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A B S T R A C T

Liquid formulation design involves using a relatively limited experimental budget to search a high-dimensional 
space, owing to the combinatorial selection of ingredients and their concentrations from a larger subset of 
available ingredients. This work investigates alternative shampoo formulations. A space-filling design is desired 
for screening relatively unexplored formulation chemistries. One of the few computationally efficient solutions 
for this mixed nominal-continuous design of experiments problem is the adoption of maximum projection designs 
with quantitative and qualitative factors (MaxProQQ). However, such purely space-filling designs can select 
experiments in infeasible regions of the design space. Here, stable products are considered feasible. We develop 
and apply weighted-space filling designs, where predictive phase stability classifiers are trained for difficult-to- 
formulate (predominantly unstable) sub-systems, to guide these experiments to regions of feasibility, whilst 
simultaneously optimising for chemical diversity by building on MaxProQQ. This approach is extendable to other 
mixed-variable design problems, particularly those with sequential design objectives.

1. Introduction

Liquid formulations are complex multi-component mixtures where 
the ingredients have been selected, processed, and combined in a spe
cific way to obtain well-defined functions (Conte et al., 2011). Liquid 
formulation design involves both quantitative and qualitative factors, 
with factors being controlled independent variables in the experiment. 
In this study, we address a mixed nominal-continuous experimental 
design problem, where the nominal factors are ingredient choices, and 
concentration selection represents the continuous factors. Typically, 
these formulated products, which are produced across several industries 
(e.g., consumer care, agrochemical, pharmaceutical; Bagajewicz et al., 
2011; Bernardo and Saraiva, 2005; Gani, 2004; Narayanan et al., 2021; 
Taifouris et al., 2020), are developed through trial and error by spe
cialists with extensive experience in the given domain. Industry seeks a 
more data-driven and predictive methodology to develop formulated 
products, particularly, as we wish to formulate novel products, either for 
enhanced performance and functionality (Gani and Ng, 2015; Martín 
and Martínez, 2013) or environmental reasons (Jessop et al., 2015; 
Kelly, 2023).

This work forms part of a broader study on machine learning for 
liquid formulation design where we aimed to collect a dataset for 
training predictive surrogate models for a set of industrially important 
property targets in this space: phase stability, turbidity, and viscosity. 
The experimental work and collected dataset are published separately 
(Chitre et al., 2024b). Here we focus specifically on the design of ex
periments (DoE) problem. Key aspects of this were as follows: (i) limited 
prior knowledge or models for the chemical space explored; (ii) a 
high-dimensional, mixed variable design space; (iii) a sequential design 
problem. Each of these is addressed in turn.

Formulation chassis (core ingredients) have remained relatively 
unchanged in personal care products such as shampoo for two or more 
decades. Within the broader study, we investigated a range of new 
surfactant ingredients in response to regulatory and sustainability 
pressures (Chitre et al., 2024b), therefore, we had limited a priori 
knowledge or models available for our formulation system. Had such 
knowledge been available, it could have been used to define a 
model-based experimental scheme which, for example, may have 
selected experiments in regions of predicted nonlinearities (Huang et al., 
2019) and been integrated within a model-based design of experiments 

* Corresponding author.
E-mail address: aal35@cam.ac.uk (A.A. Lapkin). 

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

https://doi.org/10.1016/j.compchemeng.2025.109007
Received 6 August 2024; Received in revised form 15 January 2025; Accepted 17 January 2025  

https://orcid.org/0000-0002-9670-6862
https://orcid.org/0000-0002-9670-6862
https://orcid.org/0000-0003-0607-5882
https://orcid.org/0000-0003-0607-5882
https://orcid.org/0000-0001-7648-429X
https://orcid.org/0000-0001-7648-429X
https://orcid.org/0000-0001-7621-0889
https://orcid.org/0000-0001-7621-0889
mailto:aal35@cam.ac.uk
www.sciencedirect.com/science/journal/00981354
https://www.elsevier.com/locate/compchemeng
https://doi.org/10.1016/j.compchemeng.2025.109007
https://doi.org/10.1016/j.compchemeng.2025.109007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2025.109007&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Chemical Engineering 195 (2025) 109007

2

(MBDoE) framework (Galvanin et al., 2012, 2007). Although we expect 
the response surface to be non-linear due to the complex ingredient 
interactions which are typical in liquid-formulated products, we do not 
know a priori where these non-linearities will be in the exploration of 
new chemical moieties.

Our goal was to generate a dataset of the most diverse set of for
mulations because we aimed to train representative property (phase 
stability, viscosity, turbidity) prediction models across the entire chem
ical design space, as defined by the ingredients and concentration ranges 
selected with our industrial partner. Given the anticipated complexity 
and limited knowledge at the start of the experimental campaign, we 
intended to use flexible non-parametric methods for property predic
tion. Contrast this to parametric models of a fixed functional form, 
which would be useful in later stages of product development, i.e., when 
a suitable form of the model is known. For non-parametric models, 
space-filling designs improve the smoothing of model predictions. 
Space-filling ensures the experimental design points, representing 
various combinations of ingredient choices and concentrations are 
spread as evenly as possible.

Our initial approach considered using a recently developed “bridge 
DoE” for liquid formulation design (Cao et al., 2023); bridge design 
refers to a combination of a parametric model-based and space-filling 
component. In this earlier study, a parametric method was viable as a 
simpler design space with only 10 ingredient combinations, unlike the 
500+ in this work, was used. Furthermore, the bridge DoE method scales 
poorly to higher-dimensional problems as the model-based component 
relies on expensive Monte Carlo integration and the space-filling opti
misation relies on an inefficient comparison between all possible pairs of 
rows in a generated design matrix.

Since formulation design is a combinatorial problem with different 
types of factors, we often have a very large design space to explore, yet 
we have a limited experimental budget. This is generally true for 
chemical (engineering) problems as experiments are time-, resource-, 
and labour-intensive, but particularly for formulation design, as devel
oping a fully automated, high-throughput liquid formulation workflow 
is very challenging (Cao et al., 2021b; Chitre et al., 2024b). Therefore, 
we needed an efficient design of experiments (DoE) methodology. A 
mixed nominal-continuous design problem, as faced in this study, is 
particularly challenging for space filling because for the nominal factors, 
it is difficult to interpret the distance between points. Either the value of 
a nominal factor is the same between two experiments, or it is not – there 
is a lack of quantification of how different the two experiments are, 
unlike with continuous, discrete numeric or even ordinal factors. 
Furthermore, the mixed variable design space can become prohibitively 
expensive to explore using traditional methods, such as (fractional) 
factorial designs, as the number of factors increases because the design 
space grows exponentially due to the combinatorial nature of ingredient 
selection.

With the increasing adoption of ML-driven methods in the chemical 
sciences, a general consensus has formed that a well-distributed training 
set will lead to better predictions across the entirety of the chemical 
space of interest (Ahneman et al., 2018; Glavatskikh et al., 2019; 
Schrader et al., 2024; Strieth-Kalthoff et al., 2022). It is only practically 
possible to cover a limited fraction of the design space experimentally 
and a space-filling design ensures optimal spread or coverage such that 
when a prediction is made for a new formulation, a representative 
experimental sample is nearby (Johnson et al., 1990; Joseph, 2016; 
McKay et al., 1979). For brevity, we will focus the discussion on Latin 
hypercube designs (LHD) as these have been best extended to a 
mixed-variable design space. An LHD attempts to address the curse of 
dimensionality in space-filling by ensuring by construction uniform 
coverage in each one-dimensional projection of the design. Other types 
of space-filling approaches are also available such as Sobol sampling 
(Sobol, 1967), maximum entropy (Shewry and Wynn, 1987) or mini
mum energy (Joseph et al., 2015) designs. A comprehensive review is 
presented elsewhere (Garud et al., 2017).

In practice, the Maximin LHD (Mm LHD; Morris and Mitchell, 1995) 
is the most commonly used space-filling design due to its simplicity and 
availability in software packages. However, LHDs are only available for 
continuous factors. Therefore, the sliced LHD (SLHD) was introduced 
(Qian, 2012), which is a type of LHD that can be further partitioned into 
t smaller LHDs called slices where t is the number of all possible com
binations of the qualitative factors. Despite a more computationally 
efficient construction of the SLHD proposed by Ba et al., 2015, the 
method remains limited for formulation design with numerous ingre
dient choices, as the number of required slices, t, increases exponentially 
with the number of qualitative factors. As an alternative, faster method, 
marginally coupled designs (MCDs) were proposed by Deng et al., 2015
which combine orthogonal arrays (OAs) for the qualitative factors with 
LHDs for the quantitative factors. The trade-off, however, is sub-optimal 
space-filling in higher dimensions as only certain groups of factors are 
optimised independently and this is an active research area (Zhou et al., 
2021).

Maximin (S)LHDs have optimal space-filling properties in the full 
p-dimensions of a design problem and provide uniform 1-D projections. 
However, their space-filling properties can be poor in lower-dimensional 
projections (from 2 to p − 1 dimensions), which can be relevant to 
formulation design. Commercial formulations contain many in
gredients, some of which may not have an active effect on a particular 
property of interest, e.g., viscosity, in which case we are interested in the 
lower dimensional subspaces. In this reduced space, (S)LHDs may no 
longer ensure adequate space-filling properties, which is crucial for 
training ML models.

To address the limitation of (S)LHD only accommodating a small 
number of nominal factors and the space-filling limitations of MCD, 
Joseph et al. (2020) extended the Maximum Projection (MaxPro) design 
criterion for continuous variables, introduced by Joseph et al. (2015b), 
to accommodate continuous, nominal, discrete numeric, and ordinal 
types of factors in one criterion (MaxProQQ). These authors demon
strated the performance advantages, especially in space-filling re
quirements, of the MaxPro designs over alternative space-filling 
approaches (particularly MCD and LHD). A brief discussion of the 
MaxProQQ criterion is included as Supplementary Eqn. 1 in the SI along 
with a brief discussion of the algorithm used to optimise the design. This 
criterion ensures good projections in all the subspaces of the factors 
while having a computational cost comparable to the widely used Mm 
LHD criterion (Morris and Mitchell, 1995). For more details on the 
MaxProQQ design construction process, readers are directed to (Joseph 
et al., 2020) and the related R package (Ba and Joseph, 2018).

Returning to the specific formulation design problem, we illustrate 
the liquid formulation workflow used in Fig. 1. The formulations, a 
mixture of surfactants, polymer, and thickener in a base of water, are 
prepared and then characterised for their phase stability and, if stable, 
their turbidity, and viscosity. Unstable formulations are not charac
terised further as they have non-uniform turbidity/viscosity across the 
different phases of the formulation. This therefore results in a sequential 
or hierarchical design problem: having a stable formulation is a pre- 
requisite to the collection of turbidity or viscosity data. MaxProQQ 
could have been directly used to generate space-filling liquid formula
tion designs. However, this could have resulted in the selection of points 
in areas of little relevance, where it is known no stable formulation can 
occur (Bowman and Woods, 2013). Therefore, we developed and used a 
weighted space-filling (MaxProQQ) design to guide experiments to re
gions of phase stability. We do not know a priori which regions of the 
formulation design space will be stable. Therefore, we used an active 
learning approach to train a predictive phase stability classifier across 
the design space, which was used to guide difficult-to-formulate (pre
dominantly unstable) sub-systems to regions of stability, as part of a 
machine learning-guided DoE (ML-DoE).

The remainder of the paper is structured as follows. First, we present 
the methodology for the phase-stability-guided MaxProQQ designs, 
including details for featurising liquid formulations and training 
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predictive stability classifiers. We then show in the Results and Discus
sion section, that we have been able to optimise formulations towards 
phase stability and demonstrate the spread and coverage of our designs. 
Finally, we present the performance of ML stability classifiers and 
discuss chemical interpretability of the obtained results.

2. Materials and methods

2.1. Definition of the experimental design problem

We used commercial formulation ingredients as received from our 
industrial partner, BASF. Materials are fully detailed elsewhere (Chitre 
et al., 2024a). Formulations were chosen from a set of 12 surfactants, 
four conditioning polymers (P1 = Luviquat® Excellence, P2 = Dehy
quart® CC6, P3 = Dehyquart® CC7 Benz, P4 = Salcare® Super 7), and 
two thickeners (T1 = Arlypon® TT, T2 = Arlypon® F). Of these, we note 
that P1 and P2 were relatively highly charged cationic polyelectrolytes, 
whilst P3 and P4 had a lower charge density. This information will be 
used later to interpret the results.

In order to develop a phase stability classifier for a weighted-space 
filling design, the formulation samples need to be featurised (Wigh 
et al., 2022). Features are individual measurable properties or charac
teristics of the data used by models to make predictions. In this context, 
they serve as inputs representing the relevant aspects of the formulation 
samples. Featurisation is the process of transforming raw data into a 
structured set of features suitable for use by an ML model and is also 
synonymous with molecular representation (Pattanaik and Coley, 
2020). Unfortunately, effectively featurising macromolecules, such as 
conditioning polymers and thickeners is an open research question, with 
many promising recent studies (Kim et al., 2018; Kuenneth and Ram
prasad, 2023; Lin et al., 2019) but no general solution to date. Mixtures 
of such molecules – i.e., formulations, are even more difficult to repre
sent. Currently, the simplest approach is to use concentrations of poly
mer and thickener added, and a one-hot encoding of the ingredients, as 
shown in a previous study from our group (Cao et al., 2021a).

We chose to split the design space into eight distinct sub-systems for 
each possible polymer, thickener combination: (P1, T1), (P1, T2), (P2,

T1) ...… (P4, T2). Intuitively, we expect fixed combinations of polymer 
and thickener to exhibit some chemically similar behaviours with the 

different classes of surfactant molecules (anionic/non-ionic/ampho
teric/cationic) tested. This step of fixing the polymer and thickener 
reduced the DoE problem by two dimensions to a 5-D problem: four 
continuous factors for concentrations of the surfactants, polymer and 
thickener (CS1, CS2, CP, CT), and one nominal factor (Spair) representing 
the choice of a surfactant pair. A binary surfactant mixture, polymer and 
thickener is a typical shampoo formulation chassis. Mathematically, the 
experimental design vector for a formulation sample (φ), could be rep
resented as shown in Eqn. (1). The continuous factors will be sampled 
from concentration ranges pre-agreed with our industrial partner, while 
the nominal factor consists of combinations of two surfactant in
gredients chosen from a set of 12, resulting in 66 possible levels. 

φ =
[
CS1, CS2, CP, CT , Spair

]
(1) 

with 8.0 ≤ CS1,CS2 ≤ 13.0
w
w

%

1.0 ≤ CP ≤ 3.0
w
w

%

1.0 ≤ CT ≤ 5.0
w
w

%

Spair ∈
{(

Si, Sj
)}

: i, j = 1, …, 12; i ∕= j 

An important step for space-filling designs is to scale the different 
continuous factors to the same range, typically the unit interval, to 
ensure that the varying ranges of the factors do not unduly influence the 
design. We applied a conversion shown in Eqn. (2), based on the lower 
and the upper concentration bounds, as shown above, to convert be
tween the experimental (φ) and computational (φʹ) design vectors. Each 
design vector represents an individual formulation sample, and vectors 
can be combined into an experimental (D) or computational (Dʹ) design 
matrix of dimension n, equal to the number of samples, as shown in Eqn. 
(3). 

φʹ =
[
Cʹ

S1, Cʹ
S2, Cʹ

P, Cʹ
T , Spair

]
where Cʹ

i =
Ci − Ci, LB

Ci, UB − Ci, LB
, Cʹ

i ∈ [0, 1]

(2) 

Dʹ = [φʹ
1, φʹ

2, …, φʹ
n]

T (3) 

In the broader work, it was of interest to characterise the phase 

Fig. 1. An overview of the liquid formulation workflow driven by an ML-guided DoE method for a (weighted-) space-filling design towards phase stability and 
chemical diversity.
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stability, turbidity, and viscosity of each formulation in the design ma
trix with methods as detailed in Chitre et al., 2024b. However, for the 
purposes of this ML-DoE the sole response variable considered is phase 
stability, as it is a pre-requisite to have stable formulations to be able to 
measure the other two properties of interest. Phase stability is reported 
in Chitre et al., 2024a as a binary result, stable or unstable, characterised 
by visual inspection as detailed in Chitre et al., 2024b. Consequently, 
there is no statistical confidence to associate with the measurement. The 
binary result is used to develop our weighted space-filling designs.

2.2. Featurising surfactants

As formulations are complex mixtures of ingredients, most studies to 
date, including prior work of Cao et al. (2023, 2021a) have directly 
trained models on the ingredient concentrations used, as presented in 
Fig. 2a. This, however, has limited interpretability and cannot be 
generalised to ingredients not in the training set. For this work, as there 
is no general solution to featurise polymers, we retained one-hot 
encoding for the polymers and thickeners, but we were able to featur
ise surfactants, which we can treat as small molecules. This featurisation 
is important as it forms the basis of the inputs for training the ML models 
for phase stability, which are used to bias proposed experiments to re
gions of feasibility, i.e., stability.

There are many methods for featurising small molecules, such as: (i) 
string-based representations, e.g., SMILES (Öztürk et al., 2016; Schwartz 
et al., 2013; Vidal et al., 2005), (ii) molecular graphs (Qin et al., 2021; 
Yang et al., 2019), and (iii) molecular features from 0-D to 3-D de
scriptors (Abooali and Soleimani, 2023; Consonni and Todeschini, 2010; 
Ghiringhelli et al., 2015; Seddon et al., 2022). This list is not exhaustive. 
There are many cheminformatics packages that can enumerate large 
numbers of descriptors, which should be feature-engineered down to a 
more sensible subset relative to the dataset size available for training 
(Bray et al., 2020; Moriwaki et al., 2018; O’Boyle et al., 2011; Yap, 
2011). However, many of these featurisations require large training 

datasets or are not directly interpretable. With formulation design, we 
are constrained to generating hundreds, not thousands, of samples, even 
with state-of-the-art lab facilities, and so we developed a more chemi
cally meaningful featurisation based on the surfactant functional groups, 
as shown in Fig. 2b. This was hypothesised to improve model perfor
mance and explainability, as illustrated in the Results and Discussion 
section.

A surfactant’s behaviour is primarily governed by its head group and 
chain length (Kronberg et al., 2014). For each of the 12 surfactants used 
in the study, the unique functional groups (FG) were enumerated (Ertl, 
2017) and tallied for each ingredient into a surfactant FG matrix, SFG. In 
Fig. 2a, the data frame presented is the experimental design matrix, D,

rows of formulation samples with ingredient concentrations. Taking the 
surfactant ingredient columns from the design matrix gives DS and 
taking the matrix dot product of this with SFG, as shown by Eqn. (4), 
gives the concentration of surfactant functional groups used in each 
formulation, γFG, as shown in Fig. 2b. The experimental dataset and SFG 
are summarised elsewhere (Chitre et al., 2024a, 2024b). The main 
advantage of our approach is that ML models trained over the surfactant 
functional group features can generalise to new surfactants with these 
functional groups. 

γFG = DS⋅SFG (4) 

2.3. Phase stability-guided MaxProQQ designs

Scheme 1 outlines the algorithm for the ML-guided DoE method. The 
DoE was conducted offline with all steps programmed in R, except for 
step three, which was performed in a Jupyter Notebook (Python). The 
output from the DoE was a CSV file readable by an Opentrons liquid 
handling robot, which dispensed formulation ingredients. As stated in 
Section 2.1, the design matrix is represented in a computational (Dʹ) and 
an experimental (D) form, with the conversion for an individual sample 
from this matrix shown in Eqn. (2). Furthermore, a look-up table of 
surfactant pairs was used to equate each of the 66 levels of the Spair 

Fig. 2. A comparison of molecular representations of liquid formulations. Rows represent experiment samples and column headers are feature variables. (a) A direct 
representation of samples by their ingredient concentrations; (b) Formulations are represented by calculated surfactant functional group concentrations, plus 
polymer and thickener ingredient concentrations as before.
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factors with the ingredients to be used. A key Cand_to_Dataset function 
was written to interconvert between the design matrix as compatible 
with the MaxProQQ package (computational, Xʹ) and Opentrons robot 
(experimental, X). Here ’ denotes the form of a generic matrix 
compatible with MaxProQQ.

Each of the computational design matrices (Cʹ, Dʹ
init, D

ʹ) in Scheme 1
are collections of design vectors, φʹ, with five factors as shown in Eqn. 
(1). They are generated through two key functions from the MaxPro 
package, as detailed in Table 1.

As shown in Scheme 1, the algorithm begins by initialising a candi
date set, Cʹ, which represents all possible experiments. This set is 
generated by randomly sampling N = 360,000 points within the design 
space. This value of N was chosen to approximate the total number of 
combinations of surfactants and concentration choices if the concen
tration ranges provided in Eqn. (1) are discretised by 0.5 w/w% 

intervals. This was determined to be an appropriate discretisation size 
that could be comfortably resolved experimentally on an Opentrons 
robot (Chitre et al., 2024b). Alternatively, a grid-based method could 
have been employed for a fixed discretisation of the concentration 
ranges to generate Cʹ. However, random sampling allows for the inclu
sion of intermediate concentrations, not limited to the 0.5 w/w% in
tervals. We note that we could accurately determine compositions of the 
prepared formulations; however, we could not always accurately 
dispense the target amounts specified from our DoE, especially for the 
highly viscous formulation ingredients. Therefore, on each iteration of 
the DoE, we suggested the next batch of experiments based on the actual, 
recorded compositions.

A fixed random seed was used to always generate the same candidate 
set, Cʹ, independent of the polymer, thickener (P, T) sub-system being 
investigated. The DoE method would, therefore, select points from the 
same available pool of samples, restricted only according to phase sta
bility predictions (if required) which were sub-system specific.

We started with an initial design for a fixed sub-system of (P, T), 
Dʹ

init, with ninit number of points, where ninit was typically set to 36 
samples, corresponding to the maximum weekly throughput of the 
specific experimental workflow. Different starting designs, including a 
MaxProQQ were possible, and the effect of design initialisation was not 
investigated further in this work. We analysed the proportion of stable 
formulations, χ, in the initial design: if χ < χ†, these sub-systems were 

Scheme 1. An ML-guided DoE algorithm for a formulation sub-system of a fixed polymer, thickener combination to generate a (weighted-) space-filling design 
using MaxProQQ.

Table 1 
A summary of key MaxPro functions (Ba and Joseph, 2018) utilised in this work.

Function Description

CandPoints Generates uniform random numbers for each continuous factor 
and randomly sampled levels for each nominal factor.

MaxProAugment Select the best set of design points to augment a given design 
matrix by optimising the MaxPro criterion sequentially.
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defined as “difficult-to-formulate”, in which case we applied a phase- 
stability guided DoE strategy, as shown in Fig. 3. This ensured many 
experiments would not be wasted without generating any turbidity or 
rheology data. Otherwise, we preferred a purely space-filling design for 
other sub-systems, as this imposes no restriction, allowing better 
modelling of the entire design space. For this study, χ† = 40 %. This 
threshold was selected based on the following initial observations and 
judgement: (i) preliminary results for a couple of sub-systems showed 
around one-in-three stable formulations, and (ii) if half the samples for a 
particular sub-system were stable, this was considered a satisfactory 
formulation. Thus, the threshold was selected as some intermediate 
value to demonstrate the utility of the weighted part of the algorithm 
towards regions of feasibility, i.e., phase stability.

For the difficult-to-formulate sub-systems, we would train a predic
tive phase stability classifier, using a featurisation of the experimental 
data as explained in Section 2.2. Details for how we trained this classifier 
are given in the SI. We would then use this classifier to predict the phase 
stability of each point in our candidate set, Cʹ, and applied a phase 
stability cut-off (0 ≤ ϕ ≤ 1) to drop any points without a minimum 
probability of stability, to generate a restricted candidate set, C*. This 
phase-stability cut-off would be modified on each iteration of the DoE as 
explained in the Results and Discussion section. For the other, more 
stable sub-systems, we kept the original candidate set.

Finally, given our current experimental dataset, D, which was con
verted to a MaxProQQ-compatible design, Dʹ, we used MaxProAugment 
to select the next batch of experiments from the (restricted) candidate 
designs. MaxProAugment performs a greedy search, optimising the 
MaxPro criterion by making the locally optimal choice at each stage of 
selecting 1, …, n (n = 36) points, with the goal of finding the global 
optimum. In particular, MaxProAugment sequentially evaluates each 
candidate point, calculating the MaxProQQ criterion (Eqn. SI 1) for the 
current design augmented with that point. The point that minimises the 
criterion (or maximises the space-filling property) is added to the design, 
forming a new, updated design for the next iteration. This is as opposed 
to performing an expensive optimisation to simultaneously calculate 
placements of the n best points in the design space. This method gives us 
a small trade-off in optimality for substantially increased computational 
efficiency, as we wish to be able to generate designs on-the-fly in a high- 
dimensional design space for high-throughput experimentation. We 
would then prepare and characterise the newly suggested batch of 

experiments and continue in a cycle till we collected a satisfactory 
number of samples for our dataset generation efforts, typically, around 
100+ samples per sub-system.

3. Results and discussion

3.1. Formulating stable products

The method outlined above was for a particular polymer, thickener 
sub-system. This was applied to all eight sub-systems; however, for the 
formulations with P2 (Dehyquart® CC6) too few formulations were 
stable, so we could not train an accurate stability classifier. We prepared 
174 samples over two months with this polymer, but <15 % of these 
formulations were stable. Since we are not in a truly ‘big data’ domain, 
this is too large a class imbalance to train a predictive model. Hence
forth, we exclude sub-systems (P2, T1) and (P2, T2) from results for 
difficult-to-formulate sub-systems, as we could not apply the weighted- 
space filling design without a predictive stability classifier. We, there
fore, had three sub-systems for which our ML-guided DoE was used, as 
shown in Fig. 4. For the rest, a purely space-filling MaxProQQ design 
was used throughout. We highlight, except for (P4, T1), the difficult-to- 
formulate sub-systems were primarily those prepared with the highly 
charged cationic polyelectrolytes, P1 and P2, because these would often 
form coacervates with the anionic surfactants in the used set of in
gredients. For future work, the limitation of a highly class-imbalanced 
(predominantly unstable) dataset for the P2 sub-systems could be 
overcome by training a phase stability classifier on the other sub- 
systems, with transfer learning utilised to make better stability pre
dictions on the P2 sub-systems.

Fig. 4 shows that with the phase stability-guided MaxProQQ designs, 
we could tune experiments to stable regions of the design space across 
all three sub-systems. The proportion of stable formulations in a batch is 
coloured with a hue to represent the phase stability cut-off (ϕ). This 
threshold was progressively increased over each round. Initially, a low 
threshold is desired to favour unrestricted exploration of the design 
space. As more experimental data becomes available to train a better 
stability classifier, we can exploit this model to strongly bias formula
tions to regions of stability; compare the first and the last points across 
all three sub-systems in Fig. 4. Note, for the first point, the percentages of 
‘stable in round’ and ‘overall stable’ are equivalent.

Fig. 3. Flowchart of the design of experiments process. An ML-guided approach is employed for "difficult-to-formulate" (primarily unstable) systems, while a space- 
filling method is applied directly for more stable systems.
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The phase stability cut-off is used to tune how the design space is 
restricted. A higher threshold limits the design space to only those re
gions with a greater probability of phase stability predicted from the 
classification model. We progressively increased the phase stability cut- 
off on each iteration of the design cycle, as seen in Table S1 – S3, such 
that we could illustrate exploiting the predictions of the classifier to 
increase the proportion of stable samples formulated over each round. 
Beyond this aim, the cut-off selection was arbitrary.

The only example from Fig. 4 where the ML-guided DoE fails to in
crease the stable in a round (%) is after the first round of experiments 
with (P1, T1). We go from 29 to 13 % of formulations being stable in 
round 1 vs. 2. However, this can be clearly explained as shown by Table 
S1 in the SI. Tables S1 - S3 give the full set of phase stability-guided DoE 
results for all three sub-systems, complementary to Fig. 4. Initially, we 
chose to apply a cut-off as some top x % of experiments. In round one of 
(P1, T1), we restricted the candidate set to the top 20 % of stable pre
dicted experiments; however, this cut-off was equivalent to a 0.29 phase 
stability threshold, which would still include a majority of unstable 
formulations, as seen in round two. Hence, we switched to only defining 

the phase stability cut-off as a predicted probability of stability between 
zero and one, so we could more clearly control the degree of stability 
tuning. Additionally, as seen in Table S1, the best classifier at round one 
had ROC AUC and F1 scores of 0.62 and 0.73, respectively, which cor
responds to a moderately predictive classifier. As highlighted above, it is 
essential to be able to develop a highly predictive classifier, otherwise, 
we cannot apply this weighted search strategy effectively. By contrast, 
the initial classifiers trained for (P1, T2) and (P4, T1) are excellent (see 
Tables S2 and S3), and so we could successfully guide our difficult-to- 
formulate sub-systems to regions of stability in just one or two iterations.

3.2. Design coverage and spread

The other objective of the ML-guided DoE was to optimally space-fill 
for future work on developing predictive models over the entire 
formulation design space. We have fixed the polymer and thickener for a 
particular sub-system and explored all these sub-systems. Therefore, we 
look at the spread of surfactants used in Fig. 5. We prepared a total of 
384 formulations for the three difficult-to-formulate sub-systems, as 
identified earlier, and 438 further samples for the remaining five sub- 
systems. The dashed lines in Fig. 5 show the expected number of sam
ples per surfactant if we had uniformly sampled the ingredients. We 
observe that for the purely space-filling designs, our surfactants’ dis
tribution is very close to this expected value, showing excellent space- 
filling properties. By comparison, and as we would expect, we have a 
non-uniform distribution for the stability-guided experiments as our 
classifier learned that certain surfactant(s) would lead to unstable results 
with a particular polymer, thickener, or indeed, another surfactant. For 
example, P1 and P2 are highly charged cationic polyelectrolytes, so 
Texapon® SB 3 KC, Plantapon® ACG 50, and Plantapon® LC7, which 
are anionic surfactants would often form coacervates with these in
gredients and, therefore, they are under-sampled for the stability-guided 
designs. Following this argument, Dehyquart® A-CA, the only cationic 
surfactant in the set, was particularly favoured for the stability-guided 
experiments. Despite this, all the ingredients were relatively well 
sampled, which was achieved by modifying the phase stability cut-off to 
start ‘relaxed’ (low threshold) and successively restricting our experi
ments to feasible regions of the design space.

Fig. 6 shows coverage of quantitative design variables – ingredient 
concentrations (w/w%). As stated in Eqn. (1), we aimed for the sur
factants to have a concentration distribution between 8 – 13, condi
tioning polymers 1 – 3, and thickeners 1 – 5, all values in w/w%. We 
observe a good distribution of concentrations across all ingredients, 
where the median and interquartile ranges (IQR) are given by the 
dashed lines on the violin plots in Fig. 6. The shape of a violin plot 
represents a probability density function (PDF) with a wider section of 
the PDF showing that the value occurs more frequently, and vice versa. 
Each violin in Fig. 6 has the same overall area. We can conclude that the 
full formulation design space has been represented in the generated 
dataset. We only note that for some ingredients, namely the very viscous 
ones, we exceeded the suggested concentration bounds for experimental 
reasons. This is acceptable and still informative towards developing 
property prediction models.

3.3. Phase stability classifiers and chemical interpretability

We now assess in Fig. 7 the quality of the phase stability classifiers 
trained over the complete set of experimental data for the three difficult- 
to-formulate sub-systems. The receiver operating characteristic (ROC) 
curves in Fig. 7 show performances of the classification models at all 
different classification thresholds and the area under this curve (ROC 
AUC) provides an aggregate measure of the classifier’s performance. 
Please see the SI section on evaluating classifier performance for further 
information on how to read ROC plots, such as Fig. 7. Additionally, we 
have the class-weighted F1 scores for the three classifiers. Both metrics 
range from 0 to 1. While what constitutes a good score may be subject- 

Fig. 4. The ML-guided DoE was used to bias three predominantly unstable sub- 
systems, where a sub-system is a fixed polymer, thickener combination used in 
the formulation base. ‘Round’ corresponds to experimental round, step 2 in 
Scheme 1. ‘Stable in Round’ refers to the percentage of stable formulations 
prepared in a particular round, as opposed to ‘Overall Stable’ which is the 
cumulative proportion of stable formulations made. Between experimental 
rounds, the phase stability cut-off (ϕ) was increased to progressively restrict the 
design space towards stable predicted regions. Successful application is 
demonstrated by an increased proportion of stable formulations across rounds.
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dependent, typically, anything above 0.8 is considered good, and above 
0.9 is considered an excellent classifier (Geron, 2019). Given the rela
tively limited experimental budget and the high dimensionality of this 
formulations case study, we consider that the trained stability classifiers 
are highly predictive.

Since we have trained strong phase stability classifiers and used a 
chemically interpretable representation for the surfactants, we can now 
draw reliable scientific insights from the results shown in Fig. 8, illus
trating feature importances and explanations for the (P1, T1) sub-sys
tem. Similar results for the (P1, T2) and the (P4, T1) sub-systems are 
given in the SI, in Figure S4. The results in Figure S3 show that across all 
three sub-systems the best performing stability classifier was a random 
forest. Tree-based classifiers have the beneficial property that feature 
importances can be computed directly (Breiman, 2001), as shown in 
Fig. 8a and Figure S4. These results are computed based on the decrease 
in model performance if a particular feature is removed.

Another popular method in the field of ML interpretability is the use 
of SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017). 
These values show how each feature affects the final prediction 
(Lundberg et al., 2020). SHAP is based on the magnitude of feature at
tributions. Feature importances and SHAP values are different measures, 
but it is interesting to note that the order of features in both Figs. 8a and 
8b are very similar. In both cases, the concentration of thickener is the 
most important factor governing phase stability, with Fig. 8b showing 
less thickener is better for preparing stable formulations. These results 
are directly interpretable for a chemist or a formulator, as we have 
attributed stability (or instability) to surfactant functional groups, or 
polymer and thickener concentrations. Furthermore, as shown for an 
illustrated sample in Figure S5, SHAP can also provide feature attribu
tions on a sample-by-sample basis for a deeper investigation of a for
mulation’s properties. These a posteriori analyses can aid in developing 

novel formulated products. Further discussion linking the chemistry of 
the functional groups to the phase stability results is out of the scope of 
this work and will be treated elsewhere.

3.4. Extension to other design problems

While this work has focused entirely on the context of liquid 
formulation design, the problem discussed is generic. The ‘curse of 
dimensionality’ from working in high-dimensional design spaces is a 
well-known problem in the chemical sciences (Probst and Reymond, 
2018; Schrader et al., 2024; Strieth-Kalthoff et al., 2022). Furthermore, 
many problems are of a mixed-variable nature, e.g., battery material 
optimisation, catalyst design, pharmaceutical development etc. For a 
preliminary exploration of complex design spaces, particularly to train 
non-parametric ML models, space-filling designs are suitable for 
screening experiments, as discussed in the Introduction. The MaxPro 
method (in its MaxProQQ form) can generate space-filling designs with 
an optimal spread in all subspaces of factors for mixed-variable prob
lems (Joseph et al., 2020). Here nominal and continuous variables are 
considered; however, the method can also handle discrete numeric and 
ordinal factors.

The key contribution of this study is combining the concept of a 
weighted design with the application of the MaxPro method to bias 
designs to feasible regions, which are iteratively predicted based on an 
ML model trained in an active learning cycle. Feasibility refers to phase 
stability in this work, and there are examples of other types of stability 
being of paramount importance for chemical/material development, e. 
g., oxidative stability in battery electrolytes (Kasnatscheew et al., 2017); 
crystal stability for inorganic material design (Zhu et al., 2024); thermal 
stability for thermoelectric materials (Aminorroaya Yamini et al., 2015) 
etc. Aside from stability, there are other applications, e.g., the 

Fig. 5. An illustration of the spread of surfactants across the formulations dataset, subdivided by the purely space-filling designs and stability-guided designs for the 
difficult-to-formulate sub-systems.
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biocompatibility of drug delivery systems (Kohane and Langer, 2010). 
Without biocompatibility, the rest of the properties are irrelevant, as the 
drug cannot be safely administered. For such problems, a weighted 
space-filling design as presented in this work, can be a useful framework 
for the design of experiments.

4. Conclusions

We developed a weighted-space filling design for liquid formulation 
based on restricting MaxProQQ designs to stable predicted regions, 
trained iteratively within an active learning cycle. The liquid 

formulation problem was decomposed into sub-systems defined by fixed 
polymer, thickener combinations. Sub-systems yielding fewer than 40 % 
stable formulations in an initial experimental round (typically a week’s 
experiments) were defined as “difficult-to-formulate” for this study. Out 
of eight sub-systems, five were predominantly unstable. For three of 
these challenging sub-systems, we successfully trained highly predictive 
phase stability classifiers based on a chemically interpretable featur
isation of surfactant functional group concentrations. These classifiers 
helped bias subsequent experiments towards feasible, i.e., stable regions 
within the design space. The best models trained on the final datasets for 
these sub-systems achieved ROC AUC scores of 0.85, 0.94, and 0.86, 

Fig. 6. Distribution of formulation ingredient concentrations for the study’s surfactants, conditioning polymers, and thickeners, with target ranges of 8 – 13, 1 – 3, 
and 1 – 5 w/w%, respectively. In each violin plot, the height represents the concentration range, while the width indicates the frequency of observations. Dashed lines 
mark the Q1, Q2 (median), Q3 quartiles. Instances where target ranges are exceeded are due to viscous liquid handling challenges in the experimental protocol.
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respectively.
In two other “difficult-to-formulate” sub-systems, both associated 

with a specific polymer, a significant imbalance existed between stable 
and unstable formulations (< 15 % stable), precluding the development 
of a sufficiently predictive model to guide experiments. For these cases, 
we suggest leveraging transfer learning from other sub-systems/model 
building on the full dataset to enhance predictive capability in the 
most challenging cases.

For the remaining sub-systems, a purely space-filling design was 
adopted to ensure optimal spread across the design space, as guiding 
stability optimisation was unnecessary. We discuss that even for the 
weighted designs, good space-filling properties are maintained through 
a user-defined phase stability cut-off in the method. This is progressively 
increased over iterations to maintain a balance between initially 
exploring the complete design space and later narrowing the sampling to 
feasible regions. The satisfactory coverage of the stability-guided de
signs is evidenced by each ingredient being sampled to at least 50 % of 
its expected frequency from uniform sampling. At the same time, the 
model learns which are unfavourable ingredient interactions for 
formulating stable products and under-samples these purposefully.

Overall, all the selected ingredients were tested and explored within 
the complete range of target concentrations specified by our industrial 
partner. The presented approach drove the collection of a dataset of over 

800 formulations, including nearly 300 stable samples for which addi
tional turbidity and viscosity characterisation was performed, as 
detailed in the published dataset, elsewhere. The presented methodol
ogy has been effective in a high-dimensional, mixed-variable design 
space where there is a principal property of interest and as such can be 
applied to other design problems with these characteristics in the 
chemical/material sciences.
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Egebjerg, T., Butté, A., Sokolov, M., Lorenzen, N., Arosio, P., 2021. Design of 
biopharmaceutical formulations accelerated by machine learning. Mol. 
Pharmaceutics 18, 3843–3853. https://doi.org/10.1021/acs. 
molpharmaceut.1c00469.

O’Boyle, N.M., Banck, M., James, C., Vandermeersch, T., Hutchnison, G., 2011. Open 
Babel: an open chemical toolbox. J Cheminform 3, 14.

A. Chitre et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.compchemeng.2025.109007
https://doi.org/10.1038/s41598-023-40466-1
https://doi.org/10.1126/science.aar5169
https://doi.org/10.1039/C5TC02210J
https://doi.org/10.1039/C5TC02210J
https://doi.org/10.1080/00401706.2014.957867
https://doi.org/10.1002/aic.12242
https://doi.org/10.1002/aic.12242
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0007
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0007
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0007
https://doi.org/10.1057/jos.2013.8
https://doi.org/10.1186/s13321-020-00442-7
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0011
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0011
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0011
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0012
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0012
https://doi.org/10.1016/j.compchemeng.2022.108083
https://doi.org/10.1016/j.compchemeng.2022.108083
http://doi.org/10.6084/m9.figshare.c.7132624.v1
https://doi.org/10.1038/s41597-024-03573-w
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0016
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0016
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0016
https://doi.org/10.1002/aic.12458
https://doi.org/10.5705/ss.2013.388
https://doi.org/10.1186/s13321-017-0225-z
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0020
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0020
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0020
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0021
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0021
https://doi.org/10.1016/j.compchemeng.2004.08.010
https://doi.org/10.1016/j.compchemeng.2015.04.013
https://doi.org/10.1016/j.compchemeng.2015.04.013
https://doi.org/10.1016/j.compchemeng.2017.05.010
https://doi.org/10.1016/j.compchemeng.2017.05.010
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0025
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0025
https://doi.org/10.1103/PhysRevLett.114.105503
https://doi.org/10.1186/s13321-019-0391-2
https://doi.org/10.1111/rssc.12313
https://doi.org/10.1039/C4GC02261K
https://doi.org/10.1016/0378-3758(90)90122-B
https://doi.org/10.1016/0378-3758(90)90122-B
https://doi.org/10.1080/08982112.2015.1100447
https://doi.org/10.1080/00401706.2014.881749
https://doi.org/10.1080/00401706.2014.881749
https://doi.org/10.1080/00224065.2019.1611351
https://doi.org/10.1080/00224065.2019.1611351
https://doi.org/10.1039/C7CP03072J
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0035
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0035
https://doi.org/10.1021/acs.jpcc.8b02913
https://doi.org/10.1039/C0SC00203H
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0038
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0038
https://doi.org/10.1038/s41467-023-39868-6
https://doi.org/10.1038/s41467-023-39868-6
https://doi.org/10.1021/acscentsci.9b00476
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1016/j.cherd.2012.08.012
https://doi.org/10.1016/j.cherd.2012.08.012
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0044
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0044
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0044
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0045
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0045
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0046
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0046
https://doi.org/10.1021/acs.molpharmaceut.1c00469
https://doi.org/10.1021/acs.molpharmaceut.1c00469
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0048
http://refhub.elsevier.com/S0098-1354(25)00011-0/sbref0048


Computers and Chemical Engineering 195 (2025) 109007

12
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