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We propose a novel framework for approximating the statistical properties of turbulent flows
by combining variational methods for the search of unstable periodic orbits with resolvent anal-
ysis for dimensionality reduction. Traditional approaches relying on identifying all short, funda-
mental unstable periodic orbits to compute ergodic averages via cycle expansion are computation-
ally prohibitive for high-dimensional fluid systems. Our framework stems from the observation in
Lasagna, Phys. Rev. E (2020), that a single unstable periodic orbit with a period sufficiently long to
span a large fraction of the attractor captures the statistical properties of chaotic trajectories. Given
the difficulty of identifying unstable periodic orbits for high-dimensional fluid systems, approximate
trajectories residing in a low-dimensional subspace are instead constructed using resolvent modes,
which inherently capture the temporal periodicity of unstable periodic orbits. The amplitude co-
efficients of these modes are adjusted iteratively with gradient-based optimisation to minimise the
violation of the projected governing equations, producing trajectories that approximate, rather than
exactly solve, the system dynamics. A first attempt at utilising this framework on a chaotic system
is made here on the Lorenz 1963 equations, where resolvent analysis enables an exact dimensionality
reduction from three to two dimensions. Key observables averaged over these trajectories produced
by the approach as well as probability distributions and spectra rapidly converge to values obtained
from long chaotic simulations, even with a limited number of iterations. This indicates that exact
solutions may not be necessary to approximate the system’s statistical behaviour, as the trajectories
obtained from partial optimisation provide a sufficient “sketch” of the attractor in state space.

I. INTRODUCTION

The high sensitivity to initial conditions coupled with
the high number of dynamically significant degrees of
freedom pose significant challenges to the detailed pre-
diction of the evolution of turbulent flows. Nonetheless,
global behaviour and long-time statistical quantities may
be characterised more conveniently by using the notion of
a turbulent attractor, a low-dimensional object determin-
ing the long-time evolution of turbulent trajectories [1].
The geometry of the attractor may be quite complex and
is often fractal in nature [2], allowing solutions to explore
it in a complex fashion. For low-dimensional chaotic sys-
tems, insight into such geometry may be obtained by ex-
amining unstable period orbits (UPOs) densely embed-
ded within the attractor and providing a skeleton that
supports the dynamics in state space [3]. Using these
UPOs in the form of a weighted sum, a technique known
as cycle expansion, the ergodic averages of the dynami-
cal system can be computed [4–6]. For turbulent flows,
numerical evidence has been found for the existence of
time periodic solutions of the Navier-Stokes equations,
starting with the first identification of a nonlinear equi-
librium flow by Nagata [7]. A representative set of liter-
ature which works on finding these solutions for various
flow can be found in Refs. [8–13]. These nonlinear solu-
tions are often referred to as Exact Coherent Structures
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(ECSs) or Recurrent Flows and are supposed to play the
same role of UPOs of low-dimensional systems in shaping
the structure of turbulent motion. The exact nature and
significance of ECSs has not yet been fully understood
[14, 15], but there is evidence that they are repeatedly
shadowed by turbulent trajectories [16–18]. Attempts to
apply cycle averaging formulae to predict the statistical
properties of turbulence from ECSs have also been made
[12, 19]. These have, however, faced the challenge that
identifying all the structures required for the cycle expan-
sion is not straightforward and is prohibitively expensive
using available numerical methods [11, 20–25]. Further,
as the dimension of the turbulent attractor increases with
the Reynolds number, the likelihood that a turbulent tra-
jectory shadows an ECS over its entire period decreases,
thus impacting the quality of initial guesses generated
using recurrence analysis techniques [26].

Given the difficulties in identifying a complete hier-
archy of structures, we proposed in previous work [27]
an alternative heuristic approach whereby computational
resources are spent on identify one or few structures hav-
ing a long time period [28]. Such solutions may span
a relatively large fraction of the attractor, visiting the
neighbourhoods of a variety of relevant dynamical states.
They may thus provide a good approximation of the sta-
tistical properties of turbulence, such as averages and
probability distributions, potentially as accurate as that
obtained from a rigorous but incomplete hierarchy of so-
lutions and lifting the technical burden of having to de-
termine the weights for the cycle expansion [12, 29]. Ow-
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ing to the temporal periodicity of these simpler objects,
adjoint methods for time-periodic systems [30–32] may
be used, despite the instability, to obtain sensitivities of
statistical properties with respect to problem parameters
of an external forcing [33]. This information obtained
from UPOs may then be leveraged to design flow control
strategies [34, 35] able to successfully manipulate the tur-
bulent state.

For low-dimensional systems, this programme was car-
ried out by first identifying UPOs with period hun-
dreds or thousands times longer than the shortest UPO.
These were found using a global Newton-Raphson search
method [22, 33] that is insensitive to the marked sensi-
tivity of such long chaotic trajectories to small pertur-
bations that affects commonly-used shooting techniques.
It was shown that period averages calculated on these
UPOs appeared to converge to the long-time average
of chaotic trajectories. Floquet exponents of such so-
lutions, being the period averages of the local rate of
growth of infinitesimal perturbations, also exhibited the
same behaviour and appeared to converge to the Lya-
punov exponents of the system calculated using standard
methods [36]. Nevertheless, extending this programme to
high-dimensional fluid systems does not seem feasible at
present because of the above-mentioned objective diffi-
culties in locating ECSs, let alone solutions with long
period, even using more recent search methods [24, 25].
If, however, the purpose is to obtain approximations of
statistical properties and their sensitivity to problem pa-
rameters, the question is whether such long solutions re-
ally need to be determined exactly or whether it might be
computationally advantageous to accept some violation
of the governing equations as long as the resulting “quasi-
trajectories” provide a sufficiently detailed “sketch” of
the attractor whilst, of course, remaining physically rele-
vant. The approach discussed in this paper to construct
such quasi-trajectories parallels the ideas recently pro-
posed in McCormack et al. [37] and utilises dimension-
ality reduction as a strategy to trade-off the accuracy of
statistical predictions with computational costs required
to obtain them. Dimensionality reduction is motivated
by the well-established notion that fluid systems display
low-dimensional characteristics, and that the attractor
lives in a low-dimensional subspace [38]. The dimension-
ality reduction used in this work demonstrates that the
Lorenz attractor also lives in a low-dimensional subspace
of the total state-space. Utilising the dimensionality re-
duction here, although not as pronounced as what can
found for fluid systems, provides the framework that can
be applied to the Navier-Stokes equations.

In this work, resolvent analysis in the formalism de-
scribed in Ref. [39] is utilised. Resolvent analysis is
an operator-based model reduction technique that has
been utilised extensively for the purpose of analysis, con-
trol, and modelling of fluid flows [40–46], and has been
shown to provide efficient low-dimensional representa-
tions of ECSs found for pressure-driven pipe flow and
plane Couette flow [47], with the theoretical correspon-

dence between resolvent modes and invariant solutions
to the Navier-Stokes equations being shown in Ref. [48].
Resolvent analysis is used here to provide a hierarchy of
temporal basis functions onto which the dynamics can be
projected, with the assumption that these are able to cap-
ture the majority of the dynamics of the turbulent flow
with fewer dynamical variables. These basis functions are
especially suited to model time-periodic exact solutions,
as a hierarchy of modes is obtained at each temporal fre-
quency (and spatial wavenumber for problems with sta-
tistically homogeneous spatial directions), so that tempo-
ral periodicity is built in explicitly in the modal expan-
sion. Quasi-trajectories are then generated by adapting
the variational optimisation methodology developed in
Refs. [23, 24, 49] to the present low-dimensional settings.
The method is equivalent to optimising an objective that
measures the violation of the projected governing equa-
tion by a candidate quasi-trajectory. The dimensional-
ity reduction restricts the problem to only the space of
solutions that is most dynamically significant, eliminat-
ing superfluous search directions of the optimisation and
leading to computational savings. Previous attempts at
utilising resolvent analysis to construct approximate so-
lutions of the governing equations were made in Ref. [50],
although steady solutions of Taylor-Couette flow were
sought for, while here we consider time-dependent so-
lutions that model dynamically-relevant processes. In
addition, resolvent analysis has been used for a ”project-
and-search” algorithm [51] that sought new ECSs by pro-
jecting known solutions onto a reduced set of resolvent
modes. These projected solutions are then used as the
initial condition for a new search, which was then suc-
cessful in finding new equilibria and periodic orbits that
had not yet been observed in the literature.

The main contribution of this paper is to lay out the
mathematical details of the framework used to generate
time-periodic quasi-trajectories with the resolvent-based
modelling, showing how variational optimisation meth-
ods and resolvent analysis can be combined. For the sake
of providing a proof of concept on a prototypical chaotic
system, the methodology is applied to the Lorenz 1963
system [52]. Despite being a low-dimensional problem,
this system is chosen as it is a computationally accessi-
ble test-bed to make a first assessment of the numerical
properties of the proposed framework. The application
to fluid flows, and a detailed analysis of the role of the
modal selection and truncation on the characteristics of
the quasi-trajectories obtained is left to future work. The
framework is introduced in Section II. In Section III the
methodology is applied to the Lorenz 1963 system [52],
with results reported in Section III B focusing on how
statistics of observables obtained from quasi-trajectories
compare to those obtained from long chaotic simulations.
To conclude, the findings of the paper are summarised,
and the future work is discussed in Section IV.
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II. METHODOLOGY

In this section, the main components of the method-
ology are described. First the variational optimisation
is introduced, showing how it can construct exact peri-
odic solutions. This is followed with an explanation of
the resolvent analysis, showing how resolvent modes are
generated, what they represent, and how they can be
truncated to allow the construction of a reduced-order
model. This leads to an explanation of how the resol-
vent modes can be used as a basis for a low-dimensional
projection of the dynamics, restricting the variational op-
timisation to the resolvent subspace. The section is then
concluded with the numerical details of the implementa-
tion, explaining how the resolvent-based optimisation is
constructed and how the main dynamical quantities are
computed.

A. Variational Optimiser

To construct quasi-trajectories, an optimisation ap-
proach is used. In essence, this methodology aims to
minimise an objective that measures the violation of the
governing equation by a given state space trajectory. Al-
though the framing is different, this approach is exactly
equivalent to the adjoint solver methodology described
in Ref. [49].

Consider the general autonomous dynamical system
defined with the evolution equation

dx

dt
= g (x) , x ∈ M ⊆ Rd, (1)

where M is the state space (or phase space) for the sys-
tem. The vector field g is assumed to be smooth, which
implies that any solution to Equation 1 is also smooth.
The variational optimiser aims to find periodic solutions
to Equation 1, such that the following condition is satis-
fied

∫ t+T

t

g (x (t′)) dt′ = 0, ∀t ∈ R≥0, T > 0, (2)

where T is the period of the solution. In general T is
not known a priori and should be included as part of the
optimisation. We define the scaled time as s = 2πt/T =
ωt, which is useful for decoupling the variation due to
changes in shape of the trajectory and changes in its pe-
riod. The variable ω = 2π/T is called the fundamental
frequency and corresponds to the smallest frequency that
can be permitted in a finite time period. The trajectory
x can now be expressed as a function over s ∈ [0, 2π).
Additionally, the time derivative can now be expressed
in terms of the scaled time as d/dt = ωd/ds.
To help in the characterisation of the problem, the

space of closed state space loops is defined as

P = {x (s) |x (0) = x (2π)} . (3)

g(x)

r

ωdx
ds

s

FIG. 1. A state space loop that does not satisfy the governing
equations, and thus has a non-zero residual r.

Thus, a trajectory is in P if and only if it is periodic.
If a trajectory x and a given fundamental frequency ω
satisfy Equation 2, then x ∈ P. Thus, there is a subset
of P that represents exact periodic solutions to Equa-
tion 1. The general approach is to consider a particular
initial loop x0 ∈ P with a fundamental frequency ω0,
and then modify both x0 and ω0 according to some up-
date law such that xn ∈ P and the limit of xn and ωn

is a solution to Equation 1
We define an inner-product on the space P as follows

⟨x, y⟩ :=
∫ 2π

0

x · y ds, (4)

which induces the norm ∥x∥ =
√
⟨x, x⟩. Then we define

a local residual

r := ω
dx

ds
− g (x) , (5)

which is a measure of the local violation of the trajectory
x with respect to the governing equations. Figure 1 is a
schematic for what the local residual represents at each
location in state space, given by the vector bridging the
distance between the tangent vector to the state space
loop (dx/ds ) and the vector field g. We also note that
if x ∈ P then it is true that r ∈ P. Thus, the problem
can now be understood as finding some way to search for
the trajectory x within the space P such that ∥r∥ = 0,
which is only true if r (t) = 0 for all t ∈ [0, T ). This
motivates the definition of the global residual

R [x, ω] :=
1

2
∥r∥2, (6)

as the measure of global violation of the governing equa-
tions by x. By minimising R the alignment between the
tangent vector dx/ds and the governing vector field g is
maximised. Therefore, if x ∈ P is a solution to Equa-
tion 1 for a given period T then R = 0; otherwise R > 0.
The optimisation problem to find exact periodic solu-

tions can now be summarised as follows

min
x∈P, ω

R [x, ω] . (7)

To solve this optimisation problem, it is desirable to
have access to the gradient information onR with respect
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to variations in x and ω. Variational calculus provides
the tools to derive the functional derivative of R with
respect to a given state space trajectory x, giving the
closed form expression

δR
δx

= −ω
dr

ds
−L⊤ (x) r, (8)

where L = dg/dx is the Jacobian of g evaluated over

the trajectory x, and (·)⊤ denotes the matrix transpose.
This is a matrix (L ∈ Rd×d) populated with the partial
derivatives of the components of g with respect to the
components of x. The derivative with respect to ω is
given as

∂R
∂ω

=

〈
∂u

∂s
, r

〉
. (9)

The details of the derivation of both Equation 8 and
Equation 9 are given in Appendix A 1. Thus, by taking
an initial state space loop and providing an optimisation
algorithm with the objective R and gradients δR/δx and
∂R/∂ω , a monotonic decrease in R is guaranteed.

B. Resolvent Analysis

The variational optimisation approach allows the con-
struction of exact solutions to a set of dynamical equa-
tions. However, as discussed in Section I this is a costly
and time-consuming procedure for high-dimensional sys-
tems encountered when dealing with spatio-temporally
varying fields such as those produced by the Navier-
Stokes equations. Resolvent analysis is introduced here
as a way to construct low-order models of general dy-
namical systems that would allow for a projection onto a
smaller subset reducing the dimensionality of the sys-
tem while retaining important dynamical information
[47, 53, 54]. The formalism described in [39] has been
specialised here for finite-dimensional systems.

Given a (not necessarily periodic) state space trajec-
tory x with temporal length T , define the mean x as
follows

x = lim
T→∞

1

T

∫ T

0

x (t) dt . (10)

Then the trajectory can be decomposed into the mean
and fluctuations

x (t) = x+ x′ (t) , (11)

where x′ is the fluctuations of the trajectory. This de-
composition can be substituted into Equation 1, noting
that x is invariant in time, to obtain an evolution equa-
tion for the state fluctuations

dx′

dt
= c+L (x)x′ + f (x′) , (12)

where c = g (x), L (x) is the same Jacobian matrix as
given in Equation 8 now evaluated only at x, and f is

all the nonlinear terms in the expansion. Note that the
constant c ̸= 0 since the mean x is not an equilibrium of
the system.
Since we are concerned only with periodic solutions,

it is natural to expand the trajectory as a Fourier series
such that the condition x ∈ P is automatically enforced,
which is done as follows

x′ (s) =
∑

n∈Z+

(x′
n + c.c.) eins. (13)

where the sum is over the positive integers Z+ =
{1, 2, 3, . . . } and c.c. denotes the complex conjugate of
each term. Since x′ is real valued, the resulting series
possesses a Hermitian symmetry i.e. x′

−n = x′∗
n , where

(·)∗ denotes the complex conjugate, allowing the sum to
be expressed only over the positive frequencies. In addi-
tion, the zero frequency is not included in Equation 13
since the fluctuations by definition have zero mean com-
ponent, that is, x0 = 0. The Fourier coefficients are
related to the fluctuation with the identity

x′
n =

1

2π

∫ 2π

0

x′ (s) e−ins ds. (14)

Expanding Equation 12 in terms of the Fourier com-
ponents provides an algebraic equation governing the
Fourier coefficients of the state fluctuations

inωx′
n = L (x)x′

n + fn, n ∈ Z \ {0} , (15a)

0 = c+ f0, (15b)

where fn are the Fourier coefficients of the nonlinear
terms given by

fn =
1

2π

∫ 2π

0

f (x′ (s)) e−ins ds. (16)

Equation 15a is the governing equation for the fluctu-
ations’ evolution. Equation 15b is a constraint on the
fluctuations imposed by the mean state, analogous to
the Reynolds averaged Navier-Stokes equations, obtained
through the same mean-fluctuation decomposition of a
velocity field and averaging.
Rearranging Equation 15a to make the fluctuation co-

efficients the subject gives the following relationship with
the nonlinearity

x′
n = Hnfn, n ∈ Z \ {0} . (17)

where Hn ∈ Cd×d is the resolvent matrix, defined as

Hn = (inωI −L)
−1

, n ∈ Z \ {0} (18)

Equation 17 shows that the resolvent matrix acts as
a transfer function relating the deviations of the system
around the mean state due to the some forcing fn. This
forcing term can be any general forcing in different con-
texts, however here it is known to represent the nonlinear



5

interactions within the system that act to spread out the
spectral content of the solution.

The next step in resolvent analysis is to perform a Sin-
gular Value Decomposition (SVD) on the resolvent ma-
trix

Hn = Ψ̃nΣ̃nΦ̃
†
n, (19)

where Ψ̃n ∈ Cd×d and Φ̃n ∈ Cd×d are the response and
forcing resolvent matrices, respectively, and Σ̃n ∈ Rd×d

is the diagonal matrix of singular values, denoted with σi,

ordered from largest to smallest. Here the (·)† represents
the conjugate transpose of a matrix. Each column of Ψ̃n

and Φ̃n are a single response and forcing mode of the re-
solvent, which form a complete basis for the state of the
system and the nonlinear forcing that drives it, respec-
tively. The singular value associated with each mode pair
provides the magnitude of response induced by the asso-
ciated forcing, ordered by the size of said response. If the
singular values in Σ̃n decay quickly, i.e. σi ≫ σi+1, then
the system is most receptive to certain forcing modes in
Φ̃n, producing very large responses in the system in cer-
tain directions corresponding to the left-most columns
of Ψ̃n. This means the resolvent, and the system as a
whole, can be represented accurately with a truncated
version of Equation 19 that removes the smaller singular
values, as well as the forcing and response modes asso-
ciated with them. Doing so it is possible to define the
truncated SVD

Hn ≈ ΨnΣnΦ
†
n, (20)

where Ψn ∈ Cd×dr , Φn ∈ Cd×dr , and dr is the number of
modes retained in each of the matrices. The right-most
singular vectors of Ψn and Φn have therefore been dis-
carded along with their associated singular values. The
degree of this truncation depends on the application. In
the case of fluid dynamics and turbulence it has been
shown that large separations of scale can occur between
the singular values for certain wall-bounded flows [39].

C. Dimensionality Reduction

As mentioned, the response matrix Ψ̃n provide a com-
plete basis for the state of the system. With the trunca-
tion established in Equation 20 it is now possible to use
the reduced set of modes defined by the matrix Ψn as
the basis for a projection that can reduce the dimension-
ality of the system, restricting the variational optimiser
of Section IIA to the resolvent subspace. This projection
onto the resolvent subspace is defined as

an = Ψ†
nx

′
n ⇔ x′

n = Ψnan. (21)

Figure 2 displays a schematic for this projection, show-
ing that an ∈ Cdr in Equation 21 represents the best ap-
proximation to the state of the dynamical system within
the subspace defined by the resolvent response modes.

Ψ1
n

Ψ2
n

xn

an

FIG. 2. Schematic for the projection of the state onto the
subspace defined by the truncated response modes.

To work in this new reduced space, it is necessary to
modify the general optimisation problem given in Equa-
tion 7 such that it can be expressed purely in terms of the
resolvent subspace. A consequence of working in the re-
duced space defined by the modes in Ψn is that the mean
state x and the fundamental frequency ω are fixed, since
they are a part of the derivation process of the modes
themselves. They are required to be prescribed a pri-
ori and fixed over the duration of the optimisation of a
quasi-trajectory. In principle, resolvent analysis can pro-
vide a basis for the mean, allowing for the optimisation
to be performed over the whole spectrum. However, this
is not implemented in practice since the mean is required
regardless to construct the modes. Another consequence
of working in the resolvent subspace, fixing the truncated
modes Ψn and the mean x, is that it is possible that the
residual may not have a zero. That is, it may not be
possible to find an exact solution within the resolvent
subspace defined by Ψn with the prescribed fundamen-
tal frequency ω and mean x. This means the solutions to
UPOs is not possible in general given this methodology,
however this is not a significant issue as the goal is con-
struct periodic quasi-trajectories that only approximate
the geometry of the attractor in state space. To find an
exact UPOs, it is necessary to exactly know the mean
of that particular UPO before starting the optimisation
or allow the optimisation to make changes to the mean,
provided some basis Ψ0, and the frequency. It is noted,
however, that long UPOs have means that approach the
mean obtained from chaotic solutions [27], and therefore
the chaotic mean can be used in the optimisation incur-
ring only a small error. In regard to the fundamental
frequency, it is known that as the period is increased the
density of UPOs increases exponentially, thus for quasi-
trajectories with very large periods it is known that so-
lutions exist very close to the prescribed period and thus
the convergence of the quasi-trajectory is not affected un-
til small residuals are reached. In other words, if a small
enough ω is chosen for a quasi-trajectory, i.e. the length
of the trajectory is long, then the quasi-trajectory will
be attracted close to a solution that exists with a very
similar period.

In summary, the projection of the dynamics onto a the
resolvent subspace defined by Ψn with a fixed x and ω
provides a reduced space on which the variational opti-
misation of Section IIA can be performed. In general,
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this subspace does not contain zeros of R, represent-
ing UPOs of the system. Instead, the low-order model
constructed, for large enough periods and using the ap-
proximate chaotic mean, can provide a good enough ap-
proximation of the dynamics to allow the construction of
these quasi-trajectories that can output accurate statis-
tics without being required to have R ≈ 0.
Computing the global residual given a set of modal

coefficients an can be done as follows. First, the defi-
nition of the global residual given in Equation 6 can be
expressed in spectral space by substituting in the Fourier
series of the local residual

R =
1

2
r†0r0 +

∑

n∈Z+

r†nrn, (22)

where

rn =
1

2π

∫ 2π

0

r (s) eins ds. (23)

The coefficients rn are related to the state-vector as
follows

rn = inωx′
n −L (x)x′

n + fn, n ∈ Z \ {0} , (24a)

r0 = c+ f0, (24b)

which are the Fourier transform of the governing equa-
tions as given in Equation 15. We remark that the equa-
tions for both the fluctuations and the mean are included
in Equation 22.

Left multiplying Equation 24 by Ψ†
n and using Equa-

tion 21 a reduced space local residual expression can be
derived

ρn = inωan −L (x)an +Ψ†
nfn, n ∈ Z \ {0} , (25a)

ρ0 = Ψ†
0 (c+ f0) , (25b)

where ρn = Ψ†
nrn. Finally the global residual can then

be computed with

R =
1

2
ρ†
0ρ0 +

∑

n∈Z+

ρ†
nρn, (26)

utilising the fact that Ψ†
nΨn = I. With this in mind,

the resolvent-based optimisation problem can be stated
as such

min
an, ∀n∈Z\{0}

R ({an}) . (27)

In effect, the only change between Equation 27 and
Equation 7 is that the optimisation variables have been
converted from the full-space trajectory x and ω, to just
an. It should also be noted that the coefficient a0 is
not included in the optimisation, since an is defined in
Equation 21 in terms of the fluctuations x′

n. This means
a0 = 0 by definition and is not included as part of the
optimisation problem, which is a consequence of fixing x.

The computational details of computing R are given in
Section IID.
In order to perform gradient-based optimisation within

this resolvent subspace, an expression for ∂R/∂an is re-
quired. The gradient of R with respect to ω is not
required in the reduced space as ω is fixed over the
duration of the optimisation. Obtaining an expression
for ∂R/∂an is done in two transformation steps. First
Fourier transform Equation 8 to get the following expres-
sion

∂R
∂xn

=
1

2π

∫ 2π

0

δR
δx

e−insds, (28)

= −inωrn −
(
L (x)

⊤
r
)
n
. (29)

Second, we project ∂R/∂xn onto the resolvent sub-
space in the same way the state is projected to obtain

∂R
∂an

= Ψ†
n

∂R
∂xn

, n ∈ Z \ 0. (30)

The proof of Equation 29 and Equation 30 is given
in Appendix A 2. Note that the mean frequency is not
included due to the modes Ψn not being properly de-
fined for the mean. This automatically ensures that using
Equation 30 for a gradient-based optimisation does not
modify the mean coefficient a0. As long as the optimisa-
tion is initialised with a0 = 0, the mean x is guaranteed
to be fixed.

D. Numerical Details

The optimisation process for each iteration is visualised
with the flow diagram given in Figure 3. The optimisa-
tion is initialised with a mean state x and fundamen-
tal frequency ω that are fixed throughout the duration
of the optimisation. These are used as inputs for re-
solvent analysis to generate the set of modes Ψn for
n ∈ Z+. Next, the initial trajectory is generated. In
the literature it is common to use close recurrences of
chaotic trajectories obtained from direct simulations to
initialise a given trajectory when trying to find exact pe-
riodic solutions [4, 24], which is particularly important
for high-dimensional systems as the radius of convergence
in such cases is small compared to the space in which the
state can inhabit. In this work the results obtained were
found to be very robust to the initial guess for the quasi-
trajectory, and so the coefficients an were initialised ran-
domly with a Gaussian distribution. Once x, Ψn, and
an initial an are known, the optimisation loop can begin.
When computing the residual and its gradient

a “pseudo-spectral” method is used to reduce the
time complexity of computing the nonlinear (typically
quadratic) terms. This takes the form of expanding the
coefficients an and inverse Fourier transforming the re-
sult to obtain the time domain representation of the
quasi-trajectory. The nonlinear terms f (x) can then



7

an x′
n fn rn

∂R
∂x′

n

R

∂R
∂an

Update an

Ψn

Yes

No

TerminateConverged?

FIG. 3. Flow diagram of a single iteration of the optimisation loop used to compute the residual and its gradient starting from
the modal coefficients an.

be efficiently computed over the length of the quasi-
trajectory, after which the result is Fourier transformed
to obtain fn. Taking note of Figure 3, fn is then used
directly to compute rn. This means that over the course
of the optimisation the trajectory is transformed from
reduced to full space and then from spectral to time do-
main to be able to compute all the terms in the space
where it is computationally most efficient. The result is
the gradient ∂R/∂x′

n, which is then projected into the
reduced space using Equation 30, providing the required
gradient with respect to the coefficients an.

The choice of optimisation algorithm is an impor-
tant aspect which has been relatively unexplored in
the literature. As already mentioned, the choice of
Refs. [24, 25, 49] was to use an algorithm equivalent to
gradient descent. This can be inefficient as the gradient
descent has linear convergence as the minimum is ap-
proached [55]. For this reason, the L-BFGS optimisation
algorithm is selected for this work [56, 57]. L-BFGS is
a gradient-based quasi-Newton algorithm, first used to
solve for periodic orbits in Ref. [58]. L-BFGS included
approximate Hessian information, significantly improves
convergence rates, and generally requires fewer function
evaluations compared to conjugate gradient methods,
making a generally efficient method for gradient-based
optimisation [59]. The L-BFGS iterations are coupled
with a line search algorithm detailed in Refs. [55, 60].

The choice of convergence criteria is important in this
context. Usually, a small global residual is used as it
indicates that an exact solution to Equation 1 has been
found. In this work the focus is on quasi-trajectories
for which the global residual is not expected to converge
to a small value. Hence, it makes more sense here to
track some relevant time-averaged observable of the sys-
tem and terminate the iterations once this observable has
converged to some value. This is explored more in Sec-
tion III B using statistical measures of the Lorenz system.

III. APPLICATION TO THE LORENZ SYSTEM

The Lorenz system from Ref. [52] will be used for the
purpose of demonstrating the above methodology on a

well known chaotic system. Even though it is an exten-
sively studied problem, we demonstrate that the Lorenz
equations permit an elegant, and to the best of the au-
thors’ knowledge not previously reported, dimensionality
reduction when resolvent analysis is utilised, from three
dimensions to two.
The governing equations are given as

dx

dt
= σ (y − x) , (31a)

dy

dt
= x (ρ− z)− y, (31b)

dz

dt
= xy − βz. (31c)

The standard parameter values of σ = 10, ρ = 28, and
β = 8

3 are used, for which it is known the system exhibits
chaotic motion confined to a strange attractor. The gov-
erning equations are symmetric under the transformation
[x, y, z] → [−x, −y, z], which implies that the mean has

the form x =
(
0 0 z

)⊤
where z denotes the mean in the

z-direction.

A. Resolvent Derivation and Low-Oder Model

By applying the mean-fluctuation decomposition of
Equation 11 to the Lorenz system, the following evolu-
tion equation for the state fluctuations is obtained

dx′

dt
= σ (y′ − x′) , (32a)

dy′

dt
= (ρ− z)x′ − y′ − x′z′, (32b)

dz′

dt
= −β (z + z′) + x′y′. (32c)

Equation 32 can be expressed compactly as

dx′

dt
= c+L (x)x′ +Mf (x′) , (33)
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with c =
(
0 0 −βz

)⊤
being the constant mean response

of the system, the linearised Lorenz matrix evaluated at
x given as

L (x) =




−σ σ 0
ρ− z −1 0
0 0 −β


 ,

and the nonlinear influence matrix M defined as

M =




0 0
−1 0
0 1


 . (34)

The nonlinear forcing f (x′) =
(
x′z′ x′y′

)⊤
is a two-

element vector due to the fact that the first equation in
Equation 31 is linear.

By decomposing Equation 33 into its Fourier modes
and then rearranging, the resolvent operator for the
Lorenz system is obtained

Hn = (inωI −L)
−1

M =



αn 0
βn 0
0 γn


 , (35)

where

αn = −σ/Dn, (36)

βn = − (inω + σ) /Dn, (37)

γn = 1/ (inω + β) , (38)

Dn = (inω + 1) (inω + σ) + σ (z − ρ) . (39)

The matrix M reduces the size of the resolvent from
a square matrix to a rank-2 rectangular matrix. The
convenient structure allows an explicit expression for the
SVD to be obtained as follows

Hn = ΨnΣnΦ
†
n (40)

=



ζn 0
ηn 0
0 κn




(
σ1,n 0
0 σ2,n

)(
1 0
0 1

)
, (41)

where the coefficients of the left singular matrix Ψn are
given as ζn = αn/σ1,n, ηn = βn/σ1,n, and κn = γn/σ2,n.
The rank-2 nature of the resolvent means there are ex-
actly 2 singular values that govern the transfer of nonlin-
ear forcing to the solution of the system. The response
modes, defined by the columns of Ψn, have the property
that the first mode contains all the information from the
xy-plane, while the second mode contains only the in-
formation in the z-direction. As such, retaining only a
single pair of the modes restricts the dynamics to only
the xy-plane or z-axis.

Due to the right singular vector, Φn, being equal to
the identity matrix as shown in Equation 41 the following
expression for Σn can be derived

Ψ†Ψn = Σ−1
n H†

nHnΣ
−1
n = I,

⇒ Σ2
n = H†

nHn,

10−1 100 101 102 103

nω

1.00

1.05

1.10

σ 1
,n

/
σ 2

,n

FIG. 4. Ratio of the singular values for the Lorenz system
plotted against the frequency.

which gives for the individual singular values

σ1,n =

√
(nω)

2
+ 2σ2

|Dn|2
, (42)

σ2,n =

√
1

(nω)
2
+ β2

. (43)

Figure 4 shows the ratio of the singular values as given
in Equation 42 and Equation 43 as the frequency nω is
varied. There is no large separation of scale observed
between these singular values and so the system cannot
be accurately represented with a modal coefficients an ∈
Cdr . Physically this is obvious if the response modes in
Equation 41 are inspected. If one of the response modes
is neglected, then the dynamics is constrained to only
the xy-plane or the z-axis (depending on which response
modes is rejected), which cannot accurately reconstruct
the structure of the strange attractor embedded in the
full state space.
Therefore, the dimensionality reduction used in this

work is from C3 to C2. This is an “exact” projection.
That is to say, there has been no rejection of any non-
zero singular values. This can be considered a special case
of the more general (usually higher-dimension) setting,
where there are more non-zero singular values as well as
a distinctive separation of scales allowing the rejection of
a finite number of relatively small singular values.

B. Quasi-Trajectory Statistics

In this section, the quasi-trajectories generated using
the low-order resolvent-based model discussed in Sec-
tion IIIA for the Lorenz system are assessed in their
ability to approximate the statistics of chaotic solutions.
To facilitate this, the following observables are defined

J1 (x) =
√
x2 + y2 + z2, J2 (x) = xz. (44)

These observables will be averaged over the duration of

a trajectory with period T , denoted by Ji
T
.
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FIG. 5. The optimisation of a quasi-trajectory, with the state space points shown in (a), (c), (e), and (g), and the probability
distribution functions over the z-direction shown in (b), (d), (f), and (h), with the blue line corresponding to the Quasi-
Trajectory (QT) and the dashed grey line corresponding to the distribution obtained from chaotic data. The initial trajectory
(iteration 0) is shown in (a), (b), iteration 100 is shown in (c), (d), iteration 1000 is shown in (e), (f), and iteration 10000 is
shown in (g), (h).

The data presented in this section is obtained from
two sources. The first, denoted as “chaos” in the fig-
ures legends, is from chaotic simulations via black-box
solvers supplied by the solve ivp function from SciPy

with an explicit Runge-Kutta 45 method with adaptive
time-stepping, described in [61], with the output trajec-
tory being uniformly sampled in time. The second source
is from quasi-trajectories. These are initialised randomly,
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FIG. 6. Tails of the PDF shown in panel (h) of Figure 5, panel (a) near z = 0, and panel (b) near the extreme RHS of the
distribution.

generating the points in the time domain around the
given mean x with a standard deviation of 10. The co-
efficients an are then determined from the time domain
representation of the initial quasi-trajectory so that the
optimisation can begin. The mean state used for the op-

timisation is set to x =
(
0 0 23.64

)⊤
, obtained from in-

dependent chaotic simulations of the system using Equa-
tion 10.

Figure 5 displays the optimisation of a quasi-trajectory
with a period of T = 1000 starting from a random
distribution around the mean and how it evolves over
100, 1000, and 10000 iterations. On the left side the
xz-projection of the quasi-trajectory sampled for 10000
points is shown, reconstructed in the time domain from
the coefficients an. On the right side the correspond-
ing probability distribution function (PDF) over the z-
direction, with the solid line representing the PDF ob-
tained from the quasi-trajectory and the dashed line be-
ing obtained from a chaotic solution. We first note that
there is a qualitative resemblance between the quasi-
trajectory and what is expected from a chaotic simulation
of the Lorenz system. The noted resemblance is achieved
after only roughly 1000 iterations. This is a result of the
optimisation seeking out the strange attractor very early,
guiding the quasi-trajectory into a shape that lies on the
attractor as well as possible for the given iteration. This
is reinforced with the PDFs at each iteration, with the
PDF shown in panels (f) and (h) of Figure 5 agreeing well
with the PDF obtained from a chaotic solution. Both the
quasi-trajectory and chaotic solutions display a bimodal
distribution. The PDF of the quasi-trajectory at each
iteration is computed using 40 bins over the range of z
values obtained by the quasi-trajectory. The coarseness
of the bins used is due to the fact that as the number
of bins is increased the PDF would display peaks that
do not subside as the number of bins is increased. The
presence of these peaks in the PDFs of periodic orbits
was observed and discussed in Ref. [62] and is a result of
the turning points in the orbits.

There is a notable feature of the quasi-trajectory that
is not present in chaotic trajectories. For the Lorenz
system, there exists an unstable fixed point at the ori-
gin (x =

(
0 0 0

)
), which repels any trajectory that

approaches it very quickly along its unstable manifold.
However, as a consequence of the way in which the vari-
ational methodology is constructed, the residual is small
around all fixed points regardless of their stability. This
means that a quasi-trajectory is not heavily penalised for
drifting away from the strange attractor towards the un-
stable fixed point at the origin. This can be observed in
panels (g,h) of Figure 5, where there is a small increase in
the density of the quasi-trajectory near the origin com-
pared to the chaotic PDF that approaches zero as z goes
to zero. In panel (a) of Figure 6 a slice of the PDF of
panel (h) from Figure 5 is taken, plotted on a log-log
scale, to show this trend more clearly. The chaotic PDF
continues down as z decreases in the fashion of a power
law, while the quasi-trajectory PDF plateaus at a partic-
ular distance from z = 0 after which it does not decrease
any further. The effect on the statistics, however, is min-
imal. The quantitative effect of an unstable fixed point
attracting quasi-trajectories under the variational opti-
misation is dependent on the stability characteristic of
the particular fixed point. If the fixed point is close to
neutrally stable, and therefore close to a bifurcation of
some kind, it is difficult for the optimiser to converge
towards it. The magnitude of attraction exerted on the
optimiser is determined by the magnitude of the stabil-
ity/instability of the point. There is also the possibility of
so-called “ghost” points, discussed in Ref. [63], which are
fixed points that have bifurcated and no longer exist in
the state-space, corresponding to a local minimum for the
optimiser. Despite these fixed points no longer existing,
there are remnants of their presence on the state-space
which can have an effect on the optimisation, especially
as the optimisers convergence is strongly affected by near
neutral structures. In fluid problems, where there may
be many more unstable fixed points scattered around the
state-space, the exact effect this would have on the op-
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timisation is not known and is a planned future topic of
work.

Panel (b) of Figure 6 shows the right tail of the PDF
from panel (h) of Figure 5, showing the probability of
the quasi-trajectory to undergo a particularly large loop
around a lobe of the strange attractor. It shows that
the quasi-trajectory is able to capture some of the more
unlikely/extreme events of the chaotic motion. There
is an upper limit to the PDF that is smaller than that
predicted from the chaotic PDF, however a larger quasi-
trajectory would lead to extreme events at larger values
of z to be captured. With this in mind, extreme events
can be important features in certain turbulent flows that
display intermittency, and it is a topic for future work
how well quasi-trajectories can capture them.

In Figure 7, the power spectra of the final quasi-
trajectory achieved in Figure 5 at 100, 1000, and 10000 it-
erations is compared with that obtained from the chaotic
data. All spectra are obtained using Welch’s method,
with Hann windowing to reduce spectral leakage. Welch’s
method was used to compute the average power spec-
tra of the quasi-trajectory. This is done since the raw
spectrum obtained from each optimisation is not deter-
ministic due to the random initialisation, which results
in power spectra with seemingly random values. Us-
ing Welch’s method averages this randomness out and
reveals the deterministic statistics achieved by a given
quasi-trajectory. This is fundamentally the same rea-
son Welch’s method is used when computing the power
spectrum of chaotic signals [64]. A similar trend is seen
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FIG. 7. Comparisons of the power spectra obtained from the
final quasi-trajectory in Figure 5 at 100, 1000, and 10000 iter-
ations, and chaotic data. The spectra at each iteration (along
with the corresponding chaotic spectra) is plotted offset from
each other to improve readability.

in Figure 5, in that the power spectra after 100 does not
particularly resemble the chaotic spectra, missing the im-
portant peak at nω ≈ 1.3 and its harmonics. After 1000
iterations the quasi-trajectory spectra displays a spread
out version of this peak with a couple of its harmonics,
and finally 10000 iterations shows the best agreement
with the spectral peaks more clearly defined and multiple
of its harmonics resolved in agreement with the chaotic
data. The high frequency component of the spectra also
gradually reduces over the duration of the optimisation,
gradually approaching the spectral decay observed from
the chaotic spectra. Notably, there is an increase in the
spectral energy in the low frequencies that persists in the
quasi-trajectory. This is possibly an artefact of the pre-
viously mentioned fixed point at the origin dragging part
of the quasi-trajectory towards it. Near this point the
quasi-trajectory moves rather slowly, approaching near a
marginally unstable manifold, which adds an extra low
frequency component to the spectra.

Panel (a) of Figure 8 the trace of the global residual,

normalised by ∥g (xf )∥2 for the final quasi-trajectory ob-
tained over the duration of the optimisation of the same
quasi-trajectory as in Figure 5. It can be seen that the
global residual has not yet converged to either a zero
R = 0 or a non-zero minimum after 10000 iterations.
Nevertheless, the close qualitative resemblance observed
in Figure 5 is achieved after only a moderate number
of iterations. On the right of Figure 8 are the period-
averaged observables defined in Equation 44 computed
on the quasi-trajectory at each iteration, plotted with
horizontal lines corresponding to the values of the mean
observables computed from a long chaotic trajectory ob-
tained with a numerical integration of the equations of
motion. The values of the period averaged observables
over the quasi-trajectory approach the chaotic values,
displaying a convergence of the statistics well before the
residual itself has converged, with most of the improve-
ment being done between 10 and 100 iterations. Thus,
it is reasonable to say that this quasi-trajectory has con-
verged to the point of providing useful approximations
to the statistics of the chaotic dynamics at around 1000
iterations.

The local residual r in equation 5 can be viewed as a
small perturbation imposed on the governing equations,
and therefore a quasi-trajectory can be viewed as an ex-
act solution to this slightly perturbed system. The ratio
of the global residual to the norm of the system’s right-
hand side, R/∥g (x)∥2, can then be viewed as a measure
of the closeness of this forced system to original system.
As such, these results show that nearby systems to the
Lorenz system, or equivalently a lightly forced Lorenz
system, have very similar statistics to each other.

Figure 9 shows the results of a number of batch op-
timisations at increasing periods T performed for 100,
1000, and 10000 iterations, with each batch consisting
of 50 quasi-trajectories. For reference, the shortest UPO
of the Lorenz equations has a period of about 1.55 time
units. Shown on the top are the ensemble averages of the
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FIG. 8. Trace plots of the global residual normalised by the size of the system response g quasi-trajectory at the end of the
optimisation xf (a) and the mean observables over the quasi-trajectory at each iteration of the optimisation (b), shown with the
values obtained from a long chaotic trajectory as horizontal grey lines. Annotated on the plots are the iterations corresponding
to the reconstructions shown in Figure 5.

period averaged observables within the batch, denoted by〈
Ji

T
〉
, and in the bottom is the associated standard de-

viation of the period averaged observables within each

batch, denoted with σ
(
Ji

T
)
. The corresponding values

for the period averaged observables obtained from a long
chaotic trajectory are shown with the dashed grey lines.
The trend for 1000 and 10000 is for the period averaged
observables to approach the long chaotic values. The val-
ues of the period averaged observables for 100 iterations
exhibit poorer convergence towards the chaotic values,
although the relative error is still rather small, being on

the order of 1% and 6% for
〈
J1

T
〉
and

〈
J2

T
〉
, respec-

tively. The period averaged observables for the 10000
iterations case are close to the long chaotic value even
for the shortest periods shown. Panels (c,d) illustrate
the change in the standard deviation of the period av-
eraged observables with the quasi-trajectory period ex-
hibiting a steady decline as the period increases. The
rate of this decrease is roughly proportional to the in-
verse square root of the period shown in Figure 9 with
the grey dashed line, which is a consequence of the cen-
tral limit theorem. The larger period therefore produces
quasi-trajectories that become more similar from a sta-
tistical point of view. The standard error of the estima-

tion of σ
(
J
T

i

)
ranges from roughly 10% to 0.1% between

the time-averaged observables [65]. The result that the
longer quasi-trajectories (for T ≳ 20) better reflect the
statistics of the chaotic trajectories stem from their abil-
ity to explore the larger fractions of the strange attrac-
tor governing the chaotic dynamics. Therefore, a trade-
off exists between the accuracy of the statistical predic-
tions obtained and the speed at which the result can be
achieved by varying the period of a quasi-trajectory. It

should be noted that
〈
J1

T
〉
approaches the chaotic value

more closely for the optimisations that terminate at 1000

iterations, whereas
〈
J2

T
〉
is closer to the chaotic value

for the optimisations that terminate at 10000 iterations.
This result suggests that certain observables may be most
accurately captured during a quasi-trajectory optimisa-
tion.

Figure 10 is similar to Figure 9, but instead shows
the standard deviation (panels (a) and (b)), skewness
(panels (c) and (d)), and kurtosis (panels (e) and (f)) of
the observables taken over the period T of a given quasi-
trajectory, denoted with stdT (·), skewT (·), and kurtT (·)
respectively. These statistical moments are then aver-
aged over the ensemble of 50 optimisations. The ensem-
ble standard deviation follows the same descent trend as
in Figure 9, so is omitted for the sake of compactness.
The expected trend is that for the same period quasi-
trajectory, the higher-order statistical moments will be
less accurate. Figure 10 agrees with this, albeit with
the estimation of the higher-order modes only degrading
for the first observable, J1. In fact, the quasi-trajectory
statistics of J2 appears to accurately reconstruct the sta-
tistical moments for periods T ≳ 20, implying the to-
tal distribution is faithfully reconstructed including the
more extreme parts which would be emphasised by the
kurtosis. The deviation of the moments of J1 are diffi-
cult to directly attribute to a particular source, although
it appears that more iterations leads to slightly better
agreement with the value obtained from chaotic simula-
tion. Additionally, the moments of J2 appear to converge
to a final value at a modest period, whereas the skewness
and kurtosis of J1 have seemingly not converged to the
same degree. The optimisation then prioritises capturing
certain aspects of the dynamics first, in this case balanc-
ing the nonlinear interactions over the total magnitude
which takes larger periods and more iterations to accu-
rately capture. In other words, the cross-correlations,
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FIG. 9. The ensemble average and standard deviations of the period averaged observables over a batch optimisation of 50
quasi-trajectories, performed over a range of periods T . The optimisations were terminated at 100, 1000, and 10000 iterations.

The left side (panels (a,c)) show the observable J1
T
, and the right side (panels (b,d)) show the observable J2

T
. The top (panels

(a,b)) show the ensemble averages, and the bottom (panels (c,d)) show the standard deviations.

represented by the observable J2, are very accurately
captured by quasi-trajectories with a modest period and
without having converged the global residual.

C. Time Cost of Computing Quasi-Trajectories

In this small test case for the Lorenz system, the com-
putation of the quasi-trajectories is much heavier than
using a simple ODE solver. There are two primary rea-
sons for this. The first is that the variational optimisation
inherently scales worse than a time-stepping approach to
solving the governing equations since the whole temporal
evolution of the trajectory is considered simultaneously.
The second, and more pertinent reason for this work,
is the low-dimensionality of the system not admitting a
large dimensionality reduction. For the algorithm im-
plemented here, depicted in Figure 3, each iteration of
the optimisation is dominated by the computation of the
FFTs in full-space and the projection/expansion steps
between full- and reduced-space. The time complexities
of each of these operations are given by O (N log (N))
and O (drN) respectively, where N are the degrees of
freedom of the system (original dimension of the sys-
tem multiplied by the temporal modes used), and dr
are the number of retained modes for the projection.
For the variational optimiser to arrive at a sufficiently
accurate estimate of the statistics more rapidly than a
time-stepping method, it is required that the optimiser

requires fewer degrees-of-freedom to accurately approxi-
mate the statistics, which can be best achieved through
a large dimensionality reduction, i.e. dr ≪ d.

To illustrate for the Lorenz system, obtaining 1000 op-
timisation iterations of a quasi-trajectory with a period
of T = 20 using 200 temporal modes (N = 600) with
the dimensionality reduction dr = 2 takes O (1) seconds.
Obtaining a chaotic ODE solution of the same period
using solve ivp takes O (0.1) seconds. In short, for low-
dimensional systems, where the degrees of freedom are al-
ready small and the dimensionality reduction is not large,
computing quasi-trajectories is more expensive than an
ODE computation.

The potential power of the method becomes more ap-
parent when applied to high-dimensional systems, specif-
ically fluid turbulence, where the possible dimensionality
reduction can be very large. This property, combined
with the possibly smaller required degrees of the freedom
in the full-space, and potentially relaxed time-step con-
straints, could reduce the time taken to find a statistically
meaningful solution. The method described here per-
forms the majority of the computations in the full state-
space, only projecting back to the reduced space for the
update to the optimisation state. It is possible to perform
a complete optimisation loop within the reduced-space
by converting the pseudo-spectral approach to comput-
ing the nonlinear terms to convolutions in the reduced-
space, resulting in projected nonlinear terms which are
computed in terms of the coefficients an. Although con-
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(panels (e) and (f)) of the observables J1 and J2 over the same set of batch optimisation as in Figure 9.

volutions are known to scale worse with the size of the
computation, the dimensionality reduction could actu-
ally make the convolutions in reduced-space faster than
FFTs in full-space. To finish this discussion, the global-
in-time description of the flow that is implicit in the cur-
rent framework would also permit temporal parallelism
to be exploited, which may lead to a further speed-up
that is not possible in direct time-stepping methods used
by most flow solvers.

IV. SUMMARY AND CONCLUSIONS

In this work we proposed a modelling framework com-
bining variational methods for the search of UPOs with
resolvent analysis for dimensionality reduction. The
fundamental idea is to construct candidate trajectories
from a low-dimensional expansion of space-time basis
functions with initially unknown amplitude coefficients.

These coefficients are then found by optimising an objec-
tive function describing the overall violation of the gov-
erning equations along the trajectory. Using a reduced
set of resolvent modes as a basis, where only the most re-
ceptive response modes (associated with the largest sin-
gular values of the resolvent matrix), the temporal peri-
odicity of UPOs is built into the expansion. For the gen-
eral case, the projection onto such a set of modes forces
the resulting trajectories to live in a lower-dimensional
space that rejects some of the dynamical information
present in full state space. In addition, in using resolvent
analysis the mean x and period T of the sought solution is
fixed during the course of the optimisation. Thus, in gen-
eral the governing equations can only be approximately
solved. The Lorenz system, however, is a special case
that allows for an exact projection of the 3-dimensional
dynamics onto a 2-dimensional subspace that fully cap-
tures the dynamics. It was shown that no further trunca-
tion of the modes was possible while ensuring any accu-



15

racy of the resulting solutions, due to the two remaining
singular values of the resolvent not having a large enough
scale separation. Due to the truncation, solving this opti-
misation problem, may be computationally cheaper than
identifying exact UPOs of the original system, especially
for high-dimensional fluid systems. Despite this, these
solutions, dubbed quasi-trajectories, may provide an ad-
equate “sketch” of the attractor in state space and may
thus have the ability to approximate to a sufficient de-
gree of accuracy the statistical properties of the original
system.

This framework is demonstrated on the Lorenz 1963
system, chosen as a computationally accessible test-bed
for developing and testing the numerical techniques. For
such system, resolvent analysis provides a natural dimen-
sionality reduction that can be exploited to reduce the
degrees of freedom of the system from three to two. Ob-
servables averaged over the period of a quasi-trajectory
are monitored as the optimisation progresses. One key
finding of this study is that such observables approach
the values obtained from long chaotic trajectories rather
quickly, after only 100 - 1000 iterations, with a great ro-
bustness to the initial condition used. This suggests that
the governing equations projected on the low-dimensional
subspace need not be solved exactly to obtain close ap-
proximations of the statistical properties of the original
system. Instead, the gradient-based iteration procedure
“adjusts” a candidate state space loop relatively quickly,
pushing it towards the region of state space occupied by
the attractor. The accuracy of the period averaged ob-
servables obtained from a quasi-trajectory increases with
its period, with the variance in the value obtained from a
given quasi-trajectory decreasing at the same time. This
shows that longer quasi-trajectories better approximate
the chaotic statistics, as a result of a larger portion of
the attractor being explored.

The application of this framework to fluid systems re-
mains to be explored. The dimensionality reduction af-
forded by resolvent analysis is much more pronounced in
many flows of practical interest, compare to what can be
obtained here for the Lorenz system. Here the dimen-
sionality achieved is exact, losing no information in the
projection step. This is not true for the fluid dynamics
case since the mode truncation is generally motivated by
a sufficiently large separation of scales between resolvent
singular values. The expectation is that this truncation
will not have a significant effect on the efficacy of the
model, which is still required to be shown. The modal
truncation could lead to large computational savings, rel-
atively speaking, although its role on the quality of the
approximation needs to be assessed, because there is no
guarantee that the leading resolvent modes can capture
the majority of the kinetic energy. This could result in
approximations of the velocity field that miss important
features. A second important task is to ascertain the im-
pact of the attractor dimension on the convergence rate
of observables computed from quasi-trajectories to the
long-time statistics computed from chaotic trajectories.

As shown, few iterations were sufficient here to obtain rel-
atively good approximations of averages and probability
distributions, but in a multi-scale problem such as turbu-
lence the convergence may be slower. An answer to such
question would then provide insight into how computa-
tional costs required to obtain estimates of the statistical
properties depend on the problem dimension, as compu-
tational costs scale linearly with the number of iterations
performed. These aspects are currently being considered
and will be reported in future work.
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Appendix A: Residual Gradient

The gradient of the global residual R with respect to
the state space loop x and its fundamental frequency ω is
given in Equation 8 and Equation 9. Here these expres-
sions are derived using variational calculus. In addition,
the proof of the projection of the gradients onto the re-
duced subspace is provided.

1. Full-Space Derivation

We will begin with Equation 8. Let’s, consider some
perturbation to the state space loop x → x + ϵδx, such
that δx|t=0 = δx|t=T and ϵ > 0 is some small real num-
ber. This perturbation propagates through all the vari-
ables that depend on the shape of the trajectory. The
resulting perturbation in the local residual can be ex-
pressed as

r (x+ ϵδx) = r + δr

= ω
d

ds
(x+ ϵδx)− g (x+ ϵδx)

= ω
dx

ds
− g (x)+

ϵ

(
ω

d

ds
δx−L (x) δx

)
,

(A1)

which when rearranged gives

δr = ϵ

(
ω

d

ds
δx−L (x) δx

)
, (A2)

where L is the Jacobian matrix of the vector-valued func-
tion g with respect to the state space variables x. The



16

perturbation of the global residual is given as

R [x+ ϵδx] =
1

2
∥r + δr∥2

=
1

2
∥r∥2 + ⟨r, δr⟩+ 1

2
∥δr∥2

=
1

2
∥r∥2+

ϵ

〈
r, ω

d

ds
δx−L (x) δx

〉
+

ϵ2

2

∥∥∥∥ω
d

ds
δx−L (x) δx

∥∥∥∥
2

.

(A3)

Now, variational calculus provides the following iden-
tities

[
d

dϵ
R [x+ ϵδx]

]

ϵ=0

=

〈
δR
δx

, δx

〉
, (A4)

Applying Equation A4 to the last equality of Equa-
tion A3 the following is obtained

〈
r, ω

d

ds
δx−L (x) δx

〉
=

〈
δR
δx

, δx

〉
. (A5)

Thus, to obtain a closed-form expression for δR
δx it is

necessary to rearrange the left-hand side of Equation A5
such that it resembles the form of the right-hand side.
Leveraging the bi-linearity of the inner-product, and per-
forming integration by parts of the time derivative (not-
ing that the boundary term disappears due to the peri-
odicity of δx) we get

〈
−ω

dr

ds
−L⊤ (x) r, δx

〉
=

〈
δR
δx

, δx

〉
, (A6)

which, because δx is free to be any function we want,
implies that

δR
δx

= −ω
dr

ds
−L⊤ (x) r. (A7)

Next, an expression for ∂R/∂ω can be obtained using
standard calculus since ω is just a real number rather
than a function like x. Taking the definition of the global
residual Equation 6, substituting in Equation 5, and then
rearranging to make ω the subject, gives the following

R =
1

2
∥r∥2 =

1

2

∥∥∥∥ω
dx

ds
− g (x)

∥∥∥∥
2

=
ω2

2

∥∥∥∥
dx

ds

∥∥∥∥
2

− ω

〈
dx

ds
, g (x)

〉
+

1

2
∥g (x)∥2.

(A8)

Taking the derivative of this expression with respect
to ω results in

∂R
∂ω

= ω

∥∥∥∥
dx

ds

∥∥∥∥
2

−
〈
dx

ds
, g (x)

〉
, (A9)

which can be rearranged to a simpler form

∂R
∂ω

=

〈
dx

ds
, r

〉
. (A10)

2. Projection onto the Resolvent Subspace

The projection onto the reduced subspace is performed
in two steps: first the expansion in terms of a Fourier se-
ries, and then a least-squares projection onto a subspace
defined by the set of response modes obtained from re-
solvent analysis. First, to prove the expression given in
Equation 29, we express the change in the global residual
due to a change in the Fourier coefficients of x as

δR =
∑

n∈Z
δx†

n

∂R
∂xn

. (A11)

Thus, the gradient of R is expressed as

δR
δx

=
∑

n∈Z

δxn

δx

† ∂R
∂xn

. (A12)

To obtain an expression for the functional derivative of
the Fourier coefficients xn with respect to the trajectory
x, we use the definition Equation 14 and introduce a
perturbation ϵδx

xn (x+ ϵδx) =
1

2π

∫ 2π

0

(x+ ϵδx) e−ins ds

= xn +
ϵ

2π

∫ 2π

0

δxe−ins ds.

(A13)

Applying Equation A4 to the above gives the following

δxn

δx
= Ie−ins. (A14)

Substituting this into Equation A12 gives

δR
δx

=
∑

n∈Z

∂R
∂xn

eins, (A15)

which when the identity Equation 14 is applied to pro-
vides

∂R
∂xn

=
1

2π

∫ 2π

0

δR
δx

e−ins ds =

(
δR
δx

)

n

. (A16)

The proof for Equation 30 is quite similar, if a little
simpler. Using the chain rule, we have

∂R
∂an

=
∂xn

∂an

† ∂R
∂xn

. (A17)

Using the definition Equation 21, the following deriva-
tive can be obtained

∂xn

∂an
= Ψn, n ∈ Z \ {0} . (A18)

which when substituted into Equation A17 gives the final
result

∂R
∂an

= Ψ†
n

∂R
∂xn

, n ∈ Z \ {0} . (A19)
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[40] F. Gómez, H. M. Blackburn, M. Rudman, A. S. Sharma,
and B. J. McKeon, Journal of Fluid Mechanics 798, R2
(2016), arXiv:1606.04735.

[41] S. Beneddine, R. Yegavian, D. Sipp, and B. Leclaire,
Journal of Fluid Mechanics 824, 174 (2017).

[42] B. Jin and S. J. Illingworth, Theoretical and
Computational Fluid Dynamics 36, 491 (2021),
arXiv:arXiv:2105.04927v1.

[43] D. F. Gayme and B. A. Minnick, Phys. Rev. Fluids 4,
110505 (2019).

[44] X. Garnaud, L. Lesshafft, P. J. Schmid, and P. Huerre,
Journal of Fluid Mechanics 716, 189 (2013).

[45] D. Gayme, A robust control approach to understanding
nonlinear mechanisms in shear flow turbulence, Ph.D.
thesis, California Institute of Technology (2010).

[46] S. Symon, K. Rosenberg, S. T. M. Dawson, and
B. J. McKeon, Phys. Rev. Fluids 3, 053902 (2018),
arXiv:1712.05473.

[47] A. S. Sharma, R. Moarref, B. J. Mckeon, J. S. Park,
M. D. Graham, and A. P. Willis, Phys. Rev. E 93, 021102
(2016).
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