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High-quality, typically administrative, geospatial data should adhere to established measurement and representation practices and be
protected from malicious attacks. However, this kind of geospatial data may only be infrequently updated due to its often prolonged
production process compared to a data source of volunteered geographic information such as OpenStreetMap. Existing approaches
typically try to quality-assure geospatial data by comparing it to another reference data set of perceived higher quality - often another
administrative dataset facing a similar update cycle. In contrast, this article tries to determine whether actual changes present in
volunteered geographic information data such as OpenStreetMap, which also need to be applied in an administrative dataset (i.e.,
consists of actual changes in the real world), can be identified automatically. To that end, we present QPredict, a machine learning
approach observing changes in volunteered geospatial data such as OpenStreetMap to predict issues with a target (administrative)
data set. The algorithm is trained by exploiting geospatial object characteristics, intrinsic and extrinsic quality metrics and their
respective changes over time. We evaluate the effectiveness of our approach on two data sets representing two mid-size cities in

Germany and discuss our findings in terms of their applicability in use cases.
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1 INTRODUCTION

Reliable, high-quality geospatial data matters in legal affairs as well as in life-threatening situations. For example,
firefighting or emergency rescue operations must not be hindered by incomplete geospatial data or low accuracy of
buildings’ geometries. Therefore, quality assurance for geospatial data constitutes a significant concern. In general,

a variety of geospatial data sets might be used in critical situations, but whereas quality assurance is enforced for
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2 T. Homburg et al.

Fig. 1. Example of geometric inter-data-set inconsistency: Buildings in dark grey (target data set: mapping agency of Thuringia,
Germany) and in light brown (source data set: OpenStreetMap). In this case, all buildings in the target data set also exist in the
source data set. However, the geometries in the source data set were not modeled precisely, as can be observed by looking at light
brown buildings that do not overlap 100% with the target dataset.

geospatial data sets issued by local, state, or national governments, i.e., by mapping agencies which we call managed
geographic information (MGI), volunteered geographic information (VGI) [23, 57], such as OpenStreetMap (OSM) [51],
can be modified by everyone. This exposes VGI data to potential risks, for example, malicious attacks, inaccuracies
because of the use of non-professional measuring equipment, or wrong attributions because of a lack of experience of
the VGI contributors. Hence, one might argue that VGI data alone is of limited use in emergency rescue operations.
However, even reference data sets are far from perfect. In particular, their update regimen is limited by a variety of
possible reasons, such as the availability of human resources to resurvey certain areas, budgetary requirements of the
local mapping agencies, and a lack of legal requirements (updates may only be requested yearly by law), internal work-
flows of the mapping agency and possibly by technical limitations in the IT infrastructure of the individual mapping
agency. This situation implies that various areas covered by MGI data that are the responsibility of the mapping agency
may be at least temporarily outdated and thus of low quality.
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Fig. 2. Example of geometry deletion: Buildings in dark gray are included in the target data set, and other buildings in light brown
and other colors in the source data set. Here, the building in gray has been demolished to make way for a new building project,
which is already present in the source data set.
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For example, Figure 1 depicts a real-world example where we can identify two kinds of datasets. The target dataset
in dark grey is MGI data gathered by the mapping agency of Thuringia, Germany. The source dataset is colored light
brown and represents equivalent buildings in OpenStreetMap. We call the MGI dataset the target dataset because this
dataset depicts the target, which we would like to improve with our classification algorithm. We call the VGI dataset
the source dataset because it represents a suspected more recent dataset with changes we would like to incorporate
into the target dataset. One might argue that the target data set comprises high-quality MGI, whereas the source data
set is VGI with less precise modeling. This difference in modeling might be rooted in the usage of less precise capturing
equipment on the side of the OpenStreetMap community or from changes in the geometry that have occurred since its
capture in the MGI dataset. If the latter case is true, the responsible mapping agency would like to identify this change
to be adopted in the next revision of the target data set. If the former is true, the change could be considered not to be
adopted.

Figure 2 displays another common situation. The target data set is outdated and shows an already demolished
building. The source data set shows the more recent situation in which a new building has already been constructed
in its place. This case will likely occur in VGI data and will later be adapted to official data sources.

For a mapping agency, the problem to be solved is to identify relevant and correct changes in VGI geospatial data and
adapt them on time to their official datasets to give a timely and accurate picture of the real world to their customers
or other state agencies.

To quality control MGI data for changes that might have happened in the world since its last update, we have
approached the main research question of this paper: whether and how a source data set (e.g., OSM) of quality perceived
lower than the target data set (e.g., local MGI geospatial data) could be used for assuring the quality of said target data
set. In particular, we want to test if a machine learning classification can identify exactly those changes occurring in a
VGI data source, which would at a later time be applied to an MGI data source curated by a mapping agency, i.e., the
adaptability of VGI map changes to an MGI data source and to evaluate the performance of such a machine learning
approach.

We suggest an original approach, QPredict, following a suggestion in the future work section of [63], that addresses
this research question. Its context is depicted in Figure 3.

We assume that a target data set (MGI) and source data set (VGI) represent the same geographical region. Further,
we assume that the former data set exists only at time point ¢1, but the latter exists at time points #; and tp(t > t7).
QPredict then identifies changes the source data set underwent between time points t; and t,. It relates the source
data sets and these changes to the target data set at t; and decides which and how changes should be reflected in the
target data set at t;. We model the QPredict decision as a classification task, learning from historical data snapshots of
source and target data sets at various time points.

In this endeavor, we are guided by the assumptions that:

(1) The adaptability of VGI data to MGI data is reflected in data quality metric results
(2) Patterns of data quality metric results repeat throughout the history of VGI and MGI data, reflecting the likeli-
hood of a change to be adapted in MGI data

Related work has defined a wide variety of data quality metrics for geospatial data, e.g., in terms of completeness
of geospatial data, the accuracy of geometries, or the (logical) consistency of geometries. Data quality metrics are
distinguished as intrinsic data metrics [5] and extrinsic data metrics [22]. Intrinsic data quality metrics may point out
inconsistent data configurations but are blind to actual world changes. Extrinsic data quality metrics require a reference
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Fig. 3. Application context of QPredict

data set with superior quality to the target data set, which is to be judged. We want to judge the appropriateness of
intrinsic, extrinsic, and a combination of both metric types for our classification task.

In the following, we recap the current state of the art of geospatial data quality in Section 2 and distinguish our
approach from already existing map change detection approaches. In Section 3, we introduce the principal QPredict
followed by a longer elaboration on the types of features we use in Section 4. In Section 5, we present two data sets
of the state of Thuringia, Germany, which we use for training and testing QPredict, explaining the machine learning
setup we use and our evaluation method. Finally, we discuss the results and limitations of our approach in Section 6

before concluding our work in Section 7.

2 STATE OF THE ART

This section gives an overview of geospatial data quality, geospatial change detection, map inference, and various
categories of data quality metrics to measure geospatial data quality.
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2.1 Geospatial Data Quality
[34] defines data quality as:
Quality is the “degree to which a set of inherent characteristics fulfills requirements.

1SO19113 [35],1SO19114 [36], and ISO19157 [33] describe general principles of geospatial data quality and a framework
of procedures for determining and evaluating quality. [9, 59] distinguish the data quality dimensions of Lineage [61]:
The historical development of the data set, Positional Accuracy [11] of the geometric coordinates in comparison to a
target data set, the Completeness [28] of the geospatial data set as referenced in a target data set or a data set speci-
fication, its Logical Consistency [38]: Topological consistency, and attribute consistency of the data set, its Temporal
Accuracy [8]: The accuracy of the measurement of time attributes, the temporal consistency of the data set attributes
and the validity of data in a given time frame, its Thematic Accuracy: Correctness (correct syntactic annotation of the
objects in the data set)[42] and its Semantic Accuracy [7, 53, 54] (correct semantic classification of the objects in the
data set).

In addition to situation-specific data quality parameters, [31] suggest that the above categories of data quality can
be assessed on any geospatial data set using different kinds of data quality metrics (intrinsic vs. extrinsic [10, 12]) (see

Sections 2.2 and 2.3) [44] which are usually combined to achieve a certain data quality result.

2.2 Intrinsic Quality Metrics

Intrinsic geospatial data quality metrics include validity checks of geometries (e.g., well-formedness checks) [3] or
geometry accuracy measurements. Logical consistency metrics [38] take into account other geometries in the same data
set to find contradictions in the combination of attributes [17, 40]. Vicinity metrics [4] compare geospatial objects in the
contexts of their neighborhoods using changeset analysis. By changeset, we mean a definition of the changes (additions,
edits, removals) of a particular geospatial feature from one time point to the next, including meta information as
depicted, for example, in OpenStreetMap.! In addition, metadata such as lineage information [61] and information
about the data provider may be used to classify trustfulness [62]. Temporal accuracy [8] metrics may indicate the
freshness of the data set. [10, 12] describe that intrinsic quality metrics hint at mistakes present in the current geometry.
However, [4] suggests that "absolute statements on data quality are only possible with a high-quality reference data
set as a basis for comparison.” Following this statement, we rely on intrinsic data quality metrics as one source for
identifying suitable changes to be adapted in VGI data. Intrinsic data quality metrics should, therefore, constitute an

important part of a feature set for change classification.

2.3 Extrinsic Quality Metrics

Geospatial data quality may be extrinsically evaluated against geospatial data, which is considered a gold standard.
Commonly, positional accuracy, shape similarity measurements, degrees of overlapping areas using comparative anal-
ysis, [19, 22] and a completeness analysis of attributes [44] are measured. Which data set should act as the gold standard
data set may be argued about, as the mapping community of OpenStreetMap may, in many cases, produce more de-
tailed and significantly more recent data of a geographical region. However, in this publication, we take the stance that
OSM data, as the more recent dataset, will be the standard we are measuring against. Extrinsic data quality metrics
can help to identify changes that have eventually been integrated into MGI data. We consider them the second set of

indicators of map changes that must be covered in a machine-learning data set.

Uhttps://wiki.openstreetmap.org/wiki/Changeset
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2.4 Change Detection in Geospatial Data

In a survey conducted in [47], several national mapping agencies within Europe were asked about their data collection
practices, particularly how they incorporate VGI data into their daily workflow. The results showed that VGI data
is at least of interest and, at best, considered to update MGI data due to the nature of having more up-to-date data.
However, before a national mapping agency applies data from VGI resources, they undergo significant checks by
various resources, including but not exclusive to their staff surveying the area to be updated. In particular, reporting
systems to update MGI data, change detection systems to show possible to-be-applied changes have been developed,
and VGI data has been used to update place names and attribute data with a manual check by the mapping agency staff.
VGI data is often only used for change detection, but this change detection may need to be manually revised by the
mapping agency'’s staff. It is here that our approach QPredict can make an impact, as it provides a better assessment
of changes that are relevant for a mapping agency to apply and might either lower the number of changes that need
to be checked for relevance by the mapping agency staff or provide the opportunity to classify changes better. In the
following, the types of change detections that the GIS community has conducted are presented and set into perspective
to the QPredict approach of this article.

Even though map change detection is a common task in the GIS community, the targets of map change detections
have mainly been aerial photographs. A typical classification task then tries to determine how or if an area has changed
based on satellite images of different points in time [15, 21, 37, 39, 41]. Those classifications are not based on data quality
metrics but rather on features intended for image recognition and constitute a different approach to ours. Therefore,
indications of change detections are limited to observations taken from satellite images and cannot consider attributes
added to the respective geometries, like, for example, in OpenStreetMap. Also, one needs to consider the costs involved
in creating accurate satellite images, which are high compared to volunteered geographic information, which is easily
and often freely accessible over the internet. Work on change classifications using machine learning of raster or vector
data sets is not known to the authors and constitutes the main difference between QPredict and the aforementioned
approaches, as we investigate this possibility by implementing and testing QPredict.

Further related work on change detection focused on updating older manually digitized maps using a perceived
higher-quality data set. [24] aimed to superimpose German ATKIS (Amtliches Topographisch-Kartographische Infor-
mationssystem) [2] data on geological maps for data enrichment. This approach is different because two perceived
high-quality data sources are used. The matching is restricted to one semantic class, and a data quality assessment
has only been attempted to validate already matched geometries. They applied an Iterative Closest Point (ICP) change
detection between ATKIS data to manually written and digitized geological maps. The results were used to justify
a transfer of changes from the ATKIS data set to the digitized geological maps. Even though we would like to detect
changes, we pursue the different goals of judging various geometry types of VGI data through data quality assessments
for a possible application to MGI data.

The validity of changes in VGI data has been a subject of investigation by respective communities. Tools like OSM-
Stats? examine the credibility of OpenStreetMap edits using a user contribution activity analysis to detect vandalism.
Comparisons of a perceived higher quality data source to a perceived lower quality source (the opposite of our ap-
proach) are common in related work [45]. However, these publications aimed to improve the quality of the VGI data,
either by detecting mistakes in VGI data or by comparing VGI data to a higher-quality data source. We want to improve

MGI data from information gained from VGI data.

http://www.osmstats.neis-one.org
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A related area is the classification task of map inference in which vector geometries are inferred from GPS traces,
[16]. [55], among others, explored several algorithms to achieve this. A data quality analysis of extrinsic data quality
metrics is conducted to evaluate an automatically generated map from GPS traces. Common approaches like the holes
and marbles method [6] provide a means to validate a map geometrically and topologically. In this article, we face a
different challenge. While VGI data could be considered an uncertain data source and is often created from GPS traces,
our paper does not try to infer a new map from given GPS data but instead tries to identify changes in given VGI data,
which we often do not know their origin. However, our work connects to the map inferencing domain as inference
maps are an alternative data source of a perceived lower quality VGI dataset, i.e., a possible input for our algorithm.

Finally, change detection between maps of varying scales has been performed. [50] performs change detection
intending to update settlements on smaller-scale maps from larger-scale maps. They propose a formalized model to
distinguish map discrepancies from changes caused by e.g. natural phenomena. This is a related problem and cannot
be compared 1:1 as we consider the given maps to have the same scale and do not expect natural disasters to change
our map in comparable ways.

[63] investigated the transfer of changes from a VGI data source to an authoritative data set. Often, data sets in VGI
data are not aligned regarding accuracy, resolution, and data attributes, so such initial constraints hinder the matching
and subsequent change detection process. To mitigate problems concerning the level of detail, the authors propose a
set of rules that can be used to identify relevant map changes, i.e., a hierarchical model. This approach differs from
ours, as it leaves out attributes and metadata when determining if a change is justified and relies on a set of geometry
simplification processes to determine a match.

However, [63] suggests that future work may examine machine learning approaches to solve this particular task,
which is precisely where QPredict comes in to attempt this approach. Hence, according to our knowledge, this is the
first attempt to use a machine learning task to solve whether feature changes from a perceived lower-quality data

source should be transferred to a higher-quality data source.

3 QPREDICT - ANEW APPROACH FOR CHANGE CLASSIFICATION

This section describes the QPredict algorithm using the application context given in Figure 3. This description contains
the methodology of the algorithm Section 3.1 by first describing the preparation of corresponding geometries in VGI
and MGI data in Section 3.2, then elaborating on how the classification works and how the algorithm is trained Sec-
tions 3.3 and 3.4. We illustrate this functionality with an abstract minimum example to explain its use in Section 3.5.

Further details on the exact features and the experimental setup follow in Section 4 and Section 5.

3.1 Methodology overview

We now describe the methodology based on which QPredict operates. QPredict is given a source data set at time
points #; and t; and a target data set at time point #; (cf. Figure 4). Both data sets depict the same geographical area.
They include geospatial objects of building footprints, each containing a geometry (e.g., a polygon), a set of attributes
(data describing the geospatial object), and a set of metadata (e.g., currentness) describing the metainformation of the
geospatial object.

QPredict operates in two phases: QPredict-train and QPredict-classify as shown in Figure 5. QPredict-train learns how
source data should be reflected in a target data set from historical data. QPredict-classify uses the classifier produced
by QPredict-train and allows for applying classified changes from the lower quality source to the higher quality target

Manuscript submitted to ACM
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Fig. 4. Source and target data sets representing the real world at time point #; and a source data set representing the real world at
time point ;. Metadata and attributes are attached in light blue boxes. QPredict suggests how to change the target data set at #; to
best represent the real world at #,.

data set. In the following, we first present how we generate features for QPredict-train and QPredict-classify, we further

discuss the application of QPredict-classify, and finally describe the classifier training using QPredict-train.

3.2 Change Identification

A preliminary step in the creation process of the feature sets used by QPredict-train and QPredict-classify for classifi-
cation is identifying changes in the source and target datasets.

At first, corresponding geospatial objects in the data sets to be compared, i.e., target and source datasets, must be
determined. We discuss this process in Section 3.2.1. Next, a change detection process must detect if geospatial objects
differ and in which way. We discuss this process in Section 3.2.2. This constitutes the basis for generating feature

vectors, which configuration we introduce in Section 3.4.

3.2.1 Change Identification I: Finding corresponding geometries. The first step is to identify changes between two
geospatial datasets to identify their corresponding geospatial objects, i.e., corresponding geospatial object pairs in
the source data set at ¢, and target data set at t;. Two geospatial objects from different data sets are considered corre-
sponding if they describe the same object in the real world at possibly different time points. Using this definition, an
object at time point t;, extended at time point £y, is still considered a corresponding object. For this study, we neglect
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Fig. 5. A visual depiction of the steps of QPredict and its intermediate results which are discussed in this section.

the case in which a geometry from the target data set maps to many geometries of the source data set and vice versa.
Instead, we focus on 1:1 matches only. The process to match two sets of geospatial objects geom; and geoms, follows
a matching process described in [49], which we adapt to our needs in Algorithm 1. In particular, we select a different
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Fig. 6. Example of positional accuracy issues: Buildings in gray are included in the target data set, buildings in light brown in the
source data set. The building shape looks the same, but their positional accuracy does not match. This fact can be measured using
a distance metric (extrinsic) and possibly using an accuracy metric (intrinsic)

set of metrics used to calculate the similarity score between the given geometry pairs, as elaborated in the later course
of the publication.

Algorithm 1 is comprised of the following functions: The first function calcCorrespondingGeometryScore takes two
geospatial objects first and second and calculates a matching score between them. The matching score is calculated by
deriving the distance of the two centroids of the geospatial objects (line 5). The closer the geospatial objects are to each

other, the more likely they are to correspond and the higher their matching score. Next, the geometric similarity metrics
Manuscript submitted to ACM
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~ Titel DETHL55P0000jaNdBL
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» (Aktionen)
AGS 16053000
GML_ID DETHL55P0000jaNdBL

Fig. 7. Attribute changes: Changes in the target data set (example of the GML_ID as a unique identifier of the national mapping
agency), which can be tracked by looking at the next revision of the geometry in Figure 8.
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Fig. 8. Attribute changes: Changes in the target data set (example of the GML_ID as a unique identifier of the national mapping
agency), which can be tracked by looking at the last revision of the geometry in Figure 7

of HausdorffSimilarity, [32], Frechet similarity, [1], and the intersection percentage of the geospatial objects metrics
are applied in line 7 to determine if the geometry’s shapes are similar. The matching score decreases considerably if the
metric results indicate a similarity below a threshold of 75% of a given geometry metric, indicating that the geometrical
shapes are dissimilar. This threshold has been tested to be suitable for our data and may need to be adjusted for map
Manuscript submitted to ACM
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Algorithm 1 Match corresponding Geometries by Similarity Score: Algorithm in pseudocode

1: global List<Metric> geometryMetrics, attributeMetrics
2: global Double distanceThreshold
3: procedure cALCEQUIVGEOMETRYSCORE(GeoObj 01, GeoObj 02)

4: Double sim=0;

5: sim=updateScore(sim,01,02, distance(01,02))

6: for geomsim in geometryMetrics do

7: sim=updateScore(sim,01,02, geomsim(01,02))
8: end for

9: for attsim in attributeMetrics do

10: sim=updateScore(sim,01,02, attsim(01,02))
11: end for

12: return sim

13: end procedure

14: procedure cREATEEQUIVGEOMETRYMAP(Set<GeoObj> geom_1, Set<GeoObj> geom_2)
15: Map<GeoObj,GeoObj> geom_matchset=new Map()

16: for g1 in geom_1 do

17: Double maxScore=0

18: currentBestMatch=null

19: for g2 in geom_2 do

20: if distance(g1,g2)<distanceThreshold then
21: Double score=matchCorrespondingGeometryScore(g1,g2)
22: if score>maxScore then

23: maxScore=score

24: currentBestMatch=g2

25: end if

26: end if

27: end for

28: geom_matchset.put(g1,currentBestMatch)

29: end for

30: return geom_matchset

31: end procedure
32: procedure urDATESCORE(Double simScore,GeoObj 01,GeoObj 02,Metric m)

33: if m instanceof GeometryMetric then
34: simScore+=1-m.calculate(01,02)
35: else

36: simScore+=m.calculate(01,02)

37: end if

38: return simScore

39: end procedure

data in other areas. The reasoning behind this is that very often, a geometric comparison will have to be the most
influential factor in a similarity comparison, as further comparisons between attributes of the given features do not
necessarily have to correspond or even be available. Therefore, the positioning and shape of the geometry are decisive
factors in the matching score calculation.

Finally, attribute similarity metrics, i.e., String Distance Metrics and number comparisons, applied on annotations
and metadata of the geospatial objects contribute to the similarity score (line 10), which is returned (line 12). For each
matching attribute, one point is awarded. The idea behind this matching is that even if similarly shaped geometries
are present nearby in one place in time, they should be distinguished by sufficiently distinct attributes.

The second function createEquivGeometryMap receives the two sets of GeospatialObjects geom; and geom; as input.
For each element in geomy, it calls matchCorrespondingGeometryScore with all GeospatialObjects in geomy. The match-
ing with the highest similarity score is saved in the result of the method. We receive a map of matching geospatial
objects from one geospatial object in geom; to the best matching candidate of geomy or no candidate if no matching
could be determined. We call this result geospatialob jectpairs. This resulting map of geospatialob jectpairs is the basis

for calculating changes between its elements.

3.2.2 Change Identification II: Determining changes. For each geospatial object pair, changes between its two geospa-
tial objects can be determined by comparing the geometry and attributes of the geospatial objects within the pair using
Algorithm 2.

Manuscript submitted to ACM



14 T. Homburg et al.

Algorithm 2 Change Detection of Geometry Pairs: Algorithm in pseudocode

1: procedure CHANGEDETECTION(Map<GeoObj,GeoObj> geometrypairs)
2: Map<Tuple<GeoObj,GeoObj>,String> changeResult;

3: String geometryStatus="NoChange”;

4: for pair in geometrypairs do

5: if pair.value==null then

6: changeResult.put(pair;Delete”)

7: else if pairkey==null then

8: changeResult.put(pair;Add”)

9: else
10: geometryStatus=checkGeometryDifference(pair)
11: if geometryStatus=="NoChange” then
12: geometryStatus=checkAttributeDifference(pair)
13: end ifchangeResult.put(pair,geometryStatus)
14: end if
15: end for
16: return changeResult

17: end procedure

18: procedure cHECKGEOMETRYDIFFERENCE(Tuple<GeoObj,GeoObj> pair)

19: Geometry olgeom=pairkey.getGeometry(), 02geom=pair.value.getGeometry()
20: if ol1geom.getPoints().size()!=02.geom.getPoints().size() then

21: return "Change”

22: end if

23: for int i=0;i<o1.getPoints();i++ do

24: if lol.getPoints().get(i).equals(02.getPoints().get(i)) then
25: return "Change”

26: end if

27: end for

28: return "NoChange”

29: end procedure

30: procedure CHECKATTRIBUTEDIFFERENCE(Tuple<GeoObj,GeoObj> pair)

31: Map<String,String> olprops=pair.key.getProperties(), o2props=pair.value.getProperties()
32: if olprops.size()!=02props.size() then

33: return "Change”

34: end if

35: for int i=0;i<o1.getPoints();i++ do

36: if lolprops.get(i).equals(o2props.get(i)) then
37: return "Change”

38: end if

39: end for

40: return "NoChange”
41: end procedure

As Figures 6 to 8 show, different kinds of changes of the spatial object are possible and occur in the data we work
with.

We define a change of a geospatial object as any change of a geometry (addition of coordinates, change of coordi-
nates, deletion of coordinates), any change in the given geometry attributes (attribute addition, deletion, modification),
and any newly created and/or deleted geometries since the last known revision of the data set. Geospatial objects
without matches represent objects that have possibly been added or removed.

The result of Algorithm 2 is a determination of the nature of the change that has occurred in a geometry pair, i.e.,
maps geospatial object pairs to a classification that reflects the geospatial object pair’s behavior in a given time slice.
The algorithm achieves this by first determining a possible change in the geometries of the geospatial objects (function
checkGeometryDiffrence, line 18). If the geometries can be considered equivalent, a change of attributes associated with
the geospatial objects is conducted (function checkAttributeDifference, line 30). Finally, a map of geospatialob jectpair
to change classification is returned by the algorithm.

It should be noted that Algorithm 1 and subsequently Algorithm 2 can and are applied on different geospatial object
pairs, e.g. on target dataset of time point #; and target dataset of time point f2, source dataset of time point ¢; and
source dataset of time point t; and source dataset of time point ¢; and target dataset of time point t;, depending on the
nature of features to be generated for the machine learning classification.
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Fig. 9. Example of geometries to be added: A new residential district in Erfurt "Bunter Mantel” has been built. The area is
already covered in the source data set of VGI data (light brown) in the center of the graphic. These geometries need to be
added to the MGI target dataset in the next revision (e.g. constitute valid and relevant changes for the mapping agency)
https://www.erfurt.de/ef/de/leben/planen/stadtplanung/fp_ bp/brv/109398.html

3.3 QPredict-classify

We previously described how to find corresponding geometries and detect changes between them. In this section, we
describe how the classification is performed, assuming a classifier that has been trained on a given training set.

To describe QPredict-classify, we interpret the detected changes as suggestions for updating the target dataset, so-
called transfers. For each change that has been identified to have happened in the source data set from #; to t2, QPredict-
classify suggests how to modify the target data set from #; to best approximate the real world at ¢,. For this purpose,

QPredict-classify classifies the change in the source data set to fall into one of three categories:

(1) Literal transfer: Suggest adding (or deleting) an object to the target data set exactly as added or deleted in the
source data set. (ML Classes: Add, Delete, e.g. Figure 9)

(2) Modified transfer: An object has been changed by adding, moving, or deleting points and/or attributes in the
target data set as suggested in the source data set ("Change”). Figures 10 and 11 show examples of the source
dataset, and/or its metadata and attributes, changing from timepoint #; to timepoint #;. (ML Class: Change)

(3) No transfer: In this case, the change in the source data set under consideration is suggested not to be considered
for the target data set. (ML Class: NoChange)

Figure 11 shows examples that, within 4 years, significant additions (visualized in green), deletions (visualized in red),
and changes (also shown in green) are common in the areas that we investigate. QPredict should, in the end, be able
to classify these according to the classes introduced previously.
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Fig. 10. Example of geometry extension: Buildings in gray are included in the target data set, buildings in light brown in the source
data set. Here, the grey geometries represent houses in the MGl target dataset. The source dataset already shows that the houses
have been extended significantly, thus indicating a change in the size of an existing geometry.
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Fig. 11. Geographical objects in the target data set at time points 2015, 2016, 2017, and 2018: Dark yellow objects existed in 2015,
2016, 2017, and 2018. Light/dark green objects first appeared in 2016/2018, respectively. Light/medium/dark red objects no longer
existed as of 2016/2017/2018, respectively.

The image shows that building changes are widespread in the area that is being investigated.
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The inference that QPredict-classify pursues to derive such a classification (c1-c) is built on the following configuration

of feature vectors with Add, Delete, Change and NoChange the classification targets

c1 = (Add, gmy, gmg....qmy)

¢y = (Delete, qmq, gma....qmp)

c3 = (Change, gm1, qma....qmy)

c4 = (NoChange, qmy, gmy....qmp,)

and gmg — qmp being the results of data quality metric calculations.

3.4 QPredict-train

In this section, we introduce QPredict-train, which constructs training and test set data and creates the classifier.

3.4.1

QPredict-train input. The input of QPredict-train is depicted in Figure 4. QPredict-train receives a target data set

at t1, a source data set at t; and a source data set at t5. To allow a machine learning task to train, a classification target

needs to be given as well. Therefore, the input of the target data set at time point t3 is also given in place of the question

mark shown in Figure 4. We call this input the input at time slice x — y. For example, QPredict could be trained on a

target data set released on the 1st January 2015 (¢1) and use a target data set released on the 1st January 2016 (t2) for

verification. Geospatial objects nearest to the respective time points t; and ¢, would be matched from the source data

sets. In Figure 4, the nearest source data set geometry to #; is last modified on the 20th December 2014. QPredict-train

may receive an arbitrary number of time slices to train on as input, e.g., 2015-2016, 2016-2017, 2017-2018, to maximize

the number of training examples in the area to be investigated.

3.4.2

lows:

1

@)

®)

4

®)

(6)

QPredict-train algorithm. Given an arbitrary input of time slices, the QPredict-train algorithm operates as fol-

Target data set Geometry Matching using Algorithm 1: Algorithm 1 matches the current target geospatial object
in t; with the geospatial object in the target dataset at ¢ representing the same real-world object (corresponding)
using positional matching or a given geometry history. Given a history of geometry changes, the algorithm may
use the history to find the corresponding geometries of earlier time slices.

Source data set Geometry Matching: Application of Algorithm 1 on the source data set to retrieve a set of source
geospatial data objects on two time points. The goal of this matching is for each source geometry in the area of
the target data set to find the revision of the source data geometry whose creation date is closest to time point
f.

Source to Target Geometry Matching: Calling Algorithm 1 with a set of source dataset at ¢; and a target data set
at t3. This step matches geometry pairs between target data set geometries and source data set at or closest to
1.

Data Quality Metric Calculation: Data Quality metrics are calculated according to the metric type on the source
and/or target data sets, respectively. Examples of where metrics could be applied are shown in Figure 13.
Classification Generation: Classifications are extracted by comparing the target data set at ¢; with the target data
set at t; and added to the machine learning feature vector using Algorithm 2

Machine Learning Feature Vector Preparation: Data quality metric results become the basis for the machine learn-

ing feature vector of the machine learning classification

qMyesult1----9Mresultns class
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(a) 1st January 2015: A house(b) 31st August 2015: A house

(pink-target  dataset, grey=source (pink-target dataset) has been ex-(c) The house (orange in the target dataset)
dataset) with a positional inaccuracy:tended by a garage in the source at time point t, (1st January 2016). A garage

The source dataset geometry is slightly dataset (grey). Positional inaccuracy:i, the target dataset has extended the house.
bigger than the target dataset geome-The area of the buildings does not qpredict-train can learn from this result to im-

try. match. prove the classification accuracy

Fig. 12. Real-world application example: A house in the German city of Erfurt represented in OpenStreetMap (grey) and official
governmental data (ALKIS) changes over time. OpenStreetMap, in this case, includes a change at an earlier time before it is reflected
in governmental data.

(7) Classifier Training: The so-created training data set of machine learning feature vectors is used to train a classifier

using a chosen machine learning algorithm

3.4.3 QPredict-train output. QPredict-train outputs a classifier trained on several training sets representing time slices
(t1 - t2, t2 - t3....). The classifier is used by QPredict-classify, and the training data sets can provide a basis for the

performance analysis of the algorithm in a testing environment.

3.5 Running example

We illustrate QPredict using a real-world application scenario from using our dataset representing building footprint
data from 2015. One building in Figure 12a is represented in both the target and the source dataset at time point #; (1st
January 2015) and the nearest appropriate match of the source dataset (25th November 2014). The buildings mostly
overlap, with the source dataset geometry’s area being slightly bigger than the area of the target dataset geometry -
a typical inconsistency. Apparently, Figure 12b shows that the building has been extended by supposedly a garage in
the source dataset, which results in a change in the area of the building in the target dataset one year later Figure 12c.
This area change is reflected in various data quality metric calculation results, which are being executed during the
creation of machine learning feature sets for QPredict. We give some examples of data quality metrics that are subject

to change by this change of geometry:

o Extrinsic Metrics: e.g. Shape Similarity metrics between target #; and source f; (e.g. HausdorffDistance)
o Intrinsic Metrics: e.g. Geometry Area (source dataset at t2)

o Metadata Metrics: e.g., Change Rate from History, Freshness, Average User Experience (source dataset)

These changes are reflected in the machine learning feature vector created for each of the corresponding geometry
pairs considered by QPredict.

When executing QPredict-train, we already know if the target dataset geometry is subject to change. The target
dataset at time point ¢, has already been given to us for training purposes. In this running example, the house has

indeed changed, which is reflected in Figure 12c. When executing QPredict-classify on a given test set, the algorithm
Manuscript submitted to ACM
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will provide a classification to suggest the geometry’s addition, deletion, or modification or if the geometry should

remain unchanged. In this way, we can evaluate the algorithm’s efficiency later in the paper.

4 MACHINE LEARNING FEATURES COMPOSITION

In Section 3.3, we have presented how QPredict operates in principle. This section describes the categories of machine
learning features that may be used with QPredict and our reasoning for choosing the particular feature sets we use for

the QPredict classifications discussed in Section 5.

4.1 Deriving machine learning features from data quality dimensions

As established previously, our machine learning features are derived from extrinsically and intrinsically calculated data
quality metrics (cf. Sections 2.2 and 2.3).

Extrinsic features allow us to track geometrical changes between the two datasets, possibly indicating a change. If
data quality metrics indicate minimal changes, the machine learning algorithm should lean towards classifying a non-
change. If data quality metrics indicate more significant changes, it might lead to a classification towards a geometry
change.

Intrinsic features are used to detect weaknesses when representing a single geometry. We assume that geometries
that have been, e.g., vandalized in OpenStreetMap should not be candidates for which changes need to be applied.
Therefore, intrinsic metrics check the consistency of a geometry in the source data set. Consistent geometries should
be more likely candidates for a transfer of changes.

However, we first want to inform the reader of the variety of intrinsic and extrinsic data quality metrics from data
quality dimensions that can be considered machine learning features. As choosing suitable machine learning features
out of the given data quality dimensions is no trivial matter, we want to explain why we considered these categories
of machine learning features beneficial for our classification task. We consider the following categories of derived

machine-learning features:

o Derived features vs. Literal features: Features either derived from a geospatial object or included in a geospatial
object

e Dynamic features vs. Static features: Features either only dependent on the current time slice or dependent on
many time slices (Geometry Validity vs. Geometry Freshness)

o Intrinsic features vs. Extrinsic features: Features measured with or without a target data set

o data set dependent features vs. Non-data set dependent features: Features dependent on statistics generated on the
given data set (Average Amount of Edits vs. Geometry Simplicity)

o Imported vs. non-imported features: Features that have been imported from the source data set and cannot be
measured in the target data set vs. features that can also be measured in the source data set (OSM has a detailed
history including user behavior and edits, official data lacks this information)

o Differential features vs. Individual features: Features measured on the difference of two attributes of compared
geographical features (differential) vs. without a comparison (Comparison of building names vs. Geometry Va-
lidity)

o Vicinity dependent features vs. Non-vicinity dependent features: Features dependent on geographical features in
the vicinity of the current geographical feature vs. self-focused features (Neighborhood Freshness vs. Amount
Of Attributes)
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We found it important to cover any of the aforementioned data quality dimensions in our feature sets, as they may
point to a possible change in the geospatial object. Table 1 shows machine learning features matching the categories

we use and their source, either from the literature or existing tools.

Machine Learning Feature Type Title
Differential Positional Accuracy [18]
Differential Extrinsic Hausdorff similarity [32]
Intrinsic Vicinity Neighborhood Freshness
Data set-dependent Average History Size [48]
Target-derived Intrinsic Individual Geometry Validity
Intrinsic Imported Last user to Edit
Intrinsic Imported-derived User Quality Score (OSM)
Target-derived Intrinsic Dynamic Edit Frequency
Target-derived Freshness [48]

Table 1. Examples of the different machine learning feature categories described before. The complete list of machine learning
features that were used is given in Appendices B.1 to B.3.

4.2 Data Quality Metric calculation

Figure 13 shows which data is involved in calculating either data quality metric result. Extrinsic metrics are calculated
between metadata, geometries, attributes, and a possible geometry vicinity. For metadata metrics, we assume that user
experience scores in OpenStreetMap® and the edit frequency of the geometry should give us a good enough indication
to judge if an edit is likely to be trustworthy, thus increasing the likelihood of a transfer.

Vicinity metrics may point to similar edits in the neighborhood, which do not necessarily indicate a well-intended
geometry change but may emphasize assessing other data quality metrics. Similar assumptions are valid for attribute
changes.

Intrinsic metrics are calculated on the source data set at time point #; and time point ¢, and on the target data
set at time point t;. Therefore, intrinsic machine learning features can stem from three possible sources: The target
geospatial object at t1, the source geospatial object at t1, and the source geospatial object at ;. We include machine

learning features originating from all three data sources.

4.3 Feature Set Composition

This article aims to investigate the performance of a set of each intrinsic, extrinsic, and combined features (cf. sec-
tion 4.1) to set a baseline for further refinement of these machine learning feature sets for better classifications. The

machine learning features have been selected in such a way that they

(1) Are represented and used in related work

(2) Cover the dimensions of machine learning features described above

(3) Are expected to have a sufficient impact on the result
To that end, we conducted a feature correlation analysis by calculating the GainRatio of each feature candidate. The
features with a GainRatio of at least 1%, were selected for inclusion in the feature sets. The detailed composition of the
feature sets can be seen in Appendices B.1 to B.3.

3https://hdyc.neis-one.org
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5 EXPERIMENTAL SETUP

The experimental setup was designed to evaluate the performance of a QPredict-train classifier for predicting additions,
deletions, and change predictions, to test the false positive rate of the classifier (cf. e.g., Figure 16) and to which extent
intrinsic and extrinsic data quality metrics contribute to correct classification. To that end, we firstly introduce the data
sets that were used for the experiment in Section 5.1, explain the machine learning setup in Section 5.2, show how we

evaluate the machine learning results in Section 5.3, before presenting and discussing the results.

5.1 Data sets

We now describe the administrative geospatial data set (target data set) and corresponding data sets from OSM (source
data sets) and discuss their change rate to determine if they change sufficiently often to justify a classification. Open-
StreetMap represents one of the richest sources of VGI data currently available. The administrative geospatial data is
collected by a mapping agency and, therefore, classified as MGI data. We remark that VGI is in certain areas managed

by official authorities* or collected by professional mappers yielding arguably a comparative or even more detailed

4e.g., Cologne, Germany https://www.stadt-koeln.de/basisdienste/stadtplan/osm/index.html
Manuscript submitted to ACM


https://www.stadt-koeln.de/basisdienste/stadtplan/osm/index.html

22 T. Homburg et al.

quality map than official data sources. Our study focuses on test areas for which we know that the local mapping

agency does not contribute to OSM to avoid this problem.

Target Data Set (Administrative Data). Our target data consists of geospatial data in the ALKIS standard [52] provided by
the mapping agency of Thuringia, Germany® (ALKIS NAS) data® combined with building footprints data (Hausumringe
HU) data’ for the area of Thuringia in yearly revisions from 2013 to 2018 respectively. The data set includes building
footprints of Thuringia extended with address data, nationwide geometry IDs, geometry type, and length. As geometry
classifications are only provided since 2016, we assume the building type before 2016 to be the same as in 2016. We
selected two experimental areas: Jena and Erfurt, similar-sized cities in Thuringia. We assume that most map changes
in urban areas as rural areas contain fewer geometries in general, provide more possibilities for geometry changes,

and arguably have a more diverse and active VGI community.

Source Data Set (OSM). The OSM data set consists of geometries we matched using the corresponding geometry match-
ing Algorithm 1. The procedure is repeated for identified, added, and deleted geometries in the target data set to create
a set of instances representing all classification targets we want to classify. The data set is enriched with metadata
about the users and edit history extracted from the OpenStreetMap database. Therefore, we gain a set of changesets
with the respective geometry at the time of the changeset. We take the geospatial object nearest to timepoint t3 out of

this set of changesets.

Preliminary analysis of map changes. We tracked map changes in target and source data sets as a preliminary analysis.
We need to ensure that changes are sufficiently frequent to train a machine learning approach, i.e., that about half of
the geometries have been edited at least once during our analysis time frame. For the target data set, the Feature Manip-
ulation Engine [60] UpdateDetector Plugin® was used to track geometry changes, additions, and deletions, respectively.
OSM changes were tracked using the OSM history of each geometry, using changesets’ present in OpenStreetMap,
which reflects when a geometry has been changed by whom and in which way. Figure 14a shows that for the area of
Jena, a significant proportion of the geometries have been edited at least once in the time frame of 2013 to 2017, for
which we possess target data sets. Erfurt (Figure 14b) exhibits similar behavior with slightly more edits on average.
In both Jena and Erfurt, very few geometries have been edited more than 3 times, and about the same amount of
geometries have not been edited within four years. Within one year, one to two edits are commonly performed per
geometry for less than 50% of all geospatial objects. Considering the edit frequency observed, we determine that the
tracked changes provide sufficient distinct changes to train our classifier for QPredict, as we can expect about half of
the geometries to have been edited at least once in OpenStreetMap in the time frame we investigate.

In the target data sets, we can observe the following behaviors:

In Jena, about 3000 to 5000 buildings were changed within one year, creating a building change rate of about 7-12%,
respectively. On average, 2% of new geometries appeared in the target data sets annually. It becomes apparent that way
more geometries have been edited in OSM than in the target data set, which is unsurprising considering everyone can
edit the map at any time. A higher edit rate also gives the user data quality metrics a better chance to give a non-biased

result. In Erfurt, we can observe a change rate of 4-7% of the geospatial objects, less than in Jena. On average, 2% of

Shttps://www.thueringen.de/th9/tlvermgeo/
Chttps://tlbg.thueringen.de/online- shop-vertrieb/testdaten
"https://tlbg.thueringen.de/online-shop-vertrieb/testdaten
8https://hub.safe.com/transformers/updatedetector
“https://wiki.openstreetmap.org/wiki/Changeset
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Fig. 14. OSM geometry editing frequencies in Jena/Erfurt

new geometries appeared in the target data sets annually. Again, the geometry change rate in OSM is higher than in
the target data set.

Lastly, we investigated the change rate of the federal state of Thuringia in which the two cities are located. With a
growth rate of 0.6% and a change rate of 0.1% for the whole state of Thuringia, we are confident to have picked areas

where a representative amount of changes should have occurred over the time points we tested.

Expectations. Besides real-world changes being adapted in map data, we expect error corrections in target data sets,
updates due to new regulations by authorities and laws (some data should or should not be collected or differently
labeled), or mistakes being introduced in official data. OSM changes are typically more diverse, not always relevant for
a mapping agency, and often unrelated to the official data changes. Not every machine learning feature type is tracked
in the official data set. Especially malicious attempts of data set modifications in the source dataset (i.e., vandalism [45]),
if any, should stand out and are expected to be recognized by the algorithm. These natures of map changes represent

possible reasons for the results we attempt to achieve in our classification.

5.2 Machine Learning Setup

Using the classification specifications defined in Section 3, we introduce the machine learning feature sets and machine
learning configuration. Given the different categories of machine learning features introduced in Section 4.1, we define
three machine learning feature sets. The Baseline feature set consists only of intrinsic data quality metrics. The Extrinsic
feature set consists of only extrinsic metrics, and the Combined feature set consists of all features of Baseline, Extrinsic,
and metadata metrics. Appendix B describes the complete list of features. To compare the performance of the different
classifiers for our task, we chose the following machine learning algorithms: RandomForest Classification [56] and IBk
Classification [20], thereby covering two different areas of machine learning, instance-based learning, and decision
trees as a comparison. We used the Weka Machine Learning Toolkit [29] version 3.8 to pursue the classifications and
chose the default settings for the classification approaches. The hyperparameters used in the classifications are shown
in Table 2 While we tried different configurations of machine learning parameters, we did not aim to optimize them,
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RandomForest | Hyperparameter Value

BagSize 100%
Number of trees 100

mTry log(M+1) (M=inputs)
maxDepth unlimited
IBk Hyperparameter Value
KNN Parameter 1
Distance weighting No
Distance measure LinearNNSearch

Table 2. Hyperparameters for the given machine learning algorithms

as the focus of this research was to find out whether a classification in this way is feasible at all based on our given
test data. The parameters described in Table 2 are the parameters we used after the initial test. In this particular case,
changing the parameters further did not significantly improve classification performance. We see the optimization
and the testing of further machine learning algorithms as future work, as this would require testing the approach on

geospatial data of different origins and configurations.

5.3 Evaluation

To evaluate QPredict’s success, we use QPredict-train to train a classifier on the time slice given by the two available
time points ¢; and 3 as shown in Figure 15 - and possibly on further time slices depending on their availability. As
described in Section 3.4, more training data can improve the accuracy of the classifier. Using the classifier, we then
predict a geospatial object change at t3 —¢, the current time when the classification is conducted (assumed to be before
t3 to be of use). The classification is verified using a target data set at t3, which is available for verification purposes.
In this experiment, we trained on two time slices, 2015-2016 and 2016-2017, and evaluated on the time slice 2017-2018.
Referring to our running example, we would evaluate the prediction of our classifier, which we trained using several
iterations of training data from previous time slices, e.g., time slice t1-t2 (e.g., 2016-2017). We choose another time slice
available to us, e.g. (£3), to evaluate the success of our classifier, e.g., 2017-2018. Using this approach, we evaluate our
classifier on a future revision of the target data set as a test set on which the classifier has not been trained. We evaluate

the accuracy of the classifier using precision, recall, and f-score.

5.4 Results

The machine learning classification results are highlighted in Figures 16 to 18 and tables 3 and 4 for the three feature
sets for Jena and Erfurt, respectively. The tables included the percentage ranges for all three classifications (Intrinsic,
extrinsic, and combined). Detailed results for all classifications are included in the annex of this publication. Our
results include the precision, recall, and f-score of the successful classifications of geospatial object changes, additions,
deletions, and non-changes, as we consider this to be the classification challenge. We provide the average score of the

four classifications in the "Overall” classification.

6 ANALYSIS AND DISCUSSION

We first judge the classifier’s performance to understand its advantages and disadvantages. Then, we discuss the clas-
sifier’s most influential features, limitations, and applications in a use case.
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Fig. 15. Data Quality Prediction Model: The classifier trained between t; and t, predicts a geospatial object change at #3 — €. The
quality of this prediction is evaluated using the geospatial object available at #3 to measure the accuracy of the classifier. Here, €
represents the delta time between the object change appearing in authoritative data at time point 3 and the time the object changed
in reality.

Area | Overall | NoChange | Change | Added | Deleted
Jena | 83%-95% | 87%-96% | 59%-72% | 40%-80% | 49%-96%
Erfurt | 90%-96% | 94%-97% | 53%-95% | 40%-78% | 4-80%

Table 3. Precision ranges over all three test sets. Best precision values were achieved using the Combined feature set

Area | Overall | NoChange | Change | Added | Deleted
Jena | 92%-96% 87%-96% 30%-58% | 16%-57% | 13%-81%
Erfurt | 92%-96% 91%-99% 31%-54% | 16%-21% 4-89%

Table 4. Recall ranges over all three test sets. The highest recall values were achieved using the Combined feature set

6.1 Classifier Performance and Discussion

One might expect that a machine learning classification using only intrinsic features (Baseline feature set) would not
produce a good enough classification, as intrinsic data quality metrics are insufficient to create absolute statements
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Fig. 16. Combined Featureset Results (F-Scores) for Erfurt and Jena with IBk and RandomForest (RF) classifications

about data quality. On the other hand, intrinsic features may point out changes over time that provide valid geometry
results, which could be judged as a valid modification by the machine learning algorithm.

The Combined feature set performs best among all classifications (which was also expected), while the Extrinsic
and Baseline feature sets usually performed 10%-20% worse. Therefore, our initial assumption was only partly true
as the intrinsic feature set performed comparably well versus an extrinsic feature set in detecting map changes. The
fact that the Combined feature set performed best overall shows the relevance of all introduced metric types for the
classification, confirming our assumption that metadata and especially user experience classifications have an impact.

Non-changing geospatial objects could be identified with precision, recall, and f-score greater than 90%. Changes
were notably harder to predict (f-score <=60%). This may be due to the lower availability of training examples for
geospatial object changes.

However, despite achieving a lower f-score for change classifications, the precision of the classifier for the class
“Change” is comparably high (up to 95% in Erfurt) (cf. Tables 3 and 4). This observation is also true for the classes
’Added” and "Deleted”. High precision and low recall indicate that although not all changes can be identified correctly,
the ones classified as such can be transferred as valid results to the target dataset.

In an intended application case, this can be a satisfying result when the classifier should signify map changes to a
mapping agency. If instances are classified wrongly, they are in the majority classified as non-changing, as indicated
by a low false-positive rate, as exemplified using the example in Figure 19. These are mistakes that a mapping agency
is more likely to accept than a signified change that has no relevance to the target data set. Despite a low recall, the
mapping agency could use the classifier to hint at uncertain areas in their map data to investigate map changes.

Differences in performance between algorithms
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Fig. 17. Extrinsic Featureset Results (F-Scores) for Erfurt and Jena with IBk and RandomForest (RF) classifications

The algorithms used for the machine learning training IBk and RandomForest showed minor differences in outcome.
The IBk classifier performed slightly better on the Baseline feature set, which can be observed in both test areas. Also,
the IBk classifier yielded significantly better results for the class "Deleted”. We observed that the IBk algorithm performs
better when fewer training examples are given, while the RandomForest classification performs better when more
training data is used.

Between the areas of Erfurt and Jena, it can be observed that the classification in Jena yielded a slightly lower f-score
overall but performed better on the changed classification. We attribute this to the fact that more changes, in general,
took place in Erfurt, and therefore, its classifier produced more accurate results.

Differences between feature sets

We found that intrinsic features were quite influential for the classification of deletions and changes, as is evident
when comparing the results in Figure 18 vs. Figure 16. Despite improving the classification results in the Combined
feature set, extrinsic features were less influential in contributing to the result. This might be due to differences between
the source and target data set, shown in Figure 1. Suppose geospatial objects in the source data set are modeled less
precisely on a wider scale. In that case, extrinsic data quality metrics like HausdorffDistance or OverlappingDegree
may generally give a higher distance. Extrinsic geometry changes may not be as influential for a correct classification.

Comparison to related work At this point, asking how QPredict compares against previously conducted work is
natural. QPredict is, to the authors’ knowledge, the first machine learning classification task that uses data quality
metrics to classify changes, including not only geometry data but also attributes and metadata for change detection. In
addition, QPredict is, according to the related work shown in Section 2, the second publication to attempt to classify
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Fig. 18. Baseline Featureset Results (F-Scores) for Erfurt and Jena using the IBk and RandomForest (RF) classifications

s g

Fig. 19. Example for a change which QPredict has missed. The OpenStreetMap geometry (in blue) is already modeled in such a way
that QPredict did not detect a geometry change from the geometry in the year 2017 (in pink) to the geometry in the year 2018 (in
yellow)

whether updates from VGI data should be applied to MGI data. Thus, we can only set the results of our work into
perspective by comparing it to the non-machine learning approach by [63], which attempted to classify only changes
and not additions and deletions at the same time. When comparing the results of QPredict to this related work, we
can see that the precision achieved by QPredict is 10% higher than the baseline approach attempted in [63]. Compared
to their more sophisticated approaches, QPredict shows in some cases (Erfurt Combined) a better precision and up to
20% worse precision in other cases. One can also observe that QPredicts recall values are about 20% lower. We believe
that the lower recall score of QPredict as compared to [63] stems from the fact that the classification task differs in its
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goals to detect not only changes but also additions and deletions and by the fact that more features about metadata
and attributes have been included. In future work, these insights might help create better feature sets for QPredict and

improve its classification performance.

6.2 Most influential features
A significance analysis yielded the most significant features for the combined feature set.

o Extrinsic: Distance, HausdorffDistance, Overlapping Degree
o Intrinsic: Positional Accuracy, Area

o Metadata: (Neighbourhood) Freshness, User Experience Score

Besides, further metadata metrics such as the number of days the user has been active in OSM, the size of the history
of the geometry, and the number of edits of a user showed up in the significance result. In the extrinsic feature set,
Distance and HausdorffDistance were the most influential features. The positional accuracy and the geometry area were
most influential in the baseline feature set. We conclude that metrics commonly used in the ground-truth analysis are

also effective when included in a change prediction approach.

6.3 Limitations of the approach

Our approach is limited by changes not reflected in the real world, e.g., changes in the data structure introduced by
governmental authorities. Between 2013 and 2015, new national regulations forced structural changes in the target
data set (reclassification of geometries). Such changes are hardly foreseeable from the source data set, as they are
not reflected in, e.g., OSM geometries. However, we would argue that such changes are not frequent and previously
announced, e.g., by the government. Therefore, The changes should already be known to occur by an educated user,
especially by a mapping agency. Besides, some wrong classifications might be rooted in a lack of training examples for
these changes. Geospatial changes can be very diverse and stem from factors that may not be reflected sufficiently of-
ten in the features of the investigated areas. Also, it should be noted that this experiment was conducted in a European
country with a relatively high contributor activity in OpenStreetMap. As the change prediction depends on the user
activity of the VGI data source, results may vary depending on the area’s user contribution. Nonetheless, it may be
fair to assume that data quality patterns observed in the European dataset may also be prevalent in other parts of the
world, so a definite evaluation of this approach will need further studies. Finally, our approach cannot detect changes
not documented in VGI data.

Figure 20 shows that sometimes authorities become aware of building changes that were not tracked by the Open-
StreetMap community. QPredict cannot find classifications for these changes, as they are not documented in the source

dataset used for classification.

6.4 A possible application case at a mapping agency

The evaluation of our algorithm showed the reliability of such an approach to a certain extent. In particular, we could
show that predictions have a high precision score, i.e., not many false positive predictions. The classifier could be used
in two contexts in the workflow of a governmental authority. Firstly, predictions could be visualized as an additional
map layer to indicate areas currently investigated by the mapping agency. Secondly, the layer might be exposed to
users of the official map to indicate uncertain areas. This concept could be extended to a situation-specific data quality
framework as described in [30, 31]. The prediction could be used as one of many data quality parameters to indicate the

Manuscript submitted to ACM



30 T. Homburg et al.

Fig. 20. A change of building size has happened between revision 2017 (pink) of the administrative data set and revision 2018 (yellow)
of the administrative dataset. However, OpenStreetMap did not record this change in the year 2017 (indicated by blue in the graphic)

feasibility of application cases whose effectiveness could be affected by a change in the data set. For example, uncertain
building and/or road information might affect a fire brigade mission. The fire brigade mission briefing could then notify
firefighters of uncertain map quality for their area of operation. This information could lead to changing plans for the
rescue mission or exercising caution in certain areas when navigating to the target.

However, one would also need to sketch its anticipated usage in a spatial data infrastructure to be usable in a
mapping agency.

Geographical authorities provide data through spatial data infrastructures, which store, quality-assure, and provide
geospatial data using, e.g., OGC geospatial web services. A sophisticated spatial data infrastructure would also provide
a history of its geodata. In that sense, QPredict can be incorporated in this updated workflow as shown in Figure 21.
Firstly, QPredict-train should be executed whenever a new dataset is integrated/updated to the spatial data infrastruc-
ture to increase the number of training examples on which QPredict-train operates. This approach would be done per
geospatial feature type. Still, it may be extended to cover many geospatial feature types, resulting in machine learning
models for various deemed practical machine learning feature sets. Throughout the ordinary revision cycle, QPredict-
classify may be executed periodically to uncover potential transfers of VGI data to MGI data for the respective data
set.

The results can be used twofold:

(1) Staff of the mapping agency gets recommendations about spatial objects that may need to be revised. Their
feedback may be used to improve the accuracy of QPredict through reinforcement learning
(2) Researchers or experts at the mapping agency may use the wealth of geospatial information provided to improve
the algorithm by testing different combinations of features, possibly yielding better or worse results for different
geometry types
Manuscript submitted to ACM
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Fig. 21. QPredict in the update process of a mapping agency: QPredict-train is executed when the staff of the geographic authority
performs an update to the spatial database. A testbench for selecting features and managing training and test sets allows for the
targeted execution of QPredict. The staff of the geographic authority audits suggested transfers by QPredict, and feedback on
meaningful transfers is fed into the spatial database as a feature for further classifications to improve accuracy.

The benefit for the user of the geospatial data from the geographic authority is, therefore, increased awareness about
possible uncertain data, better planning for their respective use cases, and the possibility of including these results in

case-specific data quality assessments as described in [30, 31].

7 CONCLUSIONS

We presented QPredict, a machine learning approach to indicate if changes present in a perceived lower quality data
source should be applied to a perceived higher quality data source. We applied our algorithm to areas of two German
cities and evaluated its effectiveness. We found that the algorithm shows a high precision for most classes and performs
best on non-changing geospatial objects. This leaves us with a classifier that can classify changes that will be reflected
in the next revision of a geospatial data set with a high probability. Despite yielding an average recall for geometry
changes, the classifier does not yield the same results for additions and deletions. All in all, we have shown three
aspects in this article. Firstly, classifying changes in geospatial objects using a machine learning approach is feasible.
The classifier is useful enough as an indicator for mapping agencies to improve local datasets, and we give a baseline
for other researchers to improve the precision and recall of our classifications. Secondly, the classification benefits from
the inclusion of not only extrinsic data quality metrics but also intrinsic and metadata quality metrics. Thirdly, we have
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illustrated how QPredict could be used as a central component for data inspection in the spatial data infrastructure of
a mapping agency.

Future work could deal with this improvement or conduct similar experiments on test cases we have neglected
so far, such as comparing one geometry to many other corresponding geometries. We also assume that the QPredict
approach can, without much effort, be applied to geometry types other than building footprints. This might require a
change in the feature set but could be explored in a future publication.

Also, we would like to try the classification method for different kinds of areas. Rural areas might show different
editing errors than metropolitan areas, and other mapping communities in OSM might be more or less accurate de-
pending on the location. Another approach could be to predict which OSM geometries pick up changes found in future
revisions of target data and, in this context, how to predict a good geometry edit in OSM. Finally, we are interested
in exploring how long inconsistencies persist in the official government data and finding reasons why inconsistencies

have not been resolved in a more timely manner.
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A  MORE DETAILED RESULTS

Algorithm | Feature set Class Precision | Recall | F-Score
RandForest Baseline Overall 90% 92% 90%
RandForest Baseline Unchanged 94% 97% 96%
RandForest Baseline Changed 37% 26% 30%
RandForest Baseline Added 36% 18% 24%
RandForest Baseline Deleted 23% 12% 16%
1Bk Baseline Overall 94.8% 94.9% 94%
1Bk Baseline Unchanged 97% 97.6% 97.3%
1Bk Baseline Changed 95.0% 52% 51%
1Bk Baseline Added 17% 15.3% 16%
1Bk Baseline Deleted 74% 57% 64%
RandForest Extrinsic Overall 89% 91% 90%
RandForest Extrinsic Unchanged 94% 97% 95%
RandForest Extrinsic Changed 20% 11% 15%
RandForest Extrinsic Added 95% 51% 66%
RandForest Extrinsic Deleted 0.04% 0.02% 0.03%
1Bk Extrinsic Overall 89% 88% 88%
1Bk Extrinsic Unchanged 94% 93% 94%
1Bk Extrinsic Changed 16% 16% 16%
1Bk Extrinsic Added 60% 50% 54%
1Bk Extrinsic Deleted 6% 8% 7%
RandForest | Combined Overall 96% 96% 95%
RandForest | Combined | Unchanged 96% 99% 98%
RandForest | Combined Changed 74% 31% 44%
RandForest Combined Added 78% 10% 20%
RandForest | Combined Deleted 98% 89% 93%
1Bk Combined Overall 95% 95% 95%
1Bk Combined | Unchanged 97% 97% 97%
1Bk Combined Changed 53% 54% 54%
1Bk Combined Added 24% 21% 22%
1Bk Combined Deleted 80% 61% 69%
Table 5. Classification Results Area I - Erfurt
Algorithm | Feature set Class Precision | Recall | F-Score
RandForest Baseline Overall 83.0% 85.0% 84.0%
RandForest Baseline Unchanged 89.4% 95.5% 92.0%
RandForest Baseline Changed 59% 40.0% 48.8%
RandForest Baseline Added 35% 19% 25%
RandForest Baseline Deleted 51% 36% 42%
1Bk Baseline Overall 92% 92% 92%
1Bk Baseline Unchanged 95% 96% 95%
1Bk Baseline Changed 57% 57% 57%
1Bk Baseline Added 38% 31% 34%
1Bk Baseline Deleted 83% 60% 70%
RandForest Extrinsic Overall 80% 84% 80%
RandForest Extrinsic Unchanged 87% 96% 91%
RandForest Extrinsic Changed 50% 30% 38%
RandForest Extrinsic Added 50% 14% 22%
RandForest Extrinsic Deleted 49% 13% 20%
1Bk Extrinsic Overall 86.2% 85% 86%
1Bk Extrinsic Unchanged 92.4% 92.2% 92.3%
1Bk Extrinsic Changed 19% 20% 19.4%
1Bk Extrinsic Added 40% 18% 24%
1Bk Extrinsic Deleted 33% 25% 28%
RandForest Combined Overall 95% 95.5% 95.1%
RandForest | Combined | Unchanged 96% 98% 97%
RandForest | Combined Changed 72% 48% 58%
RandForest | Combined Added 80% 16% 28%
RandForest Combined Deleted 96% 81% 88%
1Bk Combined Overall 92.7% 92.9% 92.8%
1Bk Combined | Unchanged 96.0% 96.3% 96.1%
1Bk Combined Changed 59% 58% 60%
1Bk Combined Added 39% 32% 35%
1Bk Combined Deleted 84.2% 61.8% 71.3%

Table 6. Classification Results Area Il - Jena
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B LIST OF FEATURES

This annex introduces the feature sets that were used throughout this publication.

B.1 Baseline feature set

The baseline feature set includes intrinsic features that were used for the classification.

Featurename Category Applied on Application Description VariableType Domain Reference
Amount Of Attributes Intrinsic Metric | Attribute | Source and Target Returns the amount of attributes Integer >=0
Area Intrinsic Metric | Attribute | Source and Target Returns the amount of attributes Double >=0
Geometry Closedness Intrinsic Metric | Geometry | Target and Source Indicates if the geometry is closed Binary TRUE/FALSE
Geometry Emptyness Intrinsic Metric | Geometry | Target and Source Indicates if the geometry is empty i.e. contains no points Binary TRUE/FALSE
Geometry ID Intrinsic Metric | Geometry | Target and Source Unique ID of a geometry Binary TRUE/FALSE
Geometry Length Intrinsic Metric | Geometry | Target and Source ‘The length of the geometry Discrete | TRUE/FALSE
Geometry Number Of Nodes | Intrinsic Metric | Geometry | Target and Source The number of nodes per geometry Discrete | TRUE/FALSE
Geometry Number Of Geometries | Intrinsic Metric | Geometry | Target and Source The number of geometries per geometry Discrete 1-n
Geometry Rectangularity Intrinsic Metric | Geometry | Target and Source Indicates if the geometry is rectangular Binary TRUE/FALSE
Geometry Resolution Intrinsic Metric | Geometry | Target and Source ‘The resolution of the geometry Double >=0
Geometry Scale Intrinsic Metric | Geometry | Target and Source The scale of the geometry Double ~=0
Geometry Simplicity Intrinsic Metric | Geometry | Target and Source Indicates if the geometry is simple Binary TRUE/FALSE
Geometry Validity Intrinsic Metric | Geometry | Target and Source Indicates if the geometry is valid Binary TRUE/FALSE
AmountOfAttributes Intrinsic Metric | Attribute | Source and Target Returns the amount of attributes of the geometrical feature Integer >=0
HistorySize Intrinsic Metric | Attribute | Source and Target Returns the amount of edits of this geometrical feature Integer >=0
Freshness Intrinsic Metric | Metadata Source Returns the amount of days since the geometry has been last modified Double >=0.00 [48]
Average Attribute Freshness Intrinsic Metric | Attribute | Source and Target | Returns the average freshness of attributes associated with the data set Double >=0.00 [48]

B.2 Extrinsic Comparison feature set

The extrinsic feature set includes only extrinsic features that were used for the classification.

Featurename Category Applied on Application Description VariableType | Domain | Reference
AreaSimilarity Extrinsic Metric | Geometry | Target vs. Source Calculates the AreaSimilarity between the target and source geometry Discrete >0.0 [26]
Hausdorff distance Extrinsic Metric | Geometry | Target vs. Source Calculates the Hausdorff distance between the target and source geometry Discrete >0.0 [32]
ContainsReference Extrinsic Metric | Geometry | Target vs. Source Calculates if the target geometry is contained by the target data set Binary TRUE/FALSE [13]
DisjointWithReference Extrinsic Metric | Geometry | Target vs. Source Calculates if the target geometry is disjoint with the target data set Binary TRUE/FALSE [13]
EuclideanDistance Extrinsic Metric | Geometry | Target vs. Source Calculates the distance of the center points of the target vs. source geometry Discrete >=0.0 [25]
GeoCodingCompleteness | Extrinsic Metric | Attribute | Target vs. Source Checks for the completeness of attributes identifying geocoding attributes Binary TRUE/FALSE [27]
IntersectionPercentage Extrinsic Metric | Geometry | Target vs. Source Calculates the percentage of intersection of the target vs. source geometry Discrete >=0.0
EqualsExact Extrinsic Metric | Geometry | Target vs. Source Calculates if the two geometries are topologically the same Binary ‘TRUE/FALSE [13]
Positional Accuracy Difference | Extrinsic Metric | Geometry | Target and Source Compares the positional accuracy Double >0.00 [18]
FrechetDistance Extrinsic Metric | Geometry | Target vs.Source Calculates the FrechetDistance between the target and source geometry Discrete >0.0 [14]
SuperiorRepresentation Extrinsic Metric | Geometry | Target vs.Source | Indicates if the target data set includes a more detailed representation of a geometry Binary ‘TRUE/FALSE
WithinReference Extrinsic Metric | Geometry | Target vs. Source Calculates if the target geometry is within the target data set Binary TRUE/FALSE [13]
AttributeDifference Extrinsic Metric | Geometry | Target vs. Source Calculates the amount of different attributes among the two revisions Discrete >=0

B.3 Combined feature set

The combined feature set includes all features defined in the baseline feature set and in the extrinsic feature set. Besides, it includes the following metadata features.

Featurename Category Appliedon | Application Description VariableType | Domain | Reference
Attribute Difference per Feature | Extrinsic Metric | Attribute | Target vs. Source | Returns the number of conflicts between matching and attributes of corresponding geometries Double >=0.00 [48]
Amount of Users User Metric Metadata Source Retrieves the amount of users editing this geometry Double >0.00 [46]
Average User Experience User Metric Metadata Source Retrieves the average user experience Double >0.00 [46]
Average User Mapping Days User Metric Metadata Source The average amount of mapping days per user Double >0.00 [46]
ChangeRate from History User Metric Metadata Source Retrieves the average user experience Double >0.00 [58]
HasUniqueRecognizedClass Metadata Metric | Metadata Source Checks if the geometry can be assigned a unique semantic web class Binary Metric | TRUE/FALSE [58]
History Size Metadata Metric | Metadata Source Retrieves the history size of the source geometry Double =0.00 [43]
IsInUsersMainAreaOfEdit User Metric Metadata Source Indicates if the users focus is on editing the area in which the current geometry is situated Boolean | TRUE/FALSE [58]
OverlapsWithNeighbourGeometry | Intrinsic Metric | Geometry | Target and Source Indicates if a geometry overlaps with another geometry in the same data set Boolean ‘TRUE/FALSE [13]
User Mapper Type User Metric Metadata Source Indicates the average activity of a user overall Integer 0-1E5 [46]

UserLastModifierOf User Metric Metadata Source Checks if the amount of last modifications the last editing user made Double >0.00
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