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Maritime transport is responsible for producing a considerable amount of environmental pollution due to the
reliance of ports and ships on the carbon-based energy sources. With the increasing trend towards port elec-
trification to reduce carbon emissions, the operation of ports will be increasingly relying on the electricity
network. This interconnection creates multiple challenges due to the complexity of power flow in the port
network, uncertainty of vessel arrival time and fluctuation of power generation of renewable energy sources.
These uncertainties can lead to an overload in electricity networks and delays in cargo-handling activities,
resulting in increased vessel handling times and environmental emissions. This paper presents a joint logistics-
electric framework for optimal operation and power management of electrified ports, considering multiple un-
certainties in the arrival time of vessels, network demand, and renewable power generation. An optimal power
flow method is developed for a real-life port, with consideration for multiple port logistic assets such as cargo
handling equipment, reefers, and renewable energy sources. The proposed model ensures feasible port operation
for all uncertainty realisations defined by robust optimisation, while minimising operational costs. Simulation
results demonstrate that the probability of a network constraint violation can be as high as 70% for an electrified
major UK port if the uncertainty in the port operation is neglected, presenting an unacceptable risk of disruption
to port activities. Furthermore, such uncertainty can cause 150% increase in emissions if the ships use their
auxiliary engine instead of using shore power. The numerical study shows that such challenges can be handled by
a 0.3% increase in the robustness in face of uncertainty, while the cost increase in the worst case does not exceed
4.7%. This shows the effectiveness of the proposed method enhancing robustness against uncertainty at the
minimum cost.

Organisation, “Fourth IMO GHG Study,”, 2020). Ports play a key role in

1. Introduction

Maritime transportation accounts for approximately 80 %-90 % of
global trade, and is responsible for producing 2.5 % of global greenhouse
gas emissions (Chua et al., 2023). These figures can increase up to 44 %
by 2050 if no appropriate actions are taken according to the Interna-
tional Maritime Organization (IMO) (International Maritime

achieving the 2050 maritime transportation net zero emissions which is
a strategic ambition of many governments and other stakeholders (e.g.
the UK government’s Clean Maritime Plan (Department for Transport,
2019). Achieving such an ambitious plan, however, requires significant
investment in ports along with investment from ship owners and bunker
fuel suppliers. Thus, one of the critical steps towards realising net zero
targets is port electrification.

Abbreviations: IMO, International Maritime Organization; FLTs, Forklift Trucks; CHE, Cargo Handling Equipment; EVs, Electric Vehicles; IEVs, Industrial Electric
Vehicles; RLE, Robust Logistic-Electric; PoT, Port of Tyne; CCG, Column and Constraint Generation; MP, Master Problem; SP, Subproblem; MGO, Marine Gas Oil;

PoCV, Probability of Constraint Violation.
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Nomenclature

Sets

Aj Set of nodes connected to node j except its parent node.

Dt Uncertainty set of nodal net injection at time t.

Qp, 2, 2, Set of network branches / nodes / time periods.

Qp s Set of network branches connected to the substation
busbar.

Q,p/c  Set of network nodes that supply shore power demand or
cranes.

Qy Set of vessels served by cranes (container ship, biomass
carrier, plywood carrier).

Q, Set of industrial EVs

Q. Set of cranes.

2 Set of reefers.

Indices

i,j Indices of nodes/buses (i, j € Q,).

ij Index of branch ij (ij € Q).

r Index of realization for uncertain vessel arrival times.

t Index of time.

v Index of vessels served by cranes.

c/e Index of cranes/industrial EVs.

q Index of reefers.

Variables

¥Sor Binary variable indicating the operation of the crane c for
vessel v at time period t.

d Uncertain net injection of node i at time t.

I Current magnitude of branch ij, at time t.

Ly, Squared current magnitude of branch ij at time t.

Py, Qi Active/Reactive power flow from node i to j, at time t.

P7,; Average power consumption of crane c for unloading
vessel v during time t.

Pfts”' /Pftsd”" Charging/Discharging power of energy storage.

PE\[’“ Charging power of all industrial EV e of a specific category
(i.e., container tractors, reach stackers, empty handlers,
trucks, forklift trucks).

PEX”" Power consumption of operating industrial EV.

PJCPE Total power consumption from all cargo handling
equipment (i.e., cranes, hoppers, and industrial EVs) at bus
j at time t.

P?ﬁef Reefer power consumption at time t.

Pﬁfef Cumulative power consumption of all reefers at bus j.

SOijf State of charge of energy storage installed in busj at time t.

SOCEY  State of charge of all industrial EVs of a specific category.

Vie e Voltage magnitude / Squared voltage at node i, time t.

pyL Vessel load for each vessel v at time step t.
Wy Binary variable which indicates the selected realization r
for the uncertain arrival time of vessel v.

ff Binary variable indicating the state of charge of energy
storage.

v Lt Auxiliary binary variables used to define the uncertainty
set.

Oq.t Internal temperature of the reefer r at time t.

Parameters

cd, Call duration of vessel v.

HE Nominal value of the net injection of node i at time t.

A: Deviation from the nominal net injection for node i at time
t.

Ij max ~ Ampacity of branch ij.

LFEY Load factor of industrial EV.

o Total number of industrial EVs of a specific category.

NEV Number of industrial EVs (of a specific category) per
operating crane.

N, Number of possible realisations for uncertain vessel arrival
times.

Ny Number of staff required per operating crane for vessel v.

PP.QP  Active / Reactive power demand at node i, time t.

Pf,Q%  Active / Reactive power generation at node i, at time t.

PES Power rating of energy storage.

PEV:’"‘;X Maximum power of each unit of a specific industrial EV
category.

Pgeeﬂw Maximum power consumption of reefer.

prax Maximum crane power consumption.

e Price of electricity and environmental emission at time t.

Ry, X;j  Resistance / Reactance of branch ij.

SOC]'.ZS“‘ax Maximum state of charge of energy storage.

SOCEY»:  Maximum state of charge of each unit of a specific
industrial EV category.

T Number of time periods.
tarr,vs tdep,y Arrival and departure time of vessel v.
Ua Uncertainty of vessel arrival times.

Vimax Vmin Maximum and minimum voltage limit.

VL, init Initial load of vessel v.

we Workforce cost

At Duration of a single time period.

nEv Battery efficiency of industrial EVs.

;1]53 Battery energy efficiency of energy storage installed at bus
j-

Gamb Reefer ambient temperature at time t.

Additional load from electrification will clearly have a significant
impact on port electricity networks, in terms of capacity and voltage
limits. This impact is further exacerbated by uncertainty — not only
around expected levels of network demand and renewable power gen-
eration — but also, and most importantly, by port operation such as
uncertainty in the vessel arrival time. For example, if the departure of a
ship and the arrival of another are expected to be temporally close to
each other, a potential overlap even for one hour could lead to a sig-
nificant overload on the port’s electricity network due to the need for
using shore power. Therefore, in an electrified port, port operation can
have major risks to both the port’s operational performance and the
integrity of its electrical infrastructure. Furthermore, the delay in sup-
plying the ships through cold ironing can have a major environmental
impact due to the need for running the ships’ auxiliary engines while

waiting to be served. More dramatically, as shore power gets greener,
the emissions from not connecting to shore power because of uncer-
tainty in arrival time of vessels will rise.

These challenges (i.e. electrification of port networks and un-
certainties in port logistics operations) initiates the necessity of a
framework for port operation. Such a framework could be applicable for
electrified ports, while taking the uncertainty of different parameters (e.
g. vessel arrival time, renewable power generation, etc.) into account.

1.1. Literature review

Existing research focuses on either the logistics and operations ac-
tivities of ports (e.g. (Giallombardo et al., 2010) or the power manage-
ment of ports (e.g. (Sun et al., 2022). Operational activities have been
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dependent on heavy fuel oil (for ships) and diesel (for port equipment),
rather than electrical supplies. However, with the increasing trends to-
wards port electrification to reduce carbon emissions, the interaction of
ships and ports will not only be governed by operational constraints but
also by the power flow constraints imposed by the port’s electricity
network (Fang et al., 2020). Two major examples of port electrification
are: 1) shore power (ships are supplied from the port electricity network
to satisfy their ‘hotel’ demand (e.g. lighting, air conditioning) and
‘mission’ load (systems and machinery for cargo storage and transfer)
while at berth and with their engines switched off), and 2) electrification
of port cargo handling equipment (Frontier, 2019). This leads to the
concept of the electrified port, where all berthed vessels and cargo
handling equipment (where technically feasible) are supplied by the
port’s electricity network. The literature review is conducted based on
existing studies in the field in available databases. The available
research works are categorised into a) the logistics-based operation, and
b) electric power management of ports. This categorisation enabled a
systematic analysis of available literature to understand the gaps and
develop a comprehensive operation model.

1.1.1. Logistics-based operation

In this study, the term ‘logistics’ is used to refer to the operations
required to unload cargo from a berthed vessel and transfer it to the
required location within the port, e.g., to the container yard, ware-
housing, or transit sheds. This requires managing the operation of
various types of port assets such as cranes, hoppers, trucks, container
tractors, reach stackers, empty handlers, forklift trucks (FLTs), etc.
These assets are referred to as cargo handling equipment (CHE) in the
rest of this paper. Optimal CHE scheduling is required to minimise
overall costs while increasing cargo throughput, and thereby ensure a
successful and effective operation of the port. Strategies to achieve this
include optimising resource utilisation (berths, CHE, workforce) and
reducing vessel handling times (Bierwirth and Meisel, 2015), all of
which can result in increased productivity and operational efficiency.

Research in this area (Giallombardo et al., 2010; Agra and Oliveira,
2018) originally focused on crane scheduling and berth allocation
mainly for container terminals. Nowadays, increasing fuel prices and the
necessity of reducing environmental emissions have made energy con-
sumption one of the top concerns of ports (Dulebenets, 2022), resulting
in an expansion of CHE scheduling problems to include energy-aware
optimisation of operations (Iris and Lam, 2019). Objectives of such
optimisation problems include minimising energy consumption and
emissions, which could be achieved, e.g., through CHE routing to reduce
distance travelled (Sha, 2017). Hu et al. (Hu et al., 2014) propose a
multi-objective mixed-integer programming model to solve the inte-
grated berth allocation and quay crane assignment problem with
consideration for vessel fuel consumption and emissions, while
improving berth and crane utilisation and maintaining service quality.
The impact of the number of quay cranes allocated to a vessel on port
operational costs and vessel fuel consumption and emissions is also
analysed. References (He et al., 2015; Liu and Ge, 2018; Yue et al., 2024;
Kenan et al., 2022) have incorporated energy consumption and emis-
sions into quay crane allocation and scheduling problems, while
extending to decision making for other port CHE, such as yard cranes
and trucks. The majority of the literature in this context (e.g. references
(Liu and Ge, 2018), and (Yue et al., 2024) considers berthed vessels use
their auxiliary engines to power onboard CHE or diesel-powered CHE
available at quayside which can bring about considerable emissions.

1.1.2. Electric power management

Energy efficient policies and operations achieve worthwhile but
limited emissions reductions, especially when applied to ships and CHE
fuelled by carbon-based energy sources. To achieve emissions re-
ductions by nowadays standards, alternative methodologies should be
applied to achieve a balance between cost and environmental benefits
(Peng et al., 2021). Electrification is one such solution and
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decarbonisation of national electricity supplies through the introduction
of renewable energy generation is further increasing its emissions
reduction efficacy. Electrifying port energy demand can increase the
wind power penetration in the energy network due to the fact ports are
extended along the coastline, which is a potential location for offshore
wind turbines.

With shore power and CHE electrification being implemented at
ports globally and in the UK, research on the problems of port power and
energy management is growing, not only to identify methods to manage
the significant additional demand these technologies will place on port
power networks, but also to maximise benefits from flexibility and
enhanced controllability delivery by digitalisation. References (Sun
et al., 2022; Yu et al., 2022; Kanellos et al., 2019; Wang et al., 2022)
considered shore power and electrification of some CHE, although
emission reduction has not been considered in all of them. Sun et al. (Sun
et al., 2022) investigated optimal voltage control and berth allocation in
a port microgrid, accounting for cranes but without scheduling their
operation and without considering other CHE. Reference (Yu et al.,
2022) utilised a similar approach while accounting for emission reduc-
tion. In (Kanellos et al., 2019), a multi-agent optimisation is used for the
port power management considering the loads of shore power, refrig-
erated containers (reefers), and electric vehicles (EVs) but without
modelling the operation of CHE. Wang et al. (Wang et al., 2022) studied
the day-ahead optimal scheduling of ports with the aim of reducing
energy costs and carbon emissions, by considering gas and hydrogen and
taking CHE into account. The explicit assets operation has been
neglected by the authors, while the connectivity with the vessel opera-
tion is also missing in the optimisation model.

Finally, the effect of uncertainty on the optimal operation of elec-
trified ports has not been considered in the majority of the literature,
which may result into the electrical demand of the ports exceeding ca-
pacity limits if not carefully scheduled. Although Zhang et al. (Zhang
et al., 2022) investigated the effect of uncertainty on the port operation,
the lack of electricity network, however, the authors have not demon-
strated the effect of uncertainty on network overloads and voltage limits.
Neglecting vessel arrival time is another missing aspect in the literature
(Zhang et al., 2022). The importance of uncertainty in vessel arrival time
is shown in (Norlund and Gribkovskaia, 2017). To this end, frequent
schedule changes are the last thing port planners want to see (Liu et al.,
2017). This could be because of a potential network overload, especially
in electrified ports, where the prevention of which could result in
reduced CHE and workforce utilisation and increased carbon emissions
due to extended vessel waiting times. The latter is a substantial concern
as the auxiliary engine’s emissions could be as high as 722 g/kW-hr CO4
production (Nguyen et al., 2022) due to the delay in supplying the ships
with shore power.

2. Research gap

The majority of literature on optimising the scheduling of port op-
erations (He et al., 2015; Liu and Ge, 2018; Yue et al., 2024) considered
berthed vessels using their auxiliary engines which can produce a sizable
amount of environmental pollution. Although recent studies have star-
ted to incorporate emissions and energy consumption into the sched-
uling problems (Sha, 2017; Hu et al., 2014; He et al., 2015; Liu and Ge,
2018; Yue et al., 2024; Kenan et al., 2022), the majority of these research
works focus on large container terminals and carbon-based fuels rather
than ships supplied by shore power and electrified CHE. Furthermore,
the literature on multipurpose ports is lacking, basically because such
ports have diverse cargo mixes and different types of vessels, CHE, and
port facilities, resulting in more variable shore side activities and less
predictable energy demand. On the power management side (Yu et al.,
2022; Kanellos et al., 2019; Wang et al., 2022), optimal power and en-
ergy management of ports is a relatively new and fast developing
research area. Most of the literature so far have considered energy costs
(Wang et al., 2022), optimal energy management including renewables
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and storage (Kanellos et al., 2019), and — more recently — reducing
emissions (Yu et al., 2022), but few studies considered the physical and
operational constraints of electricity network in conjunction with lo-
gistics operation of ports and CHE scheduling. Finally, concerning the
impact of uncertainty (Zhang et al., 2022), there is a notable absence of
analysis on how the uncertainty in vessel arrival time influences power
operations. In summary, the following gaps are observed based on the
literature:

- With the increasing interests in electrification of ports (Sarantakos,
2023), the coordination of port assets and the requirement of elec-
tricity network could be the key for avoiding reinforcement. There is
a scarcity of literature that deals with the near future interdepen-
dency between the operations of ports (vessel unloading and cargo
handling activities) and their electricity networks. This leaves elec-
trified ports vulnerable by having their operations, and thus com-
mercial performance and competitiveness, dependent on the ability
of their electricity network to meet the required power demand at
any given time. Therefore, a comprehensive logistic-electric port
operation model is required to investigate the interdependency of
port and its electricity network.

- Uncertainty associated with the operation of electrified ports is
another challenge which requires further investigation. For example,
if uncertainty of vessel arrival times is not considered, cargo
handling activities would have to be delayed, resulting in increased
vessel handling times and emissions, and significantly reduced ser-
vice levels.

- Studies on optimising port operations and CHE scheduling, including
those that also aim to reduce emissions and energy consumption are
limited mainly to large container terminals. Few (if any) consider
smaller multipurpose ports which represent the majority of UK ports,
and also need to be considered if UK maritime decarbonisation tar-
gets are to be achieved.

For port electrification to successfully contribute its full potential to
maritime decarbonisation through coordination of assets, it is essential
that the additional demand placed on port electricity networks does not
disrupt port operations or have a detrimental effect on port perfor-
mance. Thus, studies that investigate the multipurpose port operation
are required to address the above research gaps by: 1) modelling and
scheduling of electrified port CHE and their impact on port electricity
networks, and 2) considering the impact of uncertainty (especially
vessel arrival time uncertainty) on the operation of electrified ports.
Such a framework could be an alternative for the port reinforcement
which can cause considerable planning costs.

2.1. Contributions

This study attempts to fill the aforementioned gaps by proposing a
robust logistic-electric (RLE) scheduling strategy to optimise the oper-
ation of multipurpose all electric ports with consideration for uncer-
tainty in the vessel arrival time. The impact of neglecting the
uncertainties in optimising the operation of all electric ports is demon-
strated, while a RLE based framework is developed to appropriately
manage uncertain vessel arrival times as well as uncertain levels of
network demand and renewable power generation. The proposed RLE
framework optimises the logistics operation ports including cranes,
CHE, and reefers, with the aim of minimising the total operation costs
(comprising energy, carbon emissions, and workforce costs) while
ensuring that network limits are not violated in the presence of uncer-
tainty. Multiple network loads including shore power, electrified CHE
(multiple types, including mains connected and battery-powered, which
correspond to the specific operations for unloading and handling a range
of cargoes from different types of vessels), and the refrigeration demand
of reefers, as well as energy storage and renewable power generation are
considered in the operation of the electric port. The proposed method is
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tested on Port of Tyne (PoT) (Sarantakos, 2023), as a real-life port to
validate the efficiency of the proposed optimisation. Generally, the main
contributions of the paper are therefore as follows:

e Introducing robust logistic-electric (RLE) optimisation framework
for electrified ports, considering shore power and electrified CHE.
The proposed framework links the power flow of electric power
network of the electrified ports to the logistic operation to explore
flexibility that can be enabled through optimal control of different
port assets.

e Addressing the uncertainty of vessel arrival time as a critical chal-
lenge affecting the realisation of the network constraint in optimal
operation of electrified ports. The proposed framework demonstrates
the substantial consequences of neglecting potential uncertainties in
the optimal operation of all electric ports and introduces a set of
constraints into the optimisation problem to prevent the violation of
network constraints under the influence of multiple uncertainties,
specifically vessel arrival time. The proposed method shows how
flexible assets within a port can improve the system robustness in
face of uncertainty in arrival time of vessels.

Developing a convex multi-level optimisation problem for optimal

operation of all electric ports to ensure viability (in terms of

achieving optimality) of the results for a real-life port system.

These contributions aim to address the research gap identified in
Section 1.2. Table 1 provides a summary of the relationship between
each research gap and the contributions of this study.

The rest of this paper is organized as follows. Section 2 presents the
mathematical formulation used for modelling the proposed logistic-
electric port operation. Section 3 presents the associated problem
formulation with uncertainty. Section 4 defines the solution methodol-
ogy. Section 5 provides an overview of the PoT network and the data
associated with its operation. Section 6 illustrates the corresponding
simulation results. Finally, Section 7 draws the conclusions of this paper.

3. Mathematical description of port operation

The operational processes that follow the arrival of each vessel type
are described in this section. When a vessel arrives at the container
terminal, containers are unloaded by the port’s cranes onto container
tractors, which transport them to the container yard; there, reach
stackers and empty handlers stack and position containers as required.
The biomass cargo handling operation is shown in Fig. 1, where cranes
lift the biomass from the vessel’s holds into hoppers on the quay and is
then transferred via trucks to a warehouse. Subsequent rail transport to
the power station is not included in this modelling. Regarding plywood,

Table 1
Alignment of research gap and contributions of this study.

Research gap Contribution of the paper towards the

gap

=}

o There is a lack of literature addressing Presenting a RLE optimization

=}

=}

the imminent interdependence
between port operations and their
associated electricity networks.

Studies focused on optimizing port
operations and CHE scheduling are
predominantly confined to large
container terminals, with minimal
attention given to smaller multipurpose
ports.

The uncertainty of vessel arrival times
is not considered in the literature,
which can lead to several challenges
such as delayed cargo handling
activities, and elevated emissions.

framework for electrified ports,
considering shore power and
electrified CHE, linking the electric
and logistic operation of ports.
Developing a convex multi-level
optimization problem for the optimal
operation of all-electric ports to
ensure practical applicability for
real-life multipurpose ports.

(=]

(=]

Addressing the uncertainty of vessel
arrival time, a critical challenge
impacting network constraints, by
introducing constraints to prevent
violations under multiple
uncertainties.
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Arrival:

¢ Vessel operator liaise with
port operator and agrees
on arrival timeframe and
services required

e Cargo vessel arrives at
port

Navigation:

e Vessel arrives at port and
is directed to the correct
berth.

Bulk handling (lift
off):

e Vessel is unloaded using
shoreside equipment. For
this case, the wood pellet
is lifted off by crane's
grapple and released into
the hopper.
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Transfer to site
storage:

¢ The cargo is then
transferred to a
warehouse via multiple
return journeys with
dump trucks.

Transfer away from

site:

® The cargo is loaded onto
the freight train and

tranferred to the power
station via conneting rail.

Fig. 1. Port operations following the arrival of a bulk carrier, transporting biomass in the form of wood pellets (Catapult, 2021).

cranes unload the cargo onto the quay, where it is transported to storage
using the port’s FLTs. Finally, the car terminal operations involve only
shore power equipment in this modelling, as cars are driven on/off the
vessel and parked in the terminal without the use of any CHE.

This section introduces the mathematical representation of the pro-
posed logistics-electric port operation model based on the operational
process described above. The objective function, port electric network
constraints, and logistic model of different port assets are described in
this section. The proposed RLE optimization framework is based on the
following assumptions:

The call duration of vessels at berth remains constant.

The maximum uncertainty around the arrival time of vessels is
limited to two hours.

The port operator possesses the authority for optimal electric power
management of the port.

Efficient CHE is accessible in the port to unload vessels during their
time at berth.

3.1. Objective function

The objective function of the proposed optimisation model is
composed of the workforce cost, and operational cost of electricity and
carbon emissions, as represented below:

min g = S [ v )|+

1€Q; cEQVEQ,

> (e x Pyy)

€55

@

where the first term represents the workforce cost based on the number
of staff required per operating crane (i.e.N}’'). The binary variable ch,v,:
represents the operation of cranes while wc is the workforce cost
parameter. The second term in (1) represents the operational cost of
electricity and carbon emissions., where II{¢ is the price of electricity
and environmental emission at time t and Py, is active power flow from
node i to j, at time t.

3.2. Port electricity network constraints

The port network is a low voltage network, with logistic assets as the
consumers and possible small-scale generation units. The port network
is modelled using DistFlow branch equations which is convexified using
the method described in (Farivar and Low, 2013). The port power flow
equations are modelled based on Fig. 2. Based on this figure, the active
(and reactive) power flow at the sending node of branch ij equals the: a)

losses

Fig. 2. Graphical representation of the DistFlow branch equations.

sum of power flows from node j to nodes k1, k2,..., kn, b) branch losses,
and c¢) demand at node j minus generation capacity at node j (Baran and
Wu, Apr. 1989). Accordingly, the port power flow equations are
modelled as below:

Py, = ZP/'k.z +R;Lij, +Pj'?, fP].GJ,Vij cQ )
keA;

Qi = Qi+ XyLiyo + QP — QF Vij € Qy 3)
kea;

Wy = iy — 2(RyPy, + Xy Q1) + (R;. + x;.) Ly, Vij € Q )

wy, =V}, VieQ, ()

Lis= (P}, + G3,) fuee = T2, Vij € @, )

V2 <u, <Va Vi€ Q, )

LI Vi € Qp ®

Where (2) and (3) represent the active and reactive power flow at
sending node of branch ij. Parameters R; and X are resistance and
reactance of branch between buses i and j. Variable u;, and L, in (4) are
defined to facilitate the convex formulation of the power flow model.
The former is defined based on voltage magnitude in Equation (5) while
the latter is defined in constraint (6) based on active and reactive power
flow at sending node of branch ij. Finally, constraints (7) and (8)
represent the limits on u;; and Ly,.

These equations are referred to as the relaxed branch flow equations.
Eq. (6) turns the optimisation problem into a nonconvex model due to
the quadratic terms in this equation. Therefore, it has been relaxed to
(Farivar and Low, 2013):
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H 2sz.z 2Qij.t sz.t — Uiy HZSLU.J + Uiy ()]
Incorporating energy storage, CHE comprising of both mains-connected
cranes and hoppers as well as battery-powered industrial EVs (e.g.
container tractors, reach stackers, empty handlers, trucks, forklift
trucks), and reefers into the port network, equations and can be modi-
fied as below:

Pji— Y Py — Ryl = P, — PS4 P — PR + PR 4 PRl vijj e @
kj—k

(10)

Qi = Y Qs — XLy = QF, — OF, — O Vij € @, an

kj—k

These constraints represent the power flow equations based on the
active/reactive power of different logistic-electric assets in the port.
Note that the power consumption of CHE is comprised of the power
consumption of cranes, and charge discharge power of industrial EVs, as
defined below:

PCHE Z Z

CEQVEQ,

DS (P"V“’) (12)

e€Q,ceQ,

where Q. is the set of industrial EVs (of a specific category) per operating
crane, e.g., three for container tractors. In the following, the logistic-
electric operational models of different assets are described.

3.2.1. Cranes

Cranes are one of the main elements of ports and play a vital role in
cargo movements inside the port. The operation of cranes depends on
the arrival of vessels in the port, i.e., the cranes start operating if the
vessels are available to unload. Therefore, in this study the crane’s
operation is modelled based on vessel load, as below:

PYfﬂ _ PVL ZPL o 13)
cEQ,

P =P as

P, =0 15

0<P /S, x P (16)

7S, = 0,9 & [tur s taep.] a7

Eq. (13) relates the vessel load (i.e. P ) to the operation of the cranes (i.
e. P, ). It should be noted that these equatlons apply to those vessels for
which cranes are used to handle their load (i.e. all vessels except car
carriers). The initial load of each vessel is given in. Without loss of
generality, it has been assumed that each vessel has an initial load that
needs to be unloaded, as indicated by constraint. Constraint represents
the maximum power consumption of cranes based on their operation
status (i.e. in operation if y¢,, = 1, and not operating if y¢,, = 0).
Finally, constraint (17) indicates that the operation of the cranes is
subject to the arrival and departure time of vessels.

3.2.2. Industrial electric vehicles

Industrial EVs include container tractors, reach stackers, empty
handlers, trucks, and FLTs. The operation of industrial EVs depends on
the operation of the corresponding crane. For example, container trac-
tors, reach stackers, and empty handlers at the container terminal start
their operation, if a crane operates. Accordingly, the power consumption
of an operating industrial electric vehicle (IEV) is modelled as below:

Ev,,,, ZZ <7c ; t) LFEV PEVn/» (18)

VEQ,cEQ,
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The load factor LFEV is utilised in this equation to consider discharging
the EV battery at an average power when it is operating. Finally,PEVm is
the maximum operating power for each unit of a specific industrial EV
category. The power consumption for charging industrial EVs (i.e. PE}’C")
of each category is represented by (19).

0<PE < (ZZ r) P 19)

CcEQVEQ

This equation also shows the dependency of charging an industrial EV to
the crane operation. If cranes do not operate (i.e. y¢,, = 0) for vessel v at
time t, all industrial EVs of a specific category can be charged. Based on
equations (18) and (19), the state of charge of industrial EVs of a specific
category can be modelled as below:

SOCLY,, = SOC +PSf s’ —Pef” n” 0
0<SOCEY <SOCEYm 2D
SOCEY =soctY (22)

el € lend

The state of charge of an industrial EV of a specific category is modelled
by, and constrained by. In order to consider a representative day, the
state of charge at the beginning and the end of each day should be equal
as indicated by.

3.2.2.1. Energy storage. Energy storage can play a vital role in electri-
fication of ports. This technology can be utilised to store excess renew-
able energy generation and used when it is needed. Such capability can
add a valuable flexibility to the port operation which can bring about
benefits for different stakeholders. Energy storage has been considered
as another asset in the port, and its operation is modelled as below
(Gholami et al., 2019):

SOC, = SOC + Pyt — P [ @3)
0<S0CE <SOCHm 24
USAANR Y >

OSP/ @ <(1 = &) x P (26)
Equation links the change of the state of charge between consecutive
time steps with the charging and discharging power of the battery. Eq.
(24) limits the state of charge of battery energy storage. Egs. (25) and
(26) enforce the limits on the charging and discharging power of energy
storage, respectively.

3.2.2.2. Reefers. Refrigerated containers, which are known as “reefers”
are one of the main elements of port energy consumption due to their
abundancy. These technologies can be considered as a potential shift-
able loads in the port network, where a slight change in the temperature
can have a considerable effect on the optimisation problem (Nikkhah
et al., 2021). Equation relates the change of the internal temperature of
the reefer with its power consumption and ambient temperature.
Equation calculates the total power consumption of all reefers at Bus j of
the port network. Temperature limits are enforced by, while the power
consumption of the reefer is limited by.

Oguvt = Op — b-Pre +a- (6™ — 6,,) 27)
PRt =y " phet (28)
qeQy,

O <0, <07 (29)
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4. Uncertainty modelling

Electrification of ports can present multiple risks to the electricity
network. The need for providing power for berthed vessels through cold
ironing could bring about potential overloading condition for the elec-
tricity network. Therefore, an optimal power management strategy is
required to provide the vessel demand while considering the network
limits. Under such circumstances, uncertainty associated with different
inputs of such optimisation problem, especially the arrival time of ves-
sels could bring about a considerable challenge in the decision-making
process.

This paper employs a two-stage adaptive robust optimisation to deal
with the possible risk of overload in electrified ports under presence of
uncertainty. This method is able to provide a feasible solution for all
possible realisations defined in a given uncertainty set and has multiple
advantages over other uncertainty modelling techniques. Firstly, it does
not require the probability distribution function of the uncertain pa-
rameters compared to stochastic programming and chance-constrained
optimisation. Stochastic programming can easily become intractable
when the number of scenarios increases (Sarantakos, 2022), and chance-
constrained optimisation produces solutions with a given probability
which might not be desirable or acceptable in a specific cases. Secondly,
it is computationally tractable when used with column and constraint
generation and the uncertainty set obeys specific rules. This section
presents the proposed RLE method based on the formulation provided in
the previous section.

To fully link the uncertainty of vessel arrival time to the shore power
demand (i.e.P]’.?t), this study introduces constraints (31)-(36) into the

optimisation problem. Binary variable I;; represents the status of load at
bus i, at time step ¢, i.e., I; takes 1 if a vessel is at berth, otherwise it is
zero. The auxiliary binary decision variable w,, indicates the selected
realisation r for the uncertain arrival time of vessel v and it is used to
choose the worst-case realisation.

Do =1 €10)

t=tyrry— Uy +r—14cd,—1

Los,  2cdyw, ., Vr =1,.. N, (32)
t=tyry—Un+r—1
> s = cd, (33
1€Q,
[busr.r = [bus(._th S Qr (34)
Ii,[ = laVl ¢ Qn.sp/th S Ql (35)

L = 0,Vi € Quopse, Vt € [1,tywy — Uy — 1] U [taepy + U + 1, T} (36)
It is assumed that the call duration of a vessel is fixed and does not
depend on its arrival time. Constraint (31) ensures that only one of the
uncertainty realisation intervals happens. For example, if for a vessel,
there are three possible time intervals (e.g. 11:00 — 20:00, 12:00 - 21:00,
and 13:00 — 22:00) which are all of the same duration (10 h), only one of
the realisations can happen. Constraint (32) links decision variables I; ;
and w,,, considering the call duration of vessels. Constraint (33) ensures
that for the time intervals of the selected realisation, I;; takes the value of
one (i.e. if the first realisation is selected, I; 17.20 = 1). In (32) and (33),
bus, indicates a node of the network that supplies the shore power de-
mand of vessel v. Constraint (34) states that if vessel v is not at berth, the
corresponding crane cannot operate. Constraint (35) enforces variable I;
¢ to have the value of one for all buses which do not supply shore power
demand or cranes, as their demand is not (directly) linked to a vessel
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being at berth. Constraint (36) ensures that shore power and crane de-
mand is zero when a vessel is not expected to be at berth (considering
uncertainty). For instance, if the arrival time of a vessel is outside 11:00
- 20:00, the uncertainty set is fixed at zero. Based on these constraints,
the uncertainty set is defined as:

d' e RO (v 477, ) ST + <17 7,20
i€Q,
pd.,d 1) = = =
@.d.I") d =1, (d: +dyi, - diy;),Vi cQ,
I€9: (31) - (36)
(37)

where I't is called budget of uncertainty (Bertsimas and Sim, 2004), and
can be used to adjust the level of conservatism. I'* = 0 corresponds to the
deterministic solution, and, if I'* takes its maximum value (equal to the
number of buses of the network), the solution is fully robust, but over-
conservative. The lowest I'* is chosen in this study which yields a zero
probability of constraint violation. In (37), if a vessel has not arrived at
berth, which is linked with bus i, at time ¢t, i.e., I;; = 0, d! is zero. The
multiplication of two binary decision variables in (37) can be linearised
by introducing a new binary decision variable and using the big-M
method. Such linearisation will be explained in Appendix.

Based on equations (31)-(37), the compact form of the proposed two-
stage adaptive robust model is shown below:

(r o
H}\'ln (C X+ IinleaL;(yeggg.I)e Y > (38)
s.t.
Ax<b (39)
Q(x,d.I) = {y : Hx + My<r,Ky = d, Ny<h, ||Fy||,<f"y } (40)

Note that the workforce cost in Equation (1) comprises of the first stage
component of the objective function (i.e. ch), whereas the cost of
electricity and carbon emissions represents the second stage component
of the objective function (i.e. eTy). Constraint (39) represents first stage
constraints, while constraint (40) shows the second stage constraints
which involve both first stage and second stage decision variables. To
correctly link the second stage decision variables with new decision
variables I; ;, constraints (41) and (42) are incorporated in Q(x,d,I). The
following constraints state that if vessel v is not at berth at time ¢, all
associated CHE (cranes, hoppers, and industrial EVs) do not operate.

P Shous, P (41)

(AR

2V, Vop EVor
PEP <P = 35 (hst, ) 2LFEV P (42)

veQ,ceQ,
5. Solution methodology

The proposed model in Section IV-B is initially a tri-level problem. In
order to improve the computational efficiency, it can be converted to a
bi-level problem by dualizing the inner minimization problem and
merging the second and third levels. In this study, a column and
constraint generation (CCG) algorithm (Zeng and Zhao, 2013) is used, in
which the resulting model is decomposed into a master problem (MP)
and a subproblem (SP) which are iteratively solved until an optimality
criterion is met.

5.1. Master problem

At each iteration of the algorithm, a new scenario which is obtained
from the SP is added to the MP and the workforce allocation is deter-
mined in the MP considering the scenarios added so far. The MP which
satisfies the constraints added up to the m™M iteration is shown below:
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fn =minc"x +6 (43)
s.t. Ax<b (44)
52"y  Vk=1,...,m (45)
Hx +My*'<r Nk=1,...m (46)
Ky*=d“Vk=1,...m 47)
Ny‘<h,Vk=1,...m (48)
lGy"||,<g"y" . Vk=1,...m (49)

where k in - represents the index of constraints and variables added to
the MP up to iteration m. § is an auxiliary variable to find the minimum
cost of the second stage for all worst-case scenarios obtained from
solving the previous iterations of the algorithm.

5.2. Subproblem

After solving the MP the workforce allocation (i.e. x*) can be ob-
tained. For this allocation, the SP finds the worst-case realisation of
uncertain parameters, which include net electricity demands and vessel
arrival times.

X, in ¢’y (50)
s.t. Hx" + My<r(u) (51)
Ky =d(2) (52)
Ny<h(z) (53)
IFyl,<f"y(@, ) (54

For a given d, the third level model becomes a second-order cone pro-
gramming model. Using the conic duality theory (Ben-Tal and Nemir-
ovski, 2001), the model can be transformed into its equivalent
maximisation model, which can be merged into the second level model.
By using the associated dual variables p, A, T, ®, and @ of the constraints,
the following single-level model in (55) can be obtained. Note that since
the second-order cones are self-dual, they also appear as second-order
cones in the dual model. By conic duality theory (Ben-Tal and Nemir-
ovski, 2001), the strong duality theorem holds, and therefore the primal
SP and the dual SP attain the same optimal value.

max (r— Hx" )u+di+hn (55)
dlpinoe
L
Mpu+Ki+Nx+ ) (Fo + fo)<e (56)
=1
lol,<e (57)

where L is the number of constraints in. The single-level problem is
nonlinear due to the multiplication of variables d and A. The linearisa-
tion of this model is explained in Appendix.

After linearising the model, it becomes a mixed-integer second-order
cone programming problem, which can be solved by commercial
solvers, such as Gurobi (Gurobi, 2024). Algorithm 1 (Sarantakos, 2022)
shows the procedure of the aforementioned solution methodology.

Algorithm 1: Column and Constraint Generation

1. Set LB = -00, UB = +o00, m = 0, tolerance ¢.
2. while (UB-LB < ¢) do

(continued on next column)
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(continued)

Algorithm 1: Column and Constraint Generation

3. Solve the MP -. Get optimal solution and objective, x* and fi,, respectively.
LB « max{LB, fi, }.
4. Given x*, solve the dual SP -. Get worst-case uncertainty realization d* and
objective f;.
UB « min{UB, ¢'x* + f; }.
d™*! — d*. Introduce new variables y™*'. Add constraints - to the MP.
. mem+ 1.
end
. Return x*.

® N w

6. Case Study: Port of Tyne
6.1. Overview

For a representative case study, a medium sized multipurpose UK
port is selected as a test bed for the proposed model. PoT is positioned in
the middle of the UK’s 51 ‘major’ ports (defined as handling over 1 M
tonnes of cargo per year and/or strategically important (Transport,
2021), in terms of size and cargo throughput. Like many medium sized
ports, PoT handles a diverse cargo mix including dry, bulk, roll on/roll
off (RoRo), breakbulk/general cargo, and containerised cargoes. Each of
these cargoes, which have different characteristics, is transported by
different types of ships and requires specific CHE for vessel loading/
unloading and handling within the port.

6.2. Data processing

The operational data for the PoT is collected at different stages. The
port comprises four berths, each identified by its corresponding vessel
types and the cargoes handled at each berth. These berths include: 1)
container ships, 2) bulk carriers transporting biomass, 3) multipurpose/
general cargo ships carrying palletised plywood, and 4) RoRo ships,
specifically car carriers. These represent the primary cargo handling
operations at the port and enable the modelling of demands for various
electrified CHE and shore power. Table 2 summarizes the information on
each berth based on vessel types and the cargoes handled at each berth.

At the second stage, based on information obtained about each berth
(Table 2), the type and number of CHE assets required to unload each
ship type have been ascertained. This information is obtained from the
results of interviews with operational managers of the PoT. The cargo
handling process, number of CHE assets required for each berth, and the
staff required for operation of each asset are summarised in Table 3. The
information provided in this table is utilised as an input for the number
of assets and the workforce cost in problem formulation (Section 2). The
operational processes that follow the arrival of each vessel type are
explained in Section 2. The detailed explanation about data acquisition
is given in Reference (Sarantakos, 2023).

PoT’s electricity network is a medium-voltage grid which supplies
different sites. The diagram of this network is shown in Fig. 3, which has
been extended to include future assets (energy storage, a large-scale

Table 2
Terminals, berths, ships, and cargo types modelled in the case study.
Terminal No. of berths Ship type Shoreside cargo
included in case considered in case handling
study study operation
Tyne Car 2 Car carrier Vehicles
Terminal
Tyne Bulk 1 Bulk carrier Biomass
Terminal
Container 1 Containership Containers
Terminal
General Cargo 1 Bulk carrier/general Plywood
Terminal cargo
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Table 3
Process modelled, and workforce/equipment used for each type of cargo.
Terminal Process No. of assets Workforce
(Number of staff
allocated)
Container Vessel & CHE 1x shore -
Terminal operation for container =~ power
import/export 2x ship to 1/operating crane
shore cranes (max. 2)
12x container 3/operating crane
tractors (max. 6)
4x reach 1/operating crane
stackers (max. 2)
4x empty 1/operating crane
handlers (max. 2)
Bulk Terminal Vessel & CHE 1x shore -
operation for biomass power
import 2x cranes 1/operating crane
(max. 2)
2x hoppers 1/operating crane
(max. 2)
12x trucks 3/operating crane
(max. 6)
General Cargo Vessel & CHE 1x shore -
Terminal 1 operation for plywood power
import 2x cranes 1/operating crane
(max. 2)
20x forklift 5/operating crane
trucks (FLTs) (max. 10)
Car Terminal Vessels only 2x shore -
power

solar PV installation, shore power, and a fully electrified CHE fleet).
Existing loads (buildings, reefer containers, CHE that is already elec-
trified) are also shown. In Fig. 3, the branch shown in red is at a high risk
of overload due to the additional demand from electrification. At pre-
sent, the port’s CHE includes both electric and diesel-powered assets. As
part of its future strategy, the port intends to become an all electric port
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for the assets it owns, which include most of the CHE detailed in Table 3.
Electrification of some of this diesel-powered CHE is already underway,
while the port is also proceeding with a significant solar PV installation,
while also considering shore power supplies for some of its berths. This
provides a valuable real-world opportunity for investigating the
modelling and scheduling of electrified CHE and its impact on the
electricity network, and for examining the impact of neglecting uncer-
tainty on electrified port operation.

An important factor in defining the port consumption is the time
period a ship would be at berth, as the operation of CHE assets depends
on the availability of vessels. Having such data, the starting point of
different assets operation along with their power consumption could be
defined. This was achieved through analysing the vessel call data from
the vessel traffic service for a period of 9 months during 2020-2021, and
obtaining a daily average for the purpose of the simulation in this paper.
Table 4 shows the time plan of the five vessels considered in this case
study. Time steps shaded in blue correspond to the expected call of each
vessel e.g., vessel V1 is expected to arrive at time step 12 and depart at
time step 21. Time steps in light blue indicate that vessels can arrive up
to two hours earlier or later. It is assumed that the call duration of each
vessel is fixed, i.e., if V1 arrives at time step 11, it will depart at time step
20, and if it arrives at time step 13, it will depart at time step 22. Table 5
shows the possible realisations for vessel V1. Table 6 presents the call
duration and shore power demand of each vessel.

The other key parameter values used in the simulation are presented
in Table 7. The electricity price and grid carbon intensity for a day are
shown in Fig. 4.

7. Results

The proposed methodology was applied to the PoT as the case study
with the details provided in the previous section. The optimisation
model was implemented in MATLAB R2017a with the aid of YALMIP
(Lofberg, 2004) and solved using Gurobi (Gurobi, 2024). An Intel Core
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Fig. 3. Case study port network showing all existing and future loads (shore power, CHE, reefers, and offices).
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Table 4
Vessels Time Plan.
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V1: Car Carrier 1, V2: Car Carrier 2, V3: Container Ship, V4: Bulk Carrier 1 (Biomass), V5: Bulk Carrier 2.

(Plywood).

Table 5
Possible Realisations for Vessel V1.
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Table 6

Call Duration and Shore Power Demand of each Vessel.

Vessel Berth Call Shore Power
Duration Demand
Car Carrier 1 (V1) TCT1 10h 1MW
Car Carrier 2 (V2) TCT2 9h 1MW
Container Ship (V3)  Container terminal 8h 500 kW
Biomass Carrier TBT 15h 300 kW
v4)
Plywood Carrier General cargo 10h 200 kw
(V5) terminal
Table 7
Key parameters used in the simulation.
Parameter Value

Max. average crane power
during an hourly period

Hopper average power

Reefer max. power

Reefer temp. range

Reefer parameter a

Reefer parameter b

CHE load factors

Carbon price (4 Feb 22)

PV

Energy storage

Container tractors

Reach stackers

Empty handlers

Trucks

FLTs

Efficiency (i) for storage and industrial
EVs

Workforce cost

82.2 kW (Zhao et al., 2016)

55.5 kW (Sarantakos, et al., 2023)

5.7 kW (Kanellos et al., 2019)

—29 °C £+ 1 °C (Kanellos et al., 2019)
2.9035 x 103 (Kanellos et al., 2019)
0.0537 °C/KkW (Kanellos et al., 2019)
~0.5 (Starcrest Consulting Group, 2007)
87.92 £/tonne (Carbon price, 2024)

752 kW (Ninja, 2024)

0.5 MW / 1 MWh

100 kW / 200 kWh (Container tractor,
2024

100 kW / 200 kWh (ERS, 2024)

100 kW / 200 kWh (EEH, 2024)

100 kW / 200 kWh (Electric Truck, 2024)
33 kW / 66 kWh (Electric Forklift, 2024)
0.95 (e.g. (EEH, 2024)

50 £/person-hour

i7 octa-core processor at 3.0 GHz with 32 GB of RAM was used for the
simulations. Optimality gap was set to 1 %. This section presents the
simulation results for the proposed RLE model. The efficiency of this
method is benchmarked against several case studies, presented below:
Case I: Logistic-only model. This case study solves the model without
consideration for the port power network constraints (i.e. neglecting

constraints (2)-(11)).

Case II: Deterministic model. This case study solved the model
without consideration for uncertainty in the input data. This case study
is compared against Case I to demonstrate the necessity of considering a

10

joint logistic-electric model.

Case III: The proposed RLE model. This is the main case study, which
considers a logistic-electric model and accounts for uncertainty of input
data. This case study is compared with Case II so as to investigate the
effect of uncertainty on the decision making of all electric ports.

The computational efficiency of the proposed method is confirmed
by Table 8, which shows the relaxation gap of the proposed model. This
relaxation gap corresponds to the original constraints (6), which is
defined as below:
Gapy, = )\/17 -

(P +Q5.) (58)

The mean value of this gap and the mean value of the current (squared
root of L ;) are shown in Table 8. The comparison of these two values (4
orders of magnitude) demonstrates satisfactory accuracy of the model.

7.1. COgz equivalent emissions

Neglecting the uncertainty in the arrival time of vessels can have
environmental and economic repercussions. If a ship arrives at the port
but cannot connect to shore power because the port’s network is already
at capacity, it is compelled to operate its auxiliary engines while
berthed. For example, in Table 4, if vessel V1 arrives one hour late due to
the uncertainty in its arrival (e.g. time periods 10 and 11), it needs to
burn marine gas oil (MGO) in its auxiliary engines instead of being
supplied by shore power.

To illustrate the impact of uncertainty on ship emissions, the hourly
CO2 equivalent emissions resulting from the combustion of marine gas
0il (MGO) in a ship’s auxiliary engines are contrasted with the emissions
during the same hours when the ships are connected to shore power. The
data used for this comparison is derived from the actual engine data of
the vessels detailed in Tables 2 and 3. For each berth, all the ships from
the call data were listed, and the individual hourly emissions of Carbon
Dioxide (CO2), Methane (CH4), and Nitrous Oxide (N20) of each ship
were calculated and then averaged for all the ships at that berth. The
hourly averages of the individual greenhouse gases (CO2, CH4, and
N20) were then converted to CO2 equivalent emissions.

Uncertainty in arrival time of vessels (see Table 4) can result in the
delay of connecting the ships to shore power. The hourly CO2 equivalent
emissions of these ships at berth when burning MGO in auxiliary engines
while waiting to be served, and connected to shore power is shown in
Fig. 5. This figure shows a minimum of 150 % increase in CO2 equiva-
lent emissions when ships use their auxiliary engines compared to the
case they are connected to the shore power. It is noteworthy that the
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Electricity Price and Carbon Intensity
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Fig. 4. Electricity price and grid carbon intensity for a day (in February 2022) (Carbon intensity, 2024; Elexon, 2024).

Table 8
Relaxation Gap for the proposed optimisation.

Relaxation Gap Mean Value Variable Mean Value Relative Gap

Gap (A) 1.62 x 10 195 (A) 12.21 1.33x10"

evaluation of environmental impact centres around quantifying the
greenhouse gas emissions released from burning MGO.

As well as greenhouse gases, the combustion of MGO in auxiliary
engines also results in the release of air quality pollutants such as carbon
monoxide, particulate matter, nitrogen oxides, sulphur oxides, and non-
methane volatile organic compounds. On their release, these toxic
compounds pollute the local air and environment, causing ecological
damage and harm to human health. In contrast to the global impact of
greenhouse gases, the effects of air pollutants occur in the immediate
vicinity of their release and are therefore of high concern to ports
located at or near urban centres. Connecting to shore power enables
ships’ auxiliary engines to be switched off, virtually eliminating air
pollutant emissions. This improves the air quality around the port and
reduces the impact of port operations on the local environment and
residents. Noise and vibration are also reduced, which improves the
working environment for crew and port operatives.

Although the assessment of environmental impact focuses on quan-
tifying the greenhouse gases emitted by vessels utilizing their auxiliary
engines instead of receiving shore power, in future work the analysis
could be extended to include air quality pollutant emissions.

In addition to emission and the risk of network overload, uncertainty

700

can generate different expenses (e.g. demurrage charges, and network
reinforcement) to the port operators and ship owners. Therefore,
considering the uncertainty associated with operation of electrified
ports is an important factor that should be considered in their optimal
management.

7.2. Logistics-only model

Fig. 6 shows the loading of branch 1, when the electricity network
equations are not considered. As can be seen in this figure, branch 1
experienced an overload during 15:00 — 16:00, when electricity price
takes its lowest value (see Fig. 4), resulting in an increase for power
demand from the flexible assets. Note that this overload occurred even
without considering the impact of uncertainty. As can be seen in Fig. 7,
however, solving the model for a joint logistics-electric optimisation has
resulted in no overload in the branch. Comparison of these figures
clearly demonstrates the needs for a joint logistics-electric model in
optimising power management of all electric ports. This case studies are
solved based on the solution methodology described in Section 4.

7.3. Deterministic model

In Fig. 7, it can be observed that the margin between the branch
loading during 15:00-16:00 is in its maximum value, which can present
a high risk of violation due to the sudden changes in the operation of the
network. This sudden change can happen due to the uncertainty in the
arrival time of a vessel. To demonstrate the risk involved in the deter-
ministic solution, which neglects uncertainty in the vessel arrival time,
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® From MGO burned in the auxiliary engine m From the shore power
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Fig. 5. Average hourly CO, equivalent emissions from MGO burned in auxiliary engines and shore power.
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Branch 1 Demand using Logistics-only Model

T T T T T T
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Fig. 6. Power demand of branch 1 for Case I: the use of a logistics-only model
led to an overload in this case study.

network demand, and renewable power generation, the Monte Carlo
simulation is utilised here. To do so, the proposed model in Case II is
solved for 100 iterations of Monte Carlo simulation, with consideration
for variation in the vessel arrival time, network demand, and renewable
power generation. Fig. 8 shows the corresponding results for 4 2 h vessel
arrival time uncertainty and + 20 % for net demand. Each colour in this
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figure represents one iteration of 100 Monte Carlo simulation. The
variation of these iterations is more obvious in peak hours (e.g. time
period between 12 and 16). The line limit represents the maximum
amount of power which can be transferred through branch 1 (Fig. 3)
without exceeding voltage limits of the transformer. The resulting
probability of constraint violation (PoCV) is equal to 70 %, meaning that
there is a network thermal limit violation for at least one hour in 70 % of
the simulated days. This PoCV is justified by the departure of vessel V2
at time step 14 and the arrival of vessel V3 at time step 15. This means
that an overlap of shore power demands of these two vessels is possible
(at time steps 13-16, or 12:00 — 16:00), if uncertainty is considered (see
Table 4). Moreover, electricity price at time step 16 is the lowest
throughout the day (see Fig. 4), which encourages an increase in the
consumption of flexible devices (reefers, CHE, and storage charging).
Table 9 compares the proposed RLE with the proposed berth allo-
cation in Reference (Sun et al., 2022). It is shown in this contemporary
study the optimal berth allocation based on vessel arrival can result in
4.8 % cost saving. Comparing the proposed method in this paper with
such state-of-the-art studies allows us to investigate the importance of
uncertainty in arrival time of vessels and its effect on probability of
constraint violation. It is shown that the formulation proposed in (Sun
et al.,, 2022) cannot provide a feasible solution when uncertainty is
considered. This means that vessels arriving at the port might need to

Br. 1 Demand using Joint Log.-Elec. Model (det. formulation)

5 T T

0 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

Fig. 7. Power demand of branch 1 for Case II: using the proposed joint logistics-electric optimisation model.

5 Monte Carlo Simulation for Deterministic Model
PoCV =70%

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

Fig. 8. 100 Monte Carlo simulations to investigate the feasibility of the schedule produced by the deterministic model in Case II. An overload occurred in 70% of the

simulated days. The black line represents the line limit.
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Table 9
PoCV, Robust Optimal Value, and Mean Objective Function Value for the two
models.

Model PoCV Rob. Opt. Value (Mean) Obj. Fun. Value
(Sun et al., 2022) 70 % - £18,723
Proposed 0% £19,606 (+4.7 %) £18,786 (+0.3 %)

wait at anchorage to prevent a network overload in the case that another
vessel is delayed in the port. It should be noted that extended vessel
waiting times will lead to increased carbon emissions. Although the
value of the objective function for the deterministic formulation is
£18,723, the corresponding PoCV is 70 %, which presents an unac-
ceptable risk to the port’s operation. However, the optimal value of the
cost in the RLE is £19,606 (i.e. + 4.7 % increase compared to the
deterministic case). The average cost (over 100 Monte Carlo simula-
tions) of the proposed model is £18,786 which is only + 0.3 % more than
the deterministic case. This means that for only + 0.3 % increase in the
cost, a feasible solution for all uncertainty realisations can be achieved.

The results obtained in Fig. 8 (e.g. having a PoCV as high as 70 %)
demonstrate the needs for considering the uncertainty of input data
including the vessel arrival time in optimal management of port oper-
ation. Therefore, the proposed RLE model in Case III proposes a robust
framework which considers a conservative margin to protect the
network from an overload even when the worst-case scenario is realised.

7.4. Robust model

Fig. 9 illustrates the results of the Monte Carlo simulation of the
proposed RLE model in Case IIL. In this simulation, first stage variables
are considered fixed, whereas second stage variables are adjustable to
each uncertainty realization. As can be seen in Fig. 9, PoCV is zero,
demonstrating the effectiveness of the proposed method compared to
the deterministic case (i.e. Case II). Fig. 10 shows the power consump-
tion of reefers in Case III for each Monte Carlo simulation. As can be seen
in this figure, reefer demand is adjusted to each uncertainty realization
to avoid the overload (because of the potential overlap of shore power
demands of vessels V2 and V3). Reefer demand is then increased during
16:00 — 17:00 compared to the deterministic model following the initial
reduction during 12:00 — 16:00 so as to compensate the temperature rise
due to the reduced cooling. The results obtained in Fig. 10 indicate the
significance of flexible assets in the port, where the reefers power con-
sumption is adjusted in order to avoid PoVC (i.e. increasing the
robustness in face of uncertainty in the vessel arrival time).

Fig. 11 shows the charging power of the energy storage at the port for
each Monte Carlo simulation. It can be observed that charging power is

Cleaner Logistics and Supply Chain 10 (2024) 100144

adjusted to accommodate the line limit during time steps 13-16 (i.e.,
12:00 - 16:00), at which there is a probability of an overlap in shore
power demand of vessels V2 and V3. There is an increase in the charging
power of the energy storage during 12:00 — 14:00 (time steps 13 and 14)
and 16:00 — 17:00 (time step 17), while it experienced a reduction
during 14:00 - 16:00 (time steps 15 and 16) compared to the deter-
ministic model. The changes in the energy storage as another flexible
asset in the port operation, highlights the importance of these technol-
ogies in improving robustness in face of uncertainty in the arrival time of
vessels.

Supply disruption events along global supply chains, such as the
recent impact of Brexit on the UK, can significantly influence the optimal
operation of ports. The uncertainty in the supply chain extends beyond
berth allocation and can have a substantial effect on the planning of all-
electric ports. An effective method for assessing supply disruptions along
global supply chains is detailed in (Berr et al., 2023 Nov 13). This aspect
could be considered as a future research direction.

8. Conclusion

This paper presents a joint logistics-electric framework for the
optimal operation of electrified ports with the aim of minimising the
total cost of energy, carbon emissions, and workforce. This framework
ensures network constraints are not violated in the presence of un-
certainties from electricity demand, renewable power generation, and
vessel arrival time. Shore power and electrification of cargo handling
equipment for a range of vessel types is modelled within the present
framework. Deterministic formulations in existing literature are proved
to be ineffective, as they can result in a high probability of constraint
violation (e.g., 70 % for the case study presented in this paper). A two-
stage adaptive robust model is proposed in this paper which can ensure a
feasible solution (i.e., zero probability of a network constraint violation)
for all uncertainty realisations defined in a specific uncertainty set with
only + 0.3 % increase in average operation cost and + 4.7 % in the
worst-case scenario. These results demonstrate the advantages of the
proposed method for the optimal operation of electrified ports under
uncertainty.

This study primarily explored the impact of uncertainty on optimal
power management and the likelihood of electricity network power flow
constraint violations in ports. Several potential limitations pave the way
for future research directions. Firstly, it would be valuable to delve into
important economic considerations, such as demurrage charges, stem-
ming from uncertainties in vessel arrival times. This uncertainty could
also extend to influencing network reinforcement during the planning
phase. Secondly, the examination of a two-hour time window of un-
certainty in vessel call duration could benefit from a more in-depth

Monte Carlo Simulation for Robust Model

5 T T T T T T T T T T T
PoCV = 0%
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Fig. 9. Monte Carlo simulation for the robust model in Case IIL.
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Reefer Consumption for each Monte Carlo Simulation
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Fig. 10. Reefer power demand for each Monte Carlo simulation. Dash-dotted black lines correspond to the deterministic model.
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Fig. 11. Charging power of energy storage for each Monte Carlo simulation. The dash-dotted black line corresponds to the deterministic model.

exploration of variations due to various port operation policies. Finally,
the influence of uncertainty along global supply chains reaches beyond
berth allocation, impacting the optimal operation and planning of ports.
Consequently, recognizing its significance, this aspect has been identi-
fied as a prospective area for future research to expand upon the findings
presented in this paper.
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The nonlinear single-level problem can be linearised by adding new decision variables q, z", and z” and using the big-M linearization technique.

Based on Constraint (37), d can be defines as:

o~~~
d=Id+dy —dy)
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Therefore, dA is equal to:

di=Id+dy —dy )i

Defining new decision variables q, z*, and z" as follows:
q=1IA

+ +

z =qy

z =qr

The following equation can be obtained:

di = (t?Jrz/i;+ 721;7) IA :3q+3y+q 727’q :3q+t/lz+73;
~ ~ =~

q zt z
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(A2)

(A3)
(A4)

(A5)

(A6)

which is linear, and the new decision variables q, z", and z” are constrained as follows:

—M(1—I)+A<q<A+M(1 1)
— MI<q<MI
~M(1—7")+q<z'<g+M(1-7")
—Myt<z"<My*

~M(1 -y )+q<z <g+M(1—-7")
—My <z <My~

where M are sufficiently large numbers.
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