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There is considerable interest in neural responses to continuous speech. Techniques for
analysing these responses typically involve tracking EEG change due to stimulus features, such
as the amplitude envelope. However, the clinical utility of these measurements, especially for
challenging to test subjects such as infants with hearing aids, remains under-explored. This
thesis aimed to investigate the clinical feasibility of neural tracking as an objective test for aided
speech detection in infants. This aim was tackled through four studies designed to test factors
essential for future application in infant testing in clinical environments. These factors included
the feasibility of detecting responses in single-channel EEG recordings, detection time, effects
of stimulus intelligibility, and attention. The two approaches used to analyse EEG sighals were
the temporal response function (TRF) and cross-correlation.

The first study assessed the effectiveness of single-channel EEG testing, achieving a 100%
detection rate using cross-correlation within a detection time appropriate for clinical
application. The second study focused on speech intelligibility effects during passive listening in
recordings of cortical responses via single-channel EEG. The responses to speech-modulated
noise demonstrated greater robustness regarding detectability and detection times than natural
speech, indicating the potential utility of non-language-specific stimuli. Nevertheless, detection
rates fell below 100%, potentially due to passive listening or shorter recording durations
compared to the first study. The third study evaluated the envelope distortion induced by
hearing aids using various stimuli. It found that the envelope distortion from the International
Speech Test Signal (ISTS) was similar to that of natural speech, in contrast to speech-modulated
noise, which exhibited significantly lower envelope distortion. The fourth study investigated the
impact of different distortion levels on response detection using ISTS recordings from the third
study. Higher levels of envelope distortion significantly lowered detectability and increased
detection times, though using the envelope measured at the hearing aid output for detection
analysis significantly improved these metrics. Additionally, no impact of attention on response
detectability was observed.

In conclusion, single-channel EEG analysis showed variable detectability across different
stimuli and conditions, suggesting that signal processing methods and recording times may still
need to be optimised. The ISTS stimulus produced results comparable to natural speech,
supporting its potential clinical use as a non-language-specific option. However, detectability
was compromised in aided condition with high levels of envelope distortion. Using the speech
stimulus from the output of a hearing aid (as opposed to the input signal to the aid) shows
potential for improving response detectability. Additionally, the study demonstrated that neural
tracking can be recorded under passive listening conditions, which could be important when
testing infants.
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Chapter 1

Definitions and Abbreviations

ABR .o, Auditory brainstem responses

AEP ., Auditory evoked potential

ALR. .o, Auditory late response

AMLR ..o, Auditory middle latency responses
ASSR...coiiiiiiiiie e Auditory steady-state responses
BKB..oueieeeeeeieeeeeeeeenee Bamford-Kowal-Bench

BSA. .o British Society of Audiology
CABR....corr Complex - Auditory brainstem responses
CAEP ..ovviieiieiiieeieeee, Cortical Auditory Evoked Potential

Cl o, Cochlear Implant

CR e Compression ratio

CT e, Compression threshold
ECochC...cooviviviiiiinnn, Electrocochleography

EDI e, Envelope distortion index

EEG .o, Electroencephalography

FER e, Frequency following response

HA e, Hearing aid

7Y o [ A-weighted equivalent continuous sound level
ISTS o International Speech Test Signal

MEG....ii e, Magnetoencephalography

NR o, Noise reduction

MTRF .o Multivariate temporal response function
SIN (e, Speechin noise

SNR e, Signal to noise ratio

SRT e, Speech Recognition Threshold

TRF e, Temporal responses function
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Word recognition score

Cross-correlation
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Chapter 1

Chapter 1 Introduction

Access to sound is essential for humans to connect to and interact with their environment as
well as others. Sounds that people are exposed to range from simple tones such as a doorbell to
complex sounds such as speech or music. Given this variety, hearing loss can impact human
life in diverse ways. According to the latest statistics from the World Health Organization
(WHO), approximately 430 million people worldwide are affected by hearing loss, with about 34
million of these being children (World Health Organization, 2021). Unaddressed hearing loss in
children can lead to delays in expressive language abilities and lower academic achievement
(American Speech Language Hearing Association (ASHA), 2022). Early identification and
intervention during infancy are therefore essential to mitigate the adverse effects of hearing

loss.

Audiologists aim to provide patients with access to everyday sounds via interventions for
hearing loss, such as hearing aids (HAs) or cochlear implants (Cls), in order to enhance patient
quality of life. Early intervention, particularly for children with congenital hearing loss, is crucial
for developing speech and language skills, which in turn can improve future academic
performance (Ching, 2015, Meinzen-Derr et al., 2020). Following a diagnosis, assessing the
benefits of HAs outside of clinical settings is critical during follow-up visits. However, there is
currently no established objective clinical method to evaluate access to natural continuous
speech sounds with HAs for infants or other groups of patients who cannot respond reliably to

behavioural tests requiring attention and/or speech comprehension (Visram et al., 2023).

Speech perception outcome measures are vital for assessing how HA users perform in everyday
listening situations. Most speech tests require behavioural responses, which may not be
suitable for certain patient groups, such as infants. Infants require objective evaluation of
speech perception because they have not yet developed the necessary motor and expressive
language skills to respond to stimuli effectively. Similarly, they may not have the language skills
that would allow them to demonstrate speech comprehension. One alternative approach is
using auditory evoked potentials (AEPs) in response to speech stimuli, which do not require any

behavioural responses (Hall, 2015).

Various studies have explored different approaches and analysis methods to assess AEPs in
relation to speech stimuli. One such clinical tool, developed by the National Acoustic
Laboratories (NAL), detects cortical responses to short speech stimuli (/m/, /g/, /t/) and is
widely used in Australian clinics (Purdy and Kelly, 2001), whilst another approach is to
investigate frequency-following responses (FFRs) to vowels (Skoe and Kraus, 2010). Most of

those approaches rely on averaging the responses to repeated short stimuli. However, such

16



Chapter 1

stimuli have limited environmental relevance and do not reflect how well HA and Cl may work

outside clinical settings.

What we hear daily encompasses a broad range of continuous and complex sounds, with
speech being of primary concern in this work due to its range of temporal and spectral features
and importance in infant development. Methods like those developed by the NAL group, which
incorporate a variety of speech sounds covering a range of frequencies, represent an
improvement over conventional tests that use clicks or tone bursts, yet they still cannot fully
capture the range of natural speech. Recent advancements in computational capabilities have
led to several new approaches for analysing EEG responses. These methods eliminate the need
for averaging and enable the use of continuous speech as a stimulus by either directly applying
the cross-correlation (XCOR) method (Aiken and Picton, 2008a) or modelling the relationship
between stimulus and responses (Lalor et al., 2009). However, there are a number of questions
that need to be answered before such methods can be used in clinics: (1) What is the detection
sensitivity of these methods in individuals with normal hearing? (2) Can responses be recorded
in reasonable timeframes? (3) Are methods sensitive to attention and if so, are they sensitive to

the effects of HA processing on test stimuli?

1.1 Aim

The overarching goal of this project is to investigate the clinical feasibility of using continuous
speech stimuli to measure aided cortical responses, with an eye toward future applications in
assessing infant speech perception. This objective was pursued by examining the clinical
applications and practicality of the current methods for measuring cortical responses to
continuous speech. Whilst the long-term future aim is to develop methods that are applicable
to infant testing, due to recruitment, ethical issues and the need to obtain well-controlled data,

all studies were conducted on normal-hearing adults.

1.2 Original Contributions

1.2.1 Single channel EEG and individual detection to continuous speech:

An original contribution of this work is the demonstration of strong individual cortical
detectability of continuous speech using a single-channel EEG. In the first study (Chapter 3),
detection sensitivity reached 100% with intelligible speech as the stimulus. Furthermore, in the
fourth study (Chapter 6), detectability remained high, at approximately 91%, when using the

International Speech Test Signal (ISTS) as the stimulus.
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1.2.2 The use of non-language-specific stimuli

This thesis investigated individual detection and detection time using non-language-specific
continuous speech stimuli to evoke cortical responses—an area that, to the author's
knowledge, has not been previously explored. The use of speech-modulated noise improved
both detection rates and reduced detection time compared to natural speech. When comparing
the ISTS detection results in Chapter 6 to the natural speech detection in Chapter 3, the

outcomes were similar, with equivalent recording times.

1.2.3 Effect of attention on cortical responses to continuous speech

This thesis demonstrated that responses can be recorded in passive conditions with high
detectability—approximately 91% using the ISTS stimulus, as shown in the fourth study
(Chapter 6). However, with aided stimulation, detection rates decreased slightly with lower

distortion and significantly with higher distortion.

1.2.4 Effect of hearing aid envelope distortion on cortical response detection

Unlike previous studies, the third study in this thesis quantified the amount of envelope
distortion before measuring aided responses to continuous stimuli in the fourth study. The
findings in Chapter 5 show that ISTS stimuli are distorted in a manner similar to natural speech
when processed by an HA, whereas speech-modulated noise exhibited significantly lower
distortion. Chapter 6 demonstrates the impact of envelope distortion on aided responses,
evidenced by a significant reduction in detectability and an increase in mean detection time

under higher distortion conditions compared to the unaided condition.

1.3 Publications

Conferences

e Aljarboa G.S., Bell S. L.,and Simpson D. M. (2022) Comparing Cortical Responses to
Continuous Speech and Speech Modulated Noise During Passive Listening. ‘Ear and
Hear” Audiology and Audio conference. Southampton, UK. Poster presentation.

e Aljarboa G.S., Bell S. L.,and Simpson D. M. (2023) Comparing Cortical Responses to
Continuous Speech and Speech Modulated Noise During Passive Listening.
International Evoked Response Audiometry Study Group. Cologne, Germany. Poster

presentation.
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Journal Articles

e Aljarboa G. S., Bell S. L.,and Simpson D. M. (2022). Detecting cortical responses to
continuous running speech using EEG data from only one channel. International Journal
of Audiology, 1-10. Published.

e Aljarboa G. S., Bell S. L., and Simpson D. M. The detection of aided cortical responses to
continuous speech-like stimuli in normal hearing adults, investigating the effect of
envelope distortion. In preparation for submission.

1.4 Outline of thesis

Chapter 1 Introduction

This chapter serves as an introduction to the thesis, providing a concise overview of the
significance of hearing in human communication and the methodologies employed to assess
hearing in infants with hearing loss. It will also detail the motivation for this research, outline the

purpose of the thesis, and highlight its contribution to the field of auditory evoked responses.

Chapter 2 Literature Review

This chapter provides a more in-depth background on the focus of the PhD project. It will begin
with a comprehensive introduction to early detection of hearing loss in infants. It then discusses
the current testing method used to assess speech perception through HAs and its limitations.
Most of this section is dedicated to an extensive examination of various AEP tests found in the
literature that utilise speech and related stimuli. This will lead to clearly identifying the gaps in

the existing literature and the thesis's main objectives.

Chapter 3 Measuring Cortical Responses to Continuous Running Speech Using EEG Data

From One Channel

This study explores the feasibility of measuring cortical responses to continuous running
speech using EEG data from a single channel, focusing on comparing different detection
approaches for speech-evoked responses. The methods of analysis include XCOR and the
temporal response function (TRF), which were evaluated in terms of detection sensitivity and

detection time.

Chapter 4 Comparing Cortical Responses to Continuous Speech and Speech-Modulated

Noise During Passive Listening

This study assesses the effect of stimulus intelligibility in detecting cortical responses to
continuous stimulus by comparing responses to continuous speech and speech-modulated
noise during passive listening. The data in this study were jointly collected with Suwijak

Deoisres, another PhD candidate.
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Chapter 5 Quantifying the Effects of Hearing Aid Processing on the Stimulus Envelope

This study investigates the impact of HA processing on the stimulus envelope by measuring
envelope distortion of three different speech stimuli: natural speech, speech-modulated noise,
and the ISTS. The recordings obtained from this study served as stimuli for the subsequent EEG

study.

Chapter 6 Investigating the Effect of Hearing Aid Envelope Distortion on Cortical

Responses to Continuous Speech

This study evaluates the feasibility of detecting cortical responses to aided ISTS by measuring
responses to stimuli prerecorded from HA output. It also examines the effect of attention by

comparing passive and active listening conditions.
Chapter 7 General Discussion and Conclusion

This chapter combines the results of the different studies, discusses them, and positions them
within the broader academic context. It also includes the project's limitations and suggestions

for future work.
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Chapter 2 Literature Review

This chapter provides background information on this research project and reviews related
studies. It is divided into four main sections. The first section offers an overview of current
clinical speech tests. The second section discusses various clinical AEP measurements. The
third section explores using repeated short speech in AEP tests to assess speech perception.
Finally, the fourth section explores AEP in response to running speech, including clinical

application and feasibility.

2.1 Overview of current clinical speech tests

Early detection and intervention are key to overcoming the negative impacts of permanent
hearing loss in children. Universal newborn screening programmes have been implemented
worldwide to achieve this. For example, all newborns in the UK should be screened within four
weeks of age. If they do not pass, they should be referred for complete audiological testing
within four weeks (National Health Service (NHS), 2021). Following HA fitting (if required),
follow-ups should be conducted every three months during the first and second years of life.
Follow-up approaches should include real-ear measurements, unaided behavioural testing,
functional aided testing (such as Ling 6 sound tests or speech-discrimination tasks) and age-
appropriate questionnaires. Although behavioural speech tests are part of the guidelines, they
are only suitable for older children with sufficient language ability to respond. To date, no
objective clinical outcome measure of speech perception in the UK should be considered

appropriate for infants fitted early with an aided hearing device (Visram et al., 2023).

Speech perception outcome measures provide insights into how HA users perform in everyday
listening situations. These measures assess different stages of auditory skills, as described by
Erber (1976): detection, discrimination, identification and comprehension. Current clinical
practice to evaluate speech perception mainly involves behavioural testing, which requires a
form of behavioural response from the participant. According to the British Society of Audiology
(BSA), when assessing speech in adults, behavioural testing can be applied in a range of ways
(British Society of Audiology, 2018). The primary method is speech threshold testing, such as
the speech recognition threshold (SRT) approach, used to verify the accuracy of the patient’s
pure tone threshold and assess speech detection. The SRT is defined as the minimum speech
level at which the subject can recognize 50% of the speech material presented (Van Tasell and
Yanz, 1987). Word recognition score (WRS) is another standard speech test used to evaluate

speech discrimination abilities at an audible level above the subject’s threshold either in quiet

21



Chapter 2

or in the presence of background noise. Both tests are limited in predicting aided speech

perception in everyday communication (Taylor, 2007).

The BSA guidelines for testing speech perception in adults suggest using speech-in-noise (SIN)
tests that include sentences as stimuli (BSA, 2018). Examples include the quick speech-in-
noise test (QuickSIN) developed by Etymotic Research (ER, 2011), the Bamford-Kowal-Bench
test (BKB) (Bench et al., 1979) and the City University of New York Sentences (CUNY) (Boothroyd
et al., 1985). The QuickSIN test measures a subject’s ability to understand SIN at different
signal-to-noise ratio (SNR) levels. The BKB test was originally published to test children’s
speech recognition ability in quiet conditions (Bench et al., 1979) and later developed to test SIN
(BKB-SIN) (Niquette et al., 2003). The BKB-SIN is similar to the QuickSIN in assessing speech
recognition at different SNR levels using short, simple sentences (British Society of Audiology,
2018). The CUNY test provides a different measure by assessing speech comprehension at a
fixed SNR with and without visual cues (e.g., lip-reading). The BSA guidelines recommend using

SIN tests for baseline assessments and post-intervention performance evaluations.

Clinical behavioural speech tests can also test children, as long as age-appropriate norms are
available for the tests. Speech detection tests such as the SRT can be applied with modified
behavioural techniques, such as play audiometry or visual reinforcement audiometry (VRA)
(McArdle and Hnath-Chisolm, 2015). Responses depend on the motor and language abilities of
the child; examples include head turning, picture pointing and repeating words. The Ling 6
Sound Check tests different aspects of speech perception, including identification, detection
and discrimination (Scollie et al., 2012). Children’s speech recognition can also be examined
using adult tests, such as BKB sentences and the BKB-SIN (McArdle and Hnath-Chisolm, 2015).
Early Speech Perception Tests (ESPT) can test children as young as three (Geers and Moog,
2012). Speech testing for older children with hearing loss, especially cochlear implant users, is
a common clinical practice (Eisenberg et al., 2010). However, speech tests are not generally
carried out on infants and young children as they have not developed the language and motor

abilities for behavioural responses, emphasising the need for an objective test.

Other measurements rely on the subjective evaluation of HAs and Cls. These can be self-
reported questionnaires, such as the Abbreviated Profile Of Hearing Aid Benefit (APHAB) (Cox
and Alexander, 1995), or parent-reported surveys, such as the Parents’ Evaluation of Aural/Oral
Performance of Children (PEACH) (Ching and Hill, 2007). However, these outcome measures
might lack reliability as they rely solely on parental observations. Instead, an objective speech
test using AEP response measurements would be more desirable in such cases to quantify
accurately which speech sounds are or are not being represented in the brain, both with and

without HA or other interventions. The following sections will discuss the general use of AEP and
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its specific application as a speech outcome measurement tool for evaluating hearing loss

interventions.

2.2 Auditory evoked potential measurements

AEPs are voltages that represent the neural activity produced by the auditory system in
response to stimuli (Hall, 2015). They provide a means for monitoring changes in potential
through transducers placed on the listener’s head. This measure has many clinical and
research applications in audiology. It is one of the main tools used in audiology clinics, mainly
for assessing infants’ hearing thresholds and for differential diagnosis. Auditory evoked
responses are usually measured using electroencephalogram (EEG), magnetoencephalogram
(MEG) or electrocochleography (ECochG). These objective technical processes measure
auditory responses with high temporal resolution, making them appropriate for assessing
auditory processing. ECochG measures the electrical potentials generated by the cochlea,
typically through a minimally invasive procedure where an electrode is inserted (Gibson, 2017).
These potentials can also be recorded non-invasively using an electrode placed in the external
ear canal near the tympanic membrane (Attias et al., 2008). On the other hand, EEGs and MEGs
are clinically more feasible as they can track neural processing at various levels of the auditory
pathway, which is crucial for speech perception (Aiken and Picton, 2008b). MEGs are sensitive
only to tangential-oriented components of cortical current sources, whereas the EEG is
sensitive to both tangential and radial-oriented components of cortical current sources. This
allows the EEG to measure a broader range of electromagnetic brain activity than the MEG
(O'Sullivan et al., 2015). The EEG is highly popular in clinical and research settings due to its
widespread availability and low cost. In contrast, MEG requires more complex equipment and

must be conducted in specially shielded rooms.

The stimuli that evoke AEPs can range from short, repeated sounds to continuous speech. AEPs
have very low amplitudes, typically ranging from 0.5 to 10 microvolts (uV) (Hall, 2015),
compared to ongoing EEG activity, which ranges between 10 and 100 pV (Blinowska and Durka,
2006). This will result in a low SNR and makes detection challenging. The most well-known
approach to overcome these issues is to average multiple responses to improve the SNR. This
approach was built on the assumption that the responses are time-locked to the stimuli (Ruhm
etal., 1967, Mendel and Goldstein, 1969). However, AEPs can vary in latency, which can affect

the accuracy of the averaging outcome (Quiroga and Garcia, 2003).

Averaging requires a high number of repeated and identical stimuli, which makes it unsuitable
for analysing continuous (running) speech. Although the averaging approach has proven to be

very useful in estimating hearing sensitivity, it yields limited information about the human
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auditory system’s processing of stimulus temporal features (Lalor and Foxe, 2010). Using
discrete and short stimuli to elicit responses does not reflect the human auditory system’s
abilities to analyse most sounds in real-life environments (Lalor et al., 2009). Recently, new
approaches to analysing responses to continuous stimuli have been developed; some of these

studies will be discussed in Section 2.4.

The results of an AEP test are usually interpreted visually by the examiner (e.g., an audiologist)
based on normative data. Several alternative methods for objective and automated
identification have been described in the literature. These methods typically use statistical
parameters to identify the responses (Barajas, 1985, Lv et al., 2007, Chesnaye et al., 2018,
Chesnaye et al., 2023). AEPs are usually classified depending on component latency and are
represented in a time domain. The earliest responses are the ECochG and the auditory
brainstem response (ABR), followed by the auditory middle latency response (AMLR) and the
auditory late response (ALR) (Hall, 2015). Figure 2.1 illustrates the latencies of each of these
responses. Auditory steady-state responses (ASSRs) are usually presented in the frequency
domain (after performing Fourier Transforms) instead of the time domain since responses are
expected at specific frequencies rather than specific time points (as is the case with ABRs,
AMLRs or ALRs). Responses also vary based on the type of stimuli used to evoke them, which
can range from short stimuli to continuous speech. The following section will discuss some

primary responses used to assess hearing abilities in clinical audiology settings.
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Figure 2.1 The AEP waveform showing ABR, AMLR, and ALR responses. The figure illustrates
the AEP waveform resulting from averaged responses to click stimuli, showing the
ABR, AMLR and ALR. This illustration has been adapted from Pérez-Gonzalez and
Malmierca (2014), originally cited in Picton et al. (1974).

2.21 Auditory brainstem responses

The ABR is the most popular and widely referenced type of response. ABRs are elicited for many
clinical applications, including newborn hearing screening, infant hearing threshold estimation
and differential diagnosis for the site of a lesion. Compared to late latency responses, the ABR is
more clinically reliable and is not affected by the state of arousal (Hall, 2015). It can be evoked
using a variety of stimuli, such as clicks, tone bursts, chirps (Hall, 2015) and short speech
components (Skoe and Kraus, 2010). Responses are typically recorded via EEG using a one- or
two-channel montage. After signal processing, the waveform of the response is presented in the
time domain and commonly interpreted visually. The resulting waveform has five prominent
peaks (I-V), where peak V is the most essential to detecting the presence of responses (see
Figure 2.1). The lowest stimulus level at which wave V is detected twice determines the

subject's hearing threshold.

Only a few articles in the literature investigate using click and tone burst ABR for aided testing
(when a subject wears a HA). One such study suggests that aided ABR using short stimuli can

cause significant distortion of the output with moderate to high gain non-linear HAs (Garnham et
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al., 2000). Several other studies conclude that aided click and tone burst ABR does not provide a
full picture of HA performance (Gorga et al., 1987, Brown et al., 1990). Brown et al. (1990)
compared HA operation in response to continuous stimuli (noise and tones) and brief stimuli
(tone-pips). The brief stimuli failed to activate the output-limiting circuitry, making them a poor
representation of how continuous, real-world stimuli would be processed by HA and thus of
aided hearing. When comparing ABR responses to tone-pips under aided and unaided
conditions at the same intensity levels, no differences in the amplitude or latency of wave V
were observed. The authors explained this finding as the adaptation of the ABR caused by the

feedback from the HA and saturation from high levels of stimulation.

2.2.2 Auditory-steady state response

The ASSR is a brain response evoked by continuous stimuli, which can be frequency or
amplitude-modulated (Dimitrijevic and Cone-Wesson, 2015). It is an essential part of the infant
test battery, mainly for hearing threshold estimation, because it provides a frequency-specific
estimation of the patient’s hearing threshold. Responses are presented in the frequency
domain, appearing as a peak in the spectrum corresponding to the modulation rate used. The
detection and interpretation of the response are automated and verified statistically (Hall,
2015). However, clinical experience is required to assess the reliability and validity of the results

and how they can be used to make a final diagnosis (Hall, 2015).

Several studies have investigated the use of ASSR as a HA outcome measure. The ASSR is
considered more suitable for aided testing than the ABR because the continuous stimuli used
better reflect HA processing than the rapid transient stimuli commonly used with evoked
potentials (Dimitrijevic and Cone-Wesson, 2015). Using amplitudes and frequencies modulated
to resemble human speech, Dimitrijevic et al. (2004) examined whether the ASSR correlates
with the WRS in adults with hearing loss. A significant correlation was found between the WRS
and the number of significant ASSR responses. The correlation value ranged between (r=0.70
and r = 0.85) depending on stimulus frequency modulation. Moreover, the ASSR showed an
increase in the number of significant responses under aided conditions compared to the
unaided condition, indicating the potential applicability of such responses as an outcome
measure of HA effectiveness. Although the study by Dimitrijevic et al. (2004) demonstrated a
correlation between behavioural speech tests (WRS) and an objective speech testing tool
(ASSR), it is not clear whether such an objective tool can be used independently to assess the

benefits of hearing interventions or to determine the need for future interventions.
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2.2.3 Auditory late responses

The ALR originates from the auditory cortex from roughly 50 ms post-stimuli (McArdle and
Hnath-Chisolm, 2015). As with earlier responses, the ALR is evoked using repeated stimuli. The
most clinically used ALR waves are the P1-N1-P2 complex, which ranges in latency between

50 ms and 200 ms (see Figure 2.1). Several studies have used the term ‘cortical auditory evoked
potential’ (CAEP) to describe late responses. One difference between ALR and CAEP is that the
latter is a general term, referring to all responses with cortical original. These include the AMLR
and late responses including the P300 and mismatched negativity (MMN) (Hall, 2015). Unlike
earlier responses, however, the ALR provides more information about sound processing up to a

higher level.

The typical method for recording the CAEP is the 10-20 system, which organises 32 to 256
electrodes on the scalp (see Figure 2.2) (McArdle and Hnath-Chisolm, 2015). An advantage of
this multichannel system is that it can identify the source of noises, such as eye blinks, which
can profoundly affect the CAEP (McArdle and Hnath-Chisolm, 2015). The CAEPs are typically
recorded from many electrodes over the scalp, especially with speech stimulation. However,
electrodes located in the frontal portion of the scalp have the largest amplitude (Hall, 2015,
McArdle and Hnath-Chisolm, 2015). In the case of repeated short stimuli, many studies have
successfully detected CAEP using a single active channel with the electrode placed at the
vertex position (Cz), the reference electrode positioned at the mastoid, and the ground
electrode placed on the contralateral mastoid in adults and children (Lightfoot, 2016, Carter et
al., 2010). Although a multichannel EEG setup can provide more insights into neural processing,
single-channel analysis is more convenient for clinical practice, as it requires less expensive

equipment and has a shorter setup time.
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Figure 2.2 The BioSemi 32-channels cap. The figure shows the electrode positioning of the
BioSemi 32-channel cap (international 10-20 system of electrodes application),
Redrawn from BioSemi (2015)

The CAEP has recently gained clinical attention for HA evaluation, especially with speech
stimuli. The NAL group, for example, uses the CAEP to measure HA performance in infants

(Purdy and Kelly, 2001). The NAL’s protocol will be reviewed in Section 2.3.3.

2.3 Auditory evoked potential for speech perception

As discussed earlier, behavioural or subjective tests typically assess speech perception
abilities. Recently, studies have begun investigating the possibility of applying auditory evoked
responses to evaluate speech perception. The primary rationale is to develop an objective
clinical tool for assessing speech perception in quiet and noise conditions. This section will
briefly discuss several approaches for using speech as a stimulus to evoke brain responses. The
stimuli can range from simple short stimuli to continuous running speech, with numerous

methods for analysing EEG responses.
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2.3.1 Frequency following responses

The FFR is a broad term that refers to the measurement of synchronous brain responses to a
stimulus originating from the subcortical level (Kraus et al., 2017). The FFR can provide more
insight into sound processing in the brain by creating a close representation of the properties of
the stimuli (Kraus et al., 2017). The amplitude of the FFR, like other brainstem responses, is
relatively small compared to EEG activity, so it is detected using averages and then represented
in the frequency domain (Choi et al., 2013). Different speech stimuli are commonly used to elicit
the FFR, such as speech formants, vowels, speech fundamental frequencies or harmonics
(Aiken and Picton, 2008a). The FFR represents both the fine structure and the envelope of
speech stimuli. One approach to distinguish between spectral FFR and envelope FFRis to use
alternating phase stimuli (Aiken and Picton, 2008a). The neural response to the envelope does
not change with inverted stimuli, whereas the neural response to the fine structure does. Thus,
the envelope FFR results from averaging responses to alternating polarity stimuli, whereas the
spectral FFR results from subtracting responses to inverted stimuli from responses to original
stimuli. Distinguishing spectral and envelope responses has been shown to provide more
clinical information (Aiken and Picton, 2008a). While the envelope FFR ensures that important
speech information reaches the nervous system, the spectral FFR only reveals significant

responses to related harmonics (formants).

Most studies that use the envelope FFR use vowels as stimuli, either isolated or in words or
sentences (Aiken and Picton, 2006, Choi et al., 2013, Vanheusden et al., 2019). Using vowels
typically provides only limited information about speech bandwidth, limiting its suitability for
aided measurements (Easwar et al., 2015b). Easwar et al. (2015a) efficiently measured the
envelope FFR to naturally produced speech sounds with different acoustical features. They
proposed a test paradigm to represent the bandwidth of speech stimuli and provide frequency-
specific information. The envelope FFR was measured using 300 repeated sweeps of the speech
token /susafi/, with each sweep including both polarities. The stimuli were low-pass filtered to

1 kHz, 2 kHz, and 4 kHz and presented at 50 dB and 65 dB SPL levels. They compared the effects
of different stimuli bandwidths on the envelope FFR and the behavioural speech discrimination

test score.

The findings demonstrate that when the cut-off frequency was raised, the number of detections
and the summed amplitude of the envelope FFR increased. This increase showed a significant
correlation with speech discrimination results. Moreover, a significant effect of stimulus level
was observed, as increasing the stimulation level from 50 dB to 65 dB SPL significantly
increased the response amplitude and, consequently, the number of detections. The results

indicate that the envelop FFR elicited by /susafi/ is an effective way to assess speech
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discrimination and has the potential to measure HA outcomes. The same proposed envelop FFR
paradigm was tested in adults with hearing loss (Easwar et al., 2015c), indicating the envelope
FFR’s sensitivity to measuring aided responses. This method was tested further and showed a
fair-to-good test-retest variability in normal-hearing adults (Easwar et al., 2020). Although this
method shows promising results as an objective measure for verifying HA outcomes, the stimuli

used are still some distance from being continuous natural speech.

2.3.2 Speech-ABR

One specific form of the FFR is the complex auditory brainstem response or cABR, which has
been adopted to refer to responses to complex stimuli such as speech and music (Skoe and
Kraus, 2010). The most studied stimulus used to evoke responses is a consonant-vowel (CV)
syllables syllable, mainly the /da/ sound (Skoe and Kraus, 2010). As this type of stimulus
consists of transient and sustained features, it will elicit onset and frequency-following
responses, respectively. The FFR is the brainstem neural response to the periodicity of the

vowel stimuli (Galbraith et al., 1995).

For cABR, the most common configuration is the single-channel montage recording (Skoe and
Kraus, 2010). On average, about 6000 stimulus sweeps are required to evoke a detectable
response. Responses are presented in the time domain, with latency represented by the onset
of the stimuli. Amplitude is quantified by the root-mean-square magnitude of a specific region of
the responses. Figure 2.3 shows the response onset’s positive wave V, followed by the first
negative wave A. The periodicity of the vowel is represented by the negative waves (D, E and F),
with latency from 20 ms to 40 ms. Finally, the negative wave O shows the response offset
(Chandrasekaran and Kraus, 2010). Other analyses are possible, but these parameters are the

most common.
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Figure 2.3 Time domain representation of the cABR in response to /da/. This figure illustrates
CcABR to the stimulus /da/. The stimulus waveform is shown in grey, while the
response waveform is depicted in black. This representation is adapted from the
work of Skoe and Kraus (2010).

The speech-evoked ABR using the CV syllable has been investigated in several studies but has
yet to be used in clinical settings. Novis and Bell (2019) reported that the cABR to the /da/ sound
exhibited <100% detection across normal-hearing participants (N = 16). Moreover, the
morphology of the /da/ response was highly variable; some waves showed fair detection rates,
while others were poor. In contrast, responses to clicks in the same group of subjects showed a
100% detection rate for wave V. The feasibility of using speech ABR through HAs was
investigated by BinKhamis et al. (2019), who measured the cABR to the /da/ sound in HA users
(N =98). Their results showed significant earlier latency of all peaks and larger amplitude of
peaksV, A, D and F in aided responses. Although the responses were sensitive to aided
measures, they were still unsuitable for clinical use due to high variability between subjects in
detectable peaks. The onset peaks V and A and the offset peak O were missing from a high
number of participants (BinKhamis et al., 2019). Further, the /da/ sound lacks natural

continuous speech's frequency range (bandwidth).

2.3.3 Speech CAEPs

The behavioural speech tests used to evaluate HA fittings are unsuitable for infants under six
months, emphasising the need to find an objective measure (Dillon, 2005). The NAL group

developed one objective speech detection outcome measure of HA performance in infants
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(Purdy and Kelly, 2001). This test uses stimuli with speech features that can assess speech
detection and accordingly provide a realistic measure of hearing performance when using HA
(Punch et al., 2016). Further, the test is not limited to the peripheral system but assesses the

whole auditory pathway up to the cortex.

The current CAEP protocol developed by the NAL group is used by Australian Hearing—a
government organisation that provides audiological services for paediatrics using HAs or Cls.
The stimuli used are the short consonant sounds /m/, /g/ and /t/, which represent low-, mid- and
high-frequency speech sounds, respectively (Dillon, 2005). Stimuli are presented in the free-
field via loudspeaker using two stimulation levels (Punch et al., 2016). The initial presentation
level is 65 dB SPL, followed by either 55 dB or 75 dB SPL. Responses are quantified within an
average of 100 artefact-free epochs and presented in the time domain, representing the primary
ALR responses, namely, P1, N1 and P2 (Dillon, 2005). The morphology of adult responses
exhibits all three components (P1, N1 and P2), while only a single dominant peak can be
detected in infants. The test is performed using a HearLab device, which was introduced as part
of Australian Hearing’s clinical practice in 2011. A three-electrode configuration is used: active
at Cz, referenced to the left mastoid, and ground at the forehead (Carter et al., 2010), This
configuration is used to record the responses. The first aided CAEP evaluation is typically
performed during the second follow-up appointment, approximately eight weeks after the initial

fitting (Punch et al., 2016).

CAEP responses assess the aided detection of speech sounds; however, it is important to
consider how the responses reflect the actual benefits of the HA. The correlation between the
CAEP response in infants and the score of a parent questionnaire was examined by Golding et
al. (2007). This study included 28 infants and children who were frequent HA users, based on
their parents’ reports. The PEACH scoring system was used as a subjective measure of HA
benefit. A significant positive correlation was found between the detectable CAEP responses
and age-corrected PEACH scores. To examine the advantage of using CAEP further, the
researchers tested the correlation between the ABR/ECochG threshold and age-corrected
PEACH scores and found no correlation. This finding shows that speech CAEPs are better than
standard ABR in predicting HA benefits. However, the correlation between CAEP and PEACH
scores is relatively low (r=0.47). Additionally, the variation in age-corrected PEACH scores was
only partially explained by the models, suggesting that additional variables affect how well

PEACH scores are predicted (Golding et al., 2007).

The CAEP protocol was reviewed by Punch et al. (2016) to investigate the test’s feasibility in
actual clinical settings, including the clinician’s experience, perceptions of test protocols and

how those perceptions influence management decisions. The data consisted of files from 87
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infant cases in which CAEP had been recommended. A survey of 32 paediatric audiologists was
also conducted. The results showed that approximately 80 % of infants were tested, and any
decisions not to test were related to reasons outside the clinician's control (e.g., unattended
appointments, unavailable equipment or other infant conditions such as otitis media). The test
protocol was deemed clinically feasible in terms of time, as it could be implemented within the
60 min to 90 min of a standard clinical audiology appointment with few barriers faced by the
clinician. The test results influenced the management plan, and most parents were satisfied

with the test technique—especially when behavioural tests were inapplicable.

The CAEP protocol shows potential as an outcome measure to verify how HAs process speech
sounds. However, there are some drawbacks. The absence of CAEP in infants is not always
linked to decreased audibility; clinicians must be cautious when interpreting CAEP results
(Gardner-Berry et al., 2016). Another drawback relates to how HAs process speech stimuli used
in the CAEP test protocol. The speech stimuli are presented with interstimulus intervals (ISls)
ranging from 1 s to 2 s, limiting their resemblance to natural running speech (Easwar et al.,
2012). HAs are programmed to rapidly and continuously process speech input, which can result
in different output levels—both overall and at the onset—for phonemes presented with ISls or
time intervals of 1 sto 2 s, compared to the same phonemes in natural speech. Easwar et al.
(2012) investigated how non-linear HAs process phonemes presented in isolation with1sto2s
intervals in between compared to phonemes in natural running speech. They reported similar
HA outputs with the two phonemes conditions among roughly 75% of subjects, while the
remaining subjects exhibited lower outputs in isolated phoneme conditions. The significantly
lower phoneme output level in 25% of the cases indicates that the aided responses to

phonemes in isolation might underestimate actual speech audibility.

In a recent study by Visram et al. (2023), the sensitivity, repeatability and feasibility of aided
CAEP in infants to repeated speech stimuli were investigated. A notable strength of the study is
its large sample size of 103 infants, providing a valuable reference for future research. The
infants, aged 3 to 7 months at the first visit, underwent EEG recordings using a single channel
between FPz and the right mastoid. Two synthetic speech stimuli, mid-frequency and mid-high
frequency, were presented at dB sensation levels (SL) ranging from 0 dB to 20 dB SL. Testing was
repeated after seven days. The findings demonstrated strong clinical feasibility, with a 99%
completion rate and an average testing time of 15 minutes. For SL >10 dB, the detection rates
were 94% for mid-frequency stimuli and 79% for higher frequencies after two tests. However, in
a single test, these rates dropped to 80% for mid-frequency and 60% for high-frequency stimuli,
raising questions about the clinical feasibility of relying on a single test. One limitation of the

study is the use of synthetic speech stimuli, which may not fully represent real-world speech
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environments. However, the high completion rate with a testing time of 15 minutes provides a

practical estimate for implementing similar tests for infants in clinical settings.

2.3.4 CE-Chirp

A recent study proposed the use of speech-Llike stimuli to evoke an ASSR (Laugesen et al., 2018).
The ASSRs evoked by a narrow-band CE-Chirp showed a significantly larger response amplitude
than the conventional amplitude and frequency-modulated tone. However, the HA might treat
the stimuli as noise when using modulated tones or noise to elicit the aided ASSR responses.
Therefore Laugesen et al. (2018). proposed a new modification for the narrow-band CE Chirp
that might better estimate actual HA processing. The study used modified four narrow-band CE-
Chirps with centre frequencies of 500 Hz, 1 kHz, 2 kHz and 4 kHz to resemble the envelope of
the ISTS. This was achieved by first filtering the ISTS stimulus through four bandpass filters,
each with a central frequency corresponding to the NB CE chirp. The envelope of each ISTS
band was then extracted and applied to the corresponding chirp. Comparisons of the standard
narrow-band CE-Chirp and the ISTS-modified version revealed that the latter resulted in lower
ASSR amplitudes with a similar detection rate, as well as an increase in detection time of about
1 min (Laugesen et al., 2018). As the most critical clinical factor is detection time, and given that
speech-modified CE-Chirp has only an additional minute in recording time, it is possible to use
it to assess and measure aided outcomes. ASSRs to the modified CE-chirp were detectable in
normal-hearing adults, but it is yet unclear whether this approach can produce detectable
responses in adults with hearing loss or in infants. While these stimuli resemble the speech
envelope, they lack the temporal fine structure of natural speech. In addition, the question of
whether the ASSR measured here can be correlated with behavioural speech tests remains

unanswered.

2.4  Auditory evoked responses to running speech

The AEP is very low in amplitude compared to ongoing EEG activity. The averaging method has
been successfully used to improve the visualisation of the evoked responses. However,
averaging requires discrete and short stimuli to elicit responses, which does not reflect the kind
of sounds encountered in a real-life environment (Lalor et al., 2009). Several new approaches to
analysing EEG responses have emerged with recent developments in modern computation
capabilities. These approaches overcome the need for averaging and provide the possibility of
using continuous speech as a stimulus. However, the neural processes reflected in responses

to natural speech are still being explored. It is inconclusive whether the measured responses
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reflect just the acoustic features of the stimulus or if they also assess speech intelligibility (Zou

etal., 2019).

A considerable portion of the literature analyses such stimuli using two methods. One such
method estimates the correlation function between neural responses and specific features of
speech, such as the speech envelope (Aiken and Picton, 2008b, Kong et al., 2014, Forte et al.,
2017, Petersen et al., 2017). Another method predicts the auditory system transfer function
response using ongoing neural responses (Lalor et al., 2009, Lalor and Foxe, 2010, Ding and
Simon, 2012b, O'Sullivan et al., 2015). The next section reviews the recent literature on

analysing EEG responses to continuous running speech.

2.4.1 Cross-correlation

Cross-correlation is a signal processing method of objectively determining how two series
correlate at different time lags (Petersen et al., 2017). The peak indicates how strongly the
signals are correlated when optimally adjusted for any time-shift between the signals. When
analysing EEG responses to speech stimuli, specific features (e.g., the speech envelope) are
correlated with the ongoing EEG to calculate the cross-correlation function. The statistical
significance of the cross-correlation function can be used to determine the presence of a

response, and the maximum time lag indicates its latency.

Aiken and Picton (2008b) were among the earliest researchers to attempt to implement cross-
correlation for measuring cortical responses to continuous speech. For normal-hearing adults
(N =10), the cross-correlation function was estimated between averaged EEG responses to 100
repetitions of six different sentence roots and the envelopes of the sentences. The sentences
were presented in five blocks, each lasting approximately 12 min. Each sentence length ranges
between 2.64 s — 3.64 s. Awindowed cross-correlation method was used to compute the
correlation between the stimulus envelope and cortical response at every sample point. Each
500 ms time window was correlated with 500 ms of the response, with delays between 0 ms and
300 ms in 4 ms intervals. The correlation between the response waveform and the transient
response model was computed as an alternative model to compare. The transient response
model resulted from the convolution between the P1-N1-P2 complex response to sentence
onset and the first derivative of the stimulus envelope. The envelope derivative includes more
acoustical landmarks as it shows the rate of amplitude change in the envelope (Chalas et al.,
2022). Using the negative derivative in the convolution caused an inversion of the P1-N1-P2
complex. To prevent this, the absolute value of the most negative deflection in the derivative

was added to the entire calculation (Aiken and Picton, 2008b).
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The results showed a significantly higher mean correlation between the averaged responses
waveform and the stimulus envelopes than was obtained from the transient response model.
This finding indicates the possibility of using cross-correlation to detect cortical responses to
sentences. Although the method successfully detected significant cortical responses in all
participants, it might not be ready for clinical settings (Aiken and Picton, 2008b). Due to the time
needed for electrode placement and removal, recordings with many channels are impractical
for clinical use (Aiken and Picton, 2008b). The study used repeated short sentences, which
might not resemble continuous running speech, but the detection method can still be used as a
foundation for future work. One approach to investigating the clinical feasibility of the cross-

correlation method could involve using only a single EEG channel.

The cross-correlation method was further tested by Kong et al. (2014) to track the effect of
attention on cortical responses to the speech envelope in quiet and competing speaker
conditions. Cortical responses to a continuous stream of speech were recorded in normal-
hearing adults (N = 8). The speech stream was divided into segments, each with a duration of
50 s. In the quiet condition, participants were asked to either actively attend to the speech or
passively listen while watching a movie. Participants were asked to attend to either a male or
female speaker in the competing speaker condition. The cross-correlation was calculated
between their EEG response and the entire speech segment (50 s) at time lags ranging from 200
ms to 600 ms at 4 ms intervals. The chance-level confidence interval was estimated from 1000

bootstrap resamples using randomly selected segments of stimulus and response.

In the study, they found that the peaks of the cross-correlation function roughly corresponded
to the peaks of the CAEP, specifically N1, P2, and N2. Consequently, they used these peaks for
their analysis. In the quiet condition, no significant difference in the correlation value, nor the
latency of peaks in the correlation function, were observed between the active and passive
listening conditions. In the competing speaker condition, the attention effect showed a
significantly higher N1 peak amplitude of the cross-correlation function. These findings suggest
that direct cross-correlation may be used to indicate the attentional state of a participant using
continuous speech as a stimulus. The cortical responses were also detectable even when the
participants were not attending to stimuli. It should be noted that the paper only presents group
averages without showing the ability to detect responses in individual subjects. To develop this
method into a clinical tool for diagnosis or HA verification, it must be capable of providing

robust results for each individual, not just on average.

Forte et al. (2017) used the cross-correlation approach to detect brain responses to continuous
speech at the subcortical activity level. Specifically, brainstem responses were quantified by

measuring correlations between EEG responses and the fundamental waveform of continuous
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speech. Computing the fundamental waveform of the speech involved several steps, beginning
with low-pass filtering the signal at 1500 Hz, detecting the fundamental frequency of the voiced
parts, and then using the Hilbert-Huang Transform to extract the fundamental waveform. The
method also included a control condition where brainstem responses were tested with inserts
placed far from the ear. This condition represented the no-stimulus condition, and no significant
correlation was indicated. In the quiet condition with no noise presented with the stimulus, a
correlation between speech fundamental frequency and brainstem response was observed at a

latency of 9 ms in 87.5% of normal-hearing participants (N = 16).

The method was further investigated in the same study to measure modulation by attentionin
the presence of a competing speaker. The responses were more substantial in all subjects (N =
16) when the participants attended to the target speaker, with statistically significant increases
in eight of them. These results demonstrate the potential for using a correlation-based method
to show the presence of speech features at the brainstem level. The study was also the first to
detect the effect of attention at the brainstem level, contradicting the common assertion that
only cortical responses are enhanced with attention. Since the suggested approach does not
call for short repetitive stimuli and prevents any brain adaptation, it may thus open up new
avenues for research into the role of the brainstem in objectively assessing the perception of
continuous speech with and without an HA. However, assessing AEPs at the cortical level might
provide better insight into the neural processing of speech stimuli compared to the brainstem

level (Lightfoot and Kennedy, 2006).

2.4.2 Temporal response function

Other studies have applied an alternative approach to analysing continuous speech (Lalor et al.,
2009, Lalor and Foxe, 2010, Crosse et al., 2016). This new approach was built on the transient
responses model proposed by (Aiken and Picton, 2008b). The new approach models the
auditory system function and uses it to either predict EEG responses (forward modelling) or
reconstruct the speech stimulus (backward modelling). The forward model assumes that the
output of the auditory system, y(n) (EEG responses), is the convolution of some feature of the
input stimulus, e.g., the envelope, x(n), combined with unknown impulse responses, w(n), and

noise (Lalor et al., 2009).
Equation 2.1

y(n) = x(n) *w(n) + noise

where * indicates convolution. Given the known stimulus x(n) and the measured EEG responses
y(n), the impulse responses w(n) (usually referred to as the temporal response function - TRF in

this field) are estimated via least-square estimations performed on a sliding window of the
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stimuli and the recorded responses. This process can be analytically performed using the

following equation:

Equation 2.2

w = (! )TN ye)

Here (x,y;) represent the cross-correlation matrix between x; (stimulus values within a specific
time window around t) and y; (the EEG responses at t), whilst T refers to the transposition of the
matrix. The autocorrelation matrix of the stimulus (xtxtT) is inverted. An essential step before
autocorrelation matrix inversion is regularisation (Lalor et al., 2009, Crosse et al., 2016).
Regularisation most commonly involves adding a scaled identity matrix to the autocorrelation
matrix to ensure it can be inverted (Crosse et al., 2016). This step involves incorporating
additional information to address ill-posed estimation problems and moderate the risk of
overfitting. Ill-posed estimation problems arise when inverting the autocovariance matrix (xtxtT),
which can be numerically unstable, causing high variance in the estimate. This instability is
more likely with non-white stimuli like speech, as it may be singular. To address this, a bias term
is added to reduce variance and minimize overall estimation error. By doing this, the estimate
may become more biased, but it will reduce the variance and result in a lower overall estimation

error (Lalor et al., 2009).

This method was initially named the auditory evoked spread spectrum analysis (AESPA) (Lalor et
al., 2009). However, TRF has recently become the term more commonly used to describe the
final model of stimulus-response mapping (Crosse et al., 2016). Specifically, the model explains
the relationship between some features in the stimulus and the neural response. Shannon et al.
(1995) achieved nearly perfect speech recognition scores with broadband noise stimuli
modulated by the speech envelope, confirming that the envelope in a small number of
frequency bands holds sufficient information to permit speech recognition. Therefore, several
studies since have used the speech envelope to estimate the transfer function (or equivalently
the impulse responses function) of the auditory system (Lalor and Foxe, 2010, Ding and Simon,
2012b, O'Sullivan et al., 2015, Vanthornhout et al., 2019, Decruy et al., 2020). Other studies
have used speech stimulus representations such as spectrograms, phonemes and phonemic
features (Di Liberto et al., 2015, Drennan and Lalor, 2019, Gillis et al., 2023) as the inputin

estimating TRFs.

Originally, the TRF was based on forward modelling, which compares predicted responses to
actual EEG responses (Crosse et al., 2016). This model is assessed by computing the
correlation coefficient between the actual and predicted EEG responses (see Figure 2.4). The
analysis is univariate because data from the other EEG channels are discounted, and the model

processes each channel separately (Crosse et al., 2016). Forward modelling can provide
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information about the spatiotemporal characteristics of neural responses (Etard et al., 2019). In
an early study, Lalor et al. (2009) observed a significant correlation between averaged repeated
responses and estimated impulse responses using forward modelling. With a high SNR in the
speech stimulus, the new method performed better than standard averaged responses, when
the stimuli were continuous. Signal averaging was performed for the continuous stimulus by
averaging the time-locked responses to positive intensity increases in the stimulus when it
exceeded 0.5 yV. The results indicate the new method's flexibility when dealing with continuous
changes in the acoustic characteristics of the stimuli. A more recent study found that the TRF
waveform produced by the forward model had a similar morphology to the averaged late
responses following repeated short stimuli (Vanthornhout et al., 2019). Both studies show that
the model can represent the responses in a way that can be interpreted visually through the

morphology, latency and amplitude of the waveform.
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Figure 2.4 Diagram of the forward and backward modelling approaches used in the mTRF

toolbox. The figure presents the processing steps of the forward TRF (encoding) and
the backward TRF (decoding). In forward modelling, the envelope stimulus (red line)
is processed through the estimated TRFs from each channel, resulting in a predicted
EEG waveform. The predicted EEG is then correlated with the actual EEG, yielding a
correlation value for each EEG channel. In backward modelling, the EEG data from
all recording channels are processed through the mTRF to reconstruct the stimulus

envelope, which is then correlated with the actual envelope, resulting in a single

correlation value. Adapted from Crosse et al. (2016).

Backward modelling implements a reversed direction in terms of response-stimulus mapping

(Crosse et al., 2016). It reconstructs or decodes specific speech stimuli features, most

commonly the speech envelope, from recorded neural responses (see Figure 2.4). It can be

made as an inherently multivariate approach (multiple EEG channels to improve the prediction

of the speech envelope) using multiple electrodes, so selecting channels to be included in the

analysis is not required (Mesgarani et al., 2009). Instead of preselecting channels, the model

optimally weights each channel through the TRFs to provide the best approximation of the
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predicted envelope (blue in Figure 2.4) to the true envelope (red in Figure 2.4), providing weights
for each electrode based on the SNR (Pasley et al., 2012, Etard et al., 2019). The correlation
coefficient values resulting from this backward model are usually between (r=0.05 - 0.25)
(Vanthornhout et al., 2018, Gillis et al., 2022a), which is higher than the predictions of the
(univariate) forward model (r=0.03 - 0.10) (Di Liberto and Lalor, 2017, Prinsloo and Lalor, 2022).
The correlation value is currently the main parameter used to detect the presence of responses;
to the best of the author’s knowledge, the morphology of the TRF has not yet been used to

detect the significance of the response.

Moving forward into how these methods can be implemented clinically, the next two sections
will discuss the clinical feasibility and application of detecting neural responses to continuous

speech stimuli.

2.4.3 Consideration of the clinical feasibility of using AEP to continuous speech

Several factors must be considered when assessing the clinical practicality and feasibility of
specific tools. The first factor is the availability of testing equipment. The second is the time
required for setup and for recording reliable responses. Additionally, attention and language are
crucial when measuring cortical responses to speech in infants. This section reviews these
considerations, focusing on the XCOR and TRF approaches to analysing cortical responses to

continuous speech.

In laboratory settings, recording neural responses at a cortical level requires multichannel
systems with 30 channels or more (Hall, 2015). The higher the number of channels, the more
preparation and cleaning are required; equipment is also more expensive (McArdle and Hnath-
Chisolm, 2015). The pathway by which a clinical protocol for recording cortical responses
usually progresses is through first using a high number of channels, then moving towards lower
numbers to reach clinical feasibility (McArdle and Hnath-Chisolm, 2015). All previous studies of
cortical entrainment to speech envelopes have used multichannel recording systems to
document EEG responses. The lowest number of channels used to record an EEG response was
a 32-channel system with adult participants (Vanheusden et al., 2020), and 27 channels with
infants (Jessen et al., 2019). Even though most studies use a high number of channels, lower
channel numbers are required to measure significant responses. For example, Di Liberto et al.
(2015) reported a significant correlation for the forward model by averaging correlations across
12 channels; no significant differences in correlation values were observed between the
channels. Etard et al. (2019) demonstrated that EEG data from the CPz channel, in response to
speech fundamental frequencies, showed significant attention effects on amplitude

modulation at the subcortical level. This finding indicates that using a single EEG channel was
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sufficient to detect the attention effect on the cortical response. None of these studies only
used a single channel to investigate at the cortical level. This leaves the question of whether one

channel can record and detect cortical responses to running speech yet to be addressed.

Recording time is another crucial factor in designing a test for clinical settings. Only a few
studies in the literature have studied the influence of recording time when measuring evoked
responses to speech. In the study by Di Liberto et al. (2015), roughly 72 min of a recording was
needed to decode phonemic-level processing at the cortical level. Using the same method of
forward modelling, researchers also investigated the minimum time required to measure
significant responses (Di Liberto and Lalor, 2017). For each subject, the response was predicted
using a subjective-specific model or a generic model. The subjective-specific model was a
multivariate temporal response function (mTRF) fitted to data from the tested subject. The
generic model was the average of subjective-specific mTRFs from all other subjects. The
authors found that at least 30 min were required to measure responses using the subject-
specific model. However, just 10 min of data from each subject was sufficient in the generic
model to show a significant correlation. Jessen et al. (2019) studied both subject-specific and
generic models, finding that 5 min of an EEG recording was adequate to show a significant
correlation with the forward model in infants. However, the experiment was based on
multisensory stimuli (audio and visual) that related to each other (a cartoon film). The audio
speech envelope was extracted and used to estimate the audio TRF, but it was unclear whether
the audio responses were influenced by the visual information presented. To ensure the
reliability of the measured speech responses, researchers should use speech stimuli without

related visual inputs.

Neural processes reflected in responses to natural speech are still being explored. It has yet to
be confirmed, for example, whether they reflect acoustic onsets, comprehension or
intelligibility. One investigation approach is to correlate neural responses to a behavioural
speech test. Speech recognition tests such as BKB have been used in several studies to verify
speech understanding in the presence of background noise (Vanthornhout et al., 2018,
Lesenfants et al., 2019, Vanheusden et al., 2020). Children cannot be tested for behavioural
speech perception before they develop the necessary motor skills to respond (e.g., picture
pointing) or language skills to comprehend (Eisenberg et al., 2005). Infants may not yet possess
receptive language, such as following simple directions or responding to questions. Therefore,
speech perception tests should focus on detecting the presence of speech perception rather

than predicting intelligibility.

Tracking neural entrainment to native and unknown languages presents a way to test if audibility

or further aspects of language processing are being assessed. Etard and Reichenbach (2019)
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recorded EEG responses to continuous running English and Dutch speech stimuli presented to
native English speakers who did not understand Dutch (N = 20). The speech was present in quiet
conditions and with three different levels of background noise. The researchers used backward
modelling to track neural cortical responses to the speech envelope; no significant difference in
correlation value was found in the quiet condition between the two languages. The speech
amplitude modulated spectrum was found to be highly similar between English and Dutch
(Varnet et al., 2017), explaining the significant responses to Dutch. In background noise, neural
tracking of English speech was significantly higher than in Dutch. The results suggest that while
significant neural tracking of foreign languages can occur with high SNR, detection may take

longer than when working in the subject’s native language.

Another possibility would be to use universal speech stimuli like the ISTS (Holube et al., 2010).
The ISTS is a recording that remixes natural speech from six languages—English, Arabic,
Mandarin, French, German, and Spanish—to produce a non-intelligible sound with several
characteristics of natural speech, such as modulation frequency and fundamental frequency.
The aim of developing such a signal was to provide an international stimulus that could be used
to measure HA gain in real life. Using such stimuli to track cortical responses has not yet been
investigated. Such stimuli can provide a universal method of tracking neural responses to

continuous running speech as it is language-independent.

Auditory late responses are affected by the subject’s state of attention (Hall, 2015). The N1 and
P2 peaks amplitude were found to be more prominent when the subjects attended the stimuli
(Picton and Hillyard, 1974). Controlling subject attention to the stimuli is essential when
measuring cortical responses to speech. However, this presents a challenge when testing
infants. Vanthornhout et al. (2019) investigated the neural tracking of the speech envelope when
the subject actively attended to the stimulus or passively listened while watching a silent movie.
They estimated the SRT under both conditions based on the correlation between the actual and
reconstructed speech envelopes. Two lists of 20 sentences were presented to normal-hearing
adults (N =19) in conditions of quiet and several SNR levels. A significantly higher correlation
was observed with attention in the low SNR conditions, whereas no difference in correlation
between active and passive conditions was apparent when the SNR was high. Kong et al. (2014)
also found that in the quiet condition, cortical responses to running speech were detectable
with passive listening. Both studies demonstrate the feasibility of using the passive condition
when tracking neural responses to the speech envelope. Watching a movie during testing, for
example, can be more engaging for participants, especially when the subjects are young

children or infants.
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2.4.4 Applications of AEP to continuous speech

Tracking neural responses to continuous stimuli has become increasingly popular in recent
years, with several applications for diagnosing impairment of the auditory system and
attentional selection. Presenting continuous speech as a stimulus is more engaging and
realistic for participants than brief tone stimuli (Power et al., 2012). Several researchers have
used the TRF to investigate brain-selective attention to specific speech streams (Power et al.,
2012, O'Sullivan et al., 2015, Vanthornhout et al., 2019). Further, many studies have used the
model to measure SIN performance objectively (Ding and Simon, 2013, Vanthornhout et al.,
2018, Lesenfants et al., 2019) and assess auditory and linguistic processing (Gillis et al., 2022b).
Other applications, namely aided response (Petersen et al., 2017, Decruy et al., 2020, Gillis et
al., 2022a) and infant speech detection (Jessen et al., 2019, Attaheri et al., 2022a), have been
the subject of a recent investigation. As this project aims to assess the feasibility of using neural
tracking methods for continuous speech in infant-aided testing, some critical works in the area

of aided responses and infant testing will be discussed below.

2.4.41 Aided speech detection

Previous studies have successfully observed aided neural tracking of speech envelopes in
listeners with hearing loss (Petersen et al., 2017, Vanheusden et al., 2020, Alickovic et al.,
2021). Petersen et al. (2017) measured the cortical responses using the cross-correlation
approach. They investigated the effect of hearing loss on neural tracking in 27 elderly
participants whose hearing levels (pure tone average) ranged from 11 dB to 73 dB HL. Also, the
influence of attention was measured at different SNR levels. Responses were detected from
both attended and ignored stimuli at the group level. Although significant differences were
indicated between attention conditions, this difference was reduced with severe degrees of
hearing loss. From this study, it is unclear whether significant neural tracking of speech
envelope was seen in all subjects, which questions the clinical feasibility of such a method in

assessing aided speech responses at the individual level.

Vanheusden et al. (2020) proposed measuring cortical entrainment to evaluate HA performance
objectively. The study compared correlation values between actual and reconstructed speech
envelopes under aided and unaided conditions. Participants (N = 17) with mild-to-moderate
hearing loss were presented with a continuous running speech from an audiobook that lasted
25 min. The authors found no significant difference in reconstruction accuracy between aided
and unaided responses, which was explained by the good audibility and high subjective score in
the unaided condition. However, the results also confirmed that it was possible to measure

cortical entrainment despite non-linear HA processing effects on the speech envelope. These

44



Chapter 2

findings laid the foundation for using such a method to improve objective HA outcome
measures. However, since the presentation level was relatively high (70 dBA equivalent sound
pressure level (LegA SPL)) and participants had mild to moderate hearing loss, the HA may have
had minimal impact on the speech signal. In more realistic settings with lower sound
intensities, HAs would provide greater amplification, resulting in more significant compression
of the stimulus. Compression has been shown to affect the speech envelope (Stone and Moore,
2007, Chinnaraj et al., 2021), which could influence the detection of responses to continuous

speech, as the envelope is a key feature used in the model.

More recently, Alickovic et al. (2021) investigated the effect of the HA noise reduction (NR) on
the neural tracking of the speech envelope by measuring the reconstruction accuracy of the
backward model. The sample included 34 subjects with bilateral mild to moderately severe
hearing loss, who were experienced HA users. The study examined early AEPs, defined as neural
responses occurring at latencies of less than 85 ms, and late AEPs, characterised by latencies
between 85 ms and 500 ms, which are associated with higher-level auditory cortical processing.
The objective was to investigate how the NR scheme affects the neural representation of a
multi-talker auditory scene at distinct hierarchical stages of the auditory cortex. A significant
effect of NR was observed in the early responses, leading to higher reconstruction accuracy of
the model for the entire acoustic scene. For the late responses, the results showed an
enhancement of the target speech and suppression of background noise. The findings of these
studies demonstrate the potential of using aided EEG with continuous speech as stimuli,
supporting the results of Vanheusden et al. (2020). Additionally, Alickovic et al. (2021) further
validate the potential of tracking cortical to continuous speech for assessing the benefits of
specific HA features, such as NR, in complex and noisy listening environments. Based on the
studies discussed in this section, a possible direction for future research is to explore the

clinical application of this approach, which will be discussed later in this chapter.

2.4.4.2 Infant testing

Most of the existing literature uses adults as participants. However, a study by Kalashnikova et
al. (2018) measured the neural cortical tracking of temporal speech modulation in infants,
making it the first to test such an age group using the TRF approach. One major obstacle to
measuring speech encoding in infants is the difficulty in tracking their attention. The researchers
examined the effect of using engaging infant speech and then compared this effect to the use of
regular speech. Two speech types were presented to (N = 12) seven-month-old infants, namely,
infant-directed speech (IDS) and adult-directed speech (ADS). Per the forward model, the
results showed a significant correlation between EEG responses and their predictionsin

response to IDS, but not to ADS. The response was associated with a cluster of eight frontal

45



Chapter 2

electrodes that exhibited significant correlation. The nature of the speech stimuli used in the
study suggests that it is possible to attract infant attention and quantify cortical entrainment to
continuous speech. However, the difference between the two stimuli might not be purely
explained with attention as the two stimuli are acoustically different. Additionally, IDS tends to
have longer pauses compared to ADS (Fernald et al., 1989). A more robust cortical onset

response was found only after longer pauses in the continuous stimulus (Hamilton et al., 2018).

Infant testing was further investigated by Jessen et al. (2019) through multisensory (audio and
visual) stimulation and a larger sample size (N = 52) of seven-month-old infants. An additional
sample of (N = 33) adults was included in the study to compare against the infant test results.
Significant correlations between the predicted and actual EEG responses using the forward
model were measured in both groups using subject-specific and generic models. The subject-
specific model was an mTRF fitted on data from only the subject tested, whereas the generic
modelincluded the averaged subject-specific mTRFs from all other subjects. The study results
demonstrated the ability to track neural responses in infants with only 5 min of simultaneous
sensory stimuli. However, it is unclear whether the correlation was significant for all subjects.
The study also defined the characteristics of infant TRF morphology in comparison to adults as
lacking the first positive peak (150 ms-250 ms) and having a longer positive peak (250 ms-500
ms). The TRF waveform is in line with the CAEP evoked by short speech stimuli in infants, which
has one prominent positive peak between 100 ms and 300 ms (Ahissar et al., 2001, Dillon,
2005). This finding corresponds to the similarity between TRF response morphology and late

AEP evoked by short stimuli, discussed in Section 2.4.2.

Since the start of the project, more studies have been investigating the neural tracking of speech
envelopes in infants (Ortiz Barajas et al., 2021, Attaheri et al., 2022a). The study considers how
infants develop the ability to process speech, focusing on the tracking of speech envelopes in
the brain during the first months of life. Using a cross-correlation approach, the study compares
neural tracking of familiar and unfamiliar languages. The study found that newborns show the
ability of neural tracking for both types of language, which provides evidence that the ability to
track speech envelopes does not reflect comprehension. Interestingly, the study found that in
the 6-month-old group, neural tracking was only significantly detected for the unfamiliar
language. The absence of neural tracking of familiar language at this age was also seen by
(Kalashnikova et al., 2018) The explanation given in the study was related to the neural
development of language acquisition, which shifts from focusing on syllabic units, crucial for
speech perception from birth to the processing of phonemic units, which are key for learning
words and grammar starting around 6 months. This shift moves from elements presentin the
speech envelope at 4 Hz-5 Hz to phonemic units around 30 Hz, reflecting a developmental

progression in language acquisition. These findings highlight the dynamic nature of neural
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adaptation in early language development and raise questions about the necessity of using

intelligible speech to assess speech perception at this age.

The studies mentioned earlier involving infants demonstrate the feasibility of using the TRF
method and cross-correlation to test infant cortical responses to real-life stimuli. Three
important considerations from these studies can help design a new infant experiment. First,
infant attention can be captured using IDS or visual stimulation. However, since it might be
impossible to control attention in infants, the feasibility of measuring cortical responses to
continuous speech with passive listening should be investigated. Second, EEG recording
lengths can be as short as 5 minutes, though it is unclear if detection sensitivity is 100% and no
data was given regarding the detection of the responses for individuals. Finally, the use of

speech stimuli independent of the infant's language supports clinical feasibility.

2.5 Summary and Research Motivation

It has been established that an objective approach can overcome the limitations of subjective
methods in difficult-to-test cases, such as infants. This literature review shows that AEPs were
the first method of choice for objective hearing assessment. First, different forms of
conventional AEP, using short stimuli like tones, were explained. Next, several signal-
processing approaches for analysing EEG signals when using speech as a stimulus were
discussed. Most of these approaches relied on averaging responses to repeated stimuli, which
have limited environmental relevance and do not reflect the performance outside clinical

settings. Therefore, the literature review subsequently explored the use of continuous speech.

This review concluded by exploring recent literature on measuring evoked responses to
continuous running speech, elaborating on possible clinical applications and feasibility
considerations. The literature reveals a clinical need for an objective outcome measure that
resembles everyday listening (Grill-Spector et al., 2006, Summerfield et al., 2008). This aim can
be achieved by analysing auditory evoked responses to speech stimuli. Aided cABR provides
limited information about how HAs process natural speech, as they rely on repeated short
speech stimuli to elicit responses. In contrast, HA input in everyday listening environments
consists of continuous speech and various background noises, encompassing a broader range
of acoustic features. While aided cABR can offer some insights into HA performance, it does not

fully capture how HAs function in more realistic auditory settings.

The current clinical method for assessing speech-aided response objectivity is the NAL group’s
CAEP system (Punch et al., 2016). The technique uses four short speech sounds to approximate

the speech frequency range. Compared to cABR, the CAEP approach might provide more insight
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into processing speech up to the cortex. However, using continuous speech would present a

more realistic measurement of speech perception.

2.6 Gaps in Knowledge

The literature on measuring cortical responses to continuous running speech reveals gaps in

current approaches that require further investigation:

e Whatis the detection rate of cortical responses to continuous speech using EEG data
from just one channel? This would reduce the setup time, significantly benefiting clinical
settings.

o Whatis the minimum time required to detect significant responses in individuals using
the TRF method and cross-correlation?

e |s there a significant difference in detection sensitivity between XCOR and TRF?

e Can other TRF parameters, such as peak amplitude and latency, be used to detect
responses? The literature indicates that correlation values are the only parameter
currently used.

e Isthere a significant difference in detection sensitivity and detection time between
cortical responses to intelligible speech and language-independent speech-like stimuli?

e |sthere a significant difference in the detection rate of cortical responses from a single
channel between passive and active listening conditions?

e Whatis the amount of envelope distortion caused by the HA, and how does it impact the

measurement of cortical responses to continuous aided speech?

2.7 Thesis Objectives

The key objectives for this project’s contributions towards the overarching aims are:

1. Assess the viability of detecting cortical responses to continuous speech using EEG
data from a single channel, as typically available in current clinical systems, by
measuring detection sensitivity and detection time.

2. Investigate the detection sensitivity of different parameters by comparing XCOR and
TRF, including correlation values and other morphological features.

3. Determine whether the intelligibility of the stimulus influences cortical responses to
continuous speech.

4, Compare the effects of active and passive listening on detecting cortical responses

from a single channelin order to determine the role of attention.
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Measure changes in the stimulus envelope after processing by standard HAs
(including compression), assess the extent of envelope distortion and evaluate its
impact on cortical responses to amplified stimuli.

Compare cortical responses to continuous speech with and without HA processing to

assess the feasibility of detecting aided cortical responses.
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Chapter 3 Measuring Cortical Responses to
Continuous Running Speech Using EEG Data

From One Channel

This chapter presents the analysis of pre-existing data from a study by Vanheusden et al. (2020).
The analysis tests the detection sensitivity of several parameters using cross-correlation and
forward modelling methods. The EEG data from a single channel are used to detect the
presence of responses. The results provide evidence regarding the best approach to use for
further steps in this project. This chapter is now published in the International Journal of

Audiology (Aljarboa et al., 2023).

3.1 Introduction

As highlighted in Chapter 2, using natural running speech can provide a more environmentally
valid measure of speech processing, with the potential for hearing aid evaluation. It may also
overcome the issue of neural activity suppression caused by stimulus repetition (Grill-Spector
et al., 2006). Response to continuous speech can better evaluate how HA users perform in
realistic speech-in-noise situations (Decruy et al., 2020). Measuring auditory evoked responses
to continuous running speech can be accomplished in two ways. The first is to measure the
maximum cross-correlation between the EEG response and specific features of the speech
signal (BinKhamis et al., 2019). Previous work has shown that both the temporal envelope (Kong
et al., 2014) and the fundamental frequency of speech (Forte et al., 2017) correlate with the EEG
signal. The second approach is typically referred to as a TRF, which estimates the relationship
(transfer function) between the features of input speech and the corresponding EEG (Lalor et al.,
2009). Through the TRF approach, EEG responses can be estimated from the speech stimuli
(forward modelling), or the speech envelope can be reconstructed from EEG responses
(backward modelling). In most studies, the significance of the correlation between the actual
response and the predicted or reconstructed response is used to detect the auditory processing

of the stimulus.

When using forward modelling, Vanthornhout et al. (2019) employed detection based on the
peak of the TRF filter to measure the effect of attention, finding that the resulting impulse
responses were similar to those of CAEPs following short tone bursts. However, it is not well
established whether features of the TRF filter waveform, such as peak amplitude or power, can

be reliably used as parameters to measure the presence of responses. In general, both the
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cross-correlation and TRF approaches can detect cortical responses to running speech and
have been widely used (Di Liberto et al., 2015, Di Liberto and Lalor, 2017, Vanthornhout et al.,
2019, Vanheusden et al., 2020). However, a comparison of detection sensitivity between the
two approaches has not yet been made, nor has there been an exploration of how TRF filter

waveform parameters, such as peak value or power, might compare for detection purposes.

Developing a clinical tool requires careful consideration of practical aspects, such as the
duration of testing. Notably, two studies — Di Liberto and Lalor (2017) and Mesik and Wojtczak
(2022) — measured the minimum time needed to detect cortical entrainment to continuous
speech in normal-hearing adults. Di Liberto and Lalor (2017) examined the time required to
obtain a significant correlation using the speech envelope and other phonemic features to
estimate the forward TRF model. For each subject, responses were predicted using either a
subject-specific model or a generic model. The subject-specific model was an mTRF fitted on
data from only the subject tested, while the generic model averaged the subject-specific mTRFs
from all other subjects. The findings indicated that 30 min or more of EEG data recordings were
required to measure significant correlations using TRF-forward modelling with the subject-
specific model - a duration impractical for clinical use. However, when a generic model based
on recordings from nine previous subjects was used, only 10 min of recordings were needed.
For this approach to be clinically feasible, such a generic model would need to be available in
advance, and it remains uncertain how well a model based on normal-hearing subjects would

generalise to hearing-impaired subjects.

More recently, Mesik and Wojtczak (2022) conducted a more intensive investigation into the
effect of EEG data quantity on prediction accuracy, progressively increasing the data range from
3 minto 42 min across 11 different data quantities. A key finding of their study was that the
performance of the subject-specific model plateaued after approximately 14 min of data when
the speech envelope was used as the primary detection feature. Neither study, however,
addressed how recording time varied between different participants, leaving uncertainty about

the time required to detect responses at the individual level.

Another important requirement for clinical use is the availability and suitability of equipment.
Detecting EEG responses to continuous speech is usually carried out using a multichannel
recording system. In addition to increasing the setup and testing time, multichannel systems
with 32 or more electrodes are costly and not typically available in audiology clinics (Ginsberg et
al., 2023). For practical purposes, using a single channel for clinical measurement would be
preferable. In the current study, the forward model was considered the most appropriate
approach, as the model is estimated based on data from a single channel. However, the ability

to detect single-channel responses to running speech has not been well explored in previous
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works, nor has the position of the best single-channel been identified. An advantage of using
multiple channels may be that the best-performing channel does not need to be selected in
advance, removing the risk of only recording a sub-optimum single channel. As yet, a
comparison of single-channel detection with multichannel has not been made for the purpose

of speech-evoked responses.

For standard AEP measurements, cortical responses typically exhibit high amplitude in the
frontal area. Aiken and Picton (2008b) suggest that the source of cortical responses to the onset
of speech sentences is in the superior region of both temporal lobes. The Hearlab system
protocol developed by Carter et al. (2010) to measure standard AEPs to short speech sounds
uses the Cz location to detect cortical responses to speech sounds. Another common
measurement location is Fz, as it has a good response amplitude but avoids the need to put
electrodes above the hairline (Hall, 2015). A comparison of these single-channel measurement
positions in terms of detection time for responses to running speech has not yet been made. An
alternative could be to use multichannel measurement and select the best single channel for
each subject. Although this would be more complicated for clinical use, it might be worthwhile if
it achieves a significant reduction in test time. A possible downside to the approach is that
selecting the strongest statistical parameter, such as correlation, from multiple channels will
increase the values obtained both with and without responses present. This will, thus, raise the
threshold beyond which any response can be deemed statistically significant. Hence, this will

be addressed in the current work.

The objectives of the current study are: (1) to compare the sensitivity of different analysis
methods and parameters in detecting cortical responses to continuous running speech using a
single channel, and to determine whether cross-correlation or TRF parameters are most
sensitive for detection; (2) to explore the minimum time required to detect significant cortical
responses at the individual level; and (3) to investigate whether a single-channel approach is
more effective than a multiple-channel approach, where the best-performing channel is used

for analysis.

Previous studies have demonstrated that it is possible to measure cortical responses to
continuous speech using multichannel EEG with cross-correlation (Kong et al., 2014, Petersen
et al., 2017)and TRF approaches (Vanthornhout et al., 2019, Vanheusden et al., 2020). However,
this study further investigates this area by focusing on detection using a single-channel
approach and examining the individual recording time required to detect a significant response.
The sensitivity of the analysis methods will be evaluated based on detection rate and mean

detection time.

52



Chapter 3

3.2 Materials and Methods

The EEG data in this paper was previously collected by Vanheusden et al. (2020). The EEG data
were recorded from 17 native English speakers (11 males, 6 females, age 65 * 5 years) with
bilateral mild-to-moderate sensorineural hearing loss. Hearing levels were assessed using pure-
tone audiometry. Table 3.1 shows the mean and the standard deviation (SD) of hearing levels at
each frequency for both ears. All participants were regular HA users and were tested under
aided and unaided conditions. They were awake and attentive to the stimulus during the
sessions. For the current work, only the unaided condition was included in the analysis. The
condition was chosen to exclude the possible complication of HA processing: the aim was to
compare the performance of different detection parameters, not to further explore the effects of
aiding. As such, using only the unaided data simplified comparisons between methods. If the
identification of the best-performing method for unaided data is successful, the next step will

be to test its sensitivity in detecting aided responses.

Table 3.1 Subject average hearing levels. The table shows the pure tone average mean and
standard deviation (SD) of the subjects.

Hearing levels (mean +/- SD)

Frequency Left ear Right ear

200 Hz 23dB+13dB 29dB+21dB
500 Hz 23 dB+15dB 27 dB +21dB
1000 Hz 29 dB + 16dB 32dB+23dB
2000 Hz 43 dB+19dB 43 dB+21dB
3000 Hz 54 dB +17 dB, 51dB+20dB
4000 Hz 61 dB+ 14 dB 61dB+17 dB
6000 Hz 69 dB+19dB 68 dB + 24 dB
8000 Hz 68 dB + 18 dB 65 dB + 18 dB

This experimental stimulus was a 25-minute English narrative of continuous running speech
from an audiobook. It was divided into eight segments of roughly 3 min played contiguously
(Vanheusden et al., 2020). The speech stimulus was sampled at 44.1 kHz and low-pass filtered
at 3 kHz. These parameters were chosen because of previous findings that frequencies above 3
kHz have no significant effect when measuring low-frequency cortical entrainment to speech
(Vanheusden et al., 2020). The stimulus was presented at 70 dBA (LeqA SPL) through
loudspeakers placed 1.2 min front of the subject. Attention was ensured by asking questions
after each segment. The EEG responses were collected using a 32-channel system (Biosemi,
Netherlands, sampling rate of 2048 Hz). The electrodes were placed according to the 10-20

standard configuration and referenced to the averaged EEG responses over all electrodes.
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3.2.1 Data analysis

The EEG responses were recorded from 32 channels, down-sampled to 128 Hz and referenced
to the two mastoid electrodes. The EEG was filtered between 1 Hz and 30 Hz, covering the same
band as the speech signal's envelope. In the first analysis, responses were detected using either
the single Cz or the single Fz channel. In the second (multichannel) analysis, the channel with
the highest correlation between the EEG signal and the speech envelope was selected from
either all 32 channels or a subset of 6 channels. The six channels — Cz, Fz, F3, F4, FC1, and FC2
— were chosen based on their high correlation values and evidence from previous studies. This
identified the frontocentral area of the scalp as having the highest correlation between the
predicted and actual speech envelop (Di Liberto and Lalor, 2017). Recorded EEG data were
analysed using two approaches: cross-correlation of the speech envelope with the EEG signal

and the TRF forward model.

The TRF method was based on determining the impulse responses of the system by assuming a
simple linear convolution between the input (the envelope of the speech signal) and the output
(the EEG of each channel). The predicted EEG responses were computed from the speech
envelope and the estimated forward model using the MATLAB TRF toolbox (Crosse et al., 2016).
The speech envelope was calculated using the absolute value of the Hilbert transform. The
envelope was down-sampled from 44.1 kHz to 128 Hz and filtered with a zero-phase filter (1 Hz -
30 Hz). Before TRF analysis, the EEG data and speech envelope were normalised by dividing by
their SD. Artefact rejection was applied to the EEG data in blocks of 100 samples, with blocks
that included values exceeding +/- 5 SD of amplitude being excluded from both the EEG data

and the corresponding speech envelope.

Based on the results of the decoding, three main parameters were calculated to indicate
response quality. First, the TRF peak value (TRF-peak) was measured in terms of the filter
response peak-to-peak value. The second parameter was the power of the TRF (TRF-power): the
average of the squared amplitude of the TRF filter across the window of interest (0 ms to 375
ms). The third parameter was the accuracy of the model's prediction (TRF-COR), given by the
correlation coefficient (Pearson's r) between the actual and predicted EEG response in each

channel. The TRF analysis code is provided in Appendix A.

A bootstrap statistical analysis method was used to determine whether the magnitude of a given
parameter was significantly different from random variation. In evoked potential studies,
bootstrapping has been used (Lv et al., 2007, Chesnaye et al., 2018, Vanheusden et al., 2019) to
construct the null distribution for a specific statistical parameter of interest. The distribution is
estimated by repeatedly and randomly drawing samples with replacements from the ongoing

EEG data and calculating the statistical parameters for each sample (Chesnaye et al., 2018).
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Here, this involved comparing the parameter values (e.g., the TRF-peak) obtained when the
envelope and EEG were correctly aligned to the bootstrap distribution values when they are
repeatedly and randomly misaligned (giving e.g., the TRF-peak* with * indicating bootstrap
values). The bootstrap distribution was then tested to determine if it differed significantly from
the original (with correctly aligned signals) value at a chosen significance level (p <0.05). This
bootstrap approach allows significance to be tested in each recording rather than testing for

significant effects across the cohort.

For the TRF-peak and TRF-power parameters, 500 TRFs were calculated with random
misalignment between the speech envelope and the EEG responses. The misalighment was
always set to a minimum of 2000 samples (15.6 s) to prevent random alighments where the EEG
coincided with the speech envelope. This produced a bootstrap estimate of the null distribution
for each parameter (an estimate of what was expected when no responses were present will be
denoted as TRF-peak* and TRF-power*, respectively). To find the significance of the TRF-peak,
maximum and minimum values for each TRF-peak across a time window from 0 ms to 375 ms
were determined. The minimum and maximum values were then sorted to determine the 2.5%
thresholds (upper and lower), resulting in a 5% false positive rate. Aresponse was considered
present when the detected parameter value exceeded the 5% confidence interval (the TRF-peak
values exceeded the upper or lower 2.5% of TRF-peak*). For the TRF-power, only the maximum
5% values were determined to detect the presence of a response. The response was considered

significant if the TRF-power exceeded the upper 5% of TRF-power*.

For the TRF-COR parameter, the bootstrap null-distribution of correlation values was
determined using again the 500 random misalighments of the EEG and speech envelope
described above, to provide TRF-COR*. A response was identified as significant if the
correlation value of TRF-COR exceeded the upper 5% of TRF-COR* (i.e., the probability of
achieving this TRF-COR value under the null hypothesis was p < 0.05). The XCOR analysis code
is provided in Appendix B.

The maximum of the cross-correlation function between the EEG and speech envelope (without
using the TRF) was implemented for response detection. First, the EEG data and speech
envelope were normalised such that they had an SD of 1. Artefact rejection was applied, as
mentioned in the TRF analysis. The cross-correlation function between the aligned EEG data
and speech envelope (XCOR) was calculated over a range of lags between the signals, from 0
ms to +375 ms. The maximum and minimum (the peak negative value) of the cross-correlation
function were selected, and the significance of the peak or trough was determined again from
the bootstrap distribution of XCOR*, following the same method as used for other parameters.

Because the correlation between the EEG responses and the speech envelope was estimated,
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both strong positive and negative correlations may be deemed significant (Aiken and Picton,
2008b). A response was thus considered present when XCOR exceeded the upper or lower 2.5%

of XCOR*.

False positive rates were also tested to verify that the proposed methods of analysis were
working as expected. Tests were applied to the four parameters (TRF-COR, TRF-peak, TRF-
power and XCOR) using white noise as the input and output signals. Both analysis methods
were tested for false positives using the time-reversed speech envelope as a control condition,
as no significant correlation was expected between the time-reversed speech envelope and the

EEG.

3.2.2 Single channel detection time analysis

The minimum time required for the response to be detected (detection time) was recorded for
each subject. The purpose was to compare the performance of the four parameters outlined
above (TRF-peak, TRF-power, TRF-COR and XCOR). The data were divided into segments of
increasing length from 1 min up to 25 min in 1 min increments. For each segment, the detection
parameter outlined above was determined to indicate whether a response was present. The
detection time specified for each subject was the minimum recording period for which a
significant response was first detected. In cases where a subject showed no detection, the
detection time was 26 min (i.e., longer than the 25 min recording) to avoid missing data in the

statistical analysis.

3.2.3 Analysis of the best channels from multichannel data

This study looked at detection for Cz and Fz (the most commonly used single channels in
clinical practice). However, detection was also considered based on the selection of the 'best’
channel (the channel with the highest correlation value for each subject) from multiple
channels. Two sets of multichannel analyses were assessed: (1) across all 30 channels (32
channels were recorded, but the two mastoids were used as the reference); (2) across the
frontal/central six channels that were most likely to contain a response (Aiken and Picton,
2008b). The results of these analyses were compared to the results from a single fixed channel.
The detection rates were calculated at 5 min rather than in 1 min increments to reduce the
analysis time. Two parameters were included in this analysis: TRF-COR and XCOR, as they

showed the highest detection rates

The bootstrap significance test for each of the parameters was carried out in a similar manner to
the one-channel analysis. However, to overcome the possibility of multiple comparisons

producing false positive detections, the bootstrap analysis was then repeated for each of the
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other channels. Rather than using the 5% confidence interval for a single channel and 500
random misalignments, the 5% confidence interval was calculated across 500 random
misalignments, selecting the highest value from all channels of data to provide the null
distribution for the significance of the result in the channel with the highest correlation to the

stimulus envelope.

3.3 Results

The results of the false positive rate test showed approximately 5% in 1000 simulations. Table
3.2 presents the measured false positive rate for each parameter. All methods produced a false
positive rate close to the expected value of 5% (or 50 out of 1000), which falls within the 95%
confidence interval expected from the binomial distribution for a test at p < 0.05 with 1000

repetitions (i.e., between 37 and 64 false positives).

Table 3.2 Analysis of false positive (FP) rates using white noise. The table represents the
expected FP range for 1000 tests with white noise as the input and output signals for all testing
parameters: TRF-Peak, TRF-Power, TRF-COR, and XCOR. Tests were calculated using the
Binomial Distribution at p < 0.05.

Parameter TRF-peak TRF-power TRF-COR XCOR

#Tests 1000 1000 1000 1000

FPs 49 41 46 53

% FP rate 0.049 0.041 0.046 0.053

Expected FP Range 37-64 37-63 37-64 37-64
3.3.1 Analysis of responses from single channels Fz and Cz

The first objective of this study was to explore the detection of cortical responses to continuous
running speech using EEG data from one channel only. Figure 3.1 shows an example of the
cross-correlation function results from one subject, and Figure 3.2 shows the TRF filter for the
same subject. Figure 3.3 shows detection times for Fz (panel A) and Cz (panel B). For Fz, the
best detection rates were achieved with the TRF-COR and the XCOR parameters, exhibiting
detection in all subjects (17) after 17 min. With TRF-power and TRF-peak, 15 subjects exhibited
detection after 19 min and 22 min, respectively. The Cz channel results showed detection in 16
subjects with TRF-COR and XCOR after 20 min and 21 min, respectively, and in 14 subjects for
both TRF-power and TRF-peak after 18 min.
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Figure 3.1 Example of the XCOR function for subject 1 (Channel Fz).The x-axis indicates the
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delay between speech envelope and EEG in ms. The y-axis indicates the correlation
value. The area between the dotted lines indicates the 95% bootstrap confidence
interval for no response data. The maximum value corresponds to the XCOR index
for this recording and is statistically significant. Note that the time displayed
includes the acoustic delay between the loudspeaker and the subjects, which, for a
distance of 1.2 m, is approximately 3.5 ms.
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Figure 3.2 Example of the TRF-filter waveform for subject 1 (Channel Fz). The x-axis indicates

a delay between the envelope and EEG in ms. The y-axis represents the vertex
potential, with upward deflections indicating positive polarity relative to the
reference electrode. The magnitude of the TRF impulse response is shown on the y-
axis. The area between the dotted lines represents the 95% bootstrap confidence
interval for null-response data. Note that the time displayed includes the acoustic
delay between the loudspeaker and the subjects, which, for a distance of 1.2 m, is
approximately 3.5 ms.
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Figure 3.3 Number of subjects showing significant responses for each of the four
parameters as a function of increasing EEG data. A) EEG data from the Fz
channel. B) EEG data from the Cz channel. Results are shown for forward speech
and reverse speech (null hypothesis). For the latter, fewer than three detections
were expected according to the 95% range of a binomial distribution of 17
measurements at
p <0.05.

For the time-reversed speech, any detections are considered false positives since no
association was expected between the time-reversed envelope and the EEG. Figure 3.3 shows
that these false positives were well controlled, remaining within the expected range of 0 - 3

significant responses, based on a binomial test for 17 tests with a 5% false positive rate. This
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result was consistent in all cases, as shown in both panels A and B. Given the large number of

tests conducted, a small number of exceptions are expected.

As the highest single channel sensitivity was found at Fz, this channel was then used to
compare mean detection times; Figure 3.4 shows the mean detection times across subjects for
the four parameters. Shapiro-Wilk testing revealed that the recording time data were not
normally distributed (p < 0.05). A non-parametric Friedman test showed an overall significant
difference between the parameters (p < 0.05). Additionally, Wilcoxon Signed Ranks tests for
related samples were conducted across pairs of parameters. The mean detection time for
XCOR at (4.82 min +/- 4.7 SD) was significantly lower than both the TRF-power (9.20 min +/- 9.6
SD) and TRF-peak (12.82 min +/- 9.7 SD) (p < 0.05 and p <0.01, respectively). The TRF-COR
mean detection time (6.41 min +/- 5.84 SD) was significantly lower than that of the TRF peak (p <
0.01). Figure 3.5 shows the distribution of the detection time for EEG data recorded from Fz for
all subjects. A detection time of 26 min indicated that no response had been detected at 25 min
into the recording. High variability in detection time across the subjects can be seen (e.g., XCOR
showed detection after 2 min in subject 13, and 17 min in subject 17). In some subjects (e.g., 5
and 24), all analysis methods detected responses rapidly (e.g., by 3 minutes), while in other

subjects (e.g., 11 and 12), the response was not significant even after 25 minutes.

Fz - Channel
T T T T

12.8Z

Mean Detection Time (mins)

TRF-Peak TRF-Power TRF-COR XCOR

Figure 3.4 Mean detection times of the four testing parameters. The figure shows the mean
detection times of TRF-Peak, TRF-Power, TRF-COR, and XCOR at Fz. Error bars
represent the standard error. Significant differences are indicated as follows: *=p <
0.05, *=p <0.01.
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Figure 3.5 Individual detection time across subjects. The figure shows the detection time for
each subject across testing parameters TRF-power, TRF-COR, TRF-peak and XCOR
at Fz.

3.3.2 Detection times selecting the best-correlated channel from multiple channels

The analysis was repeated by analysing multichannel data and selecting the channel with the
highest correlation value. Only the TRF-COR and XCOR parameters were used for this analysis
because they exhibited the best performance in detection sensitivity (see Figure 3.3) and
detection time (Figure 3.4). Figure 3.6 shows the detection rates of TRF-COR and XCOR when
using one channel only (Fz), when selecting the channel with the highest correlation value from
the set of 6 channels and when selecting the channel with the highest correlation value from all
30 channels. Due to long computational times, the results are displayed only for 5 min
increases in time. As expected, detection rates increase with recording time for all methods.
There was a decrease in sensitivity with using multichannel compared to a single channel,
which was more pronounced when all 30 channels were included, compared to using only 6

channels in the frontocentral scalp region.

For the single-channel Fz analysis, 17 subjects show significant responses after 20 min using
both parameters. When using 6 channels, XCOR detected responses in all subjects (n=17)
after 20 min, but TRF-COR did not reach 100% detection. Using all channels did not achieve
detection in all subjects for either parameter. The maximum number of subjects in which
detection was achieved using all channels was 16 for TRF-COR, and 15 for XCOR. Overall,

multichannel analysis did not perform as well as single-channel analysis at Fz.
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Figure 3.6 Detection rate comparing single, six and 32-channels. The figure illustrates the
detection rate using (A) XCOR and (B) TRF-COR parameters, analysed with three
sets of EEG data: Fz only (dotted line), the best from 30-channels (dash-dotted line)
and the best channel from six channels [Cz, Fz, F3, F4, FC1, and FC2] (dashed line).
The figure shows the number of subjects showing detection with progressively
increasing recording time in 5-minute steps.

3.4 Discussion

Our main objective was to assess the feasibility of using EEG data from a single channel to
detect cortical responses to continuous running speech. Two analysis approaches were
compared to determine the presence of responses; cross-correlation and parameters obtained
from the TRF analysis. Cortical responses were detectable in all subjects from the Fz channel
using the XCOR and the TFR-COR parameters. The detection rate reached 100% after 17 min for

both parameters. The mean detection time for XCOR of 4.82 min was numerically lower than
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that of TRF-COR at 6.41 min, but the difference was not statistically significant in this relatively
small sample. A post-hoc power analysis indicated that, for a difference of 1.59 min between
XCOR and TRF-COR, 41 subjects would be needed to detect this with 80% power at p <0.05.
Our study was therefore underpowered to detect this relatively small difference; a larger study
would be needed to explore this possible difference further. The performance of both
parameters suggests good potential for single-channel clinical measurements. The cross-
correlation parameter has an additional advantage that it is computationally less complex than
the TRF-COR calculation. In contrast, response detection using TRF parameters TRF-peak and
TRF-power failed to reach 100% detection in either channel even after 25 min, suggesting that
they are less sensitive, with significantly elevated detection times compared to those of XCOR.
It should be noted that the current study used a Biosemi system with active electrodes. Other
systems with passive electrodes such as Interacoustics Eclipse (Interacoustics, 2022) may have
different noise levels, and it may be useful to compare detection times on other systems in the

future.

In the present work, the correlation coefficient values for XCOR and TRF-COR were low but
consistent with what has been reported in previous literature: The XCOR correlation coefficient
means were r = + 0.04 (maximum peak) SD (0.004) and r =-0.03 (minimum trough) SD (0.004).
These findings are broadly comparable to correlation coefficient values reported by Kong et al.
(2014) r=+0.07 and r =-0.03 . The difference in the positive value could be explained by the
difference in the procedure as the signal processing is not identical in terms of the number of
channels, recording time and filtering. In the TRF analysis, the mean correlation coefficient
between the predicted and the actual speech envelope was r=0.06 +/- 0.005 SD. Previous work
by Di Liberto et al. (2015) and Di Liberto and Lalor (2017) showed similar correlations of r = 0.05

and r=0.06, respectively.

When using the TRF method, the correlation coefficient between the predicted and actual
responses is currently the most popular parameter for assessing model performance (Di Liberto
et al., 2015, Di Liberto and Lalor, 2017, Kalashnikova et al., 2018, Jessen et al., 2019, Drennan
and Lalor, 2019). Vanthornhout et al. (2019) found that the TRF filter displayed some similarities
to those of CAEPs following short tone-bursts. Consequently, parameters derived from the TRF
waveform, such as peak amplitude and latency, may provide additional insights into the neural
responses. This is evidenced by attention effects on cortical tracking, which show a significant
increase in TRF peak-to-peak amplitude when stimuli are attended to (Vanthornhout et al.,
2019). In the present study, the detection sensitivity of the parameters TRF-peak and TRF-power
was compared to the TRF-COR at the individual level: TRF-COR was able to detect responses in
all subjects, whereas TRF-peak and TRF-power (which represent the shape of the TRF) showed

non-significant responses in some subjects. The better detection observed with the prediction
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accuracy of the TRF model may be attributed to the fact that the entire TRF is considered in the
analysis. In contrast, the peaks in the TRF represent only specific and strong responses related
to the stimulus. Although the TRF exhibits similar peaks to those seen in averaged AEPs in
response to repeated short stimuli, it does not demonstrate sufficient detection sensitivity to be

used as a standalone parameter.

Another explanation for the poor performance of single channel parameters that are based on
the shape of the TRF might be related to the modelling of noise from frequencies irrelevant to
the response. Since the impulse response attempts to model all frequencies in the input and
output, frequencies between 30 Hz (the cut off frequency) and 64 Hz (half the sampling rate)
contain little information regarding the input-output relationship, which may have impacted the
reliability of the TRF-peak and TRF-power parameters. The issue may not be important when

using TRF-COR as that parameter is not specifically affected by the shape of the TRF response.

Both the cross-correlation and the TRF approaches were successfully used to detect the
response of the auditory system to continuous running speech for multichannel data (Lalor et
al., 2009, Kong et al., 2014). It should be noted that the TRF and cross-correlation would be
identical for white noise inputs (since the autocovariance matrix in Equation 2.2 would be an
identity matrix). However, the TRF also accounts for the autocorrelation function (i.e., the
spectrum) of the input signal (Crosse et al., 2016). Calculating the statistical significance of the
cross-correlation peak is challenging using conventional statistical methods because: (1) the
samples in each signal are correlated (i.e., the signals are not white noise); (2) the maximum
cross-correlation value must be determined within specific response time lags and compared
to the maximum cross-correlation of similar lags in noise. This makes it more complex than
simply finding significance at each time-lag. In the present study, the effect of autocorrelation
on the XCOR parameter test statistic was taken into account through bootstrap analysis. This
method uses the original signals but applies random misalignment to remove the temporal
correlation between the stimulus and the response, allowing us to estimate the null hypothesis

for a given parameter.

The minimum time required to detect significant cortical responses was assessed previously by
Di Liberto and Lalor (2017) using multichannel data. Using a subject-specific model, they found
that at least 30 min of recording were needed to detect a significant level of phoneme activity
across subjects. They used the correlation value between the predicted and actual EEG
responses to assess the model's accuracy. Contrary to the outcome of Di Liberto and Lalor
(2017), in the current study the time needed to detect a significant correlation (TRF-COR) in all
subjects was 17 min, and in some subjects, responses were detected in 1 min (e.g., subjects 5

and 24) (see Figure 3.5). However, when comparing these results to Di Liberto and Lalor (2017),
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some differences must be noted. First, the model used by Di Liberto and Lalor (2017) was built
using specific phonemic speech features rather than the overall speech envelope, and
individual phoneme responses may be harder to detect than the response to the speech
envelope. Second, they averaged the correlation value across 12 channels in the fronto-central
region, while the present analysis used a single channel. Averaging multiple channels meant Di
Liberto and Lalor (2017) may have included weak responses, which may reduce sensitivity

compared to single-channel analysis.

After comparing single channel detection at Cz and Fz, selecting the best channel from each
subject (i.e., the channel with a maximum correlation coefficient between the EEG and the
speech envelope) using either six central/frontal electrodes or 30 channels was explored. The
aim was to measure any change in detection rate using the best channel compared to Fz. This
approach comes with a high risk of selection bias, as choosing channels with the strongest
response can increase the probability of false positives (Kilner, 2013). To avoid this, the
statistical significance of each response was determined by estimating the bootstrap
distribution across multiple channels. This selection approach may achieve higher correlation
values; however, the multichannel bootstrap distribution's critical value is also expected to be
higher than that of a single-channel case. As a result, a loss in sensitivity could conceivably
occur with the multichannel method. Indeed, our results show a reduction in sensitivity when
analysing responses across many channels and then selecting the best channel compared to
using Fz alone. This reduction in sensitivity with multiple channels was most evident when all
channels were included, compared to only six pre-selected channels. This suggests that using
fewer channels can improve sensitivity because noisy channels without responses are
removed. Montoya-Martinez et al. (2021) showed that by reducing the number of channels from
64 to 20 in a backward model, the correlation between the reconstructed and actual speech
envelopes improved substantially. Of course, this can only be expected if the best channels are

retained.

One consideration in the current analysis is the method of validation used. Most previous
studies used different sets of EEG data to train and test the model for cross-validation
(O'Sullivan et al., 2015, Di Liberto and Lalor, 2017, Vanthornhout et al., 2019). The ‘leave one
out’ method is commonly applied, where roughly 80 % of the data is used to train the model and
the remaining 20% to test it (Crosse et al., 2016). However, as one of the present study's
analysis objectives was to investigate the effect of time (every minute) on response detection,
this approach was not appropriate. Itis also debatable if cross-validation is needed when
simply detecting responses. Therefore, the analysis in the current study did notinclude the
cross-validation approach. Instead, the TRF parameters were trained and tested on the same

dataset to determine whether they were significant compared to the TRFs of non-aligned data.
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Whilst using the same data for training and testing could result in bias and higher correlation
values than the ‘leave one out’ method without bootstrapping, by testing the significance using
the bootstrap method, critical values used compensate for the potentially biased estimator and
hence false positives are avoided. The low number of false positives (within the expected range)
provides support for the approach taken here. To our knowledge, this approach has not been

used previously for cortical responses to speech.

The methods used to analyse responses to continuous speech might potentially be improved in
future work: the forward model performance using one channel could be compared to the
backward model. This will assess whether the backward model that uses multiple channels can
improve detection sensitivity. Other potential developments of methods include limiting the
frequency range used to record the TRF-peak parameter (excluding estimation of the transfer
function at frequencies not in the response) and focusing the analysis of cross-correlation

parameters to more specific time lags where responses are expected to occur.

3.5 Conclusion

This chapter explored the detection of cortical responses to running speech using a single
channel. Most previous studies in this area have only used multichannel data. The findings here
suggest that detection with single channel data is possible. Significant responses were
detected in all subjects (N = 17) using the Fz channel with either the cross-correlation
parameter XCOR or the TRF correlation measure TRF-COR. Numerically the XCOR method
appears most sensitive with a mean detection time of 4.8 min compared to 6.4 min for TRF-
COR, but this difference did not reach statistical significance due to the small sample size.

Detection times for the parameters TRF-peak value and TRF-power were significantly higher.

The approach of selecting the channel with the highest correlation from multiple channels
resulted in a reduction in sensitivity compared to single-channel analysis, most likely due to
increases in critical values when using multiple channels. In summary, these results are
promising for clinical applications using single-channel EEG recordings to detect cortical
responses to continuous running speech. However, this chapter only included intelligible
speech with participants paying attention, which may not be representative of target clinical
groups such as infants. Future studies will explore these factors using the same single-channel

analysis approach.
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Chapter4 Comparing Cortical Responses to
Continuous Speech and Speech-Modulated

Noise During Passive Listening

Building on the high detectability of single-channel EEG observed in Chapter 3, the experiment
described in this chapter was designed to investigate the effects of attention and stimulus
intelligibility on the single-channel detection of cortical responses to continuous speech. This
study was part of a collaborative experiment conducted with Suwijak Deoisres, who was also a
PhD candidate. Because COVID-19 disrupted and delayed plans for initial experimental work,
the decision was made to run a joint experiment. Suwijak set up the stimuli in Praat (an open-
source software used for acoustic analysis; (Boersma and Van Heuven, 2001), prepared the
BioSemi for EEG, and created the poster for participant recruitment. Suwijak and | performed
participant recruitment and data collection jointly. Suwijak also helped with editing the code for

the EEG data analysis. | carried out the EEG data analysis and statistical analysis in this chapter.

4.1 Introduction

As highlighted earlier in the project, the primary goal is to develop a clinically viable tool to
objectively test speech perception in infants. One component involves measuring responses
without requiring active attention to stimuli and using a single EEG channel. Another important
factor is the type of speech stimulus. Utilising a stimulus that is acoustically similar to speech
but unintelligible allows the creation of a tool that is universally applicable, regardless of the
subject's native language. Therefore, the current study will explore the possibility of detecting
cortical responses to continuous speech during passive listening and will examine the effect of

speech intelligibility by comparing responses to both intelligible and unintelligible speech.

4.1.1 Effect of attention and passive listening.

It is well-established that attending to a stimulus enhances cortical responses to sensory input.
However, it remains uncertain whether passive listening will lead to a significant detection of
cortical responses at the individual level. Using a cross-correlation analysis approach, Kong et
al. (2014) investigated the effect of attention on the neural tracking of the speech envelope
when subjects were presented with an additional sensory stimulus (visual). The stimulus was
presented either with a silent movie (cross-modality condition) or a competing sound (within-

modality condition). The movie condition was assigned as the quiet condition as subjects were
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instructed to either attend to or ignore the stimulus presented while watching. For the
competing listening condition, subjects were asked to attend to one of the sounds. The study
included eight normal-hearing adults. In the quiet condition, the cross-correlation function
between the EEG and speech envelope showed no significant difference between active and
passive listening. However, enhanced N1 and P1 peaks were indicated in response to the
attended sound in the competing-speakers conditions. Kong et al. (2014) concluded that top-
down attention affects the cortical neural tracking of the speech envelope and that this effect

depends on the task because it was not indicated in the quiet condition.

As mentioned in Chapter 2 (see Section 2.4.3), Vanthornhout et al. (2019) examined the
differences in neural tracking of speech envelopes during active and passive listening. Their
findings indicate that while attention can enhance the strength of cortical responses, its effect
on neural tracking of the speech envelope is only evident in the presence of noise. Since they
did not observe an attention effect at a high SNR, the findings of Kong et al. (2014) and
Vanthornhout et al. (2019) are consistent. However, both studies examined the attention effect
at a group average level. To our knowledge, no previous research has explored detection
sensitivity in passive listening at an individual level. When testing infants, it would be useful to
detect significant cortical responses to speech while they are passively listening to the stimuli
and engaged in watching something. Therefore, this study will measure the detectability of

speech during passive listening.

4.1.2 Effect of speech intelligibility

When looking into the speech stimulus, the slow modulation of the envelope is one of the
essential features of speech intelligibility (Drullman et al., 1994, Shannon et al., 1995). A
number of existing studies have demonstrated the possibility of cortical tracking of the low-
frequency natural speech envelope (Aiken and Picton, 2008a, Lalor and Foxe, 2010, Ding et al.,
2014, Di Liberto et al., 2015). In addition, neural responses to the stimulus envelope were
detected even when the speech was unintelligible (Howard and Poeppel, 2010, Zoefel and
VanRullen, 2016). It would be advantageous to test various infant groups using a universal signal
that is not language specific, which allows it to be used for testing speech perception
independent of subjective native language. However, it is still unclear whether using
unintelligible speech or a speech-like stimulus will affect the cortical neural tracking of the

speech envelope.

Etard and Reichenbach (2019) investigated how cortical responses reflect the comprehension
and clarity of speech by recording EEG responses in native and foreign languages. EEG data

were recorded from ten normal-hearing native English speakers while they listened to
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continuous English and Dutch speech in quiet conditions and with various SNR conditions. No
difference was shown between the decoder reconstruction accuracy of the continuous English
and Dutch speech presented to English speakers in the quiet condition. With background noise,
the neural entrainment of the speech envelope was significantly higher with English speech only
in the delta frequency band. Based on the results of this study, it appears that comprehension
of the stimulus is not essential in detecting significant cortical tracking of the stimulus
envelope. Significant cortical responses can be seen when incoherent stimuli with similar

auditory characteristics to those of intelligible speech are presented.

Zou et al. (2019) examined how different auditory and linguistic processes affect envelope-
tracking speech responses in noisy settings. The neural tracking of the speech envelope was
compared between two groups of listeners, i.e., foreign listeners who do not comprehend the
test language and native listeners of the test language. In this study, 32 normal-hearing adults
participated; 16 were native Mandarin speakers without prior exposure to Cantonese, and the
remaining 16 were native Cantonese speakers. The study revealed that foreign listeners' neural
reconstruction accuracy was more sensitive to noise than native listeners. The foreign listers
group showed significantly higher reconstruction accuracy with +9 and -6 SNR levels. The
inconsistent findings between Etard and Reichenbach (2019) and Zou et al. (2019) illustrate how
the EEG response does not always provide a definitive explanation of what aspect of speech
perception has been evaluated. However, the difference between comprehensible and
incomprehensible speech regarding cortical detectability could be further examined by
exploring other factors, such as detection time and sensitivity. Having a stimulus that can evoke
significant cortical responses, which is acoustically similar to speech yet not language-specific,

will be important for implementing a universal speech test in infants.

The current study tries to answer the following questions: Can significant cortical responses to
continuous speech be detected using data from one channel under passive listening
conditions?; Is there a significant difference in detection times and rates between cortical
responses to natural English speech and speech-modulated noise recorded for native English

speakers?

Cortical responses were collected while subjects listened to stimuli passively while watching a
silent movie. The subjects’ native language and non-intelligible speech-modulated noise were
used to elicit cortical responses. EEG responses to stimuli were recorded for normal-hearing
subjects. Both cross-correlation and the TRF forward model were applied to detect the

responses from one channel.
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4.2 Materials and Methods

The experiment involves conducting a hearing screening test and EEG recording.

4.2.1 Participants

Twenty-two adults with normal peripheral hearing thresholds who were aged 18-40
participated. All participants were native English speakers. To ensure that the hearing sensitivity

was within nhormal limits, screening pure tone audiometry was performed for each participant.

4.2.2 EEG recording

The EEG data was collected using a BioSemi ActiveTwo recording system. During the EEG
recording, the participant was seated in a comfortable chair and asked to focus on the screen
while ignoring the stimulus. A series of silent documentaries with English subtitles were

presented via a TV screen placed in front of the participants. See Figure 4.1 for the experiment

setup.
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Figure 4.1 The diagram illustrates the EEG experimental setup. The auditory stimuli are
processed and presented through a RME Fireface UC audio interface, controlled by
a computer running Audacity software. The Trigger Box serves as a central point of
integration, sending precise signals to synchronise the auditory stimuli with the data
collection process. The data acquisition is conducted through an A/D Box from
BioSemi, which converts the analog signals from the participant into digital data.
This data is received by a BioSemi USB Receiver connected to a separate computer
equipped with BioSemi ActiView software. A silent movie is displayed on a monitor
to control participant attention.
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4.2.3 Stimulus

This experiment has two conditions, each with a different stimulus. The first was a continuous
speech from Chapter 4 of Children of Odin by Padraic Colum, an audiobook read by a female
narrator (available to download for free on https://librivox.org/the-children-of-odin-by-padraic-
colum/). The second was speech-modulated noise. For comparability, the modulated noise was
created to be as similar to speech as possible in terms of its power spectrum (speech-shaped
noise). The spectral shape was stationary, so only the amplitude was modulated. The two
stimuli were similar in envelope intensity and long-term (average) spectrum. Each stimulus was
presented in four blocks, with each lasting for about 3 min 45 s (total stimulus length of about 15
minutes). The sampling rate of the presented stimuli was 44.1 kHz, which was up-sampled from
22.05 kHz (the original sampling rate of the mp3 file). The stimulus segments were presented
monorally to the right ear at 65 dBA LegA SPL through Etymotic ER-2A insert earphones

(Etymotic Research, Inc., Illinois, USA).

The speech-modulated noise stimulus was generated using standard functions in the Praat
software (Boersma and Van Heuven, 2001). A speech-shaped noise, the carrier signal, was
created by generating Gaussian white noise filtered by the long-term average spectrum of all
continuous speech stimuli used in this study concatenated, with a bandwidth of 0 Hz -12 kHz.
The speech-envelope-modulated noise was then generated by multiplying the speech-shaped
noise with the amplitude envelope of the continuous speech, which served as the modulating
signal. The amplitude envelope of the continuous speech was extracted using Praat software.
This process involved converting the speech .wav file to an intensity tier, which facilitated the
envelope extraction. Specifically, the squared samples in the .wav file were processed using a
Gaussian analysis window (weighted averaging) to obtain a smoothed envelope. Figure 4.2
shows a segment of the envelope of the continuous speech and speech-modulated noise
intensity envelope. The Pearson correlation coefficient of r = 0.974, averaged across all stimulus

segments, indicates a strong relationship between the two envelopes.
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Figure 4.2 Temporal envelopes of speech and speech-modulated noise.This figure provides
a comparison between the natural variations in the amplitude of a speech signal
and the corresponding modulations in the speech-modulated noise. The black line
represents the speech envelope, while the dotted red line represents the speech-
modulated noise envelope.

4.2.4 Data analysis

Data analysis took place using MATLAB 2019a. The EEG responses were recorded from 32
channels, down-sampled to 128 Hz and referenced to the two mastoid electrodes. The EEG was
filtered between 1 Hz and 30 Hz, covering the same band as the envelope for the speech signal.
The EEG data were analysed from a single fixed channel, either the vertex (Cz) or the high
forehead (Fz). The recorded EEG data were analysed using two primary analyses: the cross-

correlation of the speech envelope with the EEG signal and the TRF forward model.

A detailed explanation of the cross-correlation and TRF analysis methods was provided in
Chapter 2 (see Section 3.2.1). However, for the current analysis, only one parameter of the TRF
was used, namely TRF-COR. As shown in the previous chapter, this approach had the highest
detection sensitivity out of TRF detection approaches (see Figure 3.3). False positive rates were

also tested to verify that the proposed analysis methods were working as expected.

4.2.5 Detection time analysis

The minimum detection time required for the response was recorded for each subject. The
purpose of this was to compare the two stimulus conditions (speech and speech-modulated
noise). The data were divided into segments of increasing length from 1 minto 15 minin 1 min

increments. For each segment, the signal detection analysis outlined above for each parameter
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was used to indicate whether a response was present. The detection time determined for each
subject was the minimum recording period after which a significant response was detected. In
cases in which a subject showed no detection, the detection time was set to 20 min (above the
maximum recorded duration) to avoid missing data in the statistical analysis. This approach
ensured that all cases, whether with or without detection, were included in the analysis of

detection times.

4.3 Results

Two analysis approaches were applied to detect the cortical responses to continuous speech:
the TRF forward model correlation and the maximum cross-correlation between speech
envelope and EEG. The two approaches were applied using EEG data from one channel (only Cz

or only Fz) and both continuous speech and speech-modulated noise were tested.

4.3.1 Detection rate

Table 4.1 shows the measured false positive rate for each of the parameters. Tests were applied
to the two parameters (TRF-COR and XCOR) using white noise as the input and output signals.
In each case, 1000 iterations were tested. All the methods produced a false positive rate close
to the expected value of 5%, or 50 out of 1000 false positives (within the 95% range of detection
rate values expected from the binomial distribution when using a test at p < 0.05 with 1000

repetitions, or between 37 and 64 false positives).

Table 4.1 Analysis of false positive (FP) rates for analysis parameters using white noise as
input and output signals. The table shows the expected FP range for 1000 tests was calculated
when testing at p < 0.05 from the binomial distribution.

Parameter TRF-COR XCOR
#Tests 1000 1000
FPs 46 53

% FP rate 0.046 0.053
Expected FP Range 37-64 37-64

Figure 4.3 shows the number of subjects with significant detection with progressively increasing
amounts of data by recording time. The results from the speech stimulus condition indicate that
after 15 minutes, the detection rates were 63.6% (14 out of 22) with XCOR and 59% (13 out of
22) with TRF-COR for the Fz channel. Additionally, the detection rates were 68% (15 out of 22)
with XCOR and 59% (13 out of 22) with TRF-COR for the Cz channel. The results for the

modulated noise stimulus show that after 15 minutes, the detection rates were 77% (17 out of
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22) with both parameters for the Fz channel. In contrast, the detection rates were 86% (19 out of

22) with XCOR and 77% (17 out of 22) with TRF-COR for the Cz channel.

McNemar tests were run to determine whether there were statistically significant differences in
detection rate after 15 min between the two stimulus conditions, the testing parameters and the
electrode locations. The results showed no significant difference between the stimuli across all
testing conditions. Also, no significant difference was indicated between the two testing
parameters or the two electrode locations. The detection sensitivity was generally higher for the
modulated noise than speech, but this difference was not significant. Figure 4.3 also shows the
false positives for both stimuli, (A) speech and (B) modulated noise, using the reversed speech
envelope as an effective no-stimulus condition. All subjects were analysed, with the range of
false positive rates from the binomial distribution under a no-stimuli condition predicted
between 0 and 3. False positive rates for both stimuli across all testing conditions were within

the acceptable range.
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Figure 4.3 Number of subjects showing significant responses for each parameter used in
the analysis as a function of increasing EEG data. The figure illustrates the
number of subjects showing significant cortical responses for each parameter used
in the analysis (TRF-COR and XCOR) with progressively increasing amounts of data.
The figure is divided into two parts: (A) shows the detection results with the speech
stimulus, while (B) shows the results with the speech-modulated noise stimulus.
The dark-coloured lines represent the results with the forward stimuli analysis, while
the light-coloured lines represent the results with the reverse stimuli analysis, which
serves as a control to determine the false positive rate.

Figure 4.4 shows the detection rate for all testing conditions, electrode configurations and
analysis methods. In general, detection rates did not reach 100% for any of the passive listening
conditions used in this experiment. The mean detection rate for the modulated noise condition

(80.68%) is higher than that for the speech condition (61.36%).
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Figure 4.4 Detection Rates for speech and speech-modulated noise with passive listening
Detection rates were obtained using the XCOR and TRF methods of analysis for data
from the Cz (blue patterned bars) and Fz (blue solid bars) and a stimulus duration of
15 min. The left four bars display the results for the speech stimulus: the first two
bars show the XCOR outcomes, and the next two bars show the TRF outcomes. The
right four bars display the results for the speech-modulated noise, following the
same order as the speech results, with the first two bars showing the XCOR
outcomes and the next two bars showing the TRF outcomes.

4.3.2 Detection time

In addition, the mean detection time for the speech and the speech-modulated noise conditions
were compared. As mentioned above (see Section 4.2.5), all subjects were included in the
analysis, even those without detection. The two conditions were compared using both analysis
parameters (XCOR and TRF-COR). The comparison was also made using two selected EEG
channels (Fz and Cz). Shapiro-Wilk testing revealed that the test time data were not normally
distributed (p < 0.05), so it was necessary to use hon-parametric testing to search for significant

differences in test times between conditions.

Wilcoxon signed-ranks tests for related samples were conducted to compare the speech and
modulated noise stimuli given the same parameters and electrode locations. Figure 4.5 (Right
Panel) illustrates the mean detection times for the Fz channel. The detection time for speech-
modulated noise appears to be slightly shorter than that for the speech stimulus for both
parameters; however, the statistical test showed no significant difference. Figure 4.5 (Left
Panel) indicates the mean detection time for the Cz channel for both detection parameters.
With TRF-COR, the detection time for the modulated noise stimulus (8.18 min +/- 6.2 SD) was

significantly lower than that for the speech stimulus (12.68 min +/- 6.7 SD), with p <0.05. No
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significant difference was found between stimuli with the XCOR at Cz (p = 0.068). Overall, there
is a trend for the noise-evoked response to produce a slightly lower detection time than the

speech-evoked response, but this was only significant for the TRF-COR parameter at Cz.
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Figure 4.5 Mean detection times for speech and speech-modulated noise stimuli at
channels Fz and Cz. The error bars indicate the SE of the mean. The y-axis
represents the detection time in minutes. The blue bars show the result of using the
TRF method of analysis, while the maroon bars show the results of using XCOR. The
L box shows the results for Cz, while the R box shows the results for Fz.

Additional comparisons were made to investigate the effect of stimulus type and channel
location on detection time. First, the results for detection time by averaging the outcome of the
two channels (Fz and Cz) were compared. Wilcoxon signed-ranks tests showed that with the
TRF-COR parameter, the detection time for the modulated noise stimulus was significantly
shorter (9.2 min = 5.35 SD) than for speech (12.68 min = 6.05 SD), with p <0.05. No significant
difference was found with XCOR, where p = 0.26. Second, the two-channel locations were
compared by averaging the detection time for the two stimulus types. No significant difference
was found between the EEG channels for either detection parameter (XCOR: p = 0.29 and TRF-
COR: p=0.17).

4.3.3 TRF correlation values

The TRF correlation values (reflecting the accuracy of the forward model) were used to further
evaluate the differences between the two stimulus conditions and channel locations. Figure 4.6
shows the mean correlation values of the modulated noise and speech stimulus in two different
channel locations (Fz and Cz). Based on the Kolmogorov-Smirnov normality test, there is no
significant evidence to suggest that the correlation values deviate from a normal distribution

(p > 0.05). A two-way repeated measures ANOVA was performed to compare the effect of

77



Chapter 4

stimulus type and channel location on correlation values. There was a significant main effect of
stimulus type on correlation values (F[1,21] =7.2, p < 0.05). The correlation value of the TRF was
higher with the modulated noise stimulus (mean = 0.044 +/- 0.002 SD) as compared to the
speech stimulus (mean = 0.038 +/- 0.002 SD). There was no significant main effect on the part of
channel location on correlation values (F[1,21] = 0.292, p > 0.05). Correlation values were
similar when using Fz (mean =0.042 ) or Cz (mean = 0.041). There was no significant interaction

between stimulus type and location (F(1,21) =0.102, p > 0.05).
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Figure 4.6 Correlation between predicted and actual speech envelope for TRF model
comparing speech and speech-modulated noise stimuli. The figure shows the
correlations measured from the Fz channel (left two bars) and the Cz channel (right
two bars). The error bars represent the mean and standard error (SE). The blue-
coloured bars correspond to the results for the speech stimulus, while the orange-
coloured bars correspond to the results for the speech-modulated noise stimulus.

The TRF filter waveform represent the estimated impulse responses based on the forward
modelling. Figure 4.7show the grand average TRF across subjects, highlighting the differences

between the two stimuli used in the study.
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Figure 4.7 Grand average of the TRF filters from the Cz channel for speech and speech
modulated noise. The left panel shows the averaged TRFs for the speech stimulus
condition, while the right panel shows the averaged TRFs for the speech-modulated
noise stimulus condition.

4.3.4 XCOR function

The XCOR function represents the cross-correlation between the stimulus envelope and the
EEG. The group-averaged XCOR function was visually compared between the two stimuli. Figure
4.8 shows the XCOR function averaged across subjects for both the speech and speech-
modulated noise stimuli. It is evident from the figure that the speech-modulated noise has

higher peak amplitudes compared to speech.
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Figure 4.8 Grand average of the cross-correlation function (XCOR) from the Cz channel for
speech and speech modulated noise. The left panel shows the cross-correlation
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function for the speech stimulus condition, while the right panel shows the cross-
correlation function for the speech-modulated noise stimulus condition.

4.3.5 EEG signal variability

The EEG data recording captures the responses to the specific stimulus presented and includes
a wide range of brain activity and potentially other strong additive responses. This can lead to
increased variability in the signals, which may affect the response of interest. One method of
estimating this variability is calculating the recorded signal's standard deviation. It is important
to note that the SD reflects contributions from both the true AEP and noise; however, the AEP
contribution to the SD was assumed to be negligible compared to the noise. This analysis

calculated the standard deviation of the responses for both channels.

Figure 4.9 shows the average standard deviation of the EEG recorded from the Fz and Cz
channels for both stimulus conditions. For each channel, a total of 22 SD values were included,
corresponding to the number of subjects tested. Kolmogorov-Smirnov and Shapiro-Wilk tests
suggest that the EEG noise level is not distributed normally (p < 0.05). The Friedman test was
performed to compare the effects of stimulus type and channel location on noise level. The test
showed a significant difference between the noise level measured with different channel
locations and stimulus types (x°(df = 3) = 38.45, p < 0.001). A post-hoc test using a Wilcoxon
single-rank test showed no difference between the noise levels of the speech-modulated noise
and speech stimuli for the Fz and Cz channels. Significant differences were found between the

channel locations for both stimulus types (p < 0.001), with Fz showing a higher SD.
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Figure 4.9 Mean Noise level of EEG data (standard deviation) for Fz and Cz channels under
speech and speech-modulated noise conditions. The figure shows the mean of
the noise level measured from the Fz channel (left two bars) and the Cz channel
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(right two bars). The error bars represent the mean and standard error (SE). The
blue-coloured bars correspond to the results for the speech stimulus, while the
orange-coloured bars correspond to the results for the speech-modulated noise
stimulus.

The correlation between SD value and detection time and rate was measured to investigate
whether the variability level in the EEG affects the measured responses. The SD of the
recordings where responses were detected was compared to those where responses were not
detected for the Cz channel using the XCOR detection results. Mann-Whitney U-tests showed
no significant difference in noise levels for either stimulus type: modulated noise (U =23, n =22,

p >0.05) and speech (U=44,n=22, p>0.05).

A Spearman correlation coefficient was computed to determine the relationship between
variability level and detection time. This correlation was measured for the two channels in each
condition and analysis method. A significant relationship between the variables was observed
only in the speech condition results for XCOR in both channels (Fz: r = 0.455; Cz: r=0.424) and
for TRF in the Fz channel (r = 0.481), with p < 0.05. However, after applying a Bonferroni
correction for multiple comparisons, these results were no longer significant (corrected p-value

threshold: 0.012, with four pairwise comparisons per channel).

4.4 Discussion

This study investigated the possibility of using passive listening and a universal speech stimulus
in measuring cortical responses to speech in normal-hearing English-speaking adults. It also
explores the use of two stimuli, one which was language-specific, natural English speech, and
one which was non-language-specific: speech-modulated noise. Cortical responses were
analysed using TRF and XCOR approaches via two single channels (Cz and Fz). The two analysis
methods broadly produced similar findings. It appears that, when using passive listening a
response is not detectable in all subjects for either stimuli and 15 min recording. Maximum
detection was measured at the Fz channel, with higher detection sensitivity when using speech-
modulated noise. The mean detection time for modulated noise was consistently lower for all
testing conditions than when using the speech stimulus. However, it was only significantly lower
when measured from the Cz channel and analysed using TRF-COR. The prediction accuracy of
the TRF model was higher for the modulated noise stimulus than for the speech stimulus. In
general and in most subjects, the speech-modulated noise stimulus analysed with TRF showed
a robust cortical outcome measure in terms of the detection time and prediction accuracy of

the TRF model.
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In the current study, the detection rate using a single EEG channel failed to reach 100%, unlike
in the previous study (see Figure 3.3). One major difference between the two studies was the
attention task methodology. In the earlier study, subjects were asked to attend to a stimulus,
while here, they were asked to attend to a silent documentary with subtitles and ignore the
stimulus. Previous studies have provided evidence for more robust neural tracking of the
speech envelope in the presence of active attention (Vanthornhout et al., 2019, Alickovic et al.,
2020). Thus, the reduced detection of neural responses with passive attention in the current
study compared to the previous one appears consistent with those findings. Another key
difference between the current and previous studies (Chapter 3) was the recording duration. In
the current study, only 15 minutes of EEG recording was conducted in each condition,
compared to 25 minutes in the previous study. In Chapter 3, detection reached 100% after 17
minutes of recording. In the present study, a shorter recording time was chosen to assess the
feasibility of detection within a timeframe appropriate for infant testing. Also, the quiet
conditions used in this analysis were part of an experiment used for a different PhD project that
included other testing conditions (Deoisres, 2023). The total test time for the experiment was
about 3 hr. Therefore, it was only feasible to have 15 min to test responses in the two quiet or no

noise conditions included in this study.

One cause of low detection sensitivity may be the quality of the EEG recording. One way to
describe EEG noise is by measuring the variability distributed around the mean of zero, which
can be quantified by the SD (Hall, 2015). Therefore, the SD was used to measure the variability
in the EEG signal and its relation to response detectability. The results show no significant
difference when comparing the mean noise levels between the detected and non-detected
groups. The only correlation between detection time and noise level was for the Fz channel. As
mentioned above, a detection time of 20 min was assigned to subjects without cortical
responses. These higher detection time values may have introduced bias into the measured
significant positive correlation. Although significant correlations were observed in some
conditions, the correlations were not very strong, as they did not remain significant after
correction. Additionally, removing outliers (non-detectable subjects) resulted in no significant
correlations. The results suggest that the standard deviation as a measure of EEG signal
variability or noise level does not effectively reflect the detectability of cortical responses to

continuous speech when using single-channel analysis.

To our knowledge, this is the first study that has measured cortical responses to continuous
speech with passive listening at an individual level. Previous studies that investigated the effect
of attention on the neural tracking of the speech envelope have shown only a group effect (Kong
etal., 2014, Vanthornhout et al., 2019). Both such studies aimed to test the impact of attention

in general, so they compared the average responses between active and passive listening
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conditions. Here, we aimed to measure the presence of responses in each subject to calculate
the detection sensitivity with passive listening. Vanthornhout et al. (2019) previously explored
the effect of attention on EEG results at a group level for various SNR conditions. They found a
significant effect on the part of attention only with low SNR; no difference was indicated for high
SNR as was used in the current (noise-free) stimulus. However, from their presented results it
was unclear whether the response was significant for all subjects during passive listening. From
Figure 1 in Vanthornhout et al. (2019), the correlation value of the decoder in the quiet passive
condition ranged from -0.04 to 0.23. This result indicates an absence of response in some
participants. This finding is directly in line with our outcome of reduced cortical response

detection sensitivity with passive listening.

The average correlation values of the XCOR function found in this work were lower than those of
Kong et al. (2014). Kong et al. (2014) investigated the difference in the cross-correlation function
between the speech envelope and EEG during active and passive listening in quiet conditions.
They found that the average cross-correlation function's peak values were r=-0.03 and r = 0.07
in the active listening condition, and r =-0.03 and r=0.05 in the passive listening condition.
Their passive listening results can be compared to the current study, as both share similar
testing settings. The correlation peak values found for the group average were lower, with the
maximum positive peak being r = 0.005 for speech and r = 0.01 for speech-modulated noise,
while the maximum negative peak was r =-0.01 for speech and r =-0.015 for speech-modulated
noise(see Figure 4.7). These differences can be explained by differences in the analysis
methods and the sample sizes. Kong et al. (2014) used the averaged EEG responses of ten trials
of each stimulus segment to measure the correlation with the speech envelope, while we used
single-trial EEG. In ERP, averaging will improve the SNR by reducing unrelated evoked responses
(Luck, 2014), which may lead to a higher correlation. In addition, Kong et al. used multiple EEG
channels, as compared to the single channel used here. However, it is not clear which channels
were included in the analysis. The sample size in Kong et al. (2014) was only eight subjects,
compared to 22 subjects in the current study, resulting in higher statistical power. This increase

in power allows for more reliable results that can be generalised more effectively.

The role of language processing in neural envelope tracking is debatable. One study has shown
that language processing through presenting intelligible speech decreases the accuracy of
envelope neural tracking (Zou et al., 2019). Another shows no significant change in envelope
tracking when using a speech stimulus played backwards (Howard and Poeppel, 2010).
However, a large body of research has shown that the tracking of the speech envelope exhibits a
decrease in the envelope reconstruction accuracy with the backward modelling when
acoustical degradation affects speech understanding, with increasing SNR (Ding and Simon,

2013, Ding et al., 2014, Etard and Reichenbach, 2019). This suggests that it is due to poorer
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understanding, rather than the change in acoustic input. Our findings showed that speech-
modulated noise leads to a similar or more robust cortical response than a natural speech
stimulus in terms of detection rate and average detection time. This suggests that the detection
component of hearing abilities, rather than comprehension or language processing, was tested.
One possibility of explaining the difference between the two stimuli is that with modulated
noise, there is only a change in envelope, whereas with speech, there are also accompanying
changes in spectral cues. The same change in the envelope may lead to different responses,
depending on what spectral changes occurred. It is known (e.g., from ASSRs) that frequency

modulation can also elicit neural responses.

A significant difference between the two conditions correlation values of the TRF model was
seen here (see Figure 4.6 and Figure 4.7). Our results are broadly in line with those of (Zou et al.,
2019). Zou et al. (2019) compared the neural tracking of speech envelopes between native
Cantonese and foreign speakers listening to Cantonese speech. The prediction accuracy of the
TRF model found with high SNR was significantly higher in the foreign group (mean = 0.08) than
in the native speaker group (mean = 0.05). Similarly, the prediction accuracy found in the
current work was significantly higher for the speech-modulated noise stimulus (mean = 0.044)
than for natural speech (mean = 0.038). Attention control could explain the higher correlation

values Zou et al. (2019) found compared to the current study.

4.5 Conclusion

Using normal-hearing listeners, the detection of cortical responses to continuous speech and
speech-Llike stimuli during passive listening was less than 100% with a maximum of 15 min of
stimulation. Neural tracking of the speech envelope generally showed higher envelope
prediction accuracy (correlation coefficients), higher detection rates, and shorter detection
times (though not significantly ) with speech-modulated noise compared to actual speech. One
possible cause of the low detection rate is the passive attention. Therefore, further investigation
is needed to confirm the differences in detection rate and time between passive and active
listening. Additionally, this study indicates a higher detection rate and lower detection time with
the speech-modulated noise stimulus, suggesting its potential as a universal (language-
independent) testing stimulus, which could make it a better option for clinical use. The next step
will involve exploring the effect of hearing aid processing on the neural tracking of the speech
envelope. This will include investigating how hearing aid processing alters the envelope of

speech-modulated noise and how this compares to its effects on a natural speech stimulus.
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Chapter 5 Quantifying the Effects of Hearing Aid

Processing on the Stimulus Envelope

The previous research demonstrated the potential for detecting cortical responses to
continuous speech using a single EEG channel, as outlined in the first paper (Chapter 3). The
second study (Chapter 4) found that speech-modulated noise exhibits a higher detection rate
and shorter detection time than intelligible speech. The following phases of the project were
designed to test the feasibility of detecting such responses of aided stimuli. This was done in
two studies. The first, which will be discussed in this chapter, was an acoustic measurement of
the HA’s effect on the stimulus envelope. The second, which will be covered in the next chapter

(Chapter 6), was an EEG study using stimuli generated from the current study.

5.1 Introduction

Individuals with normal hearing have a wide dynamic range of approximately 100 dB HL, which
ranges between the faintest sounds they can detect and the point at which sounds become
uncomfortably loud (Souza, 2016). However, cochlear hearing loss reduces this dynamic range,
causing an abnormal perception of loudness known as loudness recruitment (Moore, 2008). To
address this issue, most contemporary HAs incorporate compression or automatic gain control
(AGC). AGC amplifies soft sounds to compensate for reduced sensitivity in individuals with
hearing impairments while reducing the gain for loud sounds to prevent discomfort (Moore,
2008). The compression of the HA is described based on several parameters (Souza, 2002) (see
Figure 5.1). The compression knee point or threshold (CT) is the level of intensity where the gain
reduction is activated. Before the compression activates, the gain is constant. After activation,
with every increase in input, the output increases at a different ratio. The compression ratio (CR)

refers to the relationship between the increase in input level and the corresponding increase in
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output level. For instance, a compression ratio of 2:1 indicates that for every 2 dB increase in

the input signal, the output signal only increases by 1 dB (see Figure 5.1).

CR= Change in input / change in output =2:1
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Figure 5.1 A typical hearing aid input/output function. This figure illustrates the input/output
function of the hearing aid in dB, showcasing the compression parameters,
specifically the compression threshold and compression ratio. This figure was
adapted from Souza (2002).

Moore (2008) describes two major classes of AGC systems: automatic volume control (AVC)
and fast-acting AGC or wide dynamic range compression (WDRC), highlighting the advantages
and disadvantages of both systems. The AVC system operates with slow attack and release
times of the gain control (500 ms to 20 s), while the fast-acting AGC system has short attack and
release times (0.05 ms to 200 ms) to approximate normal loudness perception for HA users (see
Figure 5.2). Slow-acting compression, if needed, allows speech to be presented at a
comfortable volume, regardless of the initial input level, through a high compression ratio.
Generally, slow-acting compression maintains the speech's temporal envelope largely
undistorted since the pattern of gains across frequencies changes gradually over time. When
using multiple channels, fast-acting compression more effectively compensates for frequency-
specific loudness changes than slow-acting compression. AGC quickly improves the audibility
of soft sounds immediately following loud ones. Compared to slow-acting compression, fast-
acting compression offers better speech intelligibility, especially in the presence of noise
(Kowalewski et al., 2018). However, one disadvantage of fast-acting compression is its

potentially detrimental effect on the stimulus envelope, reducing loudness contrasts. Overall,
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the literature suggests that HA compression systems aim to ensure a better experience for
users, though this comes with drawbacks, one of which is the impact on the stimulus envelope,

a primary concern in the current project.
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Figure 5.2 The Effect of AGC System on Temporal Response. The figure illustrates the effect
of the fast and slow-acting systems on the input envelope of the signal. The top
panel shows the envelope of the input signal. The middle panel shows the fast-
acting AGC system and the bottom panel shows the slow-acting AGC system. 'Ta’
refers to the attack time, and 'Tr' indicates the release time, both measured in ms.
This figure was redrawn from (Moore, 2008).

The most noticeable temporal change caused by fast-acting WDRC is the distortion of the
amplitude envelope, which has received significant attention in the context of HA compression
(Souza, 2002). Compression modifies the amplitude envelope of the stimulus, reducing the
contrast between speech sounds of high and low intensity (Souza, 2002). Stone and Moore
(2007) described various envelope alterations caused by compression. First, they noted a
reduction in within-signal modulation correlation, which refers to the correlation between
different frequency bands of the signal. Higher correlation helps with perceptually binding the

signal components, leading to better speech intelligibility. Second, compression can alter the
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fidelity of the envelope, affecting its shape by causing overshooting or undershooting
(Verschuure et al., 1996). The more significant the alteration in the shape, the more it can
impact speech intelligibility (Stone and Moore, 2007). The higher the CR, the more significant the
change will be (Souza, 2002). It is clear that the envelope can be affected by compression in
different ways. Since the speech envelope is crucial for speech intelligibility (Shannon et al.,

1995) , any distortion might affect understanding (Souza et al., 2012).

As the next step of the current research focuses on measuring envelope neural tracking
responses to continuous aided speech, it was essential first to measure the effect of the HAs on
the signal envelope. The envelope distortion index (EDI) is widely used to quantify the change
caused by HA processing on the stimulus envelope (Jenstad and Souza, 2005, Souza et al.,
2012, Geetha and Manjula, 2014, Chinnaraj et al., 2021). EDI measures the difference in the
temporal envelope between two signals (Jenstad and Souza, 2005) and was initially developed
by Fortune et al. (1994). To determine the amplitude envelope of the aided and unaided signals,
the absolute value of the Hilbert transform is first calculated to provide a high-resolution
envelope. This is followed by applying a digital low-pass filter with a 30 Hz cutoff (Jenstad and
Souza, 2005). The signal is then normalised by 100%. The resulting signals are then scaled by
dividing each sample point by the mean amplitude to establish a common reference for
comparing the two envelopes. The following formula is used to compute the EDI between the

two signals:

Equation 5.1

EDI=(XN_, |Envl — Env2 |)/2N,

where N represents the number of samples in the signals, Env1 denotes the normalised unaided
recorded signal, Env2 corresponds to the normalised aided (processed) sighal, and n is the
sample index. The resulting EDI values ranged from 0, indicating identical waveforms, to 1,

indicating maximally different signals (e.g., perfectly out of phase).

Earlier literature has investigated the effects of various HA settings on the stimulus envelope,
including compression release time (Jenstad and Souza, 2005), compression, digital noise
reduction (DNR), and directionality (Geetha and Manjula, 2014, Chinnaraj et al., 2021). Jenstad
and Souza (2005) examined the impact of three different release times (12 ms, 100 ms, and 800
ms) on vowel-consonant (VC) syllables from the Nonsense Syllable Test (NST) presented at
three levels (50 dB, 65 dB, and 80 dB SPL). They used the EDI and the consonant-vowel (CV)
ratio as measures of acoustical change. The CV ratio focuses on the phonemic change in the
syllable, while the EDI specifically examines the envelope. The results showed EDI values
ranging between 0.05 and 0.27 across different conditions. Lower input levels resulted in lower

distortion, and no significant impact on release time was indicated. Higher EDI values were
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observed at loud input levels (65 dB and 80 dB SPL). This study demonstrated the applicability of
the EDI approach in quantifying the impact of specific HA compression features on the stimulus
envelope. This observation was based on the EDI calculation's sensitivity to changes in

compression settings and input values.

Geetha and Manjula (2014) used EDI to quantify the independent and interaction effects of
compression, digital noise reduction (DNR), and directionality on the temporal and spectral
features of various speech stimuli. They assessed subjective quality perception as well. The
study found no significant effect of the number of HA features activated on the measured
distortion, indicating that increased HA digital signal processing does not affect the EDI.
However, the study did not provide details about the statistical tests used to evaluate the effect
of different algorithms on the EDI. The findings were based on numerical differences between
the mean EDI values. The results indicated that a higher presentation level (70 dB SPL) led to
increased envelope distortion. This may be due to the higher input intensity resulting in a higher
CR, as the HA attempts to maintain the output within a comfortable range for the user, which
could explain the increased envelope distortion at higher input levels. Although the study
suggests some effect of input level on envelope distortion, the recording setup did not account
for the amplification provided by the pinna, as the HA was placed on a tripod rather than on a
manikin or a subject's ear. It is important to note that the human auricle contributes to sound

amplification around the frequency of 3 kHz (Purves, 2001).

More recently, Chinnaraj et al. (2021) investigated the effect of noise reduction and
directionality on EDI and explored the correlation between EDI and speech recognition. They
used a 16-channel HA and tested four different conditions: NR on, directionally on, both NR and
directionally on, and both NR and directionally off. The study included 20 individuals with mild
to moderate sensorineural hearing loss. A KEMAR head and torso simulator (Knowles
Electronics Manikin for Acoustic Research) was fitted with a HA programmed for each
individual. The results showed significantly higher EDI values for sentences compared to short
syllables. Chinnaraj et al. (2021) also found that the effects of NR and directionality varied
based on the stimulus level. At the low intensity level (55 dB SPL), there were no significant
effects. However, at the medium intensity level (65 dB SPL), the activation of the algorithms
increased the EDI. At the high intensity level (85 dB SPL), NR had a greater impact on increasing
the EDI compared to directionality. The EDI increased with increasing presentation levels.
However, the study did not investigate the statistical differences between presentation levels.
Speech recognition scores were high with the activation of the HA algorithms, but no significant
correlation was found between EDI and speech recognition. These findings suggest that high-
envelope distortion does not necessarily indicate reduced speech perception. Overall, the

study shows how EDI can vary with HA conditions. This finding highlights the importance of
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quantifying envelope distortion before measuring aided evoked responses, particularly when
using continuous speech. Any distortion of the speech envelope may lead to corresponding
alterations in the brain's response to the speech. Consequently, using the input envelope to
correlate with the EEG response could be compromised, potentially affecting the detection of

the response.

In general, previous studies that utilised EDI to quantify the effects of HA processing often relate
it to subjective measures such as speech intelligibility, loudness perception, and speech clarity.
To the best of our knowledge, the literature does not clearly elucidate how envelope distortion
varies with different types of speech and speech-like stimuli. Given the current project's aim to
evaluate the feasibility of using cortical responses to continuous speech envelopes for
assessing aided speech perception, it was imperative to investigate how HAs alter the envelope
of various stimuli. In the preceding study (Chapter 4), it was discovered that speech-modulated
noise, which possesses an identical speech envelope to intelligible speech, generated more
robust cortical responses, with higher detection rates and shorter detection times than natural
speech (see Figure 4.4 and Figure 4.5). As speech-modulated noise could be more suitable for
clinical use due to its language independence, it was important to determine whether it behaves
in the same manner as normal speech when processed by HAs. Considering the possibility that
speech-modulated noise might show different HA effects compared to speech, another
language-independent stimulus was included: the ISTS, which was created by using recordings
of brief passages of natural spoken human speech from six different languages. The ISTS signal
contains core speech characteristics, making it recognisable as speech to humans while
remaining unintelligible (Holube et al., 2010). It would be beneficial to the advancement of
measuring cortical responses to continuous speech to determine if HAs respond to ISTS in a

similar manner to actual speech.

The current study measured envelope distortion with different HA settings to help with the
design of the next EEG experiment. Specifically, it included the effects of noise reduction and
CR on the EDI for various types of stimuli. This included the two stimuli used in the previous
study (see Chapter 4): speech and speech-modulated noise. An NR feature was incorporated as
the modulated noise output might be influenced by it. This study assessed how the envelope of
the language-independent stimuli (speech-modulated noise and ISTS) is affected by HA
processing compared to speech. The study specifically looked at envelope distortion because
the stimulus envelope is the feature used to analyse the correlation with EEG responses in the

subsequent study (Chapter 6).
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5.1.1 Research questions

e |sthere a significant difference in EDI values between different stimuli (speech, speech-
modulated, and ISTS)?
e |s EDIsignificantly affected by NR (for each test stimulus)?

e Willincreasing the compression ratio affect the EDI?

5.2 Materials and Methods

To achieve the objectives outlined above and provide evidence for selecting suitable stimuli for
the next study (Chapter 6), the EDI was calculated for a series of different speech and speech-
like stimuli. The stimuli were played through loudspeakers and recorded in the ears of a
mannequin. The original and recorded sighals were then compared using the EDI index. Details

of the methods are provided below.

5.2.1 Recordings Setup

Figure 5.3 illustrates the visual representation of the recording setup. Stimuli were presented
through Genelec 8020C loudspeaker positioned at a 0° angle, 1 m away from KEMAR right ear.
This loudspeaker was connected to an RME Fireface UC audio interface, which was connected
to a laptop running Audacity for presenting the stimuli. A Zwislocki coupler, placed in KEMAR's
ear, was used to record the signal. The coupler was linked to a pre-amplifier, which was then
connected to an input channel of the RME Fireface. The recorded stimuli were exported as .wav
files using Audacity. All equipment was located inside a sound-treated room to mitigate the
effect of external noise and to reduce sound reverberation. To ensure consistent recording
conditions, the sensitivity of the pre-amplifier was maintained at a constant level of 100 V/Pa
throughout the recordings. The gain in the soundcard input for the recorded stimulus was
carefully adjusted to prevent peak-clipping in cases of loud input signals. Any gain adjustments
were documented to ensure they could be compensated for during stimulus playback in the

next study (Chapter 6). The EDI measurement will not be affected, as it will be normalised.
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Figure 5.3 Overview of the recording setup. This figure describes the setup for capturing audio
stimuli, detailing the arrangement of a loudspeaker positioned at a 0° angle and T m
from KEMAR ear, connected to an RME Fireface audio interface and a laptop running
Audacity. It shows the pathway from the loudspeaker through the Zwislocki coupler
placed in KEMAR's ear for signal recording, connected to a preamplifier and back to
the RME Fireface for data capture. All recording equipment except the laptop was
located in a sound-treated room.

This setup was used to conduct both unaided and aided recordings. For the unaided condition,
the recording was made directly from KEMAR's ear canal without a HA, aiming to capture the ear
canal's effect and thus control for it as a confounding factor when compared to the aided

condition. In the aided recordings, KEMAR was fitted with a soft earmold without a vent.

5.2.2 Stimulus

The current study utilised three stimuli: English natural speech, speech-modulated noise, and
the ISTS stimuli. Detailed information regarding the speech and speech-modulated noise
stimuli can be found in Chapter 4 (see Section 4.2.3). These three stimuli were used to

investigate potential differences in their response to HA processing.

Intelligible speech is an ideal option for assessing speech perception, as it closely resembles
what individuals typically encounter in daily life. However, for clinical purposes, using a

language-independent speech stimulus might be preferable, as it is acoustically similar to
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speech but can be used with listeners from different language backgrounds, including pre-

lingual infants. Speech-modulated noise and ISTS potentially serve as suitable universal stimuli.

All stimuli lengths were approximately 15 min, allowing for multiple distortion values to be
calculated to enable statistical comparisons across different conditions. The ISTS stimulus,
initially 1 min, was repeated to have a length of 15 min for this analysis. Each stimulus was
presented at sound pressure levels of 50 dB, 70 dB, and 85 dB A-weighted equivalent

continuous sound level (LAeq), representing low, moderate, and loud input levels, respectively.

To ensure accurate stimulus levels at the position of the HA microphone when placed on
KEMAR’s ear, a Sound Level Meter (SLM) was employed. The calibration of the SLM involved a
free-field microphone (type 4189 Bruel Bruel & Kjeer). It was calibrated using a reference piston
at 94 dB SPL. Establishing a reference for acoustic measurements on KEMAR was crucial for
ensuring consistent and reliable data collection across various stimuli. To achieve this, a 1 kHz
sine wave, selected for its mid-range frequency that is within the human hearing spectrum, was

presented at a constant level of 74 dB SPL directly measured at KEMAR’s ear.

The stimuli were presented via the loudspeaker positioned at a 0° angle and located 1 m away
from KEMAR. The SLM was positioned near KEMAR's ear. The calibration process involved three
types of stimuli at three different levels (50 dB, 70 dB, and 85 dB LAeq) to cover a broad range of
potential HA responses. Table 5.1 shows the adjustments made to the loudspeaker gain to
ensure that the correct sound level was produced at KEMAR's ear for each stimulus (within a 1
dB tolerance). The 1 dB was tolerated to ensure that the loudspeaker gain remains consistent
across different presentation levels, which helps maintain uniformity and reliability in the
measurements. To verify the reference accuracy, with the loudspeaker adjusted to -14 dB, the 1
kHz sine wave consistently produced a measured sound level of 74 dB SPL, while other stimuli
resulted in sound levels around 70 to 71 dB LAeq. The difference in levels is expected due to the
acoustic differences between speech and noise-like stimuli compared to a sine wave (Hansen,
2001). However, as the various stimuli fall within a consistent and expected range relative to the

reference signal, the calibration can be considered effective.
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Table 5.1 Stimuli levels measured using Sound Level Meter (SLM) Placed Next to the Ear of
KEMAR. This table provides the measured levels of various stimuli used in the study, captured
with a sound level meter positioned next to the ear of the KEMAR.

Loudspeaker Gain Stimulus Type Stimulus level at KEMAR
-14 dB 1 kHz sinewave 74 dB SPL
-14 dB Speech 70.5 dB LAeq
-14 dB Modulated noise 71.2 dB LAeq
-14 dB ISTS 71.2 dB LAeq
-34 dB Speech 50.5 dB LAeq
-34 dB Modulated noise 51.4 dB LAeq
-34 dB ISTS 51.5dB LAeq
+1dB Speech 85.2 dB LAeq
+1 dB Noise 85.6 dB LAeq
+1dB ISTS 86 dB LAeq
5.2.3 Hearing aid and testing condition

The HA used in this study was Oticon Engage behind-the-ear (BTE) HA. The chosen HA was
programmed using Genie software (the official software from Oticon to programme) for
moderate flat sensorineural hearing loss, with thresholds ranging from 50 dB to 60 dB HL.
During the programming process in Genie, the default settings of the General DSL v5A-
Paediatric prescription were initially utilised. Following that, three different gain adjustments
were made to have three different compression settings (low CR, high CR and linear gain). Table
5.2 provides an overview of the three different compression settings and the corresponding HA
gains. For the low compression programme, the HA gain was adjusted based on measurements
obtained from testing the HA in the test box —the resulting CRs were 1.8:1 and 2.1:1. These gain
adjustments were made to provide a ~20 dB gain for soft sounds (50 dB), a ~10 dB gain for
moderate sounds (70 dB), and a ~5 dB gain for loud sounds (85 dB) as measured in the test box.
The gain was further modified for high CR CRs = 2:1 and 3.1:1. The modification was based on
having higher compression but ensuring a similar overall gain compared to low compression
conditions (+/-2 dB) through test box measurement. For the linear condition, the gain was

adjusted to be 20 dB for all testing conditions to ensure a zero compression or constant gain.
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Table 5.2 Gain and compression ratios (CRs) for each testing condition. This table provides a
detailed summary of the gain settings and compression ratios (CRs) applied under
each testing condition for the hearing aid. Table A presents the low compression
settings, Table B shows the high compression settings, and Table C outlines the
linear compression settings. The first compression threshold (CT) is at 50 dB SPL,
the second CT is at 65 dB SPL, and the third CT is at 80 dB SPL.

Table A

Frequency (Hz) | 125 | 250 | 500 | 625 | 750 | 1K | 1.25 | 1.5 | 1.75 | 2K | 3K | 4K | 5K | 6K | Average
Loud 5 10 12 12 12 11 12 10 10 9 7 5 7 8 9.3
Moderate 11 17 19 19 19 18 18 17 16 5 14 12 13 12 15.0
Soft 24 30 27 27 30 32 32 31 31 30 | 27 | 25 | 27 27 28.6
CR 1.9 1.9 19 { 19 | 19 | 1.8 1.7 1.9 1.7 17 |19 | 19 | 1.7 | 14 1.8
CR 2.3 29 (20|19 |21 (24| 23 |22 | 22 |21|19 |18 |17 |19 2.1
Table B

Frequency (Hz) 125 | 250 | 500 | 625 | 750 | 1K | 1.25 | 1.5 | 1.75 | 2K 3K 4K 5K 6K | Average
Loud 5 9 8 8 8 9 9 9 8 7 5 5 5 6 7.2
Moderate 10 15 15 16 16 16 15 15 14 15 14 13 14 14 14.4
Soft 24 30 27 28 31 34 33 33 34 34 | 31 | 31 | 31 31 30.9
CR 1.7 1.7 19 | 21 | 21 | 1.9 1.7 1.7 1.7 21 (25(21 |25 ]| 21 2.0
CR 2.9 4.0 40 | 34 | 35 | 33 3.6 | 3.3 3.5 29 |1 25|26 |21 22 3.1
Table C

Frequency (Hz) | 125 | 250 | 500 | 625 | 750 | 1K | 1.25 | 1.5 | 1.75 | 2K | 3K | 4K | 5K | 6K | Average
Loud 15 21 20 20 20 20 20 20 20 20 19 20 19 20 19.6
Moderate 15 21 20 20 20 20 20 20 20 20 19 20 20 20 19.6
Soft 15 21 20 21 21 21 20 21 21 20 20 20 20 22 20.2
CR 1.0 1.0 10 { 1.0 | 1.0 | 1.0 1.0 1.0 1.0 10| 10| 10 |11 | 10 1.0
CR 1.0 1.0 10 { 1.1 | 1.1 | 1.0 1.0 1.0 1.0 10| 10| 10| 10 | 10 1.0

Different HA programs were employed for each of the testing conditions. The primary tested
features included noise reduction with the option to turn it on (NRON) or off (NROFF), and the

CR with choices of low or high settings. The conditions tested were as follows:

1. Low CR+ NRON
Low CR + NROFF
High CR + NROFF
Linear CR + NROFF

P 0NN

For investigating the NR effect, only the low CR was utilised. The chosen combination of HA
programs, compression settings, and NR options enables the assessment of the impact of
different signal processing features on the signal envelope and subsequent analysis of their
effect on measuring cortical responses. To evaluate the impact of HA processing, recordings

were made for each stimulus and level under unaided conditions.
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5.2.4 Acoustic analysis

The method chosen to quantify the envelope distortion involved measuring EDI values,
computed using MATLAB code. As described earlier, EDI is a measurement used to quantify the
difference between processed and unprocessed stimuli. In this study, we have implemented a
similar method described by Jenstad and Souza (2005). The reference signal used to calculate
the EDIl was the recorded stimulus without the hearing aid (unaided). The two envelopes were
first normalised by dividing each one by the mean amplitude of the signal, followed by alignment
to account for the delay caused by the HA processing. Alignment was achieved by finding the
delay that produced the maximum cross-correlation value between the two signals. After

alignment, the EDI was calculated according to Equation 5.1 as described in Section 5.1

The computed EDI was applied to segments of the recorded signals to compare the EDI values
among different conditions. For each condition, data were analysed in 24 segments of 30 s

duration.

5.3 Results

5.3.1 Visualising envelope distortion:

Before showing the compression of EDI values between different stimulus types, the aided and
unaided envelopes were visually inspected. Figure 5.4 shows the normalised envelope of the

aided (red) and unaided (black) signals for the three stimulus types used in the study.
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Comparison of the normalised unaided and aided envelopes
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Figure 5.4 Normalised unaided and aided envelope signals for different stimuli. The figure
shows a 10 s envelope of the unaided signal in black and the aided signalin red. The
top panel shows the speech stimulus, the middle panel shows the modulated noise,
and the bottom panel shows the ISTS stimulus. This was the result of the 85 dB LAeq
level condition without noise reduction (NROFF).

When examining the modulated noise stimulus (middle panel), although the differences are
small, there is a minimal compression effect at the peaks with higher levels, where the aided
envelope is slightly lower in amplitude (see peaks between 8 s and 9 s). In contrast, the speech
stimulus (top panel) shows a more variable compression effect. This variability is evident for
speech at peaks between 9 s and 10 s, and for ISTS, between 5 s and 6 s. Additionally, for the
speech and ISTS unaided stimuli, there are some negative values in the aided envelope
compared to the modulated noise (e.g., speech between 3 s and 4 s and ISTS ~5 s). This
overshooting might result from the filter applied during the envelope extraction step (see

Section 5.2.4). In contrast, the modulated noise does not exhibit any overshooting.

5.3.2 Effect of NR and Stimuli Type on EDI

Before expanding on the EDI results, it is important to highlight that most previous studies on

EDI have focused on short speech syllables. For example, Jenstad and Souza (2005) used the
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Nonsense Syllable Test, which consisted of 25 items. To the best of my knowledge, the use of
long-running speech as a stimulus in this type of analysis has not been tested before.
Consequently, no prior studies are available for direct comparison. The primary aim of this
analysis was to assess how these stimuli function in the context of everyday conversation,
where a 30-second segment—containing approximately 6—-7 sentences—can effectively

represent continuous speech, the intended focus for cortical response testing.

Additionally, the speech and speech-modulated noise stimuli used in Chapter 4 were 15
minutes long and structured into four blocks, each lasting 3 to 4 minutes. To ensure sufficient
data for analysis while avoiding the risk of exhausting stimuli at the end of each block, 30-
second segments were selected from each block, resulting in 24 segments. However, the 15-
minute duration of the ISTS stimuli introduces a potential limitation: ISTS repeats every 1
minute, meaning the selected segments are not fully independent samples. A more detailed

discussion of this limitation and its implications is provided in the Discussion section.

To answer the first two questions about the effect of NR and stimulus type on the measured EDI,
a comparison was made between low CR conditions of either NRON or NROFF with different
stimulus types. Shapiro-Wilk tests of normality were conducted for all test conditions,
indicating that the data were generally normally distributed, supporting the use of parametric
tests. Figure 5.5 shows the mean values of EDI across 24 recording segments in each condition.
Here, the analysis examined the impact of NR (NRON and NROFF) and stimuli type (speech,
speech-modulated noise and ISTS) on the dependent variable EDI, with an additional
consideration of different stimulus levels (50 dB, 70 dB and 80 dB LAeq). This was achieved

using a three-way repeated measures ANOVA.
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Figure 5.5 Envelope distortion index (EDI) with noise reduction on (NRON) and off (NROFF)
for three different stimuli across three stimulation levels. The figure shows the
error bars (mean = 1 SE of the mean) of the EDI values with and without noise
reduction activated. "S" refers to speech, "M-N" refers to speech-modulated noise
and the ISTS is the international speech testing signal. Each stimulus was measured
at three input levels: 50 dB, 70 dB, and 85 dB LAeq. The compression remained
consistent at a low CR.

The results of the three-way ANOVA on the effect of NR, stimuli types and stimuli levels indicate
that, with a Greenhouse-Geisser correction, the main effect of NR on the EDI was not
statistically significant (F(1, 23) = 1.690, p > 0.05). However, the main effect of stimulus type was
found to be statistically significant (F(1.42, 32.66) = 74.98, p < 0.0001). A Bonferroni post hoc
test showed that the modulated noise stimulus had a statistically significantly lower EDI mean
(0.114 +/- 0.003) than speech (0.17 +/- 0.005) and ISTS (0.155 +/- 0.003) (p < 0.0001). No
significant difference was indicated between speech and ISTS. These findings were evident for
all stimulation levels, except at 85 dB LAeq ISTS, which showed significantly lower EDI (0.15 +/-
0.003 than speech (0.17 +/- 0.005) (p <0.01).

A significant interaction was found between NR and stimulus type (F(2, 46) =27.5, p > 0.05). A
Bonferroni post hoc test showed that the difference between NR conditions (NRON and NROFF)
in EDI was significant with all stimulus types (see Figure 5.6). The direction of NR's effect
depends on the stimulus type used. With speech and ISTS, the EDI was significantly lower with
NRON (0.168 +/- 0.005) and (0.153 +/- 0.003) than NROFF (0.171 +/- 0.005) and (0.156 +/- 0.003),
respectively (p < 0.001). The effect was the opposite with modulated noise, as NRON has a
higher EDI (0.116 +/- 0.004) than NROFF (0.112) (p < 0.001).
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Figure 5.6 Envelope distortion index (EDI) estimated marginal means for the interaction
effect between noise reduction (NR) and stimulus type. The x-axis represents
the NR setting, while the bars on the y-axis show the estimated marginal means of
EDI, averaged across the three stimulus levels: 50 dB, 70 dB, and 85 dB LAeq. The
line colours correspond to different stimuli: the yellow line represents the speech
stimulus, the green line represents the speech-modulated noise stimulus, and the
red line represents the ISTS stimulus.

5.3.3 Effect of Stimulus Input Level on EDI

Additionally, the effect of stimulus level on envelope distortion was also investigated. Mauchly's
Test of Sphericity indicated that the assumption of sphericity had not been violated, x2(2) =
1.70, p = 0.43. The main effect of the stimulus level on EDI was statistically significant (F(2, 46) =
989.44, p <0.0001). A Bonferroni post hoc test showed that 50 dB LAeq level showed a
significantly lower EDI (0.125 +/- 0.003) than 70 dB LAeq and 85 dB LAeq (p <0.001). In addition,
70 dB LAeq A produced significantly higher EDI (0.166 +/- 0.003) than 80 dB LAeq (0.147 +/-
0.003), (p <0.001).

With NR and level interaction, the effect on EDI was significant (F(2, 46) = 5.03, p > 0.05). The
Bonferroni post hoc test showed that the difference between NR conditions was only significant
at 85 dB LAeq level as NRON EDI mean (0.148) was higher than NROFF EDI (0.146) (p <0.01)
(see Figure 5.7). It is important to note that while the interaction effect was statistically

significant, higher EDI with NRON at 85 dB LAeq level, its magnitude was relatively low (0.002).
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Figure 5.7 Envelope distortion index (EDI) estimated marginal means for the interaction
effect between noise reduction (NR) and stimulus level. The x-axis represents the
NR setting, while the bars on the y-axis represent the estimated marginal means of
EDI averaged across the three stimuli types. The line colours correspond to different
input levels: the blue line represents the 50 dB LAeq, the pink line represents the 70
dB LAeq, and the purple line represents the 85 dB LAeq.

Since the results showed that 70 dB LAeq had a higher EDI than 85 dB LAeq, visual inspection
was conducted, as more compression and distortion were predicted at 85 dB LAeq. Figure 5.8
shows the normalised envelope comparing the two input levels with the speech envelope. In the
figure, larger compression effects can be observed at 70 dB LAeq A, indicated by the circles

around the peaks.
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Figure 5.8 Normalised unaided and aided envelope signal for different input levels. The
figure shows a 16 s envelope of the unaided signalin black and the aided signalin
red for the ISTS stimulus. The y-axis represents the amplitude of the signal, while the
X-axis represents time in seconds. The top panel shows the ISTS ata 70 dB LAeq
input level, and the bottom panel shows the ISTS at an 85 dB LAeq input level.

5.3.4 Effect of compression ratio on envelope distortion index

Figure 5.9 shows the mean values of the EDI for the three compression settings. To address the
third research question about the effect of different CR on the envelope distortion, the EDI
levels for different stimuli and input levels were compared across three compression settings:
low, high, and linear (see Table 5.2), where The CR in linear compression was setto 1. A
repeated measures ANOVA with Sphericity assumption was performed, revealing a statistically
significant main effect of compression on EDI (F(2, 46) = 628.28, p <.0001). The Bonferroni post
hoc test indicated that the mean EDI with high CR (0.177 +/- 0.002) was significantly higher than
that with low CR (0.146 +/- 0.002) and linear CR (0.135 +/- 0.002), with a significance level of p <
0.001. The linear CR showed significantly lower EDI than low CR, p <0.001.
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Figure 5.9 Envelope distortion index (EDI) at different compression ratios (CR). This figure
displays mean EDI and error bars (mean = SE) for three different CRs: Low, High, and
Linear. For each CR, three stimuli (Speech, Speech-modulated noise, and ISTS) and
three stimuli levels (50 dB, 70 dB, and 85 dB LAeq) were used. The bar colours
correspond to the different CRs: blue bars represent Linear CR, red bars represent
Low CR, and yellow bars represent High CR.

Furthermore, the interaction between compression and input level was found to be significant
with Greenhouse-Geisser correction (F(2.9, 66.9) = 233.08, p < 0.0001) (see Figure 5.10).
Specifically, the Bonferroni post hoc test indicated that the high CR demonstrated significantly
higher EDI values compared to the other compression settings at all input levels (p <0.001).
Additionally, the linear CR exhibited significantly lower EDI values at 70 dB LAeq and 85 dB LAeq

compared to the low CR (p <0.001), indicating an interaction effect between compression

settings and input levels.
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Figure 5.10 Envelope distortion dndex (EDI) means for compression ratio (CR) and stimulus
Level. The figure presents the error bars (mean + 1 SE) for the estimated marginal
EDI means, showing the interaction effect between the three CRs (Low, High, and
Linear) and input levels (50 dB, 70 dB, and 85 dB LAeq). The x-axis represents CR,
while the bars on the y-axis represent the estimated marginal means of EDI average
of three stimuli types. The bar colours correspond to different input levels: blue bars
represent 50 dB LAeq, green bars represent 70 dB LAeq, and red bars represent 85
dB LAegq.

The analysis of the interaction between compression and stimulus type, with Greenhouse-
Geisser correction, revealed a significant effect on the EDI (F(2.3, 52.8) =62.15, p <0.0001) (see
Figure 5.11). Specifically, as expected, the high CR exhibited higher EDI values compared to the
other compression settings for all stimuli (p <0.001). On the other hand, the linear CR showed
lower EDI values for the modulated noise and ISTS stimuli compared to the low CR (p < 0.001),

indicating a significant interaction effect between compression setting and stimulus type.
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Figure 5.11 Envelope Distortion Index (EDI) Means for compression ratio (CR) and stimulus
type. The figure presents the error bars (mean +/- 1 SE) for the estimated marginal
EDI, showing the interaction effect between the three CRs (Low, High, and Linear)
and stimuli type (Speech, Speech modulated noise, and ISTS). The x-axis represents
CR, while the bars on the y-axis represent the estimated marginal means of EDI
average of three stimuli levels. The bar colours correspond to different stimuli: the
orange bars represent speech, the green bars represent speech-modulated noise,
and the purple bars represent the ISTS.

5.3.5 Recording quality

To ensure accurate measurements, repetitions of unaided recordings were conducted during
the pilot study to verify that the noise floor in the room did not introduce any distortion.
Subsequently, the EDI was computed using a single stimulus segment. The mean EDI values
obtained from the repetitions consistently remained low across the measurements (0.0049,

0.0048, 0.0056, 0.0055, 0.0045, 0.0047), indicating minimal influence of room noise.

54 Discussion

This study investigated the effect of HA processing on the signal envelope by examining different
stimulus types and hearing aid settings by measuring the amount of envelope distortion (using
EDI). The results showed that speech-modulated noise exhibited significantly lower distortion
compared to speech and ISTS signals. The compression ratio had a significant main effect on
EDI, with higher compression leading to a significant increase in EDI. Additionally, a moderate

input level produced significantly higher envelope distortion compared to low and high levels.
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The effect of noise reduction on EDI was significant only when considering the interaction with

stimulus type or stimulus level.

The impact of NR varied depending on the specific stimulus used. Modulated noise showed
higher EDI values with NRON, while speech and ISTS had lower EDI values with NRON. This
difference may be attributed to how the NR algorithm operates. A HA with adaptive NR aims to
provide less amplification for frequency ranges where the noise is intense (National Institute for
Health and Care Excellence (NICE), 2018). It is clear from this result that noise reduction affects
speech-modulated noise differently than natural speech. These findings emphasise the
importance of considering NR settings when choosing the stimulus type to evaluate the impact

on envelope distortion.

As mentioned earlier, the EDI measured from speech-modulated noise was significantly lower
than speech and ISTS, with and without NR (see Figure 5.6). Additionally, modulated noise
consistently showed lower distortion across different compression ratios (see Figure 5.9).
Visual inspection of the aided and unaided envelopes suggested that modulated noise had a
less compression effect than speech and ISTS (see Figure 5.4 ). One possible explanation is that
speech exhibits more variable spectral information. The HA used in this study was a
multichannel model, where compression varies across frequency bands (Dillon, 2012). As a
result, spectral changes can alter the envelope. For instance, high gain in high-frequency bands
enhances the envelope due to fricatives, while lower gain in low-frequency bands reduces the
envelope for vowels. Even pure amplification can lead to these changes in the speech
envelope. On the other hand, modulated noise is smoother, which may be related to how it is
generated. The speech envelope used to create the modulated noise was smoothed by a low-
pass filter (see Section 4.2.3), as well as the filter applied to extract the modulated noise

envelope when calculating the EDI.

When using natural speech to measure envelope distortion, it becomes challenging to
differentiate between the HA's impact on temporal fluctuations and other potential side effects,
such as spectral distortion (Souza, 2002). This may also account for the higher envelope
distortion values observed with speech stimuli. When comparing ISTS and speech stimuli, ISTS
had lower envelope distortion, but the difference was not statistically significant. Since the
distortion of ISTS was not significantly different from that of speech and exhibited similar
behaviour with the noise reduction effect, using ISTS might be more appropriate as it more

closely resembles actual speech.

Envelope distortion was significantly different between different compression settings; the high
CRresulted in significantly higher EDI values than low and linear compression (see Figure 5.9).

This observation aligns with previous findings reported by Souza et al. (2012). In their study,
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Souza et al. (2012) measured the EDI for syllables using four different CRs ranging from linear to
10:1. They found that the mean EDI increased as the compression ratio increased. Here, three
different compression settings were compared: linear, which has a CR of 1:1; low compression
with two CRs (1.8:1 and 2.1:1); high compression with two CRs (2:1 and 3.1:1). Similar to Souza
et al. (2012), EDI progressively increased from a linear to a higher value, although only a limited
range was tested here. Compression affects speech by reducing the amplitude variation,
lowering the level of high-intensity phonemes relative to low-intensity phonemes, and resulting
in amplitude smoothing (Souza, 2002). The phoneme of amplitude smoothing was explained by
Dillon (2012), as a reduction of inter-syllabic and inter-phonemic intensity difference, which
results in a narrow dynamic range between the envelope of soft and loud signal. This effect is
more pronounced with higher compression ratios, as shown in the current results (see Figure
5.9), particularly with speech and ISTS stimuli. The findings in this study regarding the different
effects of compression on envelope distortion will inform the design of future EEG experiments,
particularly in investigating the correlation between envelope distortion values and cortical

response correlation values.

The EDI showed higher values with a 70 dB LAeq level of presentation compared to 85 dB LAeq
(see Figure 5.6). This result contrasts with Chinnaraj et al. (2021), who found higher EDI values
at 85 dB SPL compared to 65 dB SPL. A possible explanation could be attributed to the
functioning of the Oticon HA compression system, which operates in two primary ways. One
approach focuses on the long-term level of the signal, while the other detects rapid sound level
variations that exceed typical speech signal shifts (Oticon, 2023). This system was explained by
Moore (2008) as the following: “suppose there is a sudden increase in sound level so that the
momentary output level rises by more than 8 dB above the level of the ongoing ‘running’ signal
level determined by the slow system”. In that case, the fast-acting control signal rapidly reduces
the gain, thus avoiding uncomfortable loudness (Moore, 2008). In this context, the HA may
activate the fast-acting compression more frequently for moderate-level signals (70 dB LAeq) as
the stimulus peaks level can be higher relative to the running level compared to loud signals (85
dB LAeq) (see Figure 5.8). In the louder condition, the overall dynamic range is more
compressed, leading to fewer peaks exceeding the running level. As a result, the fast-acting
compression is activated less frequently. This observation provides insight into how the HA’s
compression system adapts to input level changes, potentially contributing to the differences

observed in the EDI values between the two presentation levels.

The repeated measures ANOVA used in this analysis has a key limitation: the ISTS segments are
not entirely independent samples, as the stimulus repeats every minute. While this non-
independence is a potential concern, some variability is still presentin the results. When

generating this stimuli, each 1-minute segment was joined to the previous one to ensure
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continuity and avoid gaps. Upon closer inspection, there is a slight overlap of 1-2 seconds
between the 1-minute segments, which could serve as one source of variability in the envelope
distortion. Other potential sources of variability include background noise or internal electronic
noise. These were quantified in the study through repetitions of unaided recordings.
Specifically, two unaided recordings were made with the hearing aid present but turned off, and
the EDl was calculated. The EDI values ranged between 0.001 and 0.01. Although these values

are low, they may have contributed to some degree of variability in the measurements.

One possible approach could be to analyse the entire 1-minute ISTS stimulus as a single unit
and compare its EDI to that of the full-length speech and speech-modulated noise conditions.
This would provide an estimate of the population result for each stimulus. However, in the next
phase of the project, the plan is to present the stimuli for 15 minutes with 1-minute increments.
Calculating the EDI as a whole does not account for potential variability over time, particularly in
speech and modulated noise, where gradual changes may occur. Similarly, for ISTS, using only
the first minute does not consider potential differences in EDI values across subsequent

minutes. This introduces a limitation to this method.

5.5 Conclusion

In conclusion, this chapter helps to understand how HA speech processing affects the
amplitude envelope. It is clear that HA settings significantly impact the envelope, with
compression ratio and stimulus level having notable effects on the EDI. Noise reduction showed
minimal influence. Complex interactions between stimulus type, level, and compression effects
were observed. These factors should be carefully considered when selecting HA settings for the
next experiment, which will involve measuring EEG responses to continuously aided stimuli. The
impact of envelope distortion on cortical responses will be assessed by comparing different
distortion levels on detection sensitivity, detection time, and neural tracking correlations.

Parameters will be selected based on these findings as the following:

1- Although it had a minor effect, NR will be deactivated to control it as a confounding
variable, as the result suggests that it has inconstant impacts on the level of envelope
distortion measured depending on the stimuli.

2- Given that the distortion was influenced by compression and input level due to variation
in EDI across conditions, conditions with different EDI values will be employed to
evaluate whether the extent of envelope distortion affects the measured cortical
responses.

3- The ISTS will be used as the primary stimulus. This decision is based on the observation

that ISTS exhibited similar behaviour to speech in terms of the effects produced by HA
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processing, compared to speech-modulated noise. Additionally, ISTS is language-
independent, allowing for universal use and avoiding comprehension as a confounding

factor. In contrast, speech-modulated noise showed significantly lower distortion values

than intelligible speech.
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Chapter 6 Investigating the Effect of Hearing Aid
Envelope Distortion on Cortical Responses

to Continuous Speech

After quantifying the effect of HA processing on continuous speech stimuli (Chapter 5), the next
step will be to investigate how this is reflected in the cortical response. Therefore, the
experimental design described in this chapter was developed based on the findings from the
previous study (Chapter 5) and will investigate how the brain processes the HA-modified stimuli

generated in that study.

6.1 Introduction

While several studies have explored neural tracking of speech envelopes in individuals with
hearing loss — primarily adults (Petersen et al., 2017, Vanheusden et al., 2020, Decruy et al.,
2020) and recently in children (Van Hirtum et al., 2023) — the specific relationship between
envelope distortion and cortical responses has not been previously investigated. Petersen et al.
(2017) conducted one of the pioneering studies on neural responses to aided continuous
speech in individuals with hearing loss. The research detected cortical responses from elderly
participants with various degrees of hearing loss under different SNR conditions using a cross-
correlation approach. The results revealed a significant cortical response to both attended and
ignored stimuli at a group level. While attended speech showed significantly stronger neural
tracking with a higher correlation value than ignored speech, the disparity diminished in
participants with severe hearing loss. The observation was explained by a deficiency in the
ability to segregate between competing talkers, resulting in a reduction of the inhibition typically
applied to ignored speech. This research demonstrated the capability to detect aided cortical
responses across different hearing loss degrees in the elderly for both attended and ignored
stimuli. However, the significant neural tracking of the speech envelope was only observed at
the group level. Moreover, the study was limited to the effects of linear HA amplification and

slow compression, aiming to preserve the speech envelope.

Decruy et al. (2020) and Gillis et al. (2022a) explored the differences in neural tracking of speech
envelopes between hearing-impaired and normal-hearing individuals, matching participants by
age. Instead of typical HA use, these studies linearly amplified speech stimuli, ensuring 100%
speech comprehension for hearing-impaired participants. Decruy et al. (2020) utilised
backward modelling to reconstruct envelope accuracy, whereas Gillis et al. (2022a) employed a

forward modelling approach. Both, studies reported enhanced neural tracking in hearing-
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impaired individuals, although this difference was not statistically significant. One
interpretation could be that adults with a hearing impairment exert more effort to distinguish
target speech from background noise (Decruy et al., 2020, Verschueren et al., 2021). Another
possible explanation is that a high-intensity stimulus was presented to hearing-impaired
participants. However, Verschueren et al. (2021) tested this assumption by testing neural
tracking across three intensity levels (30 dB, 60 dB, and 70 dB A), finding no significant effect.
This suggests that amplification alone does not account for the enhancement in neural tracking.
These findings highlight that hearing loss does not negatively impact neural tracking of
continuous speech, supporting neural tracking as a valid method for assessing aided responses
in hearing-impaired individuals. Nevertheless, the use of linear amplification in these studies
does not accurately represent real-world HA use, which typically involves compression. This
highlights the importance of investigating HA responses under more realistic amplification
conditions. Specifically, future studies should focus on comparing pure linear amplification
(uniform gain across frequencies) with compression-based amplification used in modern HAs,
aiming to understand how these differing strategies affect neural tracking and auditory

processing.

The distinction between aided and unaided neural tracking of speech envelopes has been
explored in adults (Vanheusden et al., 2020) and children (Van Hirtum et al., 2023). Vanheusden
et al. (2020) focused on subjects with mild to moderate hearing loss, most exhibiting a sloping
high-frequency hearing loss profile. The stimulus in this study was low-pass filtered at 3000 Hz
and presented at a level of 70 dB SPL. These parameters were chosen because of previous
findings that frequencies above 3 kHz have no significant effect when measuring low-frequency
cortical entrainment to speech (Vanheusden et al., 2020). The gain for the frequency range of
the stimulus was set to 5 dB at low frequencies up to 1 kHz, then gradually increased to 30 dB at
higher frequencies. The EEG data were collected via 32 channels and analysed using a linear
decoder to reconstruct the stimulus envelope. The specific personal settings for the
participant's hearing aids were not detailed. The study concluded that HA processing did not
significantly change the correlation coefficient in backward modelling — a finding that reinforces
the potential of using neural tracking of continuous speech in assessing aided responses. An
important observation here is that the speech envelope was unlikely to have been affected by
HA processing. Following the findings of Vanheusden et al. (2020), the absence of any
significant effect of HAs may be attributed to normal hearing thresholds below 1 kHz, where the
envelope is primarily shaped by low frequencies approximately between 2 Hz and 50 Hz (Rosen
etal., 1992). It is possible to see a greater impact of HAs on the speech envelope with more gain

and compression at lower frequencies. Since the stimulus envelope was the feature used for
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measuring response presence, evaluating the impact of aiding on the envelope could provide

deeper insights into how cortical responses are influenced by HA processing.

The morphology of cortical responses undergoes significant changes with age (Hall, 2015),
highlighting the importance of investigating neural responses to continuous stimuli across
different age groups. In a study by Van Hirtum et al. (2023), children with permanent hearing loss
were assessed using neural envelope tracking to evaluate hearing aid effectiveness. The study
included ten children aged 4 to 9 years, who listened to story segments presented at different
levels under two conditions: aided and unaided. Each child used their personal hearing aids
during the experiment. However, only six of the ten children completed the entire experiment, as
younger participants often had shorter attention spans (Van Hirtum et al., 2023). This
observation underscores the necessity of designing testing protocols with reasonable
durations, particularly when assessing young participants. The study revealed a significant
enhancementin neural tracking results with the use of hearing aids. Interestingly, this benefit
was more pronounced at lower stimulus levels, where speech intelligibility is more challenging
(Van Hirtum et al., 2023). It would be insightful to determine whether this finding is related to
how the hearing aids process and potentially distort the stimulus envelope at different intensity
levels. The isolated effect of the aided condition was not clearly measured in this study, as the
comparison between aided and unaided conditions was conducted at the same presentation
level, without accounting for the gain-induced increase in output intensity in the aided

condition.

Itis well established that the cortical auditory evoked potentials to repeated short stimuli are
influenced by stimulus intensity. With both non-speech (Picton et al., 1970, Billings et al., 2007),
and speech stimuli (Van Dun et al., 2012, Prakash et al., 2016), the peak amplitude increases,
and the latency decreases as the stimulus intensity is raised. However, this effect shows
saturation between moderate and high-intensity levels, particularly regarding amplitude
(Prakash et al., 2016). Regarding neural tracking of continuous stimuli, only a few studies have
explored the intensity effect (Ding and Simon, 2012a, Verschueren et al., 2021). Ding and Simon
(2012a) examined the neural tracking of a speech stream in the presence of a competing
speaker, varying the intensity level difference between the two streams by up to 8 dB. They
discovered that the encoding of the speech envelope is independent of the intensity of
individual speech streams, suggesting that the intensity difference investigated might have been
too low to exhibit an influence. Verschueren et al., (2021) investigated various levels of
stimulation, ranging from 20 dB to 80 dB A, where speech was presented in a quiet setting. The
study employed both decoding (backward modelling) and encoding (forward modelling)
methods in its analysis and included 20 adults with normal hearing. The EEG data were

collected and analysed using a multichannel approach. It was observed that increasing the
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intensity level did not affect the correlation value of the reconstruction. However, the effect of
increasing the stimulation level was apparent in the TRFs, as the amplitude of the first peak
significantly increased and the latency of the second peak decreased with higher intensity levels
(see Figure 6.1). However, this effect was not observed between 60 dB and 70 dB A, aligning with
the findings of Prakash et al. (2016) about the saturation effect at late responses. While
Verschueren et al. (2021) identified specific effects of intensity changes on cortical responses

to continuous stimuli, the sensitivity of a single-channel approach to these changes remains

unexplored.
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Figure 6.1 Result of the effect of intensity on peaks of averaged TRFs (Verschueren et al.,
2021). The figure illustrates the average centro-frontal TRF across participants for
each intensity level, adapted from Verschueren et al., (2021)

Another essential consideration in the analysis of neural tracking of aided responses is whether
to use the audio envelope at the input of a HA microphone, or the output from the HA that goes
to the ear, which may differ from the input signal; this factor was examined by Decruy et al.
(2020). Their study found no significant difference in reconstruction accuracy between amplified
and unamplified envelopes, noting that only linear amplification was applied, which would be
expected to have a limited impact on the shape of the envelope. Mirkovic et al. (2019) explored
the effects of HA processing on neural responses to ongoing speech, using outputs from a HA
simulator. They argued that relying on the HA's input could lead to misleading results due to
speech processing alterations. Nonetheless, employing unamplified envelopes would be a
clinically more feasible approach, as recording HA outputs requires additional equipment.

However, distortion in the acoustic envelope due to the HA processing could be a reason for
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reduced neural tracking of the speech envelope. Therefore, further analysis is required to
quantify this effect and determine if the envelope distortion is a significant confounding effect

when measuring patients’ neural tracking.

The type of speech or speech-like stimuli used for aided testing is a critical consideration, as
HAs might respond differently to various inputs. Previous literature on tracking cortical
responses to aided listening has employed intelligible speech stimuli. Nonetheless, in terms of
the clinical applicability of speech tests, the use of universal or language-independent stimuli
can be a superior option as it can be used across countries. The third study of this thesis
assessed the effects of HA processing on both stimulus types (detailed in Chapter 5), revealing
that speech-modulated noise received significantly less envelope distortion than actual speech
(see Figure 5.7). Conversely, the ISTS exhibited envelope distortion levels similar to those of
natural speech, suggesting that ISTS could more accurately represent how speech is processed
through HAs. Additionally, ISTS may be subjectively closer to intelligible speech, as it includes
both spectral and amplitude modulation, potentially making it more appealing than modulated
noise. Moreover, ISTS can help reduce confounding factors related to comprehension
differences among participants, such as language proficiency, cognitive abilities, and attention

levels (e.g., native vs. non-native speakers, pre/post-lingual children).

The study aims to examine the impact of envelope distortion, induced by HAs, on cortical
responses by comparing aided conditions with varying levels of distortion to the unaided
condition. The purpose is to determine if envelope distortion affects the detectability of cortical
responses. Additionally, the study explores the effect of increasing the stimulus intensity to
provide insight into whether the HA processing effect on the stimulus envelope is caused by
pure amplification or other signal processing. Finally, a non-language ISTS stimulus was used to
determine if this produced robust cortical responses. This marks the first instance of measuring
aided responses to ISTS using a single-channel recording. Although the future aim of this project
is to test infants, the current stage investigates the feasibility of the testin normal-hearing

adults. Results in adults will help in designing the future direction of the research.

6.1.1 Research questions

1. Does detectability of the cortical response to an ISTS stimulus change between aided

and unaided conditions? Is this change related to the amount of envelope distortion?

2. Do the cortical responses to continuous ISTS significantly increase with stimulus
intensity? This will provide insight into whether the hearing aid effect may be caused by

pure amplification or other signal processing.
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3. Is attention a significant factor in measuring cortical responses to aided responses in
terms of detection sensitivity? If attention has no significant effect, it will help

implement this test with infants.

4. When measuring responses to aided stimuli, is there a significant difference in detection
sensitivity when using the original versus the processed envelope for correlation
analysis? While using the original stimulus is more clinically feasible, better
detectability with the processed envelope suggests a future research direction to record

HA output for subjects in clinical settings.

6.2 Materials and Methods

The experimental approach of the current study, building on the findings detailed in Chapter 5,
centred around EEG analyses using KEMAR-recorded stimuli. Focusing on the influence of HA
settings, HA NR was deactivated. Deactivated NR was based on the finding of the previous
study, which showed that NR has a different effect on envelope distortion across stimuli (see
Figure 5.5). Furthermore, the research explored the role of compression in altering envelope
distortion, employing various compression ratios to investigate their effects on cortical
response measurements. This methodology provided an understanding of how different levels

of envelope distortion impact speech-evoked responses.

6.2.1 Participants

This study initially involved 27 participants; however, due to EEG recording issues, data from
two individuals were unusable. Additionally, one participant was excluded for hearing-related
reasons, leaving 24 participants (16 females and 8 males) aged 18-40 years, with an average age
of 29, for the final analysis. These individuals were recruited personally or via poster
advertisements and received £20 each for their participation. Participants with incomplete or
damaged EEG data were excluded to maintain data integrity. Ethics approval was granted by the
University of Southampton Ethics Committee (ERGO: 52472), with all participants providing
informed consent. Hearing sensitivity was confirmed as within normal limits through screening

pure tone audiometry for each participant.

6.2.2 EEG recording

EEG data were recorded using a setup similar to that described in Chapter 4 ( see Section 4.2.2
and Figure 4.1). For passive listening conditions, participants were asked to ignore the stimulus,

while during active listening conditions, their focus was on the stimulus itself (detailed in
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Section 6.2.3). In the passive listening scenarios, a series of silent documentaries with English
subtitles were shown on a TV screen positioned in front of the participants, facilitating the

passive engagement required for these conditions.

6.2.3 Stimulus and conditions

The primary stimulus in the current study was ISTS, which was presented in five different
conditions. The presentation time for each condition lasted 15 min, alignhing with the high
detection rate of approximately 86%, as noted in the second study in Chapter 4 ( see Figure 4.4).
This duration was also deemed compatible with testing in infants. The stimulus was monaurally
delivered to the right ear using a Focusrite sound card (Scarlett 18i8), and ER-3A inserted
earphones. The monaural presentation mode was selected following ALR clinical protocols
(Hall, 2015) and the second study design (Chapter 4). Two distinct ISTS stimuli, recorded via a
microphone in KEMAR's ear canal, were employed: aided (with HAs) and unaided (without HAs).

All stimuli levels were calibrated using a Bruel and Kjeer Ear Simulator Type 4157.

The study included various conditions to assess auditory processing: aided at 50 dB LAeq and
70 dB LAeq, unaided at 50 dB LAeq and 70 dB LAeq, in which participants were instructed to
avoid listening to the stimulus and focus on a silent documentary movie with subtitles
presented on a screen. In addition to the four conditions, a fifth condition (unaided, 70 dB LAeq)
involved active listening, where participants were asked to pay attention to the stimulus. In this
condition, participants were instructed to mentally count clicks embedded in the stimulation
sequence. These conditions were designed to investigate the effects of sound level, HA

processing, and attention on auditory responses.

A comprehensive explanation of each condition and how stimuli are listed below. It is important
to note that although a stimulus may be presented at a given level, such as 50 dB LAeq, the
effects of amplification—whether through a hearing aid or via the ear canal of KEMAR—can
result in a recorded level that may differ from the original (i.e., it may not be 50 dB LAeq).
Additionally, the recorded stimulus could be played at various levels through the inserts
presented to participants. Therefore, the recorded stimuli from KEMAR under different
conditions (aided or unaided, and with various input stimulus levels) were adjusted to achieve

the target stimulus levels presented to the subject through ER 3A insert phones.

1. Aided-50: ISTS was presented at 50 dB LAeq to KEMAR with HA, and the output was

recorded and then adjusted to be at 70 dB LAeq level as an output from the inset.

2. Aided-70: ISTS was presented at 70 dB LAeq to KEMAR with an HA, and the output was

recorded and then adjusted to match the 70 dB LAeq level. This was done to ensure the
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output level was consistent with that of Aided 50 when presented to the listeners. The 70
dB LAeq input level resulted in significantly higher envelope distortion compared to 50
dB LAeq (see Section 5.3.2). Therefore, aided-50 and aided-70 were used to compare
different levels of distortion without changing the sound level presented to the listeners.
Also, as participants in the current study have normal hearing thresholds, the

presentation level must be comfortable.

3. Unaided-50: ISTS was presented at 50 dB LAeq to KEMAR without an HA, and the
recorded stimulus was then adjusted and calibrated to match a 50 dB LAeq output from

the insets.

4. Unaided-70: ISTS was presented at 70 dB LAeq to KEMAR without an HA, and the
recorded stimulus was then adjusted and calibrated to match a 70 dB LAeq output from

the insets.

5. Unaided-70 (Attention): This condition involved repeating the unaided-70 scenario with

active listening, where participants performed a counting task.

6.2.3.1 Repeated /da/ stimulus

The study included an additional condition focused on measuring CAEP in response to the
repeated /da/ sound. This condition is crucial, as the design lacks a behavioral speech test,
serving instead as a cross-check for the presence of a cortical response. Notably, cortical
responses to repeated short stimuli have demonstrated a detectability rate of 95-100% in
normal-hearing adults when presented above threshold levels (Munro et al., 2011). The absence
of a behavioural speech test was based on the study's aim to use language-independent stimuli,
as the subjects had different mother tongues. Averaged CAEPs are expected to yield robust
cortical responses and a higher SNR. Participants who did not exhibit detectable CAEPs to /da/
were excluded. It is known from the second study (see Figure 4.4) that not all participants show
detectable responses to continuous speech. Hence, measuring responses to a repeated /da/
sound was to ensure that absent responses were due to the subject simply having poor cortical
responses, rather than a technical problem. Some individuals might have weak cortical
responses even to repeated transit stimuli, as cortical responses are highly variable between
subjects (Rothman, 1970). The responses to the /da/ sound were also used to explore

correlations between the CAEP waveform and TRF peaks.

For the /da/ condition, the monosyllable /da/ stimulus was repeated 200 times with a 40 ms
duration, presented monoaurally. The inter-stimulus interval was set at 1.11 s, and the stimulus

was calibrated to 70 dB LAFmax (using a Type 4157, Bruel and Kjaer).
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6.2.4 Data analysis

All analyses were performed offline using MATLAB 2022. The ISTS envelope was determined
using the absolute value of the Hilbert transform, then downsampled from 44.1 kHz to 128 Hz
with an appropriate anti-aliasing filter, followed by a 1 Hz - 30 Hz zero-phase filter. For EEG
analysis, data from 32 channels were recorded, but the analysis was applied on either the vertex
(Cz) or high forehead (Fz) channels. The EEG data was pre-processed: downsampled to 128 Hz,
referenced to the mastoid electrodes (T7 and T8), and filtered between 1 Hz and 30 Hz to match

the ISTS stimulus parameters.

Analysis methods included XCOR and TRF, using only the forward model. Both methods were
explained in detail earlier in this thesis (see Section 3.3.1). Key analytical parameters were
detection rate, detection time (see Section 3.3.2) and correlation values from both TRF and
XCOR methods. The subject’s response was considered present when a statistically significant
correlation was detected according to the bootstrap method. Regarding detection, the
bootstrap method was applied minute-by-minute to accumulating data, and a response was
considered present if it was detected in three successive minutes or after 15 minutes of
recording Detection time is defined as the recording time in minutes needed for each subject to

show a significant correlation.

The presence of CAEP due to the /da/ sound was objectively evaluated using Hotelling's T2
statistics, as detailed by Golding et al. (2009). This approach entails automated detection of
responses within EEG data, segmenting each data epoch into ten 50 ms bins across a 500 ms
period following the stimulus. A Time-Voltage Mean (TVM) is computed for each bin, resulting in
ten TVMs per epoch. The HT2 analysis then assesses whether any combination of these TVMs
significantly deviates from zero. A p-value of 0.05 or lower indicates that a response is present.
This method provides a rigorous statistical framework for identifying CAEPs in individual

participants within the study.

6.2.4.1 Additional analysis

In the main analysis of aided conditions, the original ISTS envelope was used for the reasons
mentioned in Section 6.1. An alternative analysis employed the processed envelope derived
from the HA output. The study compared detection rate, and detection time between the
original and processed envelopes. A significant difference in detection sensitivity when using
the HA-processed envelope might indicate the need to explore methods for recording and

utilising HA outputs if this technique is to be used in clinical settings.
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6.2.5 Pilot study

Before the main experimental phase, a preliminary pilot study was conducted with four
participants to evaluate the readiness of the equipment setup and to analyse the responses to
the ISTS stimulus, which had not been previously used in neural tracking of continuous stimuli.
EEG data from the Cz channel was collected, and the XCOR method was employed for analysis.
The findings indicated that detectable responses were present in all four subjects after 15 min
of recording under three different conditions: unaided-70 with both passive and active listening
and aided-50. Notably, the aided-70 and unaided-50 conditions elicited significant responses in
only three participants. The pilot data suggested that the ISTS stimulus provoked detectable
responses in most tested conditions, and a duration of 15 min was sufficient to observe
significant responses across all four subjects. An important observation was that the initial 20
min recording duration per condition proved to be excessively long, as it led to drowsiness in
some participants by the end of the session. Importantly, existing literature indicates that
cortical responses are influenced by the state of arousal (Hall, 2015). Therefore, for the main
study, the duration of each condition was adjusted to 15 min to avoid fatigue and maintain

participant alertness.

6.3 Results

The initial phase of the analysis was dedicated to examining the effects of three primary factors
on cortical response detection to continuous speech-like stimuli: (1) HA processing (specifically
envelope distortion); (2) sound intensity level; and (3) attention. This examination focused on
two dependent variables: detection rate, and detection time. In the final analysis, 24 subjects
were included for whom CAEP responses to /da/ measured from the Cz channel showed

significant responses.

6.3.1 Detection rate

Figure 6.2 shows the detection rates for the five test conditions, utilising data from both Cz
(blue) and Fz (orange) channels. Notably, the Cz channel exhibits a consistently higher
detection rate across all five conditions and testing parameters, with a mean of 82.5%,
compared to the Fz channel, which has a mean of 74.2 %. Given these findings, further analysis
was concentrated on EEG data from the Cz channel for a more detailed comparison between
conditions. As no significant difference in detection was found between the two methods of
analysis, and the detection rate averaged across conditions was 83.3% for both methods, the

XCOR analysis approach will be used in further analyses due to its simplicity and directness
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compared to the TRF. Therefore, the XCOR results will be included in the detection rate,

detection time, and correlation value analyses.
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Figure 6.2 The detection rates of cortical responses measured from the Cz and Fz channels
using XCOR and TRF analyses. (A) Czchannel and (B) Fz channel. The first two
conditions from the left were aided with two input levels to the HA at 50 dB LAeq and
70 dB LAeq, but the output levels have been scaled to all be 70 dB LAeq. The third and
fourth columns are unaided conditions with presentation levels of 50 dB LAeq and 70
dB LAeq. The rightmost column depicts the attended condition, where subjects were
instructed to count clicks in the stimulus for unaided 70 dB LAeq stimulation.

Figure 6.2 (A) shows that the higher detectability for the aided condition occurs at low envelope
distortion aided-50, at 83.3% (20 out of 24). Detectability decreases with aided-70, which has a

higher envelope distortion (see Section 5.3.3), falling to 58.3% or (14 out of 24) for XCOR.

McNemar tests were conducted to assess the significance of changes in detection rate across
conditions. To assess the impact of HA envelope processing on detectability, unaided-70 was
compared to aided-50 and aided-70 conditions with intensity levels adjusted to 70 dB LAeq for
all three. A Bonferroni correction was applied to account for multiple comparisons, adjusting
the alpha level to 0.025 (0.05/2). A significant difference was noted when comparing the
detection rates of unaided-70 (91.7%; 22 out of 24) to aided-70 (58.3%; 14 out of 24), with p <
0.01, indicating a higher detection rate in the unaided-70 condition. This suggests that distortion
of the speech envelope by HAs at 70 dB LAeq input level (when the aid compresses the most)

reduces response detection.

Furthermore, the investigation extended to the impact of intensity level on detection by

comparing rates in unaided-70 and unaided-50 conditions. This comparison, conducted via the
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McNemar test, revealed no significant difference, indicating that the intensity level alone did not

affect detectability (p > 0.05).

In addition, the analysis of detection rates in attended versus unattended conditions within the
unaided-70 settings did not show any significant differences, as determined by the McNemar
test. This suggests that attentional factors, in the context of this study's settings and conditions,

did not significantly influence detection rates.

6.3.2 Detection time

Figure 6.3 displays the detection rate per minute of recording time for all tested conditions, as
measured from the Cz channel across all subjects. The expected false-positive rates from the
binomial distribution under a no-stimuli condition are between 0 and 4 (at a significance level of
5%). Across all testing conditions, false-positive rates for both stimuli remained within the

expected range.
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Figure 6.3 The number of significant cortical responses by minute for each test condition
measured from Cz. Detection thresholds at p = 0.05 were found from bootstrapping
of non-synchronous data. The x-axis represents the recording time ranging from 1
min to 15 min. The y-axis presents the number of subjects with significant
responses. A reversed condition (indicated as Rev) was measured for each tested
condition where the stimulus was inverted to assess the false positive rate.

Figure 6.4 presents the detection times across the five experimental conditions. The Shapiro-
Wilk test indicated a significant deviation from normal distribution for all conditions with p-

values less than 0.05, necessitating the use of non-parametric tests for further analysis.
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Figure 6.4 Mean and individual detection times. The solid red lines indicate mean XCOR
detection time, with error bars indicating the mean +/- 1 SE. Individual subject
measurements are shown as red crosses. The y-axis represents the detection time
in minutes, and ND indicates no detection (within the duration of the recording). The
initial two columns from the left represent the aided condition, each with varying
degrees of envelope distortion: the aided-50 condition exhibits low envelope
distortion, while the aided-70 condition shows high envelope distortion. The third
and fourth columns illustrate unaided conditions with different presentation levels
(50 dB LAaq and 70 dB LAeq, respectively). The column on the far right
demonstrates the attended condition, in which subjects were asked to count clicks
in the stimulus during the unaided 70 dB LAeq stimulation.

It should be noted that for cases with no detection, a detection time of 20 min was assigned.
The analysis of the XCOR method revealed statistically significant differences between
experimental conditions (p < 0.001) according to the Friedman test. Post-hoc Wilcoxon Signed
Ranks tests were conducted to explore the effects of envelope distortion, intensity levels, and
attention on detection time. A Bonferroni correction was applied to account for multiple
comparisons, resulting in a corrected significance threshold of p <0.01. Results showed a
significant difference between aided-70 (high envelope distortion) and unaided-70. The aided-
70 condition (13.04 = 6.5 SD minutes) had a significantly longer detection time compared to the
unaided-70 condition (6.7 £ 5.3 SD minutes) (p = 0.001). No significant effect of intensity level or

attention was detected.

Figure 6.5 details individual XCOR detection times, highlighting two notable observations. There

is considerable variation in detection time data. However, some subjects appear to have
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consistently low detection times (e.g., S14) and some consistently high (e.g., S24). Secondly,
the consistent detection time tends to be consistent across conditions for each subject. For
example, S14 and S27 exhibit fast detection (1 min - 3 min) across all conditions, while S13 and
S24 are slow (5 min - 20 min). However, there is also some wide variability within individuals
(e.g., S06 and S21). This observed variability led to further analysis to determine if the detection

time was significantly different between subjects.

XCOR Detection Time

Detection time (min)

S01 S02 SO5 S06 SO7 SO8 S09 S10 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27

ORNWRUIOINWO

Maided-50 Maided-70 MWunaided-50 unaided-70 W unaided-70 (Attention)

Figure 6.5 Individual XCOR detection Time. This figure represents the XCOR individual
detection time for each subject in the tested conditions. Each condition is
represented in colour: aided-50 (green), aided-70 (red), unaided-50 (grey), unaided-
70 (yellow), and unaided (attention) (blue). A value of 20 was assigned to conditions
where no detection occurred.

Figure 6.6 displays error bars for the mean and SE of the five conditions for each subject. To test
if there were significant differences between subjects, the detection time data was transposed
so that the original number of subjects (N = 24) became the number of conditions, and the
original number of conditions (n = 5) became the humber of subjects. The results of the
Friedman test showed a significant between-subject effect (p = 0.001). Post-hoc pairwise
comparisons using the Wilcoxon Signed Ranks Test were conducted to assess differences
across the 24 subjects. To adjust for multiple comparisons, a Bonferroni correction was
applied, setting the significance threshold at 0.00018 (original alpha = 0.05). Under this stringent

criterion, no significant differences in pairwise comparisons between subjects were detected.
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Figure 6.6 Detection time error bars of each subject. The figure illustrates the mean and
standard error (SE) of the detection time across the five conditions for each subject,
as shown in Figure 6.6.

6.3.3 Effect of stimulus intensity on TRF

Previous results in this chapter of detection rate (see Section 6.3.1, and detection time (see
Section 6.3.2), revealed no significant differences with increasing intensity. An additional
analysis was conducted to compare the peak amplitudes from the TRF functions between the
unaided-50 and unaided-70 conditions. Figure 6.7 shows the group average of the TRFs across
participants for these two conditions unaided-50 and unaided-70, along with individual TRF
variability. It is clear from the figure that a positive peak occurs at latency between 70 ms and
125 ms, and a negative peak occurs between 125 ms and 200 ms. The peak amplitude of the

two peaks was compared between the two conditions.

The Shapiro-Wilk tests indicated that individual TRF peak amplitude values did not significantly
deviate from normality (p > 0.05). However, this does not confirm that the data is normally
distributed, only that there is insufficient evidence to reject the assumption of normality. The
results of the paired sample t-test showed no significant difference between either the positive
or the negative peaks of the TRF across the two conditions. These findings suggest that, with the

current sample, intensity did not significantly affect the peak amplitude of the TRF.
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Figure 6.7 The grand average of TRFs at different intensity levels. Red solid lines show
averaged TRFs measured from the Cz channel, and individual TRFs are shown as
grey lines. The left panel displays the unaided-50 condition, while the right panel
shows the unaided-70 condition.

6.3.4 The impact of using the speech envelope at the output of the hearing aid versus

the original speech envelope on response detection

The final question addressed in this study pertains to the impact of employing the processed
envelope — derived from the HA output — in the aided conditions, as opposed to the original
stimulus. This section presents the detectability and detection time based on the analyses
conducted earlier. Both aided conditions, aided-50 and aided-70, were examined in this

context.

Figure 6.8 shows the detection rates after 15 min of recording for the aided conditions,
comparing the use of the processed envelope (green bars) versus the original envelope (red
hashed bars). A review of the data shows a trend towards higher detection rates with the
processed envelope. Therefore, McNemar tests were conducted to evaluate the significance of
this difference between the processed and original envelopes across the two aided conditions.
To adjust for multiple comparisons, a Bonferroni correction was applied, setting the alpha level
t0 0.025 (0.05/2). The tests revealed no significant differences with aided 50 ( p = 0.063) and with
aided 70 (p = 0.031), indicating that the use of the processed envelope does not significantly
affect detectability. However, without the Bonferroni correction, a significant increase in the
detection rate was seen in the XCOR aided-70 conditions with the processed envelope (83.3%)

compared to the original envelope (58.3%), p < 0.05.
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Figure 6.8 Detection rates using either the unprocessed ISTS envelope or the processed
ISTS envelope in the aided conditions. The detection rate represents the
percentage of subjects with significant cortical responses (from 24 subjects). The
columns on the left show the aided-50 condition with a low envelope distortion
level. The columns on the right show the aided-70 conditions with a high envelope
distortion level. The solid fill column represents the analysis result when using the
stimulus recorded from the HA output, while the shaded column represents the
original stimulus results.

Figure 6.9 shows the mean detection time of the aided conditions when using the original and
processed envelopes. It is clear from the figure that the mean detection time is longer when
using the original envelope compared to the processed envelope in the aided-70, which is the
condition with higher distortion. A repeated measures analysis using the Friedman tests was
conducted to assess the significance of this effect. The test shows that the processed stimulus
did not significantly affect the detection time p > 0.05. Since a strong effect was expected in the
aided-70 condition, as indicated by the detectability results in the previous paragraph (see
Figure 6.8), a Wilcoxon test of comparison was made. The results of the Wilcoxon test
comparing the detection time of the original and processed envelopes in the aided-70 condition

showed no significant difference (p = 0.075).
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Figure 6.9 The mean detection time of the aided conditions, comparing the results of using
the original envelope to the processed envelope. The error bars indicate the SE of
the mean. The y-axis represents the detection time in minutes. The green error bars
show the results of using the processed envelope, while the maroon error bars show
the results of using the original envelope. The left bars show the results of the aided-
50 condition and the right bars show the aided-70 condition.

6.4 Discussion

This study explored cortical responses to continuous ISTS stimuli under aided and unaided
conditions. Specifically, the effects of envelope distortion, intensity, and attention on detection
rates and detection times were explored. Notably, the speech processing carried out by HAs
significantly influenced cortical responses. Aided conditions exhibited lower detection rates
and required longer times for detecting responses compared to unaided conditions at the same
presentation level. This impact was particularly pronounced in high envelope distortion
situations (aided-70). Additionally, our findings indicate that neither increasing the stimulus
intensity by 20 dB nor altering the focus of attention affected cortical responses. Interestingly,
under high envelope distortion conditions, utilising the processed envelope for measuring
cortical responses significantly improved detectability. This suggests that future research
should focus on finding a clinically feasible approach to using HA output in clinical settings to

analyse cortical responses to continuous speech.
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6.4.1 Aided detectability and effect of envelope distortion

Evaluating the clinical feasibility of any tool involves assessing its sensitivity or detection rate. In
this study, detectability was 83.3% in the aided condition with low envelope distortion, whilst it
dropped to 58.3 % in conditions with high envelope distortion. Previous research on aided
responses to continuous stimuli has typically focused on the group results, often overlooking
individual detectability (Petersen et al., 2017, Vanheusden et al., 2020, Decruy et al., 2020,
Gillis et al., 2022a). To bridge this gap, figures from existing literature that detailed individual
results were reviewed. This approach allowed for a comparison between the current study's
findings and previous research. For instance, Vanheusden et al. (2020) found that one out of 17

subjects showed no significant responses in the aided condition.

Furthermore, Van Hirtum et al. (2023) explored the use of neural tracking of speech envelope in
assessing the HA benefit in children using backward modelling. The correlation values were
compared between aided and unaided conditions under five presentation levels ranging from 30
dB Ato 70 dB A. They reported a detectability of 100% in the aided condition across various
stimulation levels for eight children included in their final experiment. The detectability of aided
responses in the current study is lower than previous literature (Vanheusden et al., 2020, Van
Hirtum et al., 2023). One possible explanation is the analysis approach, while both studies use a
linear decoder which reconstructs speech envelopes from EEG compared to the cross-
correlation approach implemented here. Additionally, the single-channel approach

implemented here contrasts with the multichannel analysis used in prior studies.

The choice of the single-channel approach was mainly based on the project's overarching aim:
to assess the clinical feasibility of aided cortical responses to continuous speech stimuli. For
the implementation of a clinical tool, the sensitivity in detecting significant responses in normal-
hearing individuals should be close to 100%, a benchmark not achieved in this study. High test
sensitivity is crucial to reduce the risk of false outcomes in clinical use (Bright et al., 2011).
However, the sensitivity results from the current study suggest that the single-channel analysis
employed may not be sufficient for clinically assessing aided cortical responses to continuous
speech stimuli. In addition, the stimulus used in the current study was ISTS, which might have
contributed to the lower performance in detectability. Figure 6.10 shows a compression
between natural speech and ISTS in silent pause duration within the amplitude envelope, with
natural speech having longer pauses. Deoisres et al. (2023) found that speech with additional

long pauses produces a significantly higher correlation than natural speech.
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Figure 6.10 Comparison of ISTS and speech envelopes in gaps duration within the
amplitude envelope. This figure shows the difference in pause duration between
the ISTS and natural speech stimuli. The speech stimulus exhibits longer silent
pauses compared to the ISTS, highlighting a key distinction in their temporal
structures.

The aided condition with high envelope distortion demonstrated a significantly lower detection
rate, and longer detection time compared to the unaided condition, diverging from previous
studies that compared aided and unaided neural tracking of the speech envelope. For instance,
Vanheusden et al. (2020) reported no difference, while Van Hirtum et al. (2023) observed an
enhancementin the aided condition. Several factors might explain this discrepancy. Firstly, our
study employed single-channel and forward modelling techniques, as mentioned earlier.
Another difference lies in the participant groups; our study involved individuals with normal
hearing who might find processed sounds unfamiliar, unlike participants with hearing loss in

previous studies, who were accustomed to HAs.

Moreover, the envelope distortion of the stimuli in our study was measured before the
experiment began (Chapter 5), which allowed us to investigate how different envelope distortion
values affect the measured cortical responses. In contrast, the specific amount of envelope
distortion was not detailed in the previous studies. It is possible that the distortion in our study,
especially in the high-distortion condition (aided-70), was greater than that in previous studies.
In Vanheusden et al. (2020), the hearing threshold at low frequencies was within normal limits,
suggesting minimal distortion of the speech envelope. Additionally, both studies used personal

HAs, which could have resulted in higher detection as the signal was familiar to the participants.

Finally, the method of stimulus presentation could also contribute to the observed differences.

Previous studies used free field stimulation which is required with HA users, allowing for
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binaural hearing, which might enhance loudness perception due to 'binaural loudness
summation'—a phenomenon where a sound presented to both ears is perceived as louder than
if presented to just one ear (Moore and Glasberg, 2007). In contrast, our study presented the

stimulus monaurally via inserts, potentially impacting perceived loudness and detectability.

6.4.2 Effect of stimulus intensity

Examining how increases in intensity affect aided cortical responses to continuous speech
stimuli could offer deeper insights into evaluating the benefits of HAs. It has been shown that
neural tracking of the continuous speech envelope using backward modelling exhibits higher
reconstruction quality or correlation as intelligibility increases (Ding and Simon, 2013,
Vanthornhout et al., 2018). Therefore, measuring a higher correlation with increasing intensity
might indicate improved speech detection. The current study investigated the effects of a 20 dB
increase in intensity, finding no significant changes in response detection rate, and detection

time.

Our results align with those of Verschueren et al. (2021), who reported no significant difference
in correlation values of backward modelling between 30 dB A, 60 dB A, and 70 dB A stimulation
levels. In contrast, Van Hirtum et al. (2023) reported a significant increase in reconstruction
accuracy with increasing the level of stimulation as they tested at 40 dB, 50 dB, 60 dB and 80
dB. The difference was more noticeable between low level (40 dB) and high level (80 dB). In the
context of the current study, the quietest level was moderately loud for normal hearing
participants (50 dB LAeq), which might result in cortical response structuration. One limitation
of the current study was the limited range of intensity tested. This was due to the time taken for
the experiment to investigate other factors, such as HA processing effects and attention effects.
Future work could investigate various levels, ranging from 0 dB SL, as in this study the low level

(unaided-50) was approximately 25 dB SL for normal hearing individuals.

Regarding the amplitude peak of the TRF function, no significant difference was observed in the
two main peaks investigated (70 ms - 120 ms and 125 ms - 200 ms) when increasing stimulus
level by 20 dB. These findings are inconsistent with prior studies (Verschueren et al., 2021, Van
Hirtum et al., 2023). Verschueren et al. (2021) identified significant peaks at latencies of 20 ms -
70 ms and 100 ms - 200 ms, observing a significant increase in the first peak when the stimulus
increased from 30 dB Ato 60 dB A. Itis possible that the effect of intensity is only seen between
low SL (near threshold) and moderate levels and not between moderately high levels as in the
current study. Van Hirtum et al. (2023) reported similar findings, with significant increases in the
first peak (50 ms - 100 ms) with increasing intensity. A potential explanation for the intensity

effects observed in previous studies is using averaged TRFs across frontocentral channels.
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Averaging several TRFs can accentuate the peakin the function. However, employing
multichannel analysis may compromise clinical feasibility. Our findings show that with single-
channel analysis, the change from moderate to loud stimulation showed no significant effect on

measuring evoked responses to continuous speech.

6.4.3 Effect of attention

The results of this study indicate that attention did not significantly influence cortical responses
to ISTS. Detectability (see Figure 6.2) and detection time (see Figure 6.4) remained non-
significantly changed when the listening condition shifted from passive to active. Generally,
auditory cortical responses are modulated by attention (Picton and Hillyard, 1974, Fritz et al.,
2007, Nadatanen et al., 2011). However, studies focusing on neural tracking of the speech
envelope in conditions of quiet and normal hearing found no significant difference between
active and passive listening (Kong et al., 2014, Vanthornhout et al., 2019), which is consistent

with our results.

The nature of the stimulus used, and the attention task here might contribute to these results.
The unintelligible nature of the ISTS may affect the ability to sustain attention. It is important to
consider the required task and the focus of attention when examining its effects on neural
responses (Fritz et al., 2007). In studies involving continuous intelligible speech, tasks typically
require participants to focus on a speech stream against background noise or competing
speaker, followed by questions or subjective estimations of understanding (Ding and Simon,
2012a, Kong et al., 2014, Vanthornhout et al., 2019, Gillis et al., 2022a). Research has shown
that neural tracking of the attended stream is enhanced compared to the ignored stream (Ding
and Simon, 2012a, Kong et al., 2014, Wang et al., 2020, Mirkovic et al., 2019). In this study, the
task involved counting clicks embedded within the stimuli, suggesting that the clicks
represented the attended stream, while the ISTS formed the ighored stream. This setup provides
a plausible explanation for the lack of an attention effect observed in tracking the ISTS envelope.
Notably, the absence of a dependency on attention may be advantageous in applications
involving children, where reliably controlling attention can be challenging (Roebuck and Barry,

2018).

6.4.4 Comparing the original and the processed envelope in aided conditions

One of the objectives of this project is to investigate the clinical feasibility of detecting cortical
responses to aided continuous speech. Comparing the original and processed envelopes of the
HA was crucial for this purpose, as it might affect the measured response parameters. The

results demonstrated no significant difference with including both aided conditions. However,
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including the results where a significant effect is expected (aided-70), detectability significantly
rose from 14 to 20 out of 24 using the XCOR analysis method (see Figure 6.8). It is also
interesting to note that, for both envelopes, the phonetic content is the same, but the acoustics
are different. This indicates that the response primarily reflects the acoustic stimulus rather

than being specific to the language content.

Decruy et al. (2020), reported no significant difference in reconstruction accuracy between the
original and amplified stimulus, similar to the current result with aided-50. However, given the
improvement in detectability evident in conditions with high envelope distortion, using the
processed envelope for clinical application should be considered. This might be an approach to
improving the detectability of cortical responses to aided continuous speech in future research.
It is also crucial to highlight that a reduction in correlation can be expected with HA processing,
especially with higher compression, regardless of the impact on speech perception. Another
approach to consider for clinical use is to avoid testing with the HA in a condition that will

introduce significant distortion.

6.4.5 Cortical responses to continuous ISTS stimulus

To the best of our knowledge, this is the first study to employ the ISTS stimulus for neural
tracking of the speech envelope, demonstrating significant potential for clinical feasibility due
to its language independence and similarity to speech regarding HA processing (Chapter 5). The
detectability of unaided conditions was explored to examine the detectability of ISTS without the
effect of HA processing. The unaided-70 condition, with passive listening detectability results
from the current study, can be considered promising for future clinical applications. The
detection rate was over 91% after 15 minutes of recording, with a mean detection time of 6.7
min. The fact that the ISTS, despite being unintelligible, showed high detectability highlights that
the assessment in the current study targets speech detection, which is the initial stage of
speech perception. Speech perception also involves three additional stages: discrimination,
identification, and comprehension (Erber, 1976). The ISTS could be a superior option for clinical
testing, offering a universally applicable stimulus across various language backgrounds.
Additionally, its lack of comprehensibility might eliminate confounding cognitive factors from
the analysis, such as those affecting cognitively impaired individuals, children, or variations in

attention.

6.5 Conclusion

This chapter explored the feasibility of using single-channel analysis to measure cortical

responses to aided continuous ISTS stimuli. The detectability of aided responses was found to
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be less than 100% (aided-50 = 83.3% and aided-70 = 58.3 % ), suggesting overall limited clinical
feasibility for single-channel measurements. Envelope distortion introduced by HA processing
had a significant impact on the measured responses. Conditions with higher distortion levels
were associated with lower detection rates (58.3%) compared to the unaided condition (91.7%),
and longer mean detection times (13.04 min) compared to (6.7 min). Nevertheless, response
detection with ISTS in the unaided condition showed detectability of > 91, which could be
reasonable for clinical use. This indicates that ISTS could be promising for clinical utility due to

its applicability across various language speakers.

Additionally, the study observed no effect of attention in cortical responses to continuous ISTS,
an advantageous property when testing infants, where controlling attention is challenging.
Using processed envelopes instead of original ones significantly improved the detection rate,
especially under high envelope distortion conditions. One direction for future research is to find
a clinically feasible method to use HA output to detect cortical responses to continuous stimuli.
While this research demonstrated some aspects of the clinical feasibility of using cortical
responses to aided continuous ISTS, improvements in detectability are necessary. Possibly,

more powerful multichannel analysis may be needed for detection at this stage.
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Chapter 7 General Discussion and Conclusion

The primary objective of this thesis was to investigate the clinical feasibility of using cortical
responses to continuous speech stimuli as a means for objective speech detection via HAs. The
overarching aim was to develop a clinical test for evaluating aided speech detection in infants.
To achieve the thesis objective, a series of interconnected studies were carefully designed,
exploring important factors for infant testing in clinical settings. This final chapter aims to
provide a cohesive understanding of the topic by discussing and linking the key findings from

each study.

The exploration began by assessing the feasibility of using a single channel for neural tracking of
continuous speech (Chapter 3). This approach is crucial due to its clinical availability and
reduced preparation time. Next, the thesis investigated detection rates of neural responses
during passive listening and with unintelligible speech stimuli (Chapter 4), as controlling
attention in infants is challenging, and non-language-specific stimuli provide a universal testing

approach.

The focus then shifted to examining the use of HA-processed stimuli through two distinct
studies. The first study explored the effects of different HA settings on multiple speech stimuli
by measuring envelope distortion (Chapter 5), which results in varied HA outputs with differing
levels of distortion. The second study involved EEG measurements in response to the pre-
recorded unaided and aided stimuli with varying levels of distortion (Chapter 6), aimed at
determining whether higher levels of envelope distortion impacted the detectability of cortical
responses. Each study was designed to build upon the insights gained from its predecessors,
progressively deepening the understanding of the subject. Below are the principal questions

that guided these studies are outlined:

1. Using existing methods for measuring cortical responses to continuous speech (XCOR
and TRF), what are the detection rates and detection times required when measuring

responses using a single channel, either Cz or Fz? (Chapter 3)

2. What are the detection rates and detection times of cortical responses to continuous
speech using data from a single channel during passive listening scenarios (without

active attention)? (Chapter 4)

3. lIsthere a significant effect of speech stimulus intelligibility on detecting cortical

responses to continuous speech? (Chapter 4)
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4. Isthere a significant difference in HA-induced envelope distortion between speech and
speech-like stimuli (natural speech, speech-modulated noise, and ISTS)? Additionally,
how does changing the HA compression ratio or input level affect envelope distortion?

(Chapter 5)

5. Isthere a significant difference in the detection rates and detection times of cortical

responses to aided versus unaided continuous ISTS stimuli? (Chapter 6)

The first section of this chapter will discuss the two analysis approaches used in the current
project. The following section will discuss the different aspects of clinical feasibility explored in
this project. These aspects include detectability, detection time, stimulus type, and effects of
attention. Each aspect will be linked to the studies conducted in this project, comparing the
results and highlighting how the findings from each study influenced the design of subsequent
studies. Additionally, these aspects will be linked to the project's research questions. The

chapter will conclude with a discussion of limitations and suggestions for future work.

71 Approaches to Analysis

The first study in the project compared the detection sensitivity and mean detection time
between two main analysis approaches, XCOR and TRF. The forward TRF method included not
only the significance of the correlation values but also the peak and power of the TRF (see
Section 3.2.1). To the author's knowledge, the detectability of cortical responses to continuous
speech using the peak and the power of the TRF impulse response as parameters has not been
investigated. The results of the first study clearly showed that the significance of the correlation,
whether using XCOR or TRF, would be better suited for clinical use, as both demonstrated a
100% detection rate compared to 82% with TRF Power and 76% with TRF Peak. Additionally,
significantly lower mean detection rates were observed with both XCOR and TRF-COR
compared to TRF Peak and Power. No significant difference was found between XCOR and TRF-

COR in both detection rate and time.

Both XCOR and TRF-COR were also used in the second study (Chapter 4). The results showed
no significant differences in detection rate or mean detection time for either stimulus (speech
and speech-modulated noise). In the fourth study (Chapter 6), both analysis approaches were
implemented. However, as they didn’t show a significant difference in the results, only XCOR
was used to compare the different conditions in that study. Based on the findings from the three

studies, and to ensure consistent comparison, the outcomes of XCOR will be considered when
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comparing the findings between the studies in this thesis (Section 7.2), as no significant

differences were observed between the analysis methods.

7.2 Clinical Feasibility Factors

7.21 Single channel detectability

The first research question related to the feasibility of using a single measurement channel will
be discussed. To the best of our knowledge, the detectability of auditory evoked responses to
continuous speech stimuli has only been implemented using multichannel EEG recording
systems, with a minimum of 32 channels in adults (Vanheusden et al., 2020) and 10 channels in
infants (Ortiz Barajas et al., 2021). Current audiology clinical settings for AEP tests typically use
single-channel recordings (a 3-electrode montage) with the positive electrode on the high
forehead, the negative electrode on the low mastoid, and the common electrode on the other
mastoid (British Society of Audiology, 2022). The difficulty of routinely setting up a multichannel
EEG recording system may challenge the clinical feasibility of measuring cortical responses to
continuous speech. Therefore, it was important to explore whether the existing approach to
recording and analysing responses to continuous speech could be adapted using single-
channelrecordings. If successful, continuous speech-evoked potentials could become an
additional modality within the AEP system, making them more accessible for use in most
audiology clinics. Additionally, using fewer electrodes will simplify clinical measurements,
particularly for children. It is important to note that, in the field of measuring cortical responses
to continuous speech, the sensitivity of detection at the individual level using single-channel
measurements has not been previously explored. As a result, the detectability findings in this

thesis cannot be directly compared to those of other studies.

The use of single-channel analysis was explored in the first study (Chapter 3), where pre-existing
EEG data from 17 English speakers actively listening to English speech were analysed. The
results of this study were promising, as it was possible to achieve 100% detection using both the

cross-correlation method after 17 minutes (see Figure 3.3).

The project then investigated whether similar response measurements could be obtained during
passive listening, where participants watched a silent movie (Chapter 4). Passive listening while
watching something engaging provides a way to maintain young children’s attention during
cortical response recordings (Ortiz Barajas et al., 2021). In this study (Chapter 4), two different

stimuli — natural English speech and speech-modulated noise — were presented to a sample
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of 22 English speakers during passive listening. In addition, the study explored the effect of
stimulus intelligibility on cortical response detection rates and detection times. A reductionin
detection rates was observed with both stimuli compared to the first study, which used the
same natural English speech stimulus but with a longer recording. A higher detection rate of
81.8% (18 out of 22) was found when using speech-modulated noise, while the detection of
individuals to a natural speech stimulus resulted in a lower rate of 63.6 % (14 out of 22) (see
Figure 4.4). Section 7.2.3. provides a discussion of the various types of stimuli used in this

thesis.

When comparing the detection rate between the first and second studies, a significant
reduction was only detected with the natural speech stimuli results (100% compared to 63.6 %
with p< 0.01). An explanation for this reduction in detection in the second study is the change to
passive attention from the first study, discussed in Section 7.2.4. Another potential cause of the
reduced detectability in the second study, which uses natural English speech and speech-
modulated noise, could be related to the fact that subjects were focused on a silent movie and
reading subtitles. A previous study investigated the use of electrical brain activity signals to
enhance machine learning models for semantic language understanding tasks, specifically
sentiment analysis and relation detection, during reading comprehension (Hollenstein et al.,
2021). The study's findings indicate that EEG signals contain linguistic information related to
features of the text measured during a reading task (Hollenstein et al., 2021). Thus, the visual
EEG responses from reading our second study might have interfered with auditory response to

speech and hence caused noisier recordings compared to the first study.

Finally, the longer recording time in the first study could have contributed to improved detection
rates. In the first study, the total recording time was 25 min, but detection reached 100% after
17 min. In studies two and four, the recording time was reduced to 15 min; the experiments
were designed based on a more appropriate EEG recording time for clinical settings, particularly
for infant testing. Reflecting on the first study, the detection rate after 15 min was slightly
reduced from 100% to 94.1% with XCOR. As a result, the shorter recording time provides some
explanation for the reduction in detectability in the second study, yet it may combine with other
factors, such as attention and the effect of visual processing, leading to the significantly lower

detection rates observed in that study.

In the fourth study (Chapter 6), the detectability of the non-language-specific ISTS stimulus was
investigated. The detection rate in the attention condition (unaided-70 with attention) after 15
min of recording was 91.6% (22 out of 24), which was not significantly different from the speech

results in the first study after 15 min, showing 88.2% (15 out of 17) with XCOR. Since ISTS
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showed comparable results to natural speech in terms of detectability, it could be a better
option for clinical testing, offering a universally applicable stimulus across various language
backgrounds. Itis important to highlight that to the best of our knowledge, the ISTS has not

previously been used in speech-evoked potentials.

In summary, the results for ISTS detectability in the unaided condition are promising in terms of
the applicability of using language-independent tests for future clinical application of cortical
responses to continuous speech. However, having fewer than 100% significant responses in
normal-hearing individuals is a potential concern in terms of the test's sensitivity to detect the
presence of responses in future clinical practice. Therefore, an ideal test would achieve a

sensitivity close to 100% in cases where the subject is optimally aided.

7.21.1 Aided response detectability:

Before studying the cortical responses to aided continuous speech stimuli in the fourth study
(Chapter 6), the effect of HA processing on the stimulus envelope was investigated in the third
study (Chapter 5). One objective was to compare the amount of envelope distortion with
different stimuli types (natural speech, speech-modulated noise, and ISTS), compression
ratios, and input levels. Another main objective was to generate the aided stimuli for the fourth
study by recording the output of the HA to different stimuli. The results showed that natural
speech and ISTS had similar envelope distortion across different conditions, while speech-
modulated noise had significantly lower envelope distortion. A higher compression ratio
resulted in significantly higher distortion than low and linear compression ratios, consistent with
Souza et al. (2012). Additionally, the study found significantly lower distortion with a 50 dB LAeq
input compared to a 70 dB LAeq input. Based on these findings, ISTS stimuli were selected for
the subsequent study as they behaved similarly to speech without the distortion seen for
modulated noise and, like modulated noise stimuli, were non-language specific. Two aided
conditions were selected to investigate how different amounts of envelope distortion affect
responses: aided-50 and aided-70, as they had significantly different EDIs, with the EDI being
higher in the aided-70 condition. The discussion of these findings was mentioned in Chapter 5

(see Section 5.4).

The fourth study (Chapter 6) investigated the effect of HA processing on stimulus envelope
detectability. It should be highlighted that, to the best of our knowledge, this is the first study to
investigate how changes in the envelope distortion of aided stimuli affect the resulting neural
tracking of the stimulus envelope. In addition, it is the first to measure the detection sensitivity

of aided continuous speech cortical responses at an individual level using a single EEG channel.
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The cortical responses to ISTS were affected by envelope distortion: McNamar tests showed a
significant reduction in aided responses with higher envelope distortion aided-70 (14 out of 24;
58.3%) compared to unaided-70 responses (22 out of 24; 91.7%) (see Figure 6.2 A). The
detectability of the aided-50 condition with a lower envelope distortion (20 out of 24; 83.8 %)
was not significantly different from the unaided-70 condition (22 out of 24; 91.7%). However,
when considering aided testing in the clinic, the compression value, which is related to
envelope distortion, may vary widely across subjects. A potential method to improve the
detectability of aided responses is to use the stimulus measured from the HA output instead of
the original stimulus, although this would need the ability to record the output of the HA in the
child’s ear, for example using real-ear measurement, which may need additional equipment.
This approach showed a significant increase in sensitivity in the aided-70 conditions from 58.3%
to 83.3% (see Figure 6.8). However, this rate was still lower than the unaided condition, though

the difference was not statistically significant.

In conclusion, cortical responses to aided continuous speech showed less than 100%
sensitivity in detecting responses in hormal-hearing adults using a single channel after 15 min of
recording, with sensitivity further reduced for high levels of HA envelope distortion. For future
clinical measurements on infants, it is essential to optimise the stimulus paradigm to ensure
responses are reliably detectable in normal-hearing individuals. This is important since some
infants do not show detectable responses when a sound is audible. As such, it becomes
challenging to determine whether the lack of response with an HA is due to insufficient
amplification or a missed neural response. In the current research, a passive listening paradigm
using a non-language-specific ISTS stimulation appears promising. However, it is also crucial to
account for the distortion of the speech stimulus by an HA, as this may reduce the detectability
of brain responses. One approach to consider is investigating methods for measuring the HA

outputin a child’s ear to improve response detection.

7.2.2 Detection time

Test duration is a crucial factor when assessing clinical feasibility. Since measuring cortical
responses requires the subject to remain awake and attentive to something such as a screen
during the recording, an important question arises: what duration is appropriate for infants? This
consideration is vital, as the ultimate goal is to develop a test suitable for this age group. In a
CAEP clinical study that included 104 infants, the mean EEG data acquisition time to complete
the test for 95% of the sample (94 infants) was a 16 min testing time (Munro et al., 2020). More

recently, Visram et al. (2023) conducted aided CAPE testing using two speech-synthetic stimuli
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on 103 infants and found a completion rate of 99% with a 14 min to 18 min test duration.
Although there are several differences in the testing method between the repeated stimuli used
to evoke CAEPs and the continuous speech investigated in this project, the findings of Munro et
al. (2020) and Visram et al. (2023) shed light on the issues of test durations for infants in the
clinic. Attaheri et al. (2022a), studied neural tracking of the speech envelope measured in 60
infants listening to nursery rhymes whilst watching a video. All infants included in the final
analysis were able to attend to a video for about 14 min. However, one limitation of that study
was that it did not show only showed significant response at a group level. The detection
sensitivity of individual neural tracking was not investigated, leaving it unclear whether the
recording time was sufficient at the individual level. Munro et al. (2020) found a 95% detection
rate in 16 min, which is broadly similar to the detection rates observed in the first and fourth
studies of this project. Based on the time required for CAPE testing to measure significant
responses in infants, it is reasonable to suggest that a testing duration of around 14 minto 16
min may be appropriate for measuring cortical responses in this age group. However, speech-
evoked responses are typically smaller than standard CAEPs, making them more difficult to

detect.

Before the start of this project, the studies investigating the quantity of EEG data required for
neural tracking of the speech envelope were limited to a study by Di Liberto and Lalor (2017).
They showed that about 30 min of data were required for the subject model to show significant
prediction accuracy (detection) in the TRF analysis. The model was built using specific
phonemic speech features rather than the overall speech envelope, which might explain the
long recording time required. A long recording might be challenging when testing infants.
Therefore, using a model that predicts the EEG response based solely on the stimulus envelope
or employing a simple cross-correlation approach could reduce the required data quantity,
making it a more suitable clinical option. More recently, Mesik and Wojtczak (2022) investigated
the effect of EEG data quantity on prediction accuracy by progressively increasing the data
range from 3 min to 42 min across 11 steps of data quantities. One interesting finding in their
study is that the subject-specific model's performance reached a plateau after about 14 min,
when the speech envelope was used as the main detection feature. Although this study
progressively increased the amount of data, similar to the approach investigated in the current
research, neither the exact detection time needed for each subject nor the maximum detection
rate was explored. To the best of our knowledge, the study in this thesis is the first to investigate

detection time at the individual level.
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When looking into the findings of the current project, in the first study (Chapter 3), the recording
time was 25 min, which showed 100% detection after 17 min (see Figure 3.3). Thisisonlya 3
min difference from Mesik and Wojtczak (2022). The longer recording time needed in our study
could be explained by the use of single-channel EEG, which requires more data to detect a
significant response. To support this point, a preliminary analysis of the data from the first study
was conducted using a backward modelling approach. The analysis included 32 EEG channels
to compare the backward modelling approach with the two single-channel analyses used in this
thesis (forward modelling and XCOR). The results indicated that all subjects exhibited
significant responses after 11 min with the backward modelling, compared to 17 min with the

single-channel analyses.

The backward modelling analysis approach utilises multichannel data and gives more weight to
highly informative channels than to channels with low or no information (Crosse et al., 2016).
While itis possible that using a multichannel analysis approach could reduce the required data
quantity, this runs contrary to one of the main objectives of the current project, which advocates
the use of more straightforward and clinically available single-channel recordings. The
increased cost, time, and potential disturbance to the infant when applying multiple electrodes
may nhot be justified by the small reduction in recording time. However, since infants need to
remain awake and focused on the screen during the recording of cortical responses, reducing
the recording time could be critical. Maintaining the infant's alertness without causing
restlessness or excessive movement is essential for obtaining high-quality EEG recordings
(Riggins et al., 2007). This, however, becomes more challenging during longer recording

sessions.

The recording duration for each condition in the second study (Chapter 4) was reduced to 15
minutes, compared to 25 minutes in the first study (Chapter 3). This change was made for
several reasons. First, the detection rate in the first study was 100% after 17 minutes, with a
mean detection time of 4.82 minutes. Second, previous literature on testing cortical responses
in infants indicated that testing times between 14-18 min had a completion rate of over 95%
(Munro et al., 2020, Visram et al., 2023). Finally, the quiet conditions in the second study were
part of a separate PhD experiment involving other testing conditions(Deoisres, 2023), with a
total experiment duration of about 3 hours, allowing only 15 minutes for testing responses in the

two quiet conditions.

As mentioned in Section 7.2.1, the second study showed a significant reduction in detection
compared to the first study. As a result, the average detection time for both stimuli used in the

second study was higher than the first study: speech XCOR =11.9 min, speech-modulated
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noise XCOR =9.4 min. The average detection time found in the first study was 4.82 min with
XCOR. However, it should be noted that in calculating these averages, subjects showing non-
significant responses were allocated a higher detection time of 20 min, which is 5 min higher
than the maximum value used in the second study. This may explain the higher average
detection time found in the second study compared to the first study, as removing subjects with
no detection reduced the mean detection time (speech =7.36 min and speech-modulated noise
= 8.82 min). Additionally, the presence of attention in the first study could have contributed to
the shorter detection time (see Section 7.2.4). Therefore, the difference in detection between
the first and second studies can be attributed to either the shorter recording time or the passive

listening condition.

In the fourth study (Chapter 6), the same recording time was used as in the second study. The
average detection time for the unaided-70 condition with passive listening was 6.75 min with
XCOR. The average detection time was not significantly different from the first study's mean
detection, 4.82 min. This finding adds to the promising use of the ISTS stimulus in measuring
cortical responses to continuous speech. For future research, it may be important to investigate
detection with a slightly longer recording time to improve detectability, but the appropriate

testing time for infants should always be considered.

Another interesting observation in the current project is the high variability between subjects in
the quantity of EEG data needed to detect significant cortical responses to speech. While most
subject responses can be detected in under 10 min, a small number of subjects require
potentially much longer recording times. It would be helpful to understand this large variation in
speech response detection times across subjects. Although differences in subject noise levels
were explored as a potential cause of the variability in Chapter 6 (see Section 6.3.2), this did not
give a clear explanation for the variability seen. These extended detection times for a few
subjects may vary between experiments, resulting in different overall detection rates across
studies. For future clinical implementation, it can be challenging to determine whether a non-

detection is due to subject factors or an issue with HA amplification in difficult detection cases.

7.2.3 Stimulus type

At the initial stage of the project, an intelligible continuous speech stimulus was used to
measure neural tracking of the speech envelope. At that stage, the objective was to test the
feasibility of single-channel analysis using results from both the TRF and cross-correlation
approaches. The intelligibility factor was maintained in line with previous literature that utilised

similar analysis methods (Kong et al., 2014, Di Liberto et al., 2015, Di Liberto and Lalor, 2017). In
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the second study, the effect of stimulus intelligibility was investigated by comparing
detectability and detection time between intelligible English speech and speech-modulated
noise in native English speakers with normal hearing. It should also be clear that the attention
condition was also changed from the first study to be passive, however, the attention will be

discussed in Section 7.2.4.

The speech-modulated noise was developed using the envelope extracted from natural speech,
thereby maintaining the envelope. One objective of this study was to assess the feasibility of
using a stimulus that mirrors the speech envelope but can be used independently of the
subject's language, supporting clinical applicability. The outcomes showed robust detection of
cortical responses when using speech-modulated noise, with a high detection rate (see Figure
4.4) and low mean detection times (see Figure 4.6); however, this difference was not statistically
significant. One possible explanation is that natural speech contains both amplitude and
frequency changes, whereas speech-modulated noise only has amplitude or temporal
modulation. Cortical responses vary with changes in temporal information as well as with
spectral changes (Okamoto et al., 2012, Vonck et al., 2019). Considering the analysis for studies
one, two and four, the amplitude change of the envelope was the only feature correlated to EEG.
Therefore, in the case of natural speech, responses related to frequency changes were missed.
This might result in lower cortical response detection to natural speech compared to when we
have only amplitude-modulated input without the confounding influence of frequency
modulation. The modulated noise appears as detectable as natural speech (in fact with slightly
higher, but not significantly different, detection rates), which supports the possibility of using

speech-modulated noise to objectively assess the perception of speech stimuli.

Studying the impact of intelligibility can be achieved by comparing stimuli with similar acoustic
characteristics to speech, such as using noise-vocoded speech (Ding et al., 2014, Késem et al.,
2023), using forging language (Etard and Reichenbach, 2019) presenting speech with different
SNR levels (Vanthornhout et al., 2018, Lesenfants et al., 2019), and changing the rate of speech
(Verschueren et al., 2022). Some of these studies found that it is possible to predict speech
intelligibility from acoustic neural tracking results (Vanthornhout et al., 2018, Lesenfants et al.,
2019). Additionally, Ding et al. (2014) found higher cortical entrainment to natural speech than
noise-vocoded speech, but only with background noise. In contrast, more recent studies
observed no effect of speech intelligibility on acoustic neural tracking (Verschueren et al., 2022,
Gillis et al., 2023, Kosem et al., 2023). The discrepancy in the literature about the effect of
intelligibility on neural tracking could be explained by the different experimental paradigms

used. Specifically, the effect is only evident with the use of added noise to reduce speech
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intelligibility. Since changing the SNR is linked to changing speech understanding, itis
challenging to determine whether the reduction in neural tracking is primarily caused by
diminished speech understanding or by the acoustic change in the signal, reducing the contrast
between peaks and troughs in the sound levels used to alter speech comprehension

(Verschueren et al., 2022).

The lack of significant differences in the responses between speech and modulated noise could
be related to how the brain processes speech and speech-like stimuli. Functional magnetic
resonance imaging (fMRI) studies have shown that brain activation in response to intelligible
speech occurs in the middle part of the superior temporal sulcus, the ventral pre-central
sulcus, and pars opercularis (Binder et al., 2000, Ge et al., 2015). Binder et al. (2000), studied
the temporal lobe activation to several types of signals, including unstructured noise,
frequency-modulated tone, words, reversed speech and pseudowords using fMRI. The sample
included ten normal hearing adult participants. The results showed that direct comparisons
between words-pseudowords, words-reversed, and pseudowords-reversed did not reveal any

significant differences in area activation across the regions or hemispheres examined.

Although speech-modulated noise showed no different results in detection compared to
intelligible speech, the next step was to assess the impact of HA processing on both stimuli.
Returning to the primary aim of this thesis, which is to assess the clinical feasibility of using
cortical responses to continuous speech for aided speech testing, it was important to examine
how HA processing distorts the stimulus envelope and if this then affects the detection of EEG
responses. The third study quantified the envelope distortion of the two stimuli used in the
second study and a new stimulus, the ISTS. The rationale for testing the ISTS was its combined
characteristics of being natural yet language-independent, supporting its potential application
to diverse populations worldwide who may not speak the same language. The study concluded
that the ISTS showed similar HA-induced distortion as intelligible speech, unlike speech-
modulated noise, which exhibited significantly lower HA-induced distortion (see Figure 5.7).
One possible explanation is that natural speech contains more variable spectral information.
Thus, with more spectral changes, even pure amplification will alter the envelope. In contrast,
the specific and controlled acoustic properties of the speech-modulated noise likely made it
less susceptible to distortion by HA algorithms. This is because the speech-modulated noise
maintains a more predictable signal that has the same amplitude envelope as speech without

the complex spectro-temporal changes that create the phonetic content of natural speech.

The fourth study (Chapter 6) used the ISTS stimulus to investigate the feasibility of measuring

aided responses, because ISTS behaves similarly to natural speech stimulus during HA
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processing, as found in Chapter 5. Although ISTS elicited response detection was affected by a
high HA-induced envelope distortion, it still demonstrated similar detectability to natural

speech from the first study in both unaided and aided conditions with low distortion.

7.2.4 Attention

In studying cortical or late auditory responses, subject alertness and attention to the stimulus
have been shown to enhance neural processing (Fritz et al., 2007, Naatanen et al., 2011). Given
that the objective of this thesis was formulated with considerations for infant clinical testing,
the effect of attention was investigated. In the first study, only active listening conditions were
implemented, which could explain the significantly higher detection of speech in the first
studies compared to the second. Studies investigating the effect of attention in neural tracking
of continuous speech have shown a non-significant effect in quiet conditions (Kong et al., 2014,
Vanthornhout et al., 2019). However, since this thesis explored the feasibility of factors related
to infant clinical testing using the single-channel analysis method, the second study examined
the possibility of detecting cortical responses to continuous stimuli under passive listening
conditions, as controlling infants' attention can be challenging. The detection rate in that study
was significantly less than 100% for speech stimuli, but not for speech-modulated noise. Since
the study only involved passive listening, the difference between passive and active listening

requires further investigation.

One of the objectives of the fourth study was to evaluate the differences between passive and
active listening using single-channel analysis, focusing on detectability and recording duration.
The main stimulus used in the fourth study was ISTS, which is unintelligible. Consequently, the
attention condition in the fourth study involved counting clicks that had been embedded within
the ISTS stimulus. The study found no significant effect of attention on either detection rate or
detection time. This finding is broadly similar to those of Kong et al. (2014) and Vanthornhout et
al. (2019) regarding not having a significant attention effect in quiet conditions. However,
previous studies only showed the effect of attention at a group level. To our knowledge, the
specific effect of attention on detection rate and detection time at an individual level has not

been investigated before.

One possible explanation for the lack of a significant effect between active and passive
conditions in the fourth study could be the use of unintelligible ISTS speech, which may make it
challenging to maintain attention. Additionally, the task of counting clicks embedded in the
stimulus might have been insufficient to maintain attention when the stimulus is not intelligible.

Finally, single-channel data analysis might have limited power to detect differences in response
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strength due to attention. Overall, the absence of a significant effect of attention is promising for

implementing passive listening in infant clinical tests.

7.3 Limitations and Future Work Suggestions

Based on the findings of the studies in this project, future work could focus on two main
research areas: (1) optimizing signal processing techniques and (2) investigating other sample
characteristics, such as age, since infants and young children may exhibit different cortical

responses, potentially leading to varying outcomes in terms of detectability.

7.3.1 Analysis method signal processing

This project concluded that the single-channel analysis approach achieves 100% sensitivity in
detecting cortical responses to continuous speech stimuli in adults. However, with aided
stimuli, the sensitivity is reduced. One major limitation identified was the limited EEG data
available when using single-channel analysis. Given that the primary focus was to assess the
clinical feasibility of the methods currently used in the literature, this project concentrated on
the clinical and audiological aspects of the measurements and did not extensively explore

improvements in signal processing.

Several factors within signal processing could be investigated to enhance detectability. One
approach could be using other stimulus features extracted from the speech signal or
combinations of features, which may improve the ability to detect responses. Previous studies
that utilised other speech features, such as envelope onset, spectrogram and phonetic
features, resulted in higher correlation values compared to using only the speech envelope (Di
Liberto and Lalor, 2017, Drennan and Lalor, 2019). Although those studies showed higher
correlation values, it was not clear whether this would result in higher significance at the

individual level, which could be an area for investigation in future studies.

Another suggestion is to improve the method of analysis itself, such as the cross-correlation
technique. Previous studies employing the cross-correlation method, such as those by Kong et
al. (2014) and Petersen et al. (2017), implemented a slightly different approach. These studies
segmented the EEG data into several epochs before cross-correlating them with the stimulus,
producing an averaged correlation value. In contrast, the current research applied the XCOR
method across the entire length of EEG data. Segmenting the data could potentially enhance
the detectability of single-channel analysis, as suggested by Kong et al. (2014), who showed a

higher averaged correlation coefficient of 0.07 compared to 0.03 found in the first study of the
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current project. Additionally, measuring cortical responses is subject to continuous changes
with extended recording time due to variations in the subject’s attention, alertness, and other
potential noise sources, such as unrelated neural activity. Therefore, studying the correlation
across different segments may improve the overall correlation and accuracy of the

measurements, thereby enhancing detectability.

A key finding of this project is that ISTS appears superior to other speech stimuli for three
reasons: it is highly detectable (> 91%); it can be used universally as it is language-independent;
it exhibits an HA processing effect similar to that of natural speech. Moving forward, one
possible future approach to improving detectability and reducing recording time with the TRF
method would be to develop a generic TRF mode that utilises larger datasets. The concept of
generic modelling is based on using data from a group of subjects to train the TRF model and
then testing it using data from new subjects (Di Liberto and Lalor, 2017). Compared to subject-
specific modelling of TRF, the generic model has shown significant cortical response with lower

data quantities (Di Liberto and Lalor, 2017, Mesik and Wojtczak, 2022).

This generic model approach could enhance the clinical feasibility of measuring responses to
continuous stimuli. By building a model based on data from a large number of subjects, it could
serve as normative data for future measurements. This means that the model, once trained,
could be applied to new subjects without the need for extensive individual data collection. In
the study by Di Liberto and Lalor (2017), the detection time required for the generic model was
10 min compared to 30 min for the subject-specific model. When testing infants, the
development of the generic model could significantly reduce the burden on the patients, their
parents, and the clinicians. In addition, if this method proves to be successful in terms of
detection sensitivity in normal hearing subjects, it could be implemented for real-time detection

without the need to train the model for each subject.

It is important to note that, in clinical work, continuous speech-evoked responses may generally
be smaller than standard AEPs, making them more difficult to detect. While state-of-the-art
methods and multi-channel analysis might overcome this challenge, it has yet to be
demonstrated in clinical applications, and multi-channel recordings remain a challenge for

clinical use.

7.3.2 Research participants

The scope of the current research was limited to testing adults, with normal hearing, as in the

second and fourth studies (Chapter 4 and Chapter 6). At this initial stage of assessing the
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clinical feasibility of measuring cortical responses to continuous speech, focusing on this
sample group was a reasonable first step for several reasons. Normal-hearing adults provide a
controlled baseline without confounding variability caused by hearing or related cognitive
impairments. Also, as one of the project objectives is to study the difference between active and
passive listening conditions, it is more feasible to control attention in adults compared to

infants and young children. Finally, infant recruitment is prone to significant ethical challenges.

The first study showed a 100% detectability after 17 min. Therefore, a possible future step could
involve testing normal-hearing infants using a similar approach to assess detectability with a
single channel. There is a possibility of observing different outcomes with infants, as shown in
Attaheri et al. (2022b), who found differences in neural envelope tracking between adults and
infants. This difference was based on the Power Spectral Density (PSD) analysis used by
Attaheri et al. (2022b). The PSD explains how the power of a signal or time series is distributed
across different frequencies (Unde and Shriram, 2014). Attaheri et al. (2022b) found that neural
tracking in infants was more closely tied to the acoustic characteristics of the stimulus
compared to adults. In infants, the PSD peaks occurred at frequencies (2.20 Hz and 4.37 Hz)
that corresponded directly to the modulation spectrum of nursery rhymes. In contrast, adults
exhibited PSD peaks at lower frequencies (1.25 Hz), indicating a less stimulus-driven response.
This suggests that while infants' brain activity is more influenced by the rhythmic properties of
the sung speech, adults may engage additional cognitive processes, possibly related to
comprehension or linguistic experience. Moreover, previous studies in infants have shown
significant reconstruction correlation using the backward modelling at the group level (Jessen et
al., 2019, Attaheri et al., 2022a, Attaheri et al., 2022b). Future studies could use the single-
channel approach and ISTS stimulus to study individual detectability in normal-hearing infants.
Achieving this will test the validity of using this test for clinical assessment of cortical responses

to speech stimulus through HAs.

Subject variability is another essential aspect to investigate further, especially concerning
detection time. This variability might be even larger in infants, as CAEP responses showed
significant variability among infants, as reported by (Visram et al., 2023). The findings in this
thesis highlighted a high variability in detection time, ranging from 1 min to 17 min. In addition, it
seems that a few subjects have responses that are very difficult to measure. Whether this is due
to subject noise, or small brain responses is still unclear. Investigating the repeatability of these
responses at the individual level could reveal whether the testing parameters are consistent
within subjects or influenced by other factors, such as individual alertness or the quality of the

recording.
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7.4 Conclusion

In summary, this thesis explored several key factors related to the clinical feasibility of using
cortical responses to continuous speech stimuli, with a particular focus on optimising the test
protocol, assessing the feasibility of single-channel analysis, and the future aim of testing
infants. This work may be necessary before an effective determination of whether it will be the
'optimal' approach for clinical purposes — a conclusion that would require a larger clinical

study involving hearing-impaired infants.

While the use of ISTS stimuli and passive listening has shown promise, the less-than-optimal
detection rate, especially with aided stimulation, and the variability in detection time are areas
that require further investigation. Extending this research to optimise detection sensitivity
through enhanced signal analysis methods and exploring detection in normal-hearing infants
could be the next steps toward developing an objective clinical tool to assess speech

perception through hearing aids.

This area of research must continue to bridge the gap between laboratory studies and actual
clinical applications. Addressing these challenges is crucial for future advancements in auditory

diagnostics and evaluating interventions for hearing loss.
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Appendix A Code of Analysis TRF

load EEG_data.mat % preprocessed EEG
load Stimulus_envelope.mat %stimulus envelope

ISTS_ENV=ISTS_ENV/std(ISTS_ENV); %normalise envelope
i=30; % channel to use

datal=data(i,:);

datal=datal/std(datal); %normalise

datal=double(datal); % convert to double

datal=datal’;

%datal=fliplr(datal')'; % decorrelate by flipping data!

count=1;
for i=1:100

sigparts(i)=0; % count significant decoder responses in sigparts
end

% % Initialize variables
% sigparts = zeros(1, 100); % To count significant decoder responses

% envnew = [];
% datanew = [];

envnew=0;

datanew=0;

% artefact rejection

reject=5;

countrej=0;

% countgood = []; % Accepted sweeps

% countall = []; % All sweeps

countgood=0; % keep track of the accepted sweeps
countall=0; % all sweeps

for i=1:fix(length(ISTS_ENV)/100)
temp=datal(((i-1)*100+1):(i*100));
tempenv=ISTS ENV(((i-1)*100+1):(i*100));
if max(temp)>reject
countrej=countrej+1;
elseif min(temp)<-reject
countrej=countrej+1;
else
countgood=[countgood i]; % good sweep numbers
datanew=[datanew' temp']'; % add good data
envnew=[envnew' tempenv']'; % add corresponding good envelope
end
countall=[countall i];
end
% Replace datal and ISTS_ENV with artifact-free data
datal=datanew;
ISTS_ENV=envnew;

% Main loop to process data
for T=7680:7680:1length(datal’') % loop time in min
A=ISTS ENV(1:T); % take first segment of envelope
B=datal(1:T); % take first segment of data
% Bootstrapping process
for n=1:500 % increase to 500 rotations
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x=(fix(rand*(T-2000)+1999));
Env=[A(x+1:1length(A))" A(1:x)']"'; % rotate envelope

% Train model
[w,t] = mTRFtrain(Env,B,128,1,-150,450,1e4);
W(n,:)=w; % store random rotations

% Filter the envelope and calculate correlation
output=filter(w,1,Env); % filter the envelope with the filter from

mTRFTtrain

%

[R,P]=corrcoef(output,B); % calculate correlation
%CORBOOT(n)=R(2,1);
R=xcorr(output,B, 'coeff');
middlepoint=fix(length(R)/2); % find middle of R
CORBOOT (n)=max(abs(R(middlepoint-1000:middlepoint+1000))); % Max XCOR
PowerBoot(n)=var(w(21:69)); % Variance for specific time window
end
for i=1:79
V=sort(W(:,1));
lower5(i)=V(5);
upper5(i)=Vv(495);
end
% now find max and min values for the 500 bootstraps (over 79 samples)
% Sort max and min points from bootstraps
maxpoints=max(W");
minpoints=min(W");
maxpointssort = sort(maxpoints);
minpointssort = sort(minpoints);
lowerT = minpointssort(13); % Lower 2.5% of min points
upperT = maxpointssort(488); % Upper 2.5% of max points

% Train on the actual data
[w,t] = mTRFtrain(A,B,128,1,-150,450,1e4);

figure;

plot(t,ones(79)*1lowerT);hold on;plot(t,ones(79)*upperT);
plot(t,w, k', 'linewidth',4);

xlabel('Time lag (ms)');

ylabel('Amplitude (a.u.)');

x1lim([-50, 350]);

output=filter(w,1,A); % filter the envelope with the filter from mTRFTtrain

R=xcorr(output,B, "coeff');

middlepoint=fix(length(R)/2); % find middle of R
COR(count)=max(abs(R(middlepoint-1000:middlepoint+1000))); % Max XCOR
Power(count)=var(w(21:69)); % include a power measurement

% Store bootstrapped bounds
lowers(count, :)=1owerT; % use lower 5% of min values
uppers(count, : )=upperT; % use upper 5% of max values
mtrf(count, :)=w;

% Calculate significant parts
for i=21:69 % run from © to 375 ms - avoid end effects
if w(i)>upperT
sigparts(count)=sigparts(count)+w(i); % add significant positive

values

end
if w(i)<lowerT % use lower 5% of max values
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sigparts(count)=sigparts(count)-w(i); % add significant positive
values
end
end

% Calculate p-value for correlation
countB = sum(COR(count) > CORBOOT);
sigCOR(count) = 1 - (countB / 500); % P-value

% Calculate p-value for power
countC = sum(Power(count) > PowerBoot);
sigPower(count) = 1 - (countC / 500); % P-value

% Calculate significance of max or min in the time window - 'sigPeak'
Maxpoint=max(w(21:69)); % find max in time window
Minpoint=min(w(21:69)); % find min point
if Maxpoint > -Minpoint
CountD = sum(Maxpoint > maxpointssort);
else
CountD = sum(Minpoint < minpointssort);
end
sigPeak(count) = 1 - (CountD / 500); % P-value

% Track time in minutes
temp6=find(countall==countgood(fix(count*7680/100)));
timepoint(count)=temp6*100/(128*60); % time in mins of data

% Save bootstrap mTRFs
BootstrapMTRFs(count, :, :) = W;

% Increment counter
count = count + 1;

end

% Save results

save('TRFClean_ResultISTS.mat', 'COR', 'sigparts', 'uppers', 'lowers', 'mtrf',

‘t', 'BootstrapMTRFs', 'sigCOR', 'sigPower', 'sigPeak', 'timepoint');
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Appendix B Code of Analysis XCOR

load EEG_data.mat % preprocessed EEG
load Stimulus_envelope.mat %stimulus envelope

ISTS_ENV=ISTS_ENV/std(ISTS_ENV); %normalise envelope
i=30; % channel to use

datal=data(i,:);

datal=datal/std(datal); %normalise

datal=double(datal); % convert to double

datal=datal’;

%datal=fliplr(datal')"'; % decorrelate by flipping data!

envnew=0;

datanew=0;

% add artefact rejection

reject=5; % This might need changing

count=0;

countgood=0; % keep track of the accepted sweeps
countall=0; % all sweeps

% ISTS_ENV = transpose(ISTS_ENV);
for i=1:fix(length(datal)/1e0)
temp=datal(((i-1)*100+1):(i*100));
tempenv=ISTS_ENV(((i-1)*100+1):(i*100));
if max(temp)>reject
count=count+1;
elseif min(temp)<-reject
count=count+1;
else
countgood=[countgood i]; % good sweep numbers
datanew=[datanew' temp']'; % add good data
envnew=[envnew' tempenv']'; % add corresponding good envelope
end
countall=[countall i];
end

counta=1;
sigparts(1:100)=0; % parameter to do with 'sigificant' correlations
maxparts(1:100)=0; % maximum correlation from -0.5 to +0.5 s
endpoints = 67; % Skip initial/final data to avoid delay issues
delays = 64; % Delays to measure over
pValues = []; % Store p-values for each minute
% Main loop processing the data
for L=(7680+(endpoints*2)):7680:1length(datanew) % try to loop length of data
ENV=envnew(endpoints: (L-endpoints)); % remove ends
result = zeros(1l, 2 * delays + 1); % Initialise result
for n=-delays:delays % delays to measure over
data2=datanew(endpoints+n:(L-endpoints)+n); % shifted version of data
C=corrcoef(ENV,data2); % work out correlation
result(n+delays+1)=C(1,2); % start results with index 1
end
% Bootstrap for significance testing
resultboot = zeros(500, 2 * delays + 1);
upper = zeros(500, 1);
lower = zeros(500, 1);
for nnn=1:500 % boostraps
x=(fix(rand*(length(datanew)-2000)+1999)); % add a random shift at least 2000
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databoot=[datanew(x+1:1length(datanew))' datanew(1l:x)']'; % rotate data
randomly

for n=-delays:delays % delays to measure over
data2=databoot(endpoints+n:(L-endpoints)+n); % shifted version of data
C=corrcoef(ENV,data2); % work out correlation
resultboot(nnn,n+delays+1)=C(1,2); % start results with index 1
end
temp=resultboot(nnn, (delays):(delays+48)); % choose important section
upper(nnn)=max(temp); % max value of bootstrap correlation in RoI
lower(nnn)=min(temp); % min value of bootstrap correlation in Rol

end

% Calculate p-value for maximum absolute XCOR
absMaxOriginal = max(abs(result(64:112)));
absMaxBootstrap = max(abs(resultboot(:, 64:112)), [], 2);
greaterCount = sum(absMaxBootstrap >= absMaxOriginal);
pValues(counta) = greaterCount / 500; % Calculate p-value

% Sort bootstrap results and define 2.5% thresholds
uppersort=sort(upper);

lowersort=sort(lower);

upperN(1l:length(result))=uppersort(488); % upper 2.5% of max values
lowerN(1:1length(result))=1lowersort(13); % bottom lower 2.5% of min values

% Plot result
figure;plot(result); xlim([(delays-64) (delays+64)])
hold on;plot(lowerN,'g"');plot(upperN, 'r")

% save results

Allresults(counta, :)=result;
Alluppers(counta, : )=upperN;
Alllowers(counta, :)=1lowerN;
resultboot_all(counta,:,:) = resultboot;

% Find significant parts
for d=(delays):(delays+48) % 19/12 changed to count over +ve time 48 samples -
same as decoder
if result(d)>uppersort(488) % upper 2.5% of max values
sigparts(counta)=sigparts(counta)+result(d); % look over 1s. Add
significant responses
end
if result(d)<lowersort(13) % bottom lower 2.5% of min values
sigparts(counta)=sigparts(counta)-result(d);
end
end

temp6=find(countall==countgood(fix(counta*7680/100)));
timepoint(counta)=temp6*100/(128*60); % time in mins of data

% timepoint(counta)=find(countall=countgood(L));
counta=counta+l % index for sigparts

% Plot significant parts vs. minutes forward

figure;

plot(sigparts(l:counta-1));

title('Sum of significant parts vs. minutes forward');
forwardresult = sigparts(l:counta-1);

save Clean_Result_1 'forwardresult' 'Allresults' 'Alluppers' ‘'Alllowers’
"timepoint’' 'pValues'
end
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