The University of Southampton
University of Southampton Institutional Repository

Yeti claws: Cheliped sexual dimorphism and symmetry in deep-sea yeti crabs (Kiwaidae)

Yeti claws: Cheliped sexual dimorphism and symmetry in deep-sea yeti crabs (Kiwaidae)
Yeti claws: Cheliped sexual dimorphism and symmetry in deep-sea yeti crabs (Kiwaidae)
Yeti crabs (Kiwaidae) are deep-sea hydrothermal vent and methane seep dwelling crustaceans that farm chemosynthetic microbes on their bodies. Sexual dimorphism is a common feature of decapod crustaceans, but little is known about its prevalence in species from deep-sea habitats. We address this knowledge deficit by investigating claw sexual dimorphism and symmetry in the hydrothermal-vent endemic ’Hoff crab’, Kiwa tyleri. A total of 135 specimens from the East Scotia Ridge were examined, revealing mean asymmetry indices close to zero with respect to propodus length and height, albeit with a significantly larger number of marginally left-dominant individuals with respect to propodus length, possibly indicative of some task specialisation between claws, or a vestigial ancestral trait. Both male and female claws exhibit positive allometry with increasing carapace length, but males possess significantly larger claws compared with females when accounting for carapace size, exhibiting faster growing propodus length, and broader propodus heights throughout the size distribution. This marked difference is indicative of either male-male competition for mate access, sexual selection, or differential energy allocation (growth vs reproduction) between males and females, as observed in other decapod crustaceans. In contrast, a reanalysis of data for the methane seep inhabiting yeti crab Kiwa puravida revealed no significant difference in claw allometry, indicating a possible lack of similar sexual selection pressures, and highlighting potential key differences in the ecological and reproductive strategies of K. tyleri and K. puravida relating to claw function, microbial productivity and population density. Whether sex differences in claw allometry represents the norm or the exception in Kiwaidae will require the examination of other species in the family. This research enhances our understanding of the behaviour, ecology and evolution of yeti crabs, providing a basis for future studies.
1932-6203
Copley, Jon
5f30e2a6-76c1-4150-9a42-dcfb8f5788ef
Copley, Jon
5f30e2a6-76c1-4150-9a42-dcfb8f5788ef

Copley, Jon (2025) Yeti claws: Cheliped sexual dimorphism and symmetry in deep-sea yeti crabs (Kiwaidae). PLoS ONE, 20 (2 February), [e0314320]. (doi:10.1371/journal.pone.0314320).

Record type: Article

Abstract

Yeti crabs (Kiwaidae) are deep-sea hydrothermal vent and methane seep dwelling crustaceans that farm chemosynthetic microbes on their bodies. Sexual dimorphism is a common feature of decapod crustaceans, but little is known about its prevalence in species from deep-sea habitats. We address this knowledge deficit by investigating claw sexual dimorphism and symmetry in the hydrothermal-vent endemic ’Hoff crab’, Kiwa tyleri. A total of 135 specimens from the East Scotia Ridge were examined, revealing mean asymmetry indices close to zero with respect to propodus length and height, albeit with a significantly larger number of marginally left-dominant individuals with respect to propodus length, possibly indicative of some task specialisation between claws, or a vestigial ancestral trait. Both male and female claws exhibit positive allometry with increasing carapace length, but males possess significantly larger claws compared with females when accounting for carapace size, exhibiting faster growing propodus length, and broader propodus heights throughout the size distribution. This marked difference is indicative of either male-male competition for mate access, sexual selection, or differential energy allocation (growth vs reproduction) between males and females, as observed in other decapod crustaceans. In contrast, a reanalysis of data for the methane seep inhabiting yeti crab Kiwa puravida revealed no significant difference in claw allometry, indicating a possible lack of similar sexual selection pressures, and highlighting potential key differences in the ecological and reproductive strategies of K. tyleri and K. puravida relating to claw function, microbial productivity and population density. Whether sex differences in claw allometry represents the norm or the exception in Kiwaidae will require the examination of other species in the family. This research enhances our understanding of the behaviour, ecology and evolution of yeti crabs, providing a basis for future studies.

This record has no associated files available for download.

More information

Accepted/In Press date: 7 November 2024
Published date: 5 February 2025
Additional Information: Publisher Copyright: © 2025 Roterman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Identifiers

Local EPrints ID: 498563
URI: http://eprints.soton.ac.uk/id/eprint/498563
ISSN: 1932-6203
PURE UUID: a7e445f8-3451-4056-becf-a0166771b69e
ORCID for Jon Copley: ORCID iD orcid.org/0000-0003-3333-4325

Catalogue record

Date deposited: 20 Feb 2025 18:24
Last modified: 15 May 2025 01:35

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×