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Abstract

We discuss a novel method of local absolute gravimetry using Bose-
Einstein condensates, proposed in a recent patent by Ivette Fuentes et al.
[1]. The calculations and early results presented there are detailed in this
thesis, with a few discrepancies investigated. Furthermore, several improve-
ments are made, which have been suggested but not carried out until now.
Mainly, we employ quantum frequency interferometry as our measurement
scheme, first introduced in [2], and demonstrate that it improves measure-
ment precision by two orders of magnitude. Our semiclassical model for the
system successfully accounts for certain general relativistic effects within the
quantum system itself, without the need for an unrealistic, point-like refer-
ence. To do this, we adopt the methods first proposed in the patent, then
developed in detail in [3]. However, we conclude that the achievable sensi-
tivities in estimating local classical gravity is still significantly behind the
performance of current best quantum technologies. We then take steps to-
wards using our setup to measure the dynamical Casimir effect instead, as
suggested in [4].

School of Physics and Astronomy
Faculty of Engineering and Physical Sciences

University of Southampton



Philosophers often think all scientists must be scientific real-
ists. If you ask a simple question like “Are electrons real?” the
answer will be “Yes”. But if your questions are less superficial,
for example whether some well-known scientist was a good scien-
tist. Then, they had insisted that only empirical criteria matter
and that they actually did not believe in the reality of sub-atomic
entities. Ask “If that turned out to be true, would you still say
they were good scientists?” The answer would reveal something
about how they themselves understood what it is to be a scientist.

Bas C. Van Fraassen
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Chapter 1

Introduction

At first glance, studying gravitational effects on quantum fields might not
seem particularly propitious. The weakness of gravity compared to the other
fundamental forces leads one to believe that important effects should only be
expected near black holes or in the very early universe [5]. This is also what
makes testing theories of quantised gravity so difficult [6].

However, the momentous advancement of quantum technologies in recent
decades have yielded phenomena where general relativistic effects enter a
quantum system in peculiar ways. As the scale gap between general rela-
tivity and quantum mechanics gets unprecedentedly narrow in certain cases,
the need for models at the interface of the two contrasting theories has be-
come more urgent than previously thought. For example, an atomic clock
has recently demonstrated the measurement of gravitational time dilation at
millimetre scales [7]. As the vapour containing the atoms is itself a compa-
rable size, if one wishes to improve accuracies, they now need to account for
the curvature of spacetime within the system of atoms itself.

In the absence of a satisfactory theory of quantum gravity, taking a semi-
classical approach seems sensible. Within certain limits, one may use quan-
tum field theory in curved spacetime to construct models that account for
relativistic effects within a quantum system. In fact, this is what Maximilian
Lock and his collaborators have done for the atomic clock mentioned above
[8, 9].

Another fascinating example is Bose-Einstein condensates. These sys-
tems exhibit quantum properties, but due to their size also couple to gravity
more strongly. For instance, it has already been investigated how oscillating
gravitational fields can create excitations within these systems [10, 11]. Fur-
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thermore, in a recent patent written by Ivette Fuentes et al., a novel method
of measuring local gravitational acceleration using Bose-Einstein condensates
was proposed with some preliminary calculations [1]. The central aim of this
thesis is to complete any unfinished work of this proposal, including improve-
ments previously suggested, and to analyse its results.

The first steps were published by Tupac Bravo, Dennis Ratzel and Ivette
Fuentes in [3], where a setup with an optical oscillator was considered. It
was shown how a horizontally oriented system can be used as reference for a
vertically oriented one in the Schwarzschild spacetime. This not only replaces
the need for an unrealistic ideal clock in the model, located infinitely far away
from the Earth, but also enables us to elegantly express the gravitational time
dilation inside the light clock cavity. Additionally, it was demonstrated how
one could use this system to measure proper local time and local acceleration.

Following the notes in the patent and the methods developed in the paper
above, we are going to extend this photonic system to Bose-Einstein conden-
sates. The expectation is that while the optical oscillator would be better
at measuring proper time, it would be greatly outperformed in measuring
gravitational acceleration, due to the speed of light being replaced by the
speed of sound in the condensate. Moreover, to enhance measurement sen-
sitivities we are going to employ a novel measurement scheme introduced in
[2]. Although all the calculations presented in the patent have been redone,
it will be made clear what work has already been carried out previously and
what has been added in this thesis. As such, references to notes in the patent
will be made often.

Evidently, this project draws on several different fields in physics. We will
start by introducing relativistic quantum field theory in chapter 2, where the
canonical field quantisation will be set forth. Here, we will also establish the
basics of quantum field theory in curved spacetime and discuss its merits
and limitations. We will then review the relevant dynamics of Bose-Einstein
condensates in chapter 3. At the end of this chapter, we will connect it with
the previous chapter by demonstrating how one can treat these systems in
a curved spacetime. To develop the measurement scheme we will be using,
we present a brief introduction to Gaussian quantum metrology in chapter 4.
The particular setup involving the condensate will also be introduced here.
Finally, the techniques from these three chapters will be combined in chapter
5, where the central work of this thesis project is carried out. This is the
only chapter containing new calculations and all previous chapters merely
serve to introduce the necessary tools.
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Chapter 2

Quantum Field Theory

Compatibility with Einstein’s relativity has been a key consideration since
the dawn of quantum mechanics [12]. When Louis de Broglie first suggested
in 1923 that particles can be described using waves, one of his primary mo-
tivations was Lorentz invariance. This wave mechanics approach was then
further developed by Erwin Schrödinger, who was trying to derive a rela-
tivistic wave equation. Although he was dissatisfied with his results because
they initially gave the wrong fine structure for hydrogen, he realised that
his non-relativistic approximation worked extremely well in a wide range of
other scenarios. He published this non-relativistic wave equation, the one we
now know as the Schrödinger equation, in a series of papers in 1926 and used
it to reproduce the results of a competing approach to quantum theory (then
known as matrix mechanics developed by Werner Heisenberg, Max Born,
Pascual Jordan and Wolfgang Pauli in the years 1925-1926). In the position
basis the equation for a free particle can be written as

iℏ
∂

∂t
ψ(x, t) +

ℏ2

2m
∇2ψ(x, t) = 0. (2.1)

That it is not Lorentz invariant is evident from the fact that it includes a first
order derivative in time but a second order derivative in space. To generalise
this equation to relativistic motion one could employ the relativistic energy-
momentum relation and simply square the operators, giving

−ℏ2
∂2

∂t2
ψ(x, t) +

(
ℏ2c2∇2 +m2c4

)
ψ(x, t) = 0. (2.2)

By the time Schrödinger published the relativistic version of his wave equa-
tion it had already been independently derived by Oskar Klein and Walter
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Gordon, hence it became known as the Klein-Gordon equation.
Despite these equations making many correct predictions, they still gave

the wrong results for the fine structure. Schrödinger did realise that this
was due to neglecting particle spin (specifically electron spin) in the wave
equations, but it was Paul Dirac who finally derived a relativistic theory of
the spinning electron in 1928. Furthermore, Dirac was also bothered by the
negative probability density solutions of the Klein-Gordon equation, which
he set out to resolve when deriving what we now call the Dirac equation. Al-
though he succeeded in making his relativistic theory give the correct results
for the fine structure, a new peculiar problem emerged. The Dirac equation
predicts electrons with negative energy. Dirac became desperate to give an
explanation for this, which eventually led him to propose in 1931 the exis-
tence of a new particle that has the same mass but opposite electric charge as
the electron. Unaware of this prediction, Carl D. Anderson indeed discovered
the positron a year later while analysing cosmic ray tracks.

Of course, today we know that there are a wide range of elementary
particles, some with integer spins (bosons) and some with half-integer spins
(fermions). The Dirac equation turns out to be no more general or correct
than the Klein-Gordon equation, as they only differ in the class of particles
they apply to; the Klein-Gordon equation to spinless bosons and the Dirac
equation to fermions. They were eventually generalised to particles with
arbitrary spin by Valentine Bargmann and Eugene Wigner in 1948, known
as the Bargmann–Wigner equations [13]. As in this thesis we are working
with spin-0 particles (also called scalar bosons) we are going to direct our
attention to the Klein-Gordon equation.

While the Klein-Gordon equation is indeed compatible with special rela-
tivity, it is still in conflict with general relativity. The most obvious issue is
that in general relativity space and time are not independent of each other;
they are both components of the same 4 dimensional tensor field. In the
wave equation however, space and time are not even treated on equal foot-
ings. Space appears as the eigenvalue of the position operator, but time is
just there as a parameter [14]. According to standard quantum mechanics
time is not a valid observable as it is not represented by a hermitian operator.

Before holding any hope to reconcile quantum mechanics with general
relativity we must do one of two things. Either we promote time to be an
operator as well, or we demote position to just be another parameter. For the
first option, one can treat the proper time as the time parameter and promote
the coordinate time to be an operator. By introducing additional parameters
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this approach generalises to string theory, an active field of research today.
The other option, the one that is going to be the focus of this chapter,

is demoting position. This can be done by introducing a set of new opera-
tors at each point in space and labeling them using our new parameter x.
The set of operators is called a quantum field, denoted as ψ(x, t), replacing
the wave function in standard quantum mechanics (confusingly denoted the
same way). This approach has been developed into what became the greatly
successful standard model of particle physics.

The first field to be quantised was the electromagnetic field by Dirac in
1927 to account for spontaneous emission. His methods of using the canoni-
cal commutation relations were soon applied to other fields, specifically the
wave functions of quantum mechanics. This was originally called second
quantisation, and later canonical quantisation. By 1929, Heisenberg and
Pauli developed a theory of general quantum fields using the Lagrangian
formalism.

In this chapter we are going to quantise a scalar field using their formal-
ism, first in flat spacetime and then discussing the generalisation to curved
spacetime. To demonstrate some of the fascinating relativistic effects we are
going to do this in the Rindler coordinates. For this, we start by discussing
uniform proper acceleration in special relativity and using it to construct
the Rindler coordinates in section 2.1. The canonical quantisation in these
coordinates is then carried out in detail in section 2.2 and a quantum field
theory for scalar bosons is established. Here we will also address the con-
cern previously mentioned regarding the negative probability solutions. This
explanation was originally presented by Pauli and Weisskopf in 1934 by intro-
ducing antiparticles for bosons as well. Furthermore, they demonstrated that
the free field solutions behave like an infinite number of coupled harmonic os-
cillators. We then show in section 2.3 how the results in Rindler coordinates
relate to the equivalent results in Minkowski coordinates by introducing the
Bogoliubov transformations. This technique was not developed until 1958
by Nikolay Bogolyubov [15]. Finally, in section 2.4 we discuss the strengths
and weaknesses of quantum field theory when applied in curved spacetimes.
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2.1 Constructing the Rindler Coordinates

2.1.1 Uniform Proper Acceleration

Firstly, we define the proper acceleration in Special Relativity as the acceler-
ation measured by an accelerometer (a device measuring acceleration locally)
carried by the observer. Observers travelling with a constant proper accelera-
tion are non-inertial and therefore have curved world-lines [16]. The Lorentz
transformation can only change the usual Cartesian coordinates to inertial
ones with straight world-lines. We can still use the Lorentz transformation
however to change the coordinates to a specific point on a non-inertial curved
world-line. This resulting set of coordinates are called a momentarily comov-
ing reference frame (MCRF) [17]. At every point on the curved world-line
we Lorentz transform the straight line Cartesian coordinates, with basis vec-
tors e⃗t, e⃗x, to be tangents to the curved world-line at that point, with MCRF
basis vectors ẽt, ẽx. We note that the MCRF coordinates are Minkowski or-
thogonal, ẽt · ẽx = 0, meaning that they close equal angles with a beam of
light on the spacetime diagram. We are going to work in 1 + 1 dimensions,
but all results can be straightforwardly generalised to 3 + 1 dimensions.

It is easy to show that the two-velocity U⃗, and two-acceleration A⃗ := dU⃗
dτ

are also Minkowski orthogonal. We begin from the fact that U⃗ · U⃗ = −c2 and
take the proper time derivative

d

dτ
(U⃗ · U⃗) = 2(U⃗ · A⃗) = 0. (2.3)

By definition U⃗ is tangent to the curved world-line. With A⃗ Minkowski
orthogonal in the MCRF, U⃗ must be parallel to ẽt and A⃗ must be parallel to
ẽx. Therefore, in MCRF U⃗ has only non-zero time components and A⃗ has
only non-zero space components. Now let us consider these two-vectors in
the stationary frame and attempt to find Lorentz invariant expressions for
them.

In the stationary frame we have

U⃗ · U⃗ = −(Ut)2 + (Ux)2 = −c2

U⃗ · A⃗ = −UtAt + UxAx = 0

A⃗ · A⃗ = −(At)2 + (Ax)2 = α2,

(2.4)
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where α is the proper acceleration. From this set of equations through simple
manipulations we can obtain the expressions

At,x =
dUt,x

dτ
=
α

c
Ux,t, (2.5)

when the acceleration is in the positive x and t directions. We can use this
to find an expression for the the second order proper time derivatives of the
two-velocity components. For the spatial component, this is the differential
equation:

d2Ux

dτ 2
=
α2

c2
Ux. (2.6)

The general solutions to this equation are

Ux(τ) = k1e
α
c
τ + k2e

−α
c
τ , (2.7)

where k1,2 are real coefficients. We pick the convenient initial condition that

Ux(0) = 0, so that U⃗ has only time components at τ = 0. Therefore, we find
that k1 = −k2 and thus

Ux(τ) = k(e
α
c
τ − e−

α
c
τ ). (2.8)

For the temporal component we can use equation 2.5 and get that

Ut(τ) =
c

α

dUx

dτ
= k(e

α
c
τ + e−

α
c
τ ). (2.9)

Using again the fact that U⃗ · U⃗ = −c2 we can show that −c2 = −4k2. We
take the sign choice in which k = + c

2
, so that positive time points from past

to future. We may finally write down the Lorentz invariant expressions for
the two-velocity components

Ut(τ) = c cosh
α

c
τ ,

Ux(τ) = c sinh
α

c
τ ,

(2.10)

and for the two-acceleration components

At(τ) = α sinh
α

c
τ ,

Ax(τ) = α cosh
α

c
τ .

(2.11)
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The spacetime coordinates can be found through integrating the two-
velocity components

ct =

∫
Utdτ =

c2

α
sinh

α

c
τ + kt,

x =

∫
Uxdτ =

c2

α
cosh

α

c
τ + kx.

(2.12)

The integration constants kt and kx can be set to 0 by choosing appropriate
initial conditions. In this case, the spacetime interval is evaluated to be

S⃗ · S⃗ =
(
c2

α

)2
. Therefore, the most trivial starting point for a uniformly

accelerated observer on the spacetime coordinate is at (0, c
2

α
). The world-line

can now be written down as

S⃗(τ) =
c2

α
sinh

(α
c
τ
)
e⃗t +

c2

α
cosh

(α
c
τ
)
e⃗x, (2.13)

which is in fact a hyperbola as expected.
We have shown how space and time are measured for an observer travel-

ling with a constant proper acceleration. These rules can be used further to
construct a new coordinate system representing the world-lines of non-inertial
observers, first introduced in [18]. These coordinates are called Rindler co-
ordinates and are discussed next.

2.1.2 Rindler Coordinates

Consider a chain of uniformly accelerating point-like particles that maintain
a constant distance D = c2

α
from each other in their own reference frames.

Note that a stationary observer will in fact observe the distances between the
particles to be decreasing. A direct consequence of this is that each world-
line in the chain must have a different proper acceleration to maintain the
same proper distance between each other in their own frames. In Rindler
coordinates the world-lines of these particles are used as the new coordinates
[18]. We introduce the new coordinates c2

α
→ χ, τ → ζ in which we can now

express the Cartesian spacetime coordinates based on equations 2.12

ct = χ sinh
( α
c2
ζc
)
,

x = χ cosh
( α
c2
ζc
)
.

(2.14)
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Figure 2.1: The Rindler coordinates drawn on a spacetime diagram. The
pink region is called the right Rindler wedge on the positive x side and left
Rindler wedge on the negative x side. The dashed red line indicates the
Rindler horizon, where ζ = ±∞.

In these new coordinates, see figure 2.1, curves of constant χ represent
constant positions in MCRF and curves of constant ζ represent constant
time or simultaneity in MCRF. These do not span the entire Minkowski
spacetime, but just two sections of it, which are named left and right Rindler
wedges. These sections are outlined by the Rindler horizon, two diagonal
lines to the Cartesian coordinates crossing the origin. These lines represent
the asymptotes that non-inertial world-lines are tending towards. Thus, the
left and right Rindler wedges only span a quarter of the Minkowski spacetime
each, as no light beam originating from outside the specific Rindler wedge
can ever reach an observer travelling along one of its world-lines [19].

Note that τ = ζ only for observers starting at (0, D). Furthermore, only
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these observers measure the speed of light to be c locally. In general,

τ =
1

D
χζ. (2.15)

It is also easy to show that the Rindler coordinates in terms of the Cartesian
coordinates are

ζc =
c2

α
arctanh

ct

x
,

χ =
√
x2 − (ct)2.

(2.16)

Next we will do some tensor algebraic manipulation in Rindler coordi-
nates. Firstly, the transformation matrix Λ is identified(

dt
dx

)
=

(
cχ cosh ζc sinh ζc
cχ sinh ζc cosh ζc

)(
dζ
dχ

)
. (2.17)

Now we can express the Rindler basis vectors in terms of the Cartesian ones

e⃗ζ = Λx
ζ e⃗x + Λt

ζ e⃗t = cχ sinh (ζc)e⃗x + cχ cosh (ζc)e⃗t ,

e⃗χ = Λx
χe⃗x + Λt

χe⃗t = cosh (ζc)e⃗x + sinh (ζc)e⃗t .
(2.18)

From these expressions it follows that

|e⃗ζ | :=
√
e⃗ζ · e⃗ζ =

√
−c2χ2 ,

|e⃗χ| = 1 .
(2.19)

The line element is then

ds2 = −c2dt2 + dx2 = −c2χ2dζ2 + dχ2, (2.20)

from which the Rindler metric can be read off to be

gµν =

(
−c2χ2 0

0 1

)
, (2.21)

with the inverse metric

gµν =

(
− 1

c2χ2 0

0 1

)
. (2.22)

Consider now a classical scalar field ϕ. As the gradient does not depend
on the basis vectors we can simply express it as [16]

∇ϕ := d̃ϕ = ∂µϕ ˜dxµ = (∂ζϕ, ∂χϕ) . (2.23)
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The tilde here denotes that the gradient is a one-form, which becomes crucial
here as the equivalent vector is different in non-Cartesian coordinates. The
equivalent vector in Rindler coordinates can be calculated

d⃗ϕ = (gζζ∂ζϕ+gζχ∂χϕ)e⃗ζ +(gχζ∂ζϕ+gχχ∂χϕ)e⃗χ =
(
− 1

c2χ2
∂ζϕ, ∂χϕ

)
. (2.24)

We next calculate for the Rindler basis vectors the non-zero Christoffel
symbols defined as Γα

βγ = (∂γ e⃗β)α

Γχ
ζζ = cχ,

Γζ
χζ =

1

cχ
,

Γζ
ζχ =

1

cχ
.

(2.25)

This allows us to calculate the divergence as the contraction of ∇A⃗ for an
arbitrary two-vector A⃗. Note that ∇µAµ := ∇ · A⃗ is frame independent. It

can be evaluated using the Christoffel symbols ∇ · A⃗ = ∂αAα + Γα
µαAµ. In

Rindler coordinates this reads

∇ · A⃗ = ∂ζA
ζ + ∂χAχ +

1

cχ
Aχ =

1

cχ
∂χ(cχAχ) + ∂ζA

ζ . (2.26)

Now let us substitute the vector equivalent of the field gradient from equation
2.24, A⃗ = d⃗ϕ, to obtain the following expression

∇ · ∇⃗ϕ =
1

cχ
∂χ(cχ(gχχ∂χϕ)) + ∂ζ(g

ζζ∂ζϕ) =
1

cχ
∂χ(cχ(∂χϕ)) − 1

c2χ2
∂ζ(∂

ζϕ).

(2.27)
When the divergence is 0, this is in fact the Klein-Gordon equation for a
massless scalar boson in Rindler coordinates [19]. In the next section we will
discuss this in much detail and quantise its solutions. There we will see that
the same expression is obtained from the Lagrangian formalism, but for now
we just note that this equation is consistent with the general definition of
the d’Alembertian operator [5]

∇ · ∇⃗ϕ ≡ □ϕ =
1√
−g

∂µ(gµν
√
−g∂ν)ϕ, (2.28)

where g = det(gµν).
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Another concept that is going to be important for the quantisation is
Killing vector fields [5], K = Kµ∂µ, defined on a manifold as those satisfying
the Killing equation

∇µKν + ∇νKµ = 0. (2.29)

These describe geometrical symmetries of spacetime. For example, a time-
like Killing vector field (for which gµνK

µKν < 0) is useful for identifying
quantities that are conserved in time. For a Rindler observer this is found to
be

K = ∂ζ = t∂x + x∂t. (2.30)

Note also that the time-like property remains unchanged under any Lorentz
transformation.

2.2 Canonical Field Quantisation in Rindler

Coordinates

We will only consider fields defined over a smooth, connected, differentiable
manifold, M, with metric g, called spacetime. We only partially cover this
manifold with the Rindler coordinates and restrict ourselves to the right
Rindler wedge only. Furthermore, to simplify some of our expressions we
are going to use natural units, in which c = ℏ = 1. We begin with the
massless, non-interacting Klein-Gordon Lagrangian in flat spacetime for a
classical complex field in 1+1 dimensional Rindler coordinates

LR
KG =

1

2

√
−ggµν∂µϕ(ζ, χ)∂νϕ

∗(ζ, χ). (2.31)

We take the sign convention ηµν = diag(−1,+1) for the Minkowski metric.
Note that ϕ and ϕ∗ are treated as independent fields. Substituting in the
Rindler metric from 2.22, the Lagrangian written explicitly is

LR
KG =

1

2

(
− 1

χ
∂ζϕ∂

ζϕ∗ + χ∂χϕ∂
χϕ∗). (2.32)

The equations of motion obtained from the Euler-Lagrange equation are then

∂µ
∂LR

KG

∂∂µϕ
= − 1

χ
∂ζ∂

ζϕ∗ + ∂χ(χ∂χϕ∗) = 0,

∂µ
∂LR

KG

∂∂µϕ∗ = − 1

χ
∂ζ∂

ζϕ+ ∂χ(χ∂χϕ) = 0.

(2.33)
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These are the massless Klein-Gordon equations for ϕ and ϕ∗, equivalent to
equation 2.27 in the previous section. Applying Noether’s theorem we define
the pseudo inner product as the conserved charge [20], which in the Rindler
coordinates takes the form

(ϕ1, ϕ2) = −i
∫
Σ

dχ
1

χ
(ϕ2∂

ζϕ∗
1 − ϕ∗

1∂
ζϕ2), (2.34)

where Σ is a spacelike hypersurface.
The general solutions to the Klein-Gordon equation in Rindler coordi-

nates are of the form

ϕR
n (ζ, χ) = NR

n e
i(k lnχ−Ωnζ). (2.35)

We allow for only positive wave vectors, k ≥ 0, and the positive sign in
front of it specifies that we are working in the right Rindler wedge. We now
impose boundary conditions with which we confine the field into a cavity so
that χl ≥ χ ≥ χr with 0 < χl < χr. The proper acceleration at the centre of
the cavity is then

αc =
2

χl + χr

. (2.36)

We also note that the edges of the cavity experience a different proper accel-
eration, but in their own rest frames every observer in the cavity agrees that
the length of the cavity remains constant. An external stationary observer on
the other hand perceives the cavity to be shrinking as it accelerates. We re-
quire the field to vanish at the boundaries, that is ϕR

n (ζ, χl) = ϕR
n (ζ, χr) = 0.

Therefore, we obtain the normalised solutions of the field modes in Rindler
coordinates

ϕR
n (ζ, χ) =

1√
Ωn ln χr

χl

sin (Ωn ln
χ

χl

)e−iΩnζ , (2.37)

where we have defined the frequencies as Ωn := +
√
k2 = nπ/ ln χr

χl
for mode

numbers n ∈ N. The full solutions to the Klein-Gordon equation are the
linear combinations

Φ(ζ, χ) =
∑
n

(anϕ
R
n + a∗n(ϕR

n )∗). (2.38)

Before we can begin the quantisation, we need to address an issue and
make a distinction between the two modes, ϕR

n and (ϕR
n )∗. Note that the
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inner product of (ϕR
n )∗ is negative and thus not positive definite

((ϕR
n )∗, (ϕR

n′)∗) = −(ϕR
n , ϕ

R
n′) = −δ(n− n′). (2.39)

Therefore, the quantised version of Φ(ζ, χ) cannot be interpreted as a single
particle wave function. To resolve this, the solutions are split into positive
and negative frequency solutions, ϕR

n and (ϕR
n )∗ with respect to the the time-

like Killing vector field via the eigenvalue equations [5, 20]

i∂ζϕ
R
n = +Ωnϕ

R
n , (2.40)

i∂ζ(ϕ
R
n )∗ = −Ωn(ϕR

n )∗. (2.41)

The interpretation developed by Feynman and Stückelberg is that while the
positive frequency solutions describe particles, the negative frequency solu-
tions describe negative energy particles propagating backwards in time, or
equivalently positive energy antiparticles propagating forwards in time [21].
In order to quantise the field we are promoting Φ(ζ, χ) to be an operator-
valued function by identifying an and a∗n as the annihilation and creation
operators respectively satisfying the commutation relation

[ân, â
†
n′ ] = δnn′ . (2.42)

Thus the coefficient of the negative frequency solution is a creation operator;
the operator that creates a particle as that positive energy single particle
field excitation. This resolves the issue of having both positive and negative
frequency solutions because our theory still only contains positive excitation
energies propagating forward in time, as desired.

Operator-valued functions have well defined vacuum expectation values,
but the fluctuations of the operator at a fixed point are infinite. To overcome
this problem, it is common to construct a wave-packet and thereby smear
the distribution over a space region. The Klein-Gordon field as a quantum
operator and its momentum conjugate can now be written

Φ̂(ζ, χ) =
∑
n

(ânϕ
R
n + â†n(ϕR

n )∗), (2.43)

Π̂(ζ, χ) = ∂tΦ̂(ζ, χ) = −iΩn

χ
Φ̂R(ζ, χ). (2.44)

We calculate the Hamiltonian using the standard definition

Ĥ =
1

2

∫
dχ
(
Π̂2(ζ, χ) + (∇χΦ̂R(ζ, χ))2

)
, (2.45)
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and the commutation relation in equation 2.42, obtaining

Ĥ =
∑
n

Ωn

(
â†nân +

1

2
δ(0)

)
. (2.46)

The delta function gives us an infinity in our expression for the Hamiltonian
but we can get rid of it by the so-called normal ordering. We simply claim
that we can’t measure absolute energies anyway and so we are only interested
in relative energies [20]. The normal ordered Hamiltonian is then written as

: Ĥ :=
∑
n

Ωnâ
†
nân. (2.47)

With this we are able to define the vacuum state as

ân |0⟩ = 0. (2.48)

It is normalised as ⟨0|0⟩ = 1, and spans the zero particle Hilbert space de-
noted as C. The single particle Hilbert space H is made up of the momentum
eigenstates of single particles defined as

|ψn⟩ = â†n |0⟩ , (2.49)

with energy eigenvalue
Ĥ |ψn⟩ = Ωn |ψn⟩ . (2.50)

An important prediction of Einstein’s relativity is the possibility for spon-
taneous particle creation following the relation E = mc2. To describe rel-
ativistic processes a suitable quantum theory cannot be for single particles
only and a multiparticle theory is necessitated. Therefore, a single parti-
cle Hilbert space is not appropriate for a relativistic quantum field theory.
Instead, we construct the Fock space by allowing for multi-particle states
[5, 20]. We do this by defining the N particle Hilbert space as given by the
tensor product of N single particle Hilbert spaces. The Fock space then takes
the form

F = C⊕H⊕H⊗2 ⊕H⊗3 ⊕ ... (2.51)

and is spanned by the states

|0⟩ , â†n |0⟩ , â†nâ
†
n′ |0⟩ , â†nâ

†
n′ â

†
n′′ |0⟩ , ... (2.52)
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Because all â†n commute, the states are symmetric under the exchange of any
two particles, eg. |p⃗, q⃗⟩ = |q⃗, p⃗⟩. This is known as Bose-Einstein statistics,
and particles with this property are called bosonic particles. Consequently,
the bosonic Fock space must include this symmetrisation of the tensor prod-
ucts over two or more bosons

F = C⊕H⊕ sym(H⊗2) ⊕ sym(H⊗3) ⊕ ... (2.53)

For example, the tensor product of two bosonic particles is symmetrised as

â†nâ
†
n′ |0⟩ =

1√
2

(
|ψn⟩ ⊗ |ψn′⟩ + |ψn′⟩ ⊗ |ψn⟩

)
. (2.54)

Throughout this thesis, only bosonic particles will be considered.

2.3 The Bogoliubov Transformation

Considering also the quantisation of the same field in Minkowski coordinates
by an external stationary observer Φ̂M(t, x), we now have two equivalent sets
of field equations in two different coordinates [20]. These are summarised
below

Φ̂M(t, x) =
∑
n

(ânϕ
M
n + â†n(ϕM

n )∗), (2.55)

Φ̂R(ζ, χ) =
∑
m

(âmϕ
R
m + â

†
m(ϕR

m)∗), (2.56)

with the corresponding field modes

ϕM
n (t, x) =

1√
nπ

sin (ωn(x− xl))e
−iωnt, (2.57)

ϕR
m(ζ, χ) =

1√
mπ

sin (Ωm ln
χ

χl

)e−iΩmζ , (2.58)

and frequencies with n,m ∈ N

ωn =
nπ

L
, (2.59)

Ωm =
mπ

ln χr

χl

. (2.60)
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There exists a transformation that allows us to change between the two
representations. It is called the Bogoliubov transformation and is expressed
as [5]

ϕM
n (t, x) =

∑
m

(
α∗
mnϕ

R
m(ζ, χ) − βmnϕ

R∗
m (ζ, χ)

)
ϕR
m(ζ, χ) =

∑
n

(
αmnϕ

M
n (t, x) + βmnϕ

M∗
n (t, x)

) (2.61)

The Bogoliubov coefficients are defined in terms of the inner products

αmn = (ϕR
m, ϕ

M
n ), (2.62)

βmn = −(ϕR
m, ϕ

M∗
n ). (2.63)

Calculating these coefficients can be tricky, and the details for evaluating
them in this particular case is presented in Appendix A. The results are

αnn =1 − 1

240
π2n2h2 + O

(
h4
)

(n = m)

αnm =
√
mn

(−1 + (−1)m−n)

π2(m− n)3
h+ O

(
h3
)

(n ̸= m)

βnm =
√
mn

(1 − (−1)m−n)

π2(m+ n)3
h+ O

(
h2
)
,

(2.64)

where h := αcL/c
2. To first order we may also express Ωm as

Ωm =
mπ

2 tanh−1
(
h
2

) ≈ L

h
ωm + O

(
h2
)
. (2.65)

Furthermore, we may also write the transformation of the mode operators
in the matrix form [

â

â
†

]
=

[
α∗ −β∗

−β α

] [
â

â†

]
. (2.66)

The transformation must be unitary, thus the coefficients have to satisfy the
identities

αα† − ββ† = I, (2.67)

αβT = (αβT)T. (2.68)
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Bogoliubov transformations are therefore unitary transformations that change
the basis from one set of mode solutions to another while preserving the com-
mutation relations of the field operators.

An interesting feature of these transformations can easily be read off
from equation 2.66; since βnm relates creation and annihilation operators, it
changes the particle content for one observer in relation to the other. In the
special case when βnm = 0, excitations are merely shifted between different
modes. In the general case, however, what a Minkowski observer describes as
vacuum, an accelerated observer will see as a populated thermal state. This
is the foundation of the so-called Unruh effect [22, 23].

Change in coordinate systems is not the only example of Bogoliubov
transformations. They also arise, for example, for any Gaussian operation in
quantum optics, as will be shown in chapter 4. Relativistic quantum field the-
ory therefore predicts particle creation in several, sometimes peculiar, cases.
For example, particle generation during the relative motion of the bound-
aries confining the field is known as the dynamical Casimir effect [24]. This
has been demonstrated experimentally first in 2011 using superconducting
circuits [25].

2.4 Quantum Field Theory in Curved Space-

time

The quantisation procedure we followed in 2.2 can be straightforwardly gen-
eralised to curved spacetimes by simply allowing the background metric to
be curved. The more general form of the Klein-Gordon Lagrangian density
for a pseudo-Riemannian manifold is [26]

L =
1

2

√
−g
(
gµν∂µϕ∂νϕ

∗ −m2ϕ2 − ξRϕ2
)
, (2.69)

where ξ is a dimensionless constant and R ≡ gµνRµν = gµνRλ
µλν is the scalar

curvature. This final term introduced represents the coupling between the
scalar field and the gravitational field and has an important purpose. Recall
how we removed infinities from our Hamiltonian by normal ordering in the
flat spacetime case. When spacetime is curved a more elaborate procedure
known as renormalisation is necessary [5]. The details of this procedure are
outside the scope of this thesis, here we just state that in the presence of an
interaction term, a new term of this form is needed for renormalisation.

18



The resulting Klein-Gordon equation is(
□ +m2 + ξR

)
ϕ = 0. (2.70)

It can be shown that as long as the spacetime is globally hyperbolic, meaning
it admits a Cauchy surface (that we used to identify the Killing vector field
and hence the positive and negative frequency solutions), a unique solution
exists [27].

The formulation discussed so far generalises readily to any real or complex
linear bosonic field equations that are derivable from a Lagrangian and have
a well posed initial value formulation, the latter of which is not trivial [27].
A formulation of quantum theory of fermion fields is also possible despite
their lack of a classical limit. Its mathematical structure is closely analogous
to that of the bosonic case, but with a few crucial differences. Firstly, the
canonical commutation relations must be replaced by the canonical anticom-
mutation relations. This leads to a construction based on a real inner product
space rather than a real, symplectic vector space. This is compensated by
taking the Hilbert space to be the anti-symmetric Fock space rather than
the symmetric one discussed earlier. Finally, the generalisation to complex
fermion fields has also been done with few modifications compared to the
bosonic case, see for example in Dimock (1982) [28].

Does this mean we have successfully reconciled quantum theory with gen-
eral relativity? Unfortunately, the answer is not yet. For example, the tension
between the equivalence principle of general relativity and the superposition
principle of quantum theory remains unresolved [29, 30]. In order to assign
quantum properties to gravity as well, while keeping to the field theory for-
malism, the gravitational field itself would also need to be quantised. Sadly,
gravity has proved to be nonrenormalisable with the usual perturbative meth-
ods.

Finding a suitable description for quantum gravity therefore remains to
be a challenge with several different approaches actively being developed [6].
Despite its short-comings, the semiclassical framework of quantum field the-
ory in curved spacetime (where gravity is kept classical) is still valid in a
limited range of cases [5, 27]. The precise extent of this limit of validity
depends on an ultimate theory of quantum gravity, therefore in its absence
it is unknown. This only adds to the motivation to experimentally probe the
validity of the framework in different scenarios. The expectation is that it
should break down at some point as the spacetime curvature approaches the
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Planck scales. Notwithstanding, the Planck length is extremely small leav-
ing plenty of room for interesting phenomena in which the potential quantum
properties of the gravitational field can be neglected and where the semiclas-
sical theory provides an adequate description.

The semiclassical approximation even allows one to express the back-
reaction effects the quantum fields bestow upon the spacetime geometry. As
in general relativity, the stress-energy tensor Tµν may be used to describe how
quantum matter couples to gravity using the semiclassical Einstein equation

Gµν = 8π⟨Tµν⟩. (2.71)

However, expressing and calculating these expectation values turns out to be
extremely difficult, especially for the physically interesting cases [27]. This
limitation indeed restricts the utility of the semiclassical theory.

Nevertheless, quantum field theory in curved spacetime provides an ex-
cellent framework to study a great range of phenomena where effects from
both general relativity and quantum mechanics interplay. With quantum
technologies rapidly developing, reaching unprecedented measurement preci-
sion, there is an increasing number of such cases where a better theoretical
understanding is crucial. For instance, the accuracy of atomic clocks are
approaching the level where they would be able to resolve gravitational time
dilation at scales comparable with the physical extension of the clock itself
[7]. The framework of the semiclassical theory could be used to account for
the curvature of spacetime within the clock. Steps in this direction were
taken in [3], where the authors propose an operational way to express the
clock time for a quantised light clock when it is resolving time dilation at
smaller scales than its own extension. In addition, in [31] the frequency spec-
trum of quantised light clocks were analysed in curved spacetime for both
rigid and deformable optical resonators.

Another excellent example is the exploitation of the relatively recent surge
in capabilities of Bose-Einstein condensates. These systems exhibit quantum
behaviour while retaining a relatively large mass, therefore coupling to grav-
ity stronger than usual quantum systems do [32]. Quantum field theory in
curved spacetime enables us to explore theoretical descriptions for scenarios
harnessing this aspect of these novel technologies. For example, the possibil-
ity of using these systems to detect gravitational waves was explored in [10]
and only very recently an experimental proposal was made for the extremely
precise measurements of the gravitational and cosmological constants [33].
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Chapter 3

Bose-Einstein Condensates

At the time of writing this, the theoretical prediction of Bose-Einstein con-
densation dates back exactly 100 years. In 1924 Satyendra Nath Bose pub-
lished his work on the statistics of photons [34], which led Einstein to predict
a peculiar phenomenon [35]: below a certain temperature threshold, a gas
of massive, non-interacting bosons undergo a phase transition, with a large
fraction of the particles occupying the lowest energy state. The obtained
new phase is what is known as a Bose-Einstein condensate (BEC). However,
the current technology at the time was far from developed for an experimen-
tal realisation. The first notable step was made by Fritz London in 1938,
when he made the connection between Bose-Einstein condensation and the
superfluidity of liquid 4He [36]. The theoretical dynamics of a BEC were
further developed by Bogoliubov in his 1947 theory, in which he describes
elementary excitations in an interacting bosonic gas [37]. Later, in 1961, a
very important result, the Gross-Pitaevskii equation was derived, describing
the weakly interacting, non-uniform Bose gas in the zero temperature limit
[38, 39]. In the meantime, in 1959 Eugene Hecht proposed a weakly interact-
ing BEC made up of spin-polarized hydrogen [40]. It still took decades for
the required cooling technology to be developed. It wasn’t until 1995 that
the first BECs were experimentally achieved by multiple groups in the same
year [41, 42, 43]. They all used gases of alkali metals, namely 23Na, 87Rb
and 7Li, cooled using powerful laser cooling methods followed by evaporative
cooling. The breakthrough finally enabled experimentation using BECs, the
full potential of which is still being explored to this day.

A notable research area that sprung out of this technological break-
through is the field of analogue models of gravity [44]. The idea to use
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suitable excitations in certain matter systems that mimic the propagation of
quantum fields on curved spacetime dates back to the 1980s. A well-known
example is using sound waves in a moving fluid as an analogue for light prop-
agating in a curved spacetime. It became clear in the early 2000s, hugely
after the work of Luis J. Garay and collaborators [45, 46], that BECs are
particularly well suited for the task. The idea is to use the so-called acoustic
metric, first derived by William G. Unruh in the early 1980s [47], to describe
an effective geometry on which acoustic disturbances travel. For instance,
a group in 2010 claimed that they successfully created an analogue black
hole with an event horizon from within which sound waves cannot escape
[48]. The field has been vibrant in the last 25 years and developed many
useful tools that can be applied outside the context of analogue gravity. In
particular, we will make good use of the acoustic metric.

In this chapter, we give a very brief introduction to Bose-Einstein conden-
sates, keeping only to the relevant points that will be necessary for our work
later. As such, we will skip the usual first lesson in describing the condensa-
tion process and the ideal zero temperature example, and jump straight into
the more realistic and useful case of an interacting Bose gas in section 3.1.
Much of this section is based on the popular textbooks by Pethick and Smith
[49] and Pitaevskii and Stringari [50]. We then go on to describe the conden-
sate in curved spacetime and derive the aforementioned acoustic metric in
section 3.2. Our approach is more closely following that of Serena Fagnocchi
and his collaborators [51], but the same acoustic metric has also been derived
by Matt Visser starting from a relativistic fluid dynamics description [52].

3.1 Weakly Interacting BEC

Before jumping into the microscopic theory of an interacting Bose gas, we
must first make a few assumptions. Firstly, we will only be considering
systems in the so-called dilute regime

a≪
(
N

V

)−1/3

, (3.1)

where a is the s-wave scattering length, N is the total number of particles
in the gas and V is the volume. For a Bose gas to condense into a BEC it
has to have temperatures lower than its corresponding critical temperature
T < Tc, which are typically of the order of nK for most alkali metals. At

22



these low temperatures in the dilute regime only pairwise interactions are
relevant and any other scattering process can be neglected in the low-energy
limit. Consequently, the scattering amplitude is completely determined by
the scattering length.

In coordinate space, the effective pairwise interactions at low energies
are contact interactions λδ(r − r′), with r and r′ the particle positions and
λ =

∫
drU(r) for an effective potential U(r). In momentum representation,

this corresponds to just the constant λ = 4πℏ2a/m. As we are interested
in the energy of many-body states, it is convenient to apply the mean-field
approximation, where all interactions are replaced by the average (effective)
interaction. In a fully condensed BEC at the 0 temperature limit, all bosons
occupy the single-particle state ϕ̂(r). The N-particle system wave function
is then

Ψ̂(r1, r2, . . . , rN) =
N∏
i=1

Φ̂(ri). (3.2)

As interactions at length scales less than the interparticle spacing are ne-
glected, the cut-off wave number can be effectively set to zero, and the effec-
tive Hamiltonian is

Ĥ =
N∑
i=1

(
p̂2
i

2m
+ V̂ (ri)

)
+ λ

∑
i<j

δ̂(ri − ri). (3.3)

Treating all atoms as being in the same state is, of course, a very idealised
case and in reality a number of atoms will be in higher energy states due to the
correlations at small atomic separations we have been neglecting. Particles
escaping the condensate due to interactions is known as depletion. The order
of depletion however, is less than 1% in experiments and therefore can be
safely neglected.

We now introduce the wave function of the condensate itself

ψ̂(r) =
√
Nϕ̂(r). (3.4)

The density of particles can be written as ρ =
∣∣∣ψ̂(r)

∣∣∣2. We write the evolution
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of this state in the Heisenberg picture, given by the Heisenberg equation

iℏ
∂

∂t
ψ̂(r, t) = −

[
Ĥ, ψ̂(r, t)

]
=

(
− ℏ2

2m
∇̂2 + V̂ (r, t) +

∫
drψ̂†(r′, t)U(r′ − r)ψ̂(r′, t)

)
ψ̂(r, t).

(3.5)

From here, the Bogoliubov transformations reveal a remarkable feature of
BECs.

3.1.1 Bogoliubov theory

What Bogoliubov showed in his influential work [37], was that the macro-
scopically occupied ground state, called the bulk of the BEC, can be treated
classically, while the fluctuations around it are still described quantum me-
chanically. To show this, we first rewrite the Hamiltonian 3.3 in terms of the
creation and annihilation operators of bosons with momentum state p, âp
and â†p respectively, which of course satisfy the usual commutation relations

[âp, â
†
p′ ] = δp,p′ , [âp, âp′ ] = [â†p, â

†
p′ ] = 0 . (3.6)

The Hamiltonian for a uniform BEC with no external potential, trapped in
a box of volume V is then

Ĥ =
∑
p

p2

2m
â†pâp +

λ

2V

∑
p,p′,q

â†p+qâ
†
p′−qâp′ âp, (3.7)

for which the solutions are plane waves

ψ̂(r) =
1√
V

∑
p

âpe
i
ℏpr. (3.8)

In the absence of depletion and perturbations we have

â†0 |n⟩ =
√
N + 1 |N + 1⟩ and â0 |n⟩ =

√
N |N − 1⟩ . (3.9)

Notice that when N ≫ 1, we can approximate â0 and â†0 by
√
N , known

as the Bogoliubov approximation. This assumes that the perturbations are
small, such that the number of particles that remain in the bulk, N0, still
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satisfy N0 ≫ 1. The total number of particles, ignoring depletion, is then
given by the operator

N̂ = N0 +
∑
p ̸=0

â†pâp. (3.10)

The wave function of the ground state can thus be approximated as a classical
state, ψ0. Essentially, we are ignoring the noncommutativity of â0 and â†0
when

〈
â†0â0

〉
≫ 1. This turns out to be a good approximation for describing

the macroscopic phenomena associated with a BEC.
The wave function of the condensate can thus be rewritten as a classical

ground state plus quantum perturbations

ψ̂(r) ≈ ψ0(r) + δψ̂(r), (3.11)

where ψ0 =
√
N0ϕ0 and δψ̂ =

∑
i ̸=0 ϕiâi. For example, the solution 3.8 then

becomes

ψ̂(r) ≈ 1√
V

(√
N0 +

∑
p ̸=0

âpe
i
ℏpr

)
. (3.12)

As for the Hamiltonian, it is sufficient in the Bogoliubov approximation to
retain only the terms that are no more than quadratic in δψ̂(r) and δψ̂†(r).
Therefore, one finds

Ĥ =
N2λ

2V
+
∑
p ̸=0

[(
p2

2m
+ ρ0λ

)(
â†pâp + b̂†pb̂p

)
+ ρ0λ

(
â†pb̂

†
p + âpb̂p

)]
,

(3.13)
where ρ0 = N0/V and we introduced the operator b̂p := â−p. The first term
gives the ground state energy of the condensate, E0 = 1

2
Nρλ.

We can find the eigenvalues and eigenstates of this Hamiltonian by per-
forming the Bogoliubov transformation. We introduce two new operators
defined as

α̂ := uâ+ vb̂†, β̂ := ub̂+ vâ†. (3.14)

The coefficients u and v have arbitrary phases, so we choose them to be real.
Due to the commutation relation properties, they must also satisfy

u2 − v2 = 1. (3.15)

The inverse transformation gives us

âp := upα̂p − vpα̂
†
−p, b̂p := upα̂−p − vpα̂

†
p. (3.16)
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The Hamiltonian can now be rewritten with only terms proportional to α̂†α̂

Ĥ = E0 +
1

2

∑
p ̸=0

(
ϵp −

p2

2m
− ρ0λ

)
+
∑
p ̸=0

(
ϵpα̂

†
pα̂p

)
. (3.17)

Therefore, the quantum perturbations can be thought of as collective ex-
citations creating quasi-particles and the system behaves as a collection of
independent bosons with the energy spectrum

ϵp =

√(
p2

2m

)2

+
p2

m
ρ0λ. (3.18)

The ground state is defined by the absence of excitation, i.e. α̂p |0⟩ = 0. In
the limit of low momentum p ≪ mcs, where the speed of sound in the BEC
is given by cs =

√
ρλ/m, the coefficients are of the same order |v−p| ≈ |up|

and the energy of the quasi-particle becomes that of a massless sound wave

ϵp ≈ pcs. (3.19)

For this reason, the quasi-particles are also often called phonons.

3.1.2 Time evolution

We will now have a look at the time evolution of the quasi-particles. In
general, putting 3.5 and 3.11 together we get the general time-dependent
Gross-Pitaevskii (GP) equation

iℏ
∂

∂t
ψ̂(r, t) =

(
− ℏ2

2m
∇̂2 + V̂ (r, t) +

∣∣∣ψ̂(r, t)
∣∣∣2λ) ψ̂(r, t). (3.20)

The time dependence of the ground state is simply

ψ0(r, t) = ψ0(r)e
− i

ℏµt, (3.21)

where µ = E(N) − E(N − 1) ≈ ∂E/∂N is the chemical potential. For this
stationary solution, the GP equation reduces to the eigenvalue equation(

− ℏ2

2m
∇̂2 + V̂ (r) + 2ρ0(r)λ

)
ψ0(r) = µψ0(r). (3.22)
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To calculate the equations of motion for δψ̂ and δψ̂† it is convenient
to work with the operator K̂ := Ĥ − µN̂ rather than Ĥ, since we wish to
conserve particle number on average. In the Heisenberg picture the evolution
is

iℏ
∂

∂t
δψ̂ = −

[
K̂, δψ̂

]
, and iℏ

∂

∂t
δψ̂† = −

[
K̂, δψ̂†

]
. (3.23)

This yields the equations

iℏ
∂

∂t
δψ̂ =

(
− ℏ2

2m
∇̂2 + V̂ (r) + 2ρ0(r)λ− µ

)
δψ̂ + ρ0(r)λδψ̂

†, (3.24)

iℏ
∂

∂t
δψ̂† =

(
− ℏ2

2m
∇̂2 + V̂ (r) + 2ρ0(r)λ− µ

)
δψ̂† + ρ0(r)λδψ̂. (3.25)

In the above we made use of the relation ρ0 = |ψ0|2. We can solve these
coupled equations using the Bogoliubov transformation from before, writing

δψ̂(r, t) =
∑
i

(
ui(r)αie

− i
ℏ ϵit − v∗i (r)α†

ie
− i

ℏ ϵit
)
. (3.26)

By substitution we can see that the coefficients ui and vi satisfy what are
called the Bogoliubov equations(

− ℏ2

2m
∇̂2 + V̂ (r) + 2ρ0(r)λ− µ− ϵi

)
ui(r) − ρ0(r)λvi(r) = 0, (3.27)(

− ℏ2

2m
∇̂2 + V̂ (r) + 2ρ0(r)λ− µ+ ϵi

)
vi(r) − ρ0(r)λui(r) = 0. (3.28)

3.1.3 Thomas-Fermi approximation

Another approximation that will be important for us is the Thomas-Fermi
approximation. This is a common approximation made for trapped BECs, in
which we assume that the the number of atoms is sufficiently large and the
interactions are repulsive. The consequence is that the kinetic energy is small
in comparison to the potential and interaction energies. In the Thomas-Fermi
approximation, one neglects the kinetic energy term from the very start, in
which case the time-independent GP equation reduces to(

V̂ (r) +
∣∣∣ψ̂(r)

∣∣∣2λ) ψ̂(r) = µψ̂(r). (3.29)
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This yields an important solution for ψ0(r), which can be expressed in the
useful form

ρ0 =
1

λ
(µ− V (r)). (3.30)

This result can be interpreted as the energy to add a particle being the same
at every point in the gas.

This can be generalised in 3+1 dimensions to the eikonal approximation,
which requires that all background quantities are approximately constant.
This is important for BECs on a curved spacetime background, and it has
the same consequence that the kinetic energy term is discarded.

3.2 BEC In Curved Spacetime

We are now ready to tackle the dynamics of BECs in curved spacetime,
described by the background metric gij with determinant g. We will start
with a relativistic description but then move on to only consider atoms in the
non-relativistic limit. This is more realistic for standard BEC experiments,
but it also avoids having to deal with anti-bosons. We will make use of all the
approximations and assumptions made in the previous section, in particular
note that 3.11 still holds, but we make a slight change in the notation, writing

ψ̂ = ψ0(1 + φ̂). (3.31)

We are still decomposing the field into a classical and a quantum component,
but expressed this way it will be more convenient in the calculations in this
section. Additionally, we adopt the Madelung representation for ψ0 and write
it in terms of its modulus and its phase θ(xµ)

ψ0 =
√
ρ0e

iθ. (3.32)

As our starting point, consider the Lagrangian density for an interacting
relativistic BEC, which can be written as

L̂(xσ) =
√
−ggab∂µψ̂

†∂νψ̂ −
(
m2c2

ℏ2
+ V (xσ)

)
ψ̂†ψ̂ − λ(ψ̂†ψ̂)2. (3.33)

The Euler-Lagrange equation for the bulk of the BEC is then found to be

□gψ −
(
mc2

ℏ
+ V (xµ)

)
ψ − 2ρ0λ = 0, (3.34)
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where □g is the generalised d’Alembert operator for spacetime metric g.
It is easily checked that in the non-relativistic limit the corresponding GP
equation 3.22 is recovered.

We now define a few useful quantities. Firstly, a quantity with dimensions
of velocity, encoding the strength of the interaction

c20 :=
ℏ2

m2
λρ0. (3.35)

We introduce the four-current uµ that can be related to the conserved Noether
current

jµ ≡ 1

2i
(ψ0∂µψ

∗
0 − ψ∗

0∂µψ0) = ρ0
m

ℏ
uµ, (3.36)

where we define

uµ :=
ℏ
m
gµν∂νθ. (3.37)

We can write the equations of motion for the bulk 3.34 in terms of these
quantities and obtain equations

∂µ(ρ0u
µ) = 0 (3.38)

−uµuµ = c2 +
ℏ2

m2

(
V (xµ) + 2λρ0 −

1
√
ρ0

□g
√
ρ0

)
. (3.39)

The first equation is none other than the continuity equation, ensuring that
the Noether current is indeed conserved. The second one can be used to find
the chemical potential, µ ≡ mcu0, as a function of ua, λ and ρ0.

Before expressing the equation of motion of the phonon modes, let us
reiterate some assumptions. Specifically, we mentioned at the end of the last
section that the eikonal approximation is going to be important here. We can
now spell out what this assumption entails. We require that all background
quantities vary slowly in time compared to the frequency Ω of the phonon
modes φ̂ ∣∣∣∣∂tρρ

∣∣∣∣≪ Ω ,

∣∣∣∣∂tc0c0
∣∣∣∣≪ Ω ,

∣∣∣∣∂tuµuµ

∣∣∣∣≪ Ω , (3.40)

and in space compared to the wavelength. Under these assumptions the
kinetic energy term can be neglected in the equations of motion for the per-
turbations, therefore this can be thought of as the Thomas-Fermi limit. The
phonons are then described simply by the massless Klein-Gordon equation

□Gδψ̂ = 0, (3.41)
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or in terms of the quantities defined in this section(
uµ∂µ

1

c20
uν∂ν −

1

ρ0
gµν∂µρ0∂ν

)
φ̂ = 0. (3.42)

We can rewrite this using the continuity equation 3.38 to commute ρ0u
µ with

∂µ and arrive at

∂µ

(
ρ0
c20
uµuν − ρ0g

µν

)
∂νφ̂ = 0. (3.43)

From this equation we can identify the bracketed expression as
√
−GGµν in

the operator □G, with the acoustic metric

Gµν =
ρ0√

1 − uσuσ/c20

(
gµν

(
1 − uσu

σ

c20

)
+
uµuµ
c20

)
, (3.44)

and its determinant, G. To simplify this slightly, we define the scalar speed
of sound in the BEC as

c2s :=
c2c20

|uαuα| + c20
. (3.45)

Thus, we get the acoustic metric in its useful form

Gµν = ρ
c

cs

(
gµν +

(
1 − c2s

c2

)
uµuν

|uµ||uν |

)
. (3.46)

In analogue gravity, this metric is often used with a flat Minkowski back-
ground metric, gµν = ηµν , and by experimentally controlling the fluid flow
velocity they are able to produce an effective metric that is of the form of
various spacetime metrics of interest from general relativity. For example,
in [51] Fagnocchi et. al. demonstrates how to map the acoustic metric into
the k = −1 FRW metric. However, we are actually interested in the oppo-
site. We will be looking at solving the Klein-Gordon equation for phonon
modes using the acoustic metric with a curved background spacetime when
the spatial velocity flows vanish.
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Chapter 4

Gaussian Quantum Metrology

The aim of quantum metrology is to maximise precision in measurements on
quantum states. Suppose we are interested in estimating a parameter ϵ that
is encoded in a quantum state. These types of problems are called continuous
problems, and usually we can assume that the dependence of the quantum
state on the parameter is known [53]. An experimenter may then prepare
a probe state ρ̂0 and send it through a channel that encodes the desired
parameter, transforming ρ̂0 → ρ̂ϵ. The estimation of the parameter ϵ can
then be made from the statistics of N repeated measurements on identical
states ρ̂ϵ. All these steps together form what is known as an estimating
channel. Our task is then to optimise the estimating channel through finding
the most appropriate probe state ρ̂0 and measurement scheme. Here, we will
only be considering continuous problems and within that field focus on the
local estimation theory. This means that the parameters we are going to be
dealing with are localised around a certain approximate value.

Furthermore, we are going to focus on Gaussian states and channels in
our estimating channels. These have proved to be immensely useful in ex-
perimental quantum physics due to several factors. Gaussian states are easy
to prepare and handle [54], resistant to decoherence [55], they admit to cru-
cial quantum phenomena like entanglement, therefore they can be used in
protocols such as quantum teleportation [56], and not least they are kind to
the theorist as they are also easy to handle mathematically.

We are first going to look at how the sensitivities achievable are bounded
and define the quantum Fisher information in 4.1. Then, in 4.2 we define
what we mean by Gaussian states and unitaries, and how they are useful in
calculating the quantum Fisher information. In writing these sections a lot of
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help came from Dominik Safranek’s exceptional PhD thesis [53]. This will be
followed by an application to a physical setup in 4.3, utilising the dynamics
of BECs. There, I will give an outline of the interferometry scheme proposed
in [2] by my supervisor and her collaborator, Richard Howl.

4.1 The Quantum Cramér–Rao Bound

Suppose a classical, parameter-dependent probability distribution p(x|ϵ) and
that we would like to estimate the parameter ϵ. We start by choosing an
estimator ϵ(X) for a given sample X = (x1, . . . , xN) [57, 58]. We then define
the mean square error of the estimator as

⟨∆ϵ2(X)⟩ =

∫
dx1...dxN(ϵ(X) − ϵ)2p(x1|ϵ)...p(xN |ϵ). (4.1)

A remarkably important result from estimation theory is the Cramér–Rao
bound which bounds the mean-square error from below, thus providing an
ultimate limit to the precision

⟨∆ϵ2(X)⟩ ≥ 1

MF (ϵ)
, (4.2)

where M is the number of measurements taken and F (ϵ) is the Fisher infor-
mation [59]. The Fisher information is a measure that gives us the amount
of information carried about ϵ by a random variable with probability distri-
bution p(x|ϵ). Mathematically, it is defined as

F (ϵ) :=

∫
dx

(∂ϵp(x|ϵ))2

p(x|ϵ)
. (4.3)

These classical concepts have quantum versions that quantum metrology
has greatly benefited from. In quantum metrology, experimental set-ups of-
ten aim to estimate a parameter ϵ and the quantum Cramér–Rao bound gives
a lower bound on the possible precision of the desired parameter. Calculat-
ing the most optimal precision, one is able to analyse the actual precision
achieved in the lab and compare various measurement techniques against
each other. In quantum mechanics, given a density matrix ρ̂ϵ, p(x|ϵ) is the
probability that measurement outcome x is obtained following a measure-
ment. We denote the quantum Cramér–Rao bound as

∆ϵ ≥ 1√
MH(ϵ)

, (4.4)
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where H(ϵ) is the quantum Fisher information [59, 60]. For the expression
of the quantum Fisher information we first define the Uhlmann fidelity, a
measure of ’closeness’ between quantum states ρ̂ϵ and ρ̂′ϵ [61]. It gives the
probability that one state will be identified as the other in a measurement
and is defined as

F(ρ̂ϵ, ρ̂
′
ϵ) :=

(
Tr

{√√
ρ̂ϵρ̂′ϵ

√
ρ̂ϵ

})2

. (4.5)

The quantum Fisher information can be written as [53]:

H(ϵ) := lim
dϵ→0

8
1 −

√
F(ρ̂ϵ, ρ̂ϵ+dϵ)

dϵ2
. (4.6)

The difference between the classical Fisher information and the quantum
Fisher information is that while the former is a measure of how much infor-
mation about ϵ can be extracted for a given choice of measurement basis, the
latter gives the amount of information that is in principle extractable from
the quantum state, i.e. how much information the state itself yields about ϵ.
The quantum Fisher information is therefore more general and we have that
F (ϵ) ≤ H(ϵ). However, the form we expressed it in above is not a very useful
one for calculations. It can be recast into various other forms, but the one
most useful for our purposes is done using the covariance matrix formalism
for Gaussian states [62], which is going to be discussed in the next section.

Considering probe states with quantum properties can provide a serious
advantage over classical states. Firstly, if we consider N identical copies of
the same state with the parameter ϵ encoded, quantum mechanics allows us
to measure all states at once. The quantum Fisher information then scales
as H(ϵ) ∼ N , known as the shot-noise limit, which is the same as for doing
all N measurements separately. However, we can do better by harnessing the
powers of entanglement. If one entangles the quantum states the quantum
Fisher information scales according to the Heisenberg scaling, H(ϵ) ∼ N2.
This quantum enhancement is what we will exploit as well in our work.

4.2 Gaussian States And Channels

In this section we introduce Gaussian states and Gaussian unitary channels,
then use them to find an expression for the quantum Fisher information.
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First, consider a finite set of basis vectors {|ψi⟩} spanning the single particle
Hilbert space. The corresponding annihilation and creation operators are
collected into a vector

Â =



â1
...
âN
â†1
...

â†N


. (4.7)

The commutation relations can then be expressed in matrix form

[Âi, Âj†] = Kij ⇒ K =

[
IN×N 0

0 −IN×N

]
, (4.8)

where we defined the matrix K, called the symplectic form.
Suppose a quantum state described by a density matrix ρ̂. The symmetric

characteristic function for this state is defined as

χ(ααα) = Tr
{
ρ̂D̂(ααα)

}
, (4.9)

where D̂(ααα) = exp
{
Â†Kααα

}
is the Weyl displacement operator [63]. The

quantum state ρ̂ is called Gaussian if its characteristic function is of Gaussian
form:

χ(ααα) = e−
1
4
ααα†σσσααα−id†Kααα. (4.10)

Here we have introduced the displacement vector, d, and the covariance
matrix, σσσ, which are the first and second statistical moments of the state
respectively. They are defined as

di = Tr
{
ρ̂Âi
}

(4.11)

σij = Tr
{
ρ̂{∆Âi,∆Âj†}

}
, (4.12)

where {·, ·} is the anti-commutator and ∆Â := Â−d. Note that the Gaussian
state is therefore a quantum state that is entirely characterised by its first
and second moments. Furthermore, the covariance matrix formalism enables
us to mathematically handle these states relatively easily and elegantly.
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We have now defined a Gaussian state, next we define Gaussian uni-
taries. Very simply, a Gaussian unitary is an operation that transforms a
Gaussian state into another Gaussian state, i.e. ρ̂′ = Û ρ̂Û †. Generally, all
such operators are generated via

Û = e
i
2
Â†WÂ+Â†Kααα, (4.13)

where we have introduced a Hermitian matrix W. We can also interpret this
as the matrix form of the Hamiltonian, Ĥ, given by

Ĥ = Â†WÂ. (4.14)

Under a Gaussian transformation the displacement vector and the covari-
ance matrix transform as

d′ = Sd + bbb (4.15)

σσσ′ = SσσσS†, (4.16)

where S is called the symplectic matrix, which we define as

S = eiKW, (4.17)

and bbb is defined as

bbb = ααα

(∫ 1

0

eiKWtdt

)
. (4.18)

The simplicity of these transformations is what gives this formalism its core
strength.

It has to be mentioned that our definition for the displacement vector
4.11 and the covariance matrix 4.12 are not the only representation used in
the literature. We will work with the complex representation as it proves
to be the most convenient in calculating the quantum Fisher information.
However, the real representation, in terms of position and momentum oper-
ators, provides a more intuitive picture for experimental setups and a lot of
authors choose to use that instead. In appendix B we discuss the different
representations and how to move between them.

4.2.1 The quantum Fisher information

We now express the quantum Fisher information in a computationally more
advantageous form. The full derivation can be found in [64]. For pure Gaus-
sian state, the quantum Fisher information is expressed in the covariance
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matrix formalism as [64, 65]

H(ϵ) =
1

4
Tr
[(
σ−1∂ϵσ

)2]
+ 2∂ϵd

†σ−1∂ϵd. (4.19)

Utilising the symplectic matrix S of a Gaussian unitary transformation we
define the matrix P := S−1∂ϵS. It can be shown that this matrix is of the
form

P =

[
R Q
Q∗ R∗

]
. (4.20)

This may be used to somewhat simplify the expression for the quantum
Fisher information above in a computational sense, to yield

H(ϵ) = 2 Re{Tr{QQ∗}} + 2∂ϵd
†σσσ−1∂ϵd. (4.21)

Calculating the second term when the covariance matrix is large can still
prove difficult, but further simplifications can be made in certain situations.
When we have full control over the preparation of the initial quantum state
described by d0 and σσσ0 = S0D0S

†
0, where D0 is the covariance matrix of a

thermal state and S0 is the symplectic matrix of the operations performed on
the thermal state, we can write the effects of the Gaussian channel encoding
ϵ according to equations 4.15 and 4.16

dϵ = Sϵd0 + bbbϵ,

σσσϵ = SϵS0σσσ0S
†
0S

†
ϵ.

(4.22)

As before, we define the matrices Pϵ := S−1
ϵ ∂ϵSϵ and P = S−1

0 PϵS0. Using
these, the second term in equation 4.21 can be rewritten as

2∂ϵd
†σσσ−1∂ϵd = 2(Pϵd0 + S−1

ϵ ∂ϵbbbϵ)
†σσσ−1

0 (Pϵd0 + S−1
ϵ ∂ϵbbbϵ). (4.23)

This trick greatly simplifies calculations like in [2], the results of which apply
to a wide variety of practical scenarios.

4.2.2 List of Gaussian unitaries

Here we provide a list of all possible Gaussian unitary channels.
For the case when W = 0, we obtain the Weyl displacement operator,

which is therefore the simplest non-trivial Gaussian unitary. We define the
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coherent state as a Gaussian state that is characterised solely by its displace-
ment operator. These states are eigenfunctions of the annihilation operator,
i.e. â |αn⟩ = αn |αn⟩. For each mode number n in an N mode system, the
coherent state is given by

|αn⟩ = D̂(αn) |0⟩ = e−
|αn|2

2

inf∑
k=0

αk
n√
k!

|k⟩ . (4.24)

Calculating the first and second moments from their definitions we obtain

d =

[
ααα
ααα∗

]
, σσσ = I. (4.25)

Other Gaussian states and unitaries of great importance are those ob-
tained when ααα = 0. In these cases, the unitary is fully described by the
Hermitian matrix W. First, we consider one-mode states (N = 1) and fully
parameterize the Hermitian matrix as

W =

[
−θ ireiϕ

−ire−iϕ −θ

]
. (4.26)

The case when r = 0 is called a one-mode phase shift and the corresponding
Gausian unitary and symplectic matrix take the form

R̂(θ) = e−iθâ†â, R(θ) =

[
e−iθ 0

0 eiθ

]
. (4.27)

On the other hand, when θ = 0, the transformation is called one-mode
squeezing at a squeezing angle ϕ. Its Gaussian unitary and symplectic matrix
are

Ŝ(r, ϕ) = e−
r
2
(eiϕâ†2−e−iϕâ2), S(r, ϕ) =

[
cosh r −eiϕ sinh r

−e−iϕ sinh r cosh r

]
.

(4.28)
A single-mode squeezed state is obtained by acting with this operator on the
vacuum state, i.e. |S(r, ϕ)⟩ = Ŝ(r, ϕ) |0⟩.

This concludes all possible one-mode Gaussian operations. Next we look
at the two-mode (N = 2) cases, while still assuming ααα = 0. Our Hermitian
matrix is now parameterized as follows

W =


−θ1 −iθBeiϕB ir1e

iϕ1 iseiθs

iθBe
−iϕB −θ2 iseiθs ir2e

iϕ2

−ir1e−iϕ1 −ise−iθs −θ1 iθBe
−iϕB

−ise−iθs −ir2e−iϕ2 −iθBeiϕB −θ2

 . (4.29)
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Parameters θ1 and θ2 are the angles of phase shift, just like before. Setting
all parameters to zero other than θn we recover the single-mode phase shift
operator R̂n(θn) for mode number k. Parameters θB and ϕB define mode-
mixing at the angle ϕB. Setting all other parameters to 0 gives the mode-
mixing operator

B̂(θB, ϕB) = eθB(eiϕB â†1â2−e−iϕB â†2â1). (4.30)

The symplectic matrix for this channel is given by

B(θB, ϕB) =


cos θB eiϕB sin θB 0 0

−e−iϕB sin θB cos θB 0 0
0 0 cos θB e−iϕB sin θB
0 0 −eiϕB sin θB cos θB

 .
(4.31)

Mode-mixing at angle zero, ϕB = 0, corresponds to the beam-splitter.
Parameters rn and ϕn define the single-mode squeezing unitaries Ŝn(rn, ϕn)

for the mode denoted with n. The two-mode squeezing channel is parame-
terized by s and θs. The Gaussian unitary for this channel is

Ŝ(s, θs) = e−s(eiθs â†1â
†
2−e−iθs â1â2), (4.32)

with corresponding symplectic matrix

S(s, θs) =


cosh s 0 0 −eiθs sinh s

0 cosh s −eiθs sinh s 0
0 −e−iθs sinh s cosh s 0

−e−iθs sinh s 0 0 cosh s

 . (4.33)

Acting with this channel on the vacuum state, the two-mode squeezed state
is obtained, |ST (s, θs)⟩ = ŜT (s, θs) |0⟩.

It turns out that these are all the possible Gaussian unitaries for all modes.
This means that all multi-mode (N > 1) Gaussian unitaries with ααα = 0, are
made up of just the phase-changing, mode-mixing and single- and two-mode
squeezing channels and their combinations.

4.3 Application To BECs

We now turn to applications and demonstrate how these techniques may
be applied to phonon modes in a BEC. The physical setup we are going to
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consider was named quantum frequency interferometry [2]. Unlike in spatial
interferometry, where waves travel along two spatially distinct paths, we
will use interference between phonons created in a BEC. This way, we may
increase precision without having to drastically scale up the experiment by
building longer interferometer arms. Another advantage gained by this is
that we can estimate parameters encoded by global unitary channels, since
the modes can interact at all times.

Let us start by recalling the Hamiltonian from section 3.1.

Ĥ =

∫
drψ̂†

(
− ℏ2

2m
∇2 + V (r)

)
ψ̂ +

λ

2

∫
drψ̂†ψ̂†ψ̂ψ̂. (4.34)

All assumptions made in that section are carried over, together with the Bo-
goliubov approximation, so we decompose the field operator ψ̂ into a classical
field, ψ0 =

√
N0ϕ0, representing the bulk of the BEC, and quantum fields,

δψ̂, describing phonon modes. Using the Bogoliubov approximation, δψ̂ can
be expressed as 3.26 and they obey the Bogoliubov equations 3.27 with the
only difference being, that here we will denote ϵi as Ωn.

We now take a small time-dependent potential γVγ(r, t), with γ ≪ 1. This
introduces an interaction term in the Hamiltonian, which can be written as

ĤI(t) = γ

∫
drVγ(r, t)

[
N0|ϕ0|2

+
√
N0

∑
n

(
âne

−iϑ(r)e−iΩnt + â†ne
iϑ(r)eiΩnt

)
(4.35)

+
∑
n,m

(
u∗n(r)um(r)â†nâme

i(Ωm−Ωn)t (4.36)

+
∑
n,m

vn(r)v∗m(r)ânâ
†
me

−i(Ωm−Ωn)t
)

+
∑
n,m

(
u∗n(r)v∗m(r)â†nâ

†
me

i(Ωm+Ωn)t (4.37)

+
∑
n,m

un(r)vm(r)ânâme
−i(Ωm+Ωn)t

)]
,

where exp{iϑ(r)} := ϕ0(r)u
∗
n(r) + ϕ∗

0(r)v
∗
n(r). Just by changing the external

potential Vγ(r, t), the experimenter is able to implement Gaussian unitary
channels. For instance, choosing Vγ(r, t) = V0 sinΩ+t with V0 a constant
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amplitude and Ω± := Ωn ± Ωm, the term 4.37 gives the form of a two-mode
squeezed state Hamiltonian

Ĥsq = s
(
eiθs â†nâ

†
m + e−iθs ânâm

)
, (4.38)

where s is the squeezing parameter and θs is the squeezing phase.
Another unitary that will be of use here is a three-mode mixing channel

called the tritter. It is generated by the Hamiltonian

Ĥtr =
ℏθt√

2
|a0|
[
eiϑt(ân + âm) + e−iϑt(α̂†

n + α̂†
m)
]
. (4.39)

This channel mixes the two side modes with the bulk of the BEC |a0| =
√
N0,

and can be obtained from 4.35 by choosing Vγ(r, t) = V0 cos (Ω+t) cos (Ω−t)
and assuming ϑn(r) ≈ ϑm(r).

We are now ready to build the interferometry scheme. Suppose a BEC
that is initially unperturbed, so all particles are in the ground state, assumed
to be a coherent state. This state will play the role of a pump beam, hence
we will refer to it as the pump mode. We will consider three modes in total,
with the pump mode and two phonon modes, so the initial displacement
vector and covariance matrix of this system is

d0d0d0 =
√
N0


eiθ0

0
0

e−iθ0

0
0

 , σ0σ0σ0 = I6×6. (4.40)

The phonons are then created by implementing a two-mode squeezing chan-
nel, that parametrically populates the side modes. The corresponding sym-
plectic matrix is

Ss =


1 0 0 0 0 0
0 cosh(s) 0 0 0 sinh(s)eiθs

0 0 cosh(s) 0 sinh(s)eiθs 0
0 0 0 1 0 0
0 0 sinh(s)e−iθs 0 cosh(s) 0
0 sinh(s)e−iθs 0 0 0 cosh(s)

 .

(4.41)
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We assume that the pump remains undepleted and stays in a coherent state
throughout these transformations. Particle number is conserved, and the
number of phonons created is given by Np = 2 sinh2 s. Following this, the
tritter is implemented, mixing the side modes with the pump, which will have
the effect of increasing precision. The symplectic matrix for this channel is

Str =

(
Str,α 000

000 S∗
tr,α

)
, (4.42)

where

Str,α =


cos(θt)

−ieiϑt sin(θt)√
2

−ieiϑt sin(θt)√
2

−ie−iϑt sin(θt)√
2

cos2
(
θt
2

)
− sin2

(
θt
2

)
−ie−iϑt sin(θt)√

2
− sin2

(
θt
2

)
cos2

(
θt
2

)
 . (4.43)

We may now apply the channel that encodes the parameter ϵ we would
like to estimate. This could be any convenient Gaussian channel for our
purposes, like a phase-shift channel, another two-mode squeezing channel, or
some mode-mixing channel. For example, in [2] it was considered how grav-
itational waves may implement a squeezing channel, leaving a trace through
an encoded parameter. Following the encoding procedure, the ‘beams are
recombined’, so to speak, by a reverse tritter operation followed by an active
beam splitter, the reverse of the squeezing unitary. Finally, the frequency
modes of the phonons are measured through a number-sum measurement.
The full interferometry scheme is illustrated in figure 4.1.

The quantum Fisher information and therefore the sensitivities can then
be computed using the results in 4.2.1. Multiple examples are presented in
[2], but we will look at a specific case in the next chapter.
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Figure 4.1: Circuit diagram representation of the quantum frequency in-
terferometry scheme. The top red circuit represents the bulk of the BEC,
initially in a coherent state, and the the other two circuits are the two side
modes, initially in a vacuum state.
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Chapter 5

BEC Gravimetry using the
quantum frequency
interferometre

We are now ready to discuss how the previous three chapters come together to
form a novel method of BEC gravimetry, as proposed in the patent [1]. BEC
gravimeters have been proposed before, see for example [66, 67], but their
measurement scheme uses conventional interferometre techniques, contrary
to our setup. Our aim is not necessarily just to enhance existing measure-
ment precisions, but to include general relativistic effects in the quantum
description of our quantum system. Our result will show how atoms at dif-
ferent points inside the condensate experience a different proper time, and
how this affects the frequency spectrum of phonons once they are entangled.
This is done by extending the work done on photonic systems in [3] to BEC
systems. Therefore, this chapter will share similarities with that paper.

The work presented in this chapter expands on the contents of the patent.
Here, we will consider a second BEC system as our reference to the phonon
frequencies, unlike in the patent, in which an ideal point-like clock was used in
the calculations. Furthermore, we will make use of the tritter operation in the
scheme of a quantum frequency interferometre to improve the sensitivities.
Although most of the work presented here is generally consistent with what
is shown in the patent, several discrepancies were discovered. These will be
pointed out and discussed as we progress through the calculations in this
chapter.

We will start by describing the setup in detail and making some necessary
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assumptions in 5.1. In sections 5.1.1 and 5.1.2, we then quantize the phonon
fields inside the BEC in a curved background, finding an expression for their
frequencies that includes general relativistic corrections. This will be followed
by a detailed description of the metrology techniques utilised in 5.2. Finally,
we evaluate the sensitivities obtainable for various measurement parameters,
with a focus on measuring local gravitational acceleration.

5.1 Setup And Field Quantization

In our setup we consider a weakly-interacting atomic gas cooled below a
critical temperature where the majority of the particles condense in their
energetic ground state and form a BEC. We adopt the dynamics discussed
in section 3.1. As such, we assume the Bose gas to be in the dilute regime,
where we neglect any scattering processes other than pairwise interactions
in the low-energy limit. The Bogoliubov approximation may be applied to
our system implying that the macroscopically occupied ground state, the
bulk of the Bose gas, may be treated classically, while the fluctuations about
it behave quantum mechanically. These excitations are kept as quantum
operators unlike the ground state which is described by a classical function.
In the low energy limit the quasiparticles behave as phonons with frequency
Ω.

To describe these phonons on a curved background we further impose
the eikonal approximation, as described in section 3.2. The phonon fields
obey the massless Klein-Gordon equation with the generalized d’Alembert
operator

□ ≡ 1√
−G

∂µ(Gµν
√
−G∂ν). (5.1)

The corresponding metric Gµν and its determinant G = det(Gµν) is the
acoustic metric, as in equation 3.46. We choose our reference frame, as-
suming isotropy, such that the spatial velocity flows vanish, i.e uµ = uν =
(−1, 0, 0, 0). For the BECs that we are considering here, c20/c

2 is of the order
of 10−19, therefore we can approximate cs ≈ c0.

Taking the background metric to be the Schwarzschild metric describing
spacetime curvature generated by the mass of Earth we get the effective
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metric in isotropic Cartesian coordinates (ct, x, y, z)

Gµν = ρ
c

cs

(
1 +

rS
4r̄

)4
diag

(
−

(1 − rS
4r̄

)2

(1 + rS
4r̄

)6
c2s
c2
, 1, 1, 1

)
. (5.2)

In the above rS is the Schwarzschild radius and r̄ = (x2 + y2 + z2)1/2. The
spacetime curvature within the BEC is small when the distance from the
BEC to the mass center is much larger than the Schwarzschild radius, i.e.,
rS/r̄ ≪ 1. In this case we can expand the metric using a Taylor series around
this parameter and neglect all contributions of higher than second order. We
thus obtain the effective metric

Gµν = ρ
c

cs

(
ηbec +

rS
r̄
Ibec +

r2S
2r̄2

diag

(
−c2s/c

2,
3

4
,
3

4
,
3

4

))
, (5.3)

where ηbec = diag(−c2s/c
2, 1, 1, 1) and Ibec = diag (c2s/c

2, 1, 1, 1). The phonon
field can be written as a sum of the mode solutions ϕk of the massless Klein-
Gordon equation

ψ =
∑
k

[ak ϕk + a∗k ϕ
∗
k] . (5.4)

The mode numbers k are discrete because the solutions must vanish at the
boundaries. The time-independent Fourier coefficients, ak, are promoted to
operators upon quantization [5].

We take the BEC to be in the uniform three-dimensional potential of an
optical box trap. This has been shown to be experimentally achievable in
[68], where they also cancelled the gravitational force on the atoms at a 10−4

level using a magnetic field. We take two such box cavities, one elongated
along the x axis, perpendicular to the Earth’s surface, and one along the
z axis, parallel to the Earth’s surface. We assume that their length in the
elongated direction, Lx and Lz respectively, is sufficiently longer than the
box’s dimensions along the other two axes, so that in the ultracold limit for
each BEC the momentum components of the phonons are only significant
along the elongated axis and vanish in all other directions. This is because
too much energy would be required to populate non-negligible excitations
of those modes. We can then consider the BECs to be effectively (1 + 1)
dimensional.

The BECs are held at a constant radius from the centre of Earth. The
vertical BEC, pointing along the x axis, experiences a proper acceleration
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along its longitudinal axis, which is compensated for by the experimentalist.
For the horizontal BEC, along the z axis, we can safely assume spacetime to
be approximately flat along the cavity for the lengths considered here. This
enables us to use the horizontal BEC as a reference in the laboratory frame.
The vertical phonon frequencies will have additional terms compared to the
horizontal case depending on their relative location and the local density
perturbations due to an imperfect cancellation of the gravitational force.

The lengths of the BECs are determined by the distance between the
sheet laser beams that form the end walls of the box trap. Assuming a Born
rigid rod is holding the beams apart, the proper length of a BEC with ends
at positions xµP and xµQ is given by

L =

∫ xµ
Q

xµ
P

dσ
√
gµνsµ(σ)sν(σ) , (5.5)

where sµ(σ) is the tangent vector to a space-like curve that connects the
segments of the rod from the end at xµP to the end at xµQ chosen such that it
lies inside the spatial slice defined by the rod’s rest frame [31]. The proper
lengths for horizontal and vertical cavities have been found for light clocks
in the Schwarzschild metric in [3] and will have the same form in the BEC
case.

Next, we will quantize the phonon fields in the two differently oriented
BECs and show how their time evolutions differ.

5.1.1 The horizontal BEC

The BEC oriented along the z-direction is placed at x = r̄0 between points
zl = −l/2 and zr = l/2, with coordinate length l := zr−zl > 0. We choose the
coordinates (ct, z) in the effective 1 + 1 dimensions and r̄(z) := (r̄20 + z2)1/2.
The effective metric components can be specified in equation 5.2, which after
expanding up to second order in z/r̄0 and rS/r̄0 and to first order in their
product yields

Gh = ρ
c

cs
fRS(r̄0)diag

(
−c2s/c

2,Σ(r̄0)
)
, (5.6)

where

fRS(r̄) :=

(
1 − rS

r̄
+

r2S
2r̄2

)
,
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is the redshift function and

Σ(r̄) :=

(
1 +

2rS
r̄

+
15r2S
8r̄2

)
,

is the spatial scale function. The proper length of the cavity oriented hor-
izontally is Lh = f

1/2
RS (r̄0)Σ

1/2(r̄0)l. The end points in terms of the proper
length are then

zl ≈ −f−1/2
RS (r̄0)Σ

−1/2(r̄0)
Lh

2

zr ≈ f
−1/2
RS (r̄0)Σ

−1/2(r̄0)
Lh

2
.

Before turning to the Klein-Gordon equation, we first make a simple
conformal transformation to coordinates (x̃0, z̃), where x̃0 := cst and z̃ :=
Σ1/2(r̄0)z. This can be done since the solutions to the Klein-Gordon equation
are conformally-invariant in 1+1 dimensions. In these conformal coordinates,
the effective metric now takes the diagonal form

G̃h = ρ
c

cs
fRS(r̄0)diag (−1, 1) . (5.7)

We are now able to easily solve the Klein-Gordon equation with Dirichlet
boundary conditions requiring that the solutions vanish at the ends of the
cavities ψh(x̃0, z̃l) = ψh(x̃0, z̃r) = 0. The mode solutions, ϕh,k, normalized
with respect to the Klein-Gordon inner product are

ϕh,k(x̃0, z̃) :=
1√
πk
e−iΩh,kt sin

(
Ωh,k

cs
(z̃ − z̃l)

)
, (5.8)

where k is a positive integer. The horizontal phonon frequencies Ωh,k are
given by

Ωh,k =
csπk

z̃r − z̃l
=
csπk

Lh

f
1/2
RS (r̄0). (5.9)

The field ψh is quantized in the ϕh,k basis by associating annihilation and

creation operators âh,k and â†h,k to the positive and negative solutions, ϕh,k

and ϕ∗
h,k respectively. The quantized phonon field in the horizontally oriented

BEC is then

ψ̂h(x̃0, z̃) =
∑
k

{
âh,k ϕh,k(x̃0, z̃) + â†h,k ϕ

∗
h,k(x̃0, z̃)

}
. (5.10)

The creation and annihilation operators satisfy the canonical commutation
relations [âh,k, â

†
h,k′ ] = δk,k′ , while all other commutators vanish.
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5.1.2 The vertical BEC

The second, vertical BEC is placed along the x axis, perpendicular to the
first one. It is convenient to choose the origin for the coordinates to be the
point where the horizontal BEC intersects the vertical one at x = r̄0. In these
effectively 1+1 dimensional coordinates (ct, x′), we have defined x′ = x− r̄0,
and assume that the ends of the BEC are located at x′b = −l(1 + χ)/2 and
x′t = l(1 − χ)/2. In this we introduced χ, which specifies the theoretical
point of intersection of the two BEC cavities with −1 ≤ χ ≤ 1. When the
intersection is at the middle of the vertical cavity χ = 0, while χ = −1 and
χ = 1 correspond to the intersection being at the bottom and top points
respectively. This is a useful reference in the laboratory frame to define the
frequencies measured. Note that in the patent only the special case of χ = −1
is considered.

As reported in [68, 69], we account for the external potential applied
to compensate for the gravitational force on the atoms. The experimenters
tuned the magnetic field gradient, B′, so it cancelled the gravitational force
as µBB

′ = mg to 10−4 level, where µB is the Bohr magneton. The applied
potential energy can then be effectively expressed as the Newtonian gravita-
tional potential energy

VB = mgx′ = −mGM

r̄2b
x′ = −mc

2

2

rSx
′

r̄2b
, (5.11)

where rS = 2GM/c2 was used. This is in conflict with the patent, where the
same potential is quoted in statement 0166 to be

V p
B = −m

2

ℏ2
rSx

′

r̄2b
u20 ≈

m2c2

ℏ2
rSx

′

r̄2b
. (5.12)

It is unclear how this was derived, but a dimensional analysis reveals that
this quantity has dimensions of 1 over length squared:

dimVp
B =

M2L2T−2

M2L4T−2

L ∗ L

L2
= L−2. (5.13)

As the expected dimension is that of energy, which it is for VB, this could be
due to a typo. Nonetheless, using the form obtained for VB here, the same
expression for the density perturbation as in the patent may be derived,
which will be shown next.
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The Earth’s gravitational potential at r̄0 would be recovered if r̄0 = r̄b
was matched perfectly. However, we are interested in the case when the
cancellation is not perfect, and the applied potential is tuned away slightly
from rS/r̄

2
0 to rS/r̄

2
b , resulting in a new effective potential, ∆V . We write the

shift in the BEC density as ρ′ = ρ0(1 + δρ). Using the Thomas-Fermi result
from section 3.1.3, the ground state density of the condensate in a uniform
potential is given by

ρ0 =
µ

λ
. (5.14)

Here, we introduced the chemical potential of the bulk, µ = mc2s, making use
of the approximation c0 ≈ cs. The new density is then written as

ρ′ =
1

λ
(µ− ∆V ) =

µ

λ
(1 + δρ). (5.15)

Rearranging for the density perturbation gives

δρ = −∆V

µ
=
rSc

2

2c2s
|Dv|x, (5.16)

where Dv := 1/r̄20−1/r̄2b is what we will call the tuning parameter. Since par-

ticle number is assumed to be conserved,
∫ x′

t

x′
b
dx′δρ = 0 must hold. Applying

these boundary conditions on the density perturbation we get

δρ =
rSc

2

2c2s
|Dv|(x′ +

lχ

2
). (5.17)

This is consistent with the expression for the same quantity of the patent in
statement 0167.

The effective metric with the perturbed density now takes the form

Gµν = ρ0
c

cs
(1 + δρ)

1
2

(
1 +

rS
4r̄

)4
diag

(
−

(1 − rS
4r̄

)2

(1 + rS
4r̄

)6
c2s
c2

(1 + δρ), 1

)
, (5.18)

with r̄(x′) := r̄0 +x′. This time, the effective 1 + 1 dimensional metric inside
the vertical BEC is expanded up to fourth order in rS/r̄0 and x′/r̄0 and
to second order in their product. However, in the obtained expression we
neglect all terms that are lower in order of magnitude than rSx

′/r̄20 ∼ 10−19.
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Note that the same procedure could be done for the horizontal metric and it
would not change the results in that section, as the second order expansion
would be recovered exactly. In the vertical case on the other hand, we retain
terms proportional to δ2ρ this way, which greatly enhances the precision of
the approximation. The resulting metric has the non-zero components

Gv,00 = −ρ0
cs
c
fRS(r̄0)

(
1 +

rSx
′

r̄20
+

3δρ
2

+
3δ2ρ
8

)
, (5.19)

Gv,11 = ρ0
c

cs
fRS(r̄0)Σ(r̄0)

(
1 − rSx

′

r̄20
+
δρ
2
−
δ2ρ
8

)
. (5.20)

Next, similar to the horizontal case, a conformal transformation to co-
ordinates (x̃0, x̃) is made in order to solve the Klein-Gordon equation. The
space-like coordinate is calculated as

x̃ =

∫ x′

0

dx′′

√
Gv,11(x′′)

|Gv,00(x′′)|

≈ Σ1/2(r̄0)x
′
(

1 − rSx
′

2r̄20
−
δ′ρ
4

(x′ + lχ)

+
δ′2ρ
8

(
x′2 +

3l

2
χ(x′ +

l

2
χ)

))
. (5.21)

In the above, we labeled the first derivative of the density perturbation as
δ′ρ := rSc

2

2c2s
|Dv|. In the new conformal coordinates, the metric is

G̃v = ρ0
c

cs
fRS(r̄0)

(
1 +

rSx
′

r̄20
+

3δρ
2

+
3δ2ρ
8

)
diag (−1, 1) . (5.22)

The Klein-Gordon equation is now easily solved with the Dirichlet boundary
conditions, which are ψv(x̃

0, x̃b) = ψv(x̃
0, x̃t) = 0, and the mode solutions

yield

ϕv,k(x̃0, x̃) :=
e−iΩv,kt

√
πk

sin

(
Ωv,k

cs
(x̃− x̃b)

)
, (5.23)

where the vertical phonon frequencies are Ωv,k := csπk
x̃t−x̃b

. These can be ex-
pressed in terms of the proper length using the result

l = f
−1/2
RS (r̄0)Σ

−1/2(r̄0)Lv

(
1 − rS Lv

4r̄20
χ

)
, (5.24)
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from [3], which yields

Ωv,k ≈
csπk

Lv

f
1/2
RS (r̄0)

(
1 −

δ′2ρ L
2
v

32
− rSLv

4r̄20
χ

)
. (5.25)

The linear density perturbation terms vanish to the relevant order due to
their boundary conditions. To quantize the field, we introduce creation and
annihilation operators â†v,k, âv,k that satisfy the canonical commutation rela-

tions [âv,k, â
†
v,k′ ] = δk,k′ , while all other commutators vanish. The quantized

phonon field ψ̂v in the vertical BEC is given by

ψ̂v(x̃
0, x̃) =

∑
k

{
âv,k ϕv,k(x̃0, x̃) + â†v,k ϕ

∗
v,k(x̃0, x̃)

}
. (5.26)

Comparing these results to the ones in the patent, equation 5.21 is in
disagreement with equation 40 in statement 0174, where it seems likely that
components Gv,00 are used instead of Gv,11/Gv,00 in the calculation. Despite
that, the result in equation 46 of statement 0176 is almost entirely consistent
with the one obtained here in equation 5.25, with the only difference being
a factor of 1/2 in the term proportional to δ′2ρ .

5.2 Quantum Metrology

We now discuss how one might use the vertically placed system to measure
certain parameters of interest. For our setup we consider the quantum fre-
quency interferometry scheme outlined in 4.3. In this type of interferometry,
unlike in conventional spatial interferometers, the frequency modes of inter-
est remain in physical contact with each other. This allows us to act on
our system with global unitary channels, which imprint the parameters to
be estimated and improve sensitivites by preparing entangled states. Below,
we show an implementation of this scheme on our BEC setup and calculate
bounds on the estimation precisions of proper time, gravity, and also the
dynamical Casimir effect. We will consider Gaussian operations and input
states only and make use of the covariance matrix formalism.

Our frequency interferometry scheme consists of three modes. The first
mode we take to be the bulk of the BEC (the phononic ground state).
We assume that this mode is initially in a coherent state and call it the
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pump mode. The other two modes are the phononic side modes represent-
ing collective excitations in the BEC. The side modes are assumed to be
initially unpopulated so they are both described by the vacuum state. To
populate them, we act on the state with a two-mode squeezing operation
Ûsq(r) = exp{reiϑsq(â†nâ

†
m − ânâm)}. In the covariance matrix formalism, the

state of the full system is then given by Ssd0 and Ssσσσ0S
T
s where Ss is the

symplectic matrix of this squeezing unitary and d0 and σσσ0 are the displace-
ment and covariance matrices of the initial coherent state respectively. This
is followed by a tritter operation with symplectic matrix Str, generated by
the Hamiltonian

Ĥtr =
ℏθ√

2

[
eiϑâ†0(ân + âm) + e−iϑâ0(â

†
n + â†m)

]
. (5.27)

This is a three-mode mixing channel that mixes the side modes with the
pump mode, further improving sensitivities.

The two operations discussed so far are brought about using suitable
external potential fields. These are then turned off and the BEC is allowed
to evolve freely in the box potential under the effect of gravity and the
gravity compensating potential. This is represented by a two-mode phase-
shift channel acting on the side modes

Ûϵ = e−
i
2
(ωn+ωm)τ0(â

†
nân+â†mâm). (5.28)

This has the effect of imprinting a parameter, ϵ, that is to be estimated with
the phases ωn and ωm of the respective states. This is different from a spatial
interferometer where the modes follow different trajectories and they each
pick up a phase resulting in sensitivity to the relative phase ωn−ωm. Instead,
this setup is sensitive to the total unitary transformation and therefore to
ωn + ωm. The corresponding symplectic matrix is

Sϵ =



1 0 0 0 0 0

0 e−
i
2
(ωn+ωm)τ0 0 0 0 0

0 0 e−
i
2
(ωn+ωm)τ0 0 0 0

0 0 0 1 0 0

0 0 0 0 e
i
2
(ωn+ωm)τ0 0

0 0 0 0 0 e
i
2
(ωn+ωm)τ0


.

(5.29)
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Finally, to recombine the three modes and create interference, the inverse
of the tritter and squeezing channels are applied, after which a number-
sum measurement is performed on the side modes. The state of the full
interferometer is then defined by d = Sd0 and σσσ = Sσσσ0S

T , where S :=
S−SϵS+ with S− := Ss(−r)Str(−θ), S+ := Str(θ)Ss(r) and Sϵ being the
state evolution under gravity.

In measuring ϵ the precision is bounded by the quantum Cramér-Rao
bound [70]

∆ϵ ≥ 1√
MH(ϵ)

(5.30)

where M is the number of measurements and H(ϵ) the quantum Fisher
information. It was shown in [71] that for the scheme we are considering
here, the impurities of the Gaussian state can be safely neglected, thus the
quantum Fisher information is written as in equation 4.19

H(ϵ) =
1

4
Tr
[(
σ(ϵ)−1∂ϵσ(ϵ)

)2]
+ 2∂ϵd

†(ϵ)σ−1(ϵ)∂ϵd(ϵ). (5.31)

Performing this calculation yields

H(ϵ) =
1

4
(∂ϵ((ωn + ωm)τ0))

2

[
sin2(2θ) sinh2 r

+ 2(1 + cos4 θ) sinh2(2r) + |α0|2
(

4 sin4 θ

+ cosh(2r) sin2(2θ) − sinh(2r) cos νP sin2(2θ)

)]
, (5.32)

where:

νP := 2(ϑ− ϑP ) + ϑsq. (5.33)

In the above |α0|2 = N0 is the number of particles in the pump beam after
the squeezing and ϑP is the phase of the pump.

We set our experimental parameters based on a 87Rb BEC trapped in
a uniform potential, as it was demonstrated in [68, 69]. In his PhD thesis,
Paul Juschitz discusses the different experimental approaches for creating the
optimal BEC for gravitational experiments and analyses the parameters [72].
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Parameter Symbol Value
Length of BEC L 70µm
Speed of sound in BEC cs 0.002 m/s
Distance from centre of Earth r̄0 6.37 × 106 m
Mode numbers n, m 2, 3
Number of particles in BEC N0 6 × 105

Squeezing parameter r 1.9
Tritter angle θ 0.81 rad
Interaction time τint 0.2 s

Table 5.1: Experimental parameters considered for a 87Rb BEC trapped in
a box potential, used in calculating the sensitivities.

He concludes for the setup we are considering here that the optimal mode
numbers are those no greater than 3. Furthermore, he sets a theoretical upper
bound on the squeezing parameter, which is r = 1.9. Above this value the
number of phonons created start to get too large, effectively destroying the
BEC. This corresponds to a squeezing factor of −13.3 Db1. While squeezing
has not yet been realised for a BEC in the box trap, various other methods
demonstrated squeezing up to about −8 Db [74, 75, 76, 77], not too far from
our theoretical limit. While its implementation remains an experimental
challenge, we base our calculations on the optimistic value of r = 1.9. Setting
the phases to be most optimal, νP = π/2, we find the optimal tritter angle
to be θ = 0.81 radians. We also set the point of intersection to be most
optimal, i.e. χ = 1. The parameters are summarised in table 5.1, assuming
a setup in which Lh = Lv := L. We take the interaction time with the
parameter encoding channel Ûϵ to be 0.2 seconds, safely below the lifetime
of the phonons reported for this BEC, which was 0.3 seconds [68, 69].

For the eikonal approximation to be valid, we require that the gradient
of the BEC density perturbation remains small compared to the wavelength
of the phonons ∣∣∣∣∂x′ρ′

ρ′

∣∣∣∣ ≈ ∣∣δ′ρ∣∣≪ 2πcs
Ωk

≈ 2L

k
∼ 10−5m. (5.34)

1Calculated as 10 log10(2 sinh
2 r) [73, 72]
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This in turn restricts Dv as

|Dv| ≪
(
rSc

2

2c2s

)−1
2L

k
∼ 10−25 m−2, (5.35)

or equivalently
r̄0
r̄b

≪ 1 ± 10−11. (5.36)

This means that the experimenter must tune the gravity compensating po-
tential so as to match the local gravitation to within picometre precision,
otherwise the density variations in space are too large on the scales of the
phonon wavelength, rendering the effective metric invalid. This severe lim-
itation doesn’t only pose a feasibility problem to the experimenter, but it
also significantly raises the relative error. Therefore there is a balance to be
struck here; cancelling gravity enough for the model to remain valid, but not
too much so that gravity leaves an effect that is measurable.

5.2.1 Estimating Proper Time

One could consider proper time as the encoded parameter, turning the setup
into a BEC clock. We found that the frequencies for the horizontal and
vertical BECs respectively for mode number k are given by

Ωh,k =
csπk

Lh

f
1/2
RS (r̄0), (5.37)

Ωv,k =
csπk

Lv

f
1/2
RS (r̄0)

(
1 −

δ′2ρ L
2
v

32
− rSLv

4r̄20
χ

)
. (5.38)

The proper time of an observer static at a fixed radial position r in Schwarzschild
spacetime is given by τ(r) = f(r)1/2t with respect to the coordinate time t.

We also define the proper time τ0 := f
1/2
RS (r̄0) t, measured by an ideal point-

like clock at r̄0. With respect to the point r̄0, the frequencies measured in
the laboratory reference frame are given by ωhτ0 = Ωh t and ωv τ0 = Ωv t.
This yields

ωh,k(r̄0) =
csπk

L
(5.39)

ωv,k(r̄0) = ωh,k(r̄0)

(
1 −

δ′2ρ L
2

32
− rSL

4r̄20
χ

)
. (5.40)
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The bounds on the error in estimating the proper time in the horizontal and
vertical BECs are related as

∆vτ0 = ∆hτ0

(
1 +

rSL

4r̄20
χ+

δ′2ρ L
2

32

)
, (5.41)

expanded to the relevant order. Thus, we can see how the proper time
changes inside the vertical BEC clock compared to the horizontal reference
BEC clock depending on their relative position, χ. This shows how the atoms
inside the BEC experience different proper times depending on their height.

The optimal bound to the relative error δ(τ0) := |∆τ0|/|τ0| for the verti-
cally placed BEC is found to be

δv(τ0) =
2

(ωv,n + ωv,m)τ0
√

MH ′(r, θ)
, (5.42)

where

H ′(r, θ) = sin2(2θ) sinh2 r + 2(1 + cos4 θ) sinh2(2r) (5.43)

+ |α0|2
(
4 sin4 θ + cosh(2r) sin2(2θ)

)
.

For a single measurement we get δ(τ0) = 5.9 × 10−7. This can be improved
by a factor of 10 for every factor of 100 times the measurement is carried
out. The light clock discussed in [3] significantly outperforms the BEC clock
presented here. This is expected due to the comparatively slow speed of
sound in the BEC relative to the speed of light.

5.2.2 Estimating Local Gravitation

There are at least two ways how one might treat local gravity as the encoded
parameter. One could estimate it directly, considering ϵ = g := GM/r̄20, or
indirectly through estimating the Scwarzschild radius, ϵ = rS := 2GM/c2,
as done in the paper for the light clock case [3] and in the patent. The two
quantities relate to each other as rS = 2r̄20g/c

2. The vertical frequency can be
expressed in terms of the local accelerations due to gravity and the gravity
compensating potential, g and a respectively, as

ωv(r̄0) = ωh(r̄0)

(
1 − L2

32c4s
(g − a)2 − Lg

2c2
χ

)
. (5.44)
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Therefore, the error bound in estimating local gravitation in the vertical BEC
can be expressed as

δv(g) =
2

gτ0
d
dg

(ωv,n + ωv,m)
√

MH ′(r, θ)

=
32c3sc

2

(n+m)πτ0g (Lc2GM |Dv| + 8c4sχ)
√

MH ′(r, θ)
, (5.45)

where we used |g − a| = GM |Dv|. Note that we dropped the negative
signs from the frequency 5.44, as the expression has been squared and square
rooted.

To make an exact comparison with the patent, we can recast the above in
terms of rS in a form consistent with the one used in the patent. Firstly, note
that in calculating these sensitivities the patent considers an ideal point-like
clock at infinity as the reference, therefore we set χ = 0. Second, the esti-
mating channel comprises simply of a single-mode squeezed state without the
tritter, which leads to a slightly different quantum Fisher information H ′(r).
Nonetheless, taking these changes into account we find that our expression
for the relative error bound on the proper time, δ(τ0) 5.42, is consistent with
the equivalent expression of the patent presented in equation 65 of statement
0187. Following the methods of the patent, we now express the relative error
bound for rS in the vertical BEC in terms of the relative error bound for τ0
in the horizontal BEC as

δv(rS) = δh(τ0)
τ0
rS

ωh,n+m∣∣∣ d
drS

(ωv,n+m τ0)
∣∣∣

=
4

rSL

c2s
c2

8

δ′ρL
δh(τ0)

1

|Dv|
. (5.46)

This is similar but not the same as the equivalent expression in equa-
tion 78 of statement 0200 of the patent, with two discrepancies. The first
is that the expression derived above is missing a factor of

√
2 compared to

the patent’s result. This is simply due to the patent considering an ideal
point-like clock as the reference, affecting how the sensitivities combine, as
discussed in statement 0192. However, the second discrepancy is significant
and severe. Specifically, the factor 1/|Dv| is obtained instead of r̄20V

p
B . Per-

forming a dimensional analysis one finds the expression for δv(rS) derived
here to be dimensionless, as would be expected for the relative error. How-
ever, the expression in the patent is only dimensionless if V p

B is dimensionless
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(as all other components combined are dimensionless). But previously, in
equation 5.13, it was found that V p

B has dimensions of 1 over length squared.
It is possible that the form of V p

B is wrong in the patent and it is actually
dimensionless, or that r̄20 is included by mistake and V p

B has a similar (or
potentially the same) role as what is denoted by Dv here.

The patent reports a value of 10−16 for the relative error bound in state-
ment 0211. According to the above expression 5.46, and the parameters
defined in the patent in statement 0195 and 0222, this corresponds to |Dv| ∼
10−13, which violates the eikonal approximation conditions established in
equation 5.35. The patent makes no mention of this approximation or why it
is ignored. In fact, this could be viewed as the greatest discrepancy between
the work in the patent and the work presented here. With only the typo
corrections and small adjustments discussed, a similar result for the relative
error bound obtained in the patent could be justified here. However, im-
posing the necessary assumption first mentioned in 3.40, then spelled out in
the relevant format in 5.34, suggests that these results lie outside the regime
where the model used can be considered valid.

Calculating the relative error bound in a single measurement of rS for
the light clock presented in [3] with the parameters used there, we obtain
δlight(rS) = 9.7×106. The BEC setup outlined in this thesis would outperform
this as long as |Dv| > 10−21. This, however, still lies outside of the permitted
bound according to the condition 5.35.

To compare the performance of our BEC gravimetre to commercial com-
petitors, we calculate the sensitivities as ∆vg/

√
M/sec and use the conven-

tional units of Gal/
√

Hz. We are assuming a sampling rate of 2Hz, meaning
two measurements taken every second. The exact value depends on how fast
the experiment can be set up after each measurement. Figure 5.1 shows these
sensitivities for different values of |Dv| for two different tritter angles. When
the tritter is tuned to the optimal angle, an improvement of 2 orders of mag-
nitude is observed compared to when the tritter is turned off. The vertical
red line represents the upper limit on the tuning parameter. According to
the condition 5.35, all sensitivities right of the red line are prohibited if the
eikonal approximation were to remain valid. This condition heavily limits
the sensitivities achievable.

In comparison, the state of the art commercial quantum gravimetre,
µQuans, reports a sensitivity of 5 × 10−5 Gal/

√
Hz [78]. It is an atom in-

terferometre using laser cooled atoms, with both the control unit and sensor
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Figure 5.1: Sensitivities on a single measurement of g for different values
of the tuning parameter. The yellow line corresponds to the measurement
scheme without the tritter, and the blue line to when the tritter angle is
most optimal. The vertical red line indicates the restricting threshold on the
tuning parameter due to the eikonal approximation.

less than a metre tall. Its level of performance in terms of sensitivity corre-
sponds to |Dv| ∼ 10−18 in our BEC setup. This means that the sensitivity of
our BEC gravimetre scheme with the parameters defined here falls short by
about 8 orders of magnitude from the current leading commercial quantum
technology.

5.2.3 Estimating The Dynamical Casimir Effect

Our setup may also be used to measure the dynamical Casimir effect, induced
by the relativistic motion of the end walls of the box potential confining the
BEC. The transformation of quantum field states under this effect in curved
spacetime was discussed in a paper by Maximilian Lock and Ivette Fuentes
[4], where they also proposed that their predictions could be tested with a
vertically oriented BEC. Here we quantify the sensitivities achievable with
such a setup, but to keep things simple, we consider just a single phonon
mode. Then, we discuss how one might apply the quantum frequency inter-
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ferometry scheme to improve the sensitivities.
Suppose the experimenter moves the top end of the vertical BEC in an

oscillatory way, so that its coordinate position is

xt = xt,0 + A sin (νt). (5.47)

During this motion, the proper length of the BEC oscillates as

L(t) = L0 + Ã sin (νt). (5.48)

We assume that the amplitude of the oscillation is small compared to the
length of the BEC. The two amplitudes are then related as

A =

√
fRS(xt,0)√

fRS(xt,0) + rS
2xt,0

Ã. (5.49)

Furthermore, we must also assume that the speed of oscillations is much
slower than the speed of sound in the BEC. This, in turn, sets an upper limit
on the amplitude of the oscillation.

As a result of this boundary motion, the phonon mode transforms under
the combination of a phase shift and a single mode squeezing channel, as
described in [4]. This implies the creation of phonons due to the relativistic
motion of the boundaries, which in principle can be measured with this setup.

The state of the full scheme is then d = Sϵd0 and σσσ = Sϵσσσ0S
T
ϵ , where

Sϵ = R(ωkt)Sss(rdc). The single mode phase shift and squeezing symplectic
matrices, R and Sss are defined in equations 4.27 and 4.28 respectively. The
matrix elements of Sϵ are the Bogoliubov coefficients

Sϵ =

[
α β
β∗ α∗

]
, (5.50)

defined by the inner products

α =

(
ϕv,k(x0, x; t0 + δt, xt,0 + δx), ϕv,k(x0, x; t0, x0)

)
β = −

(
ϕv,k(x0, x; t0 + δt, xt,0 + δx), ϕ∗

v,k(x0, x; t0, x0)

)
. (5.51)

These inner products are evaluated in [4] and the results can be related to
rdc. Specifically, in the case when the experimenter drives the boundary at
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the resonance ν = ωk and νt = pπ for some p ∈ N, we can write

rdc = arcsinh

{
ik
A

L0

f 2
RS(xb)

fRS(xt,0)

(
1 − (−1)p

3kfRS(xb)
− π

8

ArSt

L0x2t,0fRS(xt,0)

)}
. (5.52)

We may choose the encoded parameter to be ϵ = A/L0, for which the
quantum Fisher information from equation 5.31 yields

H(ϵ) =
8ϵ2(C1 − 2C2ϵ)

2(C1 − C2ϵ)
2

(1 − 2ϵ2(C1 − C2ϵ)2)2
, (5.53)

with

C1 :=
fRS(xb)

fRS(xt,0)

1 − (−1)p

3

C2 :=
f 2
RS(xb)

f 2
RS(xt,0)

kπrSt

8x2t,0
.

We can see that C2 is the relativistic correction, but it is 16 orders of mag-
nitude smaller than C1 for the parameters of our system.

Higher amplitudes improve the sensitivity, but there are limits on how
big it can get. If we assume the 0.2 seconds interaction time again with the 2
mm/s speed of sound in the BEC, we get that A ≥ 40/(4p)µm. The number
of oscillations doesn’t affect the sensitivities, as long as p is odd, therefore
the most optimal case is when there is a single full oscillation with maximal
amplitude. For M = 105 measurements, we obtain the sensitivity to be
∆ϵ = 0.02 and relative sensitivity δϵ = 0.14.

In order to achieve higher sensitivities a displacement operator may be
added to the measurement scheme. Employing the quantum frequency in-
terferometre may improve sensitivities even further. There, the boundary
motion would generate both single mode and two mode squeezing, each with
their own squeezing parameter. As an interferometre, time dependent phonon
frequencies would also enter the Fisher information, which would have an
even more complicated form than before. One would also need to pay atten-
tion to using consistent coordinates throughout, compatible with the form of
the Bogoliubov coefficients presented in [4].
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Chapter 6

Conclusions

In this thesis we discussed and expanded on a novel way BECs could be used
as an absolute gravimetre, first proposed in the patent [1]. We showed how
quantum fields describing the phononic modes of a BEC can be quantised in
the Schwarzschild metric, describing the curvature of spacetime around the
Earth. The phonon frequency solutions of an elongated, vertically placed
BEC were compared to a horizontally placed one. As only the vertical BEC
couples to gravity, the horizontal BEC was used as reference. This replaces
the need for an unrealistic point-like clock placed at infinity to be the refer-
ence for the frequencies. The patent mentions the possibility to do this but
stops short from including it in its calculations.

The true novelty of the proposal lies in the interferometry scheme em-
ployed to estimate the effect of local gravitation. Current best interferome-
tres, like the ones used for gravimetry, use spatial interferometry which have
their sensitivities limited by the size of the interferometre arms and time of
flight. On the other hand, quantum frequency interferometres promise to
keep high precisions while keeping the system size small. This is achieved by
carrying out the interferometry in the frequency domain using phonon modes
trapped in a uniform box potential. To quantify the sensitivities, we used
techniques from Gaussian quantum metrology and the covariance matrix for-
malism together with the quantum Cramér-Rao bound. We demonstrated
the potential for enhancing the precision by harnessing quantum entangle-
ment through a Gaussian unitary operation called the tritter, not considered
in the patent. This improved sensitivities by 2 orders of magnitude.

Regrettably, the calculations presented in this thesis disagree with the
calculations in the patent in several places. Some of these are believed to be
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just potential minor typos in the patent and can be accounted for. However,
there are discrepancies with severe consequences on the final results. One
of these dissimilarities involves the expression for the gravity compensating
potential, induced by a magnetic field gradient, given by 5.11. The patent
presents a different expression, one that appears to have the wrong dimension
for a potential energy. It is unclear to the author of this thesis how this
expression was derived. Nonetheless, using the form of the potential given
in this thesis an expression for the gravity induced density perturbation was
derived (see equation 5.17) that is consistent with the patent. The issue
appears again in the final expression for the relative error bound in estimating
the Scwarzschild radius of the Earth. Following the derivation in the patent,
in equation 5.46 the same expression was recovered for the relative error
bound but with the difference of the inverse of the tuning parameter being
replaced by the gravity compensating potential multiplied by the square of
the radial distance from the centre of Earth. This causes issues with the
dimensions again, as the relative error bound presented in the patent does
not seem to be dimensionless neither by considering the previously obtained
nor the expected dimensions for the external potential. On the contrary, the
expression derived in this thesis for the relative error bound is shown to be
dimensionless, as expected. It is possible that the symbol used in the patent
is related to the tuning parameter in this final expression, rather than to the
external potential.

However, these discrepancies discussed so far do not significantly impact
the final results. The most critical difference is that the patent seems to
neglect an assumption crucial for the derivation of the effective spacetime
metric for the BEC, which believed to have profound consequences on the
results found in this thesis. An overview of the derivation is given in section
3.2, with the full details found in [51]. This latter source also stresses that
our description of phonons on a curved background is only possible if the
relativistic quantum potential can be neglected. The authors then specify
the necessary conditions for this, one of which is that the density of the
BEC must vary slowly in space compared to the scales of the period of the
phonons. This has a significant negative impact as the coupling of gravity to
this density is precisely what our scheme uses to measure the effect of gravity.
In equation 5.35 it is shown that the effect of gravity must be cancelled to
an extreme precision for our theoretical model to remain valid. This limits
the extent to which gravity can couple to our system and suppresses the
sensitivities.
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We plotted the sensitivities in the conventional units used for gravimetres
for different values of the tuning parameter. The experimental parameters
used in our calculations were based on actual reports from an experiment
where a 87Rb BEC was trapped in a box potential [68, 69], and a thorough
analysis on BEC squeezing carried out by Paul Juschitz in his PhD thesis
[72]. Inspecting the final expression for the relative error bound 5.2.2, it is
clear that to lower its value one could attempt to increase the mode num-
bers, the interaction time, the length of the BEC, the tuning parameter, the
number of particles in the BEC or the squeezing parameter. One must be
careful however, as increasing some of these parameters may have undesir-
able effects. All of the listed parameters are limited by and depend strongly
on the characteristics of the specific BEC that is prepared in the laboratory.
The parameter values defined in this thesis are, to the best knowledge of the
author, the most optimal for our purposes, which seem feasible with current
technology. Future developments in BEC preparation could yield a setup
that would result in improved sensitivities within our measurement scheme.

The state of the art commercial quantum technology measuring local
gravity is from µQuans, reporting a sensitivity of 50 µGal/

√
Hz [78]. This

is already a compact and portable device with an impressive precision, but
even smaller, non-quantum devices are available on the market. For exam-
ple, micro-electromechanical-system accelerometers can achieve sensitivities
in the µGal/

√
Hz scales [79], while one such device capable of sensitivities in

the sub-µGal/
√

Hz regime was landed on Mars by NASA’s InSight mission
[80]. Another BEC gravimetre has also been developed by a German group
by preparing a BEC on a chip and letting it free-fall inside a cube of 1 cm3

[66]. While this method differs from the one employed in this thesis, as it
also uses the conventional spatial interferometry techniques, it still promises
impressive sub-µGal/

√
Hz sensitivities. The competition is therefore fierce

and the calculations of this thesis suggests that the gravimetre scheme being
proposed must improve its sensitivities by at least 8 orders of magnitude
before joining the race.

A potentially more fruitful use of the quantum frequency interferometry
scheme could be to measure the effects of the dynamical Casimir effect. In
section 5.2.3 we make the first steps towards this, following on from the work
in [4]. We expect that the relativistic correction terms would also have a
bigger impact on the sensitivities compared to a photonic system, due to the
speed of sound in the BEC replacing the speed of light. It would be an inter-
esting next step to employ the measurement scheme to this task and see what
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precisions one might achieve. Of course, this experiment would still suffer
from the need to cancel the gravitational force to an extremely high degree
of precision in the vertical BEC for the phonons to stay alive. Nonetheless,
we have presented some interesting use cases of the quantum frequency inter-
ferometre using a vertically oriented BEC, a tabletop experiment that could
potentially be performed in a lab on the surface of Earth.
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[44] Carlos Barceló, Stefano Liberati, and Matt Visser. Analogue gravity.
Living Reviews in Relativity, 8, 2005.

[45] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller. Sonic analog of
gravitational black holes in bose-einstein condensates. Physical Review
Letters, 85(22):4643–4647, November 2000.

[46] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller. Sonic black holes
in dilute bose-einstein condensates. Physical Review A, 63(2), January
2001.

[47] W. G. Unruh. Experimental black-hole evaporation? Phys. Rev. Lett.,
46:1351–1353, May 1981.

[48] Oren Lahav, Amir Itah, Alex Blumkin, Carmit Gordon, Shahar Rinott,
Alona Zayats, and Jeff Steinhauer. Realization of a sonic black hole
analog in a bose-einstein condensate. Physical Review Letters, 105(24),
December 2010.

[49] C. J. Pethick and H. Smith. Bose–Einstein Condensation in Dilute
Gases. Cambridge University Press, 2 edition, 2008.

[50] Lev Pitaevskii and Sandro Stringari. Bose-Einstein Condensation and
Superfluidity. Oxford University Press, 01 2016.

[51] S Fagnocchi, S Finazzi, S Liberati, M Kormos, and A Trombettoni. Rel-
ativistic bose–einstein condensates: a new system for analogue models
of gravity. New Journal of Physics, 12(9):095012, September 2010.

[52] Matt Visser and Carmen Molina-Paŕıs. Acoustic geometry for general
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linear atom interferometer surpasses classical precision limit. Nature,
464(7292):1165–1169, March 2010.
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Appendix A

Bogoliubov coefficients

First, we note that we may choose the point of transition where the field
inside the box goes from being inertial to non-inertial be at t = 0. At this
point ζ = 0 and χ = x. This allows us to write down the inner product as

αmn = −i
∫
∑
dx
(
ϕM
n

1

χ
∂ζϕR∗

m − ϕR∗
m ∂tϕM

n 0
)

=

∫ xr

xl

dx
1√

ωnΩmL ln xr

xl

(
ωn +

Ωm

x

)
sin
(
ωn(x− xl)

)
sin
(
Ωm ln

x

xl

)
.

(A.1)
This integral has no analytical solutions, however, we can find an approx-

imation by introducing the dimensionless parameter h defined as

h :=
αcL

c2
=

L

χc

. (A.2)

Note that for all practical cases αcL≪ c2, which in turn means that h≪ 1.
We can utilise this to rewrite the integrand in terms of h and then Taylor
expand around h = 0. Using the expressions αc = 2c2

χl+χr
and L = χr − χl we

can write χl,r in terms of h:

χl =

(
1

h
− 1

2

)
L

χr =

(
1

h
+

1

2

)
L

(A.3)
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We may plug this into ln χr

χl
and note using an identity that

ln
χr

χl

= ln

(
1 + h

2

1 − h
2

)
= 2 tanh−1

(
h

2

)
, (A.4)

which holds for h
2
< 1. Before the series expansion, we first also perform a

change of variables. We define a new variable as

x′ := x+ xl. (A.5)

The new limits after the substitution are 0 and L. The integral now has the
form

∫ L

0

dx′
1√
mn

(
n

L
+

m

2 tanh−1
(
h
2

)
(xl + x′)

)
sin

(
πnx′

L

)
sin

πm ln
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x′

xl
+ 1
)

2 tanh−1
(
h
2

)


(A.6)
Taylor expanding around h = 0 gives∫ L

0

dx′

[
(m+ n) sin

(
πnx′

L

)
sin
(
πmx′

L

)
L
√
mn

+

+

sin
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πnx′
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m(L−2x′) sin
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2L2
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√
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h+ O
(
h2
) .

(A.7)
The integral can now be evaluated to obtain the α-type coefficients, and
similarly the β-type coefficients.
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Appendix B

The real and complex
representations

The position and momentum operators are related to the field mode operators
via

x̂n :=
1√
2

(
ân + â†n

)
p̂n :=

−i√
2

(
ân − â†n

)
.

(B.1)

We may collect 2N of these bosonic operators into vectors

Q̂ =



x̂1
...
x̂N
p̂1
...
p̂N


, Â =



â1
...
âN
â†1
...

â†N


. (B.2)

Vector Q̂ defines the real representation and Â the complex representation.
We define the transformation matrix between the two representations as
Â = UQ̂, where

U =
1√
2

[
IN×N iIN×N

IN×N −iIN×N

]
, (B.3)

with IN×N the N ×N dimensional identity matrix. Unfortunately, these are
not the only two forms used in the literature, but sometimes authors reorder
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these vectors as

˜̂Q =


x̂1
p̂1
...
x̂N
p̂N

 , ˜̂A =


â1
â†1
...
âN
â†N

 . (B.4)

It is easy to swap between representations using the basis changing matrix
L:

˜̂Q = LQ̂

˜̂A = LÂ,
(B.5)

where the non-zero matrix elements are L(2k−1,k) = L(2k,N+k) = 1 with k ∈
[1, N ]. In addition, we define the transformation matrix in this representation

as ˜̂A = Ũ ˜̂Q, where

Ũ = LUL−1 =
1√
2


u 0 . . . 0
0 u . . . 0
...

. . . . . .
...

0 . . . 0 u

 , (B.6)

where 0 is the 2 × 2 zero matrix and

u =

[
1 i
1 −i

]
. (B.7)

We also note that in this basis representation the equivalent symplectic form
is K̃ = diag(1,−1, ..., 1,−1).
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