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1 Introduction

More than 25 years after the first concrete manifestation of the gauge/gravity duality in
string theory, the most understood and widely explored examples are still limited to QFTs
with conformal symmetry dual to AdS backgrounds of string and M-theory. The strongly
interacting gauge theories arising on the worldvolume of Dp-branes are in general non-
conformal and, as suggested long ago in [1], should belong to the broader set of gauge/gravity
dualities in string theory. Unfortunately, even in the presence of maximal supersymmetry,
there are few quantitative tools available to study holography in these “non-conformal” brane
setups both in QFT and in string theory and supergravity. This work is a modest attempt
to improve the status quo and build on [2, 3] to understand better holography for spherical
Dp-branes with a particular focus on the case of D0O-branes.

The premise of [2, 3] is to employ the fact that maximally supersymmetric Yang-Mills
theory (MSYM) can be defined on S? for d < 7 while preserving the maximal number of 16
real supercharges [4]. This in turn suggests that there should be supersymmetric Euclidean



Dp-brane configurations, d = p+ 1, which realise this MSYM theory on their S¢ worldvolume.
While, it is not immediately clear how to describe these spherical D-branes in open string
theory, it was shown in [2, 3] how to construct supersymmetric type II supergravity solutions
that describe the backreaction of a large number IV of such coincident spherical branes. These
supergravity solutions are asymptotic to the backgrounds in [1] describing the near horizon
limit of coincident D-branes with flat worldvolumes and can be studied holographically
employing the detailed holographic renormalisation procedure developed in [5]. On the field
theory side of the duality, placing the MSYM theory on S? is advantageous since one can
use the supersymmetric localisation results of [6, 7] to explicitly calculate some observables
in the theory in the strong coupling regime relevant to supergravity. As shown in [3], this
program can be brought to bear, allowing one to calculate the S¢ free energy and the vacuum
expectation value (vev) of the %—BPS Wilson loop wrapping the equator of S¢ at large N
and large 't Hooft coupling A using the supersymmetric localisation matrix model of [6, 7].
For integer values of d in the range 2 < d < 7 these QFT results agree exactly with the
holographic analysis performed using the spherical brane solutions in [2]. As emphasised
recently in [8], see also [9-11] for previous work, the non-conformal MSYM theories on the
worldvolumes of D-branes enjoy a scaling similarity in the large IV and strong coupling regime
which is dictated by the properties of type II supergravity. Indeed, the supersymmetric
localisation and holography results of [2, 3] explicitly exhibit this scaling similarity in the
context of spherical branes.

Given these developments, it is natural to wonder whether similar calculations can be
performed for the two types of coincident D-branes not analysed in [2, 3], namely DO- and
D(—1)-branes. A primary goal of this work is to shed light on this question for circular
DO-branes.! From the perspective of MSYM theory on S¢ DO-branes lead to several subtleties.
The construction of the MSYM Lagrangian on S¢ of radius R necessitates the addition
of new interaction terms proportional to 1/R that are induced by the curvature on the
sphere [4]. These interactions break the so0(1,9 — d) R-symmetry of the theory on flat R to
its su(1,1) x so(7 — d) subalgebra, while preserving 16 supercharges. On the other hand, if
one is interested in the d = 1 MSYM theory one may just proceed by reducing the 10d N =1
SYM theory on T9 and then find the BFSS matrix quantum mechanics Lagrangian with
50(9) R-symmetry [12]. Indeed, as we discuss in detail in section 2, there appear to be several
inequivalent ways to obtain a Euclidean 1d MSYM theory. One is the torus dimensional
reduction that leads to the Euclidean BFSS theory with so(1,8) R-symmetry. Another one
is via analytic continuation of the Euclidean Lagrangian of the MSYM theory on Hy to
d = 1 which leads to an action with su(2) x so(1,5) R-symmetry as described by Blau in [4].
Yet another approach, which we will focus on in this work, is to analytically continue the
MSYM Lagrangian on S? to d = 1 and obtain a Lagrangian with su(1,1) x s0(6) R-symmetry.
These last two procedures appear to be, perhaps not surprisingly, closely related to the BMN
deformation of the BFSS matrix quantum mechanics which preserves the maximal number
of 16 supercharges and has su(2) x s0(6) R-symmetry [13].

The Euclidean BMN matrix quantum mechanics with su(1,1) x s0(6) R-symmetry
obtained by analytic continuation of the MSYM theory on S% to d = 1 appears to have

!Understanding D(—1)-branes with our methods appear to be more subtle and will only be discussed briefly.



different physics from its well-known Lorentzian avatar. For instance, we find that this
maximally supersymmetric model has no supersymmetric vacua with condensing scalars.
This is very different from the rich collection of supersymmetric vacua of the Lorentzian
BMN model [13] which can be interpreted in terms of polarised D-branes [14, 15] and lead
to an equally rich set of supergravity solutions as explained in [16]. The Euclidean model
on S' however has the benefit that it can be studied using supersymmetric localisation by
analytically continuing the S¢ results of [3, 6, 7] to d = 1. As shown in [3] the supersymmetric
localisation results simplify in the large N limit and when the dimensionless 't Hooft coupling
A= g%MN R*~4 is large one can find explicit expressions for the S? free energy and the vev
of the 1-BPS circular Wilson loop. Using these explicit results and taking d = 1 + € leads

2
to the following singular expressions in the ¢ — 0 limit
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behaviour in A, see [8], they clearly need to be regularised. This can be done in an ad
hoc manner by rescaling the 't Hooft coupling, or by considering combinations of the two
observables that are finite. For instance, the following combination
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is finite in the ¢ — 0 limit and provides a convenient target for a holographic analysis in

(1.2)

the supergravity limit.

Indeed, turning to supergravity, we find that the singular behaviour of the QFT ob-
servables (1.1) is mirrored by subtle singularities in the supergravity description of circular
DO-branes. To exhibit this we adopt the approach followed in [2] and study a consistent
truncation of 2d maximal gauged supergravity with su(1,1) x s0(6) symmetry, which in turn
is a consistent truncation of type IIA supergravity, that consists of the metric and three
scalar fields. Using this simple supergravity model we construct families of supersymmetric
solutions that could serve as candidate descriptions of the circular DO-branes. Unfortunately,
all these solutions are singular and their physical interpretation is unclear.? To remedy this
impasse we propose an analytic continuation of this 3-scalar gauged supergravity model
to general values of the dimension d. This formal analytic continuation is implemented
directly at the level of the supergravity BPS equations that can be solved numerically for
general values of d and leads to cigar-like gravitational backgrounds that are smooth in the
interior and should be viewed as the supergravity dual to the MSYM theory on S%. This
supergravity “dimensional regularisation” proves very useful since it regulates the singularity
encountered for d = 1 and allows for the holographic calculation of physical observables.
To this end we follow [2, 3] and implement the holographic renormalisation procedure for
non-conformal branes introduced in [5] to calculate the supergravity on-shell action and the
regularised action of a fundamental string wrapping the equator of the boundary S¢. These
two calculations are in excellent agreement with the QFT supersymmetric localisation results
on S$¢ and in the d — 1 limit reproduce the finite result in (1.2).

?We were informed by Juan Maldacena and Jorge Santos that they have independently constructed some
of these solutions in unpublished work.



Our setup appears to be related to the BMN matrix quantum mechanics but we fail to
establish a very precise connection to this well-studied model. For instance, we show that the
11d uplift of our 2d singular supergravity solutions is compatible with the general form of
supersymmetric solutions with 16 supercharges and su(1, 1) x s0(6) global symmetry discussed
in [16], but since the solution is singular, its 11d interpretation is unclear. Supersymmetric
localisation has been applied to the BMN matrix quantum mechanics in [17-19] but the
resulting path integral was not analysed at large N and it is not clear how to relate these
results to our matrix model arising via analytic continuation in dimension. Recently the
supersymmetric index of the BMN quantum mechanics was calculated in [20] and since this
is an S partition function one may expect a relation to our results. The logarithm of the
index in [20] appears to scale differently with N in the large N limit when compared to
the N? scaling of the free energy in (1.1) and suggests that either the two quantities are
distinct, or they are related by an additional Casimir energy type prefactor not included
in the analysis of [20]. We also note that the BMN matrix quantum mechanics on S* has
been studied extensively with various approaches ranging from lattice QFT to holography
and supergravity, see [21-33] for a selection of relevant references. These studies however
focus on the thermal physics of the model which should be different from the supersymmetric
setup on S' that we consider here.

We start our presentation in the next section with a review on the MSYM theory on S¢
and the matrix model obtained by supersymmetric localisation. We also discuss the analytic
continuation in dimension and the relation to the BMN matrix quantum mechanics in the
d — 1 limit. In section 3 we present the supergravity solutions dual to the MSYM theory
on S% and discuss the singularity arising in the d — 1 limit. The holographic analysis of
these supergravity solutions is presented in section 4 where we show that the holographic
results are in agreement with the localisation calculations. In section 5 we review the thermal
D-brane supergravity solutions and study them from the perspective of analytic continuation
in dimensions. We conclude with a short discussion and outlook in section 6. Various
technical details of the relevant supergravity theories and the spherical brane solutions are
relegated to the two appendices.

2 MSYM on S% and the BMN matrix quantum mechanics

In the seminal paper [4], Blau constructed the Lagrangian of supersymmetric Yang-Mills
theory (SYM) in any dimension d < 7 on curved spaces. In particular, this construction,
and more precisely the Family B in [4], can be applied to study the Euclidean MSYM on
the round sphere S¢ or hyperbolic space H?. In this section we will briefly review Blau’s
construction and the vacuum structure of the corresponding MSYM theories. We then discuss
how to apply supersymmetric localisation to MSYM on S and then turn to a discussion to
the relation of this construction in the d — 1 limit to the mass deformed BFSS model [12],
i.e. the BMN matrix quantum mechanics [13].

2.1 Euclidean MSYM on a sphere

The simplest way to obtain the action of the Euclidean maximally supersymmetric Yang-Mills
theory in flat space is to start with the N'= 1 SYM in ten dimensions and consider its



dimensional reduction. In ten dimensions the vector multiplet consists of a vector A,; with
M =0,1,...,9 and a Majorana-Weyl fermion ¥.> We are interested in a supersymmetric
non-Abelian gauge theory and thus both of these fields transform in the adjoint of the
gauge group which for concreteness we consider to be SU(N). The Lagrangian of the
ten-dimensional theory on RM is

1 1 -
Lsym = ———Tr <FMNFMN — xw\p) , (2.1)
9vym 2
where gy is the gauge coupling and we use Hermitian generators of the gauge group such
that Fayy = Oy AN —ON Ay —i[An, An] and Dy ¥ = 9y —i[Aps, ¥]. The Lagrangian (2.1)
is invariant under the following supersymmetry transformations

Ay = el — UT e, U = Fe, (2.2)

where € is a constant Majorana-Weyl supersymmetry transformation parameter. In ten
dimensions, Majorana-Weyl spinors have 16 independent components and so the N'=1 SYM
theory in ten dimensions is maximally supersymmetric.

The dimensional reduction of the ten-dimensional theory to d < 10 dimensions gives rise
to an MSYM theory in lower dimensions. The Lagrangian is obtained by simply assuming
that the fields do not depend on 10 — d of the coordinates. To write the Lagrangian in d
dimensions we split up the gauge field into Ay = (A, ¢r) where A, is interpreted as a
d-dimensional gauge field and ¢ are 10 —d scalar fields. Likewise, we split up the 10d fermion
into multiple lower-dimensional fermions but we will not present the details of this procedure
since it depends on the value of d. With this at hand, we can expand the Lagrangian (2.1)
in terms of the new fields and obtain the MSYM theory in d dimensions. From now on we
will keep this dimensional reduction procedure in mind but will continue using (2.1) as a
proxy for the lower-dimensional MSYM Lagrangian in flat space.

In addition to the Poincaré invariance in d-dimensions, the d-dimensional MSYM La-
grangian preserves supersymmetry and s0(10 — d) R-symmetry* under which the scalars
transform in the fundamental representation and the fermions transform according to the
branching of the 16 representation of so(1,9) into so(1,d — 1) x s0(10 — d). An important
subtlety arises if one wishes to consider the d-dimensional MSYM theory in Euclidean sig-
nature, which can be understood from its 10d avatar. In order to obtain the Euclidean
theory in d < 10 dimensions we must perform a formal reduction of the 10d theory along
the time direction. This leads to the fact that the R-symmetry of the reduced theory is
50(1,9 — d) which is non-compact, and one of the scalars, which we will denote by ¢, has
the wrong sign kinetic term. This seems to be an unavoidable feature of the d-dimensional
Euclidean MSYM which can be traced to the fact that there is no Euclidean MSYM theory

in ten (or higher) dimensions.”

3We will suppress all spinor indices in the formulae below.

4The d-dimensional supersymmetry transformation can be derived by performing the dimensional reduction
of the 10d transformations in (2.2).

5The minimal spinor in ten Euclidean dimensions has 32 real components and cannot be used to build a
SYM theory without including gravity.



We now turn to the main focus of this paper which is Euclidean MSYM on the round
sphere. As explained in [4] it is possible to write a modified SYM Lagrangian which preserves
all 16 supercharges in d < 7 dimensions. The full Lagrangian reads [4]

(d—4)
QQ%MR

s T [(d = 2)610" + (d — 4)ga0”] +

g%,MR2 Tr [\I/F(HQ\I’ + 81¢0[¢1, ¢2ﬂ .

(2.3)
Here Lgym denotes the original MSYM Lagrangian (2.2) with the flat space metric replaced

ESd = ['SYM —

with the round metric on S¢ with radius R. We use slightly different notation and conventions
from the ones in [4]: we have reinstate the gauge coupling gym, use a different notation
for the radius of S%, namely Qtpere = (2R)_1, and work with Hermitian generators of the
gauge algebra as opposed to the anti-Hermitian convention in [4]. The latter introduces an
additional factor of i in the cubic scalar coupling, see for instance (3.20) of [4]. The index
I1=0,1,...,9—d goes over all scalar fields, while the index a = 0, 1, 2 singles out three of the
scalars which acquire a non-conformal mass-term and a cubic coupling. The existence of this
SYM Lagrangian only for d < 7 can be traced to the fact that this cubic coupling requires
three different scalars. In addition, in order to preserve supersymmetry the fermions acquire
a mass term. It is important to note that these mass terms are not s0(1,9 — d) invariant but
preserve only the su(1,1) x 50(7 — d) subalgebra.® Finally, note that when the scalar indices a
or I are raised this has to be done with the Minkowski metric which in our convention has a
—1 in the 00 component. Importantly, the value d = 4 is special since the cubic coupling and
the non-conformal scalar mass term vanish. Indeed, for d = 4 the MSYM theory is conformal
and since S$* is conformally flat one simply needs to add the ¢;¢! conformal mass term for
the six scalars in order to preserve full superconformal invariance.

A closely related MSYM theory to the one presented above can be defined on Riemannian
manifolds of constant negative curvature, i.e. H?, see (3.20) of [4]. In this case the MSYM
Lagrangian takes the form

(d—4)
295 R

Loza = Loy + ———=3Tr [(d— 276" + (d — 4)6,6"] - Tr [T 1050 + 8ichn [ 62, 3]
gyuR

(2.4)
where the index a runs over 1,2,3 which does not include the scalar ¢g with negative kinetic
term. The MSYM theories on S¢ and H? have important subtle differences. Crucially, the
R-symmetry is su(1, 1) x s0(7 —d) for the former and su(2) x so(1,6 —d) for the latter. Finally
we remark that the Lorentzian MSYM theory can be placed on manifolds of constant negative
curvature, i.e. AdS, preserving 16 supercharges. Formally the Lagrangian is identical to (2.4)
except that the index I only runs over spacelike scalars with positive sign kinetic term. This
Lorentzian theory exists in d < 7 dimensions and has R-symmetry su(2) x so(7 — d), while

the Euclidean theory on H¢ exists only for d < 6.

SNote that the Lie algebras su(2) ~ so0(3) and su(1,1) ~ so(1,2) are different real forms of the complex Lie
algebra s[(2, C). Let the generators of sl(2, C) be t, with a = 1,2, 3, then the s[(2, C) Lie bracket is given by

[tll7 tb] = i€abe to.

When choosing a real forms su(2) or su(1, 1), the commutation relation above are unchanged. The only
difference is that for su(1,1) the indices are raised with the Killing form ¢®® = diag(—1, 1, 1) while for su(2)
one should use the identity matrix.



2.2 Supersymmetric vacua

We now turn to a discussion of the classical supersymmetric vacua of the MSYM theories
presented above. We hasten to add that there is no clear notion of a Hamiltonian for an
Euclidean QFT on S¢ and thus no clear notion of a vacuum state. Nevertheless, we will
refer to a supersymmetric solution of the classical equations of motion as a supersymmetric
vacuum. To find such supersymmetric vacua we need to impose that the supersymmetry
variation of the fermions vanish. The Lagrangian (2.3) is invariant under the supersymmetry
transformation [4]

- 2
§Ap = &y — UT e, 00 = Je + ﬁ(qﬁjf‘l +(d = 4)¢aT"" ) Toze, (2.5)
where € is a conformal Killing spinor on S¢. A supersymmetric field configuration satisfies
0¥ = ¥ = 0 which implies

d—3
A,u =0, d’l;éa =0, [Qbaa ¢b] = Tieabcgbc . (2'6)

One can show that this supersymmetric field configuration also solves the equations of motion.
If we rescale the scalars as

¢a = ta, (27)

we find that to solve the last equation in (2.6) t, must furnish a representation of su(1,1).7
This may naively suggest that we have a collection of non-trivial supersymmetric vacua.
However, if the gauge group is SU(V) the scalars ¢, are in the adjoint representation and thus
t, are Hermitian NV x N matrices. This in turn implies that they cannot furnish a non-trivial
representation of su(1,1). We are therefore led to conclude that for MSYM on S? the only
supersymmetric vacuum is the trivial one, i.e. ¢, = 0. This is in line with the common
expectation that supersymmetric QFTs on S¢ have a trivial vacuum moduli space since the
curvature of S¢ lifts any vacuum degeneracy that may be present for the theory on R,
The supersymmetric vacuum equations on H¢ and AdS, are structurally very similar to
the ones on S¢ with an important difference. Due to the different signs in the interaction
terms in the Lagrangian (2.4) one finds that the scalars ¢; 2 3 must furnish a representation
of su(2), see [4]. This leads to a number of non-trivial vacua with non-vanishing scalar field
vevs. This type of vacuum equation for adjoint scalars in supersymmetric QFT is a familiar
predicament from the physics the 4d N' = 1* SYM theory [34, 35] and from the BMN matrix
quantum mechanics [13, 16]. To be more explicit, since the scalars ¢, transform in the
adjoint representation of the gauge group which we take to be SU(N) the t, in (2.7) must
form an N-dimensional representation of su(2). Any such representation can be decomposed
as a direct sum of irreducible representations, and is labelled by a partition of N such
that N =5 D kp, where kp counts the number of times the irreducible representation of
dimension D appears. In all but one of these vacua the scalars ¢, are non-zero and thus
the gauge group is spontaneously broken. It will be very interesting to understand further

"Clearly d = 3 is a special case for which any set of commuting matrices for ¢, will lead to a supersymmetric
vacuum solution.



the structure of these vacua for MSYM on H? and their potential realisation as polarised
“hyperbolic” Dp-branes due to the Myers effect, see [14, 35].

The discussion above is formally valid for general values of d and points to a very drastic
difference in the low-energy physics of the MSYM theory on S% and HY. This may seem
somewhat surprising if we analytically continue to d = 1 and especially to d = 0 where these
two manifolds are either flat or simply the same. We attribute this stark difference to the
structure of the R-symmetry algebra of the theories on S? and H? under which the scalars
¢, transform differently. From now on, when we analytically continue to d =0 or d =1
we will assume that we do so by starting with the theory on S and thus we will have only
a single supersymmetric vacuum with ¢, = 0.

2.3 Supersymmetric localisation on the sphere

In [6, 7] it was shown that supersymmetric localisation can be used to reduce the path integral
of the MSYM theory on S¢ defined by the Lagrangian in (2.3) to a Hermitian matrix model.
Introducing the dimensionless matrix ¢ = R¢p and the dimensionless 't Hooft coupling

A= guNR™, (2.8)

the partition function reduces to its saddle point expansion around the localising locus:

A2 NV 4
Z = /[da] exp ( — fd%ﬁ“ J2> Z11o0p Zinstantons » (2.9)

where the integral ranges over the eigenvalues of 0. Here we have defined the volume of
the unit d-sphere,

o (d+1)/2

Z1 100p gives the contribution of one-loop fluctuations around the localising locus and Zipstantons

(2.10)

gives the contributions of subleading instanton saddles. In the large N limit, the contribution
of instantons can be ignored and the partition function is dominated by the leading supersym-
metric locus which has A, = 0. Despite this simplification, we are still left with a complicated
integral over the matrix . The large N limit allows to perform yet another saddle point
expansion, where the dominant contribution to the integral can be obtained by solving

AT NV y_40; = Z G(oi — 0j), (2.11)
J#i
with o; the eigenvalues of the N x N matrix o and the kernel G takes the form [7]
iG(o) I'(d-3+io) TI'(d—3—io) I'(io) I'(—io)

(4 —d) [(1+ic)  I(1—io) T@A—-d+io) T(d—d—io)’

(2.12)

The equation (2.11) is easier to analyse in terms of an almost continuous eigenvalue distribution
p defined as

p(0) = 380 ), (2.13)



which allows to transform the equation (2.11) into an integral equation for the eigenvalue
distribution p(o).

In the strong coupling limit, A > 1, of interest for holographic applications, the eigenvalues
o are well separated and one can approximate G by its large argument expression. In this
regime, and for 3 < d < 6, the eigenvalue density can be expressed as [3]

_ Vi
P= 36— d)

5—d

(Bi—0")7" (

bfd)ﬁfd 2\

- , 2.14
27 Vai2oVs 4Vrg (2:14)

where we have used (2.10) to write some of the I'-functions in terms of sphere volumes.

Equipped with this solution one can proceed to compute the sphere free energy of the MSYM

theory as well as the vacuum expectation value of the %—BPS Wilson loop in the fundamental

representation of the gauge group to leading order in N and the large coupling A

TN2Vy_ - —

The scaling of these quantities with the 't Hooft coupling A is Fy ~ N 2)\6 and log(W) ~ =
which is in line with the supergravity scaling similarity arguments discussed in [8]. It should
be noted that the general analysis presented here is only valid for 3 < d < 6. In [3], further
analysis was performed for the integer dimensions d = 3,6,7 and it was demonstrated
that (2.15) also holds in these cases.® The result in (2.15) was further corroborated by
deriving it using holography and the spherical brane solutions in supergravity [2, 3].

The supersymmetric localisation results in (2.15) are derived rigorously in integer di-
mensions. Given their final form however, it is very tempting to treat the dimension d as
a real parameter and consider (2.15) to be valid for general values of d. Indeed, as we will
show below, holography supports this idea and allows for the derivation of (2.15) by using an
analytic continuation of a simple supergravity model for the range 1 < d < 4.

In principle the matrix model (2.9) can be used to study subleading corrections to the
large N and large A expressions in (2.15). It turns out that the subleading corrections in
powers of A are calculationally more accessible. They can be obtained by solving the saddle
point equation (2.11) for the eigenvalue density p either exactly or in a series expansion for
large \. Exact solutions exist for d = 3,4,5 dimensions, see [3, 37] for a discussion, and some
recent progress has been made for d = 7 [38]. It would be very interesting to understand
further these perturbative corrections or even the full analytic solution for general d. Using
holography, these results will shed light on the structure of the o/ and gs corrections to
string theory in certain RR backgrounds.

2.4 Relation to the BMN matrix quantum mechanics

The BMN matrix quantum mechanics is a Lorentzian theory obtained by adding an su(2) x
50(6) invariant set of interaction terms to the BFSS model while preserving all 16 super-
charges [13]. Interestingly, if we analytically continue the MSYM Lagrangian on AdS, in (2.4)

8We remark that the holographic limit for d = 7 is not at large A and one has to renormalise the coupling
appropriately. We refer to [3, 36] for more details.



to d = 1 we obtain precisely the Lagrangian of the BMN model where the BMN mass p
and the AdS scale R are related as, see equation (5.2) in [13],

n=- (2.16)

As emphasised in section 2.2 the BMN model has a rich set of supersymmetric vacua
corresponding to various polarised brane that have a precise supergravity description as
explained in [16]. Here, we are however interested in taking the d — 1 limit of the MSYM
theory on S¢. This leads to a Euclidean Lagrangian that is closely related but distinct from
the BMN one, see (2.3). In particular, the R-symmetry is su(1,1) x s0(6) and there are no
non-trivial supersymmetric vacua if the gauge group is SU(N). We will refer to this model
as Euclidean BMN quantum mechanics on S?.

The S? supersymmetric localisation results in section 2.3 can be analytically continued
to d = 1 to find some of the physical observables in the Euclidean BMN quantum mechanics.
Taking the d — 1 limit in the matrix model defined by (2.9) and (2.12) is somewhat subtle
and should be done carefully since various quantities vanish or diverge in this limit. The
saddle point equation (2.11) for the eigenvalues o; takes the form

3cothmo
(62 +4)(c2+1)’

Nai:)\ZG(ai—Uj), G(o) =—
j#i

(2.17)

where we have incorporated the numerical factors on the left-hand side of (2.11) into the
kernel G(o) to obtain a regular d — 1 limit. At weak coupling, eigenvalue separation should
be small, and the kernel can be approximated by its small o expansion G(o) — —3/(4nc). In
this limit the eigenvalue density is given by the Wigner semi-circle distribution. We are more
interested in the large ¢ expansion of G which corresponds to the strong coupling behaviour
of the theory. In this limit we find G(o) — —3sgn(o)/o?. It is not difficult to see that this
expression for the kernel implies that there are no real solutions to (2.17) at strong coupling.
There are however complex solutions with an intricate structure. Analysing these complex
saddles in detail is beyond the scope of the current work. Instead, we proceed by analytically
continuing the general d results in (2.15) to d = 1. We take d = 1 + € with ¢ — 0 and find
that the free energy and Wilson loop vev in (2.15) can be written as

5m N2 (20063

Fue=—""{3w

720)\) 1/5
- .

1/5

> , log (Wite) = 7T< ; (2.18)
To make these expressions regular in the ¢ — 0 limit one can change the 't Hooft coupling into
a new “regularised” coupling A = A /€. This is clearly a somewhat arbitrary “regularisation
scheme” which we cannot properly justify. Indeed, as we discuss in detail below, the
holographic dual spherical brane supergravity solutions with S worldvolume also exhibit
singularities when analytically continued to d = 1. In the absence of a better justification
of this regularisation procedure we can instead focus on the scheme independent quantity

F(log (W))? which is given by

6007* N2

Fisc(log (W) = ———

(2.19)
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This is a finite quantity that should be physical and scheme independent. Indeed, as we show
in section 4, the result in (2.19) can be derived using a holographic calculation. To gain
some confidence in the results in (2.18) we note that the scaling of both the free energy and
Wilson loop vev with the strong coupling A are the ones expected from the scaling similarity
exhibited by the dual type ITA supergravity, see [8].

We should note that there are studies of the BMN matrix quantum mechanics via
supersymmetric localisation, see [17, 19], as well as calculation of the supersymmetric index
of the model on S', see [20] for a recent account. One could perhaps expect that there is
a relation between these calculations and the analysis we presented above. Unfortunately,
it is not clear to us how to relate these disparate analyses. Indeed, the results we find
for the S* free energy of our Euclidean BMN model appear to be quite different from the
ones for the supersymmetric index of the theory as presented in [20]. Since the index is
independent of the coupling, it can be computed at weak coupling where the Lorentzian
BMN matrix model splits in different superselection sectors labelled by the supersymmetric
vacua. The full BMN index is then given by

I= > I (2.20)

i€vacua

Since the BMN matrix quantum mechanics is gapped, there is a unique ground state in each
superselection sector such that in the unrefined limit of the index, i.e. when all R-symmetry
fugacities are switched off, we have Z; = 1 and Z ~ p(N) ~ exp (\/JV), where p(N) is the
function counting the number of partitions of N which at large NV can be approximated by the
asymptotic formula of Hardy-Ramanujan. Clearly, this expression is not compatible with the
exp N2 growth exhibited by the S! free energy computed in (2.18). This observation suggests
that there is a crucial difference between the index in [20] and the S! partition function
computed by our analytically continued MSYM S? matrix model. Perhaps the discrepancy
in the large N scaling of the two observables can be attributed to a supersymmetric Casimir
energy prefactor. It is also possible that the complex saddles of the MSYM S% matrix model in
the d — 1 limit discussed above (2.18) play an important role when one takes the large N limit.

We end this discussion with some brief comments on the potential relevance of our results
to the IKKT matrix model [39]. This matrix model preserves maximal supersymmetry in
d = 0 and thus should be somehow related to the d — 0 limit of the MSYM theory on
S?. Indeed, taking d = 0 in the MSYM Lagrangian in (2.3) one finds a matrix model with
16 supercharges and su(1,1) x so(7) R-symmetry. This is not precisely the IKKT theory
but rather, a BMN-like mass deformation of it. This type of deformations of the s0(10)
invariant IKKT model have not been extensively studied in the literature, see however [40, 41]
and especially the recent work in [42, 43], and it will be interesting to understand these
models better. Here we simply note that the d — 0 limit of the free energy in (2.18) is
regular and one finds

37/3 N2

FO == _ﬁi(_)\)Q/i), .

(2.21)

This result has the correct scaling similar behaviour in the coupling A as dictated by the
analysis in [8] and in section 4 we discuss how it can potentially be derived holographically
from the analytically continued spherical brane solutions.
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3 The supergravity dual

Given the setup described above, the natural place to look for a holographic dual to the
Euclidean BMN matrix quantum mechanics is the su(1,1) x s0(6) invariant truncation of
the maximal so(1,8) gauged two-dimensional supergravity [44]. This truncation consist of
the metric and three scalars, a dilaton p and two real scalars X and Y coming from the
su(1,1) x s0(6) singlets in the 44 and 84 of so(1,8) respectively. For a detailed description
of this truncation we refer the reader to appendix A. The Euclidean action for this two-

dimensional model can be written as’

1 1 1
Soq = ] /VOIQ,O (R — fPuP’u — V) + ScH , Sau = — /VollpK, (3.1)
2rK5 2 K3
where vol,, is the n-dimensional volume form and we have added the Gibbons-Hawking
term Sgy which is needed to study solutions with asymptotic boundaries. We have also
defined P, as

P X —0,Y B YOup
re X 3Xp’

(3.2)

and the potential V' can be written in terms of real superpotentials W and W as explained
in appendix A and takes the explicit form

24X -Y —~ 24+ X+Y
W_QW’ W—QW- (3.3)
V——3792(8+12X+X2—Y2) (3.4)
O 2X2/3p4/9 ) )

In Lorentzian signature W and W would be related by complex conjugation and g is the
2d gauged supergravity coupling constant.'’ Let us emphasise that the so(1,8) invariant
model, obtained by setting X =1, Y = 0 is a model of 2d dilaton-gravity different from the
JT gravity. Notably, there is no AdS, vacuum. Instead the vacuum solution of this model
has a running dilaton and corresponds to the dimensional reduction of the flat DO-brane
solution of type IIA supergravity to two dimensions, see (A.9) and (A.10). In particular, this
solution provides a dual geometry suitable to study the BFSS matrix quantum mechanics.
Turning on X and Y breaks the so(1,8) symmetry to su(1,1) x s0(6) and can be understood
as corresponding to the mass deformation leading to the BMN matrix quantum mechanics.
More precisely, the three supergravity scalars can be understood as follows: the dilaton p
is dual to the gauge coupling constant in the matrix quantum mechanics, while the scalars

9For future purposes this form of the action will be most useful. However, it is more common in two-
dimensional dilaton-gravity theories to remove the dilaton kinetic term which can be done through a simple
redefinition of the scalar fields, see appendix A.

10The 2d gauged supergravity coupling can be related to the type ITA string theory parameters as

_7 15N
o327t

(27es9)
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X and Y are dual to the operators [45],

1 S
Ox x NTT (¢ Ga — 3¢I¢I> )
Oy x % {\I’FOH\IJ +iTr ¢ [¢1,¢>2]} .

Turning off the scalar Y leads to a class of “Coulomb branch” supergravity solutions relevant

(3.5)

for the BFSS matrix model, see [45] and appendix A for more details. In order to make
contact with the BMN matrix quantum mechanics it is therefore necessary to have non-trivial
profiles for all three scalars. To construct such a solution, let us consider the following
ansatz for the metric,

ds? = dr? + R?e*4(dr? (3.6)

where 7 ~ 7 + 27 is a coordinate on the circle with radius R and the metric function A(r)
only depends on the radial coordinate r. To find the solutions of interest it is convenient to
use the scalar X as the radial coordinate, in terms of which the supergravity BPS equations
can be rewritten as

dy YV 444X 4+7X%-Y?

dX ~ 2X4-2X —2X2 Y2’

dp 3p (2+X)?-Y?

dX — 2X4-2X —2X2 Y2’

dA 1 72+ X)*—4Y?

dX ~ 6X4-2X —2X2-Y2’

dX  X?Bg(2(—2+ X + X% +Y?)

dr p2/9\/(2+ X)2 — Y2
As detailed in appendix A, assuming Y (r) # 0, we can solve the BPS equation for the metric

(3.7)

function and find the explicit expression,
X2/3p4/9 (2 + X)2 —Yv?2

2 24
R € — 92 Y2 9 (38)
such that the 2d metric takes the form
(24 X)? —v? dx? X?
asz = 20 - 3)2 ) S+ opdr? ) (3.9)
X4/3g 2(-2+ X+ X2)+v2)? Y

The system of BPS equations has therefore been reduced to a single differential equation for
Y as a function of X. Once Y is known, the dilaton can be obtained by simple integration.
Before attempting to solve the BPS equation for Y, let us first study the critical points of
the system. These are identified as the locations where both X and Y have fixed points.
One way to identify such points is to demand that both the numerator and denominator
of the right hand side of equations the first equation in (3.7) vanishes. There are five such

points in the (X,Y) plane,'!

(X,Y) = {(1,0) (0,2), <_§ 2*?) (=20, (0,0)} . (3.10)

To identify the correct UV and IR loci let us study these five critical points in some more detail.

' All equations are symmetric under the interchange Y <+ —Y. Here we discuss only the critical points with
non-negative Y but clearly there are analogous points with negative Y.
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Figure 1. A region plot showing the sign of the right-hand side of the BPS equation for Y for d = 1.
Blue regions denote negative values of the right-hand side of the first equation in (3.7) while orange
regions denote positive values. The five critical points in (3.10) are denoted with coloured dots located
at the intersection of the solid lines separating different regions. The three unphysical fixed points
are denoted with red dots, while the green dots represent the UV and IR loci at (X,Y)yv = (1,0)
and IR (X,Y)r = (0,2). The black curves represent the numerical solutions for Y (X) using the
equation (3.12) for d = {3,2,1.6,1.08,1.007,1.0006}. As d — 1 we see that the IR point indicated
with the black solid dot approaches (X,Y)r = (0,2).

UV region. The point (X,Y)yy = (1,0) corresponds to the UV region. Near this point
both scalars become trivial and the solution reduces to the so(1,8) vacuum solution of the 2d
gauged supergravity which is characterised by a simple profile for the dilaton as a function
of the radial coordinate. The 10d uplift of this 2d supergravity solution corresponds to the
type IIA supergravity solution describing the near horizon limit of coincident DO-branes,
see (A.9) and (A.10). Away from this UV point the scalars X and Y develop a radial profile
and break the so0(1,8) symmetry to su(1,1) x s0(6).

IR region. Inspired by the spherical brane solutions of [2] we expect that in the IR region
the metric caps off smoothly as ds3 oc dr? + r2d7? and the scalar fields approach a finite
constant value. These conditions alone however do not determine unambiguously the IR
point since expanding the BPS equations around the four putative IR points we find that
the metric is singular or the scalar fields diverge near all four of them. One could exclude
the points (—2,0) and (—%, @) since the canonically normalised scalar field z ~ log X
becomes complex near them. A more unambiguous and convincing approach to fix the correct
IR locus is to use the observation that the BMN matrix quantum mechanics can be thought
of as the d — 1 limit of MSYM on S%. In a way that we will make precise momentarily,
we can think of the 2d gravity model in (3.1) as an analytic continuation in dimension of
a family of gauged supergravity theories that lead to the spherical brane solutions of [2].

Employing this analytic continuation one finds unambiguously that the correct IR point, i.e.
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Figure 2. A region plot showing the sign of the right-hand side of the BPS equation for Y for d = 1.6.
Blue regions denote negative values of the right-hand side of the first equation in (3.12) while orange
regions denote positive values. The critical points are located at the intersection of lines separating
different regions. The green dots represent the UV (X,Y)yy = (1,0) and IR (X, Y )r = (0.2,1.6) loci,
while the black curve is the numerical solution of the BPS equation for Y (X) that connects them.

the locus where the Euclidean geometry smoothly caps off, is at

(X, Y ) = lim (‘H 2<4_d)> —(0,2). (3.11)

3 3
Analysing the supergravity BPS equations near this point is particularly difficult due to
the fact that it lies at the intersection of three “critical lines” in figure 1 along which the
right-hand side of the first equation in (3.7) vanishes or diverges. Moreover, while the metric
is smooth in the IR region, the dilaton scalar p blows up which further complicates the
analysis and interpretation of any supergravity solution that asymptotes to this point. As
we show below, for d > 1 this triple intersection splits into two distinct critical points which
ultimately resolves this singular behaviour and allows for a proper analysis of the IR region.

3.1 Spherical D0O-brane background

To understand better how to construct the circular DO-brane solution of interest, let us
consider the spherical brane solutions of [2]. As reviewed in appendix B, we can write the
supergravity BPS equations that determine these solutions for general d < 4 as

dY YV (d=3)°+42-d)X +7X° - V?
dX  2X 201-X)B3—-d+X)-YZ
dn 7—d (B—d+X)?-Y?

dX ~ 2d-DX20-X)B3-d+X) Y2’

(3.12)
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while for the metric warp factor, A, we find the algebraic expression

S, (B3—d+ X)?-Y? _

2 2A _
Re“* =e Y2 (3.13)
Using this, the metric can be written in terms of X as
3—d+X)?-Y?) —206-a) dx? X2
ds2,, = 7—a —d07 | . 3.14
Sd+1 X g2 ¢ 21-—X)B—d+x)—v?2 vz (3:14)

The BPS equations (3.12) do not have a good d — 1 limit. To remedy this we introduce
the following field redefinition,

d—1

p=e 2. (3.15)
Using this we find the following BPS equation for the scalar p,
@_(7—d)p (B3—d+X)2-Y?
dX 4X 201-X)3—-d+X)—-Y?2'
This equation has a good d — 1 limit and, together with the BPS equation for Y, reduces

(3.16)

precisely to the system of BPS equations (3.7) of the 2d supergravity discussed above.
Similarly, the metric functions as well as the full 2d metric are related as follows,

7 2 7 2
R A 24 _ P° T 9y
ds® = st(d+l_>2)7 (§ = X1/3 € (317)

The left-hand side in the expressions above denotes the quantities from the two-dimensional
supergravity model while the right-hand side corresponds to the analytically continued
expressions of the spherical brane construction in the d — 1 limit. We thus find that the
two metrics are related by a simple conformal transformation. Carefully performing this
conformal transformation and subsequent d — 1 limit, one can show that the full action of the
spherical brane model (B.1) reduces to the action (3.1) of the two-dimensional supergravity.

3.1.1 UV and IR analysis

For generic values of d, the UV and IR are located at

(X, V)ov = (1,0), and  (X,Y)m = (Cl;1,2(43_d)) | (3.18)

The UV locus is determined by the requirement that the spherical brane solution in this
limit asymptotes to the usual near horizon geometry of coincident Dp-branes with a flat
worldvolume. The IR region is determined by the requirement that the metric smoothly
caps off as dr? + erQ?i. This behaviour is the supergravity manifestation of the fact that
at energies below the scale set by the radius of S¢ the dynamics of the MSYM theory is
trivial, i.e. the radius of S¢ provides a natural IR cut-off.

A first step in analysing the behaviour of the solutions to the BPS equation is to expand
them around the IR and UV loci. Before doing so let us note that for each d < 4 there
are two analytic solutions given by'?

Y?=(3B-d+X)’, n =, (3.19)

12Similar analytic solutions exist for d > 4 but in this case the BPS equations are slightly modified and we
will not present the solutions here. See [2] for details.
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and

X—1
YQ:T(?)—CHX)?,

 nd—4(,7 _ 1\6—d ‘
_4-d 3éd D03 a4 3x)2(1— x)Fa x4,

(3.20)

o 2= (o)

both containing a single integration constant 7y. Unfortunately, for general d neither of these
analytic solutions connect the IR and UV regions. For generic d the first solution (3.19)
reaches the desired UV but not the IR, while the second one (3.20) connects to the desired
IR but does not reach the UV. Note that for d = 2 the solution in (3.20) reaches both
the UV and IR regions.

IR region. For generic d we find two possible IR expansions. One of them can be resummed
to the second analytic solution (3.20), while the other one gives rise to the following behaviour
for the scalars Y2 and 7,

4 2(d — 4)(d + 5) d—1
vi= -y R (x-55)+

3T —d)d+1) d—1
TR T T g 1) (X_3)+"'

(3.21)

UV region. In the UV region one also finds different branches of solutions to the linearised
BPS equations. One of these branches can be resummed to yield the first analytic solution
in (3.19). The other branch is less trivial and leads to the following UV expansion for Y2,

Y2 = Y2, (X —1)°%° W(X—l)—l—m

4—d

1+ Y (X —1)2

(3.22)
ri(@-da-a- ?id__d§2)> (X —1)? +]

This expansion is valid for d < 4 but it should be treated with some care since for d > 2
the role of leading and sub-leading terms is exchanged. In order to study the UV expansion
of the scalar n it is convenient to first define,

g = e—(d—l)an = an’ (323)

where a = %, for which the BPS equation becomes,

-

¢ [d-9(B-d+X)*)-Y?

2= . 3.24
& 2X2(X-1)B3—-d+X)+Y?) ( )
The new scalar ¢ admits the following UV expansion,
1 Y2 -
¢ = Euy(l — X) 1)’ ll —1(4-dB-d)1-X) - %(2 —a)5
(3.25)

8(d — 5)

+ ((7—d)(1—d)—(4_d)2) (1—X)2+-~-].

| —
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We can continue the UV expansion indefinitely and find that it is completely fixed in terms
of two integration constants, nyy, or equivalently £uy, and Yyy. For general d < 4 the
structure of the expansion is as follows,

o (1—d)n [eS)
V2=V (X -1 V(X 1) 7Y ank(X - 1, (3.26)
n=0 k=0

and similarly for £. We see that for d > 2 the third term in the UV expansion becomes
more leading than the second and so for these values of d the series expansion should be
rearranged. It is expected that the coefficients in this UV expansion should fix the sources
and the vevs for the operators (3.5) in the dual QFT. We will not attempt to make this
holographic identification more precise here.

While the UV and IR expansions described above provide analytical control over the
BPS equations, we were not able to find an analytic solution of these equations that connects
these two expansions. Instead, we resort to numerics and find numerical solutions connecting
the UV and the IR. In figure 1 we display several representative solutions for the function
Y (X) for some specific values of d that illustrate the approach to d — 1. In figure 2 we show
a specific solution that illustrates the generic behaviour for 1 < d < 4. The explicit numerical
solutions fix the UV series expansion integration constants &yy and Yyy in terms of the IR
integration constant nig. This predicament is familiar from the spherical brane solutions for
integer d in [2] and other similar setups in Euclidean holography. We therefore find that for
any real 1 < d < 4 there is a numerical solution of the BPS equations which connects the
UV and IR loci and depends solely on the integration constant nr. In the IR region the
solution is regular and the metric caps off smoothly as dr? + r2dQ2, with dﬂg the metric
on the round S?. The circular DO-brane solution of interest is obtained by carefully taking
the d — 1 limit of this family of numerical solutions. While, strictly speaking, one finds a
singular background for d = 1 the limiting procedure described above provides a concrete
method to extract finite holographic observables from this supergravity background as we
show in detail in section 4 below. We now proceed with a discussion on how to uplift this
limiting d = 1 solution to 10d and 11d supergravity.

3.2 Uplift to type 1IA and eleven-dimensional supergravity

The 2d gravitational model in (3.1) is obtained as a consistent truncation of the maximal
50(9) gauged supergravity theory which in turn can be obtained from a consistent truncation
of the 10d type ITA supergravity on S® or 11d supergravity on S* x S8, see [46] and [47] for
a recent discussion. After analytically continuing the S® to dSg, this sequence of consistent
truncations implies that the circular DO-brane solution constructed above can be uplifted to
a solution of 10d or 11d supergravity. Here we perform this uplift explicitly.

Rather than resorting to the uplift formulae derived in [46, 47] using exceptional field
theory, we construct the 10d supergravity background by relying on the familiar structure
of the spherical Dp-brane solutions in [2] to which we refer the reader for more details as
well as a precise definition of our conventions. The metric (in string frame) and the 10d
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dilaton can be expressed as

1 ~
ds?y = p713Q V2 | X1/3p=4/%4s2 + = (d6? + P cos? Q32 + Q sin? N2 } ,
1 g ( ? ) (3.27)
e® = g, T/OP12Q1/A

where the functions P and () are defined as,

X X

Xsin?0 + (X2 —-Y?2)cos?20’ @ sin? @ + X cos? (3:28)

In these expressions, d©22 denotes the metric on the (unit radius) round n-sphere with volume
form vol,,, dQ% is the metric on unit radius dSs, and 6 € [0, g] In terms of these functions,
the NSNS- and RR-potentials can be written as

YP

_ 39
By = PX T cos” B volsy
iYOpl/3
Cs = % sin* 6 vols , (3.29)
9s9° X
C; = w(#) + P cosOsin® VA(;IQ/\V015,
gs9” ( ®) )

where w(f) is defined such that d(w(8) + cos 6 sin® 8) A vola A vols = 7volg is proportional to
the volume form on dSs. Note that with the identification (3.15), this reduces exactly to
the uplift for the spherical brane solutions (B.12)—(B.16). It will prove convenient to also
have explicit expressions for the dual RR-potentials which take the form

ipX
=L (P4 2Q 7Y dr,
9s9Y
. 9/3 (3.30)
20°°P o8 dr Aol
= - co T A vols .
’ 959°Q
The associated field strengths are defined as
Hs =dBsy, Fp = de—l — H3 A Cp_g , (3.31)
and satisfy the following duality relations,
FQ = *Fg s F4 = *Fﬁ . (332)

We have checked explicitly that the two-dimensional BPS equations imply that the 10d
background above solves the equations of motion of ten-dimensional type IIA supergravity.
The conserved (Page) DO-brane charge can be obtained by evaluating the following integral

1 / Vg
N=—"_ dcy = —2 | 3.33
@rl)T Joe | (2nlsg)T (3.33)

where Vg is the regularised volume of the unit radius dSg which is nothing but the volume
of S8 see (2.10).!? Since the Page charge is conserved, we can choose to evaluate this
integral in the UV region.

13In practice we compute the flux by analytically continuing the setup to purely Euclidean signature and
performing the integrals there. This procedure naturally gives rise to sphere volumes.
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The 10d background above can be further uplifted to 11d supergravity, where the metric
and three-form potential take the form,

4/9 _
ds?, = p~1/3Q2/3 [Xl/?’ds% + p—z <d02 + P cos? 002 + Q sin? 0d9§>
g

—14/9P X 2
+ PR (ggs dz11 + 'Of(P*1 + QQl)dT)
99s Y

PY cos® 6 (
93gs X p'/3

(3.34)

)

20X —~
Az = ggsdxy1 + pdT) A volsy .

YQ
3.3 Embedding in LM

In [16] Lin and Maldacena constructed the gravitational type IIA duals to field theories
with 16 supercharges and su(2[4) global symmetry, such as the vacua of the Lorentzian
BMN matrix quantum mechanics by dimensionally reducing the M-theory solutions in [48].
Before discussing the analytic continuation of their setup to Euclidean signature, let us
briefly review the Lorentzian case.

The bosonic part of the su(2|4) symmetry algebra is su(2) x su(4), which is realised
geometrically by the Killing isometries associated with a two- and a five-sphere in the metric.
Additionally to these, the background of [16] exhibits time translation symmetry. Due to
the large amount of supersymmetry the full supergravity solution can be obtained from
a single function V depending on two coordinates s and z. The 10d supergravity BPS
equations furthermore imply that this function is given by an axisymmetric solution to
the 3d Laplace equation,

V42V =0, (3.35)

where dots indicate derivatives with respect to log s and primes derivatives with respect to z.
Any solution to this equation has to be supplemented with appropriate boundary conditions
that ensure the regularity of the supergravity background.

The type IIA supergravity solution can then be written as,'?

. . 1/2 . .
o 2 4 72 I "
ds?, = <V_V> [— AV gy VV (ds® + d2?) + 4dQ3 4oV Vdﬂg :

|44 V-2V A
49t 2V - V)3 1A%
40 _ s —
(§ = W y BQ =-2 A +z V012 y (336)
2VV a2y
Cl=——Y a4, Cy=-— dt A voly
gs(2V =V) gsA

where we defined the function A = (V — 2V)V” — V2 and voly is the volume form on dQ3.
The metric represents an S? x S° fibration over the (s,z) plane. The five-sphere shrinks
to zero size on the s = 0 axis, while the S? shrinks to zero size when %V = 0. Different
supergravity solutions are therefore specified by different boundary conditions for the Laplace

14We have introduced gs and changed signs of some of the form fields to match with our conventions.
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Figure 3. An illustrative configuration for the electrostatic problem defining a solution of the
form (3.36). The full setup is rotationally symmetric and the angular coordinate in the s-plane is not
part of the 10d solution.

equation. As explained in [16], the appropriate boundary conditions to describe the vacua
of the BMN matrix quantum mechanics are given by inserting a collection of discs ID; with
radii 7; at specific values z; parallel to the s-axis, see figure 3.

Corresponding to each choice of parameters we have an electrostatics problem whose
solution results in a supergravity equation of the form (3.36). In addition to imposing that
the S? smoothly shrinks at the location of the discs, the parameters are constrained by
demanding that the fluxes through each non-contractible cycle are appropriately quantised.
In particular, all vacua of the BMN matrix quantum mechanics have an electrostatic system
with an infinite conducting plate at z = 0 where the potential vanishes. Furthermore, in
order for the solution to asymptotically approach the supergravity solution produced by flat
coincident DO-branes we need to turn on the following background potential

2
Voo = Vo <s2z — 323> : (3.37)

The supersymmetric vacua of the BMN matrix quantum mechanics are then mapped to
collections of discs as follows. Each vacuum is defined by a particular (not necessarily
reducible) representation R of su(2). If the d;-dimensional representation appears n; times,
we have to put a conducting disc with charge n; at z; = d;. In order for the supergravity
solution to be non-singular, the radius of the disc is determined in terms of the charge, such
that the charge density vanishes at the edge of the disc. This precisely mimics the QFT
discussion on the vacuum moduli space in section 2.

The fluxes should be appropriately quantised along all non-contractible cycles in this
geometry and are in one-to-one correspondence with the quantum mechanics vacua. In
particular, since the S° shrinks on the s = 0 axis, we can form topologically S°® cycles,
starting on the axis, going around a number of discs and coming back to the axis, carrying
D2-brane flux Q;. Similarly, the S? shrinks at the location of the discs so we can form
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topologically S3 cycles, starting at a disc and ending at another disc, carrying NS5-brane
flux S;. From this setup we can form a Young tableau by adding (); rows of length j where
> Q; = N. The NS5-brane fluxes correspond in a similar way to the dual Young tableau.

As discussed in section 2 there are two ways to preserve supersymmetry in the Euclidean
BMN model. In the supergravity description, the first one corresponds to analytically
continuing the S® to dS5. In this case the analysis is entirely analogous to the Lorentzian
model described above and we will not discuss it further. Alternatively, one can analytically
continue the S? to dS,. This is precisely the setup we arrive at when approaching the BMN
matrix quantum mechanics from MSYM on S% as we now describe. The full solution is
still completely determined as a function of V' which solves the equation (3.35), and can
be obtained by simply replacing

A3 — dQ2,  voly —ivoly. (3.38)

We do not have to explicitly analytically continue the time-direction ¢ but instead the metric
function gy itself changes sign as we will explain. Given the properties of our new circular
DO-brane solution we conjecture that it is dual to the unique vacuum of the relevant Euclidean
BMN matrix quantum mechanics which corresponds to a single disc with charge 1. To this
end it is instructive to understand how the circular DO-brane solution in section 3.2 can be
embedded in the general ansatz (3.36). We find that indeed the solution in section 3.2 can
be written as an LM background where the function V' is given by

v _p2/3C089(X — 2+ (3X 4 2) cos 20)

185X ) (3.39)
while the LM coordinates z and s? are defined through the coordinate change
2+ X X(2+X)2-Y?
2+ X) 50, 2o X2+ X) ) sin20. (3.40)

- 71492Yp1/3 cos 1694V 2p2/3

Note that even though the coordinates z and s are seemingly both analytically continued
to timelike directions, the various metric factors in the LM metric determined in terms of
the function V' and its derivative ensure that the metric is of signature (1,9) as expected. In
order to compare with the LM metric in (3.36), we explicitly list the following derivatives
of V as a function of X,

2/3 2_v2\pa2/3
 p . (24 X)?P-Y)Pp
V =—— cosfsin“0, = sin“f cos@,
443 20341+ X)P+XQ) (3.41)
v’ :i 2P+Q)Yp sin? 6 V"= BgPY2pt cosf
g4(1+X)P+XQ ’ XA(1+X)P+XQ) '

In the UV the circular DO-brane solution approaches the flat DO-brane background. In the
LM coordinates, the UV is located at large z and s, where this asymptotic behaviour is
reflected in the background potential (3.37). On the other hand, in the IR, the circular
DO-brane solution is singular. This is perhaps due to the fact that it arises as an uplift of a
gauged supergravity solution and it is notoriously hard to describe localised brane sources
using gauged supergravity. Analysing where the S? shrinks, or equivalently where P cos? 6
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vanishes, we find an infinitely charged disc at z = 0. The finite charged disc at a small
distance from the z = 0 plane is absent in our description. However, going to the IR we find
that P — 0 causing the two-sphere to shrink on the interval'®

1
zZ € 0,] (3.42)
1/3 1] °
l 4g3plﬁ

where we find a continuous charge density. Finally, in line with the expectation from the
LM setup, we find that the size of the S° appropriately shrinks to zero size at s = 0. This
analysis shows that the circular DO-brane solution shares various crucial properties with the
trivial vacuum state of the BMN matrix quantum mechanics and therefore lends further
evidence to our holographic interpretation.

4 Holographic free energy and Wilson loop vev

It is natural to conjecture that the supergravity solutions found above are holographically
dual to the MSYM theory on S? as discussed in section 2. Since both the supergravity and
the field theory constructions admit an analytic continuation in the number of dimensions
d we can expect that this holographic correspondence can be established for any value of
d. In particular, we should be able to take the d — 1 limit and elucidate aspects of the
physics of the BMN matrix quantum mechanics. The goal of this section is to show that the
supersymmetric localisation results for the S? free energy and the supersymmetric Wilson
loop vev in section 2 agree with the appropriate dual supergravity observables, namely the
regularised supergravity on-shell action and the on-shell action of a probe string suitably
embedded in the spherical brane background.

4.1 Free energy

The holographic free energy of the MSYM theory on S can be obtained by computing the
appropriately regularised on-shell action of the (d + 1)-dimensional supergravity solution.
We calculate this on-shell action for any d and pay particular attention to the subtleties
arising in the d — 1 limit. Since the solutions are spherically symmetric the calculation of the
on-shell action is in principle straightforward and involves a single integral along the radial
coordinate. Nonetheless, this is technically challenging since we are not able to solve the BPS
equations analytically for general d and have to resort to a numerical analysis. Fortunately,
as we show below, this challenge can be largely circumvented by noting that the supergravity
on-shell action can be written as a total derivative.

To this end we employ the so-called scaling similarity of the supergravity theory. If one
rescales the dilaton scalar and the metric with any real number ¢ in the following way

-1 a1 ol 6
ed—7" — ted=7" G — T Guv » (4.1)

while keeping the scalars X and Y invariant one finds that the supergravity equations of
motion and BPS equations are invariant but the action (B.1) is rescaled by a constant,

S — t+dg. (4.2)

15A5 will be discussed in the next section, the integration constant prr blows up in the strict d — 1 limit so
that this smeared density collapses to the z = 0 plane.
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Taking a derivative with respect to the parameter ¢ and subsequently setting it to zero
then implies,

(4—dyg = Lpad ‘ dS¢

= 4.3
de t—1 dt li—1’ ( )

where S; denotes the action with all fields replaced by their rescaled values (4.1). Writing the
rescaled fields as ¢y, for a given field ¢, we can use the chain rule to compute the derivative

n (4.3). Defining the canonical momenta P = 5(55 3,57, We find

(4_@8:%/ St Ma“ddqthl Z/ el e

where to arrive at the second identity we used the equations of motion. We can further
simplify this expression by using the spherical symmetry of the solutions of interest and write
the action in terms of a one-dimensional Lagrangian. To do this it is useful to introduce
an auxiliary field B in the metric,

ds?,; = e*Bdr? + R2e24d403 (4.5)

such that both A and B transform in the same way under the scaling transformation (4.1).
The momentum Ppg is the one-dimensional Hamiltonian which vanishes on-shell, so we can
immediately eliminate it. We then find,

d [4—d d—"17

That is the one-dimensional Lagrangian is a total derivative and the action can be reduced
to surface terms. Using the BPS equations and rewriting the expression above in terms
of the radial coordinate X one finds

g /Vold ANdX d
2’£d+1

Rd+1e(d+1)A <Y2 (d— 11
d—4X

Y +3>—(3—d+X)(6—d+3X)>].

(4.7)
Since the on-shell action is an integral of a total derivative one can evaluate it using the UV
and IR expansion without the need to construct a full numerical solution of the non-linear
BPS equations and integrate over the radial direction. Nevertheless, the existence and
explicit construction of this numerical solution are needed in the holographic context since
this is the mechanism to establish a relation between the UV and IR integration constants
which in turn enter in the holographic dictionary. We will describe how this works in our
setup in more detail below.

As usual, the supergravity action is divergent in the UV and needs to be appropriately
regularised. Due to the non-conformal nature of our setup, the holographic renormalisation
procedure is more subtle but, as explained in [3, 5], can be implemented most clearly in
the so-called “dual frame”. To define the dual frame one needs to perform the following
conformal transformation,

G — Juv = e20 "G s a=—-—:, (4.8)
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where the constant a was already defined in (3.23). This frame is characterised by the
property that it is invariant under the scaling transformation (4.2) or equivalently, that the
dual frame metric does not contain explicit dependence on the dilaton 1 (or p through (3.15)).
The convenient feature of the dual frame is that the counterterms needed for holographic
renormalisation take a very similar form to those used for asymptotically locally AdS spaces.

In addition to the Gibbons-Hawking boundary term, there are infinite counterterms that
need to be added to render the on-shell action finite. We have to add a “superpotential

/ digy/Fe—o M WW| (4.9)

Y—0

counterterm”

Ssuperpot
d+1

where W and W are defined in appendix B. Note that we only add the part with Y — 0, i.e.
the part which is relevant for regularising the on-shell action of the flat Dp-brane solutions
appears. In the UV, as X — 1 and Y — 0 this counterterm reduces exactly to the cosmological
constant counterterm. Since the asymptotic boundary of our solutions is not flat we also
need to add the curvature counterterm [49],

Seury = ——5— / e/ he @D R[] (4.10)
49’<5cl+1

where the dots denote additional terms that are only relevant for d > 4. Since in this work
we focus on d < 4 we will ignore these henceforth. In addition to the terms above, there
is an infinite counterterm originating from the presence of the scalar Y. This counterterm

/dd Vhead-nny?. (4.11)
4/<ad+1

For the cases of interested here, i.e. 1 < d < 4 the three terms in (4.9), (4.10), and (4.11)
are all the infinite counterterms.

takes the form

In addition to the infinite counterterms described above one should study all possible
covariant finite counterterms that can be added. It turns out that for all d < 4 there is a
universal finite counterterm parametrising the coupling of the scalar log X to the curvature
of the d-sphere,

Sfnite = /ddx\/ze_“(d_l)"RVL] log X . (4.12)

Ra1
Note that this universal counterterm was not presented in [3]. The universal nature of this
finite counterterm suggests that it should be added to the evaluation of the on-shell action.
Presumably, imposing that the holographic renormalisation procedure is compatible with
supersymmetry will uniquely fix the coefficient of this counterterm. Since in this work we
do not perform a proper supersymmetry analysis of the boundary terms in our supergravity
model, we will keep the coefficient of Sgpite arbitrary and use other arguments to fix it later.
Using the expression of the on-shell action as a total derivative, (4.7), and noting that

the IR contribution completely vanishes, we find that the on-shell action is given by

VY Euv

S oV + Sint + ¢(d) Stinite = [f1(d) + c(d) f2(d)] W ) (4.13)
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where Siy¢ is the sum of the three infinite counterterms in (4.9), (4.10), and (4.11). The
constants f1(d) and f2(d) are the contributions obtained by evaluating respectively the action
plus infinite counterterms and the finite counterterm in the UV, using the UV expansion
derived in section 3.1, and read

Fild) = £(4— )= (54— d)? —2(d — 1)(6 — d)(3 — )
fald) = (4 — dY*=2d(d — 1).

(4.14)

The constant ¢(d) is the coefficient of the finite counterterm in (4.12) and will be fixed
momentarily. Note that the solutions are labelled by a single integration constant nr where
the UV constants Yyy and &uy should be expressed in terms of this single constant.

In order to compare the supergravity on-shell action with the QFT free energy presented
in section 2 we need the following dictionary between the string theory and QFT parameters,
see [3] and appendix B,

8 2 10—d 9—d
,{?l . (27['65) gsr ( P} ) g (27T€Sg)d_8 _ gsN ‘
+ 8riat 27V7_g

(4.15)

In addition, we follow [3] and define the effective dimensionless 't Hooft coupling as

12—d
8 2 (4—d)*98 e =
= - - Vit (4.16)
UV (27l,g)2(6-d)T (T)

219sN _ sa-a_(4-d)A 0=
_2TIsT Y pA-d(A-d)A T
(2mlg)4—d

Plugging all this in the expression for the on-shell action in (4.13) we find the holographic
result for the free energy of the MSYM theory on S?¢. The resulting expression for the on-shell
action is however not very useful, since it still contains the UV integration constants &yv
and Yyy as well as the undetermined coefficient of the finite counterterm c¢(d). To rectify
this we can express yy in terms of A\ using (4.16). Next, we are left to determine Yyvy as
a function of d. To do so we numerically solve the BPS equations imposing the smooth IR
boundary conditions and extract the UV integration constant by comparing the numerical
solution with the UV expansion of the BPS equations. Based on the very accurate numerical
results we find the following analytic expression for Yyv,

2
v, = oD (4.17)
2 () (%)

This result agrees with the numerics to great accuracy with, for d < 2.5, a relative error
Yy = (ng,num, - ngﬁn.)/ngmum. of around 1079, see figure 4. For d > 2.5 the fit of the
numerical data to the analytic expression is somewhat less accurate. This can be attributed
to the fact that as d is increased the sub-leading terms in the UV expansion of YV (3.26)

become more important and have to be taken into account.
The last order of business is to find the value for the coefficient of the finite counterterm

c(d). We fix this coefficient as follows; we first fix the dimension to d = 2 and d = 3 and
insist that the holographic on-shell action agrees with the supersymmetric localisation result
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Figure 4. The relative error for ng compared to the analytic expression in (4.17) as a function of
the dimension d. For d < 2.5 the agreement between the analytic expression and the numerical results
is excellent.

for the QFT free energy as in [3]. We then impose that ¢(d) is a simple rational function of
the dimension d. These two constraints are compatible with the following expression for ¢(d)
5 4—d
d) =-—"—. 4.18
With this choice of the coefficient of the finite counterterm and using the expressions for the
on-shell action in (4.13), together with (4.14), (4.15), (4.16), and (4.17), we find the following
result for the holographic free energy of the spherical D-brane solutions

(d4+1)(4—d)

el B CE T

This expression matches exactly the analytically continued expression of the free energy
obtained from the large N and large A limit in the supersymmetric localisation matrix model
as described in [3] and section 2 above. This result amounts to a precision test of our
proposed holographic duality and in particular facilitates taking the d — 1 limit appropriate
for circular DO-branes.

4.2 Wilson loop vev

Another observable of interest to us is the vacuum expectation value of the %—BPS Wilson loop

in the fundamental representation of the gauge group wrapping the equator of the d-sphere.

This expectation value can be computed holographically by evaluating the regularised on-shell

action of a probe string wrapping the equator of the S? in the spherical brane solutions,

i.e. log (W) = —Sihing- As shown in [3], this classical string action for all spherical brane
solutions can be expressed as,

— 1 dX n+A

Sstrlng - Ez Xl(p)e .

(4.20)
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This on-shell action is divergent. In order to obtain a finite answer we need to regularise
this expression by adding the counterterm,

Scounterterm = glggeAJrfgdn Uy (421)
Unfortunately, unlike the supergravity action, the string on-shell action cannot be expressed
as a total derivative. Therefore, we need to explicitly perform the numerical integration
from the IR to the UV region and cannot simply rely on the IR and UV expansions of the
BPS equations. Nevertheless, these numerical integrals can be performed with reasonable
accuracy. Importantly, we find that the numerical values for the regularised on-shell action
are in excellent agreement with the analytic formula

o8 ) = 245 [ar (32 r (S0 0 ()]

2 2

The relative error between this analytic expression and the numerical data is presented in
figure 5. It is clear that the numerical accuracy in this calculation is worse than the one
for the supergravity on-shell action. We attribute this to the necessity of performing two
numerical integrations — one to find the numerical supergravity solution and the other to
evaluate the on-shell action of the probe string. Nevertheless, we think that our results
provide convincing evidence for the validity of the analytic expression in (4.22) for general
d. Importantly, this holographic result for the Wilson loop vev is in perfect agreement with
the results in section 2 from the supersymmetric localisation matrix model in the dual QFT.
This is yet another confirmation of the validity of our supergravity analysis. Moreover, we
emphasise that the calculation leading to the holographic result in (4.22) does not rely on
any finite counterterms and is thus on a firm footing.

5 Thermal solutions

To further corroborate the validity of our analytic continuation in dimension we study a
different set of observables. As discussed in [2] the gauged supergravity truncation summarised
in appendix B admits a simple non-supersymmetric solution which uplifts to the non-extremal
thermal Dp-brane solutions of 10d supergravity. Here we summarise these solutions and some
of their properties with a particular emphasis on the fact that many of the calculations can
be done keeping the parameter d general. Furthermore, we leverage the techniques developed
in this work to evaluate the on-shell action and vacuum expectation value of a Polyakov loop
in these backgrounds. We emphasise that, unlike in the rest of this work, the worldvolume of
the Dp-branes discussed in this section is not spherical but flat, i.e. S x RP.

The thermal solutions of interest have constant scalars X = 1 and Y = 0 and the

metric and dilaton take the form
2(d—1)(8—d)

dsj . =e " (Dl/szler + D Y2(—Hadt? + da:ada:a)) , e 0= " =D, (5.1)

where the index a = 1,--- ,p = d — 1 runs over the flat spatial directions on the worldvolume
of the brane and the two functions D and H are given by

D=(g)"t, H=1- (Th)M . (5.2)

T
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Figure 5. The relative error for the holographic calculation of the Wilson loop vev plotted as a
function of the dimension d. We find very good agreement between the analytic expression in (4.22)
and the numerical results for d < 2.5. Although the error seems to grow with d, this is simply because
in producing the data we kept the UV cut-off constant. A closer look at the integrands shows that the
fall off of the sub-leading terms grows with d so that the error could be kept constant by gradually
increasing the cut-off.

Notice that we have chosen coordinates such that the solution uplifts directly to the well-
known non-extremal p-brane solution as presented in e.g. [50]. The supersymmetric, extremal
solution is found by setting r, = 0 but here we will keep r, general in order to discuss
some of its thermal properties. We can calculate the temperature of the black brane by
the standard trick of Wick rotating the metric to Euclidean signature and ensuring that
the solution caps of smoothly in the IR region r — 7. This regularity condition leads to
the following periodicity of the thermal cycle

4rry,

P = B g

(5.3)

with f the inverse temperature T' = 1/4.

Having introduced the thermal solutions we proceed with the calculation of thermal
observables for these supergravity backgrounds. It should be noted that non-extremal p-
branes exhibit Gregory-Laflamme instability at sufficiently high temperature and therefore
our computation is only valid for temperatures sufficiently close to extremality, see [51]. We
start by computing the Euclidean on-shell action. As discussed in section 4.1, the on-shell
supergravity Lagrangian can be reduced to a total derivative, see (4.6), which means that
the on-shell action is easily evaluated and reads

o_ Uy glgrn)™* <_2 + (10 - d) (r)s_d>

- 2
2K’d+1 T Th

, (5.4)

r—00

where U, = [ vol, denotes the volume of the p-dimensional space-like slices of the black
brane. Since the spatial slices are non-compact, we will discuss thermodynamic quantities
evaluated per unit-volume obtained by dividing by the volume U,. Note that we do not get
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any contribution from the horizon as r — 7, although the above expression may suggest it.
This is because when we write the on-shell action as a total derivative we have integrated
in the Gibbons-Hawking boundary term. Effectively this means that the expression in (5.4)
includes a spurious Gibbons-Hawking term on the horizon which must be subtracted by hand.
It so happens that this spurious GH term is the entire contribution as r — rj,. As usual,
the on-shell action suffers from UV divergences that need to be regulated by appropriate
counterterms. Since the scalar Y vanishes and the UV boundary is flat we only need the
counterterm in (4.9) which for these simple black brane solutions reduces to a cosmological-
constant-like term on the boundary modified by a power of the dilaton. Evaluating this
counterterm for the black brane solution we find

U r 8—d r 8—d
Ssuperpot — _2/43?;) g(gT),(lo — d) 1-— <:)
+1

(5.5)

7—>00

Combining the divergent on-shell action with the above counterterm we obtain the finite

expression
U, g(grn)**
Sren = = 6—d). 5.6
The thermal free energy is related to the Euclidean on-shell action via Fy = —TSen.'% It

is easy to verify that the black brane entropy & computed as the area of the black brane
horizon at r = rj, precisely agrees with the one computed using the regularised on-shell action
and the standard thermodynamic relation 0F;/0T + S = 0. Note that for d =3 and d =4
our results agrees with equations (2.8) and (2.10) in [52], while for d = 2 we find the same
results as the one in [5]. This serves as a consistency check on our approach and shows that
our results can be trusted for general values of d.

We can now rewrite the holographic thermal free energy in terms of the field theory
parameters where the dimensionless 't Hooft coupling is defined using the temperature T
as the energy scale. We find the following expression

8—d

Fy  N%(d—6) [ 1672 /g \\* %, 1 a , 4=
T, T (159) (d_8)2r(7) 64T mas TN | (5.7)
2
where we have used (4.15) and Ar is defined as
A = g NT . (5.8)

Note that this definition of the 't Hooft coupling uses the temperature as the dimensionful
parameter and differs from the 't Hooft coupling defined in (2.8) which uses the radius of
S? to set the scale in the problem and has some fixed numerical coefficients suggested by
the supersymmetric localisation matrix model.

In a similar fashion we can compute the expectation value of the Polyakov loop, i.e. a
Wilson loop wrapping the thermal circle in the Euclidean supergravity background. For
simplicity we will assume that the fundamental string dual to the Polyakov loop takes the

16We have added the minus sign by hand since in our conventions for the Euclidean supergravity action it is
not already included.
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same position on the internal space in the 10d uplift of the supergravity solution as the one for
the supersymmetric Wilson loop discussed in section 4.2. This implies that we are studying a
slightly exotic version of the Polyakov loop that has a specific coupling to the scalars in the
vector multiplet of the MSYM theory. With these assumptions in mind, a straightforward
computation of the regularised on-shell action of the probe string, similar to the one in
section 4.2, leads to the following holographic result for the Polyakov loop vev for d < 6

1

7—d 254 _ 6—d
log(W) = —2r [)\TZ(S_d)Q r(8 5 d)] . (5.9)

Importantly, both the thermal free energy in (5.7) and the Polyakov loop vev in (5.9) exhibit
the scaling with the 't Hooft coupling A and the temperature T expected from the scaling
similarity discussed in [8]. In addition, the free energy reproduces the correct scaling for
the BMN and BFSS matrix quantum mechanics in the d — 1 limit. This provides further
evidence for the validity of our supergravity and holographic calculations for general values
of d. Of course, it will be very interesting to calculate these thermal observables by QFT
methods and match also the precise numerical coefficients. Unfortunately such a calculation
in a thermal strongly interacting QFT is currently out of reach.

Finally, let us briefly discuss the supersymmetric and extremal limit of the black Dp-branes
obtained by setting r, = 0. In this limit the metric and the dilaton simplify to

2(d—1)(8—d)

dsi =e7"((gr) T dr?+(gr) T (—dP+dagda?)), e T T=(gr)™F, (5.10)
in particular for d — 1 we obtain
ds3 = e*”((gr)*%dr2 - (gr)%dtQ) ) e = (gr)~7, (5.11)

where e = (1—d)/2. As discussed in section 3, in order to compare this result to the 2d gauged
supergravity consistent truncation we must first change variables to p = e which leads to

p=(gr)"*. (5.12)
Furthermore the metric should also be rescaled by a power of the dilaton
dS%,2D sugra = pPends? = (dr2 — (gr)7dt2) . (5.13)
We therefore find that, as expected, the d — 1 limit of the extremal black Dp-brane solutions
agrees with the DO-brane solution presented in (A.10).

6 Discussion and outlook

In this paper we studied the large N limit of the SU(XN) MSYM theory on S? from the
perspective of supersymmetric localisation and holography with many of our calculations
valid for general values of d. We established a precise agreement between the calculation
of the free energy on S and the vev of a supersymmetric circular Wilson loop at strong
coupling and their holographic counterparts computed using the spherical brane supergravity
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solutions. The d — 1 limit of this analysis leads to the physics of circular DO-branes and bears
a resemblance, as well as some marked differences, to the BMN matrix quantum mechanics
which we discussed in some detail. Our work leaves a number of open questions and points
to some possible generalisations which we now briefly discuss.

e The supersymmetric localisation matrix model we used to obtain our QFT results was
properly derived by studying the MSYM theory on S¢ for integer values of d in the
range 3 < d < 7. It will be most interesting to understand whether one can first fix
d = 1 and then perform supersymmetric localisation to arrive at the results we obtained
by analytic continuation. Indeed, supersymmetric localisation for the BMN matrix
quantum mechanics was studied in [17, 19] and it will be most interesting to make
a connection between this work and our results. By the same token, it will be very
interesting to find a relation between the supersymmetric index of the BMN quantum
mechanics studied recently in [20] and the S free energy we computed here.

o The analysis of supersymmetric vacua for the MSYM theory on S? in section 2.2 clearly
shows that when the gauge group is SU(V) there are no supersymmetric vacua apart
from the trivial one where all scalars vanish. The situation appears to be different
if one considers non-compact gauge groups like SU(1, N) since in this case there are
non-trivial embeddings of su(1, 1) in the gauge group and therefore non-trivial solutions
of the supersymmetric vacuum equations in (2.6). It is important to understand the
physics of this further and to study whether such MSYM theories with non-compact
gauge groups and the corresponding supersymmetric vacua can be realised by D-branes
in string theory.

o The analysis of [4], summarised in section 2.2, shows that there are MSYM theories
on the hyperbolic space Hy. This strongly suggests that there is a realisation of these
gauge theories on the worldvolume of D-branes. It will be nice to show this explicitly
and to construct supergravity solutions describing the backreaction of these “hyperbolic
branes” in type II supergravity. Perhaps this can be achieved by following the same
approach as the one for the spherical brane solutions in [2, 3].

o We used a particular truncation of the 2d s0(9) gauged supergravity presented in [44, 53]
to construct the circular DO-brane solutions of interest in this work. It is natural to
expect that this supergravity theory contain many other supersymmetric solutions of
relevance to holography. In particular, it will be most interesting to understand whether
there are any supersymmetric black hole solutions with regular horizons in this theory
and whether some of the recent lessons learned in the context of JT gravity can be
applied to this 2d gravitational model with no AdSs vacua.

o We focused on SYM theories on S¢ that preserve the maximal number of 16 super-
charges. It is natural to expect that this could be generalised to theories with reduced
supersymmetry. One could for instance consider adding mass terms to the MSYM
Lagrangian in [4] that partially breaks supersymmetry and systematically studying the
possible supersymmetric Lagrangians. It will be interesting to pursue this further and
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understand whether, in the spirit of our analysis here, supersymmetric localisation and
holographic can be successfully applied to these less supersymmetric setups.

o Finally, we note that it will be very interesting to understand further the analytic
continuation of our results to d = 0. This should lead to a deformation of the IKKT
matrix model arising on the worldvolume of D(—1)-branes which will be very interesting
to explore further. Recently, precisely this type of deformations of IKKT that preserve
maximal supersymmetry but break the s0(10) R-symmetry to su(2) x so(7) were studied
in [42, 43] and it is desirable to understand whether a precise connection with our
approach can be established.
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A 2d so0(9) gauged supergravity

The three-scalar 2d gravity model studied in the main text can be obtained as a consistent
truncation of the maximal s0(9) gauged supergravity presented in [44, 53]. This maximal
supergravity theory arises as a consistent truncation of type IIA supergravity on S®, see [46]
for a recent discussion. The bosonic sector of the maximal theory consists of the metric,
a dilaton p, which is the only s0(9) singlet and couples non-minimally to the metric, 128
additional scalars transforming in the 84 + 44 of s0(9) and 36 gauge fields transforming
in the adjoint of s0(9).

To capture the physics of the BMN matrix quantum mechanics using 2d supergravity
we can perform a further sub-truncation specialising to the su(2) x so(6) invariant sector of
the maximal supergravity theory. Decomposing the s0(9) representations under su(2) x s0(6)
one finds that the only singlets, apart from the metric and dilaton, are one scalar x from
the 44 and one pseudo-scalar y from the 84.!'7 Combining the results of [44, 45, 54] we find

"In the notation of [44], these scalars are given by
¢789 =, Vma _ dlag (617 ez’ ez’ ez’ ez7 617 6721’ e72z’ 6721) ,

where ¢*'™ denotes the scalars in the 84 while the scalars in the 44 are collected in the matrix V,,® and
parametrise an SL(9)/SO(9) coset.
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the following action for this three-scalar 2d gravity model,
1 9
S=-— /Volg p (R — Z|dz|? = 2p7 %307 |? — V) , (A.1)
2kK5 2

where vols is the two-dimensional volume form and the potential V' is given by

9 p4/9€2:p p X )
Here g is the 2d gauge coupling constant which is related to the type IIA string length
and the number of DO-branes as (27l5g)~" = ;5’7]:; It proves useful to write the scalar
kinetic terms using the quantity
P,LL = a/_LfL’ —+ Waﬂx, (A3)
and introduce the superpotential,
g .
W= e ((2 +e)p!/® 4 1X> ; (A.4)

in terms of which we can rewrite the potential as
V:fl W2 + 330, W|? — 7|W |2 A5

Note that for x = x = 0 we obtain a model of 2d dilaton-gravity that is different from the JT
gravity model. For instance, there is no AdSy vacuum solution. Instead, the supersymmetric
50(9) invariant vacuum solution has a running dilaton and corresponds to the dimensional
reduction of the flat DO-brane solution of type IIA supergravity, see (A.9) below.

Instead of the flat, maximally symmetric, Lorentzian, DO-brane solution we are interested
in the Euclidean DO-brane solution with a compact S' worldvolume and the maximal
symmetry broken to su(1,1) x s0(6). Note that after analytically continuing to Euclidean
signature, the R-symmetry is non-compact and the scalar x becomes purely imaginary. As
argued in the main text, this 2d setup should describe the holographic dual to the Euclidean
BMN matrix quantum mechanics on S'. The three supergravity scalars are dual to the three
relevant operators in the matrix quantum mechanics. The dilaton p is dual to the gauge
coupling, while the scalar z and x are dual to the operators in (3.5).

This type of gauged supergravity consistent truncation is very similar to the supergravity
theories used to study spherical brane solutions, see [2], and in the following we will apply
similar methods to analyse the solutions of this theory. In particular, we expect all three
scalar to have non-trivial profiles in the bulk. To construct the solutions we consider the
following Euclidean ansatz for the metric

ds? = dr? + R%e*4(d7? (A.6)

where 7 ~ 7+ 27 is periodic and the metric function A only depends on the radial coordinate
r. The constant R is a placeholder that parametrises the radius of the circle. Assuming
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that all scalars only depend on the coordinate r» and using the supersymmetry variations
presented in [44], we can derive the following system of BPS equations

dr 4p
d 1
7‘7p = _*pwaxwa
dr (A7)
pY_ L waw
TdT - 2P T 9
dpdA

9 5 ~ 9 —
—— = —p*Wo,W + —pWW
ar dr _ 4 oVt 1? ’
where W is the analytic continuation of W but in Euclidean signature is not necessarily
equal to the complex conjugate. It is straightforward to verify that any solution to these
equations indeed solves the equations of motion derived from (A.1). In the main text it
proves useful to redefine the scalar fields as

1
T=3 log X, and y=ip"?Y, (A.8)

and treat X as the radial coordinate. After this rewriting, the BPS equations reduce to the
ones in (3.7). These equations can then be used to solve for the metric function A assuming
that Y does not vanish. In the remainder of this appendix we explore solutions to the BPS
equations where the scalar Y does vanish.

A.1 Analytic solutions

The system of 2d supergravity BPS equations admits two simple analytic solutions with Y = 0.
The first is obtained by setting X = 1 and Y = 0. In this case the BPS equations simplify to

dp _ 99 79 dA 7

—_— = A9
ar 2P dp  9p (4.9)
The solution to this system of equations is
7
A=Ci+glogp,  p=(9)"", (A.10)

where (' is an integration constant. This is nothing but the 2d supergravity incarnation of the
well-known solution describing the near horizon limit of coincident DO-branes. Indeed, one can
check that the 10d uplift of this 2d solution reduces to the background discussed in [1]. See also
section 5 for a discussion of this solution in relation to the thermal black brane backgrounds.

A second class of interesting solutions was constructed in [44] and has two running
scalars but a vanishing axion, x. To obtain this solution in our conventions we set ¥ = 0
and study the BPS equations in (A.7). It is also useful to record the BPS equations in
terms of the radial variable . They read

d 3

dp _ 3py,

éll; 21 29 (A-11)
oY - _ _2J —-2/9 —x 3:10_1

o 361W G e (e ).
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These equations can be readily solved and the solution reads

X3/2 " X7/3

= Aoy (A.12)

where Ag and Ry are integration constants. Note that in writing this solution we have
assumed that X > 1, i.e. £ > 0. One can also choose the other branch, i.e. x < 0, by
appropriately modifying the integration constants Ay and Ry. Using the second equation
in (A.11) and the explicit solution for p(X) one finds the 2d metric

B 9 Rg/ 9 642

d 2
° 4g% (e3* —1)

cda? + 240 dr? (A.13)

After setting Ag = Ry = g = 1 the results in (A.12) and (A.13) agree precisely with the
solution given in (3.7) and (3.8) of [44]. This supergravity background should be interpreted as
a continuous distribution of DO-branes which is smeared in an su(2) x so(6) invariant way on
the internal S®. The solutions are 2d gauged supergravity analogues of the smeared D3-brane
solutions studied in [55] and should be the holographic dual of the su(2) x so(6) invariant
states on the “Coulomb branch” of the BFSS quantum mechanics. This interpretation is
indeed consistent with the holographic analysis in [44, 45] where it was shown that these
solution do not have sources for the operators dual to p and =.

B Spherical branes

In the main text we argued that the BPS equations and equations of motion for the two-
dimensional dilaton-gravity can be obtained from the d — 1 limit of the d + 1-dimensional
gauged supergravity models used in [2, 3] to construct supergravity solutions describing
spherical branes with S worldvolume. Here we briefly summarise the relevant aspects of
said spherical brane solutions and refer the reader to [2, 3] for more details.

B.1 Gauged supergravity construction

The spherical D(d—1)-brane solutions can be described uniformly as solutions to a three-scalar
truncation of the maximal gauged supergravities in d + 1 dimensions. These theories can
be obtained from the reduction of type II supergravity on S°~¢ analytically continued to
Euclidean signature and truncated to the su(1,1) x s0(7 — d) invariant sector. The relevant
truncation consists of the metric, one real scalar n and one complex scalar 7 parametrising an

SL(2)/SO(2) coset. The bosonic action for the relevant (Euclidean) gauged supergravities is'®

1
S = / volgy1
251

where volgy 1 is the d + 1-dimensional volume form, the potential V' is given below, the Kéhler

3d—1
R+ §m|d7’]|2 — 2K7%|d7'|2 -V|+ ;S’GH7 (Bl)

potential on the scalar coset is L = —log 75* and the Kéhler metric is given by K77 = 0-0:K.

18To conform with the notation in [2], in this appendix we use 7 to denote a complex scalar field. This
should not be confused with the coordinate 7 used in the main text.
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The relation between the 2d Newton constant Hz 11, the gauged supergravity coupling g, the
10d string length ¢ and string coupling gs is given by

10—d
(271'5 )8 2T B
K?H—l = 87 <10—d ) 99 d . (B'2>

w2

For d > 4 the gauge theories on the worldvolume of the branes are IR free, while for d < 4
they flow to strongly interacting QFTs in the IR. This difference in IR behaviour is reflected
in a dichotomy in the detailed description of the supergravity solutions. Since our interest
lies in the limit d — 1 we focus on the d < 4 case and refer the reader to [2, 3| for details on
the case d > 4. For d < 4, we can define the complex superpotentials

d—
W = —ge/? <37’—|—1(7 d)e™ 7= ) , (B.3)
— _d-1
W = —ge/? (3? —i(7 = d)e w”) , (B.4)
in terms of which the potential takes the form
1 7T—d d
== "D, WD:- B.
V= e (3(d_1)awaw+ KD WD - )ww> (B.5)

with D, = 0, + 0,K the Kahler covariant derivative.
The spherical brane solutions are domain walls of the Euclidean supergravity with the
following metric

ds?, ;= dr? + R22AMd03 (B.6)

where (22 is the metric on the round unit radius d-sphere with volume V4 = 27 H0/2 /T ((d 4 1)/2)
and R is a bookkeeping constant that indicates the size of the sphere.
A useful redefinition of the scalar fields is provided by

r=ie (X +Y), F=—ie Td(X —Y). (B.7)
In terms of these fields, and using X as the radial coordinate, we can uniformly write the
BPS equations for any d < 4 as

Y (d—3)?2?+42—-d)X +7X%2-Y?
S 2X 20 -X)3—-d+X)—-Y? ’
7—d B-d+X)2-Y?

2d-1D)X201-X)B3—-d+X)—-Y?’
while the BPS equation for the warp factor, A, reduces to the following algebraic expression

R22A _ D X(3—d+X)2—Y2.

Y/(X) =
(B.8)
(X)) = -

Y2 (B.9)
Finally, using the coordinate X we can write the metric as
(3—d+X)2-Y?) —2¢-a) dx? X%
ds?, = 7= 'l —dQ7|. B.10
Sd+1 X g2 ¢ 20—X)B—d+X)—v2)? (B-10)

For completeness, we note that the derivative of X with respect to r can be written as,

X'(r) = a1, VX(2(d =3+ (2 - d)X + X?) +Y?)
K JB_drX)Z_V? '

(B.11)
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B.2 Uplift to ten-dimensional type Il supergravity

Any solution to the above BPS equations can be uplifted to type ITA or IIB supergravity
depending on the value of d. The type II string frame metric for these backgrounds is given by

2(d—4)
7—a

7
ds2:% dsdy + 2

(462 + P cos? 0403 + Qsin® 04 _y) | - (B.12)
where dfl% is the metric on unit radius dSe and d©2? is the metric on the unit radius round
S™ with volume V,. The gauged supergravity coupling g can be expressed in terms of
string theory quantities as

gsN
27’[‘V7_d '

(2mlsg)* % = (B.13)

The internal metric is topologically a dSg_4, with the squashing functions P and @ given by

T Xsin?0+ ()?g —Y2)cos20’ @= sin? +XX cos26 (B-14)
The ten-dimensional dilaton has the following form,
e?? = g2e SR d)” Q (B.15)
Finally, the non-trivial form fields in the background are given by
By Rt };P cos® @ voly
Co_q = 16_%77}/7@ sin®~ 4@ volg_g, (B.16)

where \;812 and vol,, are respectively the volume forms on unit radius dS, and S™. The
function w(#) is defined such that in the UV, i.e. when (X,Y) — (1,0), the exterior derivative
of Cs_4 reduces to a multiple of the volume form of dSg_g4,
d . T—d 2 0 i 6—d
W (w(ﬁ) + cos 6 sin 9) = (8 — d) cos”Hsin® 0. (B.17)
The UV region of the spherical brane solutions is located at (X,Y) = (1, 0), where the solutions
reduce to the flat Dp-brane solutions of type II supergravity [1]. The IR region is located at
d—1 2(d —4)

XIRzi, YIRZ:E

_ B.18
. =, (5.15)

where the scalar n approaches a constant value nr and the metric smoothly caps off.

In order to compare these solutions with their holographic duals, i.e. the MSYM theory
on S¢, it will be useful to explicitly provide the holographic dictionary between the various
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parameters on the gravity and gauge theory side. In our conventions, the D-brane tension
and Yang-Mills coupling constants are given in terms of string theory quantities as

27 9 (27)2 g, 27y
L - = . B.19
Hd—1 (27T€s)d’ gym (2W€s)4ud—l (27T£S)4_d ( )
Finally, following [3], we define the dimensionless holographic 't Hooft constant as
- 27T95NdR4_de(4—d)Ae%n ' (B.20)

(2mls)4— oV
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