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Liquid formulation design involves using a relatively limited experimental budget to search a high-dimensional
space, owing to the combinatorial selection of ingredients and their concentrations from a larger subset of
available ingredients. This work investigates alternative shampoo formulations. A space-filling design is desired
for screening relatively unexplored formulation chemistries. One of the few computationally efficient solutions
for this mixed nominal-continuous design of experiments problem is the adoption of maximum projection designs
with quantitative and qualitative factors (MaxProQQ). However, such purely space-filling designs can select
experiments in infeasible regions of the design space. Here, stable products are considered feasible. We develop
and apply weighted-space filling designs, where predictive phase stability classifiers are trained for difficult-to-
formulate (predominantly unstable) sub-systems, to guide these experiments to regions of feasibility, whilst
simultaneously optimising for chemical diversity by building on MaxProQQ. This approach is extendable to other

mixed-variable design problems, particularly those with sequential design objectives.

1. Introduction

Liquid formulations are complex multi-component mixtures where
the ingredients have been selected, processed, and combined in a spe-
cific way to obtain well-defined functions (Conte et al., 2011). Liquid
formulation design involves both quantitative and qualitative factors,
with factors being controlled independent variables in the experiment.
In this study, we address a mixed nominal-continuous experimental
design problem, where the nominal factors are ingredient choices, and
concentration selection represents the continuous factors. Typically,
these formulated products, which are produced across several industries
(e.g., consumer care, agrochemical, pharmaceutical; Bagajewicz et al.,
2011; Bernardo and Saraiva, 2005; Gani, 2004; Narayanan et al., 2021;
Taifouris et al., 2020), are developed through trial and error by spe-
cialists with extensive experience in the given domain. Industry seeks a
more data-driven and predictive methodology to develop formulated
products, particularly, as we wish to formulate novel products, either for
enhanced performance and functionality (Gani and Ng, 2015; Martin
and Martinez, 2013) or environmental reasons (Jessop et al., 2015;
Kelly, 2023).

* Corresponding author.
E-mail address: aal35@cam.ac.uk (A.A. Lapkin).

https://doi.org/10.1016/j.compchemeng.2025.109007

This work forms part of a broader study on machine learning for
liquid formulation design where we aimed to collect a dataset for
training predictive surrogate models for a set of industrially important
property targets in this space: phase stability, turbidity, and viscosity.
The experimental work and collected dataset are published separately
(Chitre et al., 2024b). Here we focus specifically on the design of ex-
periments (DoE) problem. Key aspects of this were as follows: (i) limited
prior knowledge or models for the chemical space explored; (ii) a
high-dimensional, mixed variable design space; (iii) a sequential design
problem. Each of these is addressed in turn.

Formulation chassis (core ingredients) have remained relatively
unchanged in personal care products such as shampoo for two or more
decades. Within the broader study, we investigated a range of new
surfactant ingredients in response to regulatory and sustainability
pressures (Chitre et al., 2024b), therefore, we had limited a priori
knowledge or models available for our formulation system. Had such
knowledge been available, it could have been used to define a
model-based experimental scheme which, for example, may have
selected experiments in regions of predicted nonlinearities (Huang et al.,
2019) and been integrated within a model-based design of experiments
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(MBDoE) framework (Galvanin et al., 2012, 2007). Although we expect
the response surface to be non-linear due to the complex ingredient
interactions which are typical in liquid-formulated products, we do not
know a priori where these non-linearities will be in the exploration of
new chemical moieties.

Our goal was to generate a dataset of the most diverse set of for-
mulations because we aimed to train representative property (phase
stability, viscosity, turbidity) prediction models across the entire chem-
ical design space, as defined by the ingredients and concentration ranges
selected with our industrial partner. Given the anticipated complexity
and limited knowledge at the start of the experimental campaign, we
intended to use flexible non-parametric methods for property predic-
tion. Contrast this to parametric models of a fixed functional form,
which would be useful in later stages of product development, i.e., when
a suitable form of the model is known. For non-parametric models,
space-filling designs improve the smoothing of model predictions.
Space-filling ensures the experimental design points, representing
various combinations of ingredient choices and concentrations are
spread as evenly as possible.

Our initial approach considered using a recently developed “bridge
DoE” for liquid formulation design (Cao et al., 2023); bridge design
refers to a combination of a parametric model-based and space-filling
component. In this earlier study, a parametric method was viable as a
simpler design space with only 10 ingredient combinations, unlike the
500+ in this work, was used. Furthermore, the bridge DoE method scales
poorly to higher-dimensional problems as the model-based component
relies on expensive Monte Carlo integration and the space-filling opti-
misation relies on an inefficient comparison between all possible pairs of
rows in a generated design matrix.

Since formulation design is a combinatorial problem with different
types of factors, we often have a very large design space to explore, yet
we have a limited experimental budget. This is generally true for
chemical (engineering) problems as experiments are time-, resource-,
and labour-intensive, but particularly for formulation design, as devel-
oping a fully automated, high-throughput liquid formulation workflow
is very challenging (Cao et al., 2021b; Chitre et al., 2024b). Therefore,
we needed an efficient design of experiments (DoE) methodology. A
mixed nominal-continuous design problem, as faced in this study, is
particularly challenging for space filling because for the nominal factors,
it is difficult to interpret the distance between points. Either the value of
a nominal factor is the same between two experiments, or it is not — there
is a lack of quantification of how different the two experiments are,
unlike with continuous, discrete numeric or even ordinal factors.
Furthermore, the mixed variable design space can become prohibitively
expensive to explore using traditional methods, such as (fractional)
factorial designs, as the number of factors increases because the design
space grows exponentially due to the combinatorial nature of ingredient
selection.

With the increasing adoption of ML-driven methods in the chemical
sciences, a general consensus has formed that a well-distributed training
set will lead to better predictions across the entirety of the chemical
space of interest (Ahneman et al.,, 2018; Glavatskikh et al., 2019;
Schrader et al., 2024; Strieth-Kalthoff et al., 2022). It is only practically
possible to cover a limited fraction of the design space experimentally
and a space-filling design ensures optimal spread or coverage such that
when a prediction is made for a new formulation, a representative
experimental sample is nearby (Johnson et al., 1990; Joseph, 2016;
McKay et al., 1979). For brevity, we will focus the discussion on Latin
hypercube designs (LHD) as these have been best extended to a
mixed-variable design space. An LHD attempts to address the curse of
dimensionality in space-filling by ensuring by construction uniform
coverage in each one-dimensional projection of the design. Other types
of space-filling approaches are also available such as Sobol sampling
(Sobol, 1967), maximum entropy (Shewry and Wynn, 1987) or mini-
mum energy (Joseph et al., 2015) designs. A comprehensive review is
presented elsewhere (Garud et al., 2017).
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In practice, the Maximin LHD (Mm LHD; Morris and Mitchell, 1995)
is the most commonly used space-filling design due to its simplicity and
availability in software packages. However, LHDs are only available for
continuous factors. Therefore, the sliced LHD (SLHD) was introduced
(Qian, 2012), which is a type of LHD that can be further partitioned into
t smaller LHDs called slices where t is the number of all possible com-
binations of the qualitative factors. Despite a more computationally
efficient construction of the SLHD proposed by Ba et al., 2015, the
method remains limited for formulation design with numerous ingre-
dient choices, as the number of required slices, t, increases exponentially
with the number of qualitative factors. As an alternative, faster method,
marginally coupled designs (MCDs) were proposed by Deng et al., 2015
which combine orthogonal arrays (OAs) for the qualitative factors with
LHDs for the quantitative factors. The trade-off, however, is sub-optimal
space-filling in higher dimensions as only certain groups of factors are
optimised independently and this is an active research area (Zhou et al.,
2021).

Maximin (S)LHDs have optimal space-filling properties in the full
p-dimensions of a design problem and provide uniform 1-D projections.
However, their space-filling properties can be poor in lower-dimensional
projections (from 2 to p —1 dimensions), which can be relevant to
formulation design. Commercial formulations contain many in-
gredients, some of which may not have an active effect on a particular
property of interest, e.g., viscosity, in which case we are interested in the
lower dimensional subspaces. In this reduced space, (S)LHDs may no
longer ensure adequate space-filling properties, which is crucial for
training ML models.

To address the limitation of (S)LHD only accommodating a small
number of nominal factors and the space-filling limitations of MCD,
Joseph et al. (2020) extended the Maximum Projection (MaxPro) design
criterion for continuous variables, introduced by Joseph et al. (2015b),
to accommodate continuous, nominal, discrete numeric, and ordinal
types of factors in one criterion (MaxProQQ). These authors demon-
strated the performance advantages, especially in space-filling re-
quirements, of the MaxPro designs over alternative space-filling
approaches (particularly MCD and LHD). A brief discussion of the
MaxProQQ criterion is included as Supplementary Eqn. 1 in the SI along
with a brief discussion of the algorithm used to optimise the design. This
criterion ensures good projections in all the subspaces of the factors
while having a computational cost comparable to the widely used Mm
LHD criterion (Morris and Mitchell, 1995). For more details on the
MaxProQQ design construction process, readers are directed to (Joseph
et al., 2020) and the related R package (Ba and Joseph, 2018).

Returning to the specific formulation design problem, we illustrate
the liquid formulation workflow used in Fig. 1. The formulations, a
mixture of surfactants, polymer, and thickener in a base of water, are
prepared and then characterised for their phase stability and, if stable,
their turbidity, and viscosity. Unstable formulations are not charac-
terised further as they have non-uniform turbidity/viscosity across the
different phases of the formulation. This therefore results in a sequential
or hierarchical design problem: having a stable formulation is a pre-
requisite to the collection of turbidity or viscosity data. MaxProQQ
could have been directly used to generate space-filling liquid formula-
tion designs. However, this could have resulted in the selection of points
in areas of little relevance, where it is known no stable formulation can
occur (Bowman and Woods, 2013). Therefore, we developed and used a
weighted space-filling (MaxProQQ) design to guide experiments to re-
gions of phase stability. We do not know a priori which regions of the
formulation design space will be stable. Therefore, we used an active
learning approach to train a predictive phase stability classifier across
the design space, which was used to guide difficult-to-formulate (pre-
dominantly unstable) sub-systems to regions of stability, as part of a
machine learning-guided DoE (ML-DoE).

The remainder of the paper is structured as follows. First, we present
the methodology for the phase-stability-guided MaxProQQ designs,
including details for featurising liquid formulations and training
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Fig. 1. An overview of the liquid formulation workflow driven by an ML-guided DoE method for a (weighted-) space-filling design towards phase stability and

chemical diversity.

predictive stability classifiers. We then show in the Results and Discus-
sion section, that we have been able to optimise formulations towards
phase stability and demonstrate the spread and coverage of our designs.
Finally, we present the performance of ML stability classifiers and
discuss chemical interpretability of the obtained results.

2. Materials and methods
2.1. Definition of the experimental design problem

We used commercial formulation ingredients as received from our
industrial partner, BASF. Materials are fully detailed elsewhere (Chitre
et al., 2024a). Formulations were chosen from a set of 12 surfactants,
four conditioning polymers (P; = Luviquat® Excellence, P, = Dehy-
quart® CC6, P3 = Dehyquart® CC7 Benz, P, = Salcare® Super 7), and
two thickeners (T; = Arlypon® TT, T, = Arlypon® F). Of these, we note
that P; and P, were relatively highly charged cationic polyelectrolytes,
whilst P3 and P4 had a lower charge density. This information will be
used later to interpret the results.

In order to develop a phase stability classifier for a weighted-space
filling design, the formulation samples need to be featurised (Wigh
et al., 2022). Features are individual measurable properties or charac-
teristics of the data used by models to make predictions. In this context,
they serve as inputs representing the relevant aspects of the formulation
samples. Featurisation is the process of transforming raw data into a
structured set of features suitable for use by an ML model and is also
synonymous with molecular representation (Pattanaik and Coley,
2020). Unfortunately, effectively featurising macromolecules, such as
conditioning polymers and thickeners is an open research question, with
many promising recent studies (Kim et al., 2018; Kuenneth and Ram-
prasad, 2023; Lin et al., 2019) but no general solution to date. Mixtures
of such molecules - i.e., formulations, are even more difficult to repre-
sent. Currently, the simplest approach is to use concentrations of poly-
mer and thickener added, and a one-hot encoding of the ingredients, as
shown in a previous study from our group (Cao et al., 2021a).

We chose to split the design space into eight distinct sub-systems for
each possible polymer, thickener combination: (P1, T1), (P1, T2), (P2,

T1) oo (P4, T2). Intuitively, we expect fixed combinations of polymer
and thickener to exhibit some chemically similar behaviours with the

different classes of surfactant molecules (anionic/non-ionic/ampho-
teric/cationic) tested. This step of fixing the polymer and thickener
reduced the DoE problem by two dimensions to a 5-D problem: four
continuous factors for concentrations of the surfactants, polymer and
thickener (Cs1, Cs2, Cp, Cr), and one nominal factor (Spq;r) representing
the choice of a surfactant pair. A binary surfactant mixture, polymer and
thickener is a typical shampoo formulation chassis. Mathematically, the
experimental design vector for a formulation sample (@), could be rep-
resented as shown in Eqn. (1). The continuous factors will be sampled
from concentration ranges pre-agreed with our industrial partner, while
the nominal factor consists of combinations of two surfactant in-
gredients chosen from a set of 12, resulting in 66 possible levels.

@ = [Cs1, Cs2, Cp, Cr, Spar) (@)
. w
with 8.0 < Cs], Csz < 130;’0/0
1.0<Cp < 3.0 Yo
w

1.0 < Cr <5.0 Yo
w

Spair € {(SUS))} : la]: 1’ (3] 12~l7é.]

An important step for space-filling designs is to scale the different
continuous factors to the same range, typically the unit interval, to
ensure that the varying ranges of the factors do not unduly influence the
design. We applied a conversion shown in Eqn. (2), based on the lower
and the upper concentration bounds, as shown above, to convert be-
tween the experimental (¢) and computational (¢') design vectors. Each
design vector represents an individual formulation sample, and vectors
can be combined into an experimental (D) or computational (D") design
matrix of dimension n, equal to the number of samples, as shown in Eqn.
3.

C— Ciis

@ = [Cq. Co. Cp, Cp, Spar] Where G = ———— =
Cius— Ci s

, C. €0, 1]
(2)

D =[py, @5 . @' ©)

In the broader work, it was of interest to characterise the phase
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stability, turbidity, and viscosity of each formulation in the design ma-
trix with methods as detailed in Chitre et al., 2024b. However, for the
purposes of this ML-DoE the sole response variable considered is phase
stability, as it is a pre-requisite to have stable formulations to be able to
measure the other two properties of interest. Phase stability is reported
in Chitre et al., 2024a as a binary result, stable or unstable, characterised
by visual inspection as detailed in Chitre et al., 2024b. Consequently,
there is no statistical confidence to associate with the measurement. The
binary result is used to develop our weighted space-filling designs.

2.2. Featurising surfactants

As formulations are complex mixtures of ingredients, most studies to
date, including prior work of Cao et al. (2023, 2021a) have directly
trained models on the ingredient concentrations used, as presented in
Fig. 2a. This, however, has limited interpretability and cannot be
generalised to ingredients not in the training set. For this work, as there
is no general solution to featurise polymers, we retained one-hot
encoding for the polymers and thickeners, but we were able to featur-
ise surfactants, which we can treat as small molecules. This featurisation
is important as it forms the basis of the inputs for training the ML models
for phase stability, which are used to bias proposed experiments to re-
gions of feasibility, i.e., stability.

There are many methods for featurising small molecules, such as: (i)
string-based representations, e.g., SMILES (Oztiirk et al., 2016; Schwartz
et al., 2013; Vidal et al., 2005), (ii) molecular graphs (Qin et al., 2021;
Yang et al., 2019), and (iii) molecular features from 0-D to 3-D de-
scriptors (Abooali and Soleimani, 2023; Consonni and Todeschini, 2010;
Ghiringhelli et al., 2015; Seddon et al., 2022). This list is not exhaustive.
There are many cheminformatics packages that can enumerate large
numbers of descriptors, which should be feature-engineered down to a
more sensible subset relative to the dataset size available for training
(Bray et al., 2020; Moriwaki et al., 2018; O’Boyle et al., 2011; Yap,
2011). However, many of these featurisations require large training

Computers and Chemical Engineering 195 (2025) 109007

datasets or are not directly interpretable. With formulation design, we
are constrained to generating hundreds, not thousands, of samples, even
with state-of-the-art lab facilities, and so we developed a more chemi-
cally meaningful featurisation based on the surfactant functional groups,
as shown in Fig. 2b. This was hypothesised to improve model perfor-
mance and explainability, as illustrated in the Results and Discussion
section.

A surfactant’s behaviour is primarily governed by its head group and
chain length (Kronberg et al., 2014). For each of the 12 surfactants used
in the study, the unique functional groups (FG) were enumerated (Ertl,
2017) and tallied for each ingredient into a surfactant FG matrix, Sgg. In
Fig. 2a, the data frame presented is the experimental design matrix, D,
rows of formulation samples with ingredient concentrations. Taking the
surfactant ingredient columns from the design matrix gives Ds and
taking the matrix dot product of this with Sgg, as shown by Eqn. (4),
gives the concentration of surfactant functional groups used in each
formulation, ygg, as shown in Fig. 2b. The experimental dataset and Sgg
are summarised elsewhere (Chitre et al., 2024a, 2024b). The main
advantage of our approach is that ML models trained over the surfactant
functional group features can generalise to new surfactants with these
functional groups.

7re = DsSre 4

2.3. Phase stability-guided MaxProQQ designs

Scheme 1 outlines the algorithm for the ML-guided DoE method. The
DoE was conducted offline with all steps programmed in R, except for
step three, which was performed in a Jupyter Notebook (Python). The
output from the DoE was a CSV file readable by an Opentrons liquid
handling robot, which dispensed formulation ingredients. As stated in
Section 2.1, the design matrix is represented in a computational (D) and
an experimental (D) form, with the conversion for an individual sample
from this matrix shown in Eqn. (2). Furthermore, a look-up table of
surfactant pairs was used to equate each of the 66 levels of the Sy

Plantapon Plantapon

a) Texapon Plantapon Plantapon Plantacare Plantacare Dehyton Dehyton Dehyton Dehyton ek Amino Dehyquart  Luviquat
SB3KC ACG 50 LC7 818 2000 MC PK 45 ML AB 30 SCG-L KG-L A-CA Excellence
D
1 6.52 0.00 0.00 0.00 0.00 0.00 0.00 863 0.00 0.00 0.00 0.00 0.98
2 770 0.00 0.00 0.00 0.00 0.00 0.00 8.55 0.00 0.00 0.00 0.00 188
3 12.23 0.00 0.00 0.00 0.00 0.00 0.00 1013 0.00 0.00 0.00 0.00 1.00
4 12.20 0.00 0.00 0.00 0.00 0.00 0.00 13.54 0.00 0.00 0.00 0.00 143
5 871 0.00 0.00 0.00 0.00 0.00 0.00 9.46 0.00 0.00 0.00 0.00 112
6 9.80 0.00 0.00 0.00 0.00 0.00 0.00 8.91 0.00 0.00 0.00 0.00 1.54
7 0.00 0.00 0.00 1.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.53 1.52
8 0.00 0.00 0.00 11.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.79 2.66
9 0.00 0.00 0.00 8.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.93 176
10 0.00 0.00 0.00 8.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n21 2.33
Vs.

B -0 CC(=0) . . (HIC(C) e
) (=0) [Na+] coc coc(c)=0 [0 [HIN(CIC(C)=0 [HIOC(C)=0 [HIOC (neicd CN(C)C (C) [K¢] [CF] (CH2)x P T y

[0-] ©c
1 053 0.46 0.19 0.30 0.32 0.34 0.00 0.08 0.00 0.37 0.00 0.00 0.00 011 024 053 False
2 0.63 0.50 0.23 0.36 0.34 0.34 0.00 0.08 0.00 0.36 0.00 0.00 0.00 018 057 0.67 False
3 1.00 0.73 0.36 0.56 0.47 0.40 0.00 0.10 0.00 0.43 0.00 0.00 0.00 057 0.25 0.37 False
4 1.00 0.80 0.36 0.56 0.54 0.53 0.00 013 0.00 0.57 0.00 0.00 0.00 077 041 0.81 False
5 071 057 0.25 0.40 0.38 0.37 0.00 0.09 0.00 0.40 000 000 0.00 0.30 0.29 0.80 False
6 0.80 0.60 0.29 0.45 0.39 0.35 0.00 0.08 0.00 0.38 0.00 0.00 0.00 034 045 092 False
7 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.43 0.00 0.38 0.00 0.73 062 044 038 True
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.44 0.00 0.47 0.0 0.90 081 0.85 040 True
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.34 0.00 0.48 0.00 0.91 067 0.53 0.54 False
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.32 0.00 045 0.00 0.85 058 0.73 079 False

Fig. 2. A comparison of molecular representations of liquid formulations. Rows represent experiment samples and column headers are feature variables. (a) A direct
representation of samples by their ingredient concentrations; (b) Formulations are represented by calculated surfactant functional group concentrations, plus

polymer and thickener ingredient concentrations as before.
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(0) Generate a large random set of N candidate samples, C’ using MaxPro’s CandPoints|

(1) Generate a random starting design of mnyy; samples, Dipy, using MaxPro’s
CandPoints. Convert this from the computational to experimental design space, Djpit!

(2) Perform the formulation experiments and record the compositions of the prepared
samples, D. Convert this from the experimental to computational design space, D’.

minimum user-defined stability target.

Else:

(3)If x < xT where y is the proportion of stable formulations prepared and y 1 is a

e Train a phase stability classifier on the experimental dataset (D) with the:

1. Surfactant concentrations converted to functional group concentrations.
ii. Polymer and thickener concentrations used as is, with both (i) and (i)
pre-processed with min-max scaling.
iii. Phase stability used as the response, y, to train the classifier.

e Test a variety of machine learning models and select the best performing one to
make in silico predictions for the phase stability of samples in C’.

e Filter C’ by a phase stability criterion (¢) to a restricted candidate set C* which
is a subset of samples with a higher probability of stability. Use this for step 4.

Pass and use C'as C*for step 4.

(4) Use MaxProAugment to suggest ngqq additional experiments (D 44) to augment the
design matrix (D’) by selecting points from C*. Return to step 2 and repeat until
sufficient samples are prepared. Then move onto the next (P, T') sub-system.

Scheme 1. An ML-guided DoE algorithm for a formulation sub-system of a fixed polymer, thickener combination to generate a (weighted-) space-filling design

using MaxProQQ.

factors with the ingredients to be used. A key Cand_to_Dataset function
was written to interconvert between the design matrix as compatible
with the MaxProQQ package (computational, X) and Opentrons robot
(experimental, X). Here ’ denotes the form of a generic matrix
compatible with MaxProQQ.

Each of the computational design matrices (C, Dj;,, D) in Scheme 1
are collections of design vectors, ¢', with five factors as shown in Eqn.
(1). They are generated through two key functions from the MaxPro
package, as detailed in Table 1.

As shown in Scheme 1, the algorithm begins by initialising a candi-
date set, C, which represents all possible experiments. This set is
generated by randomly sampling N = 360,000 points within the design
space. This value of N was chosen to approximate the total number of
combinations of surfactants and concentration choices if the concen-
tration ranges provided in Eqn. (1) are discretised by 0.5 w/w%

Table 1
A summary of key MaxPro functions (Ba and Joseph, 2018) utilised in this work.
Function Description
CandPoints Generates uniform random numbers for each continuous factor
and randomly sampled levels for each nominal factor.
MaxProAugment  Select the best set of design points to augment a given design

matrix by optimising the MaxPro criterion sequentially.

intervals. This was determined to be an appropriate discretisation size
that could be comfortably resolved experimentally on an Opentrons
robot (Chitre et al., 2024b). Alternatively, a grid-based method could
have been employed for a fixed discretisation of the concentration
ranges to generate C. However, random sampling allows for the inclu-
sion of intermediate concentrations, not limited to the 0.5 w/w% in-
tervals. We note that we could accurately determine compositions of the
prepared formulations; however, we could not always accurately
dispense the target amounts specified from our DoE, especially for the
highly viscous formulation ingredients. Therefore, on each iteration of
the DoE, we suggested the next batch of experiments based on the actual,
recorded compositions.

A fixed random seed was used to always generate the same candidate
set, C, independent of the polymer, thickener (P, T) sub-system being
investigated. The DoE method would, therefore, select points from the
same available pool of samples, restricted only according to phase sta-
bility predictions (if required) which were sub-system specific.

We started with an initial design for a fixed sub-system of (P, T),
D)pir» With nyp; number of points, where ny,;; was typically set to 36
samples, corresponding to the maximum weekly throughput of the
specific experimental workflow. Different starting designs, including a
MaxProQQ were possible, and the effect of design initialisation was not
investigated further in this work. We analysed the proportion of stable
formulations, y, in the initial design: if y < yf, these sub-systems were
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defined as “difficult-to-formulate”, in which case we applied a phase-
stability guided DoE strategy, as shown in Fig. 3. This ensured many
experiments would not be wasted without generating any turbidity or
rheology data. Otherwise, we preferred a purely space-filling design for
other sub-systems, as this imposes no restriction, allowing better
modelling of the entire design space. For this study, y = 40 %. This
threshold was selected based on the following initial observations and
judgement: (i) preliminary results for a couple of sub-systems showed
around one-in-three stable formulations, and (ii) if half the samples for a
particular sub-system were stable, this was considered a satisfactory
formulation. Thus, the threshold was selected as some intermediate
value to demonstrate the utility of the weighted part of the algorithm
towards regions of feasibility, i.e., phase stability.

For the difficult-to-formulate sub-systems, we would train a predic-
tive phase stability classifier, using a featurisation of the experimental
data as explained in Section 2.2. Details for how we trained this classifier
are given in the SI. We would then use this classifier to predict the phase
stability of each point in our candidate set, C, and applied a phase
stability cut-off (0 < ¢ <1) to drop any points without a minimum
probability of stability, to generate a restricted candidate set, C". This
phase-stability cut-off would be modified on each iteration of the DoE as
explained in the Results and Discussion section. For the other, more
stable sub-systems, we kept the original candidate set.

Finally, given our current experimental dataset, D, which was con-
verted to a MaxProQQ-compatible design, D', we used MaxProAugment
to select the next batch of experiments from the (restricted) candidate
designs. MaxProAugment performs a greedy search, optimising the
MaxPro criterion by making the locally optimal choice at each stage of
selecting 1, ..., n (n = 36) points, with the goal of finding the global
optimum. In particular, MaxProAugment sequentially evaluates each
candidate point, calculating the MaxProQQ criterion (Eqn. SI 1) for the
current design augmented with that point. The point that minimises the
criterion (or maximises the space-filling property) is added to the design,
forming a new, updated design for the next iteration. This is as opposed
to performing an expensive optimisation to simultaneously calculate
placements of the n best points in the design space. This method gives us
a small trade-off in optimality for substantially increased computational
efficiency, as we wish to be able to generate designs on-the-fly in a high-
dimensional design space for high-throughput experimentation. We
would then prepare and characterise the newly suggested batch of

If stable
%< yt

Perform initial

experiments

“difficult-to-
formulate”

Train ML phase
stability classifier

Filter candidate set
to samples with
p(stable) > ¢

Suggest next
batch of
experiments
based on
collected
formulation
dataset and
candidate set
by optimising
the MaxProQQ
criterion
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experiments and continue in a cycle till we collected a satisfactory
number of samples for our dataset generation efforts, typically, around
100+ samples per sub-system.

3. Results and discussion
3.1. Formulating stable products

The method outlined above was for a particular polymer, thickener
sub-system. This was applied to all eight sub-systems; however, for the
formulations with P, (Dehyquart® CC6) too few formulations were
stable, so we could not train an accurate stability classifier. We prepared
174 samples over two months with this polymer, but <15 % of these
formulations were stable. Since we are not in a truly ‘big data’ domain,
this is too large a class imbalance to train a predictive model. Hence-
forth, we exclude sub-systems (Py, T;) and (P3, T2) from results for
difficult-to-formulate sub-systems, as we could not apply the weighted-
space filling design without a predictive stability classifier. We, there-
fore, had three sub-systems for which our ML-guided DoE was used, as
shown in Fig. 4. For the rest, a purely space-filling MaxProQQ design
was used throughout. We highlight, except for (P4, T1), the difficult-to-
formulate sub-systems were primarily those prepared with the highly
charged cationic polyelectrolytes, P; and P,, because these would often
form coacervates with the anionic surfactants in the used set of in-
gredients. For future work, the limitation of a highly class-imbalanced
(predominantly unstable) dataset for the P, sub-systems could be
overcome by training a phase stability classifier on the other sub-
systems, with transfer learning utilised to make better stability pre-
dictions on the P, sub-systems.

Fig. 4 shows that with the phase stability-guided MaxProQQ designs,
we could tune experiments to stable regions of the design space across
all three sub-systems. The proportion of stable formulations in a batch is
coloured with a hue to represent the phase stability cut-off (¢). This
threshold was progressively increased over each round. Initially, a low
threshold is desired to favour unrestricted exploration of the design
space. As more experimental data becomes available to train a better
stability classifier, we can exploit this model to strongly bias formula-
tions to regions of stability; compare the first and the last points across
all three sub-systems in Fig. 4. Note, for the first point, the percentages of
‘stable in round’ and ‘overall stable’ are equivalent.

Perform new
experiments

Desired no.

of Experiments
experiments complete
performed?

Is system

“difficult-to-
formulate”?

Fig. 3. Flowchart of the design of experiments process. An ML-guided approach is employed for "difficult-to-formulate" (primarily unstable) systems, while a space-

filling method is applied directly for more stable systems.



A. Chitre et al.

O Stable in Round (%) X  Overall Stable (%)

(P1,T1)
100
o 15
=
(] 3
2 50 ®
i ] @ X
25 x X ‘ X
0 T T T T T
(P1,T2)
100 -
= 19
=
L 504 ° X
©
n 2519 x ®
0 T T T T T
(P4,T1)
100
= 15+ @)
a8
) 4
= 50 X
S
n 254X
0 T T T T T
0 1 2 3 4
Round
PE—— : ]
0.2 0.3 0.4 0:5 0. 0.7 0.8

Phase Stability Cut-off Threshold

Fig. 4. The ML-guided DoE was used to bias three predominantly unstable sub-
systems, where a sub-system is a fixed polymer, thickener combination used in
the formulation base. ‘Round’ corresponds to experimental round, step 2 in
Scheme 1. ‘Stable in Round’ refers to the percentage of stable formulations
prepared in a particular round, as opposed to ‘Overall Stable’ which is the
cumulative proportion of stable formulations made. Between experimental
rounds, the phase stability cut-off (¢) was increased to progressively restrict the
design space towards stable predicted regions. Successful application is
demonstrated by an increased proportion of stable formulations across rounds.

The phase stability cut-off is used to tune how the design space is
restricted. A higher threshold limits the design space to only those re-
gions with a greater probability of phase stability predicted from the
classification model. We progressively increased the phase stability cut-
off on each iteration of the design cycle, as seen in Table S1 - S3, such
that we could illustrate exploiting the predictions of the classifier to
increase the proportion of stable samples formulated over each round.
Beyond this aim, the cut-off selection was arbitrary.

The only example from Fig. 4 where the ML-guided DokE fails to in-
crease the stable in a round (%) is after the first round of experiments
with (P1, T1). We go from 29 to 13 % of formulations being stable in
round 1 vs. 2. However, this can be clearly explained as shown by Table
S1 in the SI. Tables S1 - S3 give the full set of phase stability-guided DoE
results for all three sub-systems, complementary to Fig. 4. Initially, we
chose to apply a cut-off as some top x % of experiments. In round one of
(P1, T1), we restricted the candidate set to the top 20 % of stable pre-
dicted experiments; however, this cut-off was equivalent to a 0.29 phase
stability threshold, which would still include a majority of unstable
formulations, as seen in round two. Hence, we switched to only defining
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the phase stability cut-off as a predicted probability of stability between
zero and one, so we could more clearly control the degree of stability
tuning. Additionally, as seen in Table S1, the best classifier at round one
had ROC AUC and F; scores of 0.62 and 0.73, respectively, which cor-
responds to a moderately predictive classifier. As highlighted above, it is
essential to be able to develop a highly predictive classifier, otherwise,
we cannot apply this weighted search strategy effectively. By contrast,
the initial classifiers trained for (P;, T2) and (P4, Tp) are excellent (see
Tables S2 and S3), and so we could successfully guide our difficult-to-
formulate sub-systems to regions of stability in just one or two iterations.

3.2. Design coverage and spread

The other objective of the ML-guided DoE was to optimally space-fill
for future work on developing predictive models over the entire
formulation design space. We have fixed the polymer and thickener for a
particular sub-system and explored all these sub-systems. Therefore, we
look at the spread of surfactants used in Fig. 5. We prepared a total of
384 formulations for the three difficult-to-formulate sub-systems, as
identified earlier, and 438 further samples for the remaining five sub-
systems. The dashed lines in Fig. 5 show the expected number of sam-
ples per surfactant if we had uniformly sampled the ingredients. We
observe that for the purely space-filling designs, our surfactants’ dis-
tribution is very close to this expected value, showing excellent space-
filling properties. By comparison, and as we would expect, we have a
non-uniform distribution for the stability-guided experiments as our
classifier learned that certain surfactant(s) would lead to unstable results
with a particular polymer, thickener, or indeed, another surfactant. For
example, P; and P, are highly charged cationic polyelectrolytes, so
Texapon® SB 3 KC, Plantapon® ACG 50, and Plantapon® LC7, which
are anionic surfactants would often form coacervates with these in-
gredients and, therefore, they are under-sampled for the stability-guided
designs. Following this argument, Dehyquart® A-CA, the only cationic
surfactant in the set, was particularly favoured for the stability-guided
experiments. Despite this, all the ingredients were relatively well
sampled, which was achieved by modifying the phase stability cut-off to
start ‘relaxed’ (low threshold) and successively restricting our experi-
ments to feasible regions of the design space.

Fig. 6 shows coverage of quantitative design variables — ingredient
concentrations (w/w%). As stated in Eqn. (1), we aimed for the sur-
factants to have a concentration distribution between 8 — 13, condi-
tioning polymers 1 — 3, and thickeners 1 — 5, all values in w/w%. We
observe a good distribution of concentrations across all ingredients,
where the median and interquartile ranges (IQR) are given by the
dashed lines on the violin plots in Fig. 6. The shape of a violin plot
represents a probability density function (PDF) with a wider section of
the PDF showing that the value occurs more frequently, and vice versa.
Each violin in Fig. 6 has the same overall area. We can conclude that the
full formulation design space has been represented in the generated
dataset. We only note that for some ingredients, namely the very viscous
ones, we exceeded the suggested concentration bounds for experimental
reasons. This is acceptable and still informative towards developing
property prediction models.

3.3. Phase stability classifiers and chemical interpretability

We now assess in Fig. 7 the quality of the phase stability classifiers
trained over the complete set of experimental data for the three difficult-
to-formulate sub-systems. The receiver operating characteristic (ROC)
curves in Fig. 7 show performances of the classification models at all
different classification thresholds and the area under this curve (ROC
AUC) provides an aggregate measure of the classifier’s performance.
Please see the SI section on evaluating classifier performance for further
information on how to read ROC plots, such as Fig. 7. Additionally, we
have the class-weighted F; scores for the three classifiers. Both metrics
range from O to 1. While what constitutes a good score may be subject-
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Fig. 5. An illustration of the spread of surfactants across the formulations dataset, subdivided by the purely space-filling designs and stability-guided designs for the

difficult-to-formulate sub-systems.

dependent, typically, anything above 0.8 is considered good, and above
0.9 is considered an excellent classifier (Geron, 2019). Given the rela-
tively limited experimental budget and the high dimensionality of this
formulations case study, we consider that the trained stability classifiers
are highly predictive.

Since we have trained strong phase stability classifiers and used a
chemically interpretable representation for the surfactants, we can now
draw reliable scientific insights from the results shown in Fig. 8, illus-
trating feature importances and explanations for the (P;, T;) sub-sys-
tem. Similar results for the (P;, T;) and the (P4, T;) sub-systems are
given in the SI, in Figure S4. The results in Figure S3 show that across all
three sub-systems the best performing stability classifier was a random
forest. Tree-based classifiers have the beneficial property that feature
importances can be computed directly (Breiman, 2001), as shown in
Fig. 8a and Figure S4. These results are computed based on the decrease
in model performance if a particular feature is removed.

Another popular method in the field of ML interpretability is the use
of SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017).
These values show how each feature affects the final prediction
(Lundberg et al., 2020). SHAP is based on the magnitude of feature at-
tributions. Feature importances and SHAP values are different measures,
but it is interesting to note that the order of features in both Figs. 8a and
8b are very similar. In both cases, the concentration of thickener is the
most important factor governing phase stability, with Fig. 8b showing
less thickener is better for preparing stable formulations. These results
are directly interpretable for a chemist or a formulator, as we have
attributed stability (or instability) to surfactant functional groups, or
polymer and thickener concentrations. Furthermore, as shown for an
illustrated sample in Figure S5, SHAP can also provide feature attribu-
tions on a sample-by-sample basis for a deeper investigation of a for-
mulation’s properties. These a posteriori analyses can aid in developing

novel formulated products. Further discussion linking the chemistry of
the functional groups to the phase stability results is out of the scope of
this work and will be treated elsewhere.

3.4. Extension to other design problems

While this work has focused entirely on the context of liquid
formulation design, the problem discussed is generic. The ‘curse of
dimensionality’ from working in high-dimensional design spaces is a
well-known problem in the chemical sciences (Probst and Reymond,
2018; Schrader et al., 2024; Strieth-Kalthoff et al., 2022). Furthermore,
many problems are of a mixed-variable nature, e.g., battery material
optimisation, catalyst design, pharmaceutical development etc. For a
preliminary exploration of complex design spaces, particularly to train
non-parametric ML models, space-filling designs are suitable for
screening experiments, as discussed in the Introduction. The MaxPro
method (in its MaxProQQ form) can generate space-filling designs with
an optimal spread in all subspaces of factors for mixed-variable prob-
lems (Joseph et al., 2020). Here nominal and continuous variables are
considered; however, the method can also handle discrete numeric and
ordinal factors.

The key contribution of this study is combining the concept of a
weighted design with the application of the MaxPro method to bias
designs to feasible regions, which are iteratively predicted based on an
ML model trained in an active learning cycle. Feasibility refers to phase
stability in this work, and there are examples of other types of stability
being of paramount importance for chemical/material development, e.
g., oxidative stability in battery electrolytes (Kasnatscheew et al., 2017);
crystal stability for inorganic material design (Zhu et al., 2024); thermal
stability for thermoelectric materials (Aminorroaya Yamini et al., 2015)
etc. Aside from stability, there are other applications, e.g., the
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Fig. 6. Distribution of formulation ingredient concentrations for the study’s surfactants, conditioning polymers, and thickeners, with target ranges of 8 - 13,1 - 3,
and 1 -5 w/w%, respectively. In each violin plot, the height represents the concentration range, while the width indicates the frequency of observations. Dashed lines
mark the Q;, Q, (median), Qs quartiles. Instances where target ranges are exceeded are due to viscous liquid handling challenges in the experimental protocol.

biocompatibility of drug delivery systems (Kohane and Langer, 2010).
Without biocompatibility, the rest of the properties are irrelevant, as the
drug cannot be safely administered. For such problems, a weighted
space-filling design as presented in this work, can be a useful framework
for the design of experiments.

4. Conclusions
We developed a weighted-space filling design for liquid formulation

based on restricting MaxProQQ designs to stable predicted regions,
trained iteratively within an active learning cycle. The liquid

formulation problem was decomposed into sub-systems defined by fixed
polymer, thickener combinations. Sub-systems yielding fewer than 40 %
stable formulations in an initial experimental round (typically a week’s
experiments) were defined as “difficult-to-formulate” for this study. Out
of eight sub-systems, five were predominantly unstable. For three of
these challenging sub-systems, we successfully trained highly predictive
phase stability classifiers based on a chemically interpretable featur-
isation of surfactant functional group concentrations. These classifiers
helped bias subsequent experiments towards feasible, i.e., stable regions
within the design space. The best models trained on the final datasets for
these sub-systems achieved ROC AUC scores of 0.85, 0.94, and 0.86,
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respectively.

In two other “difficult-to-formulate” sub-systems, both associated
with a specific polymer, a significant imbalance existed between stable
and unstable formulations (< 15 % stable), precluding the development
of a sufficiently predictive model to guide experiments. For these cases,
we suggest leveraging transfer learning from other sub-systems/model
building on the full dataset to enhance predictive capability in the
most challenging cases.

For the remaining sub-systems, a purely space-filling design was
adopted to ensure optimal spread across the design space, as guiding
stability optimisation was unnecessary. We discuss that even for the
weighted designs, good space-filling properties are maintained through
a user-defined phase stability cut-off in the method. This is progressively
increased over iterations to maintain a balance between initially
exploring the complete design space and later narrowing the sampling to
feasible regions. The satisfactory coverage of the stability-guided de-
signs is evidenced by each ingredient being sampled to at least 50 % of
its expected frequency from uniform sampling. At the same time, the
model learns which are unfavourable ingredient interactions for
formulating stable products and under-samples these purposefully.

Overall, all the selected ingredients were tested and explored within
the complete range of target concentrations specified by our industrial
partner. The presented approach drove the collection of a dataset of over

10

800 formulations, including nearly 300 stable samples for which addi-
tional turbidity and viscosity characterisation was performed, as
detailed in the published dataset, elsewhere. The presented methodol-
ogy has been effective in a high-dimensional, mixed-variable design
space where there is a principal property of interest and as such can be
applied to other design problems with these characteristics in the
chemical/material sciences.
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