we have that . B
vy -V
g = 21 V& (2.54)
v - VQ2

If the short and long timescale velocities contain different contributions from the par-
allel and perpendicular components of velocities, it is still possible that «, varies on
longer timescales. However, let us write

VO =bVQ+39, (2.55)

where b is an arbitrary scalar constant, and ¢ is an arbitrary vector, which is by defini-
tion perpendicular to VQ;:
51 VQ. (2.56)
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We can therefore rewrite Equation 2.54 in the form

I )
opl VR, (2.57)

. _‘, . 9
Ky = bl 2 — T T = (2.58)

an equation which now contains only constant terms. It is therefore the case that x; is
time independent either if our short or long timescale velocities are parallel, or if the
normal directions to our two tracer fields, VQ; and VQ; are a parallel. The first case,
whilst simpler, is less likely to be strictly obeyed throughout the ocean on a large range
of timescales. However, if we can demonstrate the second condition is true, it remains

true on all timescales: this makes it the more useful condition.

The question is now whether we can apply this to relate temperature and carbon changes.
As noted previously, we may approximate redistributed DIC with changes in natural
carbon. We may therefore link the redistribution of temperature with changes in natu-
ral carbon, provided the gradient of the background fields of temperature and natural
carbon are either parallel or antiparalle]l. We know this to be generally the case as a
result of the strong temperature dependence of CO, solubility: Cpat and temperature
are therefore strongly anticorrelated throughout the ocean. This is shown explicitly in
Figure 2.9, using data from the NEMO simulations used in Chapter 3. Cross products
of the gradients of the two fields are reliably 0, and dot products equal to £1, indicating
that the diathermal and diacarbon directions are almost perfectly parallel throughout
the global ocean.

As a result of this strong spatial covariability, we may write
A, = 1, ACpat (2.59)

by rearranging Equation 2.47 and substituting Q1 = A8 and Q> = ACpy. This is analo-
gous to the approach of Bronselaer and Zanna (2020): in the same fashion they associate

Canth With excess temperature, we may associate Cp,t with redistributed temperature.

It was previously stated that these two relationships: the « relationship between excess
temperature and anthropogenic carbon, and the «; relationship between redistributed
temperature and natural carbon, can be considered to be two limits of the same rela-
tionship. This is now demonstrated. Returning to our arbitrary tracer Q, we may write
the total derivative of Q with respect to time as

dQ _ 9Q

=45V (2.60)
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FIGURE 2.9: The covariability of the preindustrial temperature and carbon fields. Dot
products of the two fields are shown in black, and cross products in red.

which is simply the standard relationship between Eulerian and Lagrangian deriva-
tives. Noting that we may simply cancel the time dependence in the ratio of total
derivatives, we may therefore write the relationship between changes in two arbitrary
tracers as .
dQ1 _ 9:Q1 +7 lel 2.61)
dQy 0t Q2+7-V(Q

where d; = d/0dt. Now, consider the change in the global mean value of Q; and Q>: in

the global mean 7 = 0, and so

dQr 91

dQx  9:Qo’

Replacing Q; with temperature and Q, with C,,, we obtain the formulation of Bron-

(2.62)

selaer and Zanna (2020). If we instead assume that we are inspecting the relationship
between steady state components, we may take 9;Q = 0 (from Equation 2.42), and so

-V
-VQy'

Q1 _ ; (2.63)

dQy
which is the relationship we used to define our redistribution coefficients. Thus, the
two relationships may both be derived from considering derivatives in temperature
carbon space, and are both limits of the equation relating changes in temperature and

carbon.
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2.3.1 Redistribution Coefficients: Analogy to Spice and Heave

Equation 2.59, in isolation, may seem somewhat novel and relatively unsubstantiated.
However, it is in fact closely related the spice-heave decomposition, a conventional,
well defined and widely used tool to interpret changes in the properties of water. In
this section, it is show how the two are related, and how the use of Cyat produces a
decomposition that is more readily interpretable than a spice-heave decomposition: an

excess-redistribution decomposition.

The spice-heave decomposition was introduced by Bindoff and Mcdougall (1994), which
looked at changes in water properties along isopycnals, and changes in water proper-
ties due to the vertical migration of isopycnals. They note that the properties of water
at a fixed point in the global ocean may change in one of three orthogonal ways:

¢ Pure warming: The introduction of warmed mixed layer water into the ocean

interior.

¢ Pure freshening: The introduction of water which has been freshened through
changes in the ocean evaporation and precipitation balance at the ocean surface
into the ocean interior.

¢ Pure heave: The vertical displacement of the water column either due to changes

in water mass formation rates or dynamical changes.

From these properties, it is tempting to assume that pure heave is directly analagous
to the redistribution of water masses, pure warming corresponds to excess tempera-
ture, and pure freshening corresponds to excess salinity. However, the picture is more
complicated. On short timescales, we expect changes in water properties at a point to
be dominated by the heaving and shoaling of the water column. To remove the effects
of this heaving and shoaling of the water column, we might follow the trajectory of
an isopycnal, looking at changes in water mass properties along an isopycnal. These
changes are referred to as spice: as warm and salty water may have the same density as
cool and fresh water, we will still be able to observe changes in water mass properties
at the same density. For water of a given density, warm and salty water is referred to

as ‘spicy’, and cool and fresh water as ‘minty’.

Consider the case of pure warming. When water is warmed at constant salinity, it will
move to a new isopycnal, before being subducted along that isopycnal into the ocean
interior. However, this isopycnal does not necessarily follow the same trajectory in 6-S
space as the profile of water properties here: if this is not the case, then pure warming
will act to cause a change in the depth of the isopycnal here. In the case that the slope
of the profile of water properties is steeper than the slope of the isopycnal, then when
viewed on isopycnals, water will appear to have cooled. This behaviour is counter

intuitive, and so a diagram is shown in Figure 2.10.
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S

FIGURE 2.10: The warming along isopycnals due to pure spice. A parcel at the surface

is warmed from point 1 to point 2, which lie on isopycnals o; and oy, respectively. This

motion can be viewed as the movement along the original 6-S profile without changing

it (1 — 3, heave), followed by movement along an isopycnal 3 — 2 = 1 — 4). The

effect of pure warming is therefore to cool water when viewed on isopycnals. This
Figure is reproduced from Hékkinen et al. (2015).

Mathematically, a spice-heave decomposition may be expressed as a Taylor expansion
of a water mass property about an isopycnal surface. For a general tracer Q, we may

write

d
4Qls = Q. + 224zl + O(dz), ) (2.64)
Rearranging and ignoring higher order terms, we have
d
10, —dql- a—gdz\g. (2.65)
Eulerian Change Spice m/

Note at this point that Equation 2.65 bears a resemblance to 2.44. In fact, if we consider
the relationship between two tracers, Q; and Q», resulting solely from heave driven

dQy  9Q1 /9Q>
dQ, oz / oz’ (2.66)

changes, we see

which is simply the one dimensional (vertical only) approximation to «x,. Assuming
v = vzg and VQ = BZQE', we see that we may reduce Equation 2.47 in the following

way:

vV v:0:Q1 _ 9O / aaQZz_ (2.67)



2.4. Temperature-Carbon Space: Estimating circulation change without
decomposing DIC 51

Thus, the relationship between variables as the result of heave is the one dimensional
approximation to the redistribution coefficient.

There are two important features to this result. First, we may approximate the redistri-
bution coefficient linking two tracers as the ratio of vertical derivatives of two tracers if
the spatial distribution of the two can be considered essentially one dimensional. This
explains intuitively why we may consider the redistribution coefficient to be indepen-
dent of timescale in cases where the normal vectors to the fields Q; and Q, are parallel.
Second, the heave driven relationship between two variables is independent of the dis-
tance over which an isopycnal heaves, as a result of our linear approximation. As a
corollary to this, the heave driven relationship between the two variables is also inde-
pendent of our choice density surfaces as a surface to follow: we might instead choose
natural carbon surfaces. This leads very naturally to the concept of a redistribution
depth. In the same way that the quantity dz|; tells us the distance an isopycnal heaves,
we can define a redistribution depth, Az, as

_ A
- 0Q/0z

Az, (2.68)
The difference between a spice-heave decomposition and an excess-redistribution de-
composition, under this one dimensional approximation, is therefore fundamentally
different only in the choice of depth surface to follow. For the case of temperature, in
an excess-redistribution decomposition, there is no velocity imposed upon the variable
depth surface we choose to follow as a result of imposed surface warming. However,
this is not the case for a spice-heave decomposition: here, an imposed surface warm-
ing leads to an imposed velocity on our isopycnal surface, leading to the difficulty in
interpreting the results of a spice-heave decomposition, as this imposed velocity is a

function of the background T-S profile.

2.4 Temperature-Carbon Space: Estimating circulation change

without decomposing DIC

From Sections 2.1.2, 2.2 and 2.3, we have two clear relationships linking changes in
ocean temperature and carbon: excess temperature is closely linked to anthropogenic
carbon, and redistributed temperature is closely linked to natural carbon. In this sec-
tion, it is shown how these two relationships may be leveraged to directly calculate
excess and redistributed temperature, without the need for an explicit decomposition
of carbon. In fact, it is the case that this decomposition also yields a decomposition into
excess and redistributed carbon, fields which can be compared to the independently
calculated anthropogenic and natural carbon fields.
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Decomposing temperature and carbon change as follows:

ADIC = ADIC, + ADIC,, (2.70)

where the subscript e refers to changes due to excess temperature or carbon, and the
subscript r refers to changes due to the redistribution of background temperature or

carbon.

Here, I choose to partition DIC changes into an excess and redistributed component,
instead of anthropogenic and preindustrial (or natural) components, as I do not be-
lieve that the relationship I derive maps precisely onto previous definitions. However,
excess DIC and C,uy,, as well as redistributed DIC and C,,: changes map well onto
one another. As such, this decomposition can be considered both a temperature and a
carbon decomposition. This point is discussed in Williams et al. (2021): I note at this
point that the technique I present here may be considered a localised formulation of
the principles they use to identify regions where temperature and carbon changes are
dominated by either the excess or redistributed components.

Though Bronselaer & Zanna relate changes in anthropogenic carbon and excess heat,
and here I relate changes in excess carbon and temperature, in this formulation, I follow
their naming convention, rather than that of Turner et al. (2022) or the nomenclature
used in Section 2.3. Thus, in the following equations, the redistribution coefficient «,
will instead be referred to as Br. I relate changes in the local excess components by a
constant, a:

A8, = arADIC, (2.71)

and changes in the redistributed components by Br:
A6, = BrADIC, (2.72)

Both are given the subscript T to identify that they relate changes in temperature and
DIC: later these definitions will be extended to include salinity. Rearranging these
Equations, we obtain expressions for the excess and redistributed DIC in terms of the

change in the temperature and DIC:

A6 — BrADIC

ADIC, = P

(2.73)

and

ADIC, = arADIC — A9 (2.74)
ar — Br
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Equations 2.73 and 2.74 may be combined in a vector equation as follows:

(ADICE> _ 1 <1 —5T> ( A8 ) 2.75)
ADIC, ) ar—Br \-1 ar ADIC

Here, approximating C,n, as excess DIC allows us to use this decomposition to identify

anthropogenic carbon, producing estimates consistent with established techniques for
identifying anthropogenic carbon: this will be shown in Chapters 5 and 6. However, as
we are concerned primarily with identifying excess and redistributed temperature and

salinity, we instead use the relationship

(A93> _ (M o) . <ADIC6> 276)
A6, 0 gr) \ADIC,

to obtain an expression for excess and redistributed temperature:
AB 1 — AB
e _ ar arfr ) 2.77)
A, ar —PBr \ —Br arBr ADIC

Conceptually, this decomposition may be thought of as assigning two axes in 6 — DIC

space: at and Br. A change in the 6 — DIC space position of water at a given geograph-
ical location can thus be thought of as the sum of its motion along the transient axis
(aT, associated with excess) and it’s motion along the redistribution axis (8, associ-
ated with redistribution). We may then estimate excess and redistributed temperature
from Equation 2.77, provided the values of at and Bt are known. This decomposition
is illustrated in Figure 2.11.

The displacement of water at fixed geographic location being decomposed in terms of
the sum of vector displacements along two predefined axes is the same principle as
that applied by the spice-heave decomposition: the diagram shown in Figure 2.10 can
be straightforwardly relabelled to describe this excess-redistribution diagram.

This matrix inversion is closely related to the technique used by Clément et al. (2022),
which similarly projects changes in temperature and salinity into changes along and
across isopycnals: indeed, this decomposition can be thought of straightforwardly as
the analogue of their analysis in Temperature-Carbon space. I also note that the arctan
of the quantity Br is analogous to the Turner angle (Ruddick, 1983) in Temperature-
Carbon space.



Chapter 2. Theory: Transient Climate Responses, Carbon-Heat Coupling,
54 Redistribution Coefficients and Temperature-Carbon Space

h
>

DIC

FIGURE 2.11: A diagram illustrating the matrix inversion decomposition of tempera-

ture and DIC presented here. Changes in temperature and DIC components are indi-

cated with arrows, and the preferred axes in red (transient axis, 1) and blue (redistri-

bution axis, Br). For a change in temperature and DIC, (A6, ADIC), between times t;

and t,, the excess components are linked by the transient axis at and the redistributed
components by the redistribution axis Br.

2.5 Discussion

In this Chapter, the transient climate response to cumulative carbon emissions (TCRE)
has been introduced, and it’s implications for ocean heat and carbon uptake discussed.
In particular, it has been shown how an analagous transient response relationship,
known as the carbon-heat coupling («x), between excess temperature and anthropogenic
carbon can be derived using similar considerations. Two derivations for this carbon-
heat coupling have been presented: the derivation of Bronselaer and Zanna (2020), and
a new one, which allows for spatial variability in the constant . Carbonate chemistry
considerations have shown that we expect « to depend linearly on background temper-
ature, and this temperature dependence will be explored explicitly in Chapters 5 and
6.

In addition, it has been shown how the background temperature and carbon fields of

the ocean spatially covary, and how this spatial covariability can be leveraged using
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a redistribution coefficient in order to predict the changes in one tracer from another.
This approach, which shares some key characteristics with the more commonly used
spice-heave decomposition, allows us to identify excess temperature changes without
relying on a prescribed relationship between excess temperature and anthropogenic
carbon - thus, it will be used in Chapter 3 to directly study variability in the carbon-
heat coupling.

Finally, it has been shown how these two approaches may be combined to estimate
excess and redistributed temperature directly from changes in DIC and temperature,
without any decomposition of carbon. This approach will be applied to data from the
GLODAP dataset in Chapters 5 and 6 to produce both local and global estimates of
excess heat uptake by the global ocean.
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Chapter 3

Decomposing ocean temperature

and salinity change using ocean
carbon change in the NEMO OGCM

3.1 Introduction

This section is based upon the paper Turner et al. (2022), in which I explore how we can use the
principles illustrated in Section 2.3 in order to understand changes in global ocean temperature

and carbon.

Local ocean heat content changes are contributed to by both the addition and removal
of heat from the surface due to perturbed radiative forcing (excess heat), and from the
rearrangement of the preindustrial temperature field from circulation variability (re-
distributed heat). Ocean salinity changes can also result from perturbations to air-sea
freshwater fluxes (excess salinity), as well as due to the rearrangement of the preindus-
trial salinity field (redistributed salinity).

The redistribution of temperature and salinity as a result of ocean circulation variabil-
ity acts on much shorter timescales than the accumulation of excess heat and salinity.
Circulation-related variability comprises the majority of temporal variability in con-
temporary ocean temperature and salinity, (Bindoff and Mcdougall (1994), Desbruyeres
et al. (2017)) and regional sea level (Church et al., 2013). However, the excess compo-
nent is anticipated to dominate in the future (Bronselaer and Zanna (2020), Zika et al.
(2021)). Thus the evolution of excess temperature and patterns of excess salinity as
well as changes in ocean circulation comprise a key source of uncertainty in estimates

of regional sea level rise (Church et al., 2013).
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One approach to determine excess temperature is to use a Passive Anomalous Tracer
(PAT), which obeys the same physics as temperature, but is defined to have a preindus-
trial field which is zero everywhere: the preindustrial field therefore cannot contribute
to redistribution (Banks and Gregory (2006), Gregory et al. (2016)), and so PAT reveals
the distribution and evolution of the excess temperature field. Alternatively, it is pos-
sible in simulations to force ocean circulation to obey preindustrial dynamics despite
increasing radiative forcing: this gives a similar result, though differing by a second
order term to the PAT implementation (Winton et al., 2013).

While these methods have been very informative they are only applicable to models:
no real world PAT tracer exists and while transient tracers such as chlorofluorocarbons
are a close analogue their interpretation in terms of excess temperature necessitates
the determination of an excess temperature boundary condition. This motivates the
development of proxy methods which aim to diagnose the excess and redistributed
temperature from other tracers and might be more generally applied, in particular
to observations. The approach of Bronselaer and Zanna (2020) is an example of this:
by approximating the distribution of excess temperature with that of anthropogenic
carbon, they are able to leverage the mechanistic coupling relating excess heat accu-
mulation to anthropogenic carbon accumulation to produce estimates of the scale and

patterns of excess heat uptake in models and observations.

Using an alternative carbon based methodology, Williams et al. (2021) explains differ-
ences in storage of heat and carbon in terms of two components: 1) the correlation of
excess heat and carbon (both increase over time), and 2) anticorrelation of redistributed
heat and carbon (the preindustrial distributions of temperature and carbon are inverted
due to the inverse temperature dependence of carbon dioxide solubility). They use this
to diagnose excess and redistributed heat (note Williams et al. (2021) refer to this as
added heat, though the definitions used are identical). Bronselaer and Zanna (2020)
can therefore be thought of as specifying the character of this positive correlation be-
tween excess heat and anthropogenic carbon, in order to estimate excess heat directly
from anthropogenic carbon. In this Chapter, the approach described in Chapter 1, Sec-
tion 2.3 is expanded upon, and its uses explored. This approach uses similar principles
to those presented in Williams et al. (2021) and Bronselaer and Zanna (2020), specify-
ing the character of the anticorrelation between redistributed heat and natural carbon

locally via the preindustrial ocean state.

Instead specifying the relationship between the excess components of temperature and
DIC change, as done by Bronselaer and Zanna (2020), relies on a global biogeochemical
relationship derived from the radiative forcing of CO, and the ocean carbon buffer fac-
tor, making their approach applicable only to temperature (Chapter 1, Section 2.1.2). In
contrast, in the absence of perturbations to mixing, redistribution leaves the properties
of a parcel of water unchanged. As a result, the redistribution first approach applied
here is more generally applicable: for example, if we identify a clear spatial relationship
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between natural carbon and salinity, we may use the redistribution of natural carbon
to estimate the redistribution of salinity. This allows us to not only produce estimates
of temperature redistribution, but also estimates of salinity, and by extension density,
redistribution. Using these, the patterns of storage of excess and redistributed temper-
ature and salinity by the global ocean are investigated in this Chapter.

3.2 Data and Methods

3.21 Model set up

In this Chapter, the NEMO v3.2 OGCM (Ocean General Circulation Model) is used,
(Madec et al., 2017) coupled to the MEDUSA-2 biogeochemical model (Yool et al., 2013)
and the Louvain-la-Neuve (LIM2) dynamic sea ice model (Timmermann et al., 2005).
The model was configured with the ORCA1 grid with a nominal 1 degree resolution
and 64 vertical levels (Madec and Imbard, 1996). The model was spun up for 900 years,
before three 240 year simulations spanning 1860-2099 were spawned: a control run
(CTR), coupled climate change run (COU), and a ‘warming only” run (RAD), follow-
ing the convention of Schwinger et al. (2014), Rodgers et al. (2020). The ocean model
was forced with output from the HadGEM2-ES (Collins et al., 2011), an earth system
model driven using prescribed greenhouse gas, land use and atmospheric chemistry
forcing following the RCP8.5 scenario over the 1860-2099 time period. In this scenario,
atmospheric CO; increases to over 900ppm by the end of the simulations (Riahi et al.
(2011), atmospheric CO; in these simulations is shown in Couldrey et al. (2016), Fig-
ure la). Surface heat, momentum, freshwater fluxes, and atmospheric chemistry from
HadGEM2-ES were used to force NEMO at 6 hourly intervals, and no restoring was
used.

The CTR run is forced with 8 repetitions of the first 30 years of these fluxes from the
HadGEM2-ES forcing, with a fixed atmospheric CO, of 286ppm: no significant climate
change occurs in these 30 years. The 900 year spinup for all 3 model runs was also

forced using this 30 year repeat forcing.

The COU run is forced with the full 240 year output from HadGEM2-ES. The RAD run
has the same physical variability as in COU including that driven by atmospheric car-
bon increases but the atmospheric carbon is artificially relaxed to preindustrial condi-
tions. As the RAD run only includes changes in DIC due to physical change (circulation
change and warming), rather than the ocean biogeochemical response to increased at-
mospheric CO,, we can calculate this response, namely anthropogenic carbon or C,uh,
directly from the difference of the COU and RAD runs:

Cantn (¥, 4,2, 1) = DICOY(x,,2,t) — DICRAP (&, y, 2, ). (3.1)
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Natural carbon, or C,yt, is then defined to be the total DIC content with the anthro-

pogenic carbon contribution removed: it is therefore calculated as
Crat = DIC®OV — C_ i — ADICE™R = DICRAP — ADICCTR, (3.2)

where ADIC¢™R is control run drift, equivalent to DICS™R(x, v, z, t) — DICS™R(x, y, z, to),
where {j is the beginning of the three simulations, 1860, and A refers to change since
1860 and t is an arbitrary time. Therefore by definition all DIC is natural carbon at the
beginning of our simulations, as the DIC fields are identical at the beginning of all 3
runs. DIC changes are then the sum of natural and anthropogenic carbon change. As
such, the local DIC content may be decomposed at any time in the following way (note
as Cyn is defined to be zero at time t = ty, Cynin = ACanih here):

DIC(x,y,z,t) = DIC(x,y,2,ty) + ACnat(x, Y, 2, t) + Cantn (X, ¥, 2, ). (3.3)

Changes in natural carbon, AC,,t, are thus given by the difference in DIC between the
RAD and CTR runs:
ACrat = DICRAP — DICCTR, (3.4)

For further detail on model setup, see Couldrey et al. (2016) and Couldrey et al. (2019):
the same simulations are used in these papers. Additionally, Couldrey et al. (2019) com-
pared the representation of DIC and alkalinity in these models runs to GLODAPv2 ob-
servations (Lauvset et al., 2016), finding the modelled carbon cycle to be representative
of observations, and so expect the carbon derived identification of excess temperature

and salinity in this chapter ought to also be representative.

3.2.2 Relating the redistribution of temperature and carbon

In Chapter 1, Section 2.3, the mathematics relating changes in two arbitrary tracers was
explored in detail. Here, this framework is presented in a more intuitive fashion, and
its implementation in the NEMO OGCM detailed.

Following Williams et al. (2021), the preindustrial temperature and carbon fields of
the ocean are broadly anticorrelated as a result of the strong inverse temperature de-
pendence of carbon solubility. In contrast, the excess temperature and anthropogenic
carbon fields are correlated due to the radiative forcing of atmospheric CO,. Bronselaer
and Zanna (2020) specify this correlation between excess heat and anthropogenic car-
bon using a time varying, globally uniform constant, which they refer to as the carbon-
heat coupling or a. Here, the aim is to similarly relate the redistribution of temperature
and natural carbon using an analogous redistribution coefficient, referred to as x,. As

salinity will also be decomposed, superscripts are used to denote the variable which
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will be related to natural carbon: the temperature redistribution coefficient, KrT , refers
to the preindustrial spatial covariability of natural carbon and temperature, whereas
the salinity redistribution coefficient, x; refers to the preindustrial spatial covariability
of natural carbon and salinity. Decomposing the total temperature change,

AO(x,y,z,t) = AB.(x,y,2,t) + A, (x,y,2,1), (3.5)

where 6 is in situ potential temperature, and the subscripts e and r refer to the excess
and redistributed components, respectively. Again following the definitions of Winton
et al. (2013) for the excess and redistributed temperature:

90 = (Go+7) (0o +0)= Tobo + T +7.0+76, (3.6)
~—~— ~— —_——
Preindustrial ~ Redistributed Excess

where 7, and 6y refer to the preindustrial components of the velocity field, 7, and the
temperature field, 6, and 7’ and 6’ the perturbations. Salinity, DIC and C,p, (or indeed
any other tracer) changes may be decomposed in the same fashion. The excess com-
ponent of a tracer can therefore be interpreted as changes in a tracer due to changes in
surface forcing, and the redistributed component as changes in a tracer resulting from
circulation change: redistribution driven changes in a tracer should therefore globally
integrate to zero. At this point, note that the preindustrial distribution of C,.y, is de-
fined to be zero everywhere: thus C,,, well approximates excess carbon. However,
as discussed in Chapter 1, Section 1.2.1.4, C5t changes are not constrained to globally
integrate to zero, and thus C,ny, and excess carbon, though similar, are not the same
entity.

The approach of Bronselaer and Zanna (2020) parameterises A0, as
AOe(x,y,2,t) = ar(At) X Cann (¥, ¥, 2, 1), (3.7)

where a7 is their coefficient &, expressed in units of temperature rather than heat. « is
estimated as the ratio of global heat to DIC accumulation, over the time period At =
t — to, where t( is a preindustrial time (1860 here). Alternatively, we might parameterise
the redistribution of temperature, Af, in terms of the natural carbon change:

AO,(x,y,2,t) =~ K,T(x,y,z) X ACnat(x,y,2,1). (3.8)

Unlike at, x! is not a function of time: it is instead a function of position, as it relates
the spatial covariability of the preindustrial temperature and carbon fields at a given
point. This method is equally applicable to any property for which we aim to estimate
redistribution although each property pair will have a distinct distribution of x,: we

could instead choose to relate the spatial covariability of the preindustrial salinity and
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carbon fields. Redistributed salinity, AS,, would therefore be estimated as

AS:(x,y,z,t) ~ Krs(x, ¥,z) X ACnat(x,y,z,1). (3.9)

In Equations 3.8 and 3.9, no constraint is made such that the global integral of re-
distributed heat is zero (or equivalently the global mean redistributed temperature is
zero). If Cn,e were a perfect tracer for redistribution, then its global integral would be
zero. However, we would expect the global integral of ACy, to be nonzero, predom-
inantly as a result of the outgassing of saturation carbon, Cs,t (the DIC content of the
ocean resulting from equilibrium with the preindustrial atmosphere), in response to
ocean warming. Thus the quantities ADIC, (redistributed DIC) and ACp,¢ will differ,
particularly over timescales of multiple decades to centuries (Williams et al., 2021): this
is reflected through the approximate rather than exact equality in Equations 3.8 and 3.9.
In general, when integrating over the global ocean,

d
o / / / CratdV < 0, (3.10)

so it is necessary to correct for the divergence of Cpnat and the ideal behaviour of a
redistributed preindustrial carbon field using a repartitioning factor, referred to as 7.

adj

The corrected quantity is referred to as adjusted natural carbon, C, ;.

This repartitions
a fraction of anthropogenic carbon into the adjusted natural carbon in order to correct

for Cs,t outgassing.

This repartitioning allows us to force the global integral of adjusted natural carbon
changes to zero. However, because globally integrated biology driven changes in Cpat
may be nonzero, it is instead enforced that globally integrated redistributed heat, not

adjusted natural carbon, is zero. The redistributed temperature field is therefore esti-

mated as
A8 (x,y,2,t) = k] (x,y,2) x ACij{(x,y,z,t)
. (3.11)
=%, (X,,2) X <ACnat(x/y/ z,t) + 7(t) Cantn (%, Y, Z, t)),
where y(t) is a factor between 0 and 1 such that over the global ocean
][ a6.av =0 (3.12)

adj

qat would exceed DIC, and so would not be

at all times. <y must be less than 1 or C
physically meaningful. It is constrained to be positive as historically, atmospheric CO,
has increased from preindustrial levels and so the global C,,y, inventory is positive.
However, if the global C,,4, inventory were negative, y could also be negative (though

the magnitude is always less than 1).
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As with redistributed temperature, redistributed salinity will be estimated as

AS,(x,y,z,t) = k2 (x,y,2) X ACiii(x,y, z,t)
i (3.13)
T

=K (xl ylz) X <ACnat(x/ y/ Z/ t) + ’Y(t)Canth(xr y, Z/ t)) .

Also note that Equations 3.11 and 3.13 may be combined in order to directly estimate
salinity redistribution from temperature redistribution and vice versa. This follows
from the property that (assuming no perturbation to mixing) redistribution does not
alter the properties of a parcel of water, and so the redistribution of natural carbon,
temperature and salinity are related by the spatial covariability of their preindustrial
tields. Alternatively, it might be observed that the choice of Cp,st is not unique as a
tracer for which to estimate redistribution: as previously noted, we only a require a
tracer which can be considered to change only through redistribution. The sum of the
preindustrial temperature or salinity fields and their redistributed components both
satisfy this, and so can be used to estimate redistribution of other tracers themselves.

Relating the change in adjusted natural carbon to changes in temperature (x!) and
salinity (k7) now requires an estimate of the redistribution coefficents. To estimate
these, a statistical method was used, examining how the model temperature or salinity
and C,q fields covary on subdecadal timescales in our control run, in order to esti-
mate the covariability of their preindustrial state. It is well known that when making
repeated observations at a fixed spatial location, the majority of observed changes in
temperature and salinity are due to circulation variability, rather than material changes
in water mass properties on subdecadal timescales (for example Bindoff and Mcdougall
(1994), Firing et al. (2017)). The dominance of circulation variability on these timescales
can therefore be exploited, assuming that the correlation between deviations in temper-
ature, salinity and DIC from their mean state on subdecadal timescales are due entirely
to circulation variability. The correlations obtained allow us to estimate how circulation
acts to couple changes in temperature and salinity to changes in natural carbon, at every
point in the ocean. Thus, by looking at the relationship between temperature or salin-
ity and DIC on subdecadal timescales, the spatial covariability of the background fields
may be identified, with this approach not requiring an explicitly decomposed temper-
ature or salinity field. Though these spatial correlations will change due to the addi-
tion of excess temperature (salinity), excess and redistributed temperature (salinity) are
defined such that these preindustrial correlations correctly capture the relationship be-
tween redistributed temperature (salinity) and natural carbon change throughout the
COU simulation (Equation 3.6)).

The calculation is performed as follows: in each grid cell, the full 240 years (1860-2099)
of yearly mean temperature, salinity and DIC from our CTR run is used, binned into 24
decades. In each decadal bin, the mean tracer (@ or S and C,,;) values are subtracted,
giving yearly 6, S and Cp,t anomalies from the decadal mean in that grid cell. This



Chapter 3. Decomposing ocean temperature and salinity change using ocean carbon
64 change in the NEMO OGCM

decadal binning is performed in order to preclude the possibility of any excess temper-
ature or excess DIC contaminating the relationship as the result of model drifts or sur-
face forcing driven variability due to the 30 year repeated forcing: though these effects
should be small, they are both partitioned by the excess/redistribution decomposition

into excess.

The correlations between the yearly anomalies from decadal means, for the entire 240
years of data, are then used to establish an intermediate value, which is labelled x;, at
each grid cell. This is done using a total least squares linear fit, implemented as two
dimensional PCA (Principal Component Analysis): «; is estimated as the gradient of
the slope obtained. A total least squares fit, rather than an ordinary least squares fit
is performed, as whilst the two variables are correlated, it is not a causal relationship:
total least squares is therefore more appropriate, as the relationship obtained should
not be affected by the choice of dependent variable.

A suppression factor, ¢, is then calculated, based on the quality of the correlations to
estimate «, for each variable: this process is detailed in Section 3.2.3, along with a vi-
sualisation of the estimation process. As with x,, this will be unique to each variable.
¢ is designed such that where the correlations we obtain between the 6 or S and Cy,¢
anomalies from decadal means are poor or nonexistent, no estimate of redistribution is
made. As a result of this, if local Cp,t changes due to biological processes but tempera-
ture or salinity due to circulation variability, this method will misclassify these changes
as excess temperature or salinity: this also will occur at maxima/minima of temper-
ature or salinity. However, due to the implementation of the < correction, these mis-
classifications will globally integrate to zero. Over the full simulation, adjusted natural
carbon increases by approximately 2umol/kg, 0.1% of the mean preindustrial DIC con-
centration. This implies the net global divergence of Cijjt and ADIC, is approximately
0.1%.

The full calculation is therefore performed as

A0 (x,y,z,t) = k] (x,y,2) X ACij{(x,y,z,t)

i (3.14)
= ¢o(x,y,2) x i (x,y,2) x ACGi(x,,2, 1)
for temperature, and
AS,(x,1,2,1) = k5(x,1,2) x ACY (x,y,2,t
7‘( y ) r( y ) nat( y ) (315)

= ¢s(x,y,2) X k5 (x,,2) X ACar(%,¥,2,t)
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for salinity. Excess temperature was then calculated as

A6 (x,y,z,t) = AO(x,y,2,t) — A6, (x,y,2,t)
= TMPOY(x,y,z,t) — TMP“™R(x, v, z,t) (3.16)
— 17 (%,9,2) X ACa(%,¥,2,1),

and likewise for salinity.

Excess and redistributed density fields were then built from the decomposed temper-
ature and salinity fields. To do this, the redistributed fields were added to the ini-
tial fields, and redistributed density calculated using TEOS-10 (McDougall and Barker,
2011). Initial density was then subtracted for density redistribution. Excess density
tields were then calculated as the difference between the redistributed density field
and the total density change.

3.2.3 Uncertainty in estimates of local redistribution

A local gradient, A0/ACpat or AS/AChat, was estimated by applying two dimensional
PCA to the timeseries of yearly deviations of the two variables from their decadal mean
values at each grid cell. This is equivalent to performing a total least squares fit to

obtain a linear relationship between the two variables.

The data are then scaled to normalise the ranges of 8/S and Cpat before again per-
forming 2D PCA on these timeseries at each grid cell to estimate the fraction of the
covariance contained within each principle component. This yields the fraction of the
total variance explained by each principal component, referred to as €1 and ¢: these
can be thought of as the axes of an ellipse describing a scatter cloud relating the two
variables. A fit which is a perfect line can be thought of as the limit of this ellipse where
g1 — 1 and e, — 0. Conversely, an essentially random fit through a spherical cloud of

points can be thought of as the case where £; = €.

The eccentricity of this ellipse is then used as a suppression factor, ¢,:

Pu=1/1~ (Z)z (3.17)

The need for conservative estimates of confidence in the fit is particularly important for
fits in which no discernable correlation can be drawn: for these, gradients associating
minor changes in Cy,¢ with large changes in 6 or S can be obtained, effectively at ran-
dom, and so the suppression factor must remove these effectively. As this Chapter is
concerned primarily with inventories, this approach was found to be preferable to in-
cluding large uncertainties due to a small number of spurious points, or simply setting

a threshold below which no attempt to diagnose the redistribution of heat and salinity
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is made. Only 6% of €1 values are scaled by a factor of 1/2 or less: this was found to be
a suitable compromise, with only the most unreliable estimates strongly suppressed.

The final redistribution coefficient «, is then calculated as

Kr = Pu X K; (3.18)

The implementation of this is demonstrated in Figure 3.1, for two points in the North
Atlantic at approximately 24°N, 30°W and 850m and 1950m. The poorly correlated
point, Figure 3.1a and 3.1, is an extreme outlier, chosen for demonstrative purposes.
Here the fit is essentially random, and so estimates of temperature redistribution are
scaled to reflect this uncertainty: the eccentricity of the ellipse described by the cloud
of points in 8 — Cy,¢ space is used as a scale factor. For the strongly correlated point,
shown in panels (b) and (d), temperature and Cy,¢ variability are almost perfectly an-
ticorrelated, representing the dominance of vertical structure in determining the redis-
tribution coefficient KrT . Here, KrT = —0.0210, 9,6 /0,DIC = —0.0208.

3.2.4 Merging one and two step estimates

The estimation of redistribution coefficients using the technique described above as-
sumes that the relationship between short timescale changes is dominated by circula-
tion variability. However, in the top 200m of the ocean, changes in salinity and Cp,¢
are instead dominated by freshwater fluxes: an excess of evaporation over precipita-
tion will increase concentrations of salt and Cpat, coupling changes in the two. This
leads to changes which are properly described as excess salinity being partitioned into
redistributed salinity. To resolve this issue, salinity redistribution is recalculated using
the same statistical approach to locally estimate the salinity redistribution from the re-
distributed temperature field: this will be referred to as a two step estimation. This
calculation is performed as

ASf(x,y,z,t) = KTT_S(x,y,z) X A0y (x,Y,z,t) (319)
= k7 5(x%,y,2) X ¢r(x,,2) X K] (,,2) X ACha(x,,2,t), '

where the superscript 2 in AS%(x, y,z,t) refers to the two step estimation. Kl —S is an

estimate of the T-S curve angle, and is estimated in the same way as ] and «}: no new

suppression factor is calculated.

The two estimates are then merged using a sigmoidal weighting scheme based on
depth. The grid in the simulations used here has 64 vertical levels, with the 20th level
corresponding to approximately 200m. Denoting the i vertical level z;, the one step es-
timate as S! and the two step estimate as S2, the final estimate of salinity redistribution,
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Estimating k,: Strong and Poor Correlations
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FIGURE 3.1: The correlations between Cp,t and 0 used to establish a «x, value, for a
poorly correlated point ((a),(c)), and a well correlated point ((b),(d)), in & — Cnat space
((a), (b)), and timeseries of both ((c),(d)). These two points are located at 24N,30W in
the Atlantic, at depths of 850 and 1950m. The major axis of the covariance ellipse in
panels (a) and (b) is shown in black. Note these two points are chosen to demo
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Sr, is then calculated as

s5—¢ xa(#) + 52 % <1—a(2“520)>, (3.20)

where 0(z) is the sigmoid function:

o(z) = (3.21)

For temperature, approximately 80% of grid cells globally have a scale factor of 0.8-1,
and by the end of the model run, the suppression factor ¢ alters the redistributed tem-
perature of 93% grid cells globally by less than 0.04 degrees, and 60% by less than 0.02
degrees, though the RMS mean redistributed temperature is reduced by 5%. However,
the small number of grid cells producing extremely large estimates (10’s of degrees of
change) are effectively suppressed. It is therefore estimated that the statistical nature of
this method introduces a minimum uncertainty of approximately 5% into the invento-
ries calculated here.

3.2.5 Gamma Factor

v was calculated for each year using Equation 3.11 to satisfy Equation 3.12: a fraction
of C,ntn was added to Cy,t to ensure the global integral of redistributed heat is zero in
each year, with the fraction representing the 7y value that year. The value of -y is then
smoothed over a 10 year period, before the fraction of C,, each year given by the
smoothed 7 value is added back to C,g; to obtain the cdi

nat
factor over our full run. It increases from 0 at the beginning of the run to 0.117 by 2099.
gth oth

field. Figure 3.2 shows the 7y

Smoothing is performed as in the late 19" and early 20" century, C,,y, inventories are
small and so large corrections are necessary to perfectly correct a small amount of Cg,¢
outgassing: smoothing is an effective way to remove this. By the 21% century, Can,

inventories are large enough that smoothing has little effect.

The 7 factor does not begin to increase significantly until the late 20" century, approx-
imately the same time that globally integrated ocean heat content begins to increase.
Thus, to first order, 7y corrects for Cg,¢ outgassing due to ocean warming.

Once the Cadj

aat field had been built, it was used to generate both the redistributed tem-

perature and salinity fields: we did not recalculate a new <y value to force a zero integral
of salinity redistribution in our salinity decomposition. This approach was chosen for
;j]t field, and so the
evolution of the redistributed temperature and salinity fields would not be linked by

adj
nat

3 reasons. Calculating a new < for salinity would mean a new C

the same adjusted C; field. In addition, the salinity of sea ice in the model (practi-

cal salinity of 6) and reduced carbon content of sea ice, relative to ocean DIC content,
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FIGURE 3.2: The calculated -y factor (thin black line), smoothed 7y factor (thick black
line), and global anthropogenic carbon inventory (red line).

causes some ice melt to be captured as redistributed salinity, rather than excess. This
means that globally integrated salinity redistribution is not expected to sum to zero as
is the case for temperature. However, as globally integrated redistributed salinity is
not independently constrained to be zero, this allows this global integral to be used as
a check on the validity of the method.

3.3 Results

3.3.1 Methodology Validation

In order to validate these results, a comparison with previous carbon proxy based meth-
ods is performed. The method of Bronselaer and Zanna (2020) relies on a globally
uniform « value, linking carbon and heat changes at all scales, which they refer to as
the carbon-heat coupling. In comparison, the technique presented here does not en-
force global uniformity of this carbon-heat coupling, with a local carbon-heat coupling,
A8,/ AC i instead being an output of our method. For the rest of this Chapter, the
global mean carbon-heat coupling will be referred to as at, and the local carbon-heat
coupling as A8,/ AC,nm: specifically, the local carbon-heat coupling links the anthro-
pogenic carbon and excess heat.

As we expect the correlations between the excess components of temperature and DIC

changes to be positive, and between the redistributed components of temperature and
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FIGURE 3.3: Histograms of the distribution of correlations relating different compo-
nents of the temperature and carbon fields, over the full simulation (1860-2099). The
global mean value a7t is shown by the dashed line. We include both the final redistri-
bution coefficient, K,T (blue), and its intermediate estimate, KZ-T (magenta), as well as the
ratio of total temperature change to DIC change ({df/dDIC), black), and local excess
temperature to anthropogenic carbon change ((46,/dCan ), red).

DIC changes to be negative, we can infer whether the redistribution coefficient tech-
nique reliably estimates excess heat by comparing histograms of correlations between
the different components of temperature and carbon change. To do this, the total tem-
perature change to DIC change, the excess temperature change to C,,y, change, and
the redistributed temperature change to Ciﬂ change (equivalent to ), are compared
for each grid cell at depths of less than 2000m in our simulations (volume weighted
histograms of each of these quantities over the upper 2000m of the ocean is shown in
Figure 3.3). Depths greater than 2000m are excluded due to the negligible ventilation
and C,, beyond this depth horizon. The total change and excess component correla-
tions are calculated as the ratio of decadal mean temperature and carbon at each grid
cell for the period 2090-2099 minus the initial values in 1860. Taking the assumption of
a globally uniform a to be accurate, we expect to find a broad distribution of ratios of
total temperature change to DIC change with both positive and negative correlations,
and a narrower distribution of ratios of excess temperature change to C,, change, cen-
tred about the global mean value ar. We would also expect the correlations between

adj

redistributed temperature changes and C,;

to generally be negative.

In Figure 3.3, distribution of the ratio of total temperature change to DIC change (black
line) is generally positive, indicating the dominance of excess temperature and DIC
over redistribution over this time period and region, but is broad and encompasses
both positive and negative values. Its mode occurs at the global mean value a7: 0.016
K/umol/kg. The mode of the ratio of excess temperature change to C,ny, accumu-
lation (red line) is slightly lower (0.012-0.014 K/umol/kg), but the magnitude of the
peak at the mode is approximately 50% greater than that of total change (2.1 x 10® m?
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vs 1.4 x 10'® m3). This implies that the assumption of a globally uniform carbon-heat
coupling, a, is broadly appropriate, although a large spread in values exists, and that
the redistribution coefficient method reliably identifies excess heat.

The distribution of the ratio of redistributed temperature change to Ciﬂ change (x],
blue line), is also generally negative, as expected, with a much broader distribution
than the distribution of the ratio of excess temperature and C,,,. Generally, the in-
termediate value histogram (KZ-T , magenta line) resembles the final ratio (K,T , blue line),
with the exception of the large peak at zero, resulting from the suppression factor, ¢r.
Figure 3.4 shows patterns of k! for the Atlantic (a), Indian (b), and Pacific (c) oceans,
and Figure 3.5 the patterns of effective 7 for these basins. The positive tail of ! values
is predominantly due to the inversion of the DIC field with depth in the North Pacific.

Figure 3.4 shows patterns of k!, representing the spatial covariability of temperature
and salinity background distributions throughout the global ocean. As redistributed
salinity estimates are produced from the combination of a one step and two step esti-
mate (as described in Section 3.2.4), the patterns of x; shown in Figure 3.5 are instead
a map of effective values. These are calculated by diagnosing the mean redistributed
salinity for the decade 2090-2099 (this was chosen to maximise changes to adjusted Cp¢
and thus avoid numerical issues), before dividing by mean changes in adjusted Cpat to
obtain a map of effective x; values. Thus, these values are identical (to numerical preci-
sion) to those calculated directly in the mid-depth and deep ocean, but represent a best
estimate of the spatial coupling between salinity and natural carbon in the upper 200m

of the ocean, and avoid the complicating effects of freshwater dilution.

That the correlation between the redistribution of temperature and carbon is positive
in the North Pacific implies that the method of Williams et al. (2021) may not be ap-
propriate in this location. However, the shape of the distributions presented are in
clear agreement with their method: the redistribution coefficient decomposition gen-
erally infers negative correlations between redistributed temperature and natural car-
bon, and positive correlations between excess temperature and anthropogenic carbon.
As the redistribution coefficient method identifies correlations between excess temper-
ature and anthropogenic carbon, and between redistributed temperature and natural
carbon changes that are consistent with both the assumptions of Williams et al. (2021)
and Bronselaer and Zanna (2020), despite not enforcing this to be the case, we may be

confident that it is reliably separating excess and redistributed temperature.

Estimates of excess temperature from the redistribution coefficient method and the
method of Bronselaer and Zanna (2020) are now compared, with the assumption that
both methods producing consistent estimates indicates an accurate identification of the
excess temperature field. Figure 3.6 shows the zonally averaged excess and total tem-
perature fields obtained for the Atlantic and Indo-Pacific, for the final decade of the
simulations, 2090-2099. In the Atlantic and Indo-Pacific, the estimate using the method
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FIGURE 3.4: Zonal mean «, values for the Atlantic (a), the Indian ocean (b) and the
Pacific (c).

of Bronselaer and Zanna (2020) (Figure 3.6a,b) produces smoother estimates than the
redistribution coefficient technique (Figure 3.6¢,d), but there are a number of common
features which both techniques identify that are not due to the accumulation of excess
heat. In the Atlantic, the tongue of warming at 2000-2500m depth, extending from
approximately 40°N to 30°S is identified by both techniques as redistribution of the
preindustrial temperature field, rather than excess heat. In addition, both techniques
identify the region of warming extending from approximately 2000-4000m depth be-
tween 60°S and 40°S as redistributed, rather than excess heat. In the Indo-Pacific, both
methods identify the cooling at approximately 1000m at 20°S as redistribution, rather
than excess temperature. However, the redistribution coefficient method identifies the
penetration of excess temperature to depth in the Southern Ocean, unlike the method
of Bronselaer and Zanna (2020).

In the upper 1000m, there are significant divergences between the two techniques. To
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FIGURE 3.5: Zonal mean effective x5 values for the Atlantic (a), the Indian ocean (b)
and the Pacific (c).

explore the sources of these differences, local estimates of the quantity A6,/ AC,,, are
computed from estimates of Af, obtained and the model C,,y, output. By comparing
the locally obtained estimates with the patterns of excess heat and anthropogenic car-
bon uptake estimated by assuming a globally uniform a7, we are able to show how
the relaxation of the assumption of a globally uniform at causes our estimates to differ.
This is demonstrated in Figure 3.7.

Figure 3.7a and 3.73b show local values of Af./AC,n, presented as the zonal mean
of the ratio of total excess temperature accumulated to total anthropogenic carbon ac-
cumulated, averaged over the decade 2090-2099. Figure 3.7c and 3.7d show the differ-
ences between the excess temperature estimated using our technique, and estimated
using the technique of Bronselaer and Zanna (2020), and Figure 3.7e, 3.7f shows the

total C,n accumulated over the same period and domain.
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FIGURE 3.6: Atlantic and Indo-Pacific zonal, decadal mean excess temperature esti-

mates, for the decade 2090-99, and total temperature change. The method of Bronse-

laer and Zanna (2020) is shown in panels (a,b), our method in panels (c,d), and the total

temperature change in panels (e,f). The thick black contour indicates the zero contour,

and temperature changes are indicated by thin contours, which are also indicated on
the colour axes.

At depths of below 2000m in the Atlantic and 1000m in the North Pacific, ventilation is
negligible and so despite large A8, / AC ¢, estimates, the two methods produce similar
estimates of excess temperature. In the Southern Ocean, North Atlantic and North
Pacific, we see large A,/ AC,n, values, as well as nontrivial accumulation of excess
temperature. As a result, in these regions, the two estimates diverge.

In general, estimates of A6, / AC i produced using the redistribution coefficient method
show a large degree of spatial coherence, despite no constraints being imposed to en-
force this. This suggests that these variations are likely real, rather than an artifact of the
estimation technique. An implication of this is that heat uptake is intensified, relative
to Canen uptake, in the high latitude Northern Hemisphere, and reduced in the low lati-
tude Northern Hemisphere and Southern Hemisphere. This may be explained in terms
of a reduction of carbon export through the mixed layer at high latitudes. Bronselaer
and Zanna (2020) make an argument for a globally uniform « value based on surface
carbonate chemistry. However, Bopp et al. (2015) found total C,,y, subduction through
the base of the mixed layer to be significantly more variable than air-sea C,,y, fluxes,
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and generally reduced at high latitudes (their Figure 3c): this mechanism could poten-
tially act to reduce the spatial uniformity of & below the base of the mixed layer. In
particular, water masses where the effects of advection and vertical mixing on carbon
subduction are in opposition (namely high latitudes) tend to produce higher values
of A6,/ ACynn- This is in agreement with the semi-empirical estimate of A6,/ AC
produced using CO2sys in Chapter 2.

To test whether these variations in local values of A8,/ AC,n, may constitute a source
of error in the method of Bronselaer and Zanna (2020), the column inventories of excess
heat uptake over the top 2000m of the ocean obtained using both methods in these sim-
ulations are compared: this is shown in Figure 3.8. Bronselaer and Zanna (2020) were
able to directly compare their estimates of excess heat and the simulated excess heat
(their Figure 3f, reproduced in Figure 3.9). Although the two estimates do differ, these
differences (Figure 3.8c) closely resemble those between their method and the simu-
lated excess (Figure 3.9): their method underestimates excess heat content in the North
Atlantic, North Pacific and Southern Oceans, whilst overestimating it in the South At-
lantic, South Pacific and Indian Oceans: patterns which are broadly reproduced by our
method. The zonally integrated difference in upper 2000m excess heat content (Figure
3.8d) is again consistent with a reduction of carbon export through the mixed layer base
at high latitudes.

Finally, due to the absence of simulations explicitly including PAT, the accuracy of the
decomposition and the appropriateness of Equations 3.11 is investigated by examining
the total and redistributed heat content change of a region of ocean for which ven-
tilation is negligible; here, excess heat content is assumed to be zero and heat content
change and redistributed heat content change are expected be identical. Thus, the accu-
racy of the decomposition can be examined, without the need for simulations including
PAT.

The unventilated region of the ocean is defined as the fixed volume of all grid cells
in our model runs for which C,,4, concentrations do not exceed a given threshold
(|1|jpmol/kg ) at any time during the model run. In addition, only grid cells in the
depth range 2000-3000m in this region are considered: this excludes grid cells for which
large spurious, negative C,,y, values are seen (See Figure 3.6). Changes in the heat con-
tent of this region of ocean are therefore the result of changes to ocean circulation. For
example, a slowdown in the AMOC, even absent any excess heat content in entering
the ocean, would result in a reduction in the mean temperature of the North Atlantic,
as the northward heat transport is reduced. Were we to a pick a volume of ocean in
the North Atlantic as our ‘unventilated ocean’ region in such a case, we would find a

redistribution driven decrease in the mean temperature of this volume.

Figure 3.10 shows the total heat inventory change, and our reconstruction redistributed

heat content for this region of unventilated ocean: for a perfect reconstruction, these



Chapter 3. Decomposing ocean temperature and salinity change using ocean carbon
76 change in the NEMO OGCM

Atlantic zonal mean Indo-Pacific zonal mean
(AO./ACun) (K/pmol /kg) (AB./AC,,
o e = o=y > —

S 7
J ‘ ?‘

) (K/pmol /kg)
S~ ——0) 2T

nth
~
0.06
0.05
0.04
0.03
0.02
0.01

-0.01
-0.02

adj
KTACK —

“nat

1000m

1500m

2000m

2500m

Cann (pmol/kg) Cann (pmol/kg)

Oom

500m

1000m

1500m

2000m

2500m 60°S 40°S 20°S O0°N 20°N 40°N 60°N 60°S 40°S 20°S 0°N 20°N 40°N 60°N

FIGURE 3.7: Atlantic and Indo-Pacific zonal mean ratio of excess temperature to Cypp
accumulation, calculated as the 2090’s decadal, zonal mean temperature divided by
2090’s decadal, zonal mean C,,y, (Panels (a), (b)). Panels (c) and (d) show the differ-
ence between our excess temperature estimate and the excess temperature estimate
produced using the method of Bronselaer and Zanna (2020), and Panels (e) and (f) the
zonal mean C,;;, accumulation, calculated as the 2090’s decadal mean. The thick black
contour in Panels (a), (b) indicate the global mean value of a1 of 0.016K/umol/kg, and
the thin contours are indicated on the colour axes.

quantities would be nearly identical, and this is indeed the case, in particular for higher
frequency variability (3.10a), and for longer term variability before approximately 2050
(3.10b). However, over the full model run, the reconstruction begins to systematically
diverge, with the estimate of mean temperature change due to redistribution slightly
lower than the mean temperature change.

To determine the quality of this reconstruction, Taylor Skill Scores are computed (Tay-
lor, 2001) for the periods 1890-1950, and 1890-2099. Following Hirota et al. (2011), these
are calculated as .
S = ﬂ (3.22)
4(0’ f +1/¢ f)
where S is the Taylor Skill Score, R the Pearson correlation coefficient of the two time-
series, and ¢y the ratio of the model output timeseries standard deviation (cy) and the
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reconstruction timeseries standard deviation (c;):

A Uf
s = o (3.23)
For the period 1890-1950 (Figure 3.10a), before meaningful climate change, we obtain a
Taylor Skill Score of 0.838: thus representing skillful reconstruction of the redistributed
heat content.

Over the full time period (Figure 3.10b), the reconstruction again captures the higher
frequency variability in heat content of the unventilated region well, though the rate of
accumulation is somewhat lower: the ratio of mean temperature change to mean redis-
tributed temperature asymptotes to approximately 80% over the full model run. Over
this period, we obtain a slightly higher Taylor Skill Score of 0.964, indicating the recon-
struction is capturing the redistribution of heat into this region accurately on longer
timescales, although again biased low as with the shorter timescale changes. The de-
composition is thus thought to capture approximately 80% of the forced circulation

change.

However, the definition of unventilated waters used here (Canth < 1 ymol/kg) may be
too expansive, and thus the 20% uncertainty detailed here represents an upper estimate
of the error introduced by our method: as our cutoff is nonzero, some excess heat will
enter this region, which will act to systematically increase the total heat content in this

region beyond the redistributed heat content.

In addition, truncating the period considered to 1890-2050, a Taylor Skill Score of 0.987
is obtained, and over the period 2000-2050, the mean ratio of total temperature changes
to redistribution driven temperature changes is 0.994, suggesting a highly accurate re-
construction.

As the redistribution coefficient method produces results broadly consistent with both
the method of Bronselaer and Zanna (2020) and Williams et al. (2021), it appears to re-
liably identify excess temperature. In conjunction with the high Taylor Skill Scores and
plausible explanation for differences between the results of the two methods, these re-
sults imply that the redistribution coefficient method accurately identifies excess heat.

3.3.2 Inventory Changes

Global mean excess and redistributed salinity change, as well as globally integrated ex-
cess and redistributed heat content change are shown in Figure 3.11. The global mean
excess and redistributed salinity (thick lines, Figure 3.11a) begin to show a small net
decrease in 1891, when the RAD and CTR forcing ceases to be identical, though this sea
ice melt driven decrease is much smaller than the scale of either the positive and nega-

tive only excess or redistributed salinity components (thin dashed lines): global mean
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FIGURE 3.10: Total and redistribution driven changes in the mean temperature of the
unventilated ocean for the period before meaningful climate change (a), and the full
model run (b). Taylor Skill Scores for the periods presented are shown in subplot titles.

excess and redistributed salinity both decrease by approximately 0.001 over the full
run. Globally integrated excess heat does not begin to accumulate significantly until
approximately 2000: until this point, both positive only (global integral of excess heat
content only in regions where excess temperature is positive) and negative only excess
and redistributed heat are of similar scales. Positive only excess heat and globally inte-
grated excess heat are approximately the same by 2050, and negative only excess heat
increases from approximately -200 ZJ in 2000 to approximately -50 ZJ by 2100: some
negative excess heat due to cooling in the first half of the run remains throughout the
full simulation.

The global integral of positive and negative only regions are useful for assessing the
extent of redistribution: whilst the global integral of redistributed temperature is con-
strained to be zero, this is the result of the cancellation of the positive and negative
regions. Whilst excess heat begins to dominate during the mid 21 century, the extent
of temperature (and salinity) redistribution continually increases: there is no indication
of ‘settling” into a new circulation state, where redistribution ceases to increase, on the

timescale of the full simulation. This can be seen from the continued and accelerating
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FIGURE 3.11: Global mean excess and redistributed salinity (a), and globally inte-

grated excess and redistributed heat (b). Excess components are shown in black, re-

distributed components in red. The integrals of only the positive and negative regions

are also shown (thin dashed lines). Climate change and control runs use the same first

30 years of forcing, so values are by definition zero here: the jump in 1890 represents

the initial divergence of states. Observational estimates of global ocean heat uptake
from Zanna et al. (2019) are also shown in panel (b).

increases in positive and negative only redistributed heat and salinity. It is also the case
that whilst the magnitude of positive and negative only redistributed heat are simi-
lar until approximately 2000, excess salinity is significantly larger than redistributed
salinity at all times. This indicates that during the full course of our simulations, salin-
ity changes are dominated by changes in the freshwater cycle, rather than changes in
circulation.

For comparison, observational estimates of ocean heat uptake from Zanna et al. (2019)
(Figure 3.11b) are also included: cumulative heat uptake over 1871-2015 in grey (43691
Z]) and over 1995-2015 in green (153+44 ZJ). Over the period 1871-2015, our simula-
tions produce less cumulative heat uptake (249 ZJ), but more heat uptake over 1992-
2015 (232Z]) than observations.

Figure 3.12 shows the integrated redistributed and excess temperature, salinity, and
densities for each ocean basin. As with the global mean, excess salinity begins to accu-
mulate almost immediately in most ocean basins (Figure 3.12c), particularly the North
Atlantic and South Pacific: trends here are distinct from noise at 2¢ in 1893 and 1911,
respectively. Excess temperature does not begin to accumulate until the 21% century, at
which point it begins to rapidly accumulate in all ocean basins; the exception to this is
the South Atlantic (Figure 3.12a, dashed black line) which cools in the 20th century, its
excess heat signal emerging from noise at 2¢ in 1918. In contrast, the excess heat sig-
nal in the North Atlantic and South Pacific do not emerge from noise at 20 until 2023
and 2021, respectively. Over the period 2023-2099, for which the excess heat signal of

2100
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FIGURE 3.12: Excess (left column) and redistributed (right) heat, salinity and density
integrals for each ocean basin over the full model run. For the changes in heat and
salinity (Panels (a)-(d)), the equivalent integrated density change in units of Pg are
given in grey on the right. Scales differ for excess and redistributed components, and
changes in salinity and density are given as mass changes rather than volumes.

the North Atlantic is distinct from noise, 25£2% of global excess heat accumulated is
located in the North Atlantic.

The accumulation of negative excess density is dominated by the accumulation of ex-
cess temperature, rather than salinity: the grey scales on the right hand side of panels
(a)-(d) in Figure 3.12 show the density change associated with heat and salinity change.
In the North Atlantic, changes in the excess heat and salinity compensate to reduce
density anomalies: a reduction of almost 25Pg associated with excess heat is compen-
sated for by an increase of approximately 8Pg associated with increased salinity. Simi-
lar compensation, though much weaker, is seen in the South Atlantic, which cools and

0" century before warming and salinifying in the 21%. This is

freshens during the 2
not the case in other basins, where the changes in excess heat and salinity both act to

decrease density and therefore increase stratification (Figure 3.12a, 3.12c).

The redistribution of density is less dominated by heat, with heat and salinity con-
tributing similarly to redistributed density. In the North Atlantic, the redistribution of

heat and salinity are approximately density compensated until around 2050, at which
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point the redistributed density inventory begins to increase rapidly (Figure 3.12f, black
line). Good density compensation in the redistributed component is also seen in the

subantarctic Southern Ocean, with minimal accumulation of redistributed density.

In the COU run, AMOC strength (calculated as peak depth integrated meridional vol-
ume transport at 26°N) increases until 1990 before declining continually thereafter.
The cumulative transport anomaly (time integrated difference between COU and CTR
AMOC volume transport) peaks in 2035 before also declining continually for the rest
of the simulation. The signal of AMOC decline is visible in the redistributed heat con-
tent of the North Atlantic, which peaks in 2037 before declining rapidly, as well as the
redistributed salinity content of the South Atlantic, which begins to increase at approx-
imately the same time: consistent with previous studies (Zhu and Liu, 2020) which
find a “pile up’ of salinity in the South Atlantic as a result of AMOC slowdown. The
AMOC in these simulations is too weak, with a preindustrial mean of approximately
7.5 Sv at 26°N, and a maximum value of 13Sv in our COU run, declining to approxi-
mately 4.5 Sv by 2099, as compared to approximately 15 Sv in HadGEM2-ES (Martin
et al., 2011) and 184+4.9 Sv observationally (Johns et al., 2011). This AMOC strength at
26°N in HadGEM2-ES itself is towards the weaker end of estimates from CMIP5 mod-
els (Weaver et al., 2012). However, the heat transport is realistic, with a control run
heat transport of 0.075 PW/Sv at 26°N, as compared to observations of 0.079 PW /Sv
(Johns et al., 2011). The decline in AMOC strength in our ocean only simulations and
HadGEM2-ES simulations are also proportional: over an RCP8.5 scenario, Sgubin et al.
(2015) found a decline of AMOC strength at 26°N from approximately 15.5 to 8Sv at
26°N in HadGEM2-ES.

To explicitly test whether the redistribution of heat from the North Atlantic, and salinity
to the South Atlantic, can be explained in terms of a changing AMOC, we calculate the
redistribution of heat and salinity through the Equator in the Atlantic. This is calculated
as the difference in meridional velocities between the COU and CTR runs, multiplied
by the control run temperature and salinity fields (this analysis is conceptually similar
to that performed by Williams et al. (2021) in order to calculate the redistribution in-
to/out of a volume, though here we consider only the equatorial boundary between the
North and South Atlantic). For the period 1950-2099, for which there are non-negligible
changes in the redistributed heat content of the North Atlantic, we find the correlation
between the redistributed heat content of the North Atlantic and the redistribution of
heat through the Equator due to AMOC change has an R? value of 0.58, suggesting
that the change in overturning circulation plays a key role redistributing heat out of
the North Atlantic, and into the South Atlantic. A slightly weaker correlation is found
between the non AMOC driven redistribution of heat past the equator and the North
Atlantic heat inventory, with a R? value of 0.45. These R? values are reduced to 0.50
and 0.38, respectively, when considering the period 1890-2099.
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The picture is similar for salinity: for the period 2000-2099, for which there are non-
negligible changes in the redistributed salinity content of the South Atlantic, the corre-
lation between the redistributed salinity content of the South Atlantic and redistribu-
tion of salinity through the equator due to AMOC change has an R? value of 0.61, which
is reduced to 0.04 when considering the period 1890-2099. Changes due to gyre circula-
tion driven redistribution have R? values of 0.09 and 0.33, respectively, suggesting that

the large scale mechanisms of salinity redistribution differ from those of heat.

Given the reliability of the outputs of the decomposition technique presented here, we
may confidently assert this decomposition is reliably identifying excess heat and salin-
ity. It therefore appears that the redistribution of heat out of the North Atlantic and
salinity into the South Atlantic are driven predominantly by AMOC variability, with
non AMOC circulation changes influencing the redistribution of temperature and salin-
ity differently. Identifying whether the lack of correlation between our estimates and
the explicitly calculated redistribution when there is no appreciable accumulation of ei-
ther is due to inaccuracies in the redistribution coefficient approach or the dominance
of other factors in the redistribution of heat and salinity would likely improve under-
standing of the strengths and weaknesses of this method, but is beyond the scope of
this study.

As with the global inventories, there is little evidence of ‘settling” into a new circula-
tion state: in most basins, redistributed heat and salinity inventories continue to grow
during our simulations, and AMOC strength declines continually throughout the 215
century. A notable exception is the South Pacific, for which the redistributed heat in-
ventory increases to approximately -50 Z] by 2050, before remaining at a similar value

for the rest of the simulation.

One way of assessing the interaction of excess and redistributed heat is to plot changes
in their accumulation against each other, with emergent relationships consistent with
coupling between the two (Figure 3.13).

In the North Atlantic, there is an acceleration of the accumulation of redistributed heat
with respect to the excess heat inventory (Figure 3.13g). However, in all other basins
for which relationships emerge clearly, the accumulation of excess and redistributed
heat are either linearly related (Subpolar Southern (Figure 3.13a), North Pacific (Figure
3.13e)), or sublinear. This is as expected: the acceleration of the accumulation of redis-
tributed heat is unique to the North Atlantic. In all basins other than the North Atlantic,
the rate of accumulation of redistributed heat with respect to excess heat slows over the
timeseries.

Despite this slowing, the redistributed heat inventories continue to grow, except in the
Subantarctic Southern, South Atlantic, South Pacific and Arctic. In all other basins,
there is continued accumulation of redistributed temperature, indicating the continual

dynamic readjustment of the ocean, at an inter-basin scale: the lack of growth at a
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FIGURE 3.13: The emergent relationships (if any) observed between excess and redis-

tributed heat in each of the 8 ocean basins shown in Figure 3.12, presented in terms

of the mean redistributed and excess temperature changes for the basin. Timeseries

begin in 1980 as there is no appreciable accumulation of excess or redistributed heat in
the first half of the run. Scales differ for each basin.

basin scale imposes no constraints on intra-basin redistribution. Of these, the Subpolar
Southern and North Atlantic are the most striking, with heat redistribution increasing

linearly and with the square of excess heat accumulation, respectively.

Previous studies have found AMOC strength to be proportional to SST anomalies in the
North Atlantic (Caesar et al., 2018), and SST anomalies are thought to be proportional
to excess heat (MacDougall and Friedlingstein, 2015). Though it would initially appear
that this would act to linearly couple the excess heat content of the North Atlantic to
the redistribution of heat out of the North Atlantic, the redistributed heat inventory
will be proportional to the time integrated changes in AMOC strength. The excess
heat inventory of the North Atlantic increases monotonically with time, and so the
rate of change of the redistributed heat inventory will be proportional to the excess
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heat inventory. The proportionality of the redistributed heat inventory of the North
Atlantic to the excess heat inventory can therefore be explained in terms of the unique
circulation of the North Atlantic.

3.3.3 Mapping storage of excess and redistributed temperature and salinity

The regional patterns of decadal mean excess and redistributed temperature for the
2090s at the surface and at 2000m is shown in Figure 3.14 and the regional patterns of
the 2090s decadal mean excess and redistributed salinity in Figure 3.15. For both tem-
perature and salinity, surface changes are dominated in most locations by the excess
component. Excess temperatures are positive nearly everywhere, whilst excess salin-
ity is generally positive in the South Atlantic, Subtropical North Atlantic and Indian
Oceans, with the Pacific generally negative. This is consistent with increased evapora-
tion over the Atlantic and increased atmospheric freshwater transport from the Atlantic
to the Pacific.

It is generally expected that in a warming climate, the hydrological cycle will become
amplified, with increased evaporation (precipitation) in regions of net evaporation (pre-
cipitation) (Durack and Wijffels (2010), Zika et al. (2018), Gould and Cunningham
(2021)). Thus, salty regions of the ocean surface become saltier, and fresh regions
fresher. As these changes result from changing surface fluxes, hydrological amplifica-
tion should be captured by the excess salinity at the surface, rather than redistributed

salinity: this is consistent with the results presented here.

(a) Surface Excess Temperature (b) Surface Redistributed Temperature
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FIGURE 3.14: Maps of excess and redistributed temperature on two depth surfaces:
the surface and at 2000m. Values given are the decadal mean for the decade 2090-
2099. Colour axes are shared between each component at both depths.
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(b) Surface Redistributed Salinity
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FIGURE 3.15: Maps of excess and redistributed salinity on two depth surfaces: the
surface and at 2000m. Values given are the decadal mean for the decade 2090-2099.
Colour axes are shared between each component at both depths.

Whilst surface warming is unsurprisingly dominated by excess temperature, at 2000m
the contributions of excess and redistributed temperature to total temperature change
are of comparable magnitude, with the exception of the North Atlantic. In contrast, the
majority of salinity change at depth is accounted for by the excess component, though
appreciable changes are generally only found in the North Atlantic. This salinity in-
crease at depth is despite surface freshening in the Subpolar North Atlantic (Figure
3.15a, 3.15¢), resulting from the propagation of surface salinification here in the 20"
century. Patterns of excess and redistributed surface salinity are consistent with the
results of Sathyanarayanan et al. (2021) and Levang and Schmitt (2015).

The strong surface redistributed salinity signal in the Arctic appears to result from re-
duced sea ice freshwater transport from the marginal seas of the Arctic inwards. Pre-
vious studies using the NEMO GCM coupled to the LIM2 sea ice model have found
that Arctic sea ice tends to grow along the coastal shelves of the Arctic Ocean, before
being transported by the Beaufort Gyre circulation and transpolar drift (Moreau et al.,
2016). The net result of this is to transport both freshwater and DIC from the coastal
shelves to the centre of the Arctic Ocean: changes in this transport will therefore act
to cause large and tightly correlated changes in DIC and salinity in the surface Arctic
Ocean. Our decomposition therefore partitions salinity change resulting from changes
in this transport to redistribution. Similar changes in sea ice transport also act to cause

redistributed freshening in the coastal Southern Ocean.

The total inventory change in heat, salt, and density by the last decade of the simula-
tions, as well as the storage of the excess and redistributed components are shown in
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Figure 3.16, for the upper 2000m of the ocean. We present these as contributions to steric
sea level change, allowing for both normalisation and a comparison of contributions to
steric sea level rise. On this timescale, excess (Figure 3.16c) and total (Figure 3.16a) heat
inventory changes are positive nearly everywhere, with the exception of the Weddell
and Ross Gyres. Redistributed heat inventories are negative generally in the North At-
lantic (Figure 3.16¢), with the largest values seen in the Labrador and Norwegian Seas,
as well as the Subtropical Gyre. In the Pacific and Indian Oceans, redistributed heat
inventories are most negative at around 30-35°S.

Salinity inventory changes show a different geographical distribution: excess salinity
increases uniformly only in the Atlantic and Arctic oceans (Figure 3.16e). Total salinity
change is again dominated by the excess here. As with heat, the fingerprint of AMOC
slowdown can be seen in the redistributed salinity signal: there is redistribution driven
cooling and freshening in the North Atlantic and redistribution driven warming and
salinification in the Equatorial and South Atlantic, resulting from a weakening in the
northward transport of heat and southward transport of fresh water. This redistri-
bution driven cooling and freshening acts to oppose the warming and salinification
associated with increased surface heating and concurrent increases in evaporation -

precipitation (E-P).

Density inventory changes (Figure 3.16a) are relatively globally uniform compared to
the individual contributions: a decrease is seen in the total change and excess inven-
tory nearly everywhere, with the exception of the Weddell and Ross Seas, as well as the
central Arctic Ocean. The Arctic Ocean decrease is dominated by the changes in fresh-
water transport, whereas the Weddell and Ross Sea decrease result from upwelling
cool water. In the Atlantic, large changes in steric sea level resulting from excess tem-
perature are significantly reduced by the accumulation of excess salinity, and a similar

cancellation is seen in the redistributed components.

3.4 Discussion and Conclusions

In this Chapter, a new technique for estimating the redistribution of heat and salinity
by the ocean in response to anthropogenic climate change has been presented, allowing
for the identification of the excess signal and produce estimates consistent with other
reconstructions. This method can be thought of as sitting within a family of techniques
which aim to understand ocean circulation changes through the relationship between
ocean temperature and DIC, along with the methods of Bronselaer and Zanna (2020)
and Williams et al. (2021). It produces results which are consistent with the assump-
tions of both methods, without constraints to enforce this. Instead, it assumes that on
decadal and subdecadal timescales, local ocean heat and carbon content are dominated
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FIGURE 3.16: 2090’s mean steric, halosteric and thermosteric contributions to sea level
rise, as well as the total, from the upper 2000m of the ocean.

by redistribution, and that on longer (multidecadal to centennial) timescales, circula-
tion variability dominates over biological changes in natural carbon. This first assump-
tion is consistent with the results of Thomas et al. (2018), who investigated the rela-
tionship between ocean heat and carbon content, finding the two to be anticorrelated
on decadal timescales. The results of Williams et al. (2021) suggest the assumption of
circulation variability dominating over biologically driven changes is also reasonable.
A key strength of this new technique is that it also allows us to estimate not only the

redistribution of heat, but also salinity, and there are no obvious theoretical reasons
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why it may not be extended to other tracers whose distributions evolve in response
to anthropogenic climate change. Furthermore, its implementation is such that in or-
der to identify circulation driven changes in a given tracer requires only a timeseries
of the tracer in question, and of a secondary tracer which we may assume to change
distribution only through redistribution, for example Cpa. It should therefore also be
applicable to observational timeseries with little modification.

The globally integrated estimates it produces indicate that the magnitude of the excess
and redistributed temperature signals are currently of a similar size, with the magni-
tude of excess temperature signals expected to exceed those of redistributed temper-
ature signals towards the end of the 2020’s. This is in keeping with previous studies
which find excess heat beginning to dominate over redistributed heat in the period
2011-2060 (Bronselaer and Zanna, 2020). Of course, as this is only one climate change
run from a single model, there is a large uncertainty associated with this and we recog-
nise that it does not account for the spread of model responses to imposed climate
change under an RCP8.5 scenario. However, these results are internally consistent,
demonstrating a number of phenomena thought to occur under a changing climate ex-
plicitly in terms of the accumulation of excess heat and redistribution of preindustrial
heat.

It has also allowed the production of the first modelled estimates of the redistribution
of the preindustrial salinity field by the ocean and so the excess salinity field: that is,
the changes in salinity due to changes in the balance of surface freshwater transport,
directly excluding changes in ocean freshwater transport. By extension, it therefore
also produces estimates of excess and redistributed density, and so the contributions
to steric sea level rise of temperature and salinity changes. In these simulations, the
penetration to depth of the redistributed salinity signal is far weaker than that of tem-
perature, which, with the exception of the North Atlantic, accounts for a similar fraction
of deep temperature change as the excess. However, there are several signals in surface
excess and redistributed salinity changes consistent with hydrological amplification, as
well as a salinity signal in the South Atlantic as a previously identified ‘salinity pile up’
in the South Atlantic consistent with AMOC slowdown (Zhu and Liu, 2020). By the
2090’s, the Southern and Subtropical North Atlantic show increasing redistributed sur-
face salinity as a result of AMOC slowdown, with a decreasing redistributed salinity in
the Subpolar North Atlantic. At the surface, the majority of salinity change results from
changes in E-P (excess), rather than circulation changes (redistributed), and that these
patterns in excess salinity are consistent with both historical observations globally (Du-
rack and Wijtfels, 2010), and, in the Atlantic, with the salinity response to an idealised
surface heat flux (Zika et al., 2018). The decrease in global mean excess salinity occurs
earlier than the increase in globally integrated excess heat, consistent with previous
studies which find significant sea ice loss even in the early 20t century, before appre-
ciable global warming (Wadhams and Munk (2004), Hetzinger et al. (2019)). These
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results suggest that historical observations of temperature changes are dominated by
redistribution, with excess temperature likely to dominate in the coming decades. His-
torical changes in salinity however may instead be predominately the result of excess
salinity, rather than redistribution. This holds at both global and local scales, with the
patterns of local excess salinity appearing to be dominated by amplification of the hy-
drological cycle, and is in agreement with the findings of Stott et al. (2008), Terray et al.
(2012), Pierce et al. (2012) and Skliris et al. (2014), who suggest the salinification of the
subtropical North Atlantic and freshening of the Western Pacific Warm Pool may con-

stitute an early fingerprint of anthropogenic forcings.

In applying this technique to the Atlantic, it has been possible to show explicitly the
redistribution of heat associated with changes to the overturning circulation, in addi-
tion to the aforementioned salinity signal. There are also fingerprints of AMOC change
in both the redistributed temperature and salinity inventories of the North and South
Atlantic: a large and rapid accumulation of negative redistributed heat in the North
Atlantic over the period 2037-2099, as well as the accumulation of a large inventory
of redistributed salinity in the South Atlantic over the same period. Over the period
2023-2099, for which the accumulation of excess heat in the North Atlantic is distinct
from noise, 254-2% of global excess heat accumulation is in the North Atlantic. This is
remarkably similar to observational estimates of anthropogenic carbon uptake (Sabine
et al., 2004) (albeit over different timescales), again indicating the close relationship

between excess heat and anthropogenic carbon.

By the end of the 21% century heat storage is dominated by excess heat. In addition,
excess salinity storage is also largely spatially uniform, though the contributions of
redistributed and excess salinity to halosteric SLR are of similar scales in most locations.
The only exception to this is a large increase in excess salinity in the Atlantic, where
excess salinity inventories are much larger than redistributed salinity inventories. The
similar contributions of excess and redistributed salinity storage is despite patterns of
regional change in sea surface salinity and salinity inventory changes being dominated
by the excess component, both historically and by the end of the 215 century.

By combining the estimates of excess temperature and salinity, we can directly compute
the excess density change, and the redistribution of density. In the North Atlantic, there
is warming and salinification in the excess components, and cooling and freshening in
the redistributed components. In both cases, these changes are in a density compensat-
ing fashion. Previous studies have noted that whilst density compensated water mass
changes may be a general property of the ocean, the behaviour is particularly marked
in the Atlantic (Lowe and Gregory, 2006), as well as important for contemporary At-
lantic deep ocean heat uptake (Mauritzen et al., 2012), though it is uncertain how this
will evolve. These results suggest that in the Atlantic, even by the last decade of these
simulations, changes in excess temperature and salinity act in a density compensating
fashion. A consequence of this is that changes in surface freshwater fluxes associated
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with climate change oppose the reduction of overturning circulation associated with
increased surface warming, opposing the reduction in the North Atlantic’s capacity to
sequester excess heat. This suggests that the excess contribution to themosteric SLR in
the Atlantic will continue to grow on centennial timescales, assuming continued CO,
emissions, though the thermosteric SLR is greatly ameliorated by halosteric sea level
fall. This is in agreement with historical observations (Antonov et al., 2002). However,
the much smaller redistribution contribution to density indicates that changes to ocean
circulation will have little effect on steric SLR in the North Atlantic by the end of the
21% century, although redistributed density compensation in the North Atlantic begins
to break down in approximately 2050, as the redistribution of heat out of the North
Atlantic significantly exceeds that of salinity by this time.

Finally, although only being applied within a single model, the patterns of excess and
redistributed heat storage identified here are consistent with previous studies (Win-
ton et al. (2013), Bronselaer and Zanna (2020), Williams et al. (2021)), despite differing
assumptions used in the calculation of the redistribution of heat from carbon. A key
benefit of the method introduced here compared to prior carbon based estimates of
circulation change is that it is applicable both to models and observations, and across
multiple tracers. In combination with other techniques, this method may therefore be a
powerful tool for understanding causes of observed and projected ocean temperature,

salinity and density change across multiple spatial and temporal scales.
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Chapter 4

Robustness of the x; Decomposition:
Investigating Time Evolution

The arguments of Section 2.3 strongly imply that the redistribution coefficient is time
independent, both as a result of cancellation of time dependence in the full 3D formu-
lation, and the simplification to a ratio of vertical derivatives also lacks time depen-
dence. However, in this one dimensional simplification (Chapter 2, Subsection 2.3.1),
higher order terms in the Taylor expansion about an initial state were ignored. It is
now shown that consideration of these terms may in fact lead to time dependence of
«r. Intuitively, the fact that x, is not time independent ought to be obvious: if the back-
ground temperature-carbon slope changes as a result of significant perturbations to
ocean circulation, it is necessary to update the estimate of this slope in order to con-
tinue to ‘walk along’ the curve reliably. The time independence is therefore the result
of approximations made in the definition of a redistribution coefficient. In this Chap-
ter, the limitations of these approximations are explored, and how we might better
improve our understanding by attempting to relax these assumptions. However, relax-
ing these assumptions would require a significant time investment and so has not been
performed: instead, the limitations are simply categorised in order to suggest where

future research might be directed.

Recall Equation 2.59:
AGr — K;fACnat. (2.63)

This formulation assumes that, at any point in the ocean, changes in the background
temperature and Cy,; are related by a simple constant, x,. A corollary of this is that
the preindustrial temperature and C,;; fields, if plotted against one another, would
coalesce onto a straight line (this would remain true even if the spatial and temporal
dependence of 56, and 6Cn,t were explicitly included). However, this cannot be the
case: if it were, we could use a single, global value of «, in the results of the previous
chapter.
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That it is necessary to spatially resolve «x, is therefore a direct result of the limita-
tions of this assumption: we need to locally approximate the slope of the preindustrial
temperature-carbon curve in order to accurately understand redistribution. This is one
of the limitations of the ‘correlated excess, anticorrelated redistribution” argument used
by Williams et al. (2021): as noted in the previous Chapter, their arguments are not ap-
plicable in the North Pacific, where the spatial anticorrelation is reversed, and we in
fact see a positive spatial correlation between the background temperature and carbon
tields (Figure 3.4). It is therefore necessary to understand how to account for these
spatial variations in «, in order to improve this technique.
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FIGURE 4.1: sDIC (DIC normalised to a salinity of 35) concentrations against potential

temperature, for all observations from 3 latitudinal hydrographic sections: Al6, P16,

and I9N-I8S. The red line represents the expected trend if sDIC changed only as a

result of CO; solubility due to temperature. Reproduced from Sarmiento and Gruber
(2000).

Consider Figures 4.1 and 4.2 (note the x and y axes are reversed between the two fig-
ures). Whilst the straight line assumption is clearly imperfect for the more global dis-
tribution shown in Figure 4.1, it could be considered a reasonably accurate assumption.
However, in Figure 4.2, there is a clear kink in the curve at around 8 degrees. There-
fore, if circulation changes sufficiently to replace water at a given point which was pre-
viously 10 degrees with water which is 5 degrees, the estimation of the redistributed
temperature change using the x, approach and the actual redistributed temperature
change will be in the opposite directions: that is, what should be cooling driven by cir-

culation change will instead be estimated to be warming. Solving this problem requires
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extending the x, framework.

The approximation of Equation 2.59 may be written more properly as follows:
Aer (?/ t) = K (?)Acnat (?/ t)/ (4.1)

where the space and time dependence have now been explicitly included: «, varies
with position, but does not vary with time. All time dependence in redistributed tem-
perature is contained in the time evolution of the natural carbon field. Noting now that
kr does in fact evolve in time as circulation changes, we may instead write the x, value

at a given point as a function of time:

R v - Vo
k(7 1) = =———| . (4.2)
0 VCpat |,
This means that we may write our previous approximation for «, as
' - V0
k(T t) = =2 | (4.3)
U/ * VCnat t:tP[

where tp; is a preindustrial time. Thus, continuing in the framework where changes
are calculated at a fixed point at space, we could generalise Equation 2.59 to account
for the evolution of the temperature-carbon curve slope at a fixed spatial location as
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follows:

t
NG, (7,1) :/t Kr(?,r)d(d:;atd‘r. (4.4)
PI

This formulation may be interpreted as follows: instead of prescribing a preindustrial
k, distribution and using this to estimate how circulation changes redistribute tempera-
ture from changes in C,,t, we instead compute the spatial correlation between tempera-
ture and Cp¢ at every time step. Integrating this relationship forward in time therefore
ought to yield a more accurate redistributed temperature, as it allows the slope of the
temperature-carbon curve to change over time. This is a straightforward extension of
the previous technique, and addresses the inaccuracy in the Taylor Expansion implic-
itly performed in the x, decomposition by repeatedly Taylor expanding at each time
step. This extension is demonstrated visually in Figure 4.3.

A Updated versus Constant r,

@ .

o7y

——0-DIC Curve SN
—— Time Independent Estimate \o :f
—— Time Dependent Estimate $

---- Local Gradient Estimate orp

FIGURE 4.3: The effect of repeatedly recalculating the slope to the temperature-carbon

curve in order to estimate redistribution, versus using a time independent estimate:

total error is significantly reduced. orp represents the error in the time dependent «,
estimate, and o7 the error in the time independent «, estimate.

Now, alternative methods with which this decomposition’s range of validity might be
expanded are considered. After that, the range of validity, as applied in the previous
chapter, is explored. However, the application of these methods is not explored: they
are simply noted as likely avenues which ought to build upon the principles discussed
here.



4.1. Machine Learning 97

4.1 Machine Learning

Artificial Neural Networks (ANN's) are a relatively simple and straightforward ma-
chine learning technique that can used to predict a variable (sometimes called the ‘la-
bel’) from a number of other variables (sometimes called the ‘features’). Common uses
include, for example, predicting house prices from post codes, bedroom number and
bathroom number. Typically, developing an ANN follows a procedure similar to the
one depicted below:

1. A dataset is procured. For oceanographic purposes, this could be, for example,
all bottle data from a single hydrographic occupation.

2. The dataset is split into a training dataset (typically 80% of the available data),

and a validation dataset (the remaining 20%).

3. The model is trained using the training dataset: a cost function is minimised,
enabling the ANN to learn an arbitrary nonlinear function which predicts the
variable of interest from the available data.

4. The model is then validated on the validation dataset, to ensure that the model is

not ‘overfitting’ the training data.

5. Once validated, the model can then be applied to new data, predicting the ‘label’

from ‘features’.

An example of such a workflow can be found at the Tensorflow documentation: https:

//www.tensorflow.org/tutorials/keras/regression.

It is relatively straightforward to see how such an approach could be applied to the
data such as those in Figure 4.2. In the current implementation of the x, decomposi-
tion, the approach is to estimate the local gradient of the temperature-carbon curve,
and Taylor expand this gradient to estimate the change in temperature due to redis-
tribution, effectively ‘walking along’ the curve to a new part of the original parameter
space. An ANN approach could instead be applied to perform a similar parametrisa-
tion. For example, bottle data from a hydrographic occupation of a section could be
taken, and the Cy4, longitude, latitude and depth used to predict temperature, for ex-
ample. Other tracers could also be included, if the excess component of these tracers
can be neglected. If these predictions are accurate, then this model could be applied to
later occupations of the same section to predict the temperature from these variables,
or indeed to nearby sections. As the model is trained on data which are assumed to
be simultaneous, it therefore ought to learn how the spatial distributions covary. The
temperature this model will then predict, when applied to a later occupation of the
same section, will therefore represent the redistributed temperature, as the prediction
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is trained on data which vary only spatially. The difference between the predicted
temperature and the total change in temperature therefore represents the excess tem-
perature. An initial exploration of this approach to predicting excess and redistributed
temperature can be found at https://github.com/charles-turner-1/BioGeoChem_

TempRedistribution.

Whilst the implementation of this approach differs significantly from the implementa-
tion used in Chapter 3, it is conceptually very similar: the approach used in Chapter
3 attempts to ‘walk along’ the 6 — Cp,¢ curve via a Taylor expansion, whilst the ANN
approach would instead attempt to fit the 6§ — C,¢ curve using an arbitrary nonlinear
function, allowing a location on this curve (ie. a temperature change due to redistribu-

tion) to be predicted from other variables.

4.2 Water Mass Space

This approach is somewhat more complicated than those illustrated in the previous
section, and can be considered to be an extension to the principles outlined in Chap-
ter 2, Section 2.4, in which the full temperature-carbon space formalism is developed.
In this full temperature-carbon space framework, it can be thought of as analagous to
the approach of Zika et al. (2021), where total transformation between water masses
in temperature-salinity space is minimised to produce a material heating and material
salinification. However, as this approach has already been applied in temperature-
salinity space, for which observations are more plentiful than those for carbon, repeat-
ing a similar analysis in temperature-carbon space would likely improve understand-
ing of the carbon-heat coupling, but not the causes of oceanic temperature and salinity
change - thus, due to the complexity of this approach, it is not applied here.

Alternatively, it can be thought of more simply as a water mass lookup approach. I will
tirst describe how and why this water mass lookup approach might have utility for
extending the range of validity of the x, based decomposition, before illustrating how

it might be applied.

3 hydrographic sections in the South Atlantic are included in GO-SHIP (discussed in
the following Chapter): 24S (A09.5), 30S (A10) and 34S (A10.5) (though 34S will not be
further considered here). Occupations of 24S were performed in 2009 and 2018, and
30S in 1993, 2003 and 2011. As these two hydrographic sections are separated by only 6
degrees and contain essentially the same source waters, it is therefore instructive to ask
the following question: can we grid observations from all 5 occupations onto a nominal
reference section and compute estimates of redistribution on this nominal grid? It is
clear from the maps shown in Figure 4.4 that the distributions of DIC at A09.5 (top right
panel) and A10 (bottom right) are substantially different, and likewise for temperature

(though this is less visible due to the colour scale). Gridding the observations from
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2009 onto the same grid as those of 1993 and applying the matrix inversion calculation
described in Chapter 2, Section 2.4, we obtain the excess temperature field shown in
Figure 4.5. For comparison, excess temperature estimates obtained by computing the
excess temperature over 1993-2003 at 30S is also shown in Figure 4.5. Though the 30S
excess temperature field suffers from some noise (it has not been subjected to secondary
data control which will be described in Chapter 5), it is not a completely unrealistic
field. However, the excess temperature field shown on the right hand side of Figure 4.5

is.

From the previous discussion, it is clear why this excess temperature field is so un-
realistic: the assumptions made about the slope of the temperature-carbon curve and
changes in DIC concentration are completely violated as a result of the vastly different
DIC distributions: this causes nonsensical excess temperature field. However, as pre-
viously noted, the distributions of water mass properties are similar in temperature-
carbon space - see Figure 4.6. Though «, distributions in temperature-carbon space do
differ, patterns are broadly similar. Identification of a clear tracer space for which a map
of x, values obtained at one location may be projected onto another location therefore
would also represent the identification of a more robust framework for the application

of the redistribution coefficient decomposition.

Finally, it might be noted that in Figure 4.3, the time dependence shown could instead
be considered to be either temperature or DIC dependence without any modification to
the approach: thus, the water mass approach, and the time evolving x, approach which

will be discussed in the following section can be considered to be equivalent.

4.3 «, time evolution in the NEMO OGCM

Two potential techniques which may be useful for extending the redistribution coef-
ficient framework have now been described. Here, the simpler time evolving x, ap-
proach is explored, with the aim of exploring the question of how sensitive x; is to the

period during which we estimate it. This can be broadly broken into two questions.

Firstly, how well defined is a preindustrial «, distribution? The formalism of Chapter
2, Sections 1.2.1, 2.3, as well as Chapter 3 all assume that the preindustrial ocean is a
steady state system, with well defined covariability between temperature and carbon
content. This has not been explicitly tested. Understanding the range of validity of the
redistribution coefficient approach therefore requires an understanding of the extent to

which this assumption is accurate.

Secondly, it is not possible to directly observe the preindustrial ocean. Therefore, it is

necessary to answer a related but separate question: does estimating a redistribution
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FIGURE 4.4: Maps of the initial temperature and DIC field at A09.5, and A10. Clearly,
these show quite different distributions, even though they may both be gridded onto
the same nominal section.
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FIGURE 4.5: The excess temperature calculated using Equation 2.77, as applied to the

differences between the 1993 A10 cruise and subsequent 2003 A10 cruise, and the 1993

A10 cruise and 2009 A(09.5 cruise, shown in Figure 4.4. Trying to compute an excess

temperature by gridding both sets of observations onto the same section yields results
which are clearly nonsensical at depths of approximately 1500-2000m.
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FIGURE 4.6: The volume of water found in each percentile temperature and carbon
bin for A09.5 (a) and A10(b), and the median «, value in each of these bins ((c) and
(d)). Volumes are calculated as the number of grid cells presented in Figures 4.4 and

4.5 (all grid cells are of equal area).



102 Chapter 4. Robustness of the k, Decomposition: Investigating Time Evolution

coefficient using contemporary distributions of temperature and carbon have a signif-
icant affect on the decomposition? In other words, when applying this technique to
observations, will results be fundamentally biased due to the lack of ‘true preindus-
trial” observations?

These questions can both be answered by recalculating «, fields for different time peri-
ods. To do so, the same approach detailed in Chapter 3, Section 3.2 was used, except a
number of different periods were considered. As the preindustrial run uses a repeated
30 year forcing, it is not straightforward to generate a large ensemble of preindustrial
covariability estimates, or the estimates produced will overlap significantly.

As a compromise between generating a large number of estimates and generating dis-
tinct estimates, 3 separate preindustrial estimates of x, were made: one spanning 1860-
1959, one spanning 1870-1969, and one spanning 1880-1979. Though the forcing is
shared between these 3 estimates, the internal variability of the model will be different,
and so this allows us to estimate how well defined the preindustrial spatial covariabil-

ity of temperature and carbon is.

To answer the second question, a separate, ‘post-industrial” estimate of x, was gener-
ated, in order to compare this field with the x, field used in Chapter 3 and shown in
Figures 3.4, 3.5. For the post industrial field, the same approach detailed in Chapter 3
was also used, except instead of comparing the high frequency variability in the DIC
and temperature over the full control run, the high frequency variability over 2040-2099
in the RAD run was used.

4.3.1 Preindustrial x, Variability

Figure 4.7 shows maps of the zonal mean preindustrial x, value, calculated as the mean
of the three estimates described above. Unsurprisingly, distributions are near identical
to those shown in Figures 3.4 and 3.5. The standard deviations of the three estimates
(thus representing a time deviation in the mean state) are extremely small relative to the
mean «, values, indicating that the notion of a “preindustrial state” is well defined (note
that the scale of the standard deviation panels are a quarter that of the means). How-
ever, some variability is seen, particularly in the high latitude North Atlantic (panel (b))
and the Pacific sector of the Southern Ocean (panel (d)). This indicates there may be
some nontrivial variability in the preindustrial covariability of temperature and carbon
in these locations. However, these are also locations where large mean values are seen,
and so they do not represent a significantly larger fractional error than in other ocean
regions: in ocean regions where the «, value is not approximately zero, the ratio of the
standard deviation in x, to the mean value is typically 15%. This indicates that the un-
certainty associated with the preindustrial state estimate is on the order of 15%: within

the 5-20% range of uncertainty estimated in Chapter 3.
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FIGURE 4.7: The mean of the three preindustrial zonal mean «, estimates for the At-

lantic (a), Pacific (c), and the Indian (e) oceans, and the standard deviation of each (b),

(d) and (f), respectively. Note that the colour axes for standard deviations are a quarter
of that for mean values. All values are given in units of K/(ymol/kg).

4.3.2 «x, Time Evolution

Figures 4.8, 4.10 and 4.9 show preindustrial and “postindustrial” distributions of «,, for
the Atlantic, Pacific, and Indian ocean, respectively. The bottom panel of each figure
shows the difference between the preindustrial and post industrial estimates. Though
patterns do differ in their details, in particular in the Atlantic, in general the patterns
seen are broadly similar.

4.4 Discussion

In this short chapter, a number of the limitations of the redistribution coefficient de-
composition have been explored, and several potential avenues to overcome these lim-
itations explored. However, these extensions to the redistribution coefficient approach
would require significant work: thus, only the potential to extend the range of validity
of this decomposition has been noted. Subsequent chapters will instead focus on the



104  Chapter 4. Robustness of the k. Decomposition: Investigating Time Evolution

() Atlantic Zonal Mean, Preindustrial x

0.2
0.15
0.1

0.05

-0.05
-0.1
-0.15
-0.2

0.2
0.15
0.1

0.05

-0.05
-0.1
-0.15
-0.2

0.2
0.15
0.1

0.05

-0.05
-0.1
-0.15

-0.2
60S 408 208 ON 20N 40N 60N

FIGURE 4.8: The preindustrial zonal mean x, value for the Atlantic (a), “postindus-
trial’ (b), and the difference between the two (c). All values are given in units of
K/ (umol/kg).
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application of the matrix inversion decomposition to hydrographic data, which is sim-
pler to implement and requires more readily available and less uncertain data: that is,
DIC, rather than C,,y, and Cpg.
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Chapter 5

Application of carbon based
temperature and salinity
decomposition to repeat
hydrography in the Subtropical
North Atlantic

5.1 Introduction

The AO05 hydrographic section is a section of ocean in the Subtropical North Atlantic,
spanning Florida to the Canary Islands at a nominal latitude of 24.5 North: its location
is illustrated in Figure 5.1. In addition, the bathymetry of the A05 hydrographic sec-
tion, as well as the approximate locations of the main water masses found within it are
shown in Figure 5.2, reproduced from Guallart et al. (2015). It was designated A05 dur-
ing the World Ocean Circulation Experiment (WOCE) in the 1990’s (Koltermann et al.,
2011), and crosses the North Atlantic through the middle of the subtropical gyre. As a
result of this location, it is an excellent laboratory to study the ocean’s sequestration of
heat and carbon, due to the North Atlantic’s disproportionate influence on both ocean
heat and carbon uptake: for example, comprising 25% of ocean C,n, sequestration de-
spite only representing 13% of its surface area (Sabine et al., 2004). It is also important
for the transport of heat and freshwater by the North Atlantic, being approximately the
latitude at which the northward transport of heat by the Atlantic Meridional Overturn-
ing Circulation (AMOC) peaks (Srokosz and Bryden, 2015). The AMOC also transports
freshwater southwards with 91% of the variance in freshwater flux into the Atlantic
north of 26.5 North controlled by the strength of the AMOC at this latitude (McDonagh
etal., 2015).
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FIGURE 5.1: The location of the A05 hydrographic section (indicated by the pink line)
within the North Atlantic. Bathymetry is indicated with shading.
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FIGURE 5.2: The bathymetry of the A05 hydrographic section. The main water masses

found are also indicated, and the salinity is also shown. Abbreviations are as follows:

UNACW (Upper North Atlantic Central Water), LNACW (Lower North Atlantic Cen-

tral Water), AAIW (Antarctic Intermediate Water), UNADW (Upper North Atlantic

Deep Water), LNADW (Lower North Atlantic Deep Water) and AABW (Antarctic Bot-

tom Water). Vertical lines delineate regions used for data aggregation in Guallart et al.
(2015). Reproduced from Guallart et al. (2015).
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Due to its importance for global ocean heat and carbon storage, the A05 section has
been occupied numerous times. After an initial occupation during the international
geophysical year (1957), during which temperature and salinity measurements were
taken, it has subsequently been occupied in 1992, 1998, 2004, 2010, 2011, 2015 and 2020,
with high quality observations of temperature, salinity and DIC (in addition to vari-
ous other observations). Additionally, an occupation was made in 1981, but no car-
bon data was collected then. Collection of data at A05 in 2020 (GLODAP expocode
74EQ20220209) formed part of this work: however, due to COVID-19 related delays,

carbon date were unable to be calibrated in time for inclusion in the analysis used here.

In this Chapter, the Temperature-Carbon space formalism, introduced in Chapter 2,
Section 2.4, which allows for the estimation of excess and redistributed temperature,
carbon and salinity is further developed. It is then applied to the repeat hydrographic
occupations of A05. The choice of parametrisations: whether to use a single at value,
or allow it to vary with temperature, and the sensitivity of results to this choice is ex-
plored. Finally, excess heat, salinity, and carbon accumulation is explored, the rates of

accumulation of excess temperature and salinity are estimated.

5.2 Theory

The theory underlying the decomposition of temperature and carbon used here was
introduced in Chapter 2, Section 2.4.

A brief recap is now provided, as well as a more detailed investigation of mathematical
issues that must be considered when applying this decomposition. We may decompose
temperature and carbon changes as follows:

A8 = AB, + A6, (5.1)

ADIC = ADIC, + ADIC,, (5.2)

where the subscript e refers to changes due to excess temperature or carbon, and the
subscript r refers to changes due to the redistribution of background temperature or
carbon. Changes in temperature at a fixed spatial location are therefore due either to
the introduction of excess heat, or the redistribution of the existing heat field. Changes

in the excess components are then related by a constant, ar:
AB, = aTADIC, (5.3)

and changes in the redistributed components by Br (note that henceforth, the redis-
tribution coefficient for temperature, previously called x| will be referred to as Br to
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improve compatibility with the nomenculature of Bronselaer and Zanna (2020)):
A8, = BrADIC, (5.4)

Both are given the subscript T to identify that they relate changes in temperature and
DIC: later this equation will be expanded to also include salinity. Also note at this point
that ar is referred to as a constant in space, following the convention of Bronselaer
and Zanna (2020). It is additionally assumed here that the timescales of interest are
sufficiently short that we may ignore the time dependence of this parameter. However,
the assumption of spatial uniformity will be explicitly tested: it is straightforward to
extend aT to make it a function of initial parameters, spatially resolving it. This allows
the inclusion of the temperature dependence of at discussed in Chapter 2. Rearranging
the above equations yields expressions for the excess and redistributed DIC in terms of
the change in the temperature and DIC:

A8 — BrADIC

ADIC, = 5.5
e p— (5.5)
and ADIC — A8
ADIC, = 2122 — 2% (5.6)
ar — Br
which may be combined in a vector equation as follows:
ADIC,\ 1 1 —Br A9 57
ADIC, ) ar—Br \-1 ar ADIC '

Here, approximating C,ny, with excess DIC allows us to use this decomposition to iden-
tify anthropogenic carbon. This will later be used to examine the validity of this decom-
position. However, as the primary concern of this decomposition is identifying excess
and redistributed temperature and salinity, the relationships of Equation 5.3 and 5.4,

combined into a vector equation as

(A(J@) _ (sz o) ' <ADICC> 5.8)
A6, 0 gr) \ADIC,

will be used to calculate excess and redistributed temperature:
AB 1 — AB
e\ _ oy arPr) (5.9)
AO, ar — Br —Br arPr ADIC

We may estimate excess and redistributed temperature from Equation 5.9, provided the

values of ar and Bt are known. The matrix in Equation 5.9 will henceforth be referred
to, where appropriate, as the Decomposition Matrix, D:
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p- Lt ( ot —arp T> (5.10)

A
Y

DIC

FIGURE 5.3: A diagram illustrating the decomposition of excess and redistributed tem-
perature in temperature-carbon space. Changes in temperature and DIC components
are indicated with arrows, and the transient and redistribution axes in red (transient
axis, a) and blue (redistribution axis, B1) respectively. For a change in temperature
and DIC, (A6, ADIC), between times t; and t;, the excess components are linked by
the transient axis at and the redistributed components by the redistribution axis .

The decomposition encoded in Equation 5.9 is shown diagrammatically in Figure 5.3.
a relates increases in ocean heat and carbon content, and therefore specifies a curve in
temperature-carbon space linking excess heat and carbon. A global mean value can be
derived theoretically by considering the radiative forcing of CO; and the oceans ability
to sequester carbon: this was the focus of Section 2.1.2, where a contemporary value
of approximately 0.01954+0.006K/umol/kg was obtained. However, as the focus here
is on the A05 hydrographic section, a value directly estimated for this hydrographic
section is used, as Chapter 2, Section 2.1.2 demonstrated it may be necessary to allow
for variability in a7 locally. This assumption of spatial variability in aT will be explicitly
tested.
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The redistribution coefficient B7 relates changes in the temperature and carbon content
of water at a given geographical location due to redistribution, and therefore specifies
a curve in temperature-carbon space linking redistributed heat and carbon. This is the
same assumption that motivates the use of T-S space to remove the effects of circulation
variability when studying physical changes in water properties (Evans et al., 2014).
Mathematically, Bt is defined by

7-Vve

Pr= s <pIic (5.11)

thus representing a weighted sum of the gradient in 6-DIC space by a general per-
turbation to the mean velocity at that point. In practice, however, it can generally be
approximated as the ratio of the vertical stratification of the two properties:

39 /aDIC
=%z oz -

(5.12)

This was demonstrated in Section 2.3. This approximation is used here, instead of
statistically estimating B (the approach taken by Turner et al. (2022) and in Chapter
3), as hydrographic occupations provide a temporal snapshot of the ocean, rather than
high frequency timeseries of temperature and DIC.

Now, we must consider a potential issue with this decomposition: the curve ar is fixed,
but Bt is not. Therefore, in the limit B — ar, the estimates of excess and redistributed
temperature will asymptotically approach £co. To see this, consider the eigenvalues of
the Decomposition Matrix, D (Equation 5.10). Solving the characteristic equation, we

obtain

ar(Br+1) £ Ja (B (ar +4) —ar(Br+4)

M2 = 2(ar — Br)

(5.13)

From this, it is clear that the eigenvalues of this equation approach infinity as fr — ar.
We may therefore remove unreliable estimates of excess and redistributed temperature
based on the eigenvalues of this matrix. To do so, consider a masking factor, M, defined
as

M = min(1, max(1 — log,|A1]),0) (5.14)

Values of excess temperature and salinity are excluded where M < 1: this removes
virtually all unreliable estimates of excess and redistributed temperature, whilst leav-
ing reliable estimates unaltered. Intuitively, this approach may be expressed with the
following heuristic: “if excess temperature changes are of a scale which approaches
or is larger than that of DIC changes, estimates are likely to be unreliable and are so
discarded”.

The inclusion of salinity in this decomposition is now considered. As previously noted,

redistribution does not change distributions in tracer-tracer space, and so the 6-S curve
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is unaltered by redistribution (this insight also forms the basis of the approach used
by Zika et al. (2021) to estimate material warming). We may therefore estimate redis-
tributed salinity, AS,, as either of two equivalent forms:

dS /oDIC
dS /a0 .
AS, ~ (az/az>A9* =1 "Ab,. (5.16)
Salinity can therefore be included in this decomposition as follows:
ize S P Ao (5.17)
| T ar—pg | P wrPr ADIC '
AS; —Bs  arPs

Note that the 274 and 3™ rows of the matrix in Equation 5.17 are linearly dependent,
expressing the linear relationship between redistributed temperature and salinity at
a point. Though it is not further pursued here, again this is in principle extensible to
any tracer (even those with uniform vertical distributions may be redistributed, though
redistribution of a uniform field has no effect). This may be expressed as

A6, & —arPr
A0, —Br  arPr
| = 1 s arPs | (5.18)
AQy ar —Br | By arBy ADIC
AQ; —Bgi arPgi

for an arbitrary set of tracers Q'. As with the previous equation, no additional informa-
tion used to decompose changes is introduced by the introduction of additional tracers
Q'. However, if additional relationships between changes in excess temperature and
additional tracers could be found, for example, it would in principle be possible to

include them in this decomposition, improving its reliability.

5.3 Data and Methods

5.3.1 Data and Interpolation

This technique is applied to the 6 repeat hydrographic occupations of the A05 section in
the Subtropical North Atlantic contained in the GLODAP dataset Lauvset et al. (2021).



Chapter 5. Application of carbon based temperature and salinity decomposition to
116 repeat hydrography in the Subtropical North Atlantic

This comprises 6 cruises: 1992, 1998, 2004, 2010, 2011, and 2015. 2020 data, collected as
part of this work, have not been included. For the 1992 cruise, two teams (Spanish and
American) worked on carbon, with the results of the American team being submitted to
GLODAP. However, the Spanish team collected more samples with a greater coverage
(DIC measurements were made at every station, unlike the American team). As such,
the DIC data used by the Spanish team is considered in this work: this is implemented

as an exception in the lookup routines of the Julia toolbox described in Appendix A.

These data are used to estimate excess and redistributed temperature and salinity rel-
ative to the year 1992 for the 5 hydrographic occupations since. Bottle data from each
cruise are gridded onto a 651 vertical level by 670 longitude grid, using DIVAnd grid-
ding (Barth et al., 2014). Each vertical level spans 10db, and each longitudinal bin spans
approximately one tenth of a degree of latitude. It was decided to use temperature and
salinity bottle data, rather than CTD data, as only bottle data are available for DIC. This
ensures all data are gridded in an identical manner, reducing the likelihood of mapping
techniques influencing results. As cruise data are taken from the GLODAP dataset, they
are automatically adjusted with GLODAP recommended adjustments: this process is
described in Appendix A.

Gridding produces 6 sections of temperature, salinity and DIC: one for each occupa-
tion, and all on the same grid. Br and Bs are then estimated using the 1992 occupa-
tion by computing vertical derivatives for each field as central differences for each grid
cell. Changes in temperature and salinity are then decomposed by applying the De-
composition Matrix D independently at each point. Unreliable values of temperature
and salinity are masked out using the masking factor M, and missing data points are
reinterpolated, again using DIVAnd, to produce final fields of excess temperature and
salinity.

Observational uncertainties in DIC measurements are approximately 2umol/kg, tem-
perature measurement uncertainty approximately 2x1073°C, and salinity 2x10~3PSU.
These generally result from undetectable systematic measurement uncertainty, and so
are uniform within each cruise. As such, nearly all uncertainty in the estimates of ex-
cess and redistributed temperature, salinity and carbon result from uncertainty in the

parameters at, Bt and Bs.

In addition, four C,uy, reconstructions (TTD, ¢CY¥, TrOCA and AC’) are available for
the 1992-2011 cruises. These are used to validate the estimates of excess DIC, as well as
to produce an initial estimate of a. Validation of excess DIC using C,n, requires Cyn,
data on the same grid as excess DIC: thus, C,,y, data were also gridded using DIVAnd.

5.3.2 Decomposition Parameters and Uncertainty

Bronselaer and Zanna (2020) approximated the relationship between excess heat and
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anthropogenic carbon, «, as being globally uniform in order to estimate excess heat:
this is a necessary approximation in their method. However, the results of Chapter 3
were able to relax this assumption, and explicitly calculate a local value of ar. These
suggest, in agreement with the CO2SYS calculation presented in Chapter 2, that a7 is
better described as a function of temperature. Here, whether it is necessary to account
for variability in the value of at in this new method is directly quantified.

To do so, the methods of both Bronselaer and Zanna (2020) and Turner et al. (2022) are
applied independently on the same dataset. If a systematic correction for variability in
at were necessary, this should show that the method of Bronselaer and Zanna (2020)
overestimates excess temperature in warmer waters, relative to that of Turner et al.
(2022): the findings of Turner et al. (2022) and Chapter 2 indicate systematic variability

in ar, with larger at values in cooler waters.

However, it is important to note at this point this analysis is cannot be extrapolated to
conclude whether it is necessary to account for the temperature dependence of at glob-
ally. The results of Chapter 2, Section 2.2 suggest a theoretical temperature dependence
for ar which gives the same value as the section mean at at approximately 16 degrees
Celsius. Waters of this temperature are found in the gyre, where the majority of excess
heat accumulation is expected to occur (Zanna et al., 2019). Thus, agreement in excess
heat accumulation from the constant ar and the temperature dependent formulation
here may result from simple coincidence. At abyssal depths (3000 metres and deeper),
waters are both much cooler and expected to have negligible excess heat accumulation:
thus, differences in estimates of excess heat between the two methods will be unde-
tectable due to the lack of excess heat accumulation here. It is therefore not obvious
that this analysis is also applicable to waters in polar regions, where cooler waters are
found at the surface and are thus expected to contain greater quantities of excess heat

due to their more recent ventilation.

In a manner analogous to Equation 5.9, the approach of Bronselaer and Zanna (2020)

may be expressed as

ACanth
A6 00
o) = T | abic |, (5.19)
A6, —ar 01

A6

where A0, is the excess temperature change between two observations, Af, is the redis-
tributed temperature change, ar the global mean carbon-temperature coupling, and A0
the total temperature change. It is important to note that the decomposition expressed
by Equation 5.19 is not the same as presented in Section 5.2: thus, the terms presented

are not mathematically consistent with that decomposition.
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In a similar fashion to the above, the redistribution coefficient decomposition may be

AB 1 ACanth
e\ _( Pr —Pr .| apIC [, (5.20)
A0, —Br Br O Af

written as

where B is the redistribution coefficient (note ACnat = ADIC — AC, ). Again, this
is a separate decomposition to that presented in Section 5.2, it instead represents the
decomposition presented in Chapter 3. Thus, it does not include a factor of 1/ (ay —

Br), for example.

As the two estimation techniques expressed in Equations 5.19 and 5.20 enforce differ-
ent assumptions about the nature of the relationship between temperature and carbon
changes, there is no guarantee that they will produce the same estimates of excess and
redistributed temperature change. This can therefore be used to estimate how reliable
an estimate of excess temperature is obtained by using a constant at value. We may

add uncertainty terms to our two expressions for excess and redistributed temperature:

AB, ar40, 0 0 ACanin
— | apIC (5.21)
AO, ar+o0, 0 1 Af
ACamth
AB - 1
e\ = ( Prtos —Prrop 1) 1 pic |, (5.22)
A, —Br+og PBr+og O

AB

where 0, and 0y are uncertainties in the value of at and Br, respectively. This allows
both estimates to vary within observational uncertainty in order to produce results
consistent with one another. To do so, we will aim to minimise the quantity JAf,,
defined as

VAN
N6, |

whilst simultaneously minimising the total fractional error in both estimates:

¥2 — (@)2 + (@)2, (5.24)

XT Br

ar+0, 0 0 Br+og —Pr+op 1 ACantn
— - | ADIC |, (5.23)
ar+o, 0 1 —‘BT—i—O"B ‘BT—f—O'[; 0 A@

0B, therefore represents the difference between the excess temperature as estimated by
the approach of Bronselaer and Zanna (2020) and the approach of Turner et al. (2022).
As this is an underdetermined problem and the aim is to simultaneously minimise
JA6, and X2, fractional errors are limited to be less than half their ‘initialisation’ values.
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When 6A0, = 0, both estimation techniques give the exact same decomposition of tem-
perature into excess and redistributed components. I define the local value of ar, lat
as the quantity ar + 0, in each grid cell where A8, = 0. Similarly, I define the ‘best’
estimate of B as the quantity Bt + 0 in each grid cell where §A6, = 0.

For the AO5 section, we may approximate the global mean at value with the section
mean at value: over our study period, this is 0.0171Kumol/kg for the AC* decom-
position, 0.0173 for the TTD and ¢C} decompositions and 0.0135 for TrOCA. These
values are calculated using the ratio of section mean C,y, to section mean temperature
change. As the estimates for all but the TrOCA decompositions are remarkably close, a
value of 0.017K/umol/kg is used as an initial estimate of ar.

To calculate Br (avoiding divide by zero errors at inflection points) a 5 point linear
polynomial fit is used, from 2 vertical levels above the grid cell of interest to two below.
This is not a problem in the full matrix inversion decomposition, as infinities due to

inversions in the carbon profile analytically cancel in this case.

Only the results from the AC* decomposition are shown here: results from the TrOCA,
and ¢CY decompositions are similar. The differences between the technique of Bron-
selaer and Zanna (2020) with no variability in ar allowed) are shown in Figure 5.4a,
and with a best estimate of a local at value, labelled /at, are shown in Figure 5.4b. In
addition, the difference between the two is shown in Figure 5.4c, and the C,,¢, change
used in this analysis is shown in Figure 5.4d. The results of the analysis are presented
in Figure 5.5.

To obtain values of lat, the optimal value of at is computed for each pair of cruises in
the set 1992, 1998, 2004, 2010 and 2011 (ie. 1992-1998, 1992-2004, 1998-2011 etc). In each
grid cell, the mean value of lat is then computed using all available data points, before
these mean values are smoothed horizontally and then vertically to reduce spurious
variability as a result of the averaging process: this final distribution is shown in Figure
5.5a.

Whilst no clear spatial patterns of /aT are discernible from Figure 5.5a, the zonal mean
values presented in Figure 5.5b show there is a clear increase in mean [at values with
depth in both the Western and Eastern Basin. However, 5.5c shows that when presented
as a function of temperature without horizontal averaging or vertical smoothing, vari-
ability is far less clear, with noise far exceeding any clear relationship between depth
and lat values.

As a result, although there does appear to be a relationship between temperature and
lat (with cooler waters exhibiting larger values as indicated by the results of Chapter
2, Section 2.2.1 and Chapter 3, Section 3.3) the strength of this relationship does not
appear large enough to warrant using a spatially resolved ar value, at least not for
the AOQ5 section. In fact, it will be shown in Section 5.4.2 that for the A05 section, the
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FIGURE 5.4: An excess temperature derived using an optimal local value of at: lat

(Panel a), an excess temperature derived using a section mean a1 of 0.017 K/ (ymol/kg

(Panel b), the difference between the two estimates (Panel c), and the C,,, change
used to calculate the optimal [aT values (Panel d).

choice of uniform or temperature dependent ar does not significantly affect estimates
of excess temperature.

Figure 5.5d shows the distribution of lat values obtained from this analysis, presented
as a histogram. The distribution obtained well approximates a Gaussian with mean
0.0157K/ (pumol/kg) and standard deviation 0.0013K/ (ymol/kg). As the initialisation
value of 0.0171K/ (umol/kg) is approximately 1o from the distribution mean, the dis-
tribution peak value is not used as a mean at value: instead, a rounded initialisation
value of 0.017K/ (umol/kg) is used, reflecting both imperfections in this analysis and
that the distribution obtained indicates 3 significant figures is an unrealistic level of
confidence in a value of xr.

Now consider the error in Br. The estimate of the optimal value of lat also yields an
optimal value of Br: however, unlike ar, initial estimates of B are spatially variable.
Therefore, the error in Br is presented as a fractional change from the initial to the
optimal value: this is shown in Figure 5.6. The distribution of changes is well approxi-
mated by the sum of two Gaussian distributions, with nearly all changes from initial to
optimal values less than 5%. For simplicity, it will be instead approximated as a single
Gaussian. This distribution has mean and standard deviation of 2%, and, unlike that
of at, does not appear to contain any spurious spatial variability: therefore, it has not
been smoothed.
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FIGURE 5.5: The distribution of lat values at A05: a spatially smoothed distribution
(a), the mean vertical profiles (b), smoothed lat values as a function of initial temper-
ature (c) and the histogram of values obtained (d).

From this analysis, it is apparent that for the A05 section, we may consider at and Bt
as having uncertainties which are well approximated by Gaussian distributions cen-
tred on the calculated values. Therefore, in order to compute uncertainties in excess
and redistributed temperature and salinity in the matrix inversion decomposition, we
may perturb the coefficients a7 and Bt randomly within uncertainty in order to boot-
strap confidence intervals. For the case of constant at, values are randomly sampled
from a Gaussian distribution, with a mean value of 0.017°C/pumol/kg, and a standard
deviation of 0.0013°C/umol/kg. For Br, I use the locally computed value (from Equa-
tion 5.12) as the mean value, and perturb the values by applying a normally distributed
scale factor, with mean 1 and standard deviation 0.02.

In the case of temperature dependent ar, it is necessary to give an a priori estimate of
the temperature dependence: it cannot be estimated from observational data. To do so,
the CO2sys calculations performed in Chapter 1, Section 2.2.1 are used. For the range of
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initial temperatures shown in Figure 2.6, the mean temperature and DIC change were
computed at each pCO; value, using global mean warming estimates from CMIP6 data.
A linear fit of the coefficient Af/ADIC was then computed. This yields

ar(6) = 0.025 — 0.00056, (5.25)

with an R? value of 0.98. This linear dependence on background temperature is thus an
excellent approximation. Varying the global mean warming within the range of uncer-
tainty of warming given by CMIP6 models does not affect the coefficient of the temper-
ature dependent term in Equation 5.25, but does change the constant significantly. This
variation, from a lower limit of 0.018 to an upper limit of 0.032, is unrealistically large:
itimplies an uncertainty almost 4 times the size of the uncertainty (0.0068°C/umol/kg)
found using observational data to calculate a section mean value for a7. As uncertainty
in warming in CMIP6 models are largely the result of uncertainty in modelling the re-
sponse of climate to cloud and aerosol radiative forcing (Myhre et al., 2013), the same
distribution shape is instead used for this constant as was for the temperature inde-
pendent case: a Gaussian, with width 0.0013°C/pumol/kg and mean value 0.0025. The
coefficient of the temperature dependent term was not varied: allowing it to vary by
10% had a negligible impact on results, and so it is ignored.

5.3.3 Implementation

Implementation of this technique is straightforward, being a simple matrix multiplica-
tion. However, care must be taken to avoid numerical infinities during implementation

(analytically, these infinities are not problematic). It is therefore implemented as

AB 0 —

o) = ecom 1 0 ) ms@oa (S SETN]( ae
r| = |86,V - Ti1 ar — Br T TPT ADIC
ASV T —uTT —,35 aT,BS

(5.26)
where ¢(Z,0,0) is a Gaussian with zero mean and width ¢, and { = 9,DIC. When
¢ — 0, Br — oo. Thus, problematic infinities caused by inversions in the DIC profile
are taken care of by using the small { limit of the Decomposition Matrix when Br is
large enough to cause numerical issues. It was not necessary to implement a similar
approach for inversions in salinity. A width of 0.005 is used for ¢.

To estimate the uncertainty in the reconstructions of excess and redistributed temper-
ature and salinity, the paramaters at and B are perturbed via bootstrapping with an
ensemble of 1000 members, as the error covariance of these parameters is unclear. To
do so, estimates of ar and B are perturbed at random as described above: according
to Gaussian distributions centred on their mean values (0.017K/umol/kg for at), with
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standard deviations of 0.0013K/(u#mol/kg) for ar and 2% of the mean B value for Br.
Additionally, uniform perturbations (that is, for each grid cell in a given cruise the same
perturbation is applied) within the range of observational uncertainty to DIC, temper-
ature and salinity measurements (£2umol/kg, +0.002K, £0.002PSU, respectively).

After excess temperature and salinity are estimated with the perturbed parameters, the
tield were then masked using the masking factor M (Equation 5.14), to remove spuri-
ous large values. However, unlike the unperturbed fields and due to computational
expense, no reinterpolation was performed: the fields were instead left blank.

Uncertainty on the excess and redistributed temperature and salinity fields are then
calculated as twice the standard deviation of the bootstrap ensemble at each point: this
produces a 95% confidence interval on the local estimate of these quantities, assuming

the ensembles are normally distributed: this is typically an excellent approximation.

5.4 Results

5.4.1 Constant «

Figure 5.7 shows the mean vertical profiles of excess and redistributed temperature
and salinities. Excess temperature are appreciable generally only in the top 1000m, and
with the exception of 2011, increases monotonically with time in this region. In gen-
eral, both excess and redistributed temperature decrease monotonically with depth,
with the redistributed temperature exhibiting a much larger scale. However, unlike
excess temperature, redistributed temperature does not increase monotonically with
time: profiles are similar in 1998, 2004 and 2011, with the 2010 and 2015 profiles much
smaller. This is as expected: redistribution of the preindustrial temperature field is
thought to comprise the majority of contemporary temperature change, as well as vari-
ability (Bronselaer and Zanna (2020), Zika et al. (2021)).

Excess salinity does not share the same structure as excess temperature, nor does it
exhibit a smaller scale than redistributed salinity. However, like excess temperature,

excess salinity accumulation is negligible below 1500m at all times.

Excess salinity at depths of 250-750m evolves following a similar pattern to temper-
ature, increasing monotonically with time except in 2011. This pattern of correlated
change between excess salinity and excess temperature appears to be a consistent fea-
ture (Turner et al., 2022) and appears to be a manifestation of density compensated
changes in water mass properties. This density compensation is thought to be a partic-

ularly strong effect in the Atlantic (Lowe and Gregory, 2006), (Mauritzen et al., 2012).

It is clear from Figure 5.7a that the uncertainty in excess temperature increases with the

value of excess temperature. In fact, the uncertainty in excess temperature, oy, is well
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FIGURE 5.7: The mean profiles of excess (a) and redistributed (b) temperature, and
excess (c) and redistributed (d) salinity, for the 5 occupations since 1992. 95% confi-
dence intervals are represented by shading, and scales are not shared for excess and
redistributed components.
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described by
op, = 0.001 + 0.14(6,|, (5.27)

with this linear approximation yielding an R? value of 0.95. The uncertainty in excess
temperature is therefore approximately a seventh the excess temperature. This uncer-
tainty is of a similar magnitude to that of the material heat uncertainty calculated by
Zika et al. (2021). However, such a simple parametrisation is not possible for redis-
tributed temperature, nor excess or redistributed salinity: the R? values obtained are

too low to make such parametrisations useful (for example 0.27 for excess salinity).

The spatial patterns of excess, redistributed and total change in temperature is shown in
Figure 5.8, and the patterns of excess, redistributed and total salinity change in Figure
5.9. As expected, the excess temperature signal increases relatively smoothly with time,
with the greatest increases in the upper 1000m of the ocean. The temperature change
is dominated again by the redistribution signal. For salinity, however, the dominance
of redistribution is less obvious: by 2015, salinity changes are contributed to equally by
both excess and redistributed salinity.

Unlike the mean profiles and salinity, excess and redistributed temperatures are gen-
erally distinct from zero throughout the section. This likely reflects overconfidence in
our technique: from the horizontal mean, it is clear that the decomposition is assigning
balanced positive and negative redistributed temperatures. This most probably results
from our vertical only approximation. However, the effect of this on our estimates is
minimal: though the excess warming and cooling at depths of several thousand metres
is nonzero with 95% confidence, these warming and cooling trends are extremely weak,

and cancel in the horizontal mean.

Conversely, the majority of the excess and redistributed salinity signals at depths greater
than 1000m are calculated to be insignificant at 95% confidence. The exception to this
is the excess salinity at depth in the Western Basin in 2015 (Figure 5.9m). However, the
DIC measurements in this location at this cruise are somewhat suspect (King (2015),
Page 61 & personal communications with Ute Schuster), and this likely results from
this. It also appears to be the case that the statistically significant cooling signals seen
in the Western Basin in 2015 (Figure 5.10 are also the result of issues with these anoma-
lously low DIC measurements. Conversely, the penetration to depth of a warming
signal in the western boundary (most visible in 2004 and 2011, Figure 5.10 (d) and (j))
does appear to be a genuine signal. The excess temperature distribution in 2011 (Fig-
ure 5.10j) shows a number of features consistent with the change in AC* from 1992-2011
(Figure 5.4d): an increase in excess temperature and anthropogenic carbon in the top
1000m and the deep western boundary current region, and a decrease in both at depths
below 2000m just west of the Mid Atlantic Ridge.

By considering whether trends are distinct from zero, it is possible to estimate the error
in our excess temperature estimates associated with the gridding process and vertical
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FIGURE 5.8: Excess temperature, redistributed temperature, and total temperature
change for each of the 5 occupations subsequent to 1992. Regions for which estimates
of excess or redistributed temperature are not significant at 2¢ are shown by stippling.
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FIGURE 5.9: Excess salinity, redistributed salinity, and total salinity change for each
of the 5 occupations subsequent to 1992. Regions for which estimates of excess or
redistributed salinity are not significant at 2 are shown by stippling.
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only approximation. Figure 5.7 indicates that at depths below approximately 1000m
(1500m in 2010), we do not expect to be able to detect any meaningful trends in ex-
cess temperature. By explicitly requiring this, we may estimate this error. To do so, a
uniform error is added to each grid cell in addition to the bootstrapped errors shown
in Figure 5.8, until excess temperature estimates below approximately 1000m are no
longer distinct from noise. This is shown in Figure 5.10, and indicates that the uncer-
tainty introduced to our estimates of excess and redistributed temperature through the
combination of gridding error and our vertical only approximation is 0.05K. Alterna-
tively, we could explicitly calculate the error fields associated with the DIVAnd grid-
ding process in order to progagate these errors into our error calculation. However,
doing so would not account for the interaction of these errors with the uncertainty in-
troduced by the assumption that redistribution can be described entirely described by

vertical motions. Thus, the empirical approach used here is more stringent.

Thus, adjusting to include for this, we may parametrise the error in our excess temper-
ature as
0y, = 0.051 + 0.1416,|, (5.28)

where the R? value of 0.95 remains unchanged by the addition of a constant factor.

5.4.2 Constant versus variable «

Figure 5.5 suggests that there may be some temperature dependence in the local value
of ar, but that it is not straightforward to spatially resolve this. One way to test explic-
itly whether it is necessary to account for this temperature dependence is to decompose
temperature under the assumption of constant a7 and under variable a1 and to inspect
the differences in the two quantities. This is shown in Figure 5.11.

From these plots, it is clear that there are systematic differences in the two estimates:
generally, the constant a1 estimate gives higher excess temperatures directly in the sub-
surface and western basin, and lower excess temperatures at mid depths and in the
eastern basin. However, the two estimates are statistically indistinguishable at 20 vir-
tually everywhere. Inspecting the section mean accumulation of excess temperature
and salinity, accounting for the temperature dependence of ar, we again see similar
patterns of excess and redistributed temperature and salinity. It appears that this esti-
mate produces excess temperature accumulation in the upper 200m of the ocean (Fig-
ure 5.12), relative to the constant a7 estimate. However, these differences are minor (see
Figure 5.13), with differences that are visibly nonzero only found in the upper 250m or
so. Whilst these differences are statistically indistinct, the difference in mean value is
noticeable.

A priori, it does not seem sensible that the accumulation of excess temperature in the
upper 200m of the ocean should be less than that at depths of 500-1000m, as is the
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FIGURE 5.10: Excess temperature, redistributed temperature, and total temperature

change for each of the 5 occupations subsequent to 1992, as in Figure 5.8. A uniform

error of 0.05 has been added to each point. Regions for which estimates of excess or
redistributed temperature are not significant at 20 are shown by stippling.
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Excess Temperature Estimate Difference: 1992- 1998
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FIGURE 5.11: The difference in excess temperature estimates between the two meth-

ods of calculation: the assumption of constant a1 (=0.017K/umol/kg) and tempera-

ture dependent a7 (= 0.025 - 0.0005¢ K/pumol/kg)). Regions where the two estimates

are indistinguishable at 20 are indicated with stippling. Values presented are calcu-
lated as constant estimate - variable estimate.



Chapter 5. Application of carbon based temperature and salinity decomposition to
132 repeat hydrography in the Subtropical North Atlantic

case for both the constant and variable a1 estimates. In the case of the variable a1 es-
timate, it could be argued that this is the result of the temperature dependence of ar:
as this parameter is lower in warmer waters, we expect a reduction in excess tempera-
ture accumulation relative to excess DIC (=~ C,n) accumulation in the warmer surface
waters. However, as this behaviour is also apparent with the fixed ar approximation,
it does not appear to be the result of the temperature dependence of at, although the
issue is slightly exacerbated by this parametrisation. Section 5.4.3 will show that this
behaviour is in fact due to the 1992 cruise being performed in summer, rather than dur-
ing the winter as for all the other cruises. The issue thus is the result of the reduced
solubility of DIC in warmer water (summer), and so this behaviour is also replicated in

Canth reconstructions.

From the conceptual framework of excess and redistributed temperature, it is clear that
seasonal variability in surface and near subsurface temperatures are properly described
as excess temperature, rather than redistributed temperature. We might therefore ex-
pect to see a degree of cooling in the near subsurface excess temperature for all cruises
subsequent to 1992, as the scale of seasonal variability here exceeds excess temperature
accumulation. However, this is not the case: in fact, most subsurface cooling is instead
captured by the redistributed temperature (see for example Figure 5.8). This implies
that this decomposition in fact describes the majority of seasonal variability as redistri-
bution, rather than excess. Though this is not consistent with the precise definition of
excess and redistributed temperature, it is convenient: that this decomposition appears
to act to deseasonalise the accumulation of excess temperature by default is a conve-
nient property, as it makes identifying trends in excess temperature more straightfor-
ward. However, this deseasonalisation is not perfect, and so we see reduced excess

temperature accumulation in the near subsurface here.

The parametrisation of error for excess temperature accumulation in the case of tem-
perature dependent a7, and its correspondence to errors for constant at is now consid-
ered. A linear correlation between total excess temperature accumulated in 2015 and

the error associated with these values yields
0p, = 0.05+ 0.12]6,|, (5.29)

with this linear approximation yielding an R? value of 0.87, and having added the
error associated with gridding and the vertical only approximation from Equation 5.28
(the intercept of this linear approximation is negligible, approximately 5 x 10~*). This
linear approximation implies that the error in excess temperature, calculated using the
assumption of temperature dependent a7, is slightly smaller than that of the error as

calculated under the assumption of constant ar.
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Excess and redistributed temperature and salinity, relative to 1992
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FIGURE 5.12: The mean profiles of excess (a) and redistributed (b) temperature, and

excess (c) and redistributed (d) salinity, for the 5 occupations since 1992. 95% confi-

dence intervals are represented by shading, and scales are not shared for excess and
redistributed components.

The smaller coefficient relating the uncertainty in excess temperature value to their ab-
solute value can be explained as follows: in the case of a temperature dependent ar,
uncertainty in excess temperature accumulation depends on the initial temperature,
and cooler waters exhibit larger errors due to their larger at values. As such, the er-
ror in the warmer and younger surface waters is smaller than under the assumption
of constant at, and vice versa in the cooler, less recently ventilated deep waters. This
leads to reduced total error in warmer waters and therefore a weaker relationship be-
tween the accumulated excess temperature and it’s error. Whilst this result appears
appropriate here as a parametrisation, it therefore may underestimate the uncertainty
in excess heat uptake at higher latitudes, where cooler waters are more recently venti-
lated: explicit testing will be required in such locations in order to better understand
the appropriateness of this parametrisation.
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Difference in Excess and redistributed temperature and salinity, relative to 1992 (constant - variable o)
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FIGURE 5.13: The difference in mean profiles of excess (a) and redistributed (b) tem-

perature, and excess (c) and redistributed (d) salinity, for the 5 occupations since 1992.

95% confidence intervals are represented by shading, and scales are not shared for ex-

cess and redistributed components. Differences are calculated as constant a1 - variable
aT estimates.

5.4.3 Excess DIC and Anthropogenic Carbon

As alluded to in Section 5.3, we may compare our estimates of excess DIC accumula-
tion and C,n, accumulation in order to empirically validate this decomposition. This
may be performed by comparison of the rates of accumulation of excess DIC and C,p
accumulation, as well as total DIC accumulation, in order to understand how and why
these quantities differ. Recall Equation 5.5:

A8 — BrADIC

ADIC, = a1 —PBr

(6.28)

Williams et al. (2021) notes that on short enough timescales, we can consider the excess
and anthropogenic carbon fields to be almost identical, and this is supported by Figure
3.2, at least on a global basis: the 7y factor used in Chapter 3 generally does not change
significantly enough on timescales of 20 to 30 years that we would expect excess carbon
and anthropogenic carbon to diverge. This is also discussed in Section 5.4.3.
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Summarising these arguments, on short timescales, we expect the divergence between
anthropogenic and excess carbon to be small enough that we can consider the two to be
essentially equal (see Figure 1.8). As there are four C,,y, reconstructions available for
the repeat occupations of A05 (TTD, TrOCA, AC* and ¢C3), we may therefore compare
the accumulation of excess DIC and C,,y, in order to empirically validate this recon-
struction. Though the period is slightly shorter to excess DIC (excess DIC spans 1992-
2015, the back calculation methods span 1992-2011, the TTD method spans 1992-2010),
these periods are broadly comparable. Provided that excess DIC well approximates
Canth, the reconstruction of excess temperature should therefore be accurate: Section
5.4.2 showed that the excess temperature fields obtained were not significantly differ-
ent when calculated under the approximation of constant or temperature dependent
at, and so a close approximation of C,ny, by excess DIC implies the accurate recon-
struction of excess temperature. For simplicity, only the excess DIC calculated under
the assumption of constant at is investigated here, though the results are similar for
the excess DIC under the assumption of temperature dependent a7: unlike excess tem-

perature, excess DIC does not depend strongly on the value of ar.

Figure 5.14 shows the longitudinally averaged rates of C,, DIC, and excess DIC ac-
cumulation, along with 95% confidence intervals. As with the uncertainties in excess
temperature and salinity, the errors in Figure 5.14 are calculated by bootstrapping: ob-
servations are uniformly perturbed according to a Gaussian distribution for each cruise,
and the trend in these perturbed values calculated. For DIC, observational error is
approximately +2umol/kg, and so perturbations are sampled from a Gaussian dis-
tribution with mean 0 and standard deviation 1umol/kg. For C,,u reconstructions,
observational error is approximately +6pmol/kg, and so perturbations are sampled
from a Gaussian distribution with mean 0 and standard deviation 3umol/kg. For ex-
cess DIC, a uniform perturbation within the previously calculated uncertainty, divided
by ar was applied (it is trivial to show ¢y, = aT0pic,). Linear fits were then performed
at every point, and the standard deviation of these linear fits at each point in an 1000
member ensemble used to calculate uncertainties. Note that whilst perturbations are
uniform within each cruise, a unique perturbation is applied to each cruise (or the error

in trends would collapse to zero).

In general, excess DIC (red line) closely follows total DIC change (blue line). All back
calculation methods (AC*, $C% and TrOCA) give approximately equal estimates of the
rate of C,nn accumulation, with the TTD method showing a profile which is noticeably
different to all others, though still in agreement to back calculation methods to within
observational uncertainty. Though excess DIC more closely agrees with the trend in
total DIC than the C,, reconstruction methods, the difference between the excess DIC
and the back calculation methods is generally far less than that between the back cal-
culation methods and the TTD reconstruction. Finally, as previously noted, for all back
calculation reconstructions, as well as the excess and total DIC, the trend is largest at
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approximately 200 metres, and reduced above this. This is due to the temperature de-
pendence of CO; solubility: see Guallart et al. (2015).
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FIGURE 5.14: The longitudinal mean rate of accumulation of each of the four Cyy,
reconstructions, Excess DIC, and total DIC. 95% confidence intervals are indicated
with shading.

Worth noting is the significantly lower error in excess DIC than in any of the Cyyn
reconstruction methods or the total DIC. This appears to be the result of the geometric
nature of the estimation technique.

Finally, it may appear that this test is somewhat circular: at is derived by considering
increases in temperature and C,ny,, with the excess DIC obtained using this ar com-
pared to the C,,y, fields used to generate them. Thus, it would appear that the good
agreement between the fields is merely a test of internal consistency. However, it will
now be shown that excess DIC accumulation is in fact relatively insensitive to the pre-

cise value of «ar.

To do so, estimates of the section mean accumulation of excess temperature and car-
bon, over the top 1000m, were recalculated, using seven different values of ar, ranging
from 0.001 to 0.04K/(umol/kg): a range approximately equal to the ‘tuned” value of
0.017K/(umol/kg), and far greater than the error in this value. Thus, these represent an
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extremely pessimistic uncertainty (and unrealistically so) associated with excess tem-
perature and DIC uptake due to the uncertainty specifically in the chosen value of a7.
This is shown in Figure 5.15. Whilst excess temperature estimates (b) are highly sensi-
tive to the value of at, with those calculated using using ar = 0.001Kpmol/kg show-
ing virtually no excess heat accumulation and those calculated using an unrealistically
large value showing over half a degree, the sensitivity of excess DIC is much lower.
By 2011, we find a spread of approximately 5umol/kg, compared to a mean value of
approximately 17umol/kg. Thus, though the precise value of excess DIC obtained is
dependent on the value of aT chosen, the dependence is weak, and thus it appears that
the excess DIC field does contain novel information, rather than just acting as a check
on self consistency. Again, note that this is an extreme range of at values: over ten

times the calculated uncertainty.

5.4.4 Rates of Accumulation of Excess Temperature and Salinity

Whilst this chapter so far has been primarily concerned with the total accumulation of
excess heat and salinity relative to 1992, Chapter 6 will be concerned primarily with
the rates of accumulation of excess temperature and salinity. It would therefore be
preferable to derive an error parametrisation for rates of change of excess temperature
and salinity, rather than simply an error as a function of the total excess temperature

and salinity. Such a parametrisation is now investigated.

The section mean rate of accumulation of excess temperature and salinity, for both the
temperature dependent and independent parametrisations of at, are shown in Fig-
ure 5.16. The peak rate of excess temperature accumulation is found at approximately
200 metres for the temperature independent parametrisation, and approximately 300
metres for the temperature dependent parametrisation. The temperature independent
parametrisation has a slightly larger peak value (0.021 degrees/year versus 0.020 de-
grees/year), but both peaks are well within the 95% confidence intervals of one an-
other (confidence intervals are calculated the same way as for excess DIC accumula-
tion). In addition, the secondary peak in excess temperature accumulation at approx-
imately 1200 metres is slightly enhanced by the temperature dependent parametrisa-
tion, though again both values fall within the uncertainty of one another. The 95%
confidence intervals of the two trends overlap everywhere, and it is only between 100
and 200 metres that the mean trends are not within the confidence intervals of the other

parametrisation.

The rates of accumulation of excess salinity (Figure 5.16b) are less affected by the choice
of temperature dependent or independent parametrisation, with no clear pattern of dif-
ferences in the two values. As with excess temperature, mean rates of accumulation do
not significantly differ anywhere, and the agreement between the two parametrisations
is better than is the case for temperature: both parametrisations show a peak in excess
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FIGURE 5.15: Section longitudinal and top 1000m mean values of excess DIC accumu-

lated since 1992 (a), and excess temperature (b), for a range of a1 values much larger

than the calculated uncertainty in Figure 5.5. Both plots are scales such that the y axes
run from 0 to 1.05 times the largest value obtained.
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FIGURE 5.16: The section mean trends in excess temperature (a) and salinity (b) as

a function of depth. Both the temperature dependent (red) and independent (black)

parametrisations of a are shown. 95% confidence intervals are indicated with the
shaded regions.

salinity accumulation of approximately 1.8 x 1073PSU/year at deths between 300 and
400 metres.

Interestingly, despite the statistically insignificant accumulation of excess temperature
at depths below a thousand metres, both parametrisations show a statistically signifi-
cant cooling at depths between approximately 2500 and 4000 metres. This corresponds
approximately to the depth of lower North Atlantic Deep Water, formed in the Nordic
seas, and may therefore indicate changes in the properties of water masses formed in

this region.

In the case of temperature, it is visually clear that there is a relationship between the
mean value and the size of the uncertainty, however, the uncertainty on salinity trends
appears to be relatively constant. Figure 5.17 shows that this is in fact the case. For the

constant at parametrisation, the uncertainty in the trend may be parametrised as
0, = 0.010[6,|, (5.30)

where % = dx/dt. This error parametrisation yields an R? value of 0.88. For the case of

temperature dependent ar, the relationship

0, = 0.0084/6, |, (5.31)
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FIGURE 5.17: Uncertainties in trends in excess temperature as a function of the

trend value for the fixed temperature parametrisation (a), the temperature dependent

parametrisation (b), and the distribution of uncertainties on trends in excess salinity
for both parametrisations (c).

with an R? value of 0.77. In both cases, the intercept is negligible: on the order of 104
As the R? value is large in both cases, and the size of the relationship is similar (10%
of the trend, 8.4% of the trend), this result appears robust: provided it can be repli-
cated in other sections, it should be readily applicable to global fields. Additionally,
the relationship between the total accumulated excess temperature under the temper-
ature dependent at parametrisation is also approximately 10% (Equation 5.29). This
suggests an error of approximately 10% is a relatively robust feature of this estimate of

excess temperature accumulation.

In the case of salinity, the R? values are small for both the temperature dependent
and independent parametrisations of a7: 0.27 and 0.26, respectively. Thus, a trend
dependent error parametrisation is not further pursued for salinity. However, it can
be seen from Figure 5.17, panel ¢, that both the temperature dependent and indepen-
dent parametrisations have relatively similar distributions in their uncertainty, with
both peaking at approximately 10~% PSU/yr (this peak is significantly stronger and
at a slightly lower value for the temperature independent parametrisation). Virtu-
ally no trends have uncertainties of 7 x 10~* PSU/yr or larger. The distribution of
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errors in the temperature independent parametrisation has mean 4.97 x 10~* and me-
dian 2.84 x 10~%, and the temperature dependent parametrisation has mean 4.51 x 10~*
and median 2.60 x 10%. As a result, a characteristic uncertainty of 5 x 10~*PSU/yr in
excess salinity trends ought to well capture the associated uncertainty, provided these
results can be replicated in other sections.

5.5 Conclusions

In this Chapter, a novel decomposition of temperature and salinity changes into their
excess and redistributed components has been demonstrated. This decomposition can
be thought of as combining the carbon based methodologies of Bronselaer and Zanna
(2020), Williams et al. (2021) and Turner et al. (2022) (Chapter 3) in order to remove
the necessity for the decomposition of DIC before using changes in DIC to decom-
pose changes in temperature and salinity. It also can be considered the analogue to the
decomposition used by Clément et al. (2022) in temperature-carbon space, instead of

temperature-salinity space.

By applying this technique to repeat hydrography at A05, we are able to identify excess
temperature in the upper 1000m on timescales of only six years, despite the signal of
redistributed temperature far exceeding the excess temperature signal here. Though
impressive, this is not unprecedented: Zika et al. (2021) found a similar result when ap-
plying their minimum transformation method to estimate material heat content change
globally. This suggests that the application of techniques which aim to separate changes
in temperature due to excess heat content and due to circulation variability may in fact
be able to identify the thermodynamic warming of the ocean on such short timescales:
a remarkably powerful result. Both Zika et al. (2021) and Bronselaer and Zanna (2020)
note that a fundamental issue with historical simulations of heat content change is that
changes in local ocean heat content have been dominated by circulation variability,
rather than the accumulation of excess heat content. Continued progress in under-
standing how the excess and redistributed heat content of the ocean have and contin-
ued to evolve therefore represents an enormous opportunity for improved understand-
ing of the physical response of the ocean to anthropogenically forced climate change. A
key benefit to the method presented here is that its assumptions are orthogonal to those
of Zika et al. (2021), and therefore represents a completely independent method for ob-
servationally estimating excess heat content change in the ocean. Thus, its application
to global ocean heat uptake represents an opportunity for independent verification of
the estimates of Zika et al. (2021) and Zanna et al. (2019).

Interestingly, Parrilla et al. (1994) found warming at A05 over the period 1957-1992,
peaking at approximately half a degree of warming at depths of approximately 1000m,
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with a consistent warming signal across the entire hydrographic section at depths be-
tween 700 and 2000m. This signal is remarkably horizontally uniform, and thus plau-
sibly represents the addition of excess heat to the North Atlantic at this location be-
tween 1957 and 1992. A subsequent spice/heave analysis by Bryden et al. (1996) found
that over this period, both warming and salinification are found at these depths be-
tween 1981 and 1992: a signal consistent with the addition of excess heat. However,
prior to 1981, most of the changes in temperature were explained by the downward
displacement of isopycnals, though a spice heave analysis may be unreliable due to
potential issues with the 1957 salinity measurements. Whilst the warming and salini-
fication found by Bryden et al. (1996) is on isopycnal surfaces and thus is not directly
comparable, there are other indications that changes in water mass properties in the
Atlantic tend to be density compensating (for example Lowe and Gregory (2006), Mau-
ritzen et al. (2012)). Thus, it is plausible that there was significant addition of excess
heat to the Subtropical North Atlantic prior to 1992, with the structure of warming
found between 1981 and 1992 (Parrilla et al. (1994) Figure 1c) strongly indicating the
presence of excess temperature. Unfortunately, due to the lack of DIC measurements
prior to 1992, this cannot be explicitly verified within the framework developed here.
In addition, a reconstruction of excess temperature including this prior work, were DIC
observations available, would likely require an extension of the framework developed
here: as timescales become sufficiently large, it is likely that it would become necessary
to account for the time dependence of ar.

In the same way that Turner et al. (2022) was able to extend the decomposition to salin-
ity thanks to the generality of the relationship utilised, this decomposition may also be
used to decompose changes in salinity into excess and redistributed salinity. As with
those findings, changes in salinity appear to be less dominated by the redistributed
component of salinity than is the case for temperature. This appears to be an emerg-
ing pattern: whilst changes in temperature are dominated by the redistribution of the
background temperature field, changes in salinity are often contributed equally to by
both excess and redistributed salinity, or indeed predominately excess salinity. It is
currently unclear whether this is the case due to the smaller dynamical range of back-
ground salinity values, or because excess salinity is fundamentally an atmospheric,
rather than oceanic phenomenon (as is the case for excess temperature), and thus the
energy requirement for substantial changes is lower. Whether the former or latter is
the case, understanding excess and redistributed salinity represents an opportunity to
identify the propagation of atmospheric anomalies into the ocean in a way that may be
less straightforward for temperature.

With regards to the choice of whether to parametrise at as a function of the initial
temperature, as the results of Chapter 1, Section 2.2.1 suggest, or a single value in the
manner of Bronselaer and Zanna (2020), the results presented here suggest that the

decomposition is relatively insensitive to the choice of whether to use a constant ar
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or not. However, as previously noted, cooler waters at this location are only found at
depth, and are therefore relatively poorly ventilated. At higher latitudes, where cooler
waters are better ventilated, this result will need to be explicitly tested.

The trend in excess temperature peaks at approximately 0.02°/year at depths of 200
to 300 metres, with a secondary peak at depths between 1000 and 1500 metres. At
depths between 2500 and 4000 metres, a small but statistically significant negative trend
in excess temperature is seen, likely reflecting changes in properties of water masses
formed in the Nordic seas. Excess salinity reveals a slight freshening trend in the top
100 metres, with a strong salinification, peaking at approximately 2 x 103 PSU/year
at depths of 300 to 400 metres. No statistically significant trends in excess salinity are
seen at depth.

Comparison of the excess DIC field with 3 back calculation C,,y, estimates, total DIC
change and the TTD reconstruction of anthropogenic carbon reveals that patterns of ex-
cess DIC accumulation are broadly consistent with the accumulation of anthropogenic
carbon at this location. This is unsurprising, as we expect the two changes to be ap-
proximately equivalent on short timescales (Williams et al. (2021), Turner et al. (2022)).
However, it is reassuring, providing evidence for the validity of this approach. Addi-
tionally, the simplicity of this approach, orthogonality of the assumptions employed in
the decomposition of DIC changes by it, and its close resemblance to the back calcula-
tion C,ny fields suggest utility as a ‘quick and easy” approximation of anthropogenic

carbon: a potential new way to assess changes in anthropogenic carbon inventories.

Though the definitions of excess and redistributed temperature mean that seasonal
variability in upper ocean temperature are best described as excess, not redistribution
driven changes, this is not the case in this decomposition: the results presented in this
chapter suggest instead that this reconstruction will class seasonal variability predom-
inately as redistribution. This is convenient, as the implication is that this decomposi-
tion will therefore automatically deseasonalise changes in excess temperature. Such a
property means that trends in excess heat content ought to be more readily identifiable
than they might otherwise be.

In the case of excess temperature, we can parametrise errors as a simple linear function
of the excess temperature value. Provided it can be shown that this parametrisation
holds on other hydrographic sections, this therefore represents an opportunity to es-
timate the error associated with a global field of excess heat uptake, without needing
to resort to the computationally expensive bootstrapping procedure. This parametrisa-
tion appears to result from the geometric nature of the decomposition, and thus there
is no reason to suspect it should not be the case, however, it will be necessary to vali-
date this explicitly. Similarly, we can parametrise trends in excess temperature in this
fashion: the error in trends is approximately 10% of the trend, regardless of whether

a is prescribed to be constant or allowed to vary with temperature. The uncertainty
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in excess salinity trends is typically on the order of 5 x 107*PSU/year. However, these

error parametrisations on trends will also require explicit testing.

Finally, by considering the error in our parameters by independently applying and
comparing the results from the techniques of Bronselaer and Zanna (2020) and Turner
et al. (2022), it has been possible to obtain robust error estimates for the parameters
associated with this method, and thus the total error inherent in the decomposition
applied here. Interestingly, it is the case that the error in excess DIC at depth is gener-
ally much smaller than the error in total DIC change at depth: this reflects the power
of this technique in removing noise from signals. It also implies that the uncertainty
must instead be contained within the redistribution signal. Whilst the error calculation
performed here does not explicitly account for the gridding error, by assuming a pri-
ori that signals of excess temperature at abyssal depths should not be detectable, this
may be empirically quantified. These results suggest an error in excess temperature of
0.05 degrees, plus 12% of the total accumulated excess temperature. However, again, it
will be necessary to validate this on other hydrographic sections before applying this

approach to global fields of excess temperature.
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Chapter 6

Understanding global ocean excess

heat uptake and salinity changes
using the GLODAP dataset

6.1 Introduction: Previous studies and context

In the previous chapter, a technique for decomposing changes in temperature, salinity
and carbon into changes due to their excess and redistributed components was devel-
oped, and its implementation, limitations and the associated uncertainties were inves-
tigated in detail at the A05 hydrographic section. However, the primary motivation for
developing such a technique is not simply to understand the accumulation of excess
heat in the subtropical North Atlantic, but to improve understanding of global ocean
heat uptake: this requires applying this technique globally. As such, this chapter will
be concerned with the global application of this technique. However, such an extension
is not straightforward: as such, the majority of this Chapter will be concerned with re-
liably extending the analysis of Chapter 5 in order to generate global gridded fields of

excess heat and salinity accumulation.

There are three previous studies which the results presented in this chapter will be
primarily comparable to: Zanna et al. (2019), Gruber et al. (2019) and Zika et al. (2021).
Zanna et al. (2019) and Zika et al. (2021) are concerned with ocean heat uptake, and Gru-
ber et al. (2019) with the storage of C,nyn. Zanna et al. (2019) investigated the change
in the global ocean heat inventory over the full historical period from preindustrial,
whereas Zika et al. (2021) investigated global ocean heat content change only over the
period 2006-2017. Gruber et al. (2019) investigated the change in the global ocean Cypy,
inventory over the period 1994-2017. Some salient results from these studies are dis-

cussed below.



Chapter 6. Understanding global ocean excess heat uptake and salinity changes
146 using the GLODAP dataset

Zanna et al. (2019) estimate a total heat content change of the global ocean of 436 & 917]
over the period 1871-2017. They also estimate a change of 153 £ 447Z] over 1990-2015, a
period more comparable to that of Gruber et al. (2019) (1994-2017) and Zika et al. (2021)
(2006-2017). In addition to the globally integrated heat content change, Zanna et al.
(2019) use a Green’s Function based reconstruction to estimate “passive’” warming over
the period 1955-2017. This passive warming is essentially the heat content change due
to the addition of a Passive Anomalous Tracer as described in Chapter 1, Section 1.2.1,
and so is closely related to the excess heat content of the global ocean: the two can be

thought of as essentially equivalent.

Zika et al. (2021) instead report ‘material heat content change’, total heat content change,
and calculate redistributed heat as the difference between the two of these. Material
heat content change can be also be thought of as essentially the same as excess heat
content change, but is described as a material change as it is calculated using water
mass space principles. In practical terms, this will result in the homogenisation of ma-
terial heat content throughout each water mass. However, it is demonstrated that their
results are in general relatively insensitive to the resolution of their water mass bins,
and thus this ought not to constitute a source of anomalous smoothing of their mate-
rial heat content change estimates. They report their results in terms of a heating rate,
rather than heat content changes, finding a global ocean heating rate of 398 £ 81TW
over their time period. In the units of Zika et al. (2021), the warming of 153 + 447]
calculated by Zanna et al. (2019) over 1990-2015 is equivalent to a global ocean heating
rate of 184 + 787].

6.2 Methods

In this chapter, data from the full GLODAPv2 (Lauvset et al., 2021) is used. It is applied

in two complementary ways:

1. Trends in excess temperature and salinity are computed on the repeat hydro-
graphic sections defined by GO-SHIP and included in their toolbox, as well as
the Julia toolbox described in Appendix A. This allows for the direct examination
of trends in a number of ocean regions. It also allows for the explicit testing of the
parametrisation of error produced in Chapter 5 in other regions of the ocean.

2. Gridded global fields of trends in excess temperature and salinity are computed,
using a standard 1 degree resolution grid on 33 vertical levels. This is the same
grid as used in Sabine et al. (2004), for GLODAP climatological data (Lauvset
et al.,, 2016) and by Gruber et al. (2019).

As the procedure used to calculate excess temperature and salinity on other hydro-

graphic sections is identical to that used for the A05 section, discussed in detail in the
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previous chapter, it is not further discussed here. However, the process used to gener-
ate the gridded 3D fields is now described in detail, as it differs significantly.

6.2.1 Generating global gridded fields for excess temperature and salinity

As with the hydrographic sections, the gridded global field is produced using the DIVA
software package (Barth et al., 2014). Two gridding procedures were followed: one
inspired by the procedure of Lauvset et al. (2016), but differing in several key ways as
a result of the different nature of the estimate. This will be referred to as a pointwise
estimate. Alternatively, a global estimate may be generated by interpolating the rates of
change obtained from the repeat hydrographic occupations of ocean sections contained
within the GO-SHIP Easy Ocean toolbox: this is similar to the method of Sabine et al.
(2004). This will be referred to as the section interpolation.

6.2.1.1 Pointwise Estimate

The pointwise gridding is performed as follows:

1. An empty 1 degree by 1 degree grid is initialised. This grid has 245 vertical levels:
one grid cell every ten metres from the surface to 2000 metres, followed by one
grid cell every 100 metres from 2100 metres to a maximum possible depth of
6500 metres. This oversampling helps to ensure that once estimates of excess
temperature and salinity where at ~ Br are removed, sufficient data remain to
reinterpolate over these gaps smoothly.

2. In each grid cell occupied by ocean, the subset of GLODAPv2 data within 1 de-
gree of latitude and longitude the midpoint of the grid cell are extracted. The
variables extracted are G2tco2, G2tco2f, G2theta, G2salinity, G2salinityf,

G2pressure, G2maxsampdepth, G2cruise.

3. Flagged data (DIC and Salinity) are removed. This is performed using a function
contained within the GLODAP Easy Ocean toolbox.

4. Each unique cruise for which this latitude, longitude box contains observations is
then determined. For each of these unique cruises, the maximum sample depth
is checked. If at this point it is found that less than 3 unique cruises occupied
at least 80% of the full cruise profile, as calculated using the maximum sample
depth of all cruises combined, then the data from this latitude, longitude box are
discarded.

5. If at least 3 cruises have sampled at least 80% of the full water column, the data
from all cruises in this box are combined, and these combined data used to gen-

erate a mean profile of temperature, salinity and DIC within this grid cell using a
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10.

one dimensional DIVA interpolation. Unlike the gridded hydrographic sections,
the vertical correlation length is prescribed rather than calculated here.

. Once a background profile for a grid cell has been generated, each cruise is inter-

polated in turn. To do so, GLODAPv2 recommended adjustments for DIC values
for each cruise are first applied, using functions contained within the GLODAP
Easy Ocean toolbox. The background profiles are then subtracted from the ob-
servations for each cruise to obtain a profile of anomalies, which are then inter-
polated, before the means are added back to the anomalies to produce gridded

profiles of temperature, salinity and DIC for each cruise.

. The mean date for each cruise is calculated. If fewer than 3 occupations con-

taining DIC observations are found in this cell, or the time separation between
the first and final cruises is less than ten years, then no further calculations are

performed.

. If all conditions are met, the excess and redistributed temperature and salinity

for this column is then calculated at each of the 245 depth levels, using Equation
5.17. The eigenvalues are then calculated, and the excess and redistributed tem-
perature and salinity fields are then masked using the same criteria as used for
the AO5 section.

. For the vertical levels which are not masked, a linear fit is then performed to

calculate the mean rate of accumulation of excess and redistributed temperature
and salinity at each depth. This yields a semi-regular grid of rates of change
of excess and redistributed temperature and salinity: all values are found on a
regular grid, but it is sparsely populated.

A mean profile for the rate of change of excess temperature on each of the 245
depth surfaces of the initial was then calculated, in order to be used as a first
guess for the DIVA gridding algorithm. This mean profile was linearly interpo-
lated onto the 33 depths surfaces used in the final grid. As all but two of these
33 depths surfaces were also included on the 245 depth grid, linear interpolation
was preferred over more sophisticated techniques (note these two points are not
neighbours and so loss of accuracy should be minimal). The DIVA gridding al-
gorithm will relax its final gridded field towards this first guess in the absence of
data, and so it is necessary to provide a realistic initial guess. At depths greater
than 1000m, the mean profile was artificially relaxed to zero: this was achieved
using a depth dependent scaling factor. This is described in detail below. As we
expect the global integrals of redistributed temperature and salinity to be zero,
and excess salinity approximately zero, no mean value was calculated for these
fields: thus, these fields will be relaxed towards zero by the DIVA gridding algo-

rithm.
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11. In the case of excess temperature accumulation rates, the mean profile was sub-
tracted, and the sparsely populated array of anomalies interpolated to produce
a 3D gridded field. The mean profile was then added back in. In the case of ex-
cess salinity and redistributed temperature and salinity, the sparsely populated
array of rates of change are directly interpolated to produce 3D gridded fields
describing their rates of change.

Further relevant details about the gridding process are now provided: parameters, data

cleaning, and so forth.

Unlike the analysis performed on the A05 hydrographic section, for which correla-
tion lengths were calculated explicitly for the data used, for the global estimates of
excess heat uptake, correlation lengths were prescribed, following the procedure used
in Lauvset et al. (2016). They state that the data distribution in the mapped and merged
GLODAPv2.2016 data product leads to an optimised correlation length of order 25°.
However, they choose instead to use a globally uniform correlation length of 7° in
the latitudinal direction and 14° in the longitudinal direction: this shorter correlation
length is chosen as a balance between the better resolution of fronts and other features
associated with shorter correlation lengths, and the smoother data fields and smaller
mapping errors associated with longer correlation lengths. The correlation length is
doubled in the longitudinal correlation to account for the fact that the oceans generally
mix more easily in the zonal, rather than meridional direction.

Vertical Correlation Length
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FIGURE 6.1: The vertical correlation length used in the calculation of gridded excess
temperatue and salinity fields.

As excess heat is known to be very spatially uniform from both modelling experiments
and the observational estimate of Zika et al. (2021), it is anticipated excess heat fields
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have extremely long correlation lengths. As such, a longitudinal correlation length of
50° and a latitudinal correlation length of 25° are used here. For the vertical correlation
length, a length of 70 metres was prescribed in the top 200m, 100m between 200m and
750m, 150 metres between 760m and 1500m, and 500 metres below this. These lengths
were found to be a reasonable compromise between smooth fields and vertical resolu-
tion, as discussed above for horizontal correlation lengths, and were determined from
manual inspection of the correlation lengths of excess temperature and salinity fields
obtained from hydrographic sections. To avoid issues associated with sudden change
in correlation lengths, the vertical correlation lengths were then smoothed using the
DIVAnd.smoothfilter function with a diffusion length of 400m. The final smoothed
vertical correlation lengths are shown in Figure 6.1: the smoothing leads to a final min-
imum length of approximately 92 metres at the surface.

For the parameter €;, a value of 3 was used. This is substantially higher than the values
used in the gridding of hydrographic sections (0.1 for temperature and salinity, 0.2 for
DIC and the reinterpolated excess temperature fields). This reflects the noise found in

these estimates.

In the absence of data, the DIVA algorithm relaxes the gridded field values towards
a background estimate. It is therefore important that a valid first guess is given. No-
tably, a nonzero background estimate of excess temperature at abyssal depth will result
in grid cells far from data relaxing towards this value, substantially and artificially in-
creasing estimates of excess heat content accumulation.

To generate a background field, a simple mean of the profiles of excess temperature
and salinity accumulation at each depth was calculated. As substantial accumulation
of excess heat content at abyssal depths is not expected, the background field was then
relaxed towards zero to ensure this artificial inflation did not occur and bias estimates:
this was necessary as the horizontal mean trend did not approach zero at depths as it
should. To do so, a sigmoid scaling function, o(z), was applied:

o(2) = e (6.1)
where ¥ represents a depth offset at which ¢(z) = 0 and w is a width scale. A value
of 1000 metres was chosen for ¥, and a value of 300 metres for w: the results at A05
suggest that globally, the majority of excess heat ought to accumulate in the upper
1000m or so, approximately the depth of the subtropical gyres. The mean profile of the
rate of change of excess temperature, before and after this scaling is applied, is shown
in Figure 6.2. It is currently unclear whether this mean profile not approaching zero at
depth is a deficiency of the method or a result of sampling bias. However, it is likely
that sampling bias plays an important role, as areas of oceanographic interest tend to

be sampled more frequently, with these areas being ones in which changes are expected
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to be seen. Notably, the North Atlantic, a region of global importance for deep ocean
heat uptake, is far better sampled than other ocean regions.

Excess Temperature Mean Profiles
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FIGURE 6.2: The mean profile of the time derivative of excess temperature, before
scaling (black), and after scaling (red).

In addition to forcing the estimate of the mean profile of the rate of change of excess
temperature at depth to zero, some additional data processing was performed: namely,
adding artificial profiles to ‘pin’ the field to a global mean value in certain regions,
and the removal of certain profiles which were manually inspected and deemed to
be unreliable. This is shown in Figure 6.3. Though the mapping uncertainty in these
regions which were ‘pinned” to the mean profile is large, as expected, these estimates
are unrealistic and the values large enough to notably bias results. As the addition of
artificial profiles does not reduce the mapping uncertainty to unrealistically low values,
this procedure was considered to produce the most robust results. Additionally, some
profiles were removed by manual inspection: these were typically regions in which a
single repeated vertical profile, far from other observations, contributed strongly to the
accumulation of excess temperature and salinity, and did not appear to be realistic. If
manual inspection of the profiles of temperature, salinity and DIC revealed anything
unusual, they were removed.

Finally, before investigating the results of this decomposition of temperature and salin-
ity, it is also important to understand the period over which these results are calcu-
lated: as previously noted, due to the asynchronous nature of hydrographic occupa-
tions, these results cannot be considered to be representative of a single period of time.
Instead, they represent the amalgamation of a number of slightly different time peri-
ods: the results obtained are therefore likely to be affected by the differences in these
time periods. To visualise how these differences in time periods may affect the results,
the dates of the initial and final cruises used to compute each trend were interpolated,
according to the same procedure and with the same parameters (correlation lengths,
signal to noise ratio) as the excess temperature and salinity fields: the only difference
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FIGURE 6.3: The upper 2000m excess heating rate in W/m?, with the location of ob-

servations used shown in magenta, the location of artificial profiles shown in cyan,

and regions for which profiles have been deemed to be unreliable and been removed
in green.

being a two dimensional interpolation was used. A background field of 2000 was pre-
scribed (ie. the DIVA interpolation will relax dates towards the year 2000 in the absence
of data). The result of this interpolation is shown in Figure 6.4. In general, most loca-
tions in the global ocean span a period of at least 20 years, with periods of less than
15 years in only a few locations: typically the Arctic and some marginal seas (Mediter-
ranean, Baltic, Black, and South China seas). Interpolation periods should be less than
10 years nowhere, but in some of these marginal seas periods of zero are seen. Essen-
tially, this reflects the complete lack of data here, with both the initial and final field
being strongly relaxed towards the background value (the year 2000). These regions
can therefore also be thought of as also being regions where estimates of the rate of
change of excess temperature and salinity are unreliable.

However, there are some features which will act to confound comparisons with prior
estimates. Notably, in the South Atlantic, at approximately 30°S, there is a sharp gra-
dient in time periods. This is also a region in which strong gradients in material heat
content change are found by Zika et al. (2021). As a result of this feature in the time
over which the interpolation presented here is performed, this feature is unlikely to be
reproduced.

Additionally, though throughout the tropical and subtropical north Atlantic the time



6.2. Methods 153

Initial Date Field
" T —— I )
60 fr =

"I aad
7

= 1) e

[N85 ot

50 100 150 200 250 300 350

Final Date Field

90 2010

2005

2000

1995

1990

1985

2020.0

2017.5

2015.0

2012.5

2010.0

2007.5

2005.0

2002.5

2000.0

25

20

|
—
2]

— 10

50 100 150 200 250 300 350

FIGURE 6.4: The interpolated dates of the initial cruise (top), final cruise (middle), and
the period over which trends are calculated (bottom).
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period over which our interpolation is performed is relatively constant, the initial and
final dates show far more variability. Though the smoothly varying nature of excess
fields ought to make this much less of an issue than might be the case for a simple
interpolation of the rate of change of temperature or salinity to a global field, it is still
plausible that this will cause an issue: care must therefore be taken to examine the

signals in these regions carefully.

To produce an approximate time period over which our rates of change accumulation
of excess temperature and salinity are calculated, a volume weighted average of these
date fields over the global ocean is performed. This yields a start date of 1994.7 &= 3.65
years and an end date of 2015.2 + 2.56 years, roughly corresponding to August 1994
and February 2015, respectively. Uncertainties are standard deviations of the start and
end date, rather than standard deviations of their means.

6.2.1.2 Section Interpolation

In addition to the pointwise interpolation described above, an additional interpolation
was performed in order to generate complementary estimates of excess temperature
and salinity storage. This interpolation was generated from the repeat hydrographic
occupations of oceanographic sections included in the GO-SHIP Easy Ocean toolbox:
the results discussed from AOQ5 in the previous chapter are an example of this. This
interpolation is therefore more similar to the methodology used to generate C,,, esti-
mates by Sabine et al. (2004). As with the pointwise interpolation, the condition that
three repeat occupations of a section with temperature, salinity and DIC data, with
a minimum separation between the first and last cruise of at least ten years was en-
forced. This reduced the number of sections for which sufficient data was available to
twelve: A05, A16-A23, A22, A10, 106S, I09N-108S, P02, P07, P10, P15, P18, SR03. They
are shown in Figure 6.5. These data are then gridded onto the same 1 degree latitude, 1
degree longitude, 33 depth bin grid as the pointwise interpolation.

Due to the much sparser data coverage of the section interpolation as compared to
the pointwise interpolation, it is expected that smoother fields will be obtained: the
DIVAnd algorithm relaxes towards a mean value in the absence of data. As with the
pointwise interpolation, the section interpolation uses a mean excess temperature esti-
mate for each of the 33 depth bins. This estimate was calculated by taking horizontal
means of the rates of excess temperature accumulation for each of the 12 hydrographic
sections included. The median profile was then calculated, and this was scaled with the
same sigmoid scaling function ¢(z) as the as for the pointwise interpolation, enforcing
a background estimate of no warming below 2000m.

As with the pointwise estimate, horizontal correlation lengths of 25 degrees in the lat-

itudinal direction, and 50 degrees in the longitudinal direction were used. However,
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FIGURE 6.5: The locations of the hydrographic sections included in the section inter-
polation estimate of excess heat and salinity accumulation.

due to the greater vertical data coverage (hydrographic sections being on a 10db grid),

a vertical correlation length of 250m was used.

6.3 Results

6.3.1 Testing error parametrisation

In Chapter 5, it was established that the uncertainties in trends in temperature could
be parametrised as approximately 10% of the trend value, and that the uncertainty
in salinity trends were better described by a constant, with a value of approximately
5x 10~* PSU/ yr. However, this was only tested for one section, A05, located in the
Subtropical North Atlantic. These parametrisations therefore cannot be assumed to be
representative of the uncertainties in excess temperature and salinity throughout the

global ocean: this parametrisation must be tested on other hydrographic sections.

The 108S hydrographic section is located in the Indian sector of the Southern Ocean,
spanning approximately 78-95 degrees east and 28-66 degrees south. It has been occu-
pied 3 times: 1994-1995 (316N19941201), 2007 (33RR20070204) and 2016 (33RR20160208):
the cruise tracks from these cruises are shown in Figure 6.6.
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FIGURE 6.6: The 3 occupations of 108S. Cruise tracks have not been offset for visibility,
instead highlighting the excellent colocation of repeated occupations.

Like the subtropical North Atlantic, the Southern Ocean is also a key contributor to the
ocean sequestration of anthropogenic carbon and heat. However, it exists in a vastly
different parameter space, with surface waters ranging from approximately zero to ten
degrees. This makes it a suitable location to test the parametrisations established in
Chapter 5. Due to its vastly different surface temperature and being highly ventilated,
it is also a suitable section to test whether the assumption of a globally uniform at
value, as opposed to a temperature dependent one, significantly affects the estimates
of excess temperature and salinity accumulation obtained, in a region with substan-
tially different background temperature. In addition, the vertical stratification of both
temperature and carbon is substantially different in this region to the subtropical North
Atlantic, and so testing the parametrisation on this hydrographic section also allows the
exploration of a different regions of the parameter space of Br.

To test these parametrisations, the same process was performed on 108S as on A05:
bootstrapping was performed (following the same procedure) to perturb the observa-
tions, as well as the parameters used (a1, B, Bs). Trends were calculated on these
perturbed estimates, and 95% confidence intervals for the trends were calculated, in
the same way as for A05.

The results obtained for the mean vertical profile of excess heat and salinity accumula-
tion is shown in Figure 6.7. Several results from this are notable. Firstly, the depths to
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which trends in excess temperature can be robustly detected to is much deeper: warm-
ing is seen until depths of approximately 2000m. The warming below 4500 metres
appears to be driven by warming in the Antarctic Bottom Water.

Trends in excess salinity are less clear: a strong and significant freshening is seen in the
top 200m, and between 300 and 600 metres an oscillating signal is seen. However, this
oscillating appears to be spurious, driven by the lack of spatial coherence in excess tem-
perature trends. This results in reduction in the spatial coherence of the redistributed
temperature signal, which in turn leads to a less spatially coherent redistributed salinity

signal: this finally imprints into the excess salinity, causing spurious oscillations.

It is unclear whether the lack of spatial coherence in excess temperature trends at high
latitude, as compared to lower latitude, is real or an artifact of the estimation tech-
nique. It is the case that the processes by which excess heat enters the ocean at high
latitude, for example wintertime deep convection, exhibit greater spatial and temporal
variability than the processes by which excess heat enters the ocean at low latitude:
this is similarly the case for C,ny, (Bopp et al., 2015). However, it also remains plausible
that the reduced homogeneity of excess heat and salinity accumulation as estimated
here is simply due to the weak vertical stratification of temperature and salinity at high
latitude, as compared to at A05. However, as the trends are clear in the section mean
and interpolations onto a global grid will necessarily require correlation lengths long
enough to effectively smooth out these inhomogeneities, this issue is not further con-
sidered.

Figure 6.8 shows the results for the parametrisation of errors at I108S, as performed for
A05. Again, there is, for the temperature independent parametrisation, a clear rela-
tionship between the absolute value of the excess temperature trend and its error (Fig-
ure 6.8a). This relationship is less obvious in the case of the temperature dependent
parametrisation (Figure 6.8b), but still visible.

In the case of a temperature independent at, errors in excess temperature trends may
be parametrised as 12% of the trend, with a negligible intercept and an R? value of 0.78.
Whilst the R? value is lower in the temperature dependent case, 0.60, the error is also
slightly lower: 9% of the trend. The intercept is again negligible.

In the case of excess salinity, the distribution of errors is much tighter at 108S than at
A05, with both the temperature dependent and independent parametrisations having
sharp peaks at approximately 0.15 x 1073 PSU/yr.

Though the correlations between the excess temperature accumulation rates and their
associated errors are weaker at I08S than A(5, the correlations remain strong. In ad-
dition, the intercepts of these parametrisations remain negligible, and the slopes are
similar: approximately 10%. Thus, this parametrisation is also valid at 108S, and will
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so be used for estimates of global trend uncertainties: the uncertainty in the excess
temperature trend is 10% of the trend.

Given the weaker correlations at I08S than A05 between the excess temperature and its
error, it is somewhat surprising that the errors for excess salinity trends are smaller. As
a result, the larger errors obtained at A05 will be used to estimate uncertainty in global
trends of excess salinity: a characteristic uncertainty of 2.5 x 1074 PSU/year will be
used.

6.3.2 Global Accumulation of Excess Heat and Salinity
6.3.2.1 Vertically Integrated Heating

Figure 6.9 shows the estimated globally integrated heating rate as a function of depth,
integrated from the surface downwards. For the pointwise interpolation, a full depth
globally integrated heat content accumulation rate of 387482 TW is obtained. This is
remarkably similar to the estimate of Zika et al. (2021), who found a globally integrated
heating rate of 398+81TW over the period of their study, 2006-2017. Their estimate and
its associated uncertainty is shown by the red line and shading in Figure 6.9. However,
a notably higher estimate is found for the cruise interpolation: 632 £ 140TW.

Zanna et al. (2019), who investigated global ocean heat uptake over the full historical
period, found a globally integrated heat content accumulation of 153+447Z] over the
period 1990-2015, a period more comparable to the one investigated here. This corre-
sponds to a mean heating rate of 184+78TW (shown in green in Figure 6.9), which is
approximately half to a third the heating rates found here. This is surprising, given that
the period is more directly comparable. Zanna et al. (2019) also report total warming
for 3 depth horizons: the top 700 metres, the top 2000 metres, and the full ocean depth.
Over these depth horizons and the time period 1955-2017, they find approximately 90%
of the ocean warming occurs in the upper 2000m, with 70 = 15% of the warming in the
upper 2000m or 63 =+ 13.5% of the total in the upper 700m.

For our pointwise interpolation, approximately 80% of the top 2000m warming is con-
tained in the top 800m: 267 of 334 terawatts. For the cruise interpolation, approximately
60% of the top 2000m warming is contained in the top 700m: 303 out of 511 terawatts.
Despite the different period over which these estimates are calculated, these are both
within the uncertainty of the estimate of the distribution of excess heat of Zanna et al.
(2019). For the pointwise interpolation, approximately 14% of the total warming is
found below 2000 metres, whereas for the cruise interpolation, 20% is found below
2000m.

It is unclear if these warming signals at these abyssal depths are real: it will be shown

later that some deep warming signals appear to be spurious and the result of the weak
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Globally integrated heating as a function of depth
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FIGURE 6.9: The globally integrated heating rate obtained, integrated as a function of

depth, for the pointwise interpolation (black) and the cruise interpolation (blue). The

shading represents a 95% confidence interval. Estimates of global ocean heat uptake

from Zanna et al. (2019) and Zika et al. (2021) are shown in green and red, respectively,
along with their uncertainties.

vertical stratification of DIC at depth. Conversely, the method agrees well with both the
vertical distribution of warming from Zanna et al. (2019), indicating that spurious deep
warming signals likely cancel out in the horizontal mean. Both the pointwise and cruise
interpolation agree to within uncertainty with globally integrated heating rate of Zika
et al. (2021), and the agreement between the total heating rate found by the pointwise
estimate (387 + 82TW), and that of Zika et al. (2021) (398 + 81TW), is remarkable.

However, as will be shown later, it is likely that the cruise interpolation is an overesti-
mate of the global ocean excess heat content uptake, due to the lack of spatial coverage.
Thus, it is likely that the ‘true” ocean excess heat content change is instead closer to
that of Zika et al. (2021) and Zanna et al. (2019). Further investigations ought to reveal
which estimate the excess heat content accumulation presented here should better re-
semble: a priori, we expect better agreement with the methods of Zanna et al. (2019)
due to the time horizons of the two studies being closer. It is clear though that the
estimate of ocean excess heat content accumulation presented here, in particular deep
ocean heat content, is biased high. Accounting for this uncertainty will require a more

careful interpolation and treatment of errors.
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6.3.2.2 Column Inventories

Figure 6.10 shows the spatially resolved excess heating rate, for the full depth range of
the ocean (a, b), upper 2000m (c, d) and deeper than 2000m (e, f), for the pointwise in-
terpolation (left column), and cruise interpolation (right column). These are presented
as heating rates over the given depth ranges. Several results are notable.

Firstly, both the cruise and pointwise interpolation show significant warming below
2000m. This is surprising, given previous studies (eg. Zanna et al. (2019)) indicate
around 80-90% of excess heat uptake is expected to be in the top 2000m. Additionally,
below 2000m, both the pointwise and cruise interpolation show regions of heating and
cooling. This is not entirely unexpected: for example, Gebbie and Huybers (2019) in-
vestigated the response of the global ocean to the propagation of surface temperature
anomalies from the ‘Little Ice Age’ of the 18" century. They found that this could ex-
plain cooling in the deep North Pacific Ocean. Whilst this does not explain the warming
signal found here by both interpolations, it provides a potential explanation for strong
and statistically significant excess warming and cooling in regions of the ocean which
are not thought to be well ventilated. However, the differences between both interpo-
lations strongly suggest that below 2000m, warming signals are unreliable. This will
later be explored in more detail.

In the top 2000m, both estimates generally show warming: however, the pointwise
estimate is far less homogeneous, with substantial regions of cooling, and warming
generally greatest in the subtropical gyres. The cruise interpolation shows warming
everywhere, except for in a region of the Southern Ocean starting with the Weddell
Sea and extending eastwards: cooling is also found in this region in the pointwise
interpolation: this cooling signal therefore appears robust. However, cooling signals

in other regions in the pointwise estimate are less clear.

Noticeably, the region of cooling in excess temperature storage seen in the upper 2000m
in the North Atlantic Drift region is not seen in the deep ocean heat storage. This re-
gion of cooling therefore likely corresponds to the influence of redistribution feedback:
a northward shift in the position of the North Atlantic Drift will redistribute warm
water northwards. This will alter the radiative balance, reducing the total downward
radiative flux and leading to a cooling which is diagnosed as excess temperature, in
a process referred to as redistribution feedback. Reduced data coverage in the cruise

interpolation means this feature is absent in that estimate.

However, for the pointwise interpolation, this pattern is not the case in other regions of
cooling: for example, in the equatorial Atlantic, statistically significant cooling is seen
in both the upper and deep ocean. This is also the case in the Atlantic and parts of the
Indian sectors of the Southern Ocean. Thus, an alternative explanation is required for

this cooling.
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GLODAP does not recommend adjustment for DIC data unless crossover analysis finds
that DIC values are differ by at least =4ymol/kg. Therefore, within the boundaries
set by GLODAP quality control, artificial DIC differences of up to 4 ymol/kg can re-
sult from separate cruises occupying the same latitude/longitude box. The effect of
a uniform DIC offset to excess temperature accumulation is demonstrated in Figure
6.11. Below 1400 metres, all estimated excess temperature is within the range of un-
certainty introduced by a permutation of +4umol/kg. Thus, it is highly likely that
pointwise estimates are strongly influenced by systematic offsets between cruises, in
latitude /longitude boxes where cruises cross over. This contributes additional noise to
the pointwise estimate in a way that will not affect the cruise interpolation. Calibration
means that errors due to these systematic offsets should sum to (approximately) zero:
thus, the global excess heat accumulation estimate from the pointwise interpolation is
likely more accurate, due to its greater data coverage. However, spatially resolved esti-
mates from the pointwise interpolation are therefore likely less reliable than those from

the cruise interpolation.

Figure 6.12 shows the spatially resolved excess salinification rate, for the full depth
range of the ocean (a, b), upper 2000m (c, d) and deeper than 2000m (e, f), for the
pointwise interpolation (left column), and cruise interpolation (right column). These
are presented as freshwater fluxes in metres per year over the given depth ranges. As
for excess heating, estimates below 2000m appear highly unreliable, and above 2000m,
the pointwise interpolation shows far more spatial variability due to its increased data

coverage and noise.

Due to the noise in the pointwise interpolation, results from it will no longer be con-
sidered. However, there are several results from the cruise interpolation which are in

agreement with previous studies and appear robust.

In the Atlantic, freshening is seen at the Equator, and salinification elsewhere. This
is in line with the results of Durack and Wijffels (2010), who found a decrease in sea
surface salinity over 1950-2000 in the Equatorial Atlantic, and salinification elsewhere
(their Figure 5b). Additionally, they found freshening in the North Pacific, freshening
in the tropical and subtropical South Pacific, and salinification throughout much of the
Indian Ocean. Though their trends are better spatially resolved than those presented
here and thus show greater spatial variability, the results are qualitatively similar. Thus,
it appears that the cruise interpolation is reliably identifying excess salinity, and that the
trends in freshwater fluxes over 1950-2000 have continued over the GLODAP period.
This is in agreement with the findings of Chapter 3, which showed changes in excess

salinity generally precede those in excess temperature.
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FIGURE 6.10: Column inventories of excess heating in units of Watts per square meter.

Panels (a) and (b) shows the full depth heating rate, panels (c) and (d) the upper 2000m,

and panels (e) and (f) depths below 2000m. The zero contour is indicated in black,

areas where estimates are not statistically significant are indicated with stippling and
surrounded by grey contours.
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FIGURE 6.11: The effect of applying a uniform DIC offset of up to +=5umol/kg to a

sample column of water. The black line shows the accumulated mean excess tempera-

ture for a sample column of water at A05, between 1990 and 2015. The coloured lines

indicate how much excess heat is over or underestimated due to the uniform addition
of up to £5umol/kg.

6.3.2.3 Trends at Depth

In the previous section, it was noted that at depths below 2000m, trends did not ap-
pear reliable. Whilst for the pointwise interpolation this may be explained in terms of
noise introduced through systematic offsets which are not caught through crossover
analyses in GLODAP, this explanation cannot be applied to the trends from the cruise
interpolation, which also appear to be artificial. As trends at depth appear reliable for
the hydrographic sections A05 and 108s, the most likely explanation is therefore not
that the decomposition itself is at fault, but that these unreliable trend estimates are
the result of the interpolation from cruises (or the pointwise estimate) to a 3D gridded
field.
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FIGURE 6.12: Column inventories of excess salinification in units of metres of freshwa-

ter per year. Panels (a) and (b) shows the full depth salinification rate, panels (c) and

(d) the upper 2000m, and panels (e) and (f) depths below 2000m. The zero contour is

indicated in black, areas where estimates are not statistically significant are indicated
with stippling and surrounded by grey contours.
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To test whether these large trends at depth are the result of the gridding algorithm, a
simple interpolation test was performed using MATLAB. In each ocean basin, trends
from each cruise, and their location, were pooled within the range of each depth box of
the 3D grid. These trends were then interpolated onto the same one degree grid, using

Natural Neighbour interpolation. The results are shown in Figure 6.13.
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FIGURE 6.13: Column inventories of excess heating below 2000m in units of Watts

per square meter. Panel (a) shows the results from the simple Natural Neighbour

interpolation, and (b) shows the results from the cruise interpolation. The zero contour
is indicated in black.

Though the patterns of heating below 2000m are significantly different, regions of
strong warming and cooling are still seen. This indicates that the likely cause of this

potentially spurious deep warming is not the interpolation, but simply that additional
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refinements to the decomposition are necessary in order to accurately decompose ex-
cess and redistributed temperature below 2000m. This is most likely the result of the
fact that the Decomposition Matrix D enforces an exact solution due to being an an-
alytic, rather than numerical inversion, and so does not allow for uncertainty. Thus,
some locations display spurious excess warming, which is propagated into the global
estimates. Further improvement of this technique will therefore require improvements
of the decomposition technique in order to rectify this: subsequent investigations have
revealed that the masking factor M is not sufficient to remove unreliable estimates in
the deep ocean, and that improved estimates of deep ocean heat content will require
more aggressive masking. This should likely bring the results of ocean heat content
change into better agreement with those of Zanna et al. (2019). However, for the rest of

this work, I shall instead focus on the top 2000m, where results appear to be robust.

6.3.2.4 Zonal Means

Zonally Integrated Excess Heat Content Change
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FIGURE 6.14: Global zonal mean excess heat (a) and freshwater (b) accumulation rates
for the top 2000m. Shading represents a 95% confidence interval.

Figures 6.14 and 6.15 show the zonal mean accumulation of excess heat and freshwater,
in Terawatts and Sverdrups, respectively, for the Global Ocean, and broken down by
basin. Like both Zika et al. (2021) and Zanna et al. (2019), there is substantial accumula-
tion of excess heat in the subtropics, corresponding to the accumulation of excess heat

in the subtropical gyres. This also mirrors the accumulation of anthropogenic carbon
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FIGURE 6.15: Basin zonal mean excess heat (a) and freshwater (b) accumulation rates
for the top 2000m, for the Atlantic, Pacific and Indian oceans. Shading represents a
95% confidence interval.

over a similar time period found by Gruber et al. (2019). These are all patterns which
would be expected from previous modelling studies and the close analogy between

excess heat and anthropogenic carbon.

In the global mean (Figure 6.14), excess heat uptake appears almost entirely passive,
with small peaks at the Equator, approximately £15 degrees, and approximately 35
degrees north. The peak at 35°N is also found by Zanna et al. (2019) and Zika et al.
(2021). However, they also found a peak at 35°S: this is likely not shared by our dataset
due to the lack of spatial resolution. This is likely to be the case in general: the lack of
spatial resolution in the cruise interpolation will lead to generally smoother fields than
those of Zika et al. (2021).

Despite the lack of spatial resolution, we also find slight peaks in warming at low lat-
itude, in agreement with Zika et al. (2021) but not with Zanna et al. (2019). Zika et al.
(2021) suggest that the warming they find here may be related to decadal variability.
However, as the period over which the excess heat trends computed here is approxi-
mately 1990-2015, as compared to 2006-2017 for Zika et al. (2021), the results presented
here suggest it is unlikely that this is the case. Instead, differences between the distri-
butions found by Zika et al. (2021) and Zanna et al. (2019) likely result from method-
ological differences.
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Patterns of excess salinity accumulation are less clear. Generally, in a warming cli-
mate, we would expect to see increases in salinity in the subtropics, and freshening in
the tropics and at high latitude due to water cycle amplification (Durack and Wijffels
(2010), Zika et al. (2018)). However, in the global zonal mean, the results presented
here instead suggest a salinification between 60 south and 15 North, and freshening
elsewhere. It is not straightforward to interpret this pattern, given the strong salinifica-

tion in the Indian Ocean seen in Figure 6.12.

To better understand the patterns of excess salinification, it is necessary to split up
changes by ocean basin. This is shown in Figure 6.15. From the patterns seen here,
it is clear that the salinification signal seen in the global zonal mean is dominated by
salinification in the Indian ocean. In addition, a similar pattern to the global mean,

though of smaller amplitude, is seen in the Pacific ocean.

In the Atlantic, a pattern more closely resembling what might be expected from water
cycle amplification is seen. Though the peak is shifted northwards of what might be
expected, a strong freshening signal is observed at approximately 13 degrees north,
with salinification on either side. In the Southern Ocean, where there are observations,
freshening is then also seen south of approximately 55 degrees. However, observations
contributing to the gridded 3D fields in the Subpolar North Atlantic are sparse, and so
we do not see the expected freshening here due to a lack of observations: instead, the
gridding ‘drags’ the salinification northwards.

Patterns of excess heat storage on a basin by basin basis are much more easily inter-
preted. Like Zika et al. (2021), we find a peak in warming in the Indian Ocean at ap-
proximately 40 degrees south, though again it is less pronounced than theirs. Similarly,
the largest peak in the Pacific Ocean excess heat content change is found at and just
north of the equator, with significantly less warming elsewhere. However, there is not
a secondary peak at approximately 35 degrees south, unlike Zika et al’s fields.

In the Atlantic, the pattern of excess heat storage strongly resembles that of Zika et al.
(2021): relatively uniform warming of approximately 1TW/°Lat in the Southern Hemi-
sphere, and a peak on the order of 3TW/“Lat at approximately 40 degrees north. Their
excess heating declines precipitiously north of this, unlike ours: however, this is again
likely due to the differences in data coverage. In this region where excess heating peaks,
we also see excess salinification: this may indicate density compensation in the changes
to water mass properties in the North Atlantic. This density compensating behaviour
is thought to be a pronounced and robust feature in the North Atlantic (Lowe and Gre-
gory (2006), Mauritzen et al. (2012)), and so is now investigated in further detail.
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6.3.3 Contributions to excess density

Results in Subsection 6.3.2.4 suggest that trends in excess temperature and salinity may
occur in a density compensating fashion in the North Atlantic, with warming and salin-
ification found here. To investigate this, changes in excess density are now directly
computed. To do so, the trend in excess temperature and salinity was added to clima-
tological temperature and salinity fields from the GLODAP dataset. This allows the
computation of an excess density trend. In addition, the ‘excess temperature only” and
‘excess salinity only” trends were computed, by computing only the density change due
to the addition of either component to the climatological fields: whilst the total excess
density trend will not be exactly the sum of the two due to the nonlinear equation of
state of seawater, it does allow for the examination of the extent to which changes to
heat content and the freshwater cycle control changes in excess density. Confidence in-
tervals were calculated via the same bootstrapping procedure used to compute zonally

integrated trends in excess heat and freshwater content.

Figure 6.16 shows the results of this calculation for the Atlantic, Pacific and Indian
oceans. Unsurprisingly, patterns of total excess density change more strongly resemble
the salinity driven excess density change: heat driven excess density change is gener-
ally a relatively uniform, negative perturbation. However, it is surprising how in both
the South Atlantic and Indian Oceans, the total excess density change is much closer
to the salinity driven excess density change. This implies that the change in excess
density here is more strongly controlled by changes in patterns of evaporation and pre-
cipitation than changes in surface heat fluxes. In contrast, in the North Atlantic, excess
density change is most strongly controlled by excess heat change, as a result of the large

increase in excess heat storage here.

Throughout much of the Atlantic, and the entire Indian Ocean, changes in excess heat
and salinity content act in a density compensating fashion. However, good density
compensation is not seen in any locations, implying that the storage of excess heat and

freshwater by the ocean is currently affecting ocean dynamics.

6.4 Discussion & Conclusions

In this Chapter, two gridded excess heat and salinity accumulation techniques have
been presented: a product generated from the interpolation of hydrographic cruises,
and a pointwise interpolation of DIC, temperature, and salinity profiles. In addition,
it has been shown that the choice of a temperature dependent formulation of ar, or
the simple choice of a global mean a7 does not strongly affect estimates of the accu-
mulation of excess temperature and salinity. However, whilst accumulation rates on

the hydrographic sections for which high quality repeat observations are available are
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FIGURE 6.16: Zonal mean rates of accumulation of excess density, for the Atlantic (a),

Pacific (b), and Indian oceans (c). Total excess density changes are shown in black,

the contribution of heat driven changes in red, and the contribution of salinity driven
changes in blue. 95% confidence intervals are indicated with shading.

reliable at all depths, interpolation of these sections to a global field at depths greater
than about 2000m will require additional care, likely comprising careful manual data

cleaning.

Both interpolations have different strengths and weaknesses: the pointwise interpola-
tion greatly overestimates spatial variability in excess heat, due to the way in which
multiple cruises occupying the same latitude/longitude box can affect results. How-
ever, due to its greater observational coverage, it is possible that it better estimates the
globally integrated excess heat uptake. It implies, over the GLODAP period (span-
ning approximately 1994-2015), a globally integrated ocean heat uptake of 387 & 82TW:
remarkably similar to the heating rate of 398 £ 81TW found by Zika et al. (2021). How-
ever, this is substantially higher than the rate of ocean heat uptake found by Zanna
et al. (2019) of 184 £ 78TW over the more comparable period of 1990-2015. For this
global estimate, approximately 14% of the total heat uptake is found below 2000m, and
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80% of the top 2000m warming is found in the top 700m: again in agreement with the
results of Zanna et al. (2019).

The cruise interpolation, which likely underestimates spatial variability but is gener-
ated using far more reliable data, produces a larger estimate of globally integrated
ocean heat uptake: 632 £ 140TW. This is substantially larger than the results of Zika
et al. (2021) and Zanna et al. (2019), suggesting that it may overestimate ocean heat
uptake. The zonal mean heat accumulation results in the Pacific ocean, showing no
clear peak at approximately 35S and appearing to be due to the gridded field being
interpolated from a cruise at this location, suggest that this overestimate may be due to
interpolation of signal peaks across larger regions of ocean than is realistic. However,
the vertical distribution of excess heat accumulation is again realistic: approximately
80% of the total warming is found in the top 2000m, and 60% of the top 2000m warming
is found in the top 700m.

In addition, it is highly likely that the Subtropical Pacific is not the only region where
the trend in ocean excess heat content is exaggerated due to interpolation over a larger
region than is realistic. For example, the pointwise interpolation shows reduced ex-
cess heating in the North Atlantic, relative to the cruise interpolation (Figure 6.10). In
most ocean regions it is highly likely that the cruise interpolation is more reliable: as
shown in Figure 6.11, a small DIC offset can have a substantial result on the excess heat
content and thus pointwise estimates are likely less reliable than the cruise interpola-
tion. However, the North Atlantic benefits from plentiful observations (Figure 6.3, and
thus it is less likely that excess heat content changes here from the pointwise interpo-
lation are highly unreliable. As a result, it seems plausible that in this location, where
the pointwise interpolation shows substantially lower and spatially smoother excess
heat uptake, the cruise interpolation also overestimates the trend in excess heat con-
tent, with the true trend less than the calculated trend. Plausibly, this effect is repeated
elsewhere in the global ocean: again, it is surprising that our globally integrated heat
content is more similar to that of Zika et al. (2021) than Zanna et al. (2019). A positive
bias in regions over which we have interpolated the trend in excess heat content is a

plausible candidate for this.

Zika et al. (2021) finds a maximum in their material heating at the Equator, and Zanna
et al. (2019) find warming at the Equator to be similar to other regions. The results
presented here suggest a small peak in excess heat accumulation at the Equator, but not
substantially larger than in other regions. Together, these results suggest that the heat
content change of the Equatorial ocean is not substantially more variable than other
ocean regions as suggested by Zika et al. (2021), but that methodological differences
between the approach of Zanna et al. (2019) and the approach used here and by Zika
et al. (2021) instead accounts for these differences.
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Unlike Zika et al. (2021), the results presented here show regions of both excess heating
and cooling, though the excess heat estimate here does not show more spatial structure
than theirs. The presence of both warming and cooling suggests that the excess heat
content changes we find are not driven entirely by ocean heat uptake in response to a
warming climate. As cooling is only found in the high latitude southern ocean, it seems
highly likely that this cooling is due to the redistribution feedback: that is, surface
fluxes responding to changes in ocean circulation, driving radiative cooling in regions
where redistribution has warmed the ocean. It also appears plausible that the cooling
in the North Atlantic current regions, as estimated by the pointwise interpolation, is
another example of redistribution feedback driving negative excess heating. Despite
these differences in distribution, that the magnitude of our globally integrated heating
rate (from the pointwise estimate) and that estimated by Zika et al. (2021) are so close is
remarkable, as both techniques employ very different assumptions and methodologies.
This suggests that their net change in global ocean heat content is strongly controlled
by the thermodynamic response of the ocean to global warming, as they suggest, and
not due to internal variability in ocean heat content: it would be expected that this rate

would not fluctuate greatly, as it is essentially set by top of atmosphere radiative fluxes.

The finding that excess density changes are in many locations dominated by changes
to excess salinity, rather than temperature, implies that a number of assumptions about
the response to the ocean to anthropogenic climate change may need to be rethought.
For example, the FAFMIP experiments (Gregory et al., 2016) generally consider changes
to freshwater to be the least influential surface flux (see http://www.fafmip.org/CMIP6_
FAFMIP.pdf). The results presented here suggest this assumption may lead to an under-
estimate of the importance of changes to the freshwater cycle in understanding ocean
circulation change over the anthropogenic period. However, again, these results still
require validation through an external estimate: due to the lack of other estimates of
ocean heat uptake, it is difficult to say whether these remarkable results are correct,
or simply due to deficiencies in the estimation technique. Though there no direct evi-
dence to suggest these results are inaccurate, and indeed the patterns of excess salinity
change in the Atlantic are commensurate with other estimates (Durack and Wijffels
(2010), Skliris et al. (2014), Stott et al. (2008) for example), explicit validation of these
results through an alternative method should be performed before they can be consid-
ered truly reliable.

Finally, despite the far lower spatial resolution of observations going into the cruise in-
terpolation of excess heat accumulation, the basin resolved zonal mean estimates show
remarkable agreement with those of Zika et al. (2021), particularly in the Atlantic. This
not only provides independent confirmation of the spatial structure of excess heating
found by Zika et al. (2021), but again underscores the importance of the North Atlantic
for global ocean uptake of heat and carbon, and of continued observational monitor-
ing of both physical and chemical properties in the ocean for the understanding of the
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future ocean response to anthropogenic climate change.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

¢ Twonew methods for diagnosing the excess temperature and salinity of the ocean
have been designed. The first (described in Chapter 3 and referred to as the re-
distribution coefficient method) relies on an understanding of how changes in
circulation at to couple perturbations to the background temperature (or salinity)
and carbon field in the ocean. The second (described in Chapter 5 and referred
to as the matrix inversion method) combines this technique with the method of
Bronselaer and Zanna (2020) to diagnose excess temperature and salinity in the
ocean relative to an initial profile through a simple matrix inversion. This second
technique can be thought of as a derivative form of the framework introduced
by Williams et al. (2021) to identify regions of the ocean dominated by excess or
redistributed heat changes. These two techniques have then been applied to a
single ocean model as proof of concept, and to repeat hydrography on the A05
hydrographic line and the entire GLODAP dataset, respectively. Notably, both
techniques employ assumptions which make them in principle extensible to other

tracers.

¢ In the development of the second technique, it has been shown that the global
mean approximation of Bronselaer and Zanna (2020) represents an oversimplifi-
cation of the transient response link between changes in ocean temperature and
carbon content. Instead, it appears this transient response link, which they re-
fer to as the carbon-heat coupling, is better parametrised as a linear function of
background temperature due to the correlations between background carbonate

chemistry and preindustrial ocean temperature.

* By applying the redistribution coefficient method to the NEMO OGCM, a number
of expected features of anthropogenic climate change were demonstrated explic-

itly: a redistribution of heat out of the North Atlantic, a redistribution of salinity



176

Chapter 7. Conclusions and Future Work

into the South Atlantic, and changes to the water cycle that significantly precede
changes to ocean heat content. It was explicitly shown to well capture heat redis-
tribution into regions of the ocean which can be considered unventilated, and is
thus thought to be accurate. It has also allowed for the first modelled estimates of
excess and redistributed salinity to be produced, which produce results consistent
with a number of previous studies.

By applying the matrix inversion method to the A05 and 108S hydrographic sec-
tions, it has been shown that the decision of whether to follow the approach of
Bronselaer and Zanna (2020) and use a single value for the carbon-heat coupling,
«, or to make it temperature dependent does not strongly influence estimates of
excess heat uptake. However, some statistically significant differences between
estimates generated under the assumption of global uniformity or temperature
dependence are seen. This suggests that whilst the validity of the estimates gen-
erated by Bronselaer and Zanna (2020) are not strongly affected by their use of
a globally uniform constant, estimates would be improved by the inclusion of
temperature dependence on the carbon-heat coupling. Results at A05 suggest
statistically significant trends in excess temperature and salinity are seen typi-
cally only in the upper 1500m, whereas results at I08S suggest at higher latitudes,
statistically significant trends in excess temperature can be seen at depths of up to
2000m. Indeed, it appears that some excess heat content can even be seen in bot-
tom water at this location. Error analyses on these locations indicate that the error
on excess temperature trends may accurately be parametrised as approximately
10% of the trend, and the error on excess salinity trends may be parametrised as
approximately 5 x 10~* PSU /year.

By applying the matrix inversion method to the full GLODAP dataset, two global
estimates of the rates of accumulation of excess heat and salinity over a period
spanning approximately 1994-2015 have been produced. The pointwise interpo-
lation suggests a globally integrated heat content accumulation rate of 387 + 82
terawatts: remarkably close to the 398 + 81 terawatt estimate of Zika et al. (2021),
over the period 2006-2017. The cruise interpolation, which uses more reliable
data but may erroneously interpolate peaks in the excess warming signal, instead
finds a globally integrated heat content accumulation rate of 632 + 140 terawatts.
Whilst significantly larger, the uncertainty range in both estimates overlaps with
the uncertainty range of Zika et al. (2021). However, both are significantly higher
than the passive heating estimate of 184 & 78 terawatts over the period 1990-2015
found by Zanna et al. (2019). Zika et al. (2021) suggests the difference between
their estimate and that of Zanna et al. (2019) is due to the different period over
which the estimates are calculated, however, the results presented here suggest
that this may instead be due to metholodogical differences. This is also the case
for the latitudinal distribution of heat accumulation.
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¢ (Calculating trends in excess density due to excess temperature and salinity change,
as well as just excess temperature or salinity reveals that the impact of salinity
changes on excess density change is in many cases larger than that of tempera-
ture. This a remarkable result, despite some indications that it is not necessarily
surprising, and will require explicit validation against other methods of estimat-
ing excess salinity. However, if true, it suggests that a good understanding of
changing ocean dynamics depends more heavily on an understanding of pertur-

bations to the freshwater cycle than the effects of heating.

7.2 Future Work

In this work, two novel and related techniques which leverage changes in the local car-
bon content of the ocean to diagnose changes in temperature and salinity have been de-
veloped, and applied to a number of different datasets, both observational and model
based. Whilst it has been possible to compare the estimates of excess temperature and
DIC with prior estimates in a number of ways, this is only the case due to the significant
efforts of others in developing techniques to separate out changes in temperature and
carbon into excess and redistributed temperature, and into natural and anthropogenic
carbon. Unfortunately, such a comparison has not been possible for excess salinity, due
to the lack of prior studies investigating it. Whilst there have been numerous studies in-
vestigating perturbations to the freshwater cycle due to anthropogenic climate change,
these typically focus on sea surface salinity: to my knowledge, the only other compa-
rable estimate of excess salinity is that alluded to by Zika et al. (2021), which is not
further discussed in the paper and remains unpublished. Thus, whilst the estimates of
excess salinity presented here are of interest, they currently remain unvalidated inde-
pendently. Though the data presented in this work regarding excess salinity are both
plausible and consistent in many ways with a number of other studies, it will be nec-
essary to explicitly validate the results presented here regarding excess salinity against
other techniques in order to understand their accuracy.

Furthermore, both the redistribution coefficient and matrix inversion techniques are in
essence simply first order Taylor expansions, which will therefore become less valid as
the ocean state further diverges from the preindustrial conditions. Though there is no
indication that this validity will expire in the coming decades, extension of the tech-
niques via the use of Water Mass principles, Machine Learning techniques, or perhaps
other methods, as alluded to in Chapter 4 remains a promising avenue for improv-
ing our understanding of ocean temperature and salinity change through carbon based
methods.

More broadly, scope exists to extend the understanding of many of the techniques de-
veloped in this work, and the tools used in it. Though Chapters 5 and 6 found that the
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globally uniform « approximation used by Bronselaer and Zanna (2020) does not pro-
duce significantly different results from those obtained using a temperature dependent
formulation, there is now strong evidence that this temperature dependent formulation
is more accurate. It is therefore likely that better understanding spatial variability in «
would lead to a better understanding of how the ocean sequesters heat and carbon, and
precisely how these two intimately related processes are linked. For example, Davila
et al. (2022) used a transport matrix inversion (TMI) to investigate how anthropogenic
carbon is propagated into the ocean. By repeating this analysis for temperature, and
then relating the results of the two, it ought to be possible to deconvolve the temporal
and spatial variability in a: this would likely lead to a far richer understanding of the

evolution of temperature and carbon covariability in the ocean.

In addition, the redistribution coefficient approach, developed in Chapters 2 and 3,
makes use of the spatial covariability of temperature and carbon in order to diagnose
the redistribution of temperature and salinity from changes in natural carbon. How-
ever, as noted here, whilst carbon is a convenient tracer for this purpose as it can be
readily separated into a ‘natural” and “anthropogenic’ component, it is not necessarily
unique as a choice of tracer to use in order to diagnose redistribution. There is therefore
scope for the extension of this technique, both in using carbon to diagnose the redis-
tribution of tracers other than temperature and salinity, but also in using tracers other

than carbon to diagnose redistribution.

Finally, the matrix inversion technique, which specifies two curves linking excess and
redistributed temperature and carbon, is currently implemented as an exact, analyti-
cal, matrix inversion. As a result, it does not allow for uncertainty in the model, nor
does it consider additional information about how local carbon concentrations may
have changed, for example due to biological activity. Current work at NORCE is focus-
ing on extending this matrix inversion technique to include the additional information
contained by the link between temperature and oxygen changes: changes in DIC and
oxygen due to biological activity are similarly linked. It therefore seems likely that this
work will lead to both an improved understanding of excess and redistributed temper-
ature, DIC and salinity, in addition to better understanding of ocean deoxygenation.
However, this represents a single avenue for extending the techniques developed in
this work. Most fundamentally, by identifying reliable links between changes in tem-
perature and carbon in the ocean, this work has showed that it is possible to link bio-
geochemistry and physical quantities in ways that allows the accurate local decompo-
sition of changes into circulation driven variability and and the ‘excess’ tracer. Though
it would require the identification or use of other relationships, this allows it to serve as
a template for the use of other biogeochemical measurements to inform understanding
of ocean physics.
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7.3 Final Remarks

The results presented in this work have contributed to the continual improvement of
our understanding of how changes in temperature and salinity are propagated into the
interior ocean, and how ocean circulation responds to changing climate. However, a
major theme connecting these findings is that changes in ocean carbon content can be
leveraged to understand other changes to the ocean state: carbon should not be con-
sidered simply an isolated, passive tracer which is used to estimate to estimate how
the ocean ameliorates increases in atmospheric CO,. Instead, due to its strong mech-
anistic covariability with temperature changes in the ocean, it enables us to uncover
key information about changes in the ocean state, both anthropogenically forced and
due to natural variability. Increased monitoring capabilities of oceanic carbon content
therefore represent an opportunity not only to improve understanding of the oceanic
storage of carbon in response to climate change, but also to understand how the ocean
circulation is changing. Thus, oceanic carbon is important not just for its biogeochem-
ical impacts, but can be utilised to improve understanding of physical changes in the
ocean. The results presented in this work therefore most fundamentally underscore the
need for continued, and hopefully improved, monitoring and understanding of carbon
in the ocean as a method for better understanding the response of the global ocean to

anthropogenic climate change.
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Appendix A

GLODAP Easy Ocean Toolbox: A
Julia wrapper package to easily grid
hydrographic sections

In this short chapter, I describe a toolbox produced as part of this project in the Julia
programming language, which may be used to generate gridded 2D (horizontal co-
ordinate, depth) or 3D (horizontal coordinate, depth, time) fields from any variable
contained within the GLODAP dataset. Gridded fields produced using this toolbox are
discussed in the following two chapters, and therefore the key principles of this tool-
box and a top level overview are provided here for simplicity. Work on this toolbox is
ongoing, however, functionality is sufficiently mature that it may be of use to others.
The first four sections in this Chapter describe the various components integrated into
this toolbox, and the 5™ how the toolbox top level API works.

A1 GLODAP

GLODAP (Global Ocean Data Analysis Project) (Lauvset et al., 2021) is a project which
aims to synthesise data for ocean biogeochemical observations. It comprises over 1.3
million samples taken from 989 cruises, and contains data for 12 core variables: salin-
ity, oxygen, phosphate, nitrate, silicate, dissolved inorganic carbon, total alkalinity, pH,
CFC-11, CFC-12, CFC-113 and CCl4, which are subjected to primary and secondary
quality control, with the aim of identifying outliers and correcting for measurement
biases. It also contains data for potential temperature, neutral density and a number
more variables. The cruises included within GLODAP span 1870-2020, although the
density of data is substantially lower pre 1990 and post 2016 (due to data paucity and

the work required to integrate measurements into the dataset, respectively). In total,
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over 100 variables are included, including more esoteric variables such as Neon and
Helium isotopes. It therefore represents an extremely valuable resource for ocean bio-
geochemical research.

However, GLODAP is limited in its scope: while a 3D gridded climatology is provided,
due to the challenges associated with gridding observations onto standard grids, par-
ticularly when these observations are not simulaneous, no gridded fields are provided.
Instead, all variables are provided as a vector of observations. As such, whilst is is
straightforward to use observations contained in GLODAP in order to visualise distri-
butions of data from hydrography, comparison of, for example, temperature, from one
cruise to the next is not necessarily straightforward, as observations are not necessarily
collocated. It is therefore down to the user to grid GLODAP data in the fashion that
best suits their requirements.

A11 GO-SHIP

Similar to GLODAP, GO-SHIP (The Global Ocean Ship-Based Hydrographic Investiga-
tions Program) is an effort to coordinate ship-based repeat hydrographic occupations
into a coordinated observational project. However, unlike GLODAP, which aims to
compile, cross validate and synthesise existing measurements, GO-SHIP instead aims
to organise the collection of data in order to maximise the scientific returns of these data
collection efforts. By coordinating hydrographic surveys amongst nations and research
institutes, GO-SHIP provides repeat hydrographic occupations of sections of interest of
the global ocean at approximately decadal resolution, and at higher temporal resolution
for key data. Further detail can be found at https://www.go-ship.org/index.html
and http://cchdo.ucsd.edu/.

Additionally, GO-SHIP provide a toolbox, GO-SHIP Easy Ocean (Katsumata et al.,
2022), which contains grid data, masks, and Temperature, Salinity, and Oxygen data
for a number of cruises contained within the GO-SHIP database. The spatial data con-
tained within this toolbox form the basis for the gridding used in the Julia toolbox
described in this work.

A.2 Julia

Julia is a modern, high level, high performance, dynamic programming language, de-
veloped primarily for use in computational science (Bezanson et al., 2017). Code writ-
ten in Julia is superficially similar to both Python and MATLAB code, with features
such as list comprehensions, broadcasting, and efficient built in libraries for linear al-
gebra. However, unlike Python and MATLAB, it is designed with performance as a
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primary consideration. As such, Julia uses a ‘just-ahead-of-time’ compiler, rather than

a ‘just-in-time” interpreter, as is the case for MATLAB and Python.

In Julia, upon the first call to a function in a given REPL session, code is compiled
to bytecode. All subsequent calls to this function then call the bytecode implementa-
tion, avoiding the overhead associated with an interpreted language. This allows the
user to write code which performs comparably to a compiled language such as C or
FORTRAN. This makes it an ideal language for the implementation of expensive com-
putations: more details can be found at https://julialang.org/

A.2.1 DIVAnd

DIVAnd (Data Interpolating Variational Analysis in n dimensions) is a gridding algo-
rithm and associated software package which, similarly to optimal interpolation and
Kriging, may be used to grid ocean observations (Barth et al., 2014). Application of DI-
VAnd to observational data will create an interpolated field by minimising a cost func-
tion, which penalises deviations from observations, deviation from an initial guess, and
abrupt variation in the field based on a correlation length. It can also include additional
constraints, such as ocean circulation. However, unlike optimal interpolation, it natu-
rally decouples observations in topologically disconnected regions. This is useful as we
do not expect topologically disconnected water masses to have similar properties nec-
essarily. For example, the Western Pacific sea surface is typically much fresher than the
Gulf of Mexico. Due to the narrow separation between these regions, standard optimal
interpolation will tend to artificially salinify the Western Pacific and freshen the Gulf of

Mexico, unless care is taken. DIVAnd does not suffer from this issue.

The DIVAnd software package (accessible at https://github.com/gher-ulg/DIVAnd.
j1 or through the Julia package manager (using Pkg; Pkg.add("DIVAnd")) containsa
number of functions for gridding, calculation of correlation lengths (horizontal and ver-
tical), and to estimate the error associated with the gridding process. Full documenta-
tion can be found at https://gher-ulg.github.io/DIVAnd. jl/latest/index.html.

Finally, detailed theory describing how the DIVAnd gridding algorithm works can be
found in Barth et al. (2014), or in Troupin et al. (2019).

A.3 GLODAP Easy Ocean Toolbox

By combining these resources, we may interpolate data from GLODAP onto hydro-
graphic sections. At present, this toolbox relies on sections defined by the GO-SHIP
Easy Ocean Toolbox Katsumata et al. (2022), as well as a user defined section for 24
South in the Atlantic (Nominal WOCE code A09.5), see discussion at https://www.
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go-ship.org/Docs/A9.5_A10_A10.5__final.pdf. Whilst is possible for a user to de-
fine sections as above, this functionality is not currently built into the toolbox as an
intended use case: this will be added at a later date, and discussion herein limited to
only the predefined sctions from the GO-SHIP Easy Ocean toolbox.

At the top level, the toolbox provides two pipeline functions, which allow a user to gen-
erate a section or repeat of gridded data with a single line of code: gridCruisePipeline
and gridSectionPipeline. Function calls in Julia may take positional and /or keyword
arguments, and defaults are readily specified. A typical call to gridCruisePipeline is
now described, and how the toolbox operates in turn. Note that some functionality still

requires refining.

gridCruisePipeline takes three data arguments: glodapDir, goshipDir and maskMatFile,
all of which must be strings. They specify the directory in which the pipeline will look
for the GLODAP database file (the current implementation uses the .mat file version),
the top level directory in which the GO-SHIP Easy Ocean toolbox is saved, and the file
containing all of the masks which specify topography for the available sections, respec-
tively, and all have defaults set. Four arguments without defaults are then required:
sectionName, horzCoordinate, variableName and expocode, again all of which must
be strings. sectionName is a WOCE code, which specifies the section which we wish to
grid, for example “A05”. horzCoordinate specifies whether to use “latitude” or “lon-
gitude” as the horizontal coordinate for this section (future versions will automatically
compute the horizontal coordinate from the section name). variableName specifies
which variable we wish to grid: it must be contained within the GLODAP dataset, for

example “G2theta” for temperature.

All further arguments have defaults set, and need not be specified. However, they
are described here for completeness. The argument gridding, which must be a string,
specifies how to grid data. By default, it is set to “isobaric”, but may also be set to
“isopycnic” to perform isopycnic gridding. Isopycnic gridding is currently still experi-
mental, and occasionally gives nonsensical results, but usually performs well.

meanValue specifies the how the background field value is calculated. The DIVA grid-
ding algorithm penalises deviations from a background field value, and so it can be
necessary to correctly set the background value to avoid spurious results. By default,
meanValue takes an unweighted mean value of all observations for a given cruise and
uses this as a mean background value for the field: this tends to work well in most
cases. However, meanValue can also be set to either “horzMean” or “climatology”. In
the case of “horzMean”, the horizontal mean value of the variable to be gridded will
be calculated and used as a background field. In the case of “climatology”, the clima-
tological mean value of the variable to be gridded will be used as a background field.
However, “climatology” relies on the existence of a climatology file from GLODAP, and

it’s use is currently limited to temperature, salinity, and DIC.
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epsilonVal, default value 0.1, specifies the error variance of the observations. This
value is passed directly to the DIVAndrun (the function used to call the DIVA gridding
algorithm in the Julia package) argument epsilon2, and so is documented there. The
smaller epsilonVal, the more tightly constrained the output field is to conform to the
observations. Larger values therefore smooth the gridded field.

plotResults is a boolean with default value false. If specified to be true, after gridding,
the gridded field will be plotted as a colourmap, with the section name, variable name,
and expocode of the cruise which has been gridded.

autoTruncateMask is also a boolean with default value false. If set to true, in the case
of a partial section occupation, regions of the section which were not occupied will be
automatically masked based on recorded longitude values.

Finally, there are two variables which relate to automatic cross validation: crossValidate,
which is a boolean, default false, and crossValidationNum, which is an integer, default
5. If crossValidate is set to true, then a cross validation will be performed in order
to optimise correlation lengths and the epsilon value supplied to the final gridding. If
this cross validation is performed, crossValidationNum will be used to determine the

number of cross validations which are performed.

gridCruisePipeline therefore works as follows:

1. Inputs are checked to ensure they are compatible.

2. The variable and expocode are checked for exceptions. If an exception is found,
the exception data is loaded from a separate .mat file, rather than from the main
GLODAP file.

3. If DIC is to be intepolated, GLODAP recommended adjustments are read and
automatically applied.

4. If the mask is to be automatically truncated, whether the cruise occupied the full
section is checked, and an if it is found not to, the mask is truncated.

5. Horizontal and vertical correlation lengths are then calculated. The user may
supply a list of correlation length multiplicative factors (contained in a .csv file),
which can then be applied to the correlation lengths if necessary for a given cruise
and variable. This can be necessary when data are only collected for a given

variable every 5th station, for example.

6. The DIVA gridding routine is called, and the results returned. If the user specifies,
the final gridded field is also plotted as a heatmap.
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The gridSectionPipeline function works similarly, although here, expocodes are not
specified manually (through the argument expocode): instead, a section name is passed
(as with gridCruisePipeline using the argument sectionName). This function instead
will find all expocodes associated with a given section, either automatically if the argu-
ment convDir is left blank, or from a manually supplied list if convDir is specified. It
then performs the same analysis as gridCruisePipeline for each expocode found in
the supplied list of expocodes. However, there is no functionality to perform a cross

validation, nor plot results.

As only the top level functionality is necessary to understand how this toolbox may
be used to generate gridded sections of variables from the GLODAP dataset, no fur-
ther details about code structure will be supplied here. However, the full code (with
extensive documentation and some examples) are available at https://github.com/
charles-turner-1/GLODAP_Section_Gridder.jl
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Glossary

The glossary presented here is based upon that from the paper Turner et al. (2022), in which I
explore how we can use the principles illustrated in Section 2.3 in order to understand changes
in global ocean temperature and carbon.

For an arbitrary tracer Q, transported by a velocity field v, we may write

Q= (o +7)(Q+Q)= ©Qy + TQ +5Q +7Q, (A1)
N~ N~ ———
Preindustrial ~ Redistributed Excess
where 7, and Q) refer to the preindustrial components of the velocity field, 7, and the

tracer field, Q, and ¥ and Q’ the perturbations. The excess and redistributed changes
in Q, denoted Q. and Q; respectively, are therefore given by

Qu(t) = / t (Fb— (F0+9) - vQ')dt, (A2)

to

and

Q. (t) = — / t (5’ - VQO) dt, (A3)

to
where Fé is the anomalous surface flux in Q, t( is a preindustrial time, and ¢ is a generic
time. These definitions are described in further detail in Williams et al. (2021) and

below.

* Excess Q: Changes in the local ocean Q field value due to the imposition of
changes in the surface forcing of the Q field. Excess Q may be positive or nega-

tive, depending on changes in surface forcing.

¢ Excess Temperature: Change in local ocean temperature due to changing surface
heat fluxes, for example warming due to increased radiative forcing at the sea

surface.

* Excess Salinity: Change in local ocean salinity due to changing ocean freshwa-
ter fluxes, for example salinification as a result of increased evaporation and/or

reduced precipitation at the sea surface.



188 Chapter A. Glossary

* Redistributed Q: Changes in the local ocean Q field value due to changes in
ocean transport, either imposed in response to climate change or as the result of
natural variability. As redistribution can only rearrange the inventory of Q within
the global ocean, the global ocean inventory of redistributed Q must always sum
to zero, as positive redistributed Q in one location must be compensate for by
negative redistributed Q in another location.

* Redistributed Temperature: Changes in local ocean temperature due to circula-
tion change, for example cooling in the North Atlantic due to the reduction of

northward heat transport associated with AMOC decline.

¢ Redistributed Salinity: Changes in local ocean salinity due to circulation change,
for example salinification in the South Atlantic due to the reduction of northward
freshwater transport associated with AMOC decline.

¢ DIC: Dissolved Inorganic Carbon, also known as tCO,. This is the total local

inorganic carbon content. It may be decomposed as

DIC = DICsat + DICcar + DICsost + DICdiseq + Canth = Cnat + Cantn (A4)

where
Cnat = DICsat + DICcarb + DICsoft + DICdiseq (A5)

® DICg,e: Saturation carbon, the DIC content which a parcel of water would have,
if allowed to equilibrate with the preindustrial atmosphere at its potential tem-
perature and salinity. It accounts for the bulk of DIC concentrations, around
2000umol/kg.

¢ DIC.,: Carbonate carbon, DIC content due to the remineralisation of calcium
carbonate. Concentrations increase with age, with concentrations up to approxi-

mately 60 ymol/kg in the oldest waters.

e DIC,.¢: Soft tissue carbon, DIC content due to the remineralisation of soft tissue.
As with DIC,,, its” concentration increases with the age of water, up to approxi-
mately 200#mol/kg in the oldest waters.

* DICgjseq: Disequilibrium carbon, the DIC content due to the disequilibrium of a
parcel of water with the overlying atmosphere, when subducted away from the

surface. It may be either positive or negative.

® Cinth: Anthropogenic carbon, the DIC content of a parcel of water due to equili-
bration with the increased atmospheric CO, content of the atmosphere, relative
to preindustrial. It is defined as having a preindustrial concentration of zero, and
hence is closely related to excess DIC (to see this, let Qp = 0 in Equation F1.
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Chat: Natural carbon, the DIC content of a parcel of water with the contribu-
tion from increased atmospheric CO, concentrations removed. It is the sum of
the saturation, soft tissue, carbonate and disequilibrium pools of DIC. As excess
DIC and C,, are closely related, Cpat therefore approximates redistributed DIC.
However, in response to a warming ocean, the global Cp,¢ inventory will decline,

causing it to systematically differ from redistributed DIC.

C;i{: Adjusted Natural Carbon, calculated as C;ijt = Chat + YCanth, Where 7y is a
factor between 0 and 1. This aims to correct for the outgassing of Saturation Car-
bon in response to ocean warming, in order to adjust for the systematic reduction
in natural carbon leading to inconsistency in the definition of changes in natural

carbon and the redistribution of DIC.

Excess DIC: Changes in local DIC content driven by changes in surface condi-
tions: these include changes to surface wind forcing, SST driven change in CO,
solubility in surface, but predominately those due increases in atmospheric CO,

concentrations.

Redistributed DIC: Changes in local ocean DIC content due to circulation change,
for example an increase in the DIC concentration of the deep North Atlantic due
to reduced formation of North Atlantic Deep Water.

Carbon-Heat Coupling: An emergent near-linear relationship between changes
in both local and global heat and carbon content. Typically referred to as « when
presented in units of heat and carbon inventories, or a7 when presented in units

of local temperature and carbon concentration change.

Redistribution Coefficient: A coefficient that relates the change in two tracers
due to redistribution. Typically referred to as either x, when used in isolation, or
as p when used in conjuction with the carbon heat coupling.
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