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Biofouling of invasive Zebra and Quagga mussels presents an ongoing problem in
industries which draw freshwater from infested sources. In particular, many intake
pipes used in the water and power industries are now inhabited by rapidly growing
mussel colonies, which are well suited to infiltrate and settle on pipe walls. Left
untreated, mussel fouling can cause substantial reductions in flow, blockages, and
damage to downstream equipment, incurring significant economic costs. Many
potential treatments have been considered but as of yet, no consensus has been
reached on a comprehensive antifouling strategy. A growing body of research
suggests that zebra mussels are sensitive to sound and vibration. Lab experiments
have demonstrated the ability to inhibit the settlement of mussels or even induce
mortality with high enough sound amplitudes.

This project explores the feasibility of using sound and vibration to control
mussel fouling in long-range water pipelines. Specifically, the dispersive properties
of guided waves in pipes are utilized to achieve high response amplitudes at tar-
geted locations, with time reversal focusing employed to maximise the response.
The work begins by analysing a rigid duct model, neglecting pipe wall dynamics to
study the acoustic system in isolation. The effectiveness of time reversal focusing is
assessed. Next, the Wave Finite Element method is used to model fluid-structure
interaction, with a focus on energy distribution, long-range power transfer, and
optimal excitation frequencies.

Finally, a numerical experiment is performed with a model of a commercial
inertial actuator coupled to the pipe. Results are compared with the literature
on mussel antifouling. The model suggests that inhibitory levels of sound and
vibration can be attained at significant distances from the source by using time
reversal focussing. To conclude, implications of the work are discussed for the
feasibility of mussel antifouling with sound and vibration.
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1. Introduction

1.1 Biofouling and Invasive Mussels

Biofouling or biological fouling is the unwanted accumulation of organisms on engi-
neering structures, particularly those submerged in water. In addition to the build-
up of bacteria, algae and other smaller organisms (microfouling), larger creatures
such as barnacles and mussels attach themselves to underwater surfaces (macro-
fouling) [1]. Both types of biofouling are associated with a range of problems for
the affected structures which may include ships, navigation buoys and underwater
sound equipment [2]. For example, in the shipping industry much emphasis is
placed on reducing fouling on the hull of vessels due to the resulting increased hy-
drodynamic drag, which can have a large impact on fuel efficiency and thus incur
considerable economic costs [3,4].

In the water and energy industries, biofouling in piping systems presents a
significant problem. Exposure of water intake pipes to macrofouling can result in
large reductions in flow. If left untreated, organic matter will be carried farther
into the system where it interferes with downstream equipment such as filters
and pumps. In recent decades, this issue has received increased attention due
to the introduction of invasive mussels into freshwater lakes worldwide. Zebra
mussels (and their close cousin quagga mussels) are a small species of mussel
native to Eastern Europe with the ability to form dense, multilayer colonies on hard
substrates. Where they have been accidentally dispersed into bodies of freshwater,
these bivalves can rapidly surpass densities of 1000 per square meter [5], affecting
ecosystems and industries alike. Water intake pipes are one of the structures most
affected by invasive mussel fouling, the prevention of which is the focus of this
research project.

1.1.1 Zebra Mussels & Associated Problems

Biology The zebra mussel (Dreissena Polymorpha) is a freshwater bivalve origi-
nating from the Caspian Sea region. After external fertilisation, these animals be-
gin their lifecycle as planktonic larvae known as veligers and are dispersed mainly
by water currents. Some time later (around 10 days) the veliger grows a small foot
allowing locomotion on surfaces [6] and becomes known as a pediveliger. At this
stage the pediveliger begins its search for a suitable substrate on which to settle
and, once found, secretes proteins called byssal threads which attach it firmly to
the chosen surface. After settling, the mussels begin filter feeding and grow into
juveniles and eventually adults, during which time they develop their characteris-
tic hard shell. In total, the lifecycle typically lasts around 3-5 years depending on



temperature [7].

The closely related quagga mussel (Dreissena rostriformis) shares many of the
characteristics of the zebra mussel. It is slightly larger and, unlike zebra mussels,
able to colonise soft substrates such as those found at the bottom of lakes. Zebra
mussels are better able to resist dislodgement in high velocity water flows [8] and
it is for this reason that they are the main focus when discussing the fouling of
water intake pipes. Often both species are referred to collectively as zebra mussels.

Proliferation Zebra mussels are an invasive species in many parts of the world.
Most notable has been their rapid spread throughout the Great Lakes in North
America, where they apparently arrived via a ship water ballast in the mid 1980’s
[7]. Since then the population of zebra mussels in these lakes has exploded [9]. For
example, densities of over 30,000 individuals per square meter have been found
in Lake Erie a mere decade since their introduction [10]. Zebra mussels were first
introduced in Britain (along with much of Western Europe) around 1820 and it
is thought that after the initial spread, their numbers remained steady for over a
century [11]. In recent years however, the creatures have begun spreading again
on the island, likely due to increasing water quality following the decline in the
use of chemical treatments at water intakes [12,13]. Quagga mussels were first
discovered in Britain in 2014. The spread continues, with quagga mussels being
found in Rutland Water as recently as 2020 [14]. Elsewhere in Europe zebra
mussels have spread to Sweden (1920), Ireland (1997) and Spain (2001) [15, 16].

Physical Impact The build-up of invasive mussels on the inside of pipes can
have serious consequences for industries drawing freshwater from infested sources.
The planktonic larvae of the mussels allows them to disperse into waterways
quickly, easily passing into the piping systems of industrial plants. Once settled,
the pipe provides an ideal habitat [7]. Free from predators and with a constant
flow of water bringing food and removing waste, large colonies grow fast. Even
once the pipe walls are completely coated, new layers form over the old, creating
a thick crust of biomass (see Figure 1.1). Besides the reduction in flow rate, prob-
lems occur when living or dead mussels are washed farther into piping system. In
2005, a study documented the increasing effects of zebra mussels on water instal-
lations in England [12]. The problems reported at waterworks included blockage
of intake pipes, microfilters, filter beds, ozone tanks and narrow sampling pipes.
It was noted that these problems often follow a large change of flow through the
pipeline, presumably dislodging large numbers of mussels from the pipe wall.

Economic Impact The economic impacts have received much attention in the
Great Lakes, where early estimates of the cost of zebra mussels were over $3
billion to power companies alone between 1993-1999 [17]. One later estimate put
the total cost at $1-1.5 billion in the years 1989-2007 with the energy and water
industries paying one half and one third of this amount respectively. Since then,
the cost estimates have been more modest, likely owing to the increased readiness
of the affected industries to implement mitigation strategies. Still, a 2007 study
estimated the Great Lakes invasion to have cost hundreds of millions in a similar
period [18]. In Britain, where zebra mussels are less novel, aggregate figures on
their cost are more difficult to assess. There are nevertheless ongoing costs of
preventative and reactive procedures associated with the pests at many facilities
[12].



Figure 1.1: Extent of zebra mussel colonisation of intake pipe

Current Treatments At present, a wide range of techniques have been used
to control invasive mussels with varying success. A recent (2018) review by the
US Department of the Interior (USDOI) [19] has identified some methods used so
far, many of which appear in an earlier report prepared for the Canadian Gov-
ernment in 1989 [20]. Among these are chemical treatments, heat, dessication,
electric/magnetic fields, UV irradiation, sound, vibration, predation and manual
removal.

Chemical techniques have been preferred in industry with chlorination being
perhaps the most popular [20]. Whilst effective, the treatment is non-specific and
may have dangerous consequences for the surrounding environment, particularly
where the water is returned to the source. Another control chemical is potassium
salts, which has been notably used in the only documented eradication of a zebra
mussel infestation in open water [21]. There is some concern however that potas-
sium salts are also toxic to native species of mussel, limiting its use as a control
technique. Anti-fouling paints have traditionally been used in the maritime indus-
try, however these are difficult to apply in a pipeline and not without their own
environmental risks.

More recent developments in chemical mussel treatment have yielded BioB-
ullets [22] and Zequanox [23]. BioBullets were developed by researchers from
Cambridge University and involve concentrated doses of potassium chloride, en-
capsulated in, and disguised as a food source to zebra mussels. This treatment has
been shown to be highly effective and specific, and was commercialised in 2000.
Zequanox is the trade name of a pesticide which is derived from a strain of bacteria
(Pseudomonas fluorescens). This bacteria is deadly to the mussels when ingested
but not recognised as such by the creatures themselves. Studies have suggested
that Zequanox is also highly effective and specific.

Many of the non-chemical techniques tried have had mixed results, or diffi-
culties in their practical implementation. For example heat treatment will only
work at a plant specifically designed for it. Dessication and manual removal both
require temporary shutdown.



Acoustic and Vibrational Techniques Some of the non-chemical control
techniques tested so far have attempted to utilise sound and vibration to dis-
courage or eliminate biofouling. A broad review of the literature in 2015 by Legg
et al. [24] details some of the studies conducted in this area. Among the more com-
mon techniques employed for zebra mussels in pipes are acoustic sparkers. These
devices rapidly discharge a capacitor between two electrodes underwater, creating
a shock wave which can damage and kill the mussels. A study by Mackie [25]
showed the technology was effective in preventing attachment to intake pipes 4
m long. A later study by Schaefer et al. [26] quantified and related the acoustic
energy with mussel mortality. It was determined that the sparker’s effective range
was 1.5 m to kill, and 23 m to discourage mussel settlement. Sparkers appear to
have already been deployed in some installations. Schaefer et al. notes one case in
which a 550 m pipe has been kept free of fouling for over four years [27]. A project
by the environmental protection agency also reports similar success using sparkers
in removing mussels and preventing attachment over time [28]. There appears to
have been no new research conducted on the use of sparkers since 2010.

In 1997 Donskoy [29] investigated the effects of sound and vibration on zebra
mussels. It was remarked that these treatments were first studied in the USSR
but discontinued after the success of chemical controls. A literature review divides
the methods tested previously into cavitation, sound, and vibration. Donskoy
then conducts his own investigation into the effects of these techniques on zebra
mussels in various configurations. The experiments most relevant to this project
studied the effects of vibration on veligers, as well as sound on veligers, adults
and eggs. It was found that low frequency (< 20 kHz) vibration of the substrate
can cause 100% mortality in veligers, where the lowest acceleration level tested
was 0.1 ms™2. It appears that the effectiveness of the treatment diminishes at
higher frequencies. Aside from vibration of the substrate, the use of low frequency
sound was shown to significantly inhibit translocation and settlement of juvenile
and adult mussels in Donksoy’s studies. The attachment was also observed to
be weaker in mussels treated with sound. One experiment demonstrated a 97%
reduction in mussel attachment to surfaces when treated with 170 dB! of sound
at 60 Hz over 24 hours. Donskoy also demonstrated that low frequency sound
disrupts fertilisation and destroys zebra mussel eggs.

In 2015 researchers from the University of Hull demonstrated the sensitivity of
the blue (common) mussel (Mytilus edulis) to vibration [30]. Excitation frequencies
between 5-410 Hz were used, with the mussels showing behavioural changes (valve
closure) at acceleration thresholds of 0.06-0.55 ms™2. Again, as with the work done
by Donskoy, it appears that the sensitivity to vibration decreases with frequency.

More recently, in 2022, Kusku et al. performed a long term study using sound
to treat zebra mussels. Frequencies of 500, 1000, and 5000 Hz were applied at
relatively low pressures of 83-87 dB to zebra mussels in a tank over 100 days.
The study determined that sound at these levels was sufficient to kill a significant
portion of zebra mussels over the time frame of the experiment. For the three
frequencies studied, the mortality rates after 100 days were 33, 37, and 45% re-
spectively. Further to this, it was found that the average weight of the mussels
which survived the sound treatment had decreased slightly, whereas the weight of
mussels in the control tank had grown. The authors suggest that previous studies,
which concluded sound did not induce mortality in zebra mussels, did not allow
sufficient time to observe the long term effects of sound treatment.

Lwith respect to 1pPa of underwater sound pressure.



1.1.2 Concluding Remarks

An introduction to the problem of invasive mussel fouling in freshwater intake
pipes has been presented in this section. A broad range of traditional treatment
methods have been discussed with little indication of a single ‘best’ approach to
combatting the issue. It has been shown that vibration of the substrate, at low
frequencies and at high enough intensities, can cause mortality of zebra mussel
velligers. It has also been shown that sound pressure in the surrounding fluid can
discourage settlement and translocation of mussels, and may also induce mortality
given the treatment time is long enough. In the case of water intake pipes, the
substrate is the inner pipe wall, and the surrounding fluid is the water contained
within. It is therefore the objective of this project to explore the means by which
acoustic and vibrational energy may be applied to large sections of a fluid-filled
pipe, with the aim of disturbing or discouraging the settlement of mussels inside.

1.2 Wave Propagation in Pipes

In this section, wave propagation in pipes is discussed through a summary of an-
alytical and numerical models. A brief introduction to guided waves and their
general characteristics is given, before a review of various analytical theories ap-
plicable to a pipe, both fluid-filled and in vacuo. After this, the popular modern
numerical techniques used to tackle the problem are then summarized. The rel-
ative merits of each model is discussed whilst giving special consideration to the
systems and frequency range deemed most relevant to this project.

1.2.1 Bulk vs Guided Waves

Bulk The problem of wave propagation in infinite homogeneous isotropic media
is relatively straightforward. In a fluid, the acoustic wave equation governs and
yields, for example, harmonic plane wave solutions travelling at a velocity which
is constant and characteristic of the medium. These waves are purely longitudinal
and describe the propagating compression and rarefaction of the fluid.

In an infinite solid, similar compressional waves exist. However, unlike fluids,
solids resist shear deformation. This results in an additional type of wave, with dis-
placement transverse to the direction of propagation and completely independent
of the longitudinal motion.

Common to all of these waves, known as bulk waves, is the fact that their
dispersion relation is linear. That is, the relationship between wavenumber k£ and
angular frequency w is given by a simple constant, which is the phase velocity of
the wave c,.

w
Cp: E (11)

In addition, the group velocity c,, which for a perfectly elastic medium is the speed
of energy propagation, is given by

_dw

== (1.2)

Cq
Waves with a linear dispersion relation are known as non-dispersive waves. This is
because the phase and group velocities are equal and independent of frequency. As
a consequence, a pulse of arbitrary shape (and frequency content) will propagate
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Figure 1.2: (a) The dispersion relation and (b) phase velocity of Longitudinal
and Shear bulk waves in steel. These waves show no dispersion and have a speed
independent of frequency.

undistorted in the direction of travel. The dispersion relation gives pairs of k and
w which may propagate in the medium (Figure 1.2)%.

Guided By contrast, for a medium with finite geometry in one or more of its
three dimensions, the boundary conditions which then require satisfying often add
much complexity to the wave solutions. For example, in an infinite plate, the
bulk compressional and shear waves reflect and convert between one another at
the two traction-free boundaries. The resulting superposition gives rise to waves
which travel along the plate, parallel to and ‘guided’ by the boundaries. These
waves, known as Lamb waves, behave quite unlike the bulk waves which produce
them. Instead of two wave types with unique velocities, there are a doubly infinite
number of wave types with increasing frequency, known as ‘modes’ that travel
at velocities dependent on frequency and the plate thickness. Furthermore, most
of these modes only propagate above a particular frequency, known as the ‘cut-
on frequency’. Those waves which are propagating down to 0 Hz are known as
‘fundamental” waves. Figure 1.3 shows some dispersion and phase velocity curves
for a typical plate.

Each branch of the dispersion curve is associated with a particular mode with
a characteristic cross-sectional displacement field, known as the ‘mode shape’. For
Lamb waves the branches are commonly divided into symmetric and antisymmetric
modes, referring to the symmetry of the displacement about the mean surface of
the plate. This example demonstrates many of the general characteristics of guided
waves. For practical purposes, perhaps the most useful property of guided waves
is their ability to travel significant distances along a structure with relatively little
attenuation, which would arise in an infinite medium due to geometric spreading.
This is something which has been exploited in the fields of non-destructive testing
(NDT) and structural health monitoring (SHM), where guided waves can be used
to probe large structures for defects [32]. However, before guided waves can be
utilised practically, the multitude of propagating modes must first be untangled
and understood. In this section, the aim is to review the theory of guided waves
in water pipes, starting from the most elementary models.

2All plots in this thesis were formatted using the SciencePlots package for Matplotlib. [31]
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Figure 1.3: (a) Dispersion relation and (b) phase velocity of Symmetric and Anti-
symmetric Lamb waves in steel plate. A large number of dispersive modes are
present.

1.2.2 Simple One-Dimensional Models

We begin with the simplest interpretations of the dynamic behaviour of an infinite
pipe. The following one-dimensional theories give a basic understanding of wave
propagation at the low frequency limit. The theories are divided loosely into the
type of motion that they describe, namely acoustic, longitudinal, torsional and
flexural. The mathematical formulation of these theories is provided in Appendix

A.

Acoustic Waves The lowest order theory of acoustic wave propagation in a pipe
describes a plane wave which is functionally identical to those which propagate in
free space. In this case, the system is often referred to as a ‘duct’ and the pipe
walls are assumed to be rigid. The pressure field is uniform over the cross-section
of the pipe and the wave propagation is non-dispersive. In contrast to its free-space
counterpart, the fundamental acoustic mode in a duct is confined to propagate in
one dimension only, and is therefore not attenuated by geometric spreading. The
low attenuation and non-dispersive behaviour of this wave is widely exploited in
the field of leak detection, where low frequency perturbations can be detected at
significant distances from the source. Development of the plane wave theory is
attributed to Lord Rayleigh [33].

In a water pipe, the plane wave is the only acoustic mode which is fundamental
and propagates at zero frequency. The theory is accurate in a pipe with rigid walls
when the wavelength is much longer than the pipe radius. When the wavelength
becomes shorter than the radius, additional modes begin to propagate which are
described with higher-order theories. In the case where the pipe walls are consid-
ered to be flexible, a model which includes the fluid-structure interaction must be
used to accurately describe the wave motion.

Longitudinal Considering the longitudinal wave motion in the structure at low
frequency (Figure 1.4a), a pipe can be considered as a thin rod. The elementary
theory is provided in many textbooks, for example those by Graff [34], Cremer [35],
and Junger and Feit [36]. The assumptions inherent to the theory are that the



Figure 1.4: Three types of motion in the pipe structure described by elementary
theories. a) Longitudinal b) Torsional ¢) Flexural motion.

rod is ‘thin’ so that the wavelength is much longer than the radius, the stress
is uniform along the cross-sections which remain plane and parallel, the stress is
uniaxial and lateral strains carry no inertia.

The equation of motion is a simple, non-dispersive wave equation. The model
predicts a single mode which travels at a constant velocity independent of fre-
quency. Qualitatively the solution is very similar to the bulk compressional waves
discussed in Section 1.2.1, with the only difference being the wave speed, which
is about 10% slower in the case of a metallic rod. Physically, this is explained
by the lateral expansions occurring in the rod due the Poisson effect. Since this
means that displacement is not purely longitudinal these waves are often called
‘quasi-longitudinal’ [35].

This elementary theory is extremely limited by frequency range and its practical
use for a pipe does not go much beyond the prediction of longitudinal wave speed
near zero frequency. For a rod theory that is applicable to a higher frequency range,
Love [37] included the effects of lateral inertia due to the Poisson expansions. By
including this, the equation of motion is of the fourth order and the resulting wave
is dispersive, with both phase and group velocities decreasing with frequency. This
behaviour is also seen for the fundamental longitudinal mode in a pipe. Higher
order rod theories will not feature in this project since they do not account for
behaviour specific to a pipe.

Torsional The torsional (Figure 1.4b) waves in an infinite rod (often called a
shaft in this case) are described in the most basic theory by the 1D wave equation,
presented in textbooks by Graff [34] and Cremer [35]. The resulting non-dispersive
wave has a velocity which is dependent on the cross-sectional shape of the rod. For
cylindrical rods, including hollow cylinders, the velocity is that of the shear wave



speed in infinite media. This is understood through the fact that the motion in
this geometry is purely torsional, uncoupled from motion in any other direction,
and so the restoring force is provided only by the shear rigidity between adjacent
cross-sections.

One might expect this elementary theory to break down at higher frequencies,
as with the longitudinal theory. However, for cylindrical geometries, this model
describes the exceptional case where an elementary theory is valid at all frequen-
cies. The fundamental torsional mode of any cylindrical bar or rod is expected to
be a simple non-dispersive wave travelling at the shear wave speed of the material.

Flexural Flexural (also called bending) waves are unlike the primarily shear or
longitudinal waves discussed so far. Although the largest component of displace-
ment is transverse to the direction of propagation (Figure 1.4c), the strains that
dominate the potential energy are in the longitudinal direction [35]. An infinite
number of bending modes are present in a pipe, however only one is nascent down
to zero frequency, known as the ‘beam bending’ mode. The name naturally de-
rives from analogy with flexural waves in a beam, for which there are a few basic
one-dimensional theories.

The Euler-Bernoulli beam theory (EBBT) is the simplest beam bending theory,
often called classical beam theory or engineers beam theory. Developed around
1750 [38], the model has been in use for centuries to solve statics problems where
the deflection is small, or dynamics problems where the frequency is low.

The central assumptions are as follows. Firstly, deflections must be small, so
that the curvature of the beam may be approximated by the second derivative of
the transverse deflection. Secondly, cross-sectional planes which are perpendicular
to the neutral axis remain perpendicular after bending, and the neutral axis runs
through the centroid of the beam’s cross-section. Lastly, the effects of rotational
inertia are neglected, an assumption similar to neglecting lateral inertia in the case
of longitudinal waves in a rod.

The dynamic equation of motion for the EBBT is given by a fourth order partial
differential equation. Substitution of a harmonic wave solution into the govern-
ing equation reveals a wavenumber which increases with square root of angular
frequency. Similarly the phase and group velocities increase in the same manner,
with the group velocity being twice that of the phase velocity.

Although accurate at low frequencies, the EBBT has an unbounded wave speed
with frequency, which is obviously unphysical. This is particularly troublesome
when studying transient problems. Finite wavespeed was achieved by Raleigh’s
addition of rotational inertia [33] and later Timoshenko included the effects of
shear deformation [39]. Timoshenko’s correction lead to a beam theory which, as
remarked by Graff, [34] shows a very close agreement with results obtained from
the exact equations of linear elasticity.

For the purpose of modelling free wave propagation in a pipe, both the Euler-
Bernoulli and Timoshenko beam theories may be used at the very lowest fre-
quencies to model the beam bending mode, with the EBBT having the obvious
advantage of reduced complexity where it is accurate. Timoshenko’s theory may
be used at frequencies higher than the range of validity of the EBBT. A rule of
thumb is that the lateral dimension of the beam should be less than one-tenth of
the wavelength. Both theories will eventually diverge from the behaviour of the
beam bending mode in a pipe however. This is because the analogy of the pipe as
a beam is imperfect, and behaviour specific to the pipe will begin to dominate at



higher frequencies.

1.2.3 Plate Theories

The elementary one-dimensional models reviewed so far approximate the dynamics
of the pipe in the low frequency limit, where the wavelength is much longer than
the pipe radius. Conversely, when the wavelength is much smaller than the radius,
the pipe wall dynamics are well approximated by considering the system as a plate.

The lowest order plate theories have many similarities with their one-dimensional
counterparts. The longitudinal motion is similar to that in a rod, with a slightly
higher wave velocity [40]. The transverse, or bending waves are described in the
simplest case with either the Kirchhoff-Love or Mindlin plate theories. These are
analogous to, and derived from the same assumptions as the Euler-Bernoulli and
Timoshenko theories respectively. Like the beam theories, they are only accurate
when the wavelength is long compared to the thickness of the plate.

Exact plate theories are derived using the equations of linear elasticity, consid-
ering the interaction of bulk and shear waves with the traction-free boundaries.
The bulk waves are separated into longitudinal compressional waves, (sometimes
known as P-waves) and shear waves. Shear waves are further grouped into those
which consist of transverse motion in and out of plane, known as shear-horizontal
(SH) and shear-vertical (SV) respectively. SH waves are uncoupled from other
types of motion and the fundamental SH mode is non-dispersive at all frequencies,
similar to the torsional wave in a shaft. The remaining P and SV waves combined
give rise to the Lamb wave solutions [41], which are widely used for non-destructive
testing in plate-like structures such as aeroplane fuselages or boat hulls.

The frequency range for which the plate theories are applicable is above that
considered by this project. Nevertheless the theories have been reviewed here for
completeness.

1.2.4 Thin Cylindrical Shell Theories

Until now, all theories discussed have dealt with idealised systems which do not
account for the geometry unique to a pipe. These models are only accurate in
the narrow wavelength regime where the pipe behaves approximately like another
system. Thin cylindrical shell theories formulate the dynamic behaviour of a pipe
in terms of stresses and strains of the mean radius, which occur in the axial,
tangential and radial directions of a cylindrical coordinate system. The curvature
effects, which couple stresses in, for instance, the radial and tangential directions
are accounted for as well as the continuity condition around the circumference of
the pipe. By including these effects the behaviour which is characteristic of pipe
systems specifically is seen.

The continuity condition necessitates solutions with harmonically varying dis-
placements in the circumferential direction. This allows modes to be classified by
the number of wavelengths n around the circumference, known as the circumfer-
ential mode order. Where n = 0 there is no variation in displacement around
the circumference of the pipe and for this reason these modes are known as ax-
isymmetric modes. Axisymmetric modes include all longitudinal modes and the
fundamental torsional mode.

There is a large number of different shell theories which can be found in the
literature. Although very similar for most practical purposes, each may be de-
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rived with sightly different approximations or assumptions on the kinematics of
deformation. An extensive review of various shell theories and their differences has
been performed by Leissa [42]. The first shell theory for cylinders was produced
by Love [37] and since then many modifications have been made by, for example,
Donnell [43], Fligge [44] and Kennard [45]. Each of these theories is governed
by three coupled partial differential equations which can be solved with harmonic
solutions for each displacement component. The dispersion relation is in the form
of an 8th order polynomial for the case of in vacuo shells.

Central to the assumptions of these theories are that the shell wall is thin,
i.e the thickness to radius ratio is very small. This assumption requires only
the displacements of the middle surface to be considered and essentially neglects
effects associated with transverse shearing or rotary inertia of the shell walls. These
assumptions are shown to give results which agree well with the exact theory for
a considerable range of frequencies, as shown by Greenspon [46].

Shell theories have been used to great effect in theoretical investigations of
wave propagation in an infinite pipe, both in vacuo and fluid-filled. Smith [47]
analysed the dispersion relations and displacement characteristics of free waves
in vacuo using Kennards theory, separating the modes into three distinct classes.
Lin and Morgan [48] presented phase velocity curves for a shell coupled to an
internal fluid. Later the coupled system was also solved and analysed by Fuller
and Fahy, [49] who gave expressions for the energy distribution between fluid and
structure. These analyses have since been reproduced in works by De Jong [50]
and Brevart [51] for the purpose of studying vibration in piping systems. Notable
work using shell theory has also been done by Fuller [52-55] and Pavi¢ [56, 57].

For the purpose of this project, shell theories can be useful in predicting dis-
persion curves and displacement profiles for a considerable range of frequencies.
One particularly important frequency, known as the ‘ring frequency’, occurs when
the wavelength of the longitudinal wave in the shell wall is equal to the circumfer-
ence [40]. This transitional frequency marks the boundary between two different
types of shell behaviour. With this, it is seen that the models discussed before
now were only applicable well below the ring frequency (rods/beams) or well above
(plates). The thin shell theory gives a model which is much more complete in its de-
scription of the pipe dynamics below, at and above the ring frequency, provided the
relevant assumptions hold. The mathematical formulation for the Fliigge model is
provided in Appendix B.

1.2.5 Exact Theories

By using the exact equations of linear elasticity, and formulating the wave propa-
gation in a structure by considering the superposition of bulk waves subject to the
boundary conditions, so-called ‘exact’ theories may be developed for the simplest
geometries. These theories are accurate at all frequencies for any sized system.
Naturally with the increase in accuracy comes considerable complexity in the so-
lutions. In fact, many of these theories were developed before the computational
means were readily available to solve them. These theories thus conclude the dis-
cussion of analytical models and a brief review thereof is given for the sake of
completeness.

The full frequency equation for an infinite solid rod was first given by Pochham-
mer [58] and Chree [59], although solutions were not sought for quite some time. In
a similar way, Lamb developed the characteristic equations for the infinite plate [41]

11



which were only solved years later. The problem of hollow cylinders was pre-
sented and solved by Gazis [60,61] and his approach was followed by Meeker &
Meitlzer [62] who solved the problem of solid cylinders and plates. Further analysis
on hollow cylinders was performed by McNiven et al. [63,64] and the case of fluid-
filled cylinders was investigated extensively by Kumar [65-67] and Del Grosso [68].
A modern implementation of the exact theory for hollow cylinders has been given
in a textbook by Rose [69].

For the purpose of this project these exact theories bring unneeded complexity
when analysing thin cylindrical hollow cylinders over a fairly narrow frequency
range. Solutions are only available for a few restricted geometries and require
robust complex root finding algorithms. Because of this, there is little reason to
pursue solutions for such theories over simpler analytical models or more general
numerical methods.

1.2.6 Numerical Models

In this section, an overview of the popular numerical methods for modelling guided
waves in pipes is given, with specific considerations given to their implementation,
including freely or commercially available software packages. As mentioned before,
analytical models are limited in their generality. For complex geometries and
external /internal couplings analytical solutions are unlikely to exist, and where
they do, require numerical methods to fully solve in any case. It is for this reason
that numerical techniques are increasingly popular for the purposes of modelling
guided waves.

Matrix Methods One of the first modelling methods was developed for multi-
layer waveguides and is known as the ‘Transfer Matrix Method’. Introduced ini-
tially by Thomson [70] and corrected by Haskell [71], the technique formulates the
stresses and displacements at each layer in terms of matrices which are then cou-
pled together to create a single transfer matrix. The numerical instability of this
method at high frequencies led to the development of the ‘Global Matrix Method’
by Knopoff [72] which is comparatively slower but does not suffer from such in-
stabilities. Once the matrices are assembled, both methods require complex root
searching to obtain the dispersion curves which is one of the main disadvantages.
A summary of both matrix techniques is given by Lowe [73]. Both matrix meth-
ods work fundamentally by considering the superposition of bulk waves according
to the equations of linear elasticity. De Jong used the transfer matrix method
to model wave propagation through a fluid-filled pipe elbow [50]. Barshinger &
Rose used the global matrix method to study a hollow cylinder with a viscoelastic
coating [74]. Paviakovic and Lowe developed the popular software DISPERSE,
now over 30 years old, [75] which uses the global matrix method and is capable of
modelling hollow cylinders [76] and plates. Much more recently, Huber developed
a free software DispersionCalculator for isotropic and anisotropic plates [77]. The
software uses a stable reformulation of the transfer matrix method known as the
stiffness matrix method [78,79].

Finite Element Method Perhaps one of the most popular methods of nu-
merical modelling for a range of problems in linear elasticity is the finite element
method (FEM). This technique involves subdividing a physical domain into a large
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number of small parts (known as a meshing) governed by relatively simple equa-
tions. These elements are then reassembled to solve for the whole system. The
FEM is very powerful when modelling complex geometries, due to the ability to
mesh a domain with elements of variable size. Finite element models may be used
to perform analysis of the static, time domain, or frequency domain behaviour of
a given system. Frequency domain simulations can give insight into the modal
characteristics of the system whereas time domain simulations allow analysis of
transient forcing.

The FEM has been used to model time domain behaviour in pipes. For exam-
ple the interaction of guided waves with defects [80,81] or the focusing of waves
with multiple radially attached transducers [82,83]. The main disadvantage of the
method, generally speaking, is the computation time naturally increases with the
number of elements and the size of the system. When attempting to model the
behaviour of an infinite waveguide, obvious complications arise. In the time do-
main, a very large system must be modelled and then truncated before reflections
can interfere with the results. In the frequency domain, perfectly matched layers
(PML) [84] may be used at the ends of a sufficiently long waveguide to terminate
any incident waves.

Fortunately, the drawbacks of using a ‘full’ FEM can often be avoided using
techniques which only model a small section of the waveguide. The semi-analytical
finite element (SAFE) method is one such technique which requires only the cross-
section of the waveguide to be meshed. The technique dates back to 1973 [85,86]
but was popularised by Gavri [87], who used it to study wave propagation in a rail.
The ability to model a waveguide of arbitrary cross-section has seen SAFE used in
a wide range of different problems, a selection of which can be found in Ref. [88].
The basic assumption of the technique is that the displacement field in the axial
direction takes the analytical form of a harmonic wave, effectively reducing the
number of dimensions of the problem. For axisymmetric waveguides just one
dimension requires meshing [89]. With SAFE, obtaining the dispersion relation
reduces to an eigenproblem which can be solved with any of the available methods.
In addition to arbitrary geometries, SAFE is also able to model waveguides coupled
to an infinite surrounding medium [90, 91].

In recent years, some work has been done simplifying the use of SAFE by
implementing the technique in commercially available FEM packages, avoiding
the need for researchers to write their own finite element code [92]. Predoi et al.
presented a formulation of SAFE which can be implemented with PDE solvers in
many commercial FEM packages [93]. This was used by Thakare et al. to model
wave propagation in bones using COMSOL’s coefficient form PDE solver [94] but
requires manual input of a large number of stiffness coefficients. Recently, a native
implementation of SAFE was added to COMSOL’s structural mechanics module,
where one may solve for the ‘out-of-plane wavenumber’ [95] of the 2D domain
using a modal analysis study (page 312 of Ref. [96]). In 2011, Bocchini et al.
presented their free software Graphical User Interface for Guided Ultrasonic waves
(GUIGUW) [97] which uses the SAFE. The software is capable of modelling plates
and cylinders as well as arbitrary cross-sections.

Another method similar qualitatively to SAFE, is the wave finite element
(WFE) method. Developed much more recently [98,99], the WFE method models
a small segment of the waveguide using conventional finite elements and then im-
poses periodicity in the direction of wave propagation. This method can be used to
predict transmission through defects by coupling damaged and undamaged waveg-
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uides as shown by Zhou & Ichchou [100]. The WFE method has been used in many
of the same contexts as SAFE, and has also been extended to 2D structures [101].
Comparisons between SAFE and the WFE method were also given by Zhou [102]

Finite element methods are one of the most popular, effective and robust nu-
merical techniques for modelling guided waves. With FEM, one may perform a
wide range of analyses on waveguides such as pipes, including fluid-filled pipes
with surrounding media. Studies in the frequency domain allow modal character-
istics, including dispersion relations and displacement fields to be obtained, and
the semi-analytical techniques such as SAFE and WFE allow this to be done with
relatively minimal computational overhead. In this project, the WFE method is
used extensively to study the vibro-acoustic behaviour of water filled steel pipes.
Details of the WFE method and its implementation as an open source package in
the Python programming language are given in Appendix C.

1.3 Energy Focussing and Time Reversal

For the application of antifouling, two broad objectives of this project can be
considered:

e To maximise some vibrational /acoustic quantity (velocity, acceleration, pres-
sure etc.) at a targeted problem location in the waveguide (pipe).

e To maximise the length of the waveguide over which some vibrational quan-
tity may be maintained above a minimum threshold.

It is for this reason that techniques for energy focusing will be reviewed in this
section. Energy focusing allows for amplification of guided waves and can help
mitigate the attenuation due to losses in the waveguide. Two main techniques
have been identified, namely those which converge energy from multiple separate
transducers (phased array) and those utilising mode dispersion to spatially /tem-
porally compress waveforms (dispersion compensation). Finally time reversal is
discussed as a special method of realising both of the aforementioned techniques.

1.3.1 Phased Array

One of the most conceptually straightforward methods of focusing energy at a given
target is to utilise multiple transducers. Provided two or more excited waveforms
meet in phase, an increase in amplitude can be achieved through superposition. By
using a large array of transducers, each with programmable time delays, a beam
may be formed to converge at a chosen target.

This technology has seen a fair amount of discussion in the NDT literature,
with the goal of enhancing defect detection. The phased array allows a larger con-
centration of energy to impinge on a target area, with a larger, better localised echo
resulting from any potential defect. Furthermore the focusing allows inspection
to be performed at a larger range by overcoming attenuation. Broadly speaking,
much of the published literature in this area is mostly concerned with increasing
the signal-to-noise ratio (SNR) of existing detection techniques. This is important
to keep in mind, since ‘noise’ has comparatively little meaning in the context of
this project.

In plates, phased arrays have been used with Lamb waves to create a steerable
beam, allowing targeted inspection of the whole structure. Such technology has
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been presented in a number of papers [103-105] and for a variety of different array
topologies possible on a 2D surface [106]. The same techniques have also been
used at high frequency in a pipe, where the pipe system behaves approximately
like a flat plate with periodic boundary conditions at the edges [107].

For phased array technology developed exclusively for pipes, most notable con-
tributions have been made by researchers at Pennsylvania State University. Li &
Rose [108] first described the circumferential displacement distribution resulting
from a non-axisymmetric partial loading of a hollow cylinder using the normal
mode expansion technique (NME) [109]. They found that this displacement dis-
tribution, named the ‘angular profile’, varies with frequency of excitation and axial
propagation distance. These results were used in a follow-up paper to predict the
angular profile of an array of circumferentially mounted transducers. With this,
an algorithm was presented to tune the amplitudes and phase of each individual
transducer to achieve maximum energy focusing at a desired axial and angular po-
sition [110]. The study was experimentally validated using excitation frequencies
of around 300kHz. In a later study [111], Hayashi et al. verified the technique
using the SAFE method with similar excitation frequencies. Zhang et al. [112]
investigated the ability of the phased array to focus beyond axisymmetric welds in
pipelines. A 35kHz excitation was used and it was found that the welds had little
effect on the efficacy of the focusing technique. Luo & Rose [82] tested phased
arrays in a cylinder with a viscoelastic coating which similarly had little effect on
focusing. At an axial distance of 1.5m, it was shown that phased array focusing
with 8 transducers could produce 5x the peak energy of a comparable axisymmet-
ric wave at a target location. Subsequent work has been concentrated on defect
location/sizing and can be found in Refs. [113,114]. Recently a similar method
was applied to irregular waveguides [115].

Although it has been mentioned, it is important to emphasise that these de-
velopments have occurred with the objective of defect detection, and thus do not
align exactly with the aims of this project. However, it stands to reason that the
use of a phased array of N transducers will achieve at most an amplification of
N x the amplitude of a single transducer. This concludes the discussion of phased
arrays for energy focusing.

1.3.2 Dispersion Compensation

It is well established that the dispersion of guided waves causes waveforms with
mixed frequency content to spatially and temporally broaden as they propagate.
This is due to the frequency dependent wave speed, which causes the various
spectral components of an excitation to separate along the direction of travel. The
extent to which this effect is present depends on the bandwidth of excitation and
the amount of mode dispersion present over this bandwidth.

Traditionally, this phenomenon is avoided in the field of non-destructive testing,
where it can interfere with SNR and spatial resolution [116]. However, as many
researchers have noticed, this effect may be controlled for with accurate knowledge
of the waveguide dispersion curves. By assuming the distance of propagation, a
received signal which is heavily dispersed may be ‘compensated’ thereby removing
the effects of dispersion. Similarly, a temporally long, broadband excitation may
be designed such that all frequency components converge at a specified distance
from the transmitter, resulting in a large peak amplitude at the focal point. This
latter possibility is critical, since it presents the ability to focus energy from a
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single transducer along a one-dimensional waveguide. A review is thus given on
the techniques used for compensating dispersion. As with the phased array, most
of the literature in this area has been concentrated on NDT, with an emphasis on
increasing spatial resolution and SNR.

Alleyene et al. proposed a method of dispersion pre-compensation for Lamb
waves [117]. It was suggested that a compensated waveform would be much more
sensitive to defects along the propagation path. A similar technique was applied
to a steel wire by Yamasaki et al. [118], who applied appropriate phase shifts
to each Fourier component of a square pulse, such that dispersion was compen-
sated for a given propagation distance after transmission. Wilcox devised an al-
gorithm to compensate for an assumed propagation distance of received signals
post-acquisition [119]. He also investigated how inaccuracies in the dispersion re-
lation affected the results. Compensation was used to separate overlapping Lamb
modes by Xu et al. [120]. Dion et al. presented a method of generating large ampli-
tude shock waves in water using a solid cylindrical (60cm long) waveguide to focus
energy [121], which was subsequently patented [122]. A frequency dispersion pre-
compensation method for Lamb waves was presented by Zeng et al. [123] who later
expanded the technique to compensate for the excitation amplitude dependence
on frequency [124]. An iterative time-of-flight extraction method was developed
by Yecel et al. [125]. The technique involved transmitting a waveform with a delta-
like autocorrelation function, and compensating the received echo for different
propagation distances until a maximum autocorrelation peak was achieved. Auto-
correlating transmitted and received signals to achieve higher SNR is sometimes
known as pulse compression (PuC) [126]. Legg et al. used pulse compression and
dispersion compensation to inspect overhead transmission line cables at distances
of up to 130m. A chirp excitation designed using the dispersion relation for an
Euler-Bernoulli beam was analytically and experimentally tested by Waters for
the purpose of creating a large amplitude shock at a desired focal point [127]. It
was shown that the level of amplification in the undamped case increased approx-
imately in proportion to the square root of focal point distance, but in practice
the peak response was heavily affected by damping as well as the the frequency
response of the actuator. Van Gemmern et al. used a Timoshenko beam model
to focus energy in a 1.5m long glass beam [128]. Dispersion compensation with
multiple reflections were utilised to achieve an amplification factor of 20, resulting
in fracture of the beam within 5mm of the focal point. A similar square root
relation between amplification and distance was seen.

This concludes the discussion on dispersion compensation. It is clear from this
short review that the cases in which compensation has been utilised to specifically
maximise the peak response amplitude are relatively rare. Nevertheless the tech-
nique shows promise for the purposes of increasing the peak response at a focal
point, as well as overcoming attenuation.

1.3.3 Time Reversal

Time reversal (TR) is a process whereby the response of some distant excitation
is measured by one or more transducers. Assuming that the transducers are re-
ciprocal and linear, and the medium is lossless, then the response can be made to
reconverge back on the original source by temporally reversing and retransmitting
from the measurement point(s). This is mathematically equivalent to reversing
time, and works due to the time-symmetry of the wave equation. Popularisation
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of TR techniques in acoustics is widely attributed to Mathias Fink, who has per-
formed a great deal of work on the topic with colleagues since the early 1990s. An
introduction to time reversal with examples may be found in Refs. [129,130]. The
main advantage of time reversal is that no prior theoretical knowledge is required
of the wave propagation between source and receiver in order to focus energy.

In acoustics, time reversal is often performed with a large array of transducers
known as a time reversal mirror (TRM). The TRM allows the acoustic pressure
field to be sampled over a large area, allowing a higher level of spatial recompression
upon reversal and transmission. In this way the TRM performs essentially the
same function as a phased array. However, in this case, no manual tuning of phase
delays or amplitudes are required, since all of the information needed is contained
in the measured waveforms. Time reversal is also capable of undoing the effect
of dispersion in one-dimensional waveguides. For example, measuring, reversing
and transmitting the impulse response in such a waveguide will automatically
recombine all frequency components into an impulse at the original source. In this
way the time reversal method can be used for dispersion compensation without
any prior knowledge of the waveguide dispersion curves.

Time reversal has been used in a large number of focusing studies in the past few
decades. Derode et al. used a TRM to recompress the response of an acoustic point
source propagated through a highly heterogeneous medium, in this case, 2000 steel
rods immersed in water [131]. The high order scattering broadened the 1us pulse
into a response of over 200us, which was then successfully refocused back at the
source. Derode et al. later used the same experimental setup to investigate 1-bit
time reversal [132]. It was found that digitising the measured response over 1-bit
led to a larger peak upon reversal, and in some cases improved SNR. This is due to
the 1-bit waveform having a much higher signal power whilst preserving most of the
phase information. The 1-bit TR concept was employed by Montaldo et al. [133]
for the purpose of creating large pressure pulses in water. A solid waveguide was
used to compress energy through dispersion and multiple reflections. Applications
to lithotripsy were considered in a later paper [134]. The researchers suggested that
the 1-bit digitised impulse response leads to the largest time reversed peak at the
source. The broader idea of using an ‘ergodic’ or ‘chaotic’ cavity for time reversal
has been discussed by several authors [135-139] and optimal cavity design was
considered by Arnal et al. [140]. Willardson et al. investigated high amplitude time
reversal focusing in a reverberation chamber [141]. In addition to 1-bit digitisation,
the authors experimented with three other ways in which the impulse response can
be processed to achieve larger peak amplitudes or better focal quality. It was found
that clipping the impulse response above a certain threshold resulted in the largest
amplitude. This technique has been used in a plate to generate very large focal
amplitudes [142]. Time reversal techniques have been applied to a pipe mostly in
the context of non-destructive testing [143-146], although others have considered
energy harvesting and blockage removal as possibilities [147].

The main disadvantage of time reversal is that both a source and receiver are
typically required in order to refocus energy. However, given the wave propagation
in a system can be accurately predicted, then the subsequent calculation of the
system’s impulse response at any point can allow the application of time reversal
without a direct measurement. Since 1-bit TR theoretically yields the maximum
response for a specific point in any system, the technique features heavily in this
thesis as a means to maximise the amplitude of sound/vibration in a fluid-filled
pipe system for application of antifouling.
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1.4 Aims of the Thesis

The aims of this thesis are the following:

e Compile and analyse the current body of research concerning acoustic/vi-
brational control of zebra mussel fouling.

e Assess the means by which sound and vibration amplitudes can be maximised
in a water intake pipe system for the purpose of antifouling.

e Model and analyse wave propagation in fluid-filled pipes, to inform the de-
velopment of a prospective acoustic/vibration based antifouling strategy.

e Compare the modelled response in the pipe to the existing biofouling research
in order to draw some early conclusions for the feasibility of the proposed
technique.

1.5 Outline of the Thesis

In Chapter 1, the problem of invasive mussel fouling in water intake pipes is pre-
sented with a summary of the techniques both currently used and experimentally
tested for antifouling. Sound and vibration is identified as a potential treatment
method. A literature review is thus given on wave propagation in fluid-filled pipes
along with techniques for energy focussing and maximising the response for an-
tifouling purposes.

Chapter 2 then presents a simplified model of the system which considers only
the waves in the fluid. The response to a monopole source is investigated and the
time reversal method is introduced to maximise the pressure at targeted positions.
Comparisons are made between a steady state harmonic excitation and the time
reversal technique. It is shown that time reversal can significantly amplify the
pressure response at a given point.

In Chapter 3, the problem is modelled in a fully-coupled system for the axisym-
metric waves only. The Wave Finite Element (WFE) method is validated and used
to study the free and forced wave propagation under some idealised assumptions.
The time reversal method is once again applied to show the potential to increase
the response at long distances from the source.

Chapter 4 extends the analysis of the fluid-filled pipe to all higher order waves.
The different classes of wavemodes are analysed and the system is driven with a
point force to demonstrate focussing with a phased array.

Finally, the analysis of a fluid-filled pipe concludes in Chapter 5 by modelling
the system as driven by a commercially available actuator. The pressure and accel-
eration response is studied and compared to the existing research on acoustic/vi-
brational antifouling, with some tentative conclusions drawn about the feasibility
of this technique.

To finish, the work in this thesis is summarised and some early conclusions
are drawn in Chapter 6. Suggestions for future work are given. In the appendix,
details of the WFE method are given and the Python model extensively used in
this project is provided.
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1.6 Contributions of the Thesis

e The thesis compiles and systematically analyses existing research on acoustic
and vibrational control of zebra mussel fouling. Potential methods for energy
focussing in a water pipe are summarised.

e The 1-bit time reversal method is applied to a simplified duct system as a
means of demonstrating the the ability to amplify the peak response at a
given point.

e The WFE method is used to analyse a fully-coupled fluid-filled pipe, with
emphasis on the optimal bandwidth and excitation for long range power
transfer. The harmonic and transient responses are compared with the aim
of maximising the response.

e A numerical experiment is performed by coupling the WFE model to an
inertial actuator. The levels of pressure and acceleration obtained through
both harmonic and time reversal excitations are compared to the existing
mussel antifouling literature. Early conclusions are drawn on the feasibility
of the technique.
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2. Acoustic Focussing in a Rigid
Walled Duct

In this chapter, the acoustic wave propagation in a pipe is modelled by considering
the system to be a rigid walled infinite duct. The normal mode expansion technique
is used to obtain the wave solutions which are described in terms of their free-wave
characteristics. The forced response is subsequently assessed using a monopole
source expansion. In the interests of anti-fouling, the means by which the pressure
can be maximised at the wall of the duct is presented. Firstly using a harmonic
excitation, the pressure is found to peak at varying frequencies, mostly associated
with the cut-on of higher-order modes. After this, the time-domain response to a
transient excitation is studied. Here, the time reversal method is introduced, and
modified with the aim of producing the maximum instantaneous pressure response
at a targeted distance. The time reversal technique is shown to produce pressures
much greater than is possible with a harmonic excitation at the same point, albeit
with a lower average input power.

2.1 Analytical Formulation

The higher-order theory of acoustic waves in a duct is well established [148,149].
The problem is briefly derived beginning with the acoustic wave equation in three-
dimensions, which describes pressure field over space and time coordinates p(r,t)
10%p
2
el 4 2.1

b ¢t ot? (2.1)
where ¢q is the sound speed in the medium. The spatial and temporal variations
in pressure are assumed to be independent such that p(r,t) = P(r)T(t), which
leads to the following separation of variables

viP 1 4T

P &T a2 (22)

Non-trivial solutions exist only if each side of equation is equal to the same con-
stant, yielding two independent ODEs.

V2P , 1 a7 )

The constant is chosen for convenience with a priori knowledge that k is the
acoustic wavenumber in free-space defined as k = w/cy, where w is the angular
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Figure 2.1: Duct coordinate system. The waveguide is infinite in the axial dimen-
sion.

frequency. The time variation can be conveniently expressed with the harmonic
solution T'(t) = e/**. What remains is known as the Helmholtz equation, which
describes pressure field in the frequency domain

V2P = —k*P (2.4)

In the cylindrical coordinate system illustrated in Figure 2.1, r = (x,r, ) and
the V operator is given by

10 0 1 02 0?
Vi=lar (a_> T io T o (25)

The Helmholtz equation can then be solved in cylindrical coordinates with further
separation of spatial variables P(z,r,0) = X(x)R(r)©(0). Substitution of this
into equation 2.4 and dividing by r?/P gives

(7“2 d’R r dR) 1d?6  r2d2X

== t=— |+t + 55 +Fr’=0 2.6

R dr?  Rdr O do? 7 d2? (26)
The full derivation is bypassed by leveraging known solutions. Waves propagating
axially in the positive xz-direction are expressed as a progressive plane-wave X (z) =
e 7*=% where k, is the axial wavenumber. Furthermore, periodicity in the azimuthal
direction admits solutions of the form

Q) =e 7 or O(f) =cos(nh), n=0,1,2.. (2.7)

Here the first solution represents a helical wave which spirals around the z-axis,
with the phase changing according to (nf + k,x). Two such waves spiralling in
opposite senses combine to create the latter solution, which represents a standing
wave around the circumference [149]. Here, the cosine solution is chosen to rep-

resent the 6 dependence. Substitution of X (x) and ©(0) leads to the final ODE
describing the radial variation in pressure.

d’R  1dR n?
_— —— K-k ——)R=0. 2.8
dr? + r dr + (( ) r2) (2.8)

This is a modified form of Bessel’s equation, which has the solutions

R(r) = ByJy(k,R) + CuNo (o R) (2.9)
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the latter of which is undefined at » = 0 and can be discarded. The solution J,, is
the n'™ order Bessel function of the first kind [150]. The arbitrary amplitude B, is
retained and combined with the circumferential solution to define the transverse
‘eigenfunction’

®,,(r,0) = B, J,(k,1) cos(nb) (2.10)

and the pressure field for a single wavemode is expressed as

Py (x,7,0) = ®,(r,0)e " (2.11)

Wall Boundary Condition To complete the description of the waves in the
system, the radial wavenumber k, is calculated by considering the boundary con-
ditions at the wall. The axial wavenumber k, is subsequently solved with the
relation

K =kZ+k? (2.12)

where k can readily be found at any frequency.

The wall impedance is represented by the dimensionless quantity { = Zy.n/poco,
where pq is the density of the medium. At r = a the no-slip condition is applied,
leading to the following relation between pressure and radial acoustic velocity V.

-1 0P
jkpUCO OR’

P = pocoCVr, Vo= (2.13)
where V. has been expressed with Euler’s equation in the frequency domain. Sub-
stitution of the solution for the pressure field in Equation 2.11 into the above leads
to the characteristic equation

T (kya) — ZC:’”

J (kra) =0 (2.14)
which, in general, must be solved numerically at each frequency to find the roots
(kra) for arbitrary . Two special cases can be identified where the wall impedance
is either infinite or zero, which represent the case of a rigid or pressure-release
boundary respectively. From either equation 2.14 or 2.13, when ( = 0 the pressure
must vanish at the wall, which is satisfied when J,(k,a) = 0. For a hard wall,
the radial velocity is zero at the wall, requiring that the radial pressure gradient
is zero J! (k.a) = 0. In each of these cases the roots of the equation are frequency
independent, purely real and do not require numerical methods to solve.

When considering the acoustic propagation in a pipe, the wall impedance will
be 0 < ( < oo and depend on the stiffness of the pipe wall. To properly account
for this, a complete model of the structural dynamics of the system, along with
the two-way coupling between fluid and structure is required. The fully-coupled
system is left to be modelled with finite element methods in later chapters and
for now it is assumed that the pipe wall is rigid with ( = co. The validity of this
assumption depends foremost on the relative impedances of the fluid and structure.
This in turn a function of the material properties, pipe thickness-to-radius ratio
and also frequency. In a very thick steel pipe (or borehole), for example, the
degree of coupling can be crudely gauged by comparing the ratio of specific acoustic
impedances between the fluid and pipe materials, for air, this is 140,000 suggesting
that the wall can practically be considered as rigid. For water, this quantity is
much lower at 32, indicating that the rigid assumption is less ideal.

With the characteristic equation for rigid walls given by J/(k.a) = 0, the
(purely real) roots are thus found at the extrema of the given Bessel function, of
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Figure 2.2: Pressure mode shapes of a rigid walled duct, labelled by their mode
numbers, n (rows) and m (columns).

which there an infinite number for each n. We denote the m™ root of the n* order
Bessel function with with

Nnm = kra m=1,2,3... (2.15)

The roots are then commonly found by consulting pre-calculated tables or through
the use of preferred software routines. In this case, the SciPy package for Python
provides the roots. The transverse eigenfunction is now defined for a single mode
by the two mode numbers (n,m) such that

Bpyn(1,0) = By (kyr) cos(nd) &, = ’7’;’“ (2.16)

Some of the lowest-order transverse mode shapes are plotted in Figure 2.2. The
(0, 1) mode stands out as having uniform pressure distribution. This is because
the first root of .J), is zero, leading to k, = 0. This is known as the plane wave and
it is functionally identical to its free-space counterpart.

With the solution of the radial wavenumbers, the axial propagation can be
considered. Guided waves propagate with the axial wavenumber k, expressed

with
ky = \/k? — k2. (2.17)

When £ > k,, the axial wavenumber is purely real and the wave propagates down
the x-axis without dissipation. Conversely, where k£ < k, the axial wavenumber
becomes purely imaginary, and the wave is instead represented by a decaying
exponential pressure in the near-field which oscillates time harmonically. This is
known as an evanescent wave, which does not transfer energy down the axis and
instead is confined near the source which generated it. In the case when k& = k,., the
axial wavenumber is zero, implying the axial wavelength is infinite, and the mode
takes the form of a standing wave in (7, f) spanning the entire waveguide axis. The
frequency at which this occurs is known as the ‘cut-on’ or ‘cut-oftf’ frequency and

can be found with
Hn,mCo

a
above which the wave is propagating and below which the wave is evanescent. The
cut-on frequency is seen to depend on the mode number, sound speed and radius

(2.18)

Weut =
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Figure 2.3: Phase and group velocities for a water-filled duct, a = 0.2 m

of the duct. For the plane wave the cut-on frequency is zero, indicating that it
propagates at all frequencies.

The relationship between the axial wavenumber and frequency is known as the
dispersion relation, and is written explicitly for each mode with

ha(w) = \/ (3) ~ (T (2.19)

along with the phase and group velocities given by their respective definitions

¢y = w/ky and ¢, = dw/dk

cp(w)w[<cﬂ0>2<nn7’m>2]§ ¢y() = co {1—(%)15 (2.20)

For the plane wave, 11 = 0 and so the phase and group velocities reduce to ¢y. All
higher order modes are dispersive. The phase and group velocities are plotted in
Figure 2.3 for a 0.2 m radius water-filled duct. Higher order modes cut on with zero
group velocity, where they are purely transverse standing waves. An alternative
view to the modal formulation sees the waves as being formed of superimposing
pairs of plane waves which are travelling obliquely to the z-axis. As the frequency
is increased above cut-on, the group velocity approaches ¢y, asymptotically as the
waves take an increasingly direct path down the waveguide.

2.1.1 Damping

In the preceding description of the system, propagating waves have purely real
wavenumbers and do not attenuate as they travel down the z-axis. This is a di-
rect consequence of the rigid boundary condition, which yields purely real values
of Npm. The absence of any damping is problematic when modelling the forced
response in the waveguide. In the frequency domain, there is an unbounded reso-
nance when exciting at the cut-on frequency of a mode, as energy accumulates in
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the transverse standing wave without limit. This manifests as an infinitely long
reverberation in the time-domain. Some form of dissipation must therefore be
added to the model in lieu of modelling the wall impedance.

Other sources of attenuation in a rigid duct are considered. These could arise
from, for example; bulk losses in fluid, scattering from rough walls, interaction
with air bubbles, and thermo-viscous losses at the wall.

We assume that the bulk losses are negligibly low, the duct walls are smooth,
and there are no gas bubbles suspended in the fluid. Instead, attenuation will be
assumed to arise only due to thermo-viscous losses in the boundary layer. This
is the region of fluid near the wall where viscosity effects are significant due to
the particle velocity rapidly approaching zero at the boundary. A model which
incorporates boundary layer attenuation in the plane wave was first proposed by
Kirchhoff [151]. Since then, many researchers have developed theories which extend
this to the higher order modes in a duct. The most general of these, introduced for
example by Dokumaci and Bruneau et al. [152,153] lead to non-linear dispersion
relations which must be numerically solved with a root-finding algorithm. Alter-
native closed-form solutions have been derived under certain assumptions such as
a wide duct with uniform mean flow [154,155]. In this work the model proposed
by Bruneau et al. [156] for wide ducts is used to predict the axial wavenumbers
k.

The model is valid under the assumption that duct radius is much larger than
the boundary layer thickness d, but small enough that bulk losses are insignificant.
This is expressed [157]

2
a cg 1
— —= 2.21
d << 5 << 57 (2.21)
and the boundary layer thickness is defined as
2
d= /2 (2.22)
wpo

where p is the dynamic viscosity of the fluid.

In addition to this, the Bruneau model assumes that the duct boundary is ‘lo-
cally planar® with respect to the acoustic wavelength. Whilst this is not well satis-
fied at lower frequencies (<~10kHz), comparison with the more general Dokumaci
solutions using the open source package ‘acdecom’ [158] showed good agreement
between the two models over the frequency range studied. The complex axial
wavenumbers are calculated as follows

k2 =k, + (A—iB) (2.23)

where k! is the undamped solution calculated with the previous formulation. The
parameters A and B are expressed

Im (e, /a) B — ok Re (epm/a)
1 - (n/77n,7n)2 1- (n/nn,m)2

an,m:<”<_7;”m> B+ By + DVArM/C, B = 1/plzc(urj) (2.25)

The relevant thermo-viscious parameters introduced Ar, M,,, C, and ~, are the
thermal conductivity, molar mass, specific heat capacity, and specific heat ratio

A =2k (2.24)
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Figure 2.4: Attenuation curves in the duct with only boundary layer losses included
through the Bruneau approximate model. [156]

respectively. The v parameter is set to a value just above 1, due to the fact that
water is slightly compressible [159].

With the solution for the complex axial wavenumbers, the attenuation is com-
monly expressed in the following way

Attenuation (dB/m) = —20log 10(e) - Im(k,,). (2.26)

The attenuation curves using the thermo-viscous Bruneau model are shown in
Figure 2.4. These suggest that attenuation is lower for axisymmetric modes, and
increases quickly with n for (n, 1) modes. The plane wave solution is identical to
the well-known Kirchhoff plane wave. Altogether the attenuation in the duct is
low with only boundary layer losses. For example, the plane wave amplitude at
10 kHz is predicted to halve at a distance of 1.2 km.
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2.1.2 Monopole Source Expansion

The forced response in the waveguide is formulated with a summation of the
orthogonal modes derived in the previous section, which are excited according to
the axial velocity source distribution Vy(r, ). The general procedure to determine
the velocity coefficients involves calculating the inner product between the source
term and the radial eigenfunctions

1
Vn,m = // (I)n,m (T, 9) V; (Tv 0) dA (227)
AJJa
from which the pressure coefficients follow with
k
Pn,m = pUCOk—anm (228)

and the total pressure field is expressed with the modal summation

oo o0

P(z,7,0) =Y Y Pom®pme ™" (2.29)

n=0 m=1

For an arbitrary source distribution, determining V,, ,, may require numerical
methods. In the present work the solution is simplified by considering the case of
a monopole source, assumed to lie at © =0, r = rg, 8 = 6. Thus

Va(r,0) = Q5(0 — 00)8(r — ro) (2.30)

where Q is the volume velocity of the monopole, which is constant with frequency
and has units of m®s~!. The resulting pressure field for this excitation can then
be written explicitly for > 0 as [160, 161]

A C (o] o0 ]{j )
P(z,r,0,w) = zc’iiomo YN k—an(krr)Jn(krro) cos (n]f — Bp|)e =" (2.31)

) n=0 m=1

where the normalisation factor A,,,, for each mode is given by

ma*J§ (), ifn=20
Ao = 2 AN 2.32
’ T J2 (pa) <1 — (%) ) if n > 0. (2:32)

Equation 2.31 gives direct insight into pressure field excited by the source. The
presence of k, in the denominator indicates that the largest response over frequency
is at the cut-on of a given mode. In the undamped case, k, = 0 at cut-on and
the pressure is infinite. This is avoided with the damping model used, which
ensures |k,| > 0 at all frequencies. The J,(k., 7o) term shows the dependence of
the pressure amplitude on the radial coordinate of the monopole. For example, if
ro = 0 then each term in the series for which n > 0 will evaluate to zero, and only
axisymmetric waves are excited.

The modal series in equation 2.31 contains infinite terms. In practice however,
the series converges after a given number of terms depending on the frequency of
excitation. It is sufficient to use the value M for which 1y s > ka, and the value
of N for which nx1 > ka, where k is calculated from the maximum frequency of
interest.
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Parameter

Value Unit
a Duct radius 0.2 m
Co Fluid sound speed 1480 m/s
00 Fluid density 1000 kg/m3
A Fluid thermal conductivity coefficient 0.6 W/mK
M, Fluid molar mass 18 g/mol
C Fluid specific heat (isobaric) 4200 J/K
vy Ratio of specific heats 1.002
7 Dynamic viscosity of water 0.001 Pa-s

Table 2.1: System parameters of a water-filled duct.
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Figure 2.5: Harmonic pressure fields excited by a monopole source located at
x=60=0,r=0. For frequencies of 1500, 2200, and 4000 Hz from left to right.

2.2 Harmonic Response

Now a brief description is given of the system’s harmonic response when subject
to a monopole source, which is positioned at the wall with coordinates x = 0,
r = a, @ = 0. The parameters of the system, chosen to represent a fluid-filled
duct of typical intake pipe dimensions, is shown in Table 2.1. The monopole
source radiates sound isotropically, and represents the limit of a pulsating sphere
approaching zero radius. This approximates the case where an isotropic source is
small compared to the shortest wavelength of interest. In this chapter, frequencies
up to 40.96 kHz are studied, and in the time-domain the highest frequencies are
filtered out to remove aliasing. The minimum wavelength is then between 3-5 cm.
The source strength Q is set to 1 in all cases for convenience, thus the pressure
calculated with equation 2.31 also represents the transfer function H(z,r,0,w)
between the source strength and the pressure at any given point.

H(z,r,0,w) = P(z,r,0,w) when Q=1 (m’s™") (2.33)

The pressure field calculated with equation 2.31 is visualised over a length of the
waveguide for three frequencies in Figure 2.5. At the lowest frequency of 1500
Hz, the response is comprised of only one mode, which is the familiar plane wave
with no transverse variation in pressure. As the frequency increases, higher order
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Figure 2.6: The magnitude of the pressure field calculated with equation 2.31,
where r = a, 6 = 0. In a) the pressure spectrum is plotted at a single distance
with and the first three propagating modes are labelled. In b) the maximum
pressure is plotted down the axis for a single frequency.

waves begin to cut on and the resulting modal interference causes the pressure
field to become increasingly complex. This can be seen in the pressure spectrum
calculated at x = 5 m, shown in Figure 2.6a). Below the first duct cut-on, only
the plane wave propagates and the response is flat with frequency. The cut-on of
higher-order modes is identified by the sharp peaks in pressure. As more modes
propagate and interfere, there is increasing variation in the maximum pressure
with both distance and frequency. This is further illustrated in Figure 2.6b),
where the maximum pressure is plotted for a single frequency with axial distance.
The constructive and destructive superposition of multiple modes leads to regions
of very high, and almost zero pressure depending on the axial coordinate.

The full pressure spectrum up to 40 kHz is shown at distances of 50 m and
5000 m in Figure 2.7. Closer to the source, the maximum pressure slowly increases
with frequency, due to the increasing number of propagating modes which can
constructively interfere, and in contrast to the damping model which predicts
higher attenuation with frequency. This latter effect only becomes significant very
far from the source, since the system is only very lightly damped. At the maximum
frequency of 40 kHz the mode numbers included in equation 2.31 are determined
to be N = 34, M = 13, and over 400 modes are used in the calculation of the
pressure field.

We now discuss how to maximise the harmonic pressure. At any given point,
there will be an optimal frequency of excitation which elicits the largest possible
harmonic response. For simplicity, the transverse coordinates will always be set to
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Figure 2.7: Magnitude of the volume velocity to pressure transfer function at
r=a,0 = 0, for two distances from the source.

r = a,f = 0 and the axial coordinate z; will be referred to as the target (or focal)
distance. The peak pressure for a given x will typically be found somewhere near
the cut-on frequency of a higher-order mode, or may arise due to multiple modes
combining in phase. The maximum harmonic response can be expressed as

Hpox(zf) = max (|H (zf,w)]) . (2.34)

As mentioned, H.. is very sensitive to frequency and distance due to multi-
modal interference. In a practical setting this makes it challenging to maintain
the maximum response at different distances.

Figure 2.8 shows the maximum pressure with distance for a few selected fre-
quencies alongside Hy.c. This outlines the difficulty when seeking an optimal
excitation. The frequency f = 2169 Hz is the pressure peak associated with the
(1, 1) mode, which is first higher-order mode to cut on. Similarly f = 24926 Hz
represents the cut-on of a much higher frequency mode. In both cases the max-
imum pressure with a single frequency has large fluctuations with distance, and
drops off faster than the optimal excitation calculated with equation 2.34. For
f = 1500 Hz, only the plane wave propagates and the maximum pressure down
the duct is uniform but much lower relative to what can be achieved with the
higher-order modes.

2.3 Time Domain Response

Having assessed the system in the frequency domain, we now look to use transient
excitations to maximise the pressure at a given point. The objective is to use the
dispersive behaviour of the duct to focus energy the target. Before proceeding,
the transfer function is first modified to limit the bandwidth of the monopole and
thus prevent aliasing in the time domain by filtering out the highest frequencies.
The transfer function is henceforth given by

H(zyw)=H(zs,w)Z(w) (2.35)

Where Z(w) represents a fourth-order, zero-phase Butterworth low-pass filter with
cut-off frequency 0.6 fiax, and H'(xf, w) is the unfiltered pressure transfer function
at xy obtained from equation 2.33.
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Figure 2.8: Maximum pressure at the wall along the waveguide axis for various
excitation frequencies. Also shown is the maximum pressure at the optimal fre-
quency fop, calculated independently at each distance.

We now consider applying a signal, u(t), which is taken to represent the time-
varying monopole source strength. For convenience, this signal will always be
normalised such that |u(t)] < 1. To calculate the pressure response g(zy,t) some
distance away, one can first convert u(t) into the frequency domain with the Fourier
transform

U(w) = F{u(t)}. (2.36)

The spectrum of the response at x; can then be expressed

G(zy,w) =U(w)H(xs,w), (2.37)
which can then be converted back into the time domain

9(xs,t) = FH{G(ay,w)}. (2.38)

In this work, all time-frequency transformations are performed with the discrete
fast Fourier transform (FFT). The transfer function is sampled at a number of
evenly spaced points between 0 to fiqe = 40960 Hz. The number of samples is
varied depending on the desired FFT duration in the time-domain.

2.4 Time Reversal

Time reversal uses the T-symmetry of the wave equation to effectively reverse the
propagation step of a wave as it travels from a source to a receiver. Typically a
large array of transceivers is used to measure the response induced by a distant
excitation, and then simultaneously re-emit the time-reversed version of the mea-
surement. This is known as a time reversal mirror (TRM). If no information is
lost then the waves will travel backwards and recreate the source event as if time
had been reversed.

In the present work, time reversal is used with a single source and receiver,
which is known as single-channel time reversal. As will be seen, using only a single
channel can still be very effective in a waveguide such as this because of the way
that waves are confined by the boundaries. In the duct, an alternative to the
modal description sees the dispersive behaviour as arising from pairs of interfering
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Figure 2.9: Diagram of the transient focussing setup. The monopole is excited
at A with a time varying source strength and the resulting pressure response is
calculated at B.

plane waves which ‘bounce’ down the duct via a series of oblique reflections off
the walls. From this perspective, the spatial information usually provided with a
TRM is instead encoded in the time-domain as an ‘echo’ or reverberation of the
source event. Focussing systems which use high-order scattering in this way are
known as ‘virtual phased arrays’ or ‘chaotic cavity transducers’.

2.4.1 Application

Consider the diagram of the problem in Figure 2.9. The monopole source is located
at position A, (x = 0,r = a,0 = 0), where the signal u(t) is applied, denoting the
time varying source strength. At some distant point B, located at x; with the
same transverse coordinates, the pressure response g(t) is obtained. If u(¢) is the
unit impulse

ult) = 8(t) (2.39)

then ¢(t) is the impulse response function of the system h(t), calculated with
h(t)=F ' {H(w)} (2.40)

Figure 2.10 shows the impulse response at various distances from the source. Ap-
parent here is the temporal broadening due to dispersion which significantly at-
tenuates the response as energy spreads along the waveguide axis. The pulse is
broadband and so contains many frequencies which travel at varying axial ve-
locities. Time reversal then states that applying h(—t) at B be should have the
opposite effect, and instead energy will converge as the waves propagate back to
the original source at A. In fact, because the wave equation is reciprocal, the sys-
tem should behave identically if the source and receiver positions are interchanged.
With this, h(—t) can instead be applied to the source at A to focus at B. With
the source strength limited such that |u(t)] < 1, the time reversal waveform is
expressed

b
) = (RO (241)
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Figure 2.10: The impulse response function calculated at 10, 25 and 50 metres,
shown on the same amplitude scale. Spatio-temporal broadening due to dispersion
attenuates the response with distance.

which will create a response at B similar to the original impulse applied at A. The
response is not a perfect delta function because information is lost when sampling
the field with a single transducer.

It is noted that the waveform created with equation 2.41 is generally much less
than 1 for most of its duration. In the interest of achieving the largest possible
response at B, the amplitude of the waveform can be further modified to increase
the signal power of the excitation. A variety of techniques have been explored for
this. Montaldo et al. assert that digitising the impulse response over 1-bit theo-
retically provides the best excitation for the largest response [134]. Experiments
by Willardson et al. [141] compared this method to similar techniques, and found
applying 1-bit over a certain threshold, known as ‘clipping’, performed the best.
The clipped waveform is expressed

sgn(utg(xs,t)), if lutg(xs, t)] > €
worm (o, 1) = 4 %8 (wrn(wy, 1)), 3f [ure(zs, t)] 2 er (2.49)
urr(xs,t), otherwise

where sgn denotes the sign/signum function and er is the threshold value, in this
case set to e = 0.01. The clipping technique preserves the phase information in
time-reversed impulse response but greatly increases the signal power by forcing
the waveform amplitude to the largest possible value.

Equations 2.41 & 2.42 are now applied to the impulse response at z; = 50 m to
obtain the focal waveforms shown in Figure 2.11. The transfer function is sampled
over 2!7 points and the corresponding duration of the FFT is 1.6 seconds. Both
focal waveforms are applied to the monopole source and their corresponding re-
sponses in the time domain are shown at the focus in Figure 2.12. The responses
have been normalised by the maximum harmonic response at the same distance
H,.x. In both cases, the response is characterised by a large delta-like peak at
the focus. With traditional time reversal, the amplification factor compared to
the harmonic response at this point, denoted as the ‘gain’, is approximately 3.2.
By contrast, the clipping technique achieves a gain of over 22. Without clipping,
the time domain response more closely resembles an ideal impulse, with smaller
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Figure 2.11: Traditional time-reversal waveform (top) and its 1-bit digitised /-
clipped counterpart (bottom), sampled from the impulse response at x = 50 m.
The 1-bit technique significantly increases the power of the input signal.
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Figure 2.12: Response at the target to the time reversal waveforms illustrated in
Figure 2.11.
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Figure 2.13: Snapshot of the pressure field around the focal point at the time when
the response to the 1-bit time reversal waveform is at a maximum.

sidelobes. This is also true of the spatial focal quality. In this work, these charac-
teristics are not important, and only the peak amplitude is of interest. With this,
we discard the regular time reversal and all analysis is henceforth performed with
the clipping technique. The pressure field around the focus is shown for the peak
clipped response in Figure 2.13. By changing the location from which the impulse
response is sampled, the focus can be moved to any position in the waveguide. In
this case the pressure at the wall is of most relevance. Since the rigid boundary
conditions require that the pressure is at a local maximum at the wall, focussing
here utilises all propagating modes.

2.4.2 Performance vs Harmonic

To further illustrate the relative advantages of clipped/1-bit time reversal method,
the focal distance xy is scanned down the duct axis. The FFT duration is 1.6
seconds. At each distance, the maximum transient and harmonic pressures are
calculated and plotted in Figure 2.14. Also shown is the peak transient response
at each distance for a waveform designed to focus at 400 m. The pressure is
expressed in decibels with respect to the largest harmonic pressure at the input.
With a harmonic excitation, the pressure drops rapidly with axial distance and falls
to -20 dB at 40 m. Using time reversal, the maximum transient pressure actually
increases with distance above what is achievable harmonically at the source. The
maximum transient pressure does not fall below 0 dB until over 600 m from the
source. This demonstrates the ability to both amplify the pressure at a given point
and extend the range a given pressure can be applied in the duct. When looking
at the maximum response down the duct for the 400 m waveform, the pressure
naturally peaks at the focal point. However, for a considerable range of distances
away from the focus, the transient pressure is still greater than the maximum
harmonic response at the same point.

They key differences between the harmonic and transient responses are illus-
trated by the time domain response shown in Figure 2.15. Here focussing is applied
continuously at z; = 50 m. Repeated application of time reversal produces a wave-
form at the target resembling a pulse train with a fundamental period equal to the
duration of the focal waveform, which is the length of the FFT. By contrast, the
peak harmonic response is obtained with a continuous sinusoid with a frequency of
f = 10053 Hz. Whilst the peak transient pressure is much higher when using time
reversal focussing, this is accompanied by a drop in the RMS pressure. In Figure
2.15, the RMS pressure of the time reversal pulse train is about one third that of
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Figure 2.14: Maximum pressure obtained along the duct at the wall (6 = 0),
using a harmonic and and transient excitation. For each separate distance, the
peak harmonic pressure over all frequencies and the peak transient pressure is
calculated. The peak transient pressure is also shown for a waveform designed to
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Figure 2.15: Time domain representation of the maximum harmonic and transient
responses at the wall at x = 50 m. The focal waveform duration and pulse repe-
tition period is 1.6 s.
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Figure 2.16: How the peak and RMS pressures, as compared to the optimal har-
monic excitation, change with the duration of the applied focal waveform. Calcu-
lated at x = 50 m.

the harmonic response. It is therefore noted that the average power injected into
the system is lower for transient focussing.

2.4.3 Pulse Frequency Modulation

The gain yielded using time-reversal depends primarily on the length of the focal
waveform. This is determined by either duration of the impulse response, or the
maximum length of the FFT. The focal waveform can be deliberately shortened
by taking fewer samples of the transfer function over the same bandwidth, thereby
reducing the FFT duration. As a result, the peak amplitude at the target is
reduced but the pulses can be applied more frequently. Conversely, the FFT can
be lengthened to increase the gain up to a point. The maximum gain possible at
any point is determined by reverberation time of the system.

Figure 2.16 shows how the peak and RMS pressure relative to the harmonic
excitation change when varying the focal waveform duration. The responses are
calculated at y = 50 m. The number of points sampled is increased in powers
of two thereby doubling the focal waveform length. The amplitude gain increases
monotonically with repetition period until the focal waveform duration reaches 3.2
s. Beyond this, longer excitations do not increase the gain. The RMS pressure
also reaches a maximum at the same duration and then rapidly drops.

These results demonstrate the trade-off between the amplitude and repetition
frequency of the pulse train response at the focus. This relationship will vary with
distance, since the length of the impulse response changes along the waveguide.
The reverberation time grows with distance until a point which is determined by
the level of damping. In an undamped waveguide for example, the duration of the
impulse response would grow without limit with distance from the source allowing
unbounded gain when applying time reversal.

Figure 2.17 details this further by showing how the gain and RMS pressure
change along the waveguide axis for different focal waveform durations, determined
by the FFT length. With increasing distance from the source, the length of the
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Figure 2.17: Variation of peak and RMS transient pressure with distance, com-
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impulse response grows, allowing for greater focussing potential and therefore gain.
This holds until the duration of the impulse response grows longer than the FFT.
Beyond this point the gain levels out. This can be clearly seen for T' = 0.05,0.2, 0.8
s. Lengthening the FFT further increases the gain up to a point. The gain curves
for T' = 6.4 s and T" = 25.6 s are identical. For the purpose of focussing, this
indicates that the full length of the impulse response has been captured and the
maximum gain in the system has been realised. A similar phenomenon is seen with
the RMS pressure. Here however, shortening the FF'T duration increases the RMS
pressure up to a limit. Considering both the gain and RMS curves, a duration of
3.2 s performs the best in this system out of the times studied. Longer than this,
and the RMS pressure drops significantly for little increase in gain. Shorter than
this, and the gain drops without increasing RMS.

These results indicate there is a maximum waveform duration at which both the
gain and RMS pressure peak when applying time reversal. If desired, the waveform
can be shortened to increase the pulse repetition frequency with a commensurate
reduction in gain.

2.5 Discussion and Conclusions

In this chapter, acoustic propagation in a water pipe was idealised with a model of a
rigid walled duct with boundary layer damping. Wave propagation was calculated
with the normal mode expansion technique and the free and forced wave behaviour
was detailed. The system response to monopole source was modelled with the
objective of obtaining the maximum pressure at the duct wall over a long range of
distances from the source. This was considered firstly with a harmonic steady-state
excitation. Optimising this to achieve the maximum pressure required changing
the excitation frequency at each point, due to the multi-modal interference which
results in a highly heterogeneous pressure field down the waveguide axis.

Considering instead a transient excitation, the 1-bit or ‘clipped’ time reversal
method was suggested as the technique to maximise the instantaneous pressure at
the target. This involved taking the impulse response of the system at the target
position, reversing it in time, modifying to maximise the signal power and then
applying to the monopole source. After implementing these steps, the higher-order
mode dispersion was leveraged to spatially and temporally compress energy at the
target, resulting in a high amplitude pulse. Compared to the highest harmonic
pressure at the same point, the time reversal method was capable of an amplitude
gain of over 30dB. When applying the focal waveform continuously the result is
high amplitude pulse train at the target with a fundamental period that is the same
length as the focal waveform. The RMS pressure, and therefore the power injected
into the system, was found at most to be between 30-40% of that obtained with
the optimal harmonic excitation, indicating that the power transfer is reduced in
return for amplitude gain. Comparing the harmonic and time-reversed responses
over a range of distances from the source, it was shown that the peak time-reversed
pressure also drops much more gradually with distance than the harmonic pressure.
In fact, at 600 m the peak amplitude achieved with time reversal was comparable
with the maximum pressure obtained harmonically at the source.

The relationship between the focal waveform duration and the peak and RMS
pressure was investigated. It was shown that the achievable gain is a function of the
impulse response duration, or reverberation time. Shortening the focal waveform
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allowed for pulses to be applied more frequently at the target but with a lower
peak amplitude. Longer focal waveforms increased the gain up to a point, at which
the full focussing potential was realised. Increasing the focal waveform duration
beyond this did not increase the gain, and only decreased the RMS pressure at the
target. It was then concluded that there exists an optimal focal waveform length
which maximises both peak and RMS pressure at the target.
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3. Axisymmetric Wave Propagation
and Focussing in a Fluid-Filled Pipe

In this chapter, the fully-coupled fluid-filled pipe is studied, considering the ax-
isymmetric modes only. The Wave Finite Element method is used to predict wave
propagation in the system.

3.1 Introduction

When considering guided waves in piping systems, much of the interest lies in the
lowest order circumferential modes. These play a dominant role in the response,
particularly at lower frequencies. The axisymmetric (n = 0) case is useful to
study in isolation. Aside from being computationally easier, the reduced number
of modes propagating axisymmetrically is conceptually more straightforward. Of
the four fundamental waves which propagate in a water pipe, the ‘plane’ acoustic,
longitudinal and torsional waves are all axisymmetric. The only other fundamental
mode is the n = 1 beam bending mode.

The wave behaviour can be characterised as predominantly relating to either
the axisymmetric acoustic duct modes or extensional (longitudinal) waves in the
pipe wall. The overall level of coupling between fluid and structure is determined
by the density ratio of the two materials, and the thickness/radius ratio of the
pipe wall. In a thick steel pipe containing air, for example, the acoustic and
structural waves can practically be regarded as separate. For a relatively thin
steel pipe containing water, however, the fluid coupling significantly affects the
wave behaviour.

The axisymmetric pipe system is studied in this chapter with the Wave Finite
Element (WFE) method (see Appendix C for the implementation). This is first
validated by comparison with results from conventional FE. Once the numerical
modelling procedure is established, the behaviour of both a thin and thick pipe are
studied. The free waves are first analysed to characterise the modes in the coupled
system. The dispersion relation, attenuation and fluid/structure energy distribu-
tions are evaluated to provide insight into how power is acoustically /structurally
carried down the waveguide axis by each mode.

After this, attention is given to the forced response. Harmonic forcing is ap-
plied to the structure with a external radial force, and in the fluid with a centrally
located monopole source. The power flow and energy distribution between fluid
and structure is evaluated at each frequency. The pressure response of each pipe is
then assessed with comparison to a rigid duct, where it is shown that the coupled
system increasingly approaches the behaviour of a duct at higher frequencies. Hav-
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Figure 3.1: Diagram of the axisymmetric infinite fluid-filled pipe system. 2D finite
elements discretise the fluid and pipe wall, with degrees of freedom corresponding
to the nodal displacements of the structure and pressure in the fluid.

ing assessed the harmonic case, the system can be studied in the time domain to
assess transient excitations. Once again, the time reversal method is used to focus
energy and instantaneously maximise the quantity of interest at a particular point.
Results of focussing in the coupled system are shown to closely resemble those ob-
tained for the rigid duct. Parametric studies are performed to assess the influence
of damping, as well as different combinations of forcing and response quantity.
The overall objective is to understand how to optimally excite the system for the
maximum antifouling impact at different distances from the source.

3.2 Numerical Modelling & Validation

In this section, the numerical modelling procedure is established and validated.
The Wave Finite Element (WFE) method is used to predict the wave propagation
in an infinite straight steel pipe filled with water. The system is assumed to be
uncoupled from any surrounding media. An identical system is also modelled using
conventional FE, and the forced response at the input is compared to validate the
WFE method.

Figure 3.1 shows a diagram of the system, where the degrees of freedom are
(P, 4r, 4z ), denoting the pressure and displacement in radial and axial directions
respectively. The ring frequency f,in, = ¢1/27a, of a water intake pipe is typically
between 1-5 kHz [162], where ¢ is the extensional plate velocity of the material.
This corresponds to a steel pipe radius of 15-80cm. In this chapter, the pipe is
chosen to have an inner radius of 20cm, to match the dimensions of the acoustic
duct studied in Chapter 2. Hysteretic damping can be added to the structure or
fluid with the Young’s or bulk modulus respectively

E'=E(1+jns), B =DB(1+ jny) (3.1)

Practically, n;y can be set to zero, since the dissipation which occurs in the fluid is
much lower than in the structure and is not well predicted by hysteretic damping
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Parameter Description Value Unit

E Steel Young’s modulus 192 GPa
K Water Bulk modulus 2.1 GPa
Ps Steel density 7850  kg/m3
Pf Water density 1000 kg/m?
s Nominal steel loss factor 0.01

Ny Nominal water loss factor 0.0

h Wall thickness (thin, thick) 1,4 cm

a; Inner radius 20 cm

Table 3.1: Pipe geometry and material parameters. A loss factor of ny, = 0.01 is
used in all cases where not otherwise stated.

in any case. It is noted that this form of damping is only strictly valid in the
frequency domain, and can lead to acausal behaviour in the time domain. However,
low enough values of 7 should not significantly affect the response [163]. The wall
thickness is studied in the case of either a ‘thin’ or ‘thick’ pipe, which respectively
are modelled with h = 1 ¢cm and A = 4 cm. All system parameters are shown in
Table 3.1.

3.2.1 Conventional FE Model

Simulating the infinite system with standard FE requires that the waves radiate
away at each end of the domain and do not reflect. In this case, absorbing layers
with increasing damping (ALID) are used [164, 165] which attenuate waves by
gradually increasing the hysteric loss factor away from the waveguide termination.
This is implemented in COMSOL by specifying a spatially varying Young’s/Bulk
modulus. For either the structural or fluid domains, the loss factor from the
boundary into the absorbing layer is given by the following expression

;o +3|Z‘—Ib|3 (3.2)
n=n — I :
where 7 is the loss factor in the propagating region, x; is the axial coordinate of
the termination, and L, is the length of the absorbing layer. Typically, L, should
be sized to fit at least three wavelengths over all frequencies. This condition can be
problematic to satisfy around the cut-on frequency of higher order modes, where
the axial wavelength is infinite. Aside from this, longer wavelengths dominate at
low frequencies, where the pipe is relatively less mobile to radial forcing.

The thin (h = 1 cm) pipe was meshed over a propagating region of 4 m, with
absorbing layers of length L, = 6 m at each end. The dimensions used here are
for the purpose of validation. Longer waveguides can also be modelled and the
absorbing layers can be shortened, depending on desired accuracy. As mentioned
however, the computational demand grows rapidly with the length of waveguide.
The element size should depend on the maximum frequency of interest. Typically
a rule of thumb requires at least 6 (linear) elements per wavelength. Quadratic
elements were used, and the size was chosen as 1 cm for a maximum frequency of
20 kHz. The total mesh contains over 50,000 nodes. Each node may have a single
DoF in the case of a pressure node or up to three at the fluid-structure interface.
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Figure 3.2: Diagram of the mesh in (left) conventional FE & (right) the WFE
method. The full FE mesh is regarded as infinite and terminated with absorbing
boundaries. The WFE mesh used is created from a single segment of the full FE
mesh.

3.2.2 WFE Model

The WFE method is used to model the waveguide with a reduced mesh size, as in
Figure 3.2. Here the WFE segment is essentially a single axial slice of the larger
FE model. The mass, stiffness and boundary matrices of the segment are extracted
from COMSOL with MATLAB LiveLink and then imported into Python where
the WFE code is applied to solve for the infinitely repeated system in the wave
domain. In the WFE mesh, there are a total of 139 degrees of freedom. The DoFs
internal to the left and right faces are dynamically condensed, leaving a 94x94
matrix for which to solve the WFE eigenproblem.

Comparison At x = 0 a 1 N radial line force is applied to the external pipe
wall in both conventional and wave finite element models. This force acts over the
entire circumference of the pipe. A frequency response is calculated over a linear
set of 400 frequencies from 1 to 20,000 Hz. Results for the driving point velocity
are shown in Figure 3.3. There is good agreement between the two models over
most frequencies. The largest discrepancy is found near the ring frequency. It is
likely that there are some reflections present in the full FE model which can affect
the accuracy, especially near cut-on frequencies. Figure 3.4 compares the spatial
pressure field in the pipe at a single frequency of 10kHz. Again, good agreement
is shown between the two models. With the accuracy of the WFE model verified,
axisymmetric waves in the thin & thick fluid-filled pipes can be analysed for any
distance from the source in the infinite system at no additional computational cost.

3.3 Free Wave Propagation

Firstly the free waves are examined in the absence of forcing. In the frequency
domain, each guided wave mode propagates axially according to

—ik;x
D" (3.3)
where ®@; is the cross-sectional mode shape, in this case an eigenvector correspond-

ing to the degrees of freedom on one face of the WFE segment. Each eigenvector
contains the generalised displacements and forces

®; = m] (3.4)
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Figure 3.3: Comparison between results obtained with conventional and wave finite

element methods for the radial driving point velocity of the pipe wall subject to a
1N line force.
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Figure 3.4: Comparison of the pressure field in the FE (left) and WFE (right)
models at a frequency of 10kHz. The field is calculated between 0-2 m from the
source.
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Figure 3.5: Right-going wavenumber spectrum of the thin fluid-filled pipe sys-
tem, real, imaginary and complex branches of the dispersion relation, representing
propagating, evanescent and attenuated waves

which are in turn comprised of structural and acoustic degrees of freedom.

o f,
=@l f=|L (3.5)
p g QA j

The axial propagation is described by the axial wavenumber k;. Ignoring the
modal amplitudes, the free wave propagation can be directly studied from the
characteristic solutions of the WFE eigenproblem, which yield the mode shapes,
dispersion relation and attenuation of each wave.

3.3.1 Dispersion

The axial propagation of each wave is characterised by the dispersion relation,
k(w). Whilst the frequency is always real, the wavenumber of any given mode in
the undamped system may be purely real, purely imaginary or complex. In any
system with damping, all wavenumbers will always be complex. Figure 3.5 shows
the dispersion relation for the undamped thin pipe. The waves are sorted with the
wave assurance criterion (WAC) [166] which tracks the solutions over frequency by
their modal similarity at adjacent frequencies. Real, imaginary and complex waves
are all present in the system. However, in practice the interest is in those which
are strongly propagating with a small Imag(k). The imaginary wavenumbers are
only important when evaluating the response near the source, as they represent
rapidly decaying near-field disturbances.

The dispersion relation is used to derive the phase and group velocities. With
this, we concentrate only on the propagating modes. Figure 3.6 shows these for
the thin & thick pipe. Commonly these modes are denoted by s = 1,2, 3... and
are ordered by their cut-on frequency. Of the two fundamental modes, s = 1
(also known as L(0,1) or «) denotes the fluid dominated mode, which, at low
frequencies, corresponds to the plane wave in a rigid duct. The s = 2 mode is also
fundamental, and corresponds to the compressional rod wave.

In the thin pipe, the main three distinct types of wave behaviour are identified
by their velocity asymptotes. The fluid dominated wave has a phase and group
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Figure 3.6: (a) Phase and (b) group velocities for the thin (solid) and thick
(dashed) pipe systems. Also shown in black are the phase velocity curves for
the rigid duct.

velocity close to the sound speed in water at low frequencies. Above the ring
frequency at 4 kHz, the mode changes its behaviour to a plate like (SO lamb) wave
in the pipe wall. The s = 2 is essentially the extensional rod wave below the ring
frequency until it switches to an acoustic plane wave at high frequency. All higher
order modes generally alternate their behaviour between duct and extensional
shell-type modes. For comparison, the phase velocities of axisymmetric waves in
a rigid duct are also shown in 3.6. At cut-on, particularly with a thin pipe wall,
the fluid-structure coupling is high and the waves cannot easily be characterised as
either predominantly structural or acoustic. This will become clearer by evaluating
the energy distribution of each wavemode.

The thick pipe exhibits broadly similar velocity curves as the thin pipe. Note
that here the s = 1 mode is less affected by the pipe coupling near the ring
frequency, owing to the increased stiffness of the pipe wall, and behaves mostly as
a plane wave in a rigid duct. This is indicated by the lower level of dispersion.
At higher frequencies, the acoustic modes briefly visit one additional asymptote
in the thick pipe, which is the aforementioned SO plate solution in the pipe wall.
This coupling does not occur in the thin walled pipe, since the phase velocity of
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Figure 3.7: Attenuation for the thin (solid) and thick (dashed) pipe systems

this wave remains below the speed of sound over the bandwidth studied. In the
thick pipe however, the phase velocity of the SO wave in the pipe wall crosses the
phase velocity of sound in the fluid, and coupling can occur.

3.3.2 Attenuation

The dispersion relation also predicts the attenuation of each mode where damping
is used. This is given by the imaginary part of the wavenumber and is commonly
expressed in decibels per metre

Attenuation (dB/m) = —201log 10(e) - Im (k) . (3.6)

The attenuation is shown in Figure 3.7. In the thin pipe, the attenuation follows
the three main asymptotes as before, corresponding to predominantly flexural,
extensional, and acoustic modes in order of highest damping. The fluid dominated
mode is significantly attenuated near the ring frequency, due to the strong coupling
with the structure. Generally speaking acoustic modes are least attenuated. This
is understood by the fact that the fluid is undamped and so dissipation must arise
through coupling with the structure only. Where the pipe appears stiff to the
acoustic waves, there is little attenuation of the fluid waves, which decreases even
further with frequency as the duct modes take a more direct path down the axis
and approach the velocity of an acoustic plane wave.

In the thick pipe, by contrast, the stiffer pipe wall couples far less with the
fluid dominated mode, which behaves comparatively closer to a pure acoustic wave.
Corresponding to the asymptotes in seen in the velocity curves, additional peaks in
attenuation are seen at higher frequency for acoustic modes where fluid-structural
coupling increases once more due to coincidence with the SO wave. Generally
speaking, we see that waves in the thicker pipe are more attenuated due to the
increased coupling. However, this is assuming the pipes are not immersed in any
surrounding media, and have no other structural constraints such as flanges or
supports. Buried pipes, for example, are expected to have much higher levels of
attenuation.
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3.3.3 Energy Distribution

To understand how the power is distributed through the structure and fluid, the
energy ratio is calculated for each propagating mode in the pipe. First the power
flow is calculated in the structure. For the eigenvector of the jth mode ®;, we
extract the elements which are associated with radial and axial displacements in
the pipe wall. These quantities are axisymmetric and given in the usual units of
m and N respectively. The total mechanical power for each mode is then the sum
of the powers in each mechanical degree of freedom calculated as

Py = % Real ([f;—”,f’f]; [q}) (3.7)

9z

where * denotes the complex conjugate and the velocities are found in the frequency
domain with iw|[q,, q.]"

The total acoustic power is calculated by integrating the axial intensity over
the fluid cross-section. To find this, the particle velocity in the axial direction
is required. This is related to the gradient of pressure dp/dz by the linearised

momentum equation
1 Op
V= ——— 3.8
‘ twp Ox (38)
where it is noted that the pressure gradient down the axis is given by —ik;p. For a
given mode, the axial intensity can be evaluated at each acoustic degree of freedom

I, =0.5Real(pov}) (3.9)

where o represents element-wise multiplication of the nodal pressures and axial
particle velocities. To then evaluate the total acoustic power flow in a given mode,
the axial intensity is integrated over the cross-section. There is no circumferential
variation in the pressure field, therefore

pf— / 2mr Ldr. (3.10)
0

and the total acoustic power flowing in each mode is thus

a; L.
f_ =2
P —/0 Real( . pj) wr dr. (3.11)

prw

where the integral is evaluated numerically over the nodes of the WFE mesh.
The structural/acoustic power flows are calculated for each mode at any given
frequency. The energy ratio between fluid and structure is defined as

E,=P//ps (3.12)

Figure 3.8 shows the free-wave energy ratios for the propagating modes. For
the thin pipe, the power of each mode is generally either almost completely in
the fluid or structure. The fundamental modes switch behaviour near the ring
frequency, with the s = 1 tending to a flexural wave and the s = 2 mode tending
to an acoustic plane wave thereafter. The higher order modes all exhibit similar
behaviour, cutting on as duct modes, then switching to extensional modes with
low fluid coupling, then veering back to the acoustic solution at high frequency.
For each of these modes, there is a point where the power is evenly distributed
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Figure 3.8: Free wave power ratios for each propagating mode in the (a) thin and
(b) thick pipe
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between the structure and fluid, and where the degree of coupling is expected to
peak.

The thick pipe bears significant differences in the power ratio. The s = 1
mode is no longer primarily structural in the high frequency limit, and instead
most of the energy remains in the fluid apart from a small bandwidth around the
ring frequency. This also indicates that the solution is no longer comparable to a
flexural wave in the pipe wall as in the thin pipe. By contrast, s = 2 retains more
energy in the structure for a thick pipe. For the higher order modes, there are now
two regions for each branch where the energy is mostly in the structure. This is
due to the additional coupling of the fluid with the SO wave, as mentioned before.

3.4 Forced Response

Now the response of the system to harmonic forcing is evaluated. A structural and
acoustic excitation is chosen to characterise the response in each case.

Acoustic Excitation For the acoustic excitation, a unity strength monopole
source located at x = r = 0 is used. For any predominantly acoustic mode in
the axisymmetric system, the pressure will be at a maximum at the centre of the
pipe. This makes the chosen source suitable for exciting all waves of interest. An
alternative excitation would be to use an axisymmetric acoustic line source for
r > 0. However, this will not yield meaningfully different results to a centrally
placed monopole and so is ignored here. The input to the WFE model is the right
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Figure 3.9: The two types of forcing applied to the system in this chapter. The
monopole (left) excites the fluid directly whereas the radial ring force (right) is
applied to outer wall of the structure

hand side of the inhomogeneous Helmholtz equation [157].

1 k3 4 '
v (——vp> AP M ss (), 5 = P, (3.13)
Ps Pf Py Ar

where @, is the monopole source strength in m?3/s. The response to constant input
of Qs = 1 can then be found by setting the RHS of this equation, and the WFE
input to unity, and subsequently multiplying all calculated response quantities by
1w. In practice, an acoustic transducer in the fluid will not behave as a perfect
point source and will also exhibit a dependence on frequency. In lieu of modelling
any specific actuator we shall proceed with the monopole source, being mindful of
any assumptions which are prone to breakdown, particularly at higher frequencies.

Structural Excitation The structural excitation used for in this chapter is a
unity strength radial line source acting on the outer wall of the pipe. This means
1IN acts over the entire outer pipe circumference. This is assumed to be the best
available way of forcing the structure to excite structural waves with predominantly
radial motion, and acoustic waves which are coupled with this motion. The main
assumption is that the applied force is independent of frequency. With any real
actuator, frequency dependent characteristics of the actuator itself as well as the
dynamics of the pipe will lead to deviations from this assumption. Still, many
commercial inertial actuators behave approximately as ideal force sources above
their resonant frequency as long as the system being driven has significantly higher
mechanical impedance than the actuator itself.

3.4.1 Input Power Distribution

The input power ratios are determined for the acoustic and structural excitations in
both pipes. This describes the distribution of input power between the fluid /struc-
ture at each frequency. In the absence of damping, these ratios are independent of
distance from the source. The input power ratios are important in assessing how
to excite the pipe to achieve the most power in either the fluid or the structure,
depending on application. For example, if the fluid is expected to carry waves with
lower attenuation it is beneficial to understand how to inject the maximum power
into the fluid and not the structure.

The input power is found first calculating the excited amplitude €; of each
mode for the given excitation as described in Appendix C. Then equations 3.7
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Figure 3.11: Input power ratio the thick pipe with acoustic/structural forcing

& 3.11 can be applied with the scaled eigevectors €;®,. The total power for an
applied excitation is then found by superposition over all modes with

N
Py® =Y &P (3.14)
j=1

Figures 3.10 & 3.11 show the input power ratios for the chosen excitations in
both thin and thick pipes. As would be expected, the monopole source preserves
most of the energy in the fluid in both systems. The exception is a small region
around the ring frequency where the coupling increases with the radial compliance
of the pipe wall. Above this, the power ratio is controlled by the duct type modes,
which are mostly fluid based. At higher frequencies there are sharp peaks in the
acoustic power as the duct modes resonate at cut-on, and then a sharp increase
in structural power as they reach a coincidence with the in vacuo L(0,2) mode.
Beyond this, energy returns mostly to the fluid for each duct mode as it approaches
the velocity of the acoustic plane wave. The force source injects power primarily
into the structure above the ring frequency in the thin pipe. The exception is
around the cut-on frequencies of the duct modes, where high coupling shifts the
power distribution toward the fluid.

Whilst the situation is broadly comparable in the thick pipe, the energy distri-
bution shifts decidedly towards the structure for an acoustic source, and towards
the fluid for a structural source. Overall the power flow is more evenly distributed,
and the behaviour is less easily characterised by purely extensional /duct waves.

3.4.2 Transferred Power & Distribution

In an undamped system, the average axial power flow is constant, and is equal
to the input power. In this case, the energy distribution in fluid & structure
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Figure 3.12: Fluid/structure energy ratio with frequency and distance from the
source for the thin pipe. (a) Structural excitation (b) Monopole Excitation
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Figure 3.13: Fluid/structure energy ratio with frequency and distance from the
source for the thick pipe. (a) Structural excitation (b) Monopole Excitation

is fixed at a given frequency and does not change as waves propagate down the
pipe. When damping is considered, this no longer the case, as certain modes
will experience varying levels attenuation, and the power distribution will shift
accordingly. Naturally, it is expected that energy distribution will shift to the
fluid since structural damping is the only mechanism for energy dissipation in this
model.

To calculate the transferred power, equation 3.14 is applied once again but
now each mode is propagated down the waveguide axis by e~*i*. This allows the
power in either the fluid or structure to be calculated for a given axial distance.

N
Ph(z) = & Pptetst (3.15)
j=1

Figures 3.12 & 3.13 show the energy distribution up to 50 m from the source.
The x = 0 slices of these plots correspond to the input power ratios presented in
Figures 3.10 & 3.11. Immediately clear is that the fluid is dominant in transferring
power over most frequencies at any considerable distance from the source. The
main exception is the region near the ring frequency. In the thin pipe, when driven
with a ring force, the power is found mostly in the structure close to the driving
point. By z = 10 m however, the power dissipation dictates that much of this
energy is lost due to the hysteretic damping in the structure.

As before in the thick pipe, the power is generally more evenly distributed
between the fluid and structure. The exception is below the ring frequency for a
monopole source, where the low level of fluid coupling in the relatively stiffer pipe
leads to a much greater proportion of power remaining in the fluid.

To conclude the power flow analysis, the total axial power flow at x = 0 & 50
m is shown in Figures 3.14 & 3.15 for the structural and acoustic excitations re-
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Figure 3.14: Total power flow for the (solid) thin and (dashed) thick pipe at =0
and x = 50 when driven by a radial ring force
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Figure 3.15: Total power flow for the (solid) thin and (dashed) thick pipe at = 0
and x = 50 when driven by a central monopole source

spectively. Correspondingly, the power loss between these two distances is plotted
in Figure 3.16. Here we see that around the ring frequency, whilst the input power
is high, so is the attenuation and such waves contribute negligibly to the response
at long range. The power flow is greater at higher frequencies and also less atten-
uated. Close to 0 Hz, there is also little attenuation, however with a structural
excitation, the total power injected is also very low due to the relative stiffness
of the pipe. By contrast there is no such limitation with an acoustic source and
the acoustic plane wave may be readily excited close to 0 Hz where it will expe-
rience very low of levels of attenuation in the pipe which is almost rigid at this
frequency. Whilst this demonstrates that harmonically the acoustic plane-wave
may be used to carry energy far from the source below the ring frequency, this
wave is relatively non-dispersive and so its use will not be significantly enhanced
by the application of time reversal focussing. Between the structural and acoustic
excitations more broadly, the latter will excite waves which suffer relatively lower
levels of attenuation at distance.

3.4.3 Rigid Duct Comparison

As mentioned, the fluid-filled pipe system will increasingly behave like a rigid
duct as the frequency increases above the ring frequency. To demonstrate this,
the analytical duct model from Chapter 2 is compared to both the thin and thick
pipes when driven by a central monopole source. The transfer functions calculated
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Figure 3.16: Power loss per metre vs frequency at x = 0 and x = 50 when excited
by a) structural force b) central monopole

at x = 1 m and x = 100 m are plotted in Figure 3.17. The pressure response is
comparable at high frequency between all three systems. The main discrepancy
occurs near the ring frequency where the structure resonates radially and the power
dissipation is high due to structural damping. With increasing frequency, the pipe
becomes comparably stiffer and behaves more as a rigid boundary. This can be
seen by the growing similarity between the pressures in the three systems. Below
the ring frequency, the thicker pipe shows less attenuation of the plane wave. Once
again this is arises due to the decreased coupling of fluid and structure where the
pipe wall is thicker.

Taken together with the total power flow and attenuation, this result demon-
strates that the pipe system can be regarded as behaving close to a rigid duct in the
frequency range where the power transmission at long range is generally highest.
It is then suggested that the results seen for the rigid duct will generally hold in
the coupled system above a particular frequency. Furthermore, when time reversal
is applied, it is the higher order acoustic modes which allow energy focussing due
to their dispersive nature and it is these modes which are most comparable to the
rigid duct counterpart.

95



—— Rigid d

uct —— thin pipe

)

—_

(an)
©

Wall pressure (Pa

—— thick pipe

5.0 7.5 10.0

12.

15.0

2.5 )
Frequency (kHz)
(a)
rigid duct —— thin pipe — thick pipe
— 108
&
g
z 106
g
2,
S 10t |
i x =100 m
1
1
1 1 1 1 1 1 1 1 1
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frequency (kHz)
(b)
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Figure 3.18: Force to wall pressure transfer function at x = 50 m
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Figure 3.19: Transient waveforms at © = 50 m showing a) impulse response b) time
reversed and clipped focussing waveform c) response to the focussing waveform.

3.5 Time Reversal Focussing

Now time reversal is used to maximise the peak response of the system. Having
contrasted the thin and thick pipes in the previous section, the thick pipe is dis-
carded and only the thin pipe is studied. The aim is to show how the dispersion in
the system can be utilised in the time domain to focus energy at a given point. It
was stated previously in Chapter 2 that 1-bit/clipped time reversal will theoreti-
cally lead to the largest response of a linear system. This technique is now applied
to the axisymmetric pipe and the results are compared with the largest possible
harmonic response over the same bandwidth.

3.5.1 Application

The relevant quantities are once again calculated in the time domain through use of
the discrete fast Fourier transform (FFT). With a fixed bandwidth, and therefore
Nyquist frequency fxyq of 20 kHz, the response can be calculated at any distance
over Ng; points in the frequency domain. After applying the FFT, this leads to a
an impulse response of length Ti,. = 1/(2fxyq). The time reversal procedure can
then be applied as in Chapter 2.

To demonstrate, the technique is applied at x = 50 m with a structural excita-
tion. We concentrate on the pressure at the inner wall of the pipe, thought to be
relevant for biofouling purposes. Figure 3.18 shows the pressure response in the
frequency domain calculated over Ng, = 2'¢ samples. The peak harmonic pressure
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Figure 3.20: Pressure field from 49-51 m at the time when the peak pressure is
obtained for time reversal focussing targeted at x = 50 m

is approximately 10 Pa, obtained at around 19 kHz. To exceed this pressure, we
first calculate the impulse response. This is shown in Figure 3.19a). The dura-
tion in the time domain is 1.6 s which is suitable to capture the majority of the
impulse response at x = 50 m. As previously demonstrated for the duct, there is
no requirement to fully capture the impulse response when applying time reversal,
and shorter durations in the time domain can be used.

Figure 3.19b) shows the focussing waveform which is created by unity nor-
malising, time reversing and clipping/1-bit digitising the impulse response. This
focussing waveform is used as the input to the force source, where its application
will cause energy to converge back at the point where the original impulse response
was sampled from. This is shown in Figure 3.19¢) where the pressure is seen to
sharply peak as the energy focusses. In this case, the maximum instantaneous
pressure is over 200 Pa, a 20x increase over the largest harmonic response at this
distance. The pressure gain can be expressed as

Gain(x) = max(p(z,t))/max(p(z,w)) (3.16)

which is the ratio of the largest transient response to the largest harmonic response
at the same distance for the same maximum forcing amplitude.

Figure 3.20 shows the pressure field around the focus at convergence. Although
the time reversal technique maximises the pressure at the wall, it should be noted
that much larger pressures can be achieved at the centre of the pipe. This is a
simple consequence of the zeroth order Bessel functions which describe the pressure
field in the axisymmetric system, which have their peak at r = 0.

To evaluate the spatial resolution of the focussing technique in the present
scenario, the peak instantaneous pressure is calculated at each point along the
pipe wall, when subject to the waveform designed to focus the pressure at x =
50 m. The results are shown in Figure 3.21, where three different durations of
focal waveform Ti,. are used, corresponding to varying the number of samples
taken in the frequency domain Ng;. The peak harmonic pressure is also shown for
comparison. In Figure 3.21, the duration of each focussing waveform is labelled by
the repetition frequency at which pulses can be applied at the focus f,c = 1/Toc-
As expected, the focussing waveform with the longest duration achieves the largest
peak response at the focus. In addition, the longer the focussing waveform, the
broader the peak. This is particularly noticeable with the 0.8 s (fj,c = 1.25 Hz)
waveform, where the peak transient response is higher than the peak harmonic
response over a considerable distance, far from the intended focus of x =50 m.

The relationship between fi,. and pressure and gain in this scenario is sum-
marised in Figure 3.22. It is seen that focussing can be applied over a significant
range of repetition frequencies, whilst still achieving peak responses larger than
the maximum harmonic. For example, if desired, a focussing waveform can be
applied at 40 Hz and still achieve a gain of 5.
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Figure 3.22: Relationship between gain and repetition frequency for time reversal
focussing at * =50 m with a structural excitation.
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Figure 3.23: Maximum transient & harmonic pressures at the wall of the pipe
when applying time-reversal focussing with a structural excitation at each axial
distance. Pressures are referenced to the largest harmonic response at the input.

3.5.2 Performance vs Harmonic

We now compare the time reversal and harmonic excitations over a range of dis-
tances from the source, this time moving the focus down the waveguide axis. The
repetition frequency is fixed at fr,. = 1.25 Hz. The values are referenced to the
largest harmonic pressure at the driving point, and plotted in Figure 3.23. As
shown, time reversal obtains the largest peak pressure at any distance from the
source. Aside from the gain in amplitude, the distance at which a given pres-
sure can be obtained harmonically is significantly extended. As indicated on the
figure, the point at which the pressure has dropped -20 dB is increased from ap-
proximately 30 m to 950 m with focussing. At this point, the gain is over 30
dB. Through focussing, the range of pressures achieved harmonically under 50m is
now extended to 1000m. It should also be kept in mind that the focussed peak in
pressure is spatially quite broad (as in Figure 3.21), and can exceed the harmonic
response many metres away from the focus.

Influence of Source and Response Quantity Figure 3.24 shows the results of
the previous study repeated for all combinations of source and response quantity.
There does not appear to be any significant difference in focussing performance
between the various scenarios tested. Although this does not mean that they are
equally effective from a biofouling perspective, the improvement yielded by time
reversal will be similar when compared to harmonic forcing in the same situation.

Damping The preceding time reversal studies were performed in a pipe with 1%
hysteretic damping. Naturally the level of attenuation will critically affect range
at which given pressures can be obtained in the waveguide. This is particularly
pertinent where there may be additional sources of attenuation, such as for a
buried pipe. Although, in order to accurately study such a case, one would need
to explicitly model the surrounding soil. Here, different loss factors in the structure
are used to demonstrate how damping effects the maximum harmonic and time
reversed transient pressures far from the source. As it has been established that
results are similar between both sources and response quantities, the following
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Figure 3.24: Maximum transient & harmonic wall pressures/velocities for both
types of forcing.

results are obtained from the force to pressure response.

Figure 3.25 shows a parametric study using four different structural loss factors,
plotted as in 3.23. All quantities are referenced to the maximum harmonic response
at the input in the least damped system. Naturally, the higher the loss factor, the
faster the drop in pressure from the source. In the case where the damping is
very low (ns = 0.1%), the maximum time reversal pressure can be as much as 4
dB higher than even the maximum harmonic pressure at the input. This holds
as far as 80 m from the source. Increasing the damping expectedly leads to the
pressure falling off faster with distance. Interesting to note, however, is that the
focussed pressure in moderately damped pipes can still comfortably exceed the
maximum harmonic pressure in the lightly damped system over a considerable
range of distances. For example, where the harmonic pressure has dropped by 20
dB at 200 m in the system with a loss factor of 0.1%, this point is reached at 1000,
500, and 250 m in the systems with loss factors of 0.5, 1 and 2% respectively. This
shows that time reversal can be used to overcome the limitations imposed by a
highly dissipative system.
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3.6 Conclusions

In this chapter, the WFE method was used to model and analyse the axisymmetric
waves in a fluid-filled pipe. The free and forced responses were studied with respect
to the various propagating wavemodes and the objective of maximising the fluid
pressure and/or structural velocity at the fluid-structure interface for antifouling
purposes. The excitations considered were a structural ring force on the outer wall
of the pipe and a centrally located monopole source in the fluid. After studying the
harmonic response, transient focussing through the use of the 1-bit time reversal
method was applied to further increase the response quantity of interest at any
distance from the source. The main assumptions of the model were an unburied
pipe with no ring-stiffeners or structural supports down its length, and hysteretic
damping present in the structure only. Both a ‘thin” and ‘thick’ pipe were studied
to gain insight to the effects of wall thickness on the system.

3.6.1 Discussion

When studying the free waves, there were four main types of wave behaviour
identified in the system. The fluid wave could be grouped into the fundamental
wave, akin to the acoustic plane wave, and the higher order acoustic modes which
arise in a duct. The structural waves were those which either related to predom-
inantly in-plane longitudinal motion or out-of-plane radial motion. By analysing
the attenuation curves it was found that the waves which exhibit high radial mo-
tion of the pipe wall were by far the most attenuated, followed by longitudinal
structural waves. Waves which propagated predominantly in the fluid, largely un-
coupled from the structure, experienced the lowest levels of attenuation, making
them seemingly more attractive for long range antifouling. The differences be-
tween thin/thick pipes were found mostly in the level of fluid-structure coupling
for different modes. The fundamental fluid mode intuitively showed much lower
coupling with the the thick pipe. However, the higher order acoustic modes were
shown to couple more strongly with the thick pipe overall at higher frequencies.
This was due to coupling with the SO type mode in the pipe wall, which, in the
thick pipe, is fast enough to cross the acoustic branches in the phase-velocity do-
main. This lead to a more even energy distribution between fluid and structure
and for this reason levels of attenuation were broadly higher in the thick pipe.
For the forced harmonic response, the behaviour could be grouped into three
frequency ranges. Namely below, at, or above the ring frequency. Below the
ring frequency, the power injected was predominantly fluid based regardless of
excitation. At the ring frequency, the power was mostly structural and above
the ring frequency the distribution of energy depended primarily on the type of
excitation, with power concentrated in either the fluid or wall for an acoustic or
structural excitation respectively. When evaluating the power flow far from the
source however, it was determined that the energy distribution is skewed toward
the fluid due to the damping in pipe wall bleeding energy out of the structure.
From this it can once more be concluded that mostly uncoupled fluid waves at
high frequency are the most suitable for antifouling at range. The calculations
of total power flow at the input and far from the source demonstrated that the
higher frequencies, where acoustic duct modes dominate, are by far the best excited
and least attenuated. Whilst the fundamental waves which propagate at very low
frequencies are also lightly attenuated, they are also not as strongly excited as the
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higher order modes which resonate at cut-on. The highest attenuation was found
at the ring frequency, where radial motion of the pipe wall is very high. Whilst
this high radial motion is ostensibly beneficial from an antifouling perspective, it
does not carry far down the pipe. Therefore it is concluded that the ring frequency
resonance is likely to be useful for biofouling control only at short ranges.

The low attenuation of high frequency acoustic waves was further demonstrated
by comparing the monopole-source-induced wall pressure to that of a rigid walled
acoustic duct. Here it was shown that the fluid-coupled pipe approaches the be-
haviour of a hard-walled duct with increasing frequency. Additionally the be-
haviour also converges at very low frequencies, where only the acoustic plane wave
propagates and the mechanical impedance of the pipe wall is very high.

With the application of 1-bit time reversal, it was shown that a transient excita-
tion can be used to obtain an instantaneous response at a target point much higher
than that of the greatest harmonic excitation. The pressure or velocity ‘gain’ was
shown to depend primarily on the length of the impulse response, which, uncon-
strained by the duration of the FFT, is a function of the damping and distance
from the source. The actual duration of the transient focussing waveforms were
constrained by the FFT duration whilst keeping bandwidth constant. Shorter fo-
cal waveforms could then be applied more frequently at the cost of peak response
and vice versa. It was additionally found that a longer focussing waveform yielded
a spatially broader peak along the axis, meaning that although the pulses of pres-
sure/velocity are applied at a lower repetition frequency, a greater area of the pipe
wall can be treated at once.

When applying the focussing technique across a range of axial distances, it
was shown that a given pressure could be extended far beyond what is possible
with a harmonic excitation. For the case of 1% damping in the fluid, the -20 dB
harmonic pressure was extended from 50 to 1000 m. The performance was shown
to generally hold across all combinations of excitation and response, demonstrating
the robustness of the 1-bit time reversal technique. When evaluating the effect of
damping, it was shown that the loss factor in the pipe wall critically affects the
range at which a given response can be obtained. However, even in the strongly
damped system, the application of time reversal yielded peak responses which were
far greater than the harmonic response in its lightly damped counterpart over a
considerable range. This indicates the focussing technique is less susceptible to
the effects of attenuation in the waveguide as opposed to a harmonic excitation,
where the peak response drops far more rapidly.

3.6.2 Conclusion

The analysis in this chapter has explored harmonically and transiently exciting an
axisymmetric water pipe to maximise the pressure and structural velocity at the
pipe’s inner wall. It was determined that long range transmission of power down
the pipe is best achieved with an acoustic excitation in the fluid above the ring
frequency, where higher order acoustic waves can propagate largely uncoupled from
the structure and therefore experience lower levels of attenuation. Alternatively
power can also flow through the fundamental fluid wave relatively unattenuated at
very low frequencies. This wave is less well excited than the higher order modes,
however. The prominence of these waves for carrying energy in the system was
highlighted through comparison to a rigid walled duct, where it was shown that
significantly above or below the ring frequency the fluid-coupled pipe approaches
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the uncoupled duct solution.

Although vibration in the structure, particularly radial motion, is highly at-
tenuated at long range due to hysteretic damping, nearer to the source it may still
be used as an effective means of biofouling control. In this case excitation near
the ring frequency, where the pipe wall resonates radially, provides the highest
level of structural vibration and the largest input power over all frequencies for a
structural force.

Where time reversal focussing is applied, the entire bandwidth studied is utilised
with a transient excitation in the form of the system’s impulse response. The fo-
cussing technique used, namely 1-bit time reversal, was shown to significantly
increase the pressure/velocity at a targeted distance compared to a harmonic ex-
citation with the same source strength. The harmonic/transient methods are con-
trasted by a high power, high frequency, continuous sinusoidal response on the
one hand, versus a low power, low frequency pulse train with much larger peak
responses on the other. Time reversal was shown to be robust when applied to
systems with differing levels of damping, with the transient peak response decay-
ing with axial distance much more slowly than the harmonic peak response. At
long range particularly, time reversal focussing proves effective in increasing the
response or extending the range of a given response.
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4. Higher-Order Wave Propagation
and Focussing in a Fluid-Filled Pipe

4.1 Introduction

Having studied the axisymmetric (n = 0) system, the analysis is now extended to
the higher circumferential order waves (n > 0) which propagate in the pipe. These
are modes for which the displacement field is periodic along the circumference
(with period n). Although great in number, in practice the lowest order modes
predominate the response, particularly at low frequencies. For this study, only the
thin pipe from Chapter 3 is used.

To avoid incurring high computational cost associated with modelling the full
cross-section in WFE, this chapter uses the cyclic symmetry assumption along
the circumference. This reduces the size of the problem and separates modes
by their circumferential order. Free wave behaviour and forced response is then
analysed for each n, both for an acoustic and structural excitation. Time reversal
is applied to the multiple higher order modes in the pipe and results compared to
the axisymmetric system to illustrate the advantage of these waves for increasing
peak response at a given point in the pipe. The implications for biofouling control
at close and long range are discussed.

Finally the response to one or more point excitations, used to represent discrete
actuators, is studied with a superposition of all propagating circumferential modes.
With this, guided waves can be focussed at targeted angles in the pipe, either with
a single actuator or a time reversal mirror acting as a phased array. The influence
of the source bandwidth is analysed to determine the best frequency range to
implement transient focussing.

4.2 Numerical Modelling

The propagation of all higher-order modes can be predicted using the WFE method.
This typically requires a 2D cross-section (Figure 4.1), as opposed to the line of
1D elements used in Chapter 3. Whilst more efficient than conventional FE, this
approach still requires a large number of degrees of freedom and considerable com-
putation time to obtain accurate results.

Alternatively, the same two-dimensional mesh as in Chapter 3 is used to model
the system restricted to a single n by assuming the field in the circumferential
direction is periodic and has an integer number of wavelengths around the circum-
ference [96]. Figure 4.2 shows a diagram of one face of the WFE mesh. The degrees
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Figure 4.2: One face of the cyclically symmetric WFE mesh. The boundary condi-
tions are chosen so that each model represents a single circumferential mode order
n.

of freedom are (P, q,, q., qs) where the latter denotes the torsional motion of the
pipe. With the boundary condition q(z,7,0) = q(z, 7,0 + 27), the displacement
field is given by

a(z,r,0) = q(z,r,0)e "’ (4.1)

This is implemented natively in COMSOL, which once again serves as a tool for
creating the geometry, mesh, and assembling system matrices. Each circumferen-
tial order is represented by a separate model using the same mesh.

4.3 Analysis of Higher Order Modes

4.3.1 Free Waves

The dispersion and attenuation curves for n up to 5 are shown in Figure 4.3. Four
main types of wave behaviour are observed with corresponding high frequency
asymptotes. These relate to the longitudinal, torsional, and flexural motion of the
structure, and pressure waves in the fluid. As in the axisymmetric system, the
n > 0 modes have many branches above the ring frequency which switch their
behaviour between predominantly structure and fluid-borne waves.

Below the ring frequency, most propagating waves are flexural. For n = 1 the
flexural mode corresponds to the well known fundamental beam bending mode at
low frequency, where the radial and circumferential displacements have approxi-
mately the same magnitude. The n > 1 flexural solutions have cut-on frequencies
which depend mostly on the pipe diameter, and exhibit a sinusoidal pattern of wall
flexure around the pipe circumference. Below this cut-on, no modes can propagate
and as such, waves excited close to 0 Hz are only of the order n < 2. The cut-on
frequencies of the flexural branches increase with n, and the waves become more
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Figure 4.3: (a) phase and (b) group velocities for the thin (solid) and thick (dashed)
pipe systems. Also shown in black are the phase velocity curves for the rigid duct.
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Figure 4.4: (a) phase and (b) group velocities for the thin (solid) and thick (dashed)
pipe systems. Also shown in black are the phase velocity curves for the rigid duct.

dominated by radial motion. Far above the cut-on frequency, all of these modes
converge to the same plate-like solution.

Separating the branches for each n > 0 by their order of cut-on, denoted with
s, Figure 4.4 shows in further detail the first three modes which cut on for each
n from 1 to 6. For the flexural (s = 1) solutions, the attenuation is higher than
for other waves, with increased peaks at the ring frequency for smaller n. The
fluid-structure energy ratios indicate power is mostly carried in the pipe wall with
waves also becoming more structurally dominated with n. The notable exception
to this is the n = 1 bending wave, which carries most of its energy in the fluid
for a small bandwidth around the ring frequency. This occurs below the cut-on of
any acoustic mode, and so the energy is stored in the forced pressure field which
tightly hugs the fluid-structure boundary [49].

The second wave to cut on for each n is the first acoustic duct mode of that
circumferential order, which has zero nodal lines in the radial direction. From their
velocity, attenuation and energy ratios curves in Figure 4.4, these branches appear
almost completely uncoupled from the structure, and behave close to a pure duct
mode. With the exception of the n = 1 beam mode, the power flows mostly in
the fluid over the entire bandwidth studied and correspondingly the attenuation
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is lowest. This occurs because the acoustic duct modes cut on significantly below
any propagating structural mode with a similar wavenumber for the same n. As
a result, there is very little coupling with the pipe wall. This effect becomes more
pronounced with increasing n, as the structural and acoustic modes move away
from one another in the wavenumber domain. The same phenomenon is seen for
the s = 3 waves, where at n = 6 mode in Figure 4.4 is almost entirely uncoupled
from the wall.

For the remaining s > 3 waves, there is increasing coincidence between duct
and in vacuo pipe modes and branches rapidly change their behaviour, appearing
as mainly either acoustic or structural (longitudinal and torsional) waves. As with
the axisymmetric case, the regions of coupling become narrower at high frequency,
and the pipe appears stiffer to the fluid overall.

4.3.2 Forced Waves and Focussing

This section analysis the forced response to a structural/acoustic source exciting
waves of a single circumferential order n. Simulating the orders separately allows
comparison between different modes of excitation. In practical contexts, more than
one n is likely to be excited, but the response to an arbitrarily distributed source
can be represented with a weighted sum of single n responses. This is applied for
a point source later in Section 4.4.

Acoustic Excitation For the acoustic excitation, an off-axis line source located
at the inner wall (r = a;) is used, which is distributed circumferentially as required.
This will most strongly excite modes which have their peak pressure close to the
pipe wall. A source located at » = 0 will only excite axisymmetric modes as in
Chapter 3. As before, the Helmholtz equation governs the fluid domain

1 k3 4 ' .
V- (——Vp) A s (1) de, S = SPLQ e, (4.2)
Py Pr Ps Am

with the addition of the circumferential extension. The source term is specified in

per unit length and the source strength @’ has units m?s~*.

Structural Excitation A structural excitation takes the form of a distributed
force applied over the outer wall of the pipe (r = a,). The input to the WFE
model specifies the total force distributed over the circumference, expressed as a
linear force density

pu(0) = == (4.3)

where F},; is the total force applied and in this case equal to 1 N.

The power distribution between fluid and structure at the driving point is
calculated and shown in Figure 4.6 for the two different types of forcing with
modes n from 0 to 6 plotted. Unlike the axisymmetric case, where power is mostly
carried in the fluid below ring frequency, all modes are predominantly structural
for n > 0 at low frequency. The n > 1 orders contain no fundamental modes, and
so at frequencies close to 0 Hz power can only be carried in n = 0 and n = 1.
Additionally, since only the flexural modes propagate below the cut-on of the first
acoustic mode (s = 2), the energy ratio of the higher order responses are the
same regardless of the excitation used over this bandwidth. Here the energy flow
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Figure 4.5: Illustration of the circumferential forcing applied to the system for
each n.

is exclusively dominated by the pipe wall with the n = 1 exception mentioned
before.

After the cut-on of the s = 2 mode, the energy ratios change markedly, and for
both excitations tip towards the fluid. Beyond this frequency, the energy ratio is
determined mostly by the type of excitation, with the energy ratio being mostly
positive /negative for an acoustic/structural excitation respectively. Whilst the
energy ratio for a force source can tip strongly towards the fluid over a few narrow
frequency regions where coupling is high, the acoustic source preserves the power
almost entirely in the fluid over the same bandwidth.

Propagated Power The total power flow in both fluid and structure at the
input and at x = 50 m are shown for the structural and acoustic excitation in
Figures 4.7 & 4.8 for each n. These indicate the relative power flow in for each
circumferential order.

For a low frequency structural excitation at or close to the source, the total
power injected increases with n. The axisymmetric excitation induces very little
power flow due to the high stiffness at low frequency in this mode of vibration.
Moving toward the ring frequency, the situation is somewhat inverted. Here the
axisymmetric mode resonates and carries the most power, followed by the n = 1
& n = 2 modes, with no significant difference in power flow for n > 2. Beyond the
ring frequency, the system is mostly dominated by the acoustic response. In this
case, the circumferential order is less critical to the power flow, with the average
power being comparable between n and slowly decreasing with frequency. The
sharp peaks seen in this frequency range are associated with duct modes cutting
on. By calculating the power flow at long range (z = 50 m), the effects of structural
damping are observed with a particularly acute effect on the low frequency flexural
modes. Now the peak power flow decreases with n as the higher circumferential
orders experience more attenuation over the distance calculated. Notably n =1
carries the most power at the ring frequency. This is because the first n = 1 duct
mode is propagating, allowing power to flow in the undamped fluid. Similarly in
the axisymmetric case, the power flow is relatively unattenuated around the ring
frequency since power can flow in the fundamental acoustic mode. For the higher
circumferential orders there is a sharp transition in power flow corresponding to
that seen in the energy ratios in Figure 4.6. As the first duct type mode cuts on
for each n the power flow increases and attenuation drops drastically as acoustic
waves begin to propagate in the fluid. Beyond this frequency the power flow is
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Figure 4.6: The forced energy ratio for each circumferential mode when the pipe
is excited with a) a structural force and b) an acoustic line source.
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comparable between circumferential orders.

With an acoustic excitation, there is very little power flow for n > 0 at low
frequencies, where no acoustic waves propagate and the pressure field is ‘forced’
by the structure. Only the axisymmetric fluid dominated mode carries significant
energy here. This is also the case at * = 50 m where the axisymmetric fluid
dominated mode is also predominant at low frequencies. As the first acoustic
mode cuts on for each n, the power flow increases abruptly as seen before with
the structural excitation. Beyond this frequency the various duct type waves are
responsible for most of the power flow.

To summarise, the system’s response for the n > 0 waves can be divided into
the range of frequencies above and below the cut-on of the first acoustic (s = 2)
mode. Below this cut-on, power is constrained to the structure and flows only in
the set of flexural modes, which themselves are subject to a low frequency cut-on
for n > 1. Intuitively, an applied radial force on the structure most effectively
excites these waves. The response close to the source increases with n and lower
order circumferential modes are less mobile, a trend which extends to the n = 0
response. At long range, however, the higher n waves are more strongly attenuated
and as such the lower orders contribute more to the response. When considering an
acoustic excitation in this bandwidth, no wave propagation in the fluid is possible
for n > 0, and so only the flexural branches are excited indirectly by the pressure
at the wall. Near the source, the response decreases with n. Because of the
fundamental acoustic mode, the n = 0 case stands out at being able to excite
propagating fluid waves at very low frequency, and so dominates over all other n
when applying an acoustic excitation close to 0 Hz.

Above the cut-on of the first acoustic mode, the power flows predominantly in
the fluid at long range for both excitations as a consequence of the damping in the
structure. Therefore over this bandwidth an excitation in the fluid is presumed to
be most effective at transmitting power down the pipe. For n = 4,5,6, the peak
power at range occurs when the first acoustic mode cuts on. This is in contrast
to the axisymmetric fluid modes, which have larger pressure peaks with increasing
frequency.

Transient Focussing The 1-bit/clipped time reversal technique is now applied
to each circumferential system up to n = 6, and compared with the maximum
harmonic response over the same bandwidth. This is to assess the differences
between circumferential orders in the ability to maximise the response with either
a harmonic or focussed transient excitation, given the same source strength. As
in the previous chapter, the acoustic pressure at the wall and the structural wall
velocity will be considered when the system is subject to a structural/acoustic
excitation.

Figure 4.9 shows the peak harmonic and transient focussed responses for each
combination of source and response quantity. In each case, the response is ref-
erenced to the highest harmonic response at the input over all n. The gain and
range advantage of transient focussing extends the -20 dB point to over 400 m
in most cases. The best performance is seen in the acoustic-pressure case, which
has the slowest roll-off. Conversely, the force-velocity case has by far the steepest
roll-off due to high structural attenuation, although an exception is seen for the
n = 1 mode due to the attenuation in the beam bending mode approaching zero
at 0 Hz, whilst the system is still relatively mobile to structural forcing. A similar
phenomenon is seen in the acoustic-pressure response for the n = 0 mode, where
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Figure 4.7: Axial power flow in each circumferential order of the pipe subject to a
structural force. a) x = 0 m and b) x = 50 m.
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Figure 4.9: Maximum harmonic (dashed) vs time-reversed (solid) response at pipe
wall for various circumferential mode orders and combinations of source and re-
sponse quantity. Expressed in dB with respect to the largest harmonic response
at the source over all n.

the roll-off of the peak harmonic response abruptly flattens out near 800m. This
arises out of the near-zero attenuation of the fundamental acoustic wave at very
low frequencies, which is still excited by an acoustic source. Such behaviour is the
basis of long range acoustic leak detection in water pipes.

Very close to the source, the maximum response is generally found in circum-
ferential orders n > 0. The input mobility subject to a structural force peaks
with n = 3 and then gradually decreases with increasing n. Far from the source
however, the responses are sorted according to their circumferential mode order,
with the lowest n having the highest response at long range.

4.4 Point Excitation

In this section, all propagating modes in the system are excited through the ap-
plication of one or more point forces/sources. The response is a superposition of
the higher-order modes discussed so far. Use of such a localised excitation allows
for more precise spatial focussing and multiple point sources can be deployed as a
time reversal mirror, or phased array.
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4.4.1 Formulation

An arbitrary force distribution p(f) can be represented [54] with a Fourier series
of the circumferential modes

— i Ee™m0 (4.4)

n=—oo

with the coefficients F), depending on the desired linear force density function. For
a point force at 6 = 0 of total strength F},;, the force distribution can be described
as a function of arc length s = rf with a Dirac delta p(s) = 0(s) such that

/ Ftot 5(S)d3 = Ftot- (45)

—T7r

For a force applied to the external wall of the pipe, this expands into the Fourier

series
oo

Ftot —inf
ps(0) = o > e (4.6)

which has constant coefficients independent of n. The application of an ideal point
force therefore excites all circumferential orders equally and the series in Equation
4.6 requires an infinite number of terms to be accurate.

Alternatively, a point force can be represented by a rectangular pulse of finite
width. Considering the force to be applied between # — A and # + A with a height
H such that 2AH = F,,;, this leads to the expansion

F,, FO - (nA) _
ps(0) = -2 Z” (4.7)

27ra0 -
n=

in which case the amplitude of circumferential orders n > 0 will decay according
to the sinc(nA) function, with the roll-off determined by A. Where A = 7 the
applied force is axisymmetric and only n = 0 modes are excited. Conversely,
the series tends to that of the ideal delta function as A — 0. Intuitively, this
means the number of circumferential modes which meaningfully contribute to the
response is determined by the arc length of the force applied relative to the pipe’s
circumference.

In practice, however, in the far field the number of terms required for accurate
prediction of a point force response will chiefly depend on the maximum frequency
of the excitation, which corresponds to the number of cut-on modes. Since all
n > 1 modes have a non-zero cut-on frequency, the series in equation 4.4 can be
truncated according to the number of propagating circumferential modes over a
given bandwidth. This can be reasonably well approximated by considering the
uncoupled structural and acoustic systems. For the waves in the pipe wall, the
flexural branches cut on first and can be approximated using thin shell equations

[47,162).
_ % (1ga2) n*(n? — 1)
fﬂex - 27“_1\/ (TL2 T 1) (48)

where ¢y, is the longitudinal plate velocity. The cut-on frequencies of a hard acous-
tic duct can be found as in Chapter 2

Cflin,1
uct — —. 4.9
Jauct o, (4.9)
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Figure 4.10: Flexural and acoustic mode cut-on frequencies in an isolated shell
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Figure 4.11: Error in the force-to-velocity transfer function when truncating the
series at n

The cut-on frequencies are shown in Figure 4.10. The flexural modes are always the
first to cut on over this bandwidth, and truncating the series after approximately
20 terms should yield sufficient accuracy to model a point excitation. To verify
this, the force-to-velocity transfer function of a point excitation is calculated with
varying the number of n included up to 25. The relative error as compared to
the 26 term response is shown in Figure 4.11. Away from the source, the result
converges at n = 21 and the error drops to zero. At the driving point, there is still
a small error above n = 21 due to the near-field contributions of modes which are
below their cut-on frequency.

Comparing this to the series for a rectangular pulse, this means practically
that there are a range of widths which produce a ‘point-like’ response in the pipe
over a given bandwidth. It is found for the present case that an applied force arc
length < 3 cm will behave sufficiently like an ideal point excitation.

The response to an acoustic monopole source can be constructed in the same
way as for the structural force. The monopole is located at the inner wall by
superimposing line sources with densities Q’,/2ma;.

Modelling Single and Multiple Sources The response to one or more unity
strength point sources is now calculated. For a single circumferential order n, the
response at § = 6., for a given axial distance to an input force of 1N is denoted
Hy(n,w,r). The solution can then be extended in the circumferential dimension

77



with |
H(n,w,r,0) = Hye IO bext) (4.10)

after which the superposition of circumferential modes for a point force is calcu-
lated with a flat summation

N-1
H(w,r,0) = Y Hoe "0 0t (4.11)

n=1-N

Due to the linearity of the system, the preceding analysis can be readily ex-
tended to the case where there are multiple excitations acting around the pipe at
various . The contribution of M evenly spaced spaced excitations is expressed

M-1 N-1

H(w,r,0) Z Z Hoye /0= 0cat) (4.12)

m=0 n=1-N

where 0.,y = 2mm/M.

In Figure 4.12 the input response to a radial point force on the outer wall
is plotted for 3 frequencies. For comparison and validation, the calculation is
compared between the superimposed cylindrically symmetric models and the full
WFE segment with a 2D cross-section.

(a) (b) ()

Input pressure response in the fluid calculated with superposition of 22 cyclically
symmetric models.

(2) (b) ()

Input pressure response in the fluid calculated with a full 3D mesh of the pipe
with a 2D cross-section.

Figure 4.12: Comparison of the pressure response at x = 0 m between the super-
imposed cylindrically symmetric models and the same system meshed in 3D. a) 50

Hz b) 1000 Hz, b) 20,000 Hz.
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4.4.2 Harmonic Power Flow

The harmonic power flow in the pipe for a structural/acoustic source is briefly
discussed and shown in Figure 4.13. The distribution of power between fluid
and structure has been determined in the previous section. Power injected is
mostly fluid/structure based for an acoustic/structural excitation respectively, a
result which has been established using analytical models in [53,54]. Far from the
source the majority of the power is found in the fluid due to the relatively high
structural attenuation. The power loss for both types of excitation peaks around
the ring frequency of the pipe and attenuation is lowest at either very low or high
frequencies. As seen previously, the acoustic excitation suffers considerably lower
attenuation overall.
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Figure 4.13: Power flow at a) x = 0 m b) x = 50 m and ¢) the corresponding
power loss for a point force and acoustic source
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4.4.3 Time Reversal and Spatial Focussing

The superposition of multiple circumferential modes excited with a point source
allows for more precise focussing of energy through the circumferential dimension.
Application of time reversal then allows the focal point to be located at any specific
coordinate in the waveguide.

To demonstrate this, in the following study time reversal is applied at a distance
of x = 50 m to focus acoustic pressure with a single structural point force at
0.t = 0. Three focal targets are chosen within the fluid domain and a 0.1 s
duration waveform is derived from a FFT with 2!2 samples. It is noted that this
relatively short waveform chosen for ease of computation and longer durations
could be be used for a larger transient peak. For comparison, the largest harmonic
pressure is also found over all frequencies for each of the target points.

Figures 4.14 & 4.15 show the pressure field when the response at the target is
at its peak for the harmonic and time reversal excitations. In the harmonic case,
the cut-on frequencies of various modes generally provide the maximum pressure
depending on the target location. In Figure 4.14c) for example, where the target is
at r = 0, the maximum pressure is obtained at the cut-on of one of the higher order
axisymmetric duct modes. In the previous chapter it was shown that these modes
cut on with increasingly larger peaks, and have their maximum pressure at the
centre of the pipe. The ‘optimal’ frequency in this case therefore corresponds to
the highest order mode which cuts on over the bandwidth studied at 19 kHz. For
Figure 4.14a), where the target is at the wall 180° from the source, the maximum
pressure is obtained at 15 kHz via one of the non-axisymmetric duct modes. In
4.14c) the target is offset 90° from the source. Here the pressure field can be
recognised as being dominated by the n =4, s = 2 duct mode, which cuts on at a
comparatively lower 7 kHz.

The variation in optimal frequency with target position, as well as the rela-
tively low pressures obtained in the harmonic case present obvious limitations to
using this form of excitation for biofouling control. It should be noted, however,
that although the peak response is low, the average power flow was shown to be
higher than for time reversal and the pressure field is broadly uniform around the
circumference. This is most apparent in 4.14c) where there is little to no bias in
the pressure field toward the focal point, and the same peak pressure is obtained
over much of the pipe circumference. With the use of time reversal on the other
hand, the pressure fields shown in Figure 4.15 demonstrate a narrower focal peak.
The maximum response is much greater than the harmonic counterpart, and the
fundamental frequency is down-shifted to just 10 Hz. This illustrates the effect of
spatio-temporal focussing when using time reversal. The field in 4.15¢) exhibits a
double focal point due to the single actuator at & = 0 producing a symmetric field
about the r-axis.

Figure 4.16 shows the maximum pressure over the entire fluid-domain when
harmonic and time reversal techniques are applied with a single actuator. In
the case of a harmonic excitation, the maximum response is calculated at each
point over all frequencies studied. As illustrated, the comparatively lower pressure
harmonic peaks exhibit little spatial preference. When time reversal is applied,
the peak response is found close to the (r, §) coordinate of the source, and along
the r-axis from the source. This spatial biasing can naturally be mitigated by
utilising multiple sources spaced around the pipe’s circumference. In Figure 4.17,
the distribution of the maximum transient response for 3 equally spaced point
sources is shown, calculated according to equation 4.12. This setup is the same as a
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(a) 15 kHz, 36 Pa (b) 19 kHz, 49 Pa (c) 7 kHz, 33 Pa

Figure 4.14: Pressure fields for the peak harmonic response at three targets.

(a) 10 Hz, 545 Pa (b) 10 Hz, 357 Pa (c) 10 Hz, 375 Pa

Figure 4.15: Pressure fields for the peak transient response at three focal targets.
The pulse repetition frequency in each case is 10 Hz.

‘time reversal mirror’ (TRM), where the impulse response at a number of ‘receivers’
at z = 0 is calculated subject to a single excitation at the focal point. Each IRF is
then time-reversed and applied to the receivers, which now act as sources. In this
way, the system behaves as a phased array. Since the system is reciprocal, it is
sufficient to calculate the IRF at the focal point subject to each individual source in
the array, after which the time-reversed waveforms can be applied correspondingly
for each source and the total response found by superposition.

With such a configuration, the angular dependence of the maximum response
decreases significantly. Adding yet more forces further compounds this, as in
Figure 4.18, where the normalised angular profile of the pressure field at the pipe
wall is plotted for various numbers of sources. It is noted that even in the case
of a single actuation point, the peak response around the pipe is usually at least
70% that of its maximum value. For 3 sources, the response around the pipe
does not fall below 80% of the peak. Increasing M further, the distribution grows
increasingly uniform. The angular profile of the maximum harmonic response over

(a)

Figure 4.16: Spatial dependence of the peak pressure for a) harmonic and b)
transient excitations, subject to a single structural force at 8 = 0.
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(a)

Figure 4.17: Spatial dependence of the peak pressure when applying time reversal
with three equally spaced sources.

Maximum response

0 (rad)

Figure 4.18: Maximum normalised pressure response around the pipe wall. Three
different source numbers are used for time-reversal and the maximum harmonic
response over all frequencies for a single source is shown in black.

all frequencies for a single transducer is shown (dashed) for comparison.

When considering a harmonic excitation with multiple sources, there are a
number of approaches to maximising the response at a given point, and determin-
ing the ‘best’ technique for this purpose is not as straightforward as for the case
of transient focussing. Here the problem is which frequencies and phase offsets to
apply to each actuator in the array to achieve the largest possible response at a
desired point.

A selected mode may be preferentially excited at resonance by selecting the
phase offsets of each source at a single frequency. For example, the n = 4,s = 2
acoustic mode shown in Figure 4.14¢) may be excited at its cut-on by configuring
8 equally spaced actuators with alternating phase offsets of 0 & 180° around the
pipe. For a more general approach, the phased array technique developed by Rose
et al. [110] can focus energy at a given angle using a single-frequency excitation
with appropriately tuned amplitudes and phase offsets for each transducer. This
method results in an angular profile which approaches a delta function at the
targeted angle. Whilst this is desirable for increasing the signal-to-noise ratio for
the application of non-destructive testing, the response is not maximised, since
not all sources are driven with the largest possible amplitude. Additionally, the
restriction that each source is driven at the same frequency is suboptimal. For the
objective of maximising the harmonic response at a given point with an array of
transducer, the harmonic peaks obtained at the focal point from each transducer
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individually should sum together in phase at the target. Achieving such coherence
between different frequencies is not trivial to implement and is highly sensitive
to perturbations of the system. In any case, the maximum response with M
transducers cannot in general exceed that of M times the maximum response of a
single transducer. With this in mind, the transient focussing applied with a time-
reversal mirror is presented as the optimal technique for maximising the response
at any point.

4.4.4 Influence of Bandwidth

In the analysis so far, a frequency-independent excitation has been assumed which
in this case takes the form of an ideal force source. In practice, any actuator will
have a finite bandwidth of operation. This restriction will naturally reduce the
performance of transient focussing. It is of importance then to analyse how a
band-limited excitation affects the maximum response, and to determine the most
efficient frequencies for time reversal in this system.

To study this, low and high-pass filters are applied to the system’s transfer
function to model the effect of an force with limited bandwidth. In each case, the
filter used is a second-order Butterworth with a variable cut-off frequency, defined
as the -3dB point. Time reversal focussing is applied to focus the pressure pipe
wall at & = 0 for a range of distances from the source. At each distance, the
cut-off frequencies of each filter are varied in steps of 1 kHz in order to adjust the
bandwidth from 0 to 20 kHz. The peak response for each test is normalised by
the maximum unfiltered response.
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Figure 4.19: Peak transient response obtained when filtering the system with a
low-pass (left) and high-pass (right) filter with variable bandwidth over various
distances.

Figure 4.19 shows the results of applying the low /high-pass filters to the system
with time reversal. Near the source, where the propagating waves have suffered
relatively little attenuation, the focussing performance gradually increases with
bandwidth with both filters. For the low-pass filter, the maximum performance is
only reached at the full bandwidth for each distance. In contrast, the performance
of the system with the high-pass filter applied reaches its maximum much faster as
the bandwidth is increased. This is particularly pronounced at distances farther
from the source, where the performance saturates after 8-10 kHz. This suggests
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that the higher range of frequencies in the bandwidth studied are most important
to achieving the maximum response when using transient focussing. This result is
understandable when considering that the higher frequency propagated waves are
better excited and less attenuated due to propagating in the fluid.

4.5 Conclusion

From the analysis of the free waves propagating for each higher mode order n > 0,
it was found that the behaviour can be split between the frequency range above
and below the cut-on frequency of the first acoustic mode. Below this frequency,
the structural response of the pipe wall dominates with a single flexural mode.
The first acoustic mode to cut-on for each n was found to be relatively uncoupled
from the wall, as there is no coincidence in wavenumber with any structural mode.
Subsequent modes to cut-on s > 2 behave much like the duct modes in Chapter
3, and alternate behaviour between structural and acoustic waves.

The low frequency flexural waves in the pipe wall may provide high levels of
structural vibration close to the source, but are otherwise highly attenuated and
thus do not propagate far from the excitation point. Instead, higher frequency
waves travelling in the fluid are best suited for long range propagation.

When applying a force or acoustic source to the pipe over a sufficiently small
area, the response can be modelled by a flat summation of all propagating cir-
cumferential modes over the bandwidth studied. In this case, including n < 22
was sufficient to capture the full response of the system up to 20 kHz in the far-
field. Considering the objective of antifouling, a harmonic excitation can be used
at a resonant frequency to produce high amplitude sound and vibration over a
large area of the pipe wall. Additionally the harmonic excitation is presumed to
inject the most power into the system, where the RMS response at a given point
is maximised. At different locations of interest the optimal harmonic excitation
frequency will vary. With multiple actuators, the problem of how to harmonically
excite each actuator for the largest response grows more complicated.

In contrast, the 1-bit time reversal method achieves what is proposed as being
the maximum possible response at a specific point, whilst reducing the average
power and RMS response. The peak response in the system is also much more
temporally and spatially concentrated, although it is noted that the time-reversed
response is still significantly higher than the maximum harmonic response over a
considerable distance from the focal point. The time reversal technique can be
readily applied to multiple actuators by using the time reversal mirror (TRM)
concept. An estimate of the IRF at the focal point from each transducer is all that
is required to apply transient focussing.

Looking at the influence of bandwidth on the system when applying time rever-
sal, it was found that the peak response generally grows as bandwidth increases,
but the higher frequencies play a dominant role. This is understood from the pre-
vious analysis which showed that higher frequency waves, mostly fluid based, have
generally lower attenuation the lower frequency waves which propagate predomi-
nantly in the structure.

84



5. Application of Guided Waves for
Zebra Mussel Antifouling

In this chapter, a numerical experiment couples the higher-order pipe from Chap-
ter 4 to a model of a commercially available inertial actuator. The results are
compared to known biofouling studies to contextualise the work so far and draw
some early conclusions of the feasibility of antifouling with sound and vibration.
Firstly, the literature is compiled to give quantitative benchmarks for the levels
of pressure and acceleration required to achieve antifouling. After this, the iner-
tial actuator model is described and coupled to the outer wall of the pipe, acting
as a radial point force. The harmonic and time-reversed transient responses are
then assessed and compared to the given benchmarks. The results suggest that
inhibitory levels of low frequency sound and vibration can be obtained at signifi-
cant distances from the excitation point. Antifouling levels of pressure are shown
to be easier to achieve than acceleration. The use of time reversal substantially
increases the given response quantity at any point.

5.1 Quantitative Benchmarking of Mussel An-
tifouling Studies

In this section, the existing literature on zebra mussel control with sound and
vibration is revisited to provide benchmarks for a feasibility study. The objective
is to give a quantitative summary of the levels of sound and vibration which have
been demonstrated to inhibit fouling in an experimental setting.

As it stands, the existing literature on vibroacoustic control of zebra mussels is
relatively sparse. Nevertheless, the studies conducted so far have been promising
insofar as they have repeatedly demonstrated acute effects of sound and vibration
on the ability of zebra mussels to attach themselves to a substrate, and in some
cases have even demonstrated the ability to kill settled mussels.

A broad literature review on this subject has already been given in Chapter 1.
Here, the studies which are most relevant to the problem addressed by this project
are presented in more detail and the results are compared with a numerical exper-
iment to assess the feasibility of replicating the sound /vibration levels required for
biofouling control. The studies have been divided into those which focus on acous-
tic pressure in the fluid, and those which deal with vibration of the substrate. It
is worth noting however, that in most systems these two effects cannot be exactly
separated due to the fluid-structure interaction.
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5.1.1 Acoustic Pressure

The research which has been conducted so far on acoustic zebra mussel antifoul-
ing is divided between studies which use electric sparkers to generate very high
amplitude pressure pulses, and those which use harmonic sound fields induced by
traditional underwater actuators.

Sparkers have already been deployed in the field in some cases and appear
to be effective for zebra mussel antifouling. For example Mackie et al. have
conducted field experiments demonstrating massively reduced settlement rates in
pipes treated with sparkers, as well as induced mortality and a reduction in mussel
size [25]. Schaefer et al. note an installation where a sparker pulse applied once
every 30s has ‘for over four years prevented biofouling’ in a 40cm diameter 550m
long pipe [27]. Similarly a EPA project concluded that sparkers could prevent
growth of mussels in a similar setting [28]. In most of these studies, the specifics
of the pressures and bandwidths used are not forthcoming. However, Schaefer
et al. quantifies the pressure in a 115m pipe with the use of such a sparker in
2010 [26]. In this case bandwidth of each pulse was approximately 100 kHz and
the pressures needed to inhibit settlement of, or kill mussels, 0.04 MPa and 0.23
MPa respectively. In this study the distance protected from settlement was a more
modest 23 m with a mortality distance of just 1.5 m. Since then, there appears to
have been no new research conducted on the user of acoustic sparkers.

For the use of harmonic sound fields, the number of studies is even fewer. Whilst
the subject of acoustic antifouling more broadly has seen substantial research,
as for example in the case of barnacles [167] and other aquatic creatures, there
are only two studies which stand out for measuring the effect of sound on zebra
mussels. Most notably Donskoy performed a number of tests on the translocation
of adult zebra mussels in the presence of low frequency underwater sound [168]. It
is reported that pressures from 50-315 Pa at frequencies of 37-130 Hz were used,
although exact quantities are given for only two tests. These are displayed in Table
5.1. Over the relatively short (12 - 24 hr) duration studied, the number of mussels
settled on a substrate was significantly reduced. Mussel mortality, however, was
not observed.

Study Frequency SPL re 1uPa | Duration | Result Efficacy
58 Hz 12 hrs Inhibition | 97%
Donskoy | 199 1, 170 24 hrs | Inhibition | 93%
0-100 kHz pulse | 227 Mortality | —
Schaefer (every 45s) 212 1 month Inhibition | 100%
500 Hz 85 33%
Kusku 1000 Hz 83 100 days | Mortality | 37%
5000 Hz 87 45%

Table 5.1: Summary of acoustic antifouling studies performed on zebra mussels.

More recently, in 2022, Kusku et al. performed a much longer study on the
effects of underwater sound on zebra mussels. This test was conducted over 100
days, using three frequencies from 500 - 5000 Hz [169]. This experiment used much
lower sound levels induced by a 1.5W speaker. Compared the Donskoy study, the
acoustic pressure was 2000 times lower (see Table 5.1). Over the course of the
experiment, the mortality rates in the sound treated tanks steadily grew, reaching
45% after 100 days in the 5000 kHz test. Furthermore, the measured weight of
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Figure 5.1: Frequency-pressure plot of acoustic antifouling studies conducted on
zebra mussels.

the surviving mussels had decreased, and was significantly lower than the weight
of the mussels in the control tank, which had actually increased over the same
period. The authors propose that previous acoustic antifouling studies did not
allow sufficient time to accurately observe the effects of sound on mussels.

Given that such low levels of sound are able to kill mussels over a long enough
duration, and reduce the weight of surviving mussels, it is tentatively suggested
that there may be a biological, rather than purely mechanical component to the
antifouling effect observed. This might be similar to studies that showed antifoul-
ing of barnacles at particular frequencies with no observed effect on other aquatic
fouling organisms [170]. At this stage, however, no strong conclusions can yet
be drawn. Figure 5.1 depicts the pressure-frequency range of the three studies
considered in this chapter for acoustic antifouling. The Schaefer sparker study is
indicated as a horizontal line due to the broadband nature of the excitation, which
was applied every 45 s.

5.1.2 Structural Vibration

There are only a few select studies which measure the effect of vibration on zebra
mussels. These are namely the Donskoy study on mussel veligers [168] and the
Kowalewski study on juvenile zebra mussels [171]. The results of the Donskoy
study are shown in Table 5.2. Here it was demonstrated that 100% mortality could
be achieved in a remarkably short time given sufficient levels of substrate borne
vibration. The study by Kowalewski also showed 100% detachment rate between
8-10 kHz at vibration levels of approx. 15g, and 100% mortality at 10-12kHz at
20g.

Aside from these studies on zebra mussels, research has been performed by
Roberts et al. on the sensitivity of the blue mussel (Mytilus edulis) to vibration
of the substrate [30]. The motivation of this work was ecological. The response
of the mussels to vibration was measured with valve closure, and the treatment
duration was just 8 s. Still, this work is useful in providing the thresholds of
vibration required to elicit a response from blue mussels, and although a different
species, this work may be somewhat applicable to the zebra mussel. The results
of the study are given in Table 5.3. Figure 5.2 illustrates the vibration studies
which will be considered in this chapter, where it should be remembered that the
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Frequency | Vibration Level Mortality Rate (%) vs Time
(Hz) (g) 15 min | 30 min | 60 min | 90 min
62 0.01 48 67 97 100
160 0.5 I6) 88 100 100
450 6 48 70 74 97
1,000 7 o4 69 83 92
8,500 8 45 52 61 61
8,500 12 33 44 61 73
9,500 78 69 84 100 100
9,500 600 98 97 100 100
16,000 23 - 32 57 o4

Table 5.2: Results of vibration treatment of veligers. Reproduced from [168].

Frequency | Acceleration | Duration
) 0.07

10 0.06

20 0.08

40 0.10 8s

90 0.09

210 0.55

410 0.12

Table 5.3: Vibration threshold study on the blue mussel (Mytilus edulis). Mea-
suring valve closure subject to substrate-borne vibration. Reproduced from [30]

experiment by Roberts et al. was conducted on the blue mussel and only measured
valve closure. Notably there is some overlap between the studies by Donskoy and
Roberts et al. However, in the case of the former the vibration was applied over
many minutes to zebra mussel veligers and for the latter, vibration was applied
for just 8 seconds to adult blue mussels. Additionally, the research performed by
Donksoy concluded that vibration at these levels could not kill adult mussels, only
veligers.
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et al.
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Figure 5.3: Mechanical (left) and electrical (right) subsystems of the inertial ac-
tuator model.

5.2 Structural Excitation with Inertial Actuator

In this section, the pipe system studied in Chapter 4 is coupled to a model of
a commercial inertial actuator and the response is assessed with respect to the
existing research of mussel antifouling. Harmonic and time reversal excitations are
compared with the aim of achieving pressure and accelerations levels at frequencies
demonstrated to inhibit the attachment of mussels.

5.2.1 Inertial Actuator Model

Inertial actuators (or shakers) are a common way to excite a structure with high
amplitude vibration. They can be conveniently fixed with a single attachment
point on any structure, and work through electromagnetic coupling between a coil
and permanent magnet, which constitutes the inertial mass. Beyond its resonant
frequency an inertial actuator behaves approximately as an ideal force source over
a significant bandwidth when driving a much larger impedance. An inertial actu-
ator is used in this study, as it is a typical and reliable method for exciting high
amplitude, low-frequency vibrations.

Figure 5.3 shows a simplified lumped parameter model of an inertial actuator,
divided into coupled mechanical and electrical circuits. The input to the system
is given by the voltage source V, with internal resistance Ry. A current i flows
through the coil, modelled by an inductance L with some series resistance Rj.
This current then generates a force in the mechanical system F, due to the elec-
tromagnetic coupling.

Fu(w) = (Bl)i(w) (5.1)

where B is the flux density of the permanent magnet and [ the length of the
coil. The product Bl is known as the voice coil coefficient. The force is generated
between the permanent magnet of mass m, and the coil, which is fixed to the
structure being excited. These are shown as the mass and base respectively of the
mechanical circuit in Figure 5.3, and are connected through a spring of stiffness
k and a dashpot with viscous damping constant c. The relative velocity between
the mass and coil induces a back E.M.F into the coil such to oppose the driving
voltage

V, = Bl (W, — ) - (5.2)
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With these relations, the coupled system can be modelled.

Coupling Spatially the actuator is assumed to behave as a point force, with the
attachment point being a few centimetres or less in diameter. Using the WFE
method, the transfer function of the system subject to a structural point force
H(w) at any degree of freedom can be calculated as outlined in Chapter 4. For a
given input force to the pipe F}, the general displacements can be found with

Qw) = H(w) - Fp(w). (5.3)
F,, is calculated considering the coupling to the shaker, and can be expressed
as [127]

Fy(w) = ? pEZi Fu(w), (5.4)

The transfer function between the actuator force and the force applied to the pipe
is given in terms of the relative accelerances of the pipe and actuator
Fpw)  aw)
Fow)  ap(w) + ag(w)’
Here the pipe accelerance ag is calculated at the driving point with the WFE
model. The actuator force can then be expressed in terms of the voltage

Fo(w)
F,(w) = V()
with the corresponding force/voltage ratio given by
Fuw)  Fuw) (Va@)\™
Vo) L(w) <Ia(w>> '
The transfer function between the actuator force and current and the electrical
impedance are given in the blocked configuration by [172]

F,  jwm-(BI) Vo
I, _jwm+c+j% I,

(5.5)

: Va(w) (56)

(5.7)

(BI)®
jwm +c+ (%) .

(R+ jwL) + (5.8)

Now the force applied to the pipe for a given input voltage can be calculated
combining the prior equations

Fy(w) Faw) (Valw)\ ™
Va(w) la(w) (Ia(w)>

Fy(w) = Va(w). (5.9)

The preceding equations are calculated for the parameters shown in Table 5.4,
which are based on the commercially available DataPhysics 1V40 shaker [173]
paired with the PA30E amplifier. With this setup, an input voltage of 10V is
chosen to drive the actuator. The actuator is considered to act on the external
wall of the pipe at § =0

The pressure and acceleration at the inner pipe wall are now calculated at same
transverse coordinate for a range of distances from the source. Harmonic and time-
reversal excitations are used and compared for their maximum response at different
frequencies. In the case of time reversal, the frequency used is the pulse repetition
frequency, adjusted by varying the length of the FFT and thus the focal waveform.
Once again it is emphasised that this comparison of response amplitudes is between
that of a sinusoid and pulse train. The longest focal waveform duration is 0.8
seconds, with a corresponding minimum frequency of 1.25 Hz. The shortest focal
waveform and highest pulse frequency are 0.75 ms and approx 1.3 kHz respectively.
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Parameter Value Unit

m 1.21 ke
k 42992 Nm™!
c 22.8 NA-!
Bl 5.6 m
Ry, 1.7 Q
Ry 3.5 Q
L 0.298 mH

Table 5.4: Model parameters of an inertial actuator based on the DataPhysics
IV40 [173]

5.2.2 Pressure Response

The pressure response for the harmonic and transient excitations are shown in
Figure 5.4 along with the frequency-pressure regions from the Donskoy and Kusku
studies as in Figure 5.1. Using a harmonic excitation, the pressure at the source
reaches well into the range tested by Donskoy et al. Further away, the pressure
drops significantly as expected, and is particularly attenuated near the ring fre-
quency due to structural damping. Still, the SPL remains higher than the Kusku
region far from the source and over a broad range of frequencies. The first low fre-
quency peak seen in the harmonic spectra corresponds to the actuator resonance
at approximately 30 Hz. The pressure here is relatively unattenuated as energy
is carried through the plane wave mode in the fluid. Although the pipe is stiff to
radial vibration at this frequency, indicated by the low SPL value at the input (z
= 0 m), the pressure level is still within the range suggested to induce antifouling
according to Kusku et al., and the low attenuation would make it suitable for this
purpose at a considerable range from the source. Above the ring frequency, the
pressure is dominated by the higher-order duct modes and steadily drops due to
the actuator roll-off.

The focussed transient pressure response is significantly higher across all fre-
quencies tested, and the SPL does not drop below 120 dB. Whilst the harmonic
pressure can only reach the Donskoy pressure/frequency region at the input, with
time-reversal focussing, a comparable SPL can be achieved at over 100 m from the
source. Naturally, the SPL decreases steadily with the repetition frequency, as the
length of the focal waveform and thus the potential for focussing diminishes.

A further advantage of focussing is that the maximum amplitude has a weaker
dependence on frequency. Where the peak response obtained with a harmonic
excitation is reliant on various resonances in the system, arising either from the
cut-on of wavemodes or the actuator itself, the broadband waveform used in time
reversal allows the pulse repetition frequency to be adjusted without drastically
affecting the peak response. For example, the high attenuation above 1 kHz is
seen to strongly filter the harmonic response in a region around the ring frequency,
where the pressure drops significantly. With time reversal no such rapid drop-off
is observed, as the pulse train at the focus is, by definition, mostly comprised of
those frequencies which propagate with the least attenuation. It is seen then, that
transient focussing can smooth out any ‘bandgaps’ inherent to the system. This
has useful practical implications where there is an observed frequency sensitivity
in fouling organisms.
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Figure 5.4: Harmonic (top) and transient time reversal (bottom) pressure spectra
at various distances, compared to acoustic antifouling studies.

5.2.3 Acceleration Response

Figure 5.5 shows the same study repeated for the acceleration of the pipe wall.
Overall, it is observed that the levels of acceleration required to induce antifouling
are more difficult to achieve compared to those for pressure. Harmonically, the
range of accelerations used in the Donskoy veliger study are only obtainable at or
very close to the input. The low frequency actuator resonance reaches a level of
vibration comparable to the blue mussel threshold study by Roberts at al. and
the lowest frequency tested in the Donskoy zebra veliger study. It is possible that
sustained vibration at the levels used in the work by Roberts et al. could lead
to mortality, detachment or inhibition but this is not yet known. Going higher
in frequency, the input acceleration is seen to peak at various cut-on frequencies
approaching the range used by Donskoy to kill zebra mussel veligers. However, at
distances farther from the source, attenuation causes the levels of acceleration to
fall well beyond those observed to elicit a response or control fouling of mussels,
especially at higher frequencies, where stronger vibration is required according to
available research. From this it is suggested that harmonic vibration is best used
at lower frequencies closer to the source.

On the other hand, using time reversal focussing yields accelerations well above
those tested in antifouling studies over a significant range of distances and frequen-
cies. With a harmonic excitation, the response at very low frequencies (< 30 Hz)

93



4 [C T T
10 Roberts et al. Donskoy

(threshold) (veliger mortality

102 L
10°
102

10~ : U

Acceleration (m/s?)

1076 F .
— Om —— 50m —— 100m 200m 400m

10! 102 10° 10*
Frequency (Hz)

104_ L LSS | LA L L L L LI | L LS NS | T
—o— (Om —*— 50m —— 100m 200m 400m

10%
102

10t

—
S
=]

Acceleration (m/s?)

Pﬂ
I
L

10° 10t 102 103 10*
Frequency (Hz)

Figure 5.5: Harmonic (top) and transient time reversal (bottom) acceleration spec-
tra at various distances, compared to acoustic antifouling studies.

in particular fell well short of even the threshold levels reported in Roberts et al.
With the application of focussing, these acceleration levels are easily surpassed
below 40 Hz, and this holds at 400 m from the source. Approaching 100 Hz, the
acceleration at most distances is higher than that of the lowest frequency tested
by Donskoy in the zebra mussel veliger study. In both the studies by Donskoy and
Roberts et al. it was observed that lower frequencies required less acceleration
to achieve the same intended outcome. This would compound the advantages of
time reversal focussing, since lower pulse repetition frequencies lead to a higher
maximum response at the focus, and so the larger peak response is further aided
by the ‘down-shifting’ in fundamental frequency provided by the pulse train.

5.2.4 Axial Coverage

Attention is now given to the spatial coverage of pressure down the pipe axis. Only
the pressure in the fluid is considered, since inhibitory levels of sound have been
shown to be more achievable than acceleration. Consider a length of pipe 500 m
long which requires protection from fouling. To start, a harmonic excitation is
tested. The maximum pressure calculated over all frequencies is shown in Figure
5.6, along with the pressure at the actuator resonance frequency of 30 Hz. Close to
the source, the optimal excitation frequency is between 1-2 kHz and the maximum
pressure is obtained via the low frequency flexural modes which cut on with high
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radial motion. As previously shown, these modes are strongly attenuated and as a
result the maximum pressure drops quickly with distance from the source. After
approximately 100 m, the flexural modes have attenuated to the point that the
maximum pressure is now induced by the actuator resonance at 30 Hz. From here,
the pressure drops gradually as energy is carried mostly through the fundamental
acoustic wave, which is relatively unattenuated.

The maximum pressure obtained at each distance through time reversal fo-
cussing is also shown in Figure 5.6a), where the target distance is set to 100 m.
At the focus there is naturally a large peak in pressure as energy converges at this
point. This is shown in the time domain in Figure 5.6b) along with the maximum
harmonic pressure. The gain at the focus is approximately 22. Beyond the focal
point, the peak transient pressure drops quickly as the energy begins to disperse
once more along the waveguide axis, and by 130 m has dropped below the maxi-
mum harmonic pressure obtained at 30 Hz. This is also shown in the time domain
at 200 m in Figure 5.6¢). The time reversal waveform calculated here is broadened
and highly attenuated due to dispersion.

The same calculation is now repeated in Figure 5.7 for a target of 300 m. As
before, the transient pressure drops quickly beyond the focal point. However, at
distances before the target, the transient pressure is comparable to that of the
maximum harmonic. The corresponding time domain waveforms at 200 m are
shown in Figure 5.7b). Since energy is still converging at this point as waves
propagate to the target position, the dispersion is somewhat compensated for.

These results indicate that, where only the peak response is of concern, time
reversal has relatively few drawbacks in this scenario. Focussing at long range can
still induce moderately high pressures over a significant distance before the focus,
and at the focus a very high peak amplitude is produced. In practice, the 500 m
length of pipe could be adequately covered by high amplitude sound through a
combination of harmonic and transient excitations. Near the source in particular,
a steady state harmonic excitation might achieve inhibitory levels of sound over
several dozen metres. At long range, where the pressure levels have dropped due
to attenuation, the use of focussing can amplify the peak pressure whilst still
maintaining a relatively high response amplitude at distances leading up to the
focal point.
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Figure 5.6: a) The maximum pressure obtained at each distance when exciting with
the optimal harmonic excitation, a harmonic excitation at the actuator resonance
frequency, and a time reversal waveform targeted at 100 m. b) The time domain
response for the time reversal and harmonic pressures at the focus. ¢) The time
domain response for the time reversal and harmonic pressure at 200 m, far beyond
the focus.
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5.3 Conclusions

In this chapter, the problem of antifouling in water pipes was contextualised with a
numerical experiment, coupling a commercial inertial actuator to the WFE model
of a fluid-filled pipe. Antifouling studies were compiled and the levels of pres-
sure and acceleration thought to inhibit mussel settlement were established. Both
harmonic and transient time reversal excitations were assessed for their ability to
reach the required response amplitudes at various distances from the source. It
was shown that inhibitory levels of pressure, rather than acceleration, were more
readily obtainable with both types of excitation applied to the structure. Close
to the source, a low frequency (< 10 kHz) harmonic excitation was sufficient to
reach antifouling levels of both pressure and acceleration. At long range, however,
the harmonic response, particularly at higher frequencies, dropped significantly
with distance due to energy dissipation in the structure. An exception to this
was found at the actuator resonance of 30 Hz, which predominantly excited the
lightly damped fundamental acoustic wave. This has promising implications for
long range antifouling without the use of focussing. Although not tested in this
chapter, a low frequency underwater transducer would likely be better suited to
strongly excite the plane wave.

With time reversal focussing, energy was focussed at targeted points on the
inner pipe wall. Instead of a sinusoid, pressure pulses were delivered at the fo-
cal point with a fundamental frequency equal to the reciprocal of the excitation
waveform duration. The use of time reversal focussing was able to significantly
increase the peak response amplitudes at all distances, but in particular far from
the source. Various focal waveform durations were tested to show that pulse trains
could be applied with a range of repetition frequencies between 1 - 1000 Hz. The
optimal frequency to control mussels is currently unknown, but it is thought that
lower frequencies are overall more effective.

With both types of excitation, the pressure reached in the fluid was well above
that used by Kusku et al. in almost all cases. However, the pressure levels tested
by Donskoy in his 12 hour study were only reached at long range (< 50 m) through
the use of focussing. For the structural acceleration of the pipe wall, amplitudes
which are lethal to mussel veligers could be achieved only at the source with a
harmonic excitation. Again, focussing allowed these levels to be reached much
farther from the source, up to 200 m away.

The spatial distribution of pressure was evaluated down the pipe axis to assess
how a long stretch of pipe might be protected from fouling. A 500 m long section
was considered and harmonic and time reversal excitations were applied. An SPL
of > 130 was reached over the entire length by driving the system harmonically
at the actuator resonance, which was well above the levels used in the Kusku
study, but lower than the SPL range tested in the Donskoy translocation study.
By contrast, time reversal allowed the Donskoy levels to be reached at targeted
points over 300 m from the source. It was shown that when using time reversal,
the pressure dropped quickly beyond the focal point due to dispersion. However,
before the focal point, whilst energy was still converging along the axis, the pressure
amplitude was comparable to that of the maximum harmonic response. In the
example shown, an SPL of nearly 160 could be reached at a focal point 300 m
away, whilst still maintaining an SPL > 140 over all distances before the target.
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6. Conclusions

6.1 Summary of Present Work

In the introduction, the problem of invasive mussel fouling was outlined, in par-
ticular emphasising the physical impact on freshwater intake pipes and associated
economic costs. Various existing control strategies have been reviewed, however
as of yet, there exists no definitive solution that is effective, specific and can be
continuously applied. At present, the most promising treatments appear to be
BioBullets and Zequanox, but neither of these can be applied continuously.

Among the many control techniques detailed were those which used fluid-borne
sound or structure-borne vibration to either prevent the settlement of mussels or
kill them outright. A number of studies were reviewed which showed promise in
treating mussel fouling. The exact antifouling mechanism is still unknown, but
lower frequencies were shown to be more effective, and rather modest levels of
sound were found to be inhibitory and even lethal over a long enough treatment
time.

Given the specific problem of mussel fouling in water intake pipes, it was posited
that guided waves could be used to protect large sections of pipe from fouling. Since
energy is confined to propagate in mostly one direction, guided waves can travel
long distances with low attenuation, a property which is exploited in the fields
of non-destructive testing and leak detection. The theory of wave propagation in
fluid-filled pipes was thus reviewed, from elementary analytical models up to the
contemporary numerical methods.

After this, the means by which the sound or vibration levels could be max-
imised in the pipe were reviewed. In particular, dispersion compensation and/or
time reversal have stood out as techniques which can significantly increase the
peak response amplitude at a targeted position. Specifically, 1-bit/clipped time
reversal was suggested as the most promising method of maximising the response.
This technique exploits the dispersion in the pipe system to amplify, rather than
attenuate a broadband excitation as energy propagates down the axis.

In Chapter 2, the problem was approached by considering only the fluid, and
a simple analytical theory was used to model the system as a rigid duct driven by
a monopole point source. After detailing the free wave propagation in the system,
the harmonic response was assessed with the aim of maximising the pressure at the
duct wall. It was shown that the interference of multiple dispersive modes makes
it difficult to select an optimal excitation frequency to maximise the pressure over
a long length of the waveguide. The time reversal method was then introduced,
in particular the 1-bit/clipped time reversal method which was suggested as the
means of maximising the peak pressure at any point. A broadband transient
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excitation designed from the system’s impulse response was used to focus energy
at the target, resulting in a large amplitude pressure pulse. The peak pressure
obtained through time reversal was many times higher than that which could be
achieved through a steady state harmonic excitation, but the RMS pressure was
reduced. The relative merits of time reversal focussing were discussed, and further
modifications to the technique were explored, such as changing the length of the
excitation waveform to change the pulse repetition frequency at the target.

In Chapter 3, the Wave Finite Element (WFE) method was used to model a
fully-coupled fluid-filled pipe system in the axisymmetric mode of vibration only.
First the WFE model of the system was introduced and validated. The free waves
were analysed and idealised structural and acoustic excitations were used to inves-
tigate the forced response. Particular attention was given to the energy distribu-
tion between the fluid and structure and the attenuation of different propagating
modes, with the aim of determining the optimal bandwidth and type of excitation
for long range application of antifouling. The results showed that waves prop-
agating in the fluid, rather than the structure, were best suited to propagation
at long range. Waves with a high degree of radial motion in the structure were
highly attenuated, particularly around the ring frequency. At higher frequencies
the system was shown to increasingly behave like a rigid duct. Time reversal was
applied to the pipe and showed similar performance to the duct system in Chapter
2. A parametric study on damping was also performed which showed time reversal
could mitigate the unwanted effects of energy dissipation in the system.

After concluding the analysis of the axisymmetric system, Chapter 4 detailed
a similar study, performed on the non-axisymmetric system with all higher-order
propagating waves. Once again, waves in the fluid were less attenuated and could
propagate much farther from the source than waves in the structure. The low
frequency set of flexural waves in the pipe wall were shown to have potential for
antifouling close to the source, but were otherwise strongly attenuated at long
range. With the higher-order system, the response to one or more point sources
was analysed in order to demonstrate the application of a phased array. The
optimal bandwidth for focussing was assessed.

Finally, the preceding work was put into the context of antifouling in Chapter 5,
by coupling the higher-order system to a model of a commercially available inertial
actuator. Existing biofouling studies were compiled and the levels of sound and
vibration shown to inhibit fouling were compared to those achievable in the coupled
system. Inhibitory response levels were obtainable over significant distances with
both harmonic and transient excitations, but use of time reversal extended the
maximum range significantly, as well as the peak response at any given point.
Further to this, the time reversal response amplitude at distances before the focus
was comparable to the maximum harmonic response. This demonstrated that time
reversal could be used to target a single point at long range without significantly
compromising the spatial coverage before the focus.

6.2 Implications for Antifouling and Suggestions
for Future Work

The work so far has shown some tentative but encouraging results for applying
sound and vibration to control biofouling of zebra mussels. Close to the excitation
point, antifouling levels of sound and vibration should be readily achievable with
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either a structural or underwater actuator. The range at which these levels can
be obtained from the source is still largely unknown and will depend strongly
on the specifics of the system. It was shown in this work that, in an unburied
pipe, the structural waves are most attenuated. In practice, this would be further
compounded by surrounding media in a buried pipe or other constraints such as
pipe flanges and supports. Use of the acoustic waves in the fluid would therefore
offer the best approach to antifouling at long range. For this, the mostly non-
dispersive fundamental acoustic wave could be used at low frequencies with a
harmonic excitation. Otherwise, focussing could be applied with the higher-order
acoustic modes above the ring frequency. In either case, strong coupling between
the pipe wall and fluid is undesirable for long range power transfer.

For future work on this project, it is recommended that experiments are per-
formed on water intake pipes which mirror the studies in this thesis. The following
is suggested:

e Measurement of the long range frequency response in a real intake pipe
system to provide insight into the optimal bandwidth to use for antifouling.
If possible, both pressure and acceleration should be measured, however, the
fluid pressure is likely to be of greater importance. It should be noted that
only frequencies below 20 kHz have been widely tested for controlling zebra
mussel fouling.

e Subsequent choice of actuator based on the pipe frequency response. The
actuator should be either narrowband, to harmonically excite a particular
frequency, or broadband, with which the time reversal focussing technique
presented in this thesis can be used.

e Assessment of the response levels and range achieved with the chosen actu-
ator in an intake pipe, with comparison to the biofouling studies outlined in
this thesis.

e [f inhibitory levels of sound and vibration are possible to achieve over a
considerable range, a field trial should be conducted in a pipe heavily affected
by mussel fouling to ultimately determine the feasibility of this antifouling
strategy.
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A. One Dimensional Theories

There are a number of approximate one-dimensional theories that are adequate to
describe different motions of a pipe in the low frequency limit. In this appendix the
equations of motion for these theories are presented and a harmonic wave solutions
are applied to obtain the dispersion relations. In all cases, x refers to the axial
coordinate of the waveguide and ¢ denotes time.

A.1 Equations of Motion

A.1.1 Fluid Plane Wave

Assuming a fluid-filled pipe with rigid walls, there is a single propagating acoustic
wave in the low frequency limit. This wave has a form identical to an acoustic
plane wave in free space with the equation of motion given by

Pp  (pr\ Op
5= (3) 5 (A1)

where p is the acoustic pressure, and B and py are the bulk modulus and density
of the fluid respectively. The phase and group velocities are equal and given by
vV B/py-

The pressure is uniform over cross-section of the waveguide. As the acoustic
wavelength approaches the pipe diameter with increasing frequency, higher-order
modes will begin to propagate with a non-uniform pressure distribution. These
are captured by higher-order duct theory using the Helmholtz equation. Still, the
preceding equation still holds for the plane wave at all frequencies as long as the
duct wall is rigid. Where the wall has finite impedance, the plane wave assump-
tion no longer valid and instead there is a quasi-plane wave which is dispersive.
Furthermore the plane/quasi-plane wave disappears entirely in the case of a duct
with perfectly compliant walls.

A.1.2 Simple Rod

The quasi-longitudinal waves which travel a pipe wall can be described in the
simplest case by elementary rod theory, governed by the 1D wave equation. By
balancing forces using Hooke’s Law for a uniform bar, the equation of motion is
given in terms of the axial displacement u

0%u ps\ O*u
o= (%) e (4.2)
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where F and p, are the Young’s modulus and density of the material respectively.
The phase and group velocities are given by 1/ E/ps, often known as the bar or rod
velocity, approximately 5kms~! in steel. This theory assumes there is no inertia
to the transverse motion of the rod which arises out of the Poission coupling
between the axial and transverse strains. The assumption breaks down at higher
frequencies, which can be addressed in a rod, for example, with Love rod theory
or yet higher-order theories. In a pipe, the behaviour will sharply diverge from a
rod near the ring frequency, and the waves can no longer be adequately described
with the rod assumption.

A.1.3 Simple Shaft

The derivation of the elementary theory for torsional waves is essentially the rota-
tional counterpart of the simple rod theory. Using 6 as the angular displacement
variable, a similar governing equation of motion is given:

020 ps\ 0%0
o= (5) 5 (A-3)

Another non-dispersive wave results with the phase and group velocities equal to
the shear wavespeed in the material \/G/p,, approximately 3kms~'. The fun-
damental torsional wave in solid cylindrical waveguides is well described by this
simple theory at all frequencies.

A.1.4 Euler-Bernoulli Beam

The Euler-Bernoulli beam theory (EBBT) provides the first elementary theory
with a dispersive governing equation, derived by considering the bending moments
about a section of the beam. It describes the transverse displacement w with

0? 0*w 0w
7 (Efa—) = A% (A4)

Where pA is the product of density and cross-sectional area, and gives the linear
mass density of the beam. This term allows extra mass to be added, a simple way
of incorporating basic fluid coupling in the model. If there is no internal fluid then
p = ps. The second moment of area, I, is given for a hollow cylinder of mean
radius a and wall thickness h by

1
a*hr + Zahgw (A.5)

This theory neglects shear deformation and rotary inertia of the cross-section and
thus is only accurate at low frequencies.

A.1.5 Timoshenko Beam

Timoshenko beam theory addresses the deficiencies of the EBBT by including
the effects of shear deformation and rotary inertia. The governing equations are
typically derived considering the transverse displacement and slope of the beam,
resulting in two coupled partial differential equations. These two second order
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PDEs can be reduced into a single governing equation of fourth order, which is
given only in terms of the transverse deflection
ElId*w I ) E\ 0w N ow? N pl O*w
pA ozt A Gk ) 0xz?0t> 0Ot  GAk Ot

~0. (A.6)

Here all variables have the same meaning as in the EBBT. The coefficient x is
required to bring the theory into agreement with results obtained from the exact
equations of linear elasticity. For a thin hollow cylinder x can be found with [174].
2(1+v)
K=ra, (A.7)
Which is approximately 0.53.

For solid beams, Timoshenko beam theory is accurate to high frequency and has
good agreement with solutions obtained from exact equations of linear elasticity.
In the case of the fundamental bending wave in a pipe, both beam theories will
become inaccurate at and above the ring frequency. It is worth noting that the
Timoshenko dispersion relation involves wavenumber terms of the fourth order.
This implies that there are two branches (or ‘modes’) described by this theory. The
meaning of this second branch is unclear however, and it is usually ignored [175].

A.2 Dispersion Relations

Considering the harmonic wave solution with arbitrary amplitude C,
Celtkz=wt) (A.8)

the governing equations yield the dispersion relation, between the wavenumber
k and angular frequency w. These are presented in Table A.1. From this the
phase and group velocities can be obtained from the definitions ¢, = w/k and
¢y = dw/dk.

Theory Disp}e?r(ii)(,)z)f{:elgtion
Plane Acoustic w—k % =0
Elementary Rod w—k E =0
Elementary Shaft w—k p% =0
Euler-Bernoulli Beam k2 —w %? =0
Timoshenko Beam | (GrAk? — pAw?) (GAk + EIk* — plw?) — G?k%2A%k?* = 0

Table A.1: Dispersion relations obtained from the one-dimensional theories

The phase velocity curves are shown in Figure A.1 for each of the elementary
theories. Fluid loading is not included in the beam theories.. The ring frequency
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Figure A.1: Phase velocities for elementary theories describing a 20 cm radius steel
water pipe.

fring denotes when the pipe begins to resonate radially as a ring. None of the modes,
with exception of the torsional, are expected to hold beyond the ring frequency,
where the pipe behaviour will rapidly diverge from any of these one-dimensional
analogues.
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B. Thin Cylindrical Shell Theory

There are a variety of different thin shell theories, most comprehensively covered
by Leissa [42], each of which make slightly different kinematic assumptions in their
respective derivation. All rely on the fundamental assumption that the through-
thickness displacement field in the shell wall is linear, an assumption which is
justified for a cylinder with a very small wall thickness to radius ratio [46]. The
most rudimentary shell theory is the Love membrane theory, which entirely ne-
glects bending effects. In this appendix the Fliigge shell equations are presented,
since they are generally considered to be the most accurate [176,177]. The coor-
dinate system used is shown in Figure B.1. The variables u, v, and w denote the
displacement of the middle surface in the axial, tangential and radial directions.

B.1 In Vacuo
The governing equations of motion in the absence of forcing are given by

{ O A—n)* (1-) , (—y)aju

—_— 2 R
022 > o002 " E at2 S e

(1+v) & 0 1-v) & 1

“L{ > aaxae}”{ — gm0 “axaw}w_o

(1+v) & (=) , 0 02 =),

[a 2 axae}“{ W+@ —E “or B
( o? '

+ﬁ32 } [ 2 )a2a2at}w20
2 3 2( 0 2( V) 2 o?

[ —Fa +B 5 “ou 692] [__5 W@e]”
2wd (1_’/2) 282 2 9? o

—I—[1+6V —I—pTaﬁ—i—ﬁ (1+2w)}w—0

where non-dimensional thickness parameter has been introduced 8?2 = h?/12a>.
The solutions for a given mode are assumed to be of the form

u = U cos (ng)e' i(herwttg)  op  Ueilkeztno—wt) (B.2)
v = Vsin (ng)e'®=*=“0)  or 4V eilkzztné=—wh) (B.3)
w =W cos (ng)e'*=*=wt)  or Weilkeztno—wt) (B.4)

The first set of solutions describe a standing circumferential wave and a propagat-
ing axial wave. The second set also satisfy B.1 and describe a wave propagating
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Figure B.1: Cylindrical coordinate system for the thin shell with displacement
components shown.

both circumferentially and axially, with wavefronts which spiral down the pipe in
a helical pattern.

The variable n is known as the circumferential mode order. Axisymmetric
modes have n = 0 and these include all longitudinal modes and the fundamental
torsional mode. The n = 1 modes include (but are not limited to) the beam
bending mode, described in the low frequency limit by the beam theories covered
in appendix A.

After substitution of the solutions into B.1, the governing equations are now
represented conveniently in matrix form

Ly Lys Las U 0
Loy Loy Lo Vii=10 (B.5)
L1 Lsz Lss W 0

(

Ly = (kaa)? + [(1=)/2) (1 + 82 n2 — Q2 Ly = n[(1 +v)/2k.a

Lz = —i{(v = [(1 = v)/2]8*n?) (k.a) + B*(k.a)®} Lay = Lya,

Loy = [(1=v)/2] (1 4 35%) (k.a)* + n* — Q% Loy = —i{n + n[(3 - v)/2]8*(k.a)’},
Ly = —Lis,  Lgy = —Las,

Laz = [1+ % (1 —2n?)] + B2 ((k.a)* + 2n?(k,a)? + n*) — Q2.

Here the non-dimensional frequency Q2 = wa/c;, is used, which is helpful in simpli-
fying the mathematics. Once solved, all quantities may be readily converted back
to their dimensional form.

The non-trivial solutions to equation B.5 are found when the determinant of
the coefficient matrix is equal to zero, giving the characteristic equation of the
system. The dispersion relation is then given by an 8th order polynomial in either
k. or Q, yielding four unique, generally complex branches for each circumferential
mode order. This can either be solved analytically [178] or numerically.
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B.2 Fluid Coupled

An internal fluid can be included in the theory by matching the radial velocity
of the shell wall with the acoustic velocity of the internal fluid, as has been in-
vestigated in some detail by Fuller and Fahy [49]. The frequency equation is now
expressed as

Ly Lo Ly U 0
Loy Loy Lo V=10 (B.6)
L3y Lz Lsz— FL %% 0

The system is seen to differ in equation B.5 by the inclusion of a fluid loading term

P 1\ Ju(kra)

FL=0* (= B.7
(&) () ks (0
where py and p, are the densities of the fluid and structure respectively. The radial
wavenumber k,. is given by

ky = i\/ Q2 (%)2 — (k)% (B.8)

The inclusion of the Bessel functions in the characteristic equation add significant
complexity when solving for the dispersion relation, and analytical solutions are
no longer possible. Instead, a root-finding algorithm is typically used to solve the
frequency equation.
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C. The WFE Method

This appendix provides a basic description of the Wave Finite Element method.
The formulation presented here was implemented in Python, and the code has
since been packaged and is freely available to use (see Section C.4).

C.1 Formulation of Eigenproblem

Consider a short segment of a waveguide of axial length A meshed with finite
elements, illustrated in Figure C.1. As is required by the WFE method, the
degrees of freedom on the left and right faces of the segment are identical. The
equation of motion for this segment relates the vectors of forces and displacements
over each degree of freedom

Dq = f (C.1)

where ~ denotes the quantity is time harmonic according to ¢/“!. The dynamic
stiffness matrix (DSM) is defined at each frequency

D =K - w’M (C.2)

and comprised of the mass and stiffness matrices, M and K respectively. The
elements of the DSM and the corresponding forces and displacements can be par-
titioned according to their location on the segment’s left, right or internal faces.
If present, internal degrees of freedom must be condensed. The partitioned DSM
is expressed in it’s uncondensed form (denoted with -') by

D'y, D'y Dpgl| |as fL
D'y, D'y Dig| |ar| = f; (C.3)
D'r, D'rr D'rr| |ar fr

n—1 —A— n+1

Figure C.1: Diagram of a mesh segment with nodes on the Left, Right and Internal
faces.
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To eliminate the nodes internal to the segment, it is assumed that no external forces
are applied at their corresponding degrees of freedom (f; = 0). The condensed
DSM can then be found with the following

D;. Dir| [D'nr D'ir - D et o, /
{DRL Dgrr| |D'rr D'gr D', D'y [DIL DIR} (C.4)

leading to the equation of motion in terms of only the forces and displacement on
the left and right face of the segment

Dyp DLR] {QL} m
=5 C.5
[DRL Dgr| |Qr fr (C5)
Considering the waveguide to be a periodic structure formed of repeated iden-
tical segments as in Figure C.1, the objective is to derive the transfer matrix T

which relates the displacements and forces (sometimes known as ‘state vectors’)
of one segment to the next, i.e

~ (n) < (n+1)
q q
L L

To derive the transfer matrix, equation C.5 is expanded, with the first row giving
D;.d; + Drrar = f1
dr = (-DrpDrr)ar + (Drp)fr

The second row, using the above expression for qgr, now expands to

(C.7)

Dydr + Drrir = fr
Drrdr + Drr(—=D;Drrar + Dipfr) = fr (C.8)
fr = (Drr — D pDrr)ar + (DrrDig)fL

Finally, the displacements and forces are related between segments by continuity
of displacement and force equilibrium

ar| ey | (C.9)
f£n+1) _f]({n)
Which, upon substitution into equations C.7 and C.8 leads to the transfer matrix
given by

-D;D D!
T = LR LL LR |, C.10
|:—DRL + DRRDL}%DLL _]:)R,R]:)L]laL ( )

With the transfer matrix derived, a harmonic wave propagating along the
waveguide is considered. In such a case, the forces and displacements of adja-
cent segments are related by a constant phase factor A = e 7*2 such that

~(n) ~ (n+1)
q _ 14
A [f@)] — [E@H)] (C.11)
L L

where k is the wavenumber. Equations C.6 & C.11 then lead to the well known
standard eigenvalue problem

- (n) = (n)
T | =22 (C.12)
fL fL
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C.2 Eigensolutions

With the mass and stiffness matrices extracted, partitioned, and condensed, the
WFE method proceeds by calculating the eigenvalues and associated eigenvectors
of the transfer matrix T at a specific frequency.

The solutions are given in the wave domain, where each eigenvalue J; is related
to the wavenumber k; and each eigenvector ®; describes the displacement and
force mode shapes

P, = m (C.13)
(2

If there are N degrees of freedom for both the displacements and forces in
the system, the (2Nx2N) transfer matrix gives rise to 2N eigensolutions. These
solutions, however, are not unique and are given in /N pairs representing positive
and negative-going waves, where the eigenvalue associated with a positive-going
wave has its negative-going counterpart expressed as the reciprocal At = 1/A7,
and correspondingly k* = —k~.

Waves for which |A;] < 1 and |)\;| > 1 are positive and negative-going respec-
tively and both represent decaying or evanescent waves which do not propagate
into the far-field or transfer energy. The case where |\;| is equal to 1 (or very
close within some threshold) represents propagating waves, and for these the di-
rection is determined by evaluating the sign of the power flow, calculated with the
eigenvectors Re( jw@? ®,), where -7 denotes the complex conjugate transpose.

C.3 Forced Response

In the wave domain, the response at any point in the waveguide is constructed
with a superposition of the free wave solutions scaled by their corresponding am-
plitudes. Given an external force vector f,, the directly excited wave amplitudes
are calculated by considering continuity of displacement and force equilibrium [ref].
At a single frequency, these are calculated with

at] [®F —&-] '[o
— | e q
5 e
where, for example, <I>q+ is the NxN matrix containing the set of positive-going
displacement eigenvectors <I>;r = [af,q44,...,a%]. The resulting column vectors

a® then contain the directly excited amplitudes for each of the N modes. With
this, the displacements and forces can be calculated for each mode individually, or
summed to find the total response, in this case at the input with

Lo ) ]
=~ — + _ _ (015)
{f ®; @, |a

The forcing is applied to a single face of the mesh, located at the axial coordi-
nate x.. For an infinite waveguide with no reflections, it is sufficient to consider
only the positive-going waves to predict the response at any x > z.. For simplicity,
the excitation point is set as x. = 0. The wave amplitudes at any distance x are

calculated with
bt = r(z)a" (C.16)
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where 7 is the propagation matrix defined as
e—jk{’z
e—jk’;ra:
T(x) = . (C.17)
e—jk‘;{,z

The response at any aribitrary distance from the source can now be calculated

with N
a _ (P, @+
HRERIL o

C.4 Python Implementation Code

The method as presented above was implemented in Python and used through-
out this thesis for predicting wave propagation in fluid-filled pipes. The code is
available for others to use and can be accessed with the following links:

e Repository

e Documentation

The package implements the WFE method in its basic transfer matrix form and
thus may encounter numerical issues when applied to more complicated geometries.
More robust formulations of the eigenproblem and forced response can be readily
integrated into the code if needed.
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https://github.com/astnstn/pywfe
https://pywfe.readthedocs.io/en/latest/index.html
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