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We set out a novel social communication model of asset prices. An investor’s type -- which depends 
on their network and investment performance -- determines their price beliefs. We show how 
properties of the network such as network centrality and diameter ifluence the price dynamics, 
convergence speed, and limiting belief types. For the polar cases of no attention to performance 
and exclusive attention to performance, we obtain analytically tractable results relating price 
and belief types to properties of the network, while for intermediate attention to performance 
we rely on numerical results. As applications, our model can explain price bubbles and price 
oscillations by network-performance effects, and we also study how price and type dynamics 
depend on connectedness on a small-world network. Our results shed light on when performance

based updating of beliefs on social networks is stabilising -- or destabilising -- for asset prices. A 
key finding is that the impact of network structure on asset prices and beliefs depends on how 
much attention investors pay to performance.

[T]he time has come to move beyond behavioral finance to ``social finance'', which studies the structure of social interactions, how financial 
ideas spread and evolve, and how social processes affect financial outcomes. (David Hirshleifer, 2015)

1. Introduction

Given the rise of social media and investment platforms, a central question in modern finance is how social interactions ifluence 
beliefs, investment decisions and asset prices. As noted in the opening quote, the structure of social interactions should be central 
to understanding how financial ideas such as price beliefs spread among investors, undergo evolution and affect financial market 
outcomes. This ``social finance'' perspective on asset pricing raises several questions. How do social interactions and the exchange 
of information -- on investor types and their performance -- ifluence beliefs and asset prices in the short and long run? What is the 
impact of network structure on the dynamics of beliefs and asset prices, including price stability? Do initial belief types have long-lasting 
consequences?

In this paper, we take a step toward answering these questions by building an asset pricing model in which beliefs spread via social 
networks and long run outcomes, reached through an evolutionary process, depend on how much attention investors pay to the financial 
performance of themselves and their peers. Our focus on networks is motivated by empirical evidence that investment decisions are 
ifluenced by close contacts -- such as friends, relatives, neighbours or colleagues -- and the advice of industry experts; furthermore, 
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the relative performance of social contacts is known to affect investment decisions and asset prices.1 Despite this evidence, relatively 
little is known about the mechanisms by which network structures and performance ifluence investor beliefs and price dynamics.

We contribute to the literature by highlighting the roles of the network and performance in shaping beliefs and price dynamics, 
and by relating these dynamics to properties of the network -- such as eigenvector centrality, diameter and connectedness -- and initial 
conditions, such as starting belief types. Our results shed light on when performance-based updating from networks is stabilising -- or 
destabilising -- for asset prices, as well as the question of when prices and beliefs will rflect fundamental (i.e. intrinsic) values, and 
the relative contribution of network structure and initial conditions to long run outcomes, including price stability.

In our model, an investor’s belief depends on their type as updated on a social network and their attention to performance is 
controlled by an exogenous feedback parameter. Belief types are updated every period and are continuous on the spectrum from pure 
fundamentalist to arbitrarily strong chartist; hence, an agent’s type determines how backward-looking is their forecasting rule for 
asset prices. A key novelty is that belief types evolve according to repeated-average updating as in the opinion dynamics literature 
(DeGroot, 1974), but with the difference that weights depend on past performance -- i.e. trading profit. As a result, investors can adopt 
more nuanced belief types than the polar cases of pure fundamentalist or strong chartist and may end up reaching a ‘melting pot’ 
consensus shaped by performance.

Investors are located on an exogenously given (possibly directed) social network and observe only the past investment decisions 
and returns of those in their network. In contrast to many previous works, we allow for non-connected network structures. Hence, our 
model allows for ‘opinion leaders’ who ifluence other investors but are little ifluenced themselves (e.g. Warren Buffett); clustering

associated with tight-knit groups of investors such as mutual friends, neighbours and colleagues; and agents who are relatively 
disconnected in the sense of being pure ‘followers’ of others, as with a core-periphery network structure.

Based on observation of contacts, agents revise their beliefs, weighing their own success and the success of their contacts. Beliefs 
and asset prices thus evolve as a system of coupled dynamics, with network structure ifluencing belief types and prices, and prices 
and dividends determining which contacts investors pay most attention to (performance feedback). Performance-based imitation of 
peers has been observed in experimental asset markets and helps improve the empirical performance of asset pricing models; in such 
markets, agents’ forecasting behaviour is described well by simple rules, or heuristics, as in our model.2

We characterise the long-run type distribution in the polar cases of exclusive attention to performance and zero attention. With 
zero performance feedback, updating of types is purely social via investor networks. Agents in strongly-connected networks reach a 
long-run type consensus and each agent’s ifluence in the consensus is determined by their network centrality and their initial type, such 
that initial beliefs of more central agents have greater ifluence on the consensus. If the type consensus is not too strongly shifted 
towards chartism, price converges to the fundamental price, and the beliefs of investors will settle on rational expectations. If price 
convergence does not occur, then the price is explosive, and both price and beliefs move away from fundamental values.

At the other extreme, if investors focus exclusively on performance, only the beliefs of the most profitable traders in each agent’s 
network are adopted at each time step. We show that agents will eventually adopt either the most fundamental or the most chartist 
initial type in their network (as long as dividend shocks remain in certain bounds) and that a type consensus is reached in finite time. 
We characterise the maximal time to type convergence and relate it to the network diameter. An implication is that network centrality of 
agents is irrelevant when agents attend exclusively to performance: only the most extreme initial types matter for the terminal average 
type and the long run price dynamics, in contrast to the case of pure social dynamics. However, we show that different network 
structures with the same diameter can lead to quite different consensus types -- hence price dynamics -- when dividend shocks are 
large enough.

For intermediate attention to performance, consensus types are not analytically tractable. Here we use a mix of both analytic and 
numerical results to show that price and type dynamics can be quite diverse relative to the polar cases. We also investigate this case 
numerically using three applications. The first two applications model ‘opinion leaders’ (one and two opinion leaders, respectively) 
who are followed by other agents, while the third application studies asset pricing on a ‘small world’ social network. In the first 
application, price bubbles arise endogenously from type updating without any exogenous shocks, and the size of the bubble increases 
with performance feedback. The second application shows how permanent oscillations in price and average type can arise when the 
market is buffeted by dividend shocks. Here, performance feedback prevents explosive asset prices, but it is also a source of price 
oscillations that would otherwise be absent. In the final application we study consensus types and price dynamics on a large social 
network, with a focus on how connectedness of agents affects the consensus type and (hence) price convergence.

Related literature. We are not the first to study the implications of social interactions for asset prices. Kirman (1993) and Lux (1995) 
set out herding models in which investors are more likely to imitate the dominant belief type in the population, and Alfarano and 
Milaković (2009) add local networks using a mea-field approximation. In a similar vein, Cont and Bouchaud (2000) and Iori (2002) 
consider models of herding in random networks, whereas Chang (2007) studies social interactions when utility exhibits a preference 
for social conformity. By comparison, Yang (2009) considers a social network model in which investors differ in trend-following 
behaviour but ignore performance. Relative to these papers, our model differs in allowing both performance-based updating and 
social network structures.

1 On social networks and communication, see Shiller and Pound (1989), Arnswald (2001), Hong et al. (2005), Ivković and Weisbenner (2007), Ozsoylev et al. 
(2014), Steiger and Pelster (2020). On the impact of relative performance on decisions and prices, see Kroll and Levy (1992) and Schoenberg and Haruvy (2012).

2 See Kroll and Levy (1992), Schoenberg and Haruvy (2012) and Anufriev et al. (2019) for experimental evidence, and Chiarella et al. (2014) and Hommes et al. 
(2017) for empirical asset pricing models.
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The closest papers in the literature are Panchenko et al. (2013) and Gong and Diao (2022), as surveyed by Hatcher and Hellmann 
(2024). Both of these papers study two-type versions of the Brock and Hommes (1998) model which are augmented with social 
networks. In Panchenko et al. (2013) local social networks are introduced, such that agents have a probability to change type only 
if both chartist and fundamental types are present in their network at the previous time step. By comparison, Gong and Diao (2022) 
model diffusion of chartist and fundamentalist investor types within a SIS model.

Like these papers, we relate asset price dynamics to features of the network. However, we allow generic social networks and 
characterise the dynamics in the polar cases of zero and exclusive attention to performance analytically. Since agents in our model 
take a weighted average of past types as in the opinion dynamics literature (see below), types are continuous and endogenous on the 
range from fundamentalist to arbitrarily strong chartist (hence not limited to pre-specified values as in the Brock and Hommes (1998) 
model). As a result, there is greater heterogeneity in the short run -- each agent can start with their ‘own type’ -- but a consensus can 
emerge in the long run, such that heterogeneity ‘dies out’. This feature allows us to shed light on when heterogeneous beliefs will 
persist, as well as the question of how a consensus type (if reached) depends on initial types and network structure.

In relation to beliefs, our paper sheds light on when price beliefs converge to rational expectations given performance-based 
updating on social networks. If such convergence occurs, then short run mispricing is reduced over time, and the market is efficient 
(Fama, 1970, 2014) in the long run. Further, if investors focus exclusively on performance and some initial belief types are purely 
fundamentalist, then mispricing may be eliminated in finite time. We thereby show how social networks and initial conditions can 
ifluence not just the spread of beliefs among investors, but also the efficiency of financial markets, both when investors ignore 
financial performance and when they place great emphasis on it.

Finally, relative to the classical literature on opinion dynamics on social networks originated by DeGroot (1974) and extended to 
multiple settings (e.g. Golub and Jackson, 2010), we go beyond previous attempts to relax the benchmark assumption that updating 
weights are independent of time and rflect only the network position; see DeMarzo et al. (2003); Jadbabaie et al. (2013); Buechel et 
al. (2014, 2015) for applications, or Lorenz (2005, 2007) for general convergence conditions. In our model the time-varying updating 
weights are not exogenous but instead depend on relative performance among one’s neighbours in a social network, as measured by 
past trading profits on a financial market.

2. Model

Consider a finite set of risk-averse investors 𝑁 = {1,… , 𝑛} and discrete time 𝑡 ∈ ℕ. At date 𝑡, agents choose holdings of a risky 
asset 𝑥𝑖

𝑡
with unknown return (in zero net supply) and a riskless bond (in flexible supply). Agents buy the risky asset at price 𝑝𝑡 and 

sell it at price 𝑝𝑡+1 having received stochastic dividends 𝑑𝑡+1 ; the riskless bond has a known return 𝑟 > 0 and price of 1. Both price 
𝑝𝑡+1 and realisations of dividends 𝑑𝑡+1 are unknown in period 𝑡, so that the unknown excess return of the risky asset is 𝑅𝑡+1 ∶=
𝑝𝑡+1 + 𝑑𝑡+1 − (1 + 𝑟)𝑝𝑡. At each point in time 𝑡 ∈ ℕ, agents 𝑖 ∈𝑁 are characterised by their current wealth 𝑤𝑖

𝑡
and their subjective 

expectation 𝐸̃𝑖
𝑡
[.] and subjective variance 𝑉 𝑖

𝑡
[.] about the future asset price 𝑝𝑡+1 and dividends 𝑑𝑡+1. Agents are myopic and choose 

their asset positions to maximise a mean-variance utility function over next period wealth 𝑤𝑖
𝑡+1 given a risk-aversion coefficient 𝜙 > 0. 

Investors can take short positions in the risky asset, so 𝑥𝑖
𝑡
∈ℝ.

Therefore, at any 𝑡 ∈ℕ, each investor 𝑖 ∈𝑁 solves the problem3:

max
𝑥𝑖
𝑡

𝐸̃𝑖
𝑡
[𝑤𝑖

𝑡+1] −
𝜙

2 
𝑉 𝑖
𝑡
[𝑤𝑖

𝑡+1] s.t. 𝑤𝑖
𝑡+1 = (𝑝𝑡+1 + 𝑑𝑡+1)𝑥𝑖𝑡 + (1 + 𝑟)(𝑤𝑖

𝑡
− 𝑝𝑡𝑥

𝑖
𝑡
) (1)

where 𝑤𝑖
𝑡
− 𝑝𝑡𝑥

𝑖
𝑡

denotes the holdings of the riskless asset. The first term in the constraint of the optimisation problem in (1) is the 
payoff on stocks (dividend plus resale price) and the second term is the gross return on holdings of the riskless asset.

The first-order condition yields the following demand for the risky asset:

𝑥𝑖
𝑡
= 𝛿

(
𝐸̃𝑖
𝑡

[
𝑝𝑡+1 + 𝑑𝑡+1

]
− (1 + 𝑟)𝑝𝑡

)
(2)

where 𝛿 ∶= (𝜙𝑉 )−1 > 0 and we make the common assumption that 𝑉 𝑖
𝑡
[𝑅𝑡+1] = 𝑉 for all 𝑡 ∈ ℕ and 𝑖 ∈ 𝑁 .4 Demand of agent 𝑖 is 

proportional to the expected excess return, 𝐸̃𝑖
𝑡

[
𝑅𝑡+1

]
.

Dividends follow a stochastic process: 𝑑𝑡 = 𝑑+𝜀𝑡 where 𝑑 > 0 and 𝜀𝑡 is chosen from an IID distribution with mean 0 and support in 
an interval [−𝑑−, 𝑑+] such that 𝑑−, 𝑑+ > 0. Our assumption that dividends are drawn from a fixed interval is not restrictive since the 
interval can be chosen arbitrarily large. (Note that assuming 𝑑− ≤ 𝑑 will ensure non-negative dividends.) We assume agents know the 
dividend process, and hence their subjective expectations coincide with the objective (rational) expectation: 𝐸̃𝑖

𝑡

[
𝑑𝑡+1

]
=𝐸𝑡(𝑑𝑡+1) = 𝑑, 

for all 𝑖 ∈𝑁 where 𝐸𝑡(.) is the conditional expectation operator with respect to past dividends.

3 If we let 𝑏𝑖
𝑡
∈ℝ denote investor 𝑖’s holdings of the riskless asset then the wealth equation has the form 𝑤𝑖

𝑡+1 = (1 + 𝑟)𝑏𝑖
𝑡
+ (𝑝𝑡+1 + 𝑑𝑡+1)𝑥𝑖𝑡 s.t. 𝑝𝑡𝑥𝑖𝑡 + 𝑏𝑖

𝑡
=𝑤𝑖

𝑡
, since 

the price of riskless asset is 1.
4 We derive optimal demands for the risky asset and give more detail on the assumptions on subjective variances in the Online Appendix, Section C.1.1. To obtain a 

desired 𝛿 in (2) we may either normalise 𝑉 (say to 1) and set 𝜙, or we may fix 𝜙 and set 𝑉 . Thus, we only report a value for 𝛿 in numerical examples.

Journal of Economic Dynamics and Control 173 (2025) 105059 

3 



M. Hatcher and T. Hellmann 

2.1. Price beliefs

Investors form their price beliefs by taking a weighted average between the price expectation of a fundamentalist and a price 
expectation of a chartist, where these polar beliefs follow Brock and Hommes (1998). Let 𝑔𝑖

𝑡
∈ℝ+ be the weight that investor 𝑖 ∈𝑁

attaches to the chartist’s price expectation at some point of time 𝑡 ∈ℕ. We call this agent a 𝑔𝑖
𝑡
-trader.

The price expectation of an 𝑔𝑖
𝑡
-trader is given by

𝐸̃𝑖
𝑡
[𝑝𝑡+1] = 𝑔𝑖

𝑡
𝐸̃𝑐
𝑡
[𝑝𝑡+1] + (1 − 𝑔𝑖

𝑡
)𝐸̃𝑓

𝑡
[𝑝𝑡+1] = 𝑔𝑖

𝑡
𝑝𝑡−1 + (1 − 𝑔𝑖

𝑡
)𝑝𝑓 (3)

where 𝐸̃𝑐
𝑡
[𝑝𝑡+1] = 𝑝𝑡−1 is the price expectation of a chartist, 𝐸̃𝑓

𝑡
[𝑝𝑡+1] = 𝑝𝑓 is the price expectation of a (pure) fundamentalist, and 

𝑝𝑓 = 𝑑∕𝑟 is the fixed fundamental price.5

The price expectation of a 𝑔𝑖
𝑡

trader, (3), nests the polar cases of fundamentalist, when 𝑔𝑖
𝑡
= 0, and chartist when 𝑔𝑖

𝑡
= 1. More 

generally, 𝑔𝑖
𝑡

traders arrive at a price expectation by taking a weighted average of the fundamentalist and chartist beliefs (if 𝑔𝑖
𝑡
≤ 1). 

Note that we also allow 𝑔𝑖
𝑡
> 1, in which case the agent expects the price to move further away from the fundamental price in the 

future. We call such agents ‘strong chartists’.

Since each agent’s price belief is a 𝑔𝑖
𝑡
-weighted average, there is generic heterogeneity of beliefs, in contrast to the predetermined

predictors in Brock and Hommes (1998). A similar hybrid specfication of fundamentalist-chartist beliefs is used in Barberis et al. 
(2018), but there the types 𝑔𝑖

𝑡
differ exogenously due to ‘wavering’, whereas we allow types to be determined by agents’ social networks 

and endogenous performance feedback.

Note that while the beliefs in (3) rule out dependence on the current price 𝑝𝑡, this assumption can be relaxed while keeping some 
of the main results intact.6

2.2. Market clearing and price dynamics

For the asset market to clear, we require 
∑

𝑖∈𝑁 𝑥𝑖
𝑡
= 0. Using (2) and (3) and rearranging the market clearing condition, the 

equilibrium asset price can be written in the form:

𝑝𝑡 =
𝑑 +

(
1 −

∑
𝑖∈𝑁

𝑔𝑖
𝑡

𝑛 

)
𝐸̃
𝑓

𝑡
[𝑝𝑡+1] +

(∑
𝑖∈𝑁

𝑔𝑖
𝑡

𝑛 

)
𝐸̃𝑐
𝑡
[𝑝𝑡+1]

1 + 𝑟 
.

This expression can be simplfied using (3), the notation of average type 𝑔𝑡 ∶=
∑

𝑖∈𝑁
𝑔𝑖
𝑡

𝑛 , and deviations from the fundamental value, 
𝑝̃𝑡 ∶= 𝑝𝑡 − 𝑝𝑓 , to get the law of motion of the price:

𝑝̃𝑡 =
𝑔𝑡

1 + 𝑟
𝑝̃𝑡−1. (4)

From this law of motion, we can already conclude that price converges to the fundamental price if the average type 𝑔𝑡 converges 
to a value smaller than 1 + 𝑟, while the price will be explosive if the average type is too strongly chartist in the long-run. Note that 
if average type fluctuates between values above and below 1 + 𝑟, then the price will fluctuate as well; we show below that this is 
possible when there is positive attention to performance.

2.3. Return and fitness

To derive excess returns per share, consider the demands 𝑥𝑖
𝑡

and investor types 𝑔𝑖
𝑡

for all agents 𝑖 ∈𝑁 at some point in time 𝑡 ∈ℕ:

𝑥𝑖
𝑡
= 𝛿

(
𝐸̃𝑖
𝑡
[𝑝𝑡+1] + 𝑑 − (1 + 𝑟)𝑝𝑡

)
= 𝛿

(
𝑔𝑖
𝑡
− 𝑔𝑡

)
𝑝̃𝑡−1 (5)

where 𝑑 = 𝑟𝑝𝑓 and the law of motion of the price (4) have been used. Equation (5) implies that agents more optimistic than the average 
will buy, and those less optimistic than average will short-sell (a negative position). If last period’s price is below the fundamental 
price, then more fundamental types are more optimistic in expecting the price to increase, while if last period’s price exceeds the 
fundamental price, more chartist types have greater optimism.

Similar algebra can be used to show that the excess return per share is

𝑅𝑡 = 𝑝𝑡 + 𝑑𝑡 − (1 + 𝑟)𝑝𝑡−1 =
(

𝑔𝑡

1 + 𝑟
− (1 + 𝑟)

)
𝑝̃𝑡−1 + 𝜀𝑡. (6)

5 As in Brock and Hommes (1998) the fundamental price is the (hypothetical) price when all in investors are fundamentalists with common rational expectations and 
speculative bubbles are absent. Their model allows chartists to place some weight on the fundamental price 𝑝𝑓 , but there is no loss of generality in our specfication, 
(3), since we allow investors to weight the two polar beliefs according to their type 𝑔𝑖

𝑡
.

6 We show in the Online Appendix (Appendix C) that if the price expectation of 𝑔𝑖
𝑡

traders is linear in the current price with a common weight, our main qualitative 
results are unchanged. If weights are heterogeneous, our conclusions may change, but we provide sufficient conditions for our main results to hold.
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Fig. 1. The star network with 𝑛 = 5 (ignoring self-loops), which is used in Examples 1--3, and the associated adjacency matrix 𝐀 and adjusted adjacency matrix 𝐀. 

Our fitness measure -- net trading profits at time 𝑡 -- can be written as:

𝑢𝑖
𝑡
=𝑅𝑡𝑥

𝑖
𝑡−1 =

((
𝑔𝑡

1 + 𝑟
− (1 + 𝑟)

)
𝑝̃𝑡−1 + 𝜀𝑡

)
𝛿
(
𝑔𝑖
𝑡−1 − 𝑔𝑡−1

)
𝑝̃𝑡−2. (7)

We take profits as the fitness measure because this is consistent with agents 𝑖 ∈𝑁 who care about the realised value of their objective 
function (1); it is also a standard assumption in the related literature (see Brock and Hommes, 1998).7 Since the fitness measure 𝑢𝑖

𝑡
in 

(7) is linear in 𝑖′𝑠 demand 𝑥𝑖
𝑡−1, it is straightforward to rank agents by performance: if excess return per share is positive, those with 

highest demand (the most optimistic agents) have the highest fitness, while the least optimistic agent is the best performer if return 
is negative.

We now explain how the performance ranking relates to the endogenous asset price.

2.4. Performance ranking and critical price

As we have seen, performance depends on demand and the sign of the realised return. By (5), the more chartist an agent’s type, 
the higher the demand if price deviation 𝑝̃𝑡 is positive while the inverse holds for negative price deviation, i.e.

𝑝̃𝑡−2 > 0 ⇒ 𝑔𝑖
𝑡−1 > 𝑔

𝑗

𝑡−1 ⇔ 𝑥𝑖
𝑡−1 > 𝑥

𝑗

𝑡−1.

Given the sign of the return 𝑅𝑡 , there is a performance ranking. Returns change sign at a critical price level, so when the price 
crosses this threshold, a switch in performance ranking occurs. To see this we can rewrite (6) using (4) to obtain:

𝑠𝑔𝑛(𝑅𝑡) = 𝑠𝑔𝑛(𝑝𝑐𝑟𝑖𝑡
𝑡

) ⋅ 𝑠𝑔𝑛(𝑝𝑐𝑟𝑖𝑡
𝑡

− 𝑝̃𝑡) s.t. 𝑝𝑐𝑟𝑖𝑡
𝑡

∶=
𝑔𝑡

(1 + 𝑟)2 − 𝑔𝑡
⋅ 𝜀𝑡 (8)

which holds for all 𝑔𝑡 ≠ (1 + 𝑟)2 where 𝑠𝑔𝑛 denotes the sign function.8

The best-performing agents can then be found among the extreme types (the most chartist or the most fundamental type). We 
denote the set of best-performing agents from some subset 𝑆 ⊂ 𝑁 at time 𝑡 ∈ ℕ as 𝑈max

𝑡
(𝑆) ∶= {𝑖 ∈ 𝑆 ∣ 𝑢𝑖

𝑡
≥ 𝑢

𝑗

𝑡
∀𝑗 ∈ 𝑆}; these must 

have maximal or minimal type, denoted by 𝑔max
𝑡

(𝑆) ∶= max{𝑔𝑖
𝑡
∣ 𝑖 ∈ 𝑆} and 𝑔min

𝑡
(𝑆) ∶= min{𝑔𝑖

𝑡
∣ 𝑖 ∈ 𝑆}. For 𝑆 =𝑁 , we simply write 

𝑔max
𝑡

∶= 𝑔max
𝑡

(𝑁) and 𝑔min
𝑡

∶= 𝑔min
𝑡

(𝑁). Analogously, we dfine the set of agents from 𝑆 ⊂ 𝑁 with maximal or minimal type as 
𝐺max
𝑡

(𝑆) ∶= {𝑖 ∈ 𝑆 ∣ 𝑔𝑖 = 𝑔max
𝑡

(𝑆)}, respectively 𝐺min
𝑡

(𝑆) ∶= {𝑖 ∈ 𝑆 ∣ 𝑔𝑖 = 𝑔min
𝑡

(𝑆)}. For 𝑆 =𝑁 , we analogously drop the argument 
and write 𝐺max

𝑡
∶=𝐺max

𝑡
(𝑁).

We next consider agents’ type updating on a social network.

2.5. The network, type updating

We consider a directed network given by a 𝑛 × 𝑛 matrix 𝐀 with entries 𝑎𝑖𝑗 ∈ {0,1}. If 𝑎𝑖𝑗 = 0, then investor 𝑖 does not observe 
investor 𝑗. If, instead, 𝑎𝑖𝑗 = 1, then 𝑖 observes 𝑗 ’s type, and 𝑗 ’s returns and fitness 𝑢𝑗

𝑡
. We assume that 𝑎𝑖𝑖 = 1 for all 𝑖 ∈𝑁 such that 

each agent always observes their own type and returns. Denote by 𝑁𝑖 ∶= {𝑗 ∈𝑁 ∶ 𝑎𝑖𝑗 = 1} the set of traders that 𝑖 observes and 
by 𝑀𝑖 ∶= {𝑗 ∈𝑁 ∶ 𝑎𝑗𝑖 = 1} the set of traders that observe 𝑖. By above assumption, we have 𝑖 ∈𝑁𝑖 ∩𝑀𝑖. For a subset 𝑆 ⊂ 𝑁 we 
denote by 𝑀(𝑆) ∶= {𝑗 ∈𝑁 ∣ ∃𝑖 ∈ 𝑆 ∶ 𝑎𝑗𝑖 = 1} the set of agents who observe agents in 𝑆 . Further, denote by 𝐀 the matrix with entries 
𝑎𝑖𝑗 =

1 |𝑁𝑖|𝑎𝑖𝑗 which is row stochastic. As a running example to illustrate our results we consider the star network where agent 1 is 
connected to all agents while the other agents are just connected to agent 1 and themselves. We illustrate in Fig. 1 the star network, 
the associated adjacency matrix and matrix 𝐴 which adjusts each row by the number of neighbours. Note that the star is essentially 
a core-periphery network structure for which the core is a single agent (see e.g. Borgatti and Everett, 2000).

A path from node 𝑖 to node 𝑗 of length 𝑘 ∈ ℕ exists if there is a sequence of distinct nodes (𝑖1,… 𝑖𝑘) which are connected, i.e. 
𝑎𝑖𝑙 ,𝑖𝑙+1 = 1 for all 1 ≤ 𝑙 ≤ 𝑘− 1, and that starts at 𝑖1 = 𝑖 and ends at 𝑖𝑘 = 𝑗. Note that a path of length 𝑘 from 𝑖 to 𝑗 exists, if and only 
if we have (𝐀𝑘)𝑖𝑗 > 0 where 𝐀𝑘 denotes the 𝑘-th power of the matrix 𝐀. We denote the set of nodes that lie on a path that starts in 

7 We explain the link between the objective function and fitness measure in the Online Appendix, Appendix B.1.3. In some of the literature, forecast accuracy is 
taken as the fitness measure rather than profit. Our focus on realised profit is crucial to the extent that the best forecaster need not have the highest profit.

8 The sign function is dfined by 𝑠𝑔𝑛(𝑥) = +1 if 𝑥 > 0, 𝑠𝑔𝑛(𝑥) = 0 if 𝑥 = 0, and 𝑠𝑔𝑛(𝑥) = −1 if 𝑥 < 0.
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node 𝑖 as  𝑖 ∶= {𝑗 ∈𝑁|∃𝑘 ∈ ℕ ∶ (𝐀𝑘)𝑖𝑗 > 0}. Clearly 𝑗 ⊆  𝑖 for all 𝑗 ∈  𝑖. The distance between two nodes 𝑖 and 𝑗 in network 𝐀
is dfined as the minimal path length denoted by 𝑑(𝑖, 𝑗) ∶= min{𝑘 ∈ ℕ ∶ (𝐀𝑘)𝑖𝑗 > 0}. If two nodes are not connected by a path, we 
set 𝑑(𝑖, 𝑗) =∞. A network is called strongly connected if 𝑑(𝑖, 𝑗) <∞ for all 𝑖, 𝑗 ∈𝑁 , i.e. if there exists a path from 𝑖 to 𝑗 for all pairs 
of nodes. We dfine the distance between two sets of nodes 𝑆,𝑆′ ⊂𝑁 by 𝑑(𝑆,𝑆′) = min𝑖∈𝑆,𝑗∈𝑆′ 𝑑(𝑖, 𝑗). The diameter of a network, 
𝐷(𝐀) = max𝑖,𝑗∈𝑁 𝑑(𝑖, 𝑗), is the maximum distance between any two nodes. For any 𝑆 ⊂𝑁 , we denote the restriction of an 𝑛×𝑛 matrix 
𝐁 to the rows and columns from 𝑆 by 𝐁𝑆𝑆 = (𝑏𝑖𝑗 )𝑖,𝑗∈𝑆 , and the restriction of an 𝑛 × 1 vector to set 𝑆 by 𝐯𝑆 = (𝑣𝑖)𝑖∈𝑆 .

We assume each investor is only ifluenced by those she observes in her network (including herself). In particular, investors 
evaluate the performance of the other investors they observe and update their type according to a logit response model such that:

𝑔𝑖
𝑡+1 =

( ∑
𝑘∈𝑁𝑖

exp(𝛾𝑢𝑘
𝑡
)

)−1 ∑
𝑗∈𝑁𝑖

exp(𝛾𝑢𝑗
𝑡
)𝑔𝑗

𝑡
, ∀𝑖 ∈𝑁. (9)

There are two important differences in (9) relative to the Brock and Hommes model. First, in our model agents 𝑖 ∈ 𝑁 do not 
update from the entire set of agents 𝑁 , but, as in Panchenko et al. (2013), only update locally from their neighbours in the set 𝑁𝑖 . 
Second, in contrast to Brock and Hommes (1997, 1998), where relative fitness determines the fractions of agents that adopt one of 
the polar types, here an agent’s type in period 𝑡+1 is a weighted average of past types of those in her network, giving higher weight to 
more successful individuals. The parameter 𝛾 measures the performance feedback to beliefs. It is similar to the intensity of choice in 
the Brock and Hommes model which measures how fast agents switch between different prediction strategies; here the interpretation 
is instead that willingness to update one’s forecasting rule (in a continuous manner) increases with 𝛾 .

Denoting the updating weights by 𝑎̃𝑖𝑗 (𝑡) =
(∑

𝑘∈𝑁𝑖 exp(𝛾𝑢𝑘𝑡 )
)−1 exp(𝛾𝑢𝑗

𝑡
), and the (column) vector of types by 𝐠𝑡 = (𝑔1

𝑡
,… , 𝑔𝑛

𝑡
)′, the 

matrix 𝐀̃(𝑡) =
(
𝑎̃𝑖𝑗 (𝑡)

)
𝑖,𝑗∈𝑁 presents the law of motion of the type dynamics in the sense that (9) can be expressed as

𝐠𝑡+1 = 𝐀̃(𝑡)𝐠𝑡. (10)

Note that 𝐀̃(𝑡) is always row stochastic by (9) such that each iteration is a weighted average of the type vector of the previous 
period. Further, for any finite 𝛾 , we have 𝑎̃𝑖𝑗 (𝑡) = 0 if and only if 𝑎𝑖𝑗 = 0 for any 𝑡 ∈ℕ. In the limit 𝛾 →∞, instead, some of the weights 
𝑎̃𝑖𝑗 (𝑡) may converge to 0, even if 𝑎𝑖𝑗 > 0, while the other direction still holds. This means that in the course of repeated updating, 
agents can only ifluence each other if they are connected by a path in the network 𝐀.

2.6. Timing and initial conditions

From time period 𝑡 ≥ 0 onwards, the dynamics evolve as described above. At the beginning of each time period 𝑡, investors’ types 
are given by 𝑔𝑖

𝑡
∈ℝ+ for all 𝑖 ∈𝑁 with asset holdings of last period 𝑥𝑖

𝑡−1 and the last period price deviation given by 𝑝̃𝑡−1 = 𝑝𝑡−1 − 𝑝𝑓 . 
Investors then form their demands 𝑥𝑖

𝑡
according to (5) such that 𝑝̃𝑡 can be derived from the past price deviation 𝑝̃𝑡−1 according to the 

law of motion in (4). From this, returns 𝑅𝑡 are realised and fitness 𝑢𝑖
𝑡

of each investor 𝑖 ∈𝑁 is given by (7). Investors observe the 
fitness of others in their network and at the end of period 𝑡 update their type according to (9).

To have a consistent model, we need assumptions for the period before type updating occurs for the first time, i.e. before 𝑡 = 0. We 
assume that initially there is a price of the stock 𝑝−2 (and hence 𝑝̃−2) e.g. at the emission of the stock, and there are investors types 
𝑔𝑖−1 for all 𝑖 ∈𝑁 . We assume that 𝑝−2 ≠ 𝑝𝑓 to allow for price changes over time. Given 𝑔𝑖−1 and 𝑝̃−2, demand 𝑥𝑖−1 can be computed 
according to (5) yielding equilibrium price 𝑝−1 such that 𝑝̃−1 is determined by (4). At the end of period 𝑡 = −1, we set 𝑔𝑖0 = 𝑔𝑖−1 for 
all 𝑖 ∈𝑁 (updating of the types can only occur once the agents realise differences in performance). In period 0, price 𝑝̃0 and demand 
𝑥𝑖0 are determined by (4) and (5), respectively, and performance 𝑢𝑖0 (given the first dividend 𝑑0) is evaluated according to (7). The 
first type updating then occurs such that 𝑔𝑖1 is determined by (9). We can therefore refer to 𝑝̃0 as the initial price.

For all periods 𝑡 ≥ 1, demand, price, fitness, and types are determined by (4) -- (9).

3. Dynamics

We start out by characterising steady states of the model. We then study the dynamics in the polar cases of no performance 
feedback effect 𝛾 = 0, and exclusive attention to performance, 𝛾 →∞, before presenting some results for the case of finite attention 
to performance, 𝛾 ∈ ℝ+. While we assume in this section that the network is strongly connected, we will relax this assumption in 
Section 4. Proofs of all results appear in the Appendix.

3.1. Steady states

In a steady state (𝑝̃∗,𝐠∗), the following equations must hold:(
1 − 𝑔

∗

1 + 𝑟

)
𝑝̃∗ = 0 and (𝐈𝐧 − 𝐀̃)𝐠∗ =𝟎𝐧. (11)

The first part of (11) is the steady state price which is obtained as a solution to the steady state price condition 𝑝̃𝑡+1 − 𝑝̃𝑡 = 0
using (4). Similarly, the second part of (11) is the steady state vector of types where (9) is applied to the steady-state types condition 
𝐠𝑡+1 − 𝐠𝑡 = 𝟎𝑛 with 𝟎𝑛 denoting the 𝑛 × 1 vector of zeros.
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Note that the steady state price 𝑝̃∗ depends on average type 𝑔 = 1
𝑛 𝟏

′
𝑛
𝐠∗, where 𝟏𝑛 denotes the 𝑛× 1 vector of ones, and the steady 

state type vector 𝐠∗ depends on steady state price indirectly through the updating matrix 𝐀̃. For 𝑔∗ ≠ 1 + 𝑟, (11) is satified if and 
only if 𝑝̃∗ = 0 (fundamental price); however, if 𝑔∗ = 1 + 𝑟 then (11) is satified by any 𝑝̃∗ ∈ ℝ, and of these all prices except 𝑝̃∗ = 0
are non-fundamental prices.

Definition 1. A price-type vector (𝑝̃∗,𝐠∗) is a steady state if it satifies (11). If, additionally, 𝑝̃∗ = 0, then a steady state is fundamental, 
and else it is non-fundamental.

We refer to steady states with a fundamental price as fundamental steady states and we refer to any other steady states as non

fundamental. At a fundamental steady state, price is equal to the fundamental price 𝑝𝑓 and agents’ price beliefs coincide with the 
fundamental price. At a non-fundamental steady state, neither of these conditions holds.

The second part of (11) is the type equation. Aside from the trivial solution 𝐠∗ = 𝟎, this equation allows for other solutions only if 
det (𝐈𝐧 − 𝐀̃) = 𝟎, i.e. if 𝐀̃ has a unit eigenvalue and corresponding eigenvector(s) 𝐠∗ . Since 𝐀̃ is row stochastic and strongly connected, 
the principal eigenvalue is equal to 1 and the corresponding eigenspace is one-dimensional with all eigenvectors being real and all 
their components of the same sign by the Perron-Frobenius theorem. This implies that all types must be identical which is commonly 
referred to as consensus. Hence, at any steady state, both the weights matrix 𝐀̃ and the fitness vector 𝐮 are steady, too.

Proposition 1. The following holds in any steady state (𝑝∗,𝐠∗):

1. All types coincide, 𝑔𝑖,∗ = 𝑔 ∀𝑖 ∈𝑁 .

2. The steady-state weights matrix satifies 𝐀̃∗ =𝐀 and 𝐮∗ = 𝟎.

Proposition 1 characterises steady states where both price and types are invariant to the law of motion. Only if all agents types are 
identical, a steady state is reached. The focus of this result is on the steady state types 𝐠∗ as the steady state price 𝑝∗ follows from the 
consensus type which trivially coincides with the average type 𝑔. The second part of Proposition 1 holds since for consensus types, 
(7) implies that agents’ fitness is equal to zero while (9) implies that 𝑎̃𝑖𝑗 = 𝑎𝑖𝑗 .

Note that types can even be steady when prices move. We will see later that there exist initial conditions such that the price 
diverges while types converge to consensus. We, therefore, refer to a type steady state if only 𝐠∗ satifies the second part of (11). In 
this case, it is straightforward to see that Property 1 of Proposition 1 still holds. Once a consensus is obtained, the types will remain 
in this state forever due to the nature of updating dfined in (9). On the other hand, types can only be steady when a consensus is 
obtained.

3.2. 𝛾 = 0: pure network-based updating

We first take a brief look at the dynamics when 𝛾 = 0. In this case, agents simply update their own type through their network 
independently of how others perform such that the weights in the updating matrix 𝐀̃(𝑡) in (10) are given by 𝑎̃𝑖𝑗 (𝑡) = 𝑎𝑖𝑗 for all 𝑡 ∈ℕ. 
Since this law of motion of the type dynamics is time-invariant, it can be written as

𝐠𝑡+1 = 𝐀̃(𝑡)𝐠𝑡 =
(
𝐀
)𝑡+1

𝐠0. (12)

In other words, agents just take the weighted average over all neighbours since 𝐀 just adjusts the matrix 𝐀 by the number of 
neighbours. In particular, agents update independently of how each of their neighbours performs since 𝛾 = 0. Such a dynamic model 
is closely related to a model of opinion dynamics first formulated by DeGroot (1974). Since agents observe their own type, the matrix 
𝐀 is aperiodic. By standard results, the type dynamics converge and we can characterise the terminal types and the price dynamics.

Proposition 2. For any realisation of the dividends, we get the following:

1. Types converge to a steady state type vector 𝐠𝐯 such that

𝑔𝑖,𝐯 =
∑
𝑗∈𝑁

𝑣𝑗𝑔
𝑗

0 ∀𝑖 ∈𝑁

where 𝑣𝑗 is the 𝑗-th entry of the (unique) left-unit eigenvector 𝐯 of 𝐀 with 
∑

𝑖∈𝑁 𝑣𝑖 = 1.

2. Prices converge to the fundamental price if 𝑔𝐯 < 1+ 𝑟, prices converge to some other steady state if 𝑔𝐯 = 1+ 𝑟, and price diverges to ±∞
if 𝑔𝐯 > 1 + 𝑟.

From Proposition 2, we can conclude that all agents reach a consensus and that this consensus is a weighted average of initial 
opinions (i.e. types). The social ifluence weights correspond to the entries in the left-unit eigenvector which sums to one (implying 
that it is unique by Perron-Frobenius). The left-unit eigenvector of the adjacency matrix is often used as a measure of centrality in the 
network, also called eigenvector centrality. Hence, how much agents’ initial types ifluence the steady state consensus type depends 
on their network centrality. The more central an agent, the higher will be the social ifluence.
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Fig. 2. Dynamics of individual types and price in the star network for 𝛾 = 0 where initial values are as in Example 1 and are chosen such that for small variations of 
the interest rate 𝑟 (as shown in the figure), price can converge to the fundamental price, can converge on some other price, or diverge to +∞.

Given terminal types, the price dynamics immediately follow. The group type steady state vector 𝑔𝐯 only depends on eigenvector 
centrality and initial types. The price will converge to the fundamental price if and only if the consensus type is less than 1 + 𝑟. An 
agent with an initial type that exceeds 1 (strong chartist) believes the price will move away from the fundamental price. If there are 
not many strong chartists with types exceeding 1+ 𝑟 or if such agents are not central, then the price will converge to the fundamental 
price.

Example 1. Consider a star network with 𝑛 = 5 agents, as illustrated in Fig. 1. The vector of initial types is 𝑔0 = (0,0.8,1.1,2,2.8) = 𝑔−1
and we set the initial price deviation at 𝑝̃0 = 1.25, which implies an initial price in levels of 𝑝0 = 𝑝𝑓 + 1.25 where 𝑝𝑓 = 𝑑∕𝑟 is the 
fundamental price, 𝑑 = 0.5 is the expected dividend, and 𝑟 is the net interest rate.

Given the star network structure, Agent 1 initially updates their type in the direction of the initial types of the other agents (left 
panel), while the other agents update their types toward the initial type of Agent 1 (which is a pure fundamental type). Updating 
narrows the initial heterogeneity in types but also changes the relative optimism, with Agent 1 becoming relatively ‘bullish’ and Agent 
2 being the most pessimistic at date 1; there are ‘type reversals’ for Agents 1 and 4 in period 2. These fluctuations in type -- which are 
due entirely to the social network -- mean that the average type 𝑔𝑡 fluctuates somewhat in the early periods and this induces some 
price fluctuations in the first three periods (right panel).

By period 8, types have essentially converged to a consensus type. The consensus type is around 1.0308 (see left panel), compared 
to the initial average type of 1.34. The reason is that, as shown in Proposition 2, the consensus depends on initial types weighted by 
network centrality, such that more central agents have greater ifluence on the consensus. In this case, the most central agent is Agent 
1 (core), whose initial type is 0, so the consensus type is somewhat smaller than the unweighted average of the initial types.9

The long run price dynamics depend on where the gross interest rate 1 + 𝑟 lies in relation to the consensus type. By varying the 
interest rate 𝑟 in the right panel of Fig. 2, we trace out each possible case of the price dynamics set out in Proposition 2. Price is 
explosive when lim𝑡→∞ 𝑔𝑡 > 1+ 𝑟 (dashed line), converges to the fundamental price when lim𝑡→∞ 𝑔𝑡 < 1+ 𝑟 (grey line), and converges 
to a non-fundamental price if lim𝑡→∞ 𝑔𝑡 = 1 + 𝑟 (black line) which only occurs for a single value of interest rate 𝑟, underlining that 
this is a knife-edge case.

3.3. 𝛾 →∞: pure performance-based updating

We now consider the other polar case of exclusive attention to performance, 𝛾 → ∞. In this case, agents are still restricted to 
update from those they observe in their social network, but they only update from the best-performers within that set. Hence, we 
only have that 𝑎𝑖𝑗 = 0⇒ 𝑎̃𝑖𝑗 (𝑡) = 0 for any 𝑡 ∈ℕ, but the other direction does not hold anymore.

We first study the case where dividends are non-stochastic; we then relax this assumption and present additional analytical results 
and a numerical example.

3.3.1. The case of non-stochastic dividends

If dividends are non-stochastic, then depending on the prevailing average type, either the more fundamental types are doing better 
in terms of fitness (if 𝑔𝑡 < (1 + 𝑟)2) or more chartist types are (if 𝑔𝑡 > (1 + 𝑟)2). This can be seen by rewriting (7) and using (4) to get:

𝜀𝑡 = 0 ⇒ 𝑢𝑖
𝑡
= 𝛿

(
𝑔𝑡 − (1 + 𝑟)2

)( 𝑔𝑖
𝑡−1
𝑔𝑡−1

− 1

)(
𝑝̃𝑡−1

)2
. (13)

9 The social ifluence weights correspond to the (left) eigenvector centrality of ( 5 
13
,

2 
13
,

2 
13
,

2 
13
,

2 
13
). Thus, Agent 1 has highest centrality and the most ifluence, 

while the other agents all have equal ifluence.
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Note that 𝜀𝑡 = 0 also implies that the critical price is zero, such that no switch in performance ranking can occur in this case if 
the average type stays below (above) the (1 + 𝑟)2 threshold; see (8). Intuitively, if the initially best-performing agents remain the 
best performers, then eventually their type should be adopted by all other agents along paths in the network, which is shown in 
Proposition 3.

Proposition 3. Suppose 𝑑𝑡 = 𝑑 for all 𝑡 ∈ℕ. For 𝛾 →∞, we get the following:

1. If 𝑔0 < (1+ 𝑟)2, then all agents form a consensus on the most fundamental type in finite time, i.e. 𝑔𝑖
𝑡
→ 𝑔min

0 for all 𝑡 ≥ 2𝐷(𝐀)−1, 𝑖∈𝑁 . 
Price converges to the fundamental price if 𝑔min

0 < (1+ 𝑟), price converges to a non-fundamental price if 𝑔min
0 = (1+ 𝑟), and price diverges 

to ±∞ if 𝑔min
0 > (1 + 𝑟)

2. If 𝑔0 > (1 + 𝑟)2, then all agents form a consensus on the most chartist type in finite time, i.e. 𝑔𝑖
𝑡
→ 𝑔max

0 for all 𝑡 ≥ 2𝐷(𝐀) − 1, 𝑖 ∈𝑁 . 
Price diverges to ±∞.

Proposition 3 relates consensus and price convergence to initial types when there is exclusive attention to performance. As noted in 
(13), if initial average type is above (1 + 𝑟)2, then higher types initially perform better, implying that the maximal types are adopted. 
This means that average type is not decreasing, such that 𝑔𝑡 > (1 + 𝑟)2 for all 𝑡 ∈ ℕ. Intuitively, strong chartist beliefs become 
reinforcing in the sense that strong chartists expect the price to move away from the fundamental price which indeed happens if 
there are sufficiently many strong chartists with types exceeding (1+ 𝑟)2, i.e. if the initial average type is large. As a result, types will 
converge to the maximal type and price diverges for any network structure.

On the other hand, if initial average type is small enough, then fundamental expectations are doing better and these beliefs become 
reinforcing. Note that price may still diverge in this case (which occurs for sure if the initial average type is below (1 + 𝑟)2 and the 
initial minimal type is above (1 + 𝑟)), but more fundamental expectations are still yielding a higher fitness in every period, ensuring 
convergence to the minimal type. Hence, only the minimal initial type determines the consensus and, thus, whether price converges. 
So, if investors focus strongly on performance, one weak chartist (type < 1 + 𝑟 is enough) will be enough to stabilise asset prices, 
irrespective of the network centrality of that agent.

Compared to pure social updating (Proposition 2), network centrality is irrelevant for the consensus type as the ifluence of the 
initially best-performing agent is 1 (and 0 for all others). The network structure does, however, affect time to convergence which is 
finite and does not exceed 2𝐷(𝐀) − 1, where 𝐷(𝐀) is the diameter of the network. The reason is that if the best-performing type is 
adopted by some agent 𝑖 ∈𝑁 at time 𝑡 ∈ ℕ, then all agents 𝑗 who directly observe 𝑖 (such that 𝑎𝑗𝑖 = 1) will have adopted this type 
themselves at latest by time step 𝑡+2 and will remain with this type forever. Since the first updating occurs in period 1, the maximal 
convergence time is given by the twice the length of the longest path in the network reduced by 1, i.e. 2𝐷(𝐀)−1. If all agents observe 
all other agents 𝑎𝑖𝑗 = 1 for all 𝑖, 𝑗 ∈𝑁 (i.e. a complete network), then convergence will obtain after 1 period.

Lastly, note that if there is a pure fundamentalist and we are in Part 1 of Proposition 3, then this type is adopted in at most 
2𝐷(𝐀) − 1 periods, and the fundamental price is reached in at most 2𝐷(𝐀) − 1 periods, such that mispricing is eliminated in finite 
time. This result speaks to a common notion that stock markets are inefficient in the short run but efficient in the long-run, but with 
the extra observation that the network can ifluence how quickly mispricing is eliminated via the diameter 𝐷(𝐀). If instead, there is 
initially no pure fundamentalist, reaching the fundamental price is not possible in finite time.

Example 2. Consider again the star network from Example 1. We now let 𝛾 →∞ and set 𝑟 = 0.04, 𝜀𝑡 = 0 for all 𝑡 (no dividend shocks) 
while leaving unchanged all other parameters from Example 1, so we have a comparable case to Fig. 2 except that agents now attend 
exclusively to the best-performing types who they observe and dividend shocks are no longer irrelevant. The results in this case -- see 
Fig. 3 -- relate to Proposition 3 above.

Since initial average type exceeds (1+ 𝑟)2, higher types perform better and the initial best performer is Agent 5. As a result, Agent 
1 -- who observes the types of all others -- adopts the high initial type of Agent 5 in period 1 (Fig. 3, left panel). Agents 2--4 observe the 
type of Agent 1 in period 0 and the resulting (worst) performance in periods 0 and 1 and therefore stick with their own initial type 
in periods 1 and 2.10 In period 3, however, they all adopt the type of Agent 1 (whose period 2 performance rflects their period 1 
type). Therefore, we see consensus on the highest initial type in period 3, and Agent 5 has a weight of 1 in the consensus (and all 
others zero). Consensus on the highest type and the time to consensus are consistent with Proposition 3 (network diameter is 2 in 
this example). Since agents reach a consensus on the highest type, the price diverges to +∞ (see Fig. 3, right panel).

3.3.2. The case of stochastic dividends

To characterise the terminal types in Proposition 3 we assumed dividends were non-stochastic. Clearly, for small enough dividend 
shocks, the same conclusions should hold. We now show this and characterise the relevant bounds on the shocks. Consider the 
following bounds on shocks given by

𝜀(𝐠0, 𝑟) = min 
0≤𝑡≤2𝐷(𝐀 )−2

||𝜎𝑡(𝐠0, 𝑟)|| and 𝜀(𝐠0, 𝑟) = max 
0≤𝑡≤2𝐷(𝐀 )−2

||𝜎𝑡(𝐠0, 𝑟)||
10 Recall that there is a lag from type to performance to type updating: the next period type depends on the last realised profit, which in turn depends on the past 

demand determined by the lagged type; see (7).
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Fig. 3. Dynamics of individual types and price in the star network for 𝛾 →∞ and non-stochastic dividends. Initial values are as in Example 2 and were chosen to 
illustrate that even for interest rate 𝑟= 0.04, where we observed convergence to the fundamental price in Example 1 (case: 𝛾 = 0), price diverges to +∞.

where 𝜎𝑡(𝐠0, 𝑟) =
(
(1 + 𝑟) − 𝑔𝑡

1+𝑟

)
𝑝̃0

1+𝑟
𝑔0

∏𝑡−1
𝑗=0

𝑔𝑗

1+𝑟 . Note that all these bounds depend on the concrete sequence of type updating via 
𝑔𝑡. Since we only characterise two particular sequences of type updating (updating from the maximal types only or from the minimal 
types only), these bounds are fully dfined by the initial vector of types 𝐠0 such that 𝑔𝑡 is recursively dfined by

𝑔𝑡 =

⎧⎪⎪⎨⎪⎪⎩
1
𝑛 
∑𝑛

𝑖=1

(
1 |||𝐺min

𝑡−2 (𝑁
𝑖)|||

∑
𝑗∈𝐺min

𝑡−2 (𝑁
𝑖) 𝑔

𝑗

𝑡−1

)
if 𝑔0 < (1 + 𝑟)2

1
𝑛 
∑𝑛

𝑖=1

(
1 |||𝐺max

𝑡−2 (𝑁
𝑖)|||

∑
𝑗∈𝐺max

𝑡−2 (𝑁
𝑖) 𝑔

𝑗

𝑡−1

)
if 𝑔0 > (1 + 𝑟)2

,

where 𝐺min
𝑡

(𝑆) and 𝐺max
𝑡

(𝑆) refer to the set of investors with minimal and maximal type from set 𝑆 ⊂𝑁 at time 𝑡 ∈ ℕ as dfined in 
Section 2.

The next result shows that if shocks are small then the result of Proposition 3 still holds.

Proposition 4. Suppose shocks are small enough such that 𝑑+ < 𝜀(𝐠0, 𝑟) and −𝑑− > −𝜀(𝐠0, 𝑟). For 𝛾 →∞, we get the following:

1. If 𝑔0 < (1 + 𝑟)2, then 𝑔𝑖
𝑡
→ 𝑔min

0 for all 𝑡 ≥ 2𝐷(𝐀) − 1, 𝑖∈𝑁 .

2. If 𝑔0 > (1 + 𝑟)2, then 𝑔𝑖
𝑡
→ 𝑔max

0 for all 𝑡 ≥ 2𝐷(𝐀) − 1, 𝑖∈𝑁 .

The basic message of Proposition 4 is that the result in Proposition 3 holds if dividend shocks are small enough. We showed 
this by restricting the interval of admissable shocks such that [−𝑑−, 𝑑+] ⊆ [−𝜀(𝐠0, 𝑟), 𝜀(𝐠0, 𝑟)]. Alternatively, one could assume the 
distribution of shocks has zero mass outside this interval, implying that Proposition 4 holds almost surely.

For dividend processes 𝑑𝑡 for which 𝜀𝑡 does not satisfy the conditions on the bounds 𝑑−, 𝑑+ in Proposition 4 -- or the zero mass 
condition above -- we can still provide a lower bound on the probability that consensus is reached on one of the extreme types by 
𝑡 ≥ 2𝐷(𝐀) − 1, i.e. this is the probability that the dividends are drawn from within the set of admissible bounds. For instance for 
𝑔0 < (1 + 𝑟)2, we would get that types converge to minimal type by period 2𝐷(𝐀) − 1 with at least probability

𝑃𝑟(𝑔𝑖
𝑡
= 𝑔min

0 |∀𝑡 ≥ 2𝐷(𝐀) − 1, 𝑖 ∈𝑁) ≥
2𝐷(𝐀)−2∏

𝑡=0 
Pr(−𝜎𝑡(𝐠0) < 𝜀𝑡 < 𝜎𝑡(𝐠0)). (14)

The case of 𝑔0 < (1+ 𝑟)2 and convergence to the maximal type is fully analogous and yields the same probability. This illustrates that 
a lower bound for the probability to reach the consensus on the extreme type can be related to the diameter of the network 𝐷(𝐀). 
Note that (14) presents only a lower bound for two reasons. First, the concrete sequence of updating depends on the initial vector of 
types (not only the extreme types). So the consensus may be reached a lot faster than by period 2𝐷(𝐀)−1 in which case the following 
shocks can be arbitrarily large, increasing the probability of this event (given the same network structure). Second, as long as the 
extreme type is not eliminated, even shocks that exceed the bounds and occur before the consensus is reached may be admissible. 
Since this both depends on the given network structure and on the initial vector of types, this becomes analytically intractable. We 
therefore revert to simulation in what follows.

Example 2 (continued). We now add stochastic dividends in Example 2 for 𝛾 →∞. 
In Fig. 4 we show that if dividend shocks are large enough, they may change the consensus type and date. As a simple example, 

we draw a strongly negative dividend shock in period 0, which makes low types the initial best performers (the initial return is now 
negative, not positive). The impact on the price-type dynamics is substantial: since all agents observe the best-performing Agent 1, 
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Fig. 4. Dynamics of individual types and price in the star network for 𝛾 →∞, 𝑝̃0 = 1.25 and a large negative dividend shock 𝜀0 < 0 in period 0 that reverses the initial 
performance ranking. Initial values are as in Example 2. While in the absence of dividend shocks, price diverges to +∞ as illustrated in Fig. 3, this simulation illustrates 
that price can instead converge to the fundamental price when dividends are stochastic.

Fig. 5. Consensus type and time to consensus in the star (◦) and wheel (⋅) networks when 𝑝̃0 = 0.25, 𝑟= 0.04 and 𝛾 →∞: results from 30 different stochastic simulations. 
Upper panel: small variance (𝜎𝑑 = 0.035); lower panel: large variance (𝜎𝑑 = 0.20). Other parameters and initial values as in Example 2.

they all adopt her pure fundamental type of 0 in period 1, so a consensus is reached in period 1 and price equals the fundamental 
price from period 1 onwards (hence, in these periods, price and beliefs coincide with the rational expectations outcome).

More nuanced changes in the type dynamics are also possible. For example, if the dividend shock in period 0 is relatively small 
(leaving the sign of return unchanged) but the period 1 dividend shock is negative and substantial enough to make the date 1 return 
negative, then Agent 1 will have adopted the highest type in period 1, but will then want to adopt a lower type in period 1. As a result, 
a consensus will form on a non-extreme type and it may be several periods before a consensus is reached (depending on subsequent 
dividend shocks). 

Fig. 5 illustrates the diversity of outcomes which are possible. It reports the consensus type and time to consensus for 30 different 
sequences of dividend shocks, given an initial price of 𝑝̃0 = 0.25 (all other parameters and initial conditions are the same as in 
Example 2). We draw the shocks 𝜀𝑡 from a truncated-normal distribution with standard deviation 𝜎𝑑 and support [−𝑑,𝑑], to ensure 
that dividends are bounded and non-negative. We consider both a ‘small’ variance 𝜎𝑑 = 0.035 (upper panel) and a ‘large’ variance 
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𝜎𝑑 = 0.20 (lower panel). We consider two different network structures -- the star network already studied and a wheel network 11 -- 
which have the same diameter for 𝑛 = 5 and thus identical long-run price and type behaviour in the deterministic case by Proposition 3.

In the ‘small variance’ case, 28 of 30 simulations coincide with the predictions of Proposition 3 in the deterministic case (see 
Fig. 5, upper panel); intuitively we expect most shocks to lie in the bounds in Proposition 4 in this case. The two outlier simulations 
– due to large negative dividend shocks -- have a consensus type of zero (for both networks), but in the case of the star network, the 
consensus is reached in period 1, as in Fig. 4 above.

In the ‘large variance’ case, there is a much greater diversity of outcomes (lower panel), as well as substantial differences when 
comparing across the two networks. We see consensus types that lie between the extreme initial types, and there are many more such 
cases for the wheel network than the star network (bottom left). The latter result arises because the ‘fast’ 1-period convergence does 
not happen on realising a large negative dividend shock. For the wheel network, 8 simulations of 30 have time to consensus of 6 
periods or more, as compared to only 1 such simulation for the star network.

In short, for the case of stochastic dividends, both the time to consensus and the consensus type are quite difficult to predict if 
dividend shocks have high variance or are not restricted to narrow bounds. Furthermore, we see that although network centrality does 
not determine the consensus type when 𝛾 →∞, it is clear that network structure can ifluence not just the time to consensus, but also 
the consensus itself when dividend shocks are large enough.

3.4. 𝛾 > 0: intermediate attention to performance

We now examine the case where 𝛾 is positive but finite, leading to a setting where type and price dynamics are analytically 
complex. Here, asset prices depend on agents’ beliefs, which in turn are ifluenced by performance feedback that varies with stochas

tic dividends. Consequently, belief updating is shaped by both network structure and performance. Nevertheless, we can establish 
concrete results regarding price and type convergence.

Proposition 5. Let 𝛾 > 0 and let dividends 𝑑𝑡 be stochastic with support [𝑑 − 𝑑−, 𝑑 + 𝑑+].

1. If 𝑔max
0 < 1+ 𝑟, then the price converges to the fundamental price for all realisations of 𝑑𝑡. Conversely, if 𝑔max

0 > 1+ 𝑟 and the parameters 
𝛾 , 𝑑−, and 𝑑+ are sufficiently large, there is a positive probability that the price will diverge to ±∞. 

2. If 𝑔min
0 > 1+ 𝑟, then the price diverges to ±∞ for all realisations of 𝑑𝑡. However, if 𝑔min

0 < 1+ 𝑟 and 𝛾 , 𝑑−, and 𝑑+ are sufficiently large, 
then there exists a positive probability that the price converges to the fundamental price. 

3. If lim𝑡→∞ 𝑝̃𝑡 exists, then both the price and types converge to a steady state (𝑝∗,𝐠∗). 

The first part of each of the first two statements Proposition 5 follows intuitively from the nature of weighted-average updating. 
Since the convex hull of types does not expand over time, the average type 𝑔𝑡 at any point 𝑡 ∈ ℕ will always lie within the interval 
dfined by the initial extreme types, [𝑔min

0 , 𝑔max
0 ]. Therefore, if 𝑔max

0 < 1+ 𝑟, then 𝑔𝑡 < 1+ 𝑟 for all 𝑡 ∈ℕ, leading the price to converge 
to its fundamental value. Similarly, if 𝑔min

0 > 1 + 𝑟, then price divergence is straightforward.

Although this may seem trivial, the second part of each of the first two statements shows that these conditions are quite tight in 
the sense it is not possible to relax the conditions on the initial type distribution without additional conditions on the performance 
feedback parameter 𝛾 , or the dividend shocks 𝜀𝑡, for ensuring convergence or divergence, respectively.

While the coupled price-type dynamics become analytically intractable even in the absence of stochastic dividends, it is still 
possible to establish convergence to a steady state under weak conditions in the final part of Proposition 5. The proof of type 
convergence draws on the boundedness of price and dividends within the interval [𝑑 − 𝑑−, 𝑑 + 𝑑+], along with finite 𝛾 , which ensure 
that the profit terms 𝑢𝑖

𝑡
are bounded.12 Hence, if 𝑖 observes 𝑗 in the network, i.e. 𝑎𝑖𝑗 > 0, then 𝑖 will also update from 𝑗 such that the 

corresponding updating weights in the law of motion can be bounded away from 0, i.e. there exists a 𝜁 > 0 such that 𝑎̃𝑖𝑗 (𝑡) ≥ 𝜁 for 
all 𝑡 ∈ ℕ. The resulting ergodicity property ensures types converge to a consensus. If price convergence is not guaranteed, then this 
ergodicity property cannot be established. Indeed in the small world network simulations in Section 5.3, we encountered numerical 
instances of non-convergence of types when price diverges (see Footnote 22).

The consensus itself is analytically intractable due to path dependency. To see why, note that solving forward the equation for 
the type dynamics yields:

𝐠𝑡+1 =
(

𝑡 ∏
𝑠=0 

𝐀̃(𝑠)
)
𝐠0 (15)

where the entries of the 𝐀̃(𝑠) matrices depend on performance via the endogenous market price. Although the matrix product is 
analytically intractable, (15) shows how to compute the type dynamics for any finite 𝑡 using numerical simulations (a feature we 
exploit below).

11 The adjacency matrix 𝐀 of the wheel network has entries 𝑎𝑖𝑗 = 1 if |𝑖− 𝑗| ∈ {1, 𝑛−1} and 𝑎𝑖𝑗 = 0 else, such that its graph looks like a wheel with agents connected 
to only the next and previous agents in order.
12 The assumption that dividend shocks are drawn from a bounded interval is useful here. If, instead, this interval is allowed to be unbounded, then the conclusion 

of Proposition 5 will still hold almost surely.
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Fig. 6. Dynamics of individual types and price in the star network: 𝛾 = 0.3, 𝑟 = 0.04, 𝜀𝑡 = 0 ∀𝑡, 𝑝̃0 = 1.25. With no dividend shocks, price diverges in this example 
(Fig. 7 below allows stochastic dividends).

By Proposition 5, the limiting type vector exists when lim𝑡→∞ 𝑝̃𝑡 exists and is given by

𝐠∞ ∶= lim 
𝑡→∞

(
𝑡 ∏

𝑠=0 
𝐀̃(𝑠)

)
𝐠0, 𝐠𝑖∞ = 𝐠𝑗∞ ∀𝑖, 𝑗 ∈𝑁. (16)

Hence, for 𝛾 > 0, an agent’s performance-adjusted ifluence on the consensus type can be found by approximating the limit in (16)

(whose row entries are the ifluence weights) using numerical simulation. What complicates matters is that the consensus type 
as determined by (16) may not be in the interval whose endpoints are given by the consensus type for 𝛾 = 0, as determined by 
Proposition 2, and the consensus type for 𝛾 →∞ as determined by Proposition 3. As we show using a counterexample in Appendix 
B.3 for a bipartite network, the consensus need not be a weighted average of the consensuses of the pure social dynamics and 
exclusive attention to performance cases, and the consensus type can be non-monotonic in 𝛾 even in the absence of random ifluences 
like dividend shocks. Both results are related to the ‘double lag’ between the future type update and the past type that determines 
realised performance (see (7), (9)); in turn, this double-lag structure is a key obstacle which prevents an analytical characterisation 
of consensus types for finite attention.

In light of this result, the price-type dynamics which will prevail in a market with finite attention to performance 𝛾 > 0 -- including 
price stability -- can be difficult to predict and cannot be inferred simply by studying the polar cases. We now give an example where 
the consensus and performance-adjusted ifluence of each agent are obtained numerically.

Example 3. Consider the star network of Example 1 for finite performance feedback 𝛾 > 0 and 𝑟 = 0.04, 𝜀𝑡 = 0 (no dividend shocks), 
and 𝑝̃0 = 1.25. For 𝛾 sufficiently close to zero, the type and price dynamics are similar to the case of zero performance feedback 
(𝛾 = 0) in Fig. 2: the consensus type is smaller than 1 + 𝑟, so the price converges to the fundamental price; see the grey line in the 
right panel of Fig. 2. However, increasing the feedback parameter 𝛾 further leads to a qualitative change in the price dynamics.

For 𝛾 ≈ 1∕45 or larger, the consensus type exceeds 1+ 𝑟 and hence the price becomes explosive (i.e. diverges to +∞). We provide 
an example Fig. 6 (above), which is based on a feedback parameter of 𝛾 = 0.3. As before, we plot individual types in the left panel 
and the price deviation in the right panel. The key difference is that, because the initial average type exceeds (1 + 𝑟)2, higher types 
are performing better and these performance differences are taken into account at the first update. As a result, individual types at 
date 1 are higher than in the case of no performance feedback (i.e. when 𝛾 = 0, cf. Fig. 2).

The largest difference in period 1 is for Agent 5 -- the best performer -- because they compare their own strong performance against 
that of Agent 1, the worst performer in period 0. In particular, they attach a much higher weight to their own past type than to the 
fundamental type of Agent 1, giving them a noticeably higher period 1 type (dashed line, left). The other agents also update to higher 
types (but to less extent) and so types move toward a more strongly chartist consensus after several updates. Thus, in this example 
the performance feedback reduces ifluence of the core (Agent 1) on the consensus type and increases the ifluence of agents in the 
periphery, such as Agent 5, who have better profit performance.

In the above example, price diverges to +∞ but there is a type consensus despite the unbounded price dynamics. By Part 3 
of Proposition 5, a type consensus is guaranteed if price converges, and by Part 2 of Proposition 5 the price will converge to the 
fundamental price with positive probability if 𝛾 is large enough and the bounds for dividend shocks are ‘wide enough’. We now add 
dividend shocks and show this result in Fig. 7.

In Fig. 7 we keep 𝛾 = 0.3, so the only difference compared to Fig. 6 is the dividend shocks. We set a ‘large’ negative dividend 
shock 𝜀0 in period 0, such that the critical price becomes positive and large enough to reverse the initial performance ranking relative 
to Fig. 6; see (8).13 Type updating now leads to much lower types in period 1 than if performance weighting were absent, since the 

13 We draw dividend shocks from a truncated-normal distribution with standard deviation 0.05 and support [−𝑑, 𝑑]. We set the initial dividend shock at 𝜀0 = −𝑑 + 𝑐, 
where 𝑐 is a small positive number.
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Fig. 7. Dynamics of individual types and price in the star network: 𝛾 = 0.3, 𝑟 = 0.04, 𝑝̃0 = 1.25, dividend shocks and a large negative dividend shock 𝜀0 < 0 at date 0 
that reverses the initial performance ranking.

period 0 return (inclusive of dividends) is now negative so that the pessimistic short-sellers (agents 1,2,3) are the best initial performers 
(in that order).

As a result, we see that the highest type in period 1 is for Agent 1 -- who updates from all others -- while Agents 4 and 5 reduce 
their types very sharply because their performance in period 0 is now much worse than the best-performing Agent 1 who they weigh 
their performance against. The sharp reduction in type for Agents 2--5 in period 1 lowers average type substantially and subsequent 
updating leads to a consensus type much smaller than 1+𝑟 (around 0.92), so the price converges on the fundamental price (in contrast 
to Fig. 6) and converges at a much faster rate than if performance is ignored (𝛾 = 0, Fig. 2, where dividend play no role). Due to 
performance feedback, Agent 1 has more ifluence on the consensus compared to 𝛾 = 0 (agents 2 and 3, too), while agents 4 and 5 
become less ifluential.14

In Fig. 6, where 𝛾 = 0.3 and there are no dividend shocks, the consensus type is just above 1+ 𝑟 = 1.04 and therefore lies between 
the consensus of approx. 1.031 for 𝛾 = 0 (Fig. 2) and the consensus of 2.8 when 𝛾 →∞ (Fig. 3). Likewise, the consensus type for 
finite attention to performance lies between the consensus types for 𝛾 = 0 and 𝛾 →∞ in the case of a large negative dividend shock in 
period 0 (see Figs. 2, 4 and 7).15 Although it is quite intuitive that consensus lies between the polar cases this is not always the case 
even in the absence of dividend shocks, as shown in Appendix B.3.

4. Extension to non-connected networks

Our discussion thus far has been limited to strongly connected networks, where all agents are interlinked, i.e., 𝑑(𝑖, 𝑗) < ∞ or 
equivalently 𝑗 ∈  𝑖 for all 𝑖, 𝑗 ∈ 𝑁 . This assumption facilitates the exposition, yet it is also useful to understand how our results 
extend to non-connected networks.

To begin, we introduce additional notation. A subset of agents  ⊂ 𝑁 is dfined as strongly connected if any two agents 𝑖 and 𝑗
within  can communicate directly or indirectly, i.e., 𝑗 ∈  𝑖 for all 𝑖, 𝑗 ∈ . Thus, information can propagate between any pair of 
agents within a strongly connected subset. A subset of agents  ⊂ 𝑁 is termed closed if there is no communication path from any 
𝑖 ∈  to any external agent 𝑗 ∈𝑁 ⧵, i.e.,  𝑖 ⊆  for all 𝑖 ∈ . This concept induces a partition of agents into distinct communication 
classes Π(𝑁,𝐀) = {1,2,… ,𝐾,}, where each 𝑘 is strongly connected and closed, and  denotes the (potentially empty) Rest 
of the World comprising agents not included in any strongly connected, closed group. Notably, each network includes at least one 
non-empty, strongly connected, and closed subset .

Fundamentally, the type dynamics results derived for strongly connected networks extend to each strongly connected and closed 
subset . Since agents only listen to peers within their closed group, the presence of other agents outside this group affects price 
dynamics hence may affect the updating weights, but not the core updating mechanics. Qualitatively, all results continue to hold in 
this broader framework, as demonstrated in Appendix A.2. Our primary results are thus presented and proven in their generalised 
form in Appendix A.2, applicable to both connected and non-connected networks.

Only agents in the Rest of the World exhibit distinct behaviour, as they may listen to individuals outside their group. Here, 
we summarise the main extensions to our results, emphasizing implications for agents in the Rest of the World. First, similar to 
Proposition 1, we demonstrate in Proposition 1a that in any steady state, agents in each closed, strongly connected group reach a 
consensus, while agents in the Rest of the World adopt a convex combination of the types from the closed, strongly connected groups. 
In a fundamental steady state, we can precisely characterise the types in the Rest of the World by:

𝐠,∗ =
(
𝐈|| −𝐀

)−1
𝐀(𝑁⧵)𝐠𝑁⧵,∗. (17)

14 The performance-adjusted social ifluence weights are approx. (0.409, 0.174, 0.164, 0.137, 0.117) (see (16)). Thus, compared to 𝛾 = 0 (Example 1, Fn. 9), Agent 
1 remains most ifluential and has a larger ifluence on the consensus, while agents 4,5 become less ifluential and agents 2,3 become more ifluential.
15 Recall that for 𝛾 = 0, dividends are irrelevant for the type dynamics, so Fig. 2 applies in this case.
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Fig. 8. The network configuration of Section 5.1 for 𝑛= 10 omitting the self loops. 

Intuitively, in a fundamental steady state, all agents perform uniformly, so the updating matrix is given by 𝐀. Thus, types in the 
Rest of the World can be characterised accordingly.

For pure social updating (𝛾 = 0), the consensus within each closed and strongly connected set aligns with the eigenvector centrality 
of the adjacency matrix restricted to that set, analogous to Proposition 2 but just applied to each closed and strongly connected set 
separately (see Proposition 2a). Terminal types of agents in the Rest of the World are then also determined by (17) since updating in 
the pure social case (𝛾 = 0) adheres to 𝐀.

The case of pure performance-based updating (𝛾 → ∞) generalises smoothly to non-connected networks. Proposition 3, which 
states that all agents adopt the highest performing type in the network, generalises in the sense that each agent adopts the best

performing type along their path  𝑖 (see Proposition 3a). Thus, closed and strongly connected groups adopt the top-performing type 
from within their group, while agents in the Rest of the World adopt the best-performing type available along their path. This contrasts 
sharply with (17), where agents from the Rest of the World average across all types from closed and strongly connected groups to 
which they are connected. For pure performance updating, initial types in the Rest of the World can persist over time which occurs if 
the initially best-performing agent originates from the Rest of the World since this agent will not change the type even if outside the 
convex hull of types in closed and strongly connected groups. Notably, the best-performing agents remain determined by the initial 
type distribution: extreme fundamental types prevail if 𝑔0 < (1 + 𝑟)2, while extreme chartist types prevail if 𝑔0 > (1 + 𝑟)2. As before, 
the long-run price behaviour follows from the terminal types in Propositions 2a and 3a.

The other main results, i.e. Propositions 4 and 5 extend to non-connected networks with minor modfication (Proposition 4a) or 
no modfication at all (Proposition 5). Appendix A.2 includes proofs of these results without requiring the network to be strongly 
connected.

5. Applications

We close the paper with three applications -- price bubbles, price fluctuations, and asset pricing on a ‘small world’ network. These 
numerical applications highlight some concrete implications of network-performance effects for asset pricing when analytic results 
are not possible, as well as showing the usefulness of some of the extensions covered in Section 4.

5.1. Price bubbles

We first consider an example with asset price ‘bubbles’ in the sense that positive deviations from the fundamental price initially 
grow to reach a peak before the price collapses and converges on the fundamental (i.e. intrinsic) value. Following Smith et al. 
(1988), such ‘bubbly’ price dynamics have been documented in numerous studies of experimental asset markets, and adding social 
communication ifluences the incidence of such bubbles.16 In the application here, the bubble dynamics are generated by the network 
with no exogenous disturbances to dividends. Besides highlighting the possibility of price bubbles, our example has the pure network 
effect and the performance feedback either competing against one another or reinforcing one another, depending on the value of the 
average type 𝑔𝑡.

Consider a network with a ‘die-hard’ pure fundamentalist, Agent 1, who does not listen to any other agent. The remaining agents, 2 
to 𝑛, start out as strong chartists but update their type based on their network, with weights depending upon performance when 𝛾 > 0. 
For convenience we set 𝑔0 = (0,2, ...,2) and 𝑛 = 10, so that 𝑔0 = 1.8. Agents 𝑖 = 2,… ,10 listen to each of their nearest ‘neighbours’ on 
either side, so the network structure is similar to a wheel network, except that Agent 1 does not listen to agents 2 or 10 (see Fig. 8).

In the terminology of the paper, Agent 1 is the only closed and strongly connected set while the Rest of the World consists of the 
remaining agents 2 to 10. Note that this example can be interpreted as a world with a ‘die-hard’ fundamentalist (Agent 1) and many 
followers who either follow Agent 1 directly (agents 2,10) or follow her indirectly by following either her followers or her followers’ 
followers; intuitively, we may think of this example as a market with ‘one Warren Buffet and many sheep’.

We set 𝑟 = 0.04, 𝛿 = 1, 𝑑𝑡 = 𝑑 = 0.02 for all 𝑡 (so 𝑝𝑓 = 1∕2, 𝜀𝑡 = 0) and 𝑝̃0 = 0.1𝑝𝑓 . Initially we set 𝑛 = 10 so that chartists (‘sheep’) 
outnumber the fundamentalist by 9 to 1; later we allow 𝑛 to vary. When 𝛾 = 0, the fitness ranking is irrelevant and the updating of 

16 See, for example, Oechssler et al. (2011), Schoenberg and Haruvy (2012), Steiger and Pelster (2020).
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Fig. 9. Asset price bubbles and type dynamics: 𝑝̃0 = 0.05 and various 𝛾 . In this example, increasing the performance feedback parameter 𝛾 increases the size of bubbles 
and price explodes for large enough 𝛾 .

agents 2 to 10 depends on the (local) average computed from their own type and their neighbour on either side, whereas agent 1 
always keeps 𝑔1

𝑡
= 0. As a result, the type dynamics for 𝛾 = 0 are guaranteed to converge to a consensus of zero, giving us a benchmark 

to compare against the case where both a network effect and performance feedback are present (𝛾 > 0).

Fig. 9 shows that the price follows a stylised ‘bubble’ dynamic, first increasing for several periods to reach a peak before collapsing 
and falling toward the fundamental price. The right panel shows the corresponding average type dynamics. Price initially increases 
because 𝑔0 = 1.8 > 1 + 𝑟, and it goes on increasing for several periods while 𝑔𝑡 remains above 1 + 𝑟. Only after several rounds of 
updating has fundamentalist ‘thinking’ spread sufficiently through the population to lower the average type below (1 + 𝑟), so that 
price starts falling and the bubble collapses. Hence, the price ‘bubble’ here is generated by a network effect.

Once we turn on the performance feedback (𝛾 > 0), the bubble is prolonged and peaks at a higher value. At the same time, 
the bubble becomes strongly asymmetric, with price collapsing quickly after reaching its peak (left panel). Intuitively, when the 
average type satifies 𝑔𝑡 > (1 + 𝑟)2 ≈ 1.082, more optimistic agents earn higher returns and hence chartist beliefs outperform the 
pure fundamentalist one; however, once 𝑔𝑡 is below (1 + 𝑟)2, the performance ranking is reversed, and there is a shift toward more 
fundamental beliefs, which can be seen in the dramatic decline of 𝑔𝑡 soon after period 10 (dashed lines, right panel). This decline is 
especially evident in the case of 𝛾 = 5. Note that price quickly collapses once 𝑔𝑡 < (1 + 𝑟) (left panel) because a falling price makes 
chartist expectations more conservative and is reinforced by a fall in average type 𝑔𝑡, so that price declines are exacerbated.

Though the network effect wins the ‘battle’ against performance feedback up to 𝛾 = 5, this result is reversed in the final case 
(𝛾 = 5.244). That is, once 𝛾 is large enough, the performance feedback is strong enough that 𝑔𝑡 always exceeds (1 + 𝑟)2. In this case 
the reversal in performance ranking does not happen -- see right panel -- and since the terminal average type exceeds (1 + 𝑟), we have 
a perpetual bubble where price diverges to +∞.17 In short, the attention placed on performance, as controlled by feedback parameter 
𝛾 , has important qualitative and quantitative and implications for the price and type dynamics.

The findings here relate neatly to our theoretical results discussion in Section 4. The agents 2--10 form the Rest of the World 
and (17) implies that for 𝛾 = 0, the Rest of the World will adopt a weighted average of the consensuses in the closed and strongly 
connected sets. The same is true for any finite 𝛾 > 0 if the price converges to the fundamental price by Proposition 5 since the result 
also applies to non-connected networks as shown in the proof. Since the only closed and strongly connected set is the singleton set 
containing Agent 1, Propositions 2a and 5 imply that the types of agents 2--10 will converge to the fundamental type of agent 1 if 
price converges. By contrast, for 𝛾 →∞, Proposition 3a implies the Rest of the World will converge to the maximal type on their 
path (initial average type is above (1 + 𝑟)2), which is clearly their initial type. Hence, for 𝛾 →∞, the initial types of agents 2-- 10 will 
never change, giving an explosive price path.

How sensitive are these results to the mass of chartists? Fig. 10 varies the number of agents 𝑛 at three different values of 𝛾 , including 
the case 𝛾 = 0 (left panel). 

Increasing 𝑛 raises the magnitude and persistence of the price bubble; intuitively, a large population of chartists corresponds to 
greater initial optimism among investors. At the same time, the diameter of the network increases for greater 𝑛 so it takes longer 
for the fundamental belief to spread. For the cases with positive 𝛾 (Fig. 10, middle and right), the bubble is amplfied and more 
persistent when investors are more focused on performance, and even small increases in 𝑛 have substantial effects on the bubble size 
and duration. Due to the switch in the performance ranking noted above, a strong asymmetry develops as 𝑛 is increased: the price 
bubbles build over many periods but collapse very sharply.

We only plot cases where price converges in Fig. 10, but 𝛾 = 1.33, 𝑛 = 11 (right panel) is near the knife-edge, so a small increase 
in 𝛾 or 𝑛 would lead to an explosive path -- i.e. a perpetual price bubble. Recall that if 𝛾 = 0 (no attention to performance), then 
regardless of how large 𝑛 is, types will converge on a consensus of 0 (pure fundamentalist) and hence the price bubble will always 

17 Clearly, consensus does not obtain in this case since the ‘die hard’ fundamentalist has type of 0.
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Fig. 10. Sensitivity of bubble paths to increasing the mass of chartists (𝑝0 = 0.05). As the number of agents 𝑛 rises, the share of chartists also increases, causing bubbles 
to peak at a higher price before collapse.

Fig. 11. The 3-agent network (ignoring self-loops) and its adjacency matrix. 

collapse, giving convergence to the fundamental price. However, if 𝛾 > 0 then for large enough 𝑛 we may see average type settle above 
(1 + 𝑟) such that the bubble is permanent and price explodes. Thus, we see once again that attention to performance has important 
implications for the price and type dynamics.

5.2. Price fluctuations

We now study price fluctuations for a network of 𝑛 = 3 agents illustrated in Fig. 11. Agents 1 and 3 are ‘die-hards’ who listen only 
to themselves, i.e. 𝑎𝑖𝑗 = 1 if 𝑗 = 𝑖 and 0 otherwise. Agent 2 listens to both agents 1 and 3, so 𝑎2,𝑗 = 1 for 𝑗 ∈ {1,2,3} and Agent 2 
belongs to the Rest of the World, while agents 1 and 3 each form a singleton closed and strongly connected set.

Agent 1’s initial type is 𝑔10 = 1 and Agent 3’s initial type is 𝑔30 = (1 + 𝑟+ 𝜈)2, where 𝜈 = 0.001. Since these agents update only from 
themselves, 𝑔1

𝑡
= 1 and 𝑔3

𝑡
= (1+ 𝑟+𝜈)2 for all 𝑡 ∈ ℕ. Agent 2’s initial type is 𝑔20 = 1+ 𝑟, and their subsequent types 𝑔2

𝑡
, for all 𝑡 ≥ 1, will 

depend on their updates from past types (of all agents), which are weighted according to their relative performance. Thus, changes in 
the average type 𝑔𝑡 must come from changes in Agent 2’s type. The other parameters are 𝛿 = 2, 𝑟 = 0.04, 𝑑 = 0.5, so 𝑝𝑓 = 𝑑∕𝑟 = 12.5. 
The initial price deviation is 𝑝̃0 = 1 and dividend shocks have standard deviation 𝜎𝑑 .

5.2.1. Finite 𝛾
We start by showing the price deviation 𝑝̃𝑡 for 𝛾 ∈ {0,5,10,45,75}, 𝜎𝑑 = 0 in Fig. 12. For 𝛾 = 0, performance is irrelevant and 

there is an explosive price that diverges to +∞ (left panel). Intuitively, pure social updating implies that agent 2 will continually 
adopt a higher type, such that the average type 𝑔𝑡 exceeds 1 + 𝑟 in all periods. For any 𝛾 > 0, explosive price is avoided because 
average type starts smaller than (1 + 𝑟)2, such that agent 2 puts a higher weight on the low type of agent 1 and continues to do so. 
The performance feedback thus dominates the social ifluence effect, preventing an explosive price path; the reason is that if average 
type and price do increase, then agent 2 puts even less weight on the high type of agent 3 because when price becomes large, so does 
the performance differential.18

For 𝛾 = 5 or 𝛾 = 10, price initially increases, but the increase is reversed as time passes, due to the performance effect offsetting 
the social ifluence effect (see right panel). For 𝛾 = 45, price increases in the first period, but all later updates have average type and 

18 As a check, we ran some long simulations of 5,000 periods for several very small (but positive) 𝛾 values and found that price convergence occurs. The figure is 
provided in the Online Appendix (see Appendix C).
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Fig. 12. Price deviation 𝑝̃𝑡 for selected values of the performance parameter 𝛾 when dividends are deterministic: 𝑑𝑡 = 𝑑 for all 𝑡. Left panel: simulation of 1,100 periods; 
right panel: zoomed in on periods 0 to 4.

Fig. 13. Price deviation after 2,100 periods. For each standard deviation of dividend shocks 𝜎𝑑 , we simulated with 30 different sequences of dividend shocks; the last 
50 values from each simulation are plotted.

price falling because the performance feedback dominates. For 𝛾 = 75, price falls in all periods because the social ifluence effect 
is dominated even at the first update, given that initial average type is smaller than (1 + 𝑟)2 and performance now receives extra 
attention.

In Fig. 13 we add dividend shocks from a truncated normal distribution with mean zero and standard deviation 𝜎𝑑 > 0. For each 
𝜎𝑑 , we plot a sample of terminal values of the price from many long simulations with different shocks. We see that price fluctuates, 
since large dividend shocks imply switches in performance ranking between agent 1 and agent 3, such that average type moves above 
and below 1 + 𝑟. As 𝜎𝑑 is increased the fluctuations and differences across simulations grow, but there is some symmetry around 
the deterministic outcome at 𝛾 = 5 (left panel; see also Fig. 12). Intuitively, a sequence of large dividend shocks of the same sign 
may cause price to rise somewhat at the start of a simulation, or to fall somewhat if average type is pushed below 1 + 𝑟 for several 
periods. When the feedback parameter is increased to 𝛾 = 75 (right panel), price fluctuations are highly asymmetric and strongly 
skewed toward higher values, as compared to the relative symmetry for 𝛾 = 5. In short, attention to performance matters not just for 
the long run average price, but also for its volatility, with fluctuations not necessarily occurring ‘around’ the deterministic outcome.

5.2.2. Exclusive attention to performance: 𝛾 →∞
We now consider the case 𝛾 →∞, for which there are some non-trivial qualitative differences in the price and type dynamics. 

In this case, Agent 2 will adopt either the type of Agent 1 or Agent 3, depending on which is the best performer (Section 3.3). This 
can result in substantial price fluctuations, since switches in average type can be large and sudden, as they will happen immediately

following a switch in performance ranking.

Fig. 14 gives an illustration. Here we plot the price deviation and average type for a given sequence of dividend shocks. When 
shocks cause the price deviation to cross the critical price, updating by Agent 2 is based on the bast performer among agents 1 and 3, 
so we see sizeable shifts in average type (right panel), and price fluctuates as average type shifts above and below 1 + 𝑟 (left panel). 
Note that switches in average type become more frequent after price has fallen (right panel) because the latter ‘scales down’ the 
performance differentials (see (6)--(7)), so that given shocks are more likely to switch performance ranking.
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Fig. 14. Price deviation 𝑝̃𝑡 and average type 𝑔𝑡 for 𝛾 →∞ and a particular sequence of dividend shocks. Note that there are ‘sharp’ fluctuations in the average type 
that cause the price to fluctuate.

Fig. 15. Price deviation after 2,100 periods. For each standard deviation of dividend shocks 𝜎𝑑 , we simulated with 30 different sequences of dividend shocks; the last 
50 values from each simulation are plotted.

What happens as the variance of dividend shocks is increased? Fig. 15 plots the terminal values of the price from many long simulations 
when 𝛾 →∞ (see right panel); here we use the same sequences of dividend shocks as in Fig. 13 and the results for 𝛾 = 75 are shown 
in the left panel. If shock variance is near zero, exclusive attention to performance pushes the long run price close to the fundamental 
price, consistent with the pattern in the deterministic case when 𝛾 was increased (Fig. 12). Intuitively, for 𝛾 →∞, Agent 2 adopts 
the best-performing type rather than a weighted average, so average type is quite responsive even to small shocks (low values of 𝜎𝑑 ), 
unlike in the finite 𝛾 case (see left and right panels).

As 𝜎𝑑 is increased, the price deviation increases and we also see a wider spread of prices, rflecting both the history dependence 
of the price (scale effect) and the introduction of non-trivial shocks that affect performance ranking. In particular, price is ‘held up’ 
relative to the deterministic case because falling price may be interrupted (or reversed) by dividend shocks that favour adoption of 
the higher type of agent 3 (right panel), and a higher frequency of large shocks means more switches in performance ranking that 
lead to price fluctuations.

Although price can fluctuate even if 𝜎𝑑 is relatively low, the price drops sufficiently close to zero in these cases that fluctuations 
in the average type have little impact; that is, because price depends on average type scaled by the past price, a low price reduces the 
sensitivity of price to fluctuations in average type -- the history dependence mentioned above. This scale effect is one reason the price 
is quite similar in terms of level and fluctuations at relatively high shock variances for 𝛾 = 75 and 𝛾 →∞ (see both panels): in such 
cases there are many reversals in performance, so the long run price does not get close to the fundamental price.

5.3. Asset pricing on a small-world network

As a last application, we investigate how connectedness on a social network ifluences type consensus and price dynamics when 
the performance feedback parameter 𝛾 is held fixed. Social networks exhibit sparsity, clustering and small diameter, properties which 
motivate the ‘small world’ network of Watts and Strogatz (1998). In a small world, each agent is connected to a small fraction of the 
network; agents are more likely to be connected if they have a connection in common; and distance between any two agents is small. 
Examples include networks of the US corporate elite and partnerships of investment banks in Canada.19

19 See, for example, Panchenko et al. (2013, p. 2625) and the references therein.
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Fig. 16. A small world network (top panel) and some example degree distributions (lower panel). In all panels and computations in the figure, self loops are ruled out 
as in the baseline Watts-Strogatz model.

From a technical perspective, a small world is a hybrid network between a regular lattice (e.g. the ‘wheel’ in Example 2) and a 
random graph in which all links are random. In the first step, a regular lattice is constructed in which each node is connected to 
the 𝐾 nearest neighbours on each side; in the second step, each link is rewired with probability 𝜌 ∈ (0,1) to a different node in the 
network. The ‘small world’ properties emerge at around 𝜌 = 0.1 for 𝑛 = 100, which we take as our number of agents in this section.20

We start by plotting the graph of a particular small world network and its adjacency matrix in Fig. 16 (top panel) and by showing 
how the degree distribution changes as the network parameters 𝐾 and 𝜌 are varied (lower panel). The graph (top left) runs anti

clockwise starting from Agent 1 at three o’clock and ending at Agent 100, and the adjacency matrix is sparse but with clusters of 
connected agents (top right). The top row sets 𝐾 = 2 (implying a mean degree of 4) and the rewiring probability is set at 𝜌 = 0.2. 
The bottom panel of Fig. 16 shows some example degree distributions. The degree distribution is centred around 2𝐾 and there is less 
variation in connectedness across agents the larger the rewiring probability 𝜌. The bottom left panel holds 𝜌 fixed while doubling 
the average degree by increasing 𝐾 from 2 to 4; the bottom right panel also doubles 𝐾 from 2 to 4, but the rewiring probability 
is increased from 𝜌 = 0.2 to 𝜌 = 0.5, which gives a more uniform degree distribution and fewer agents concentrated at the average 
degree.21

As a first exercise, we hold the parameters 𝐾,𝜌 fixed and investigate the impact of different random draws of the network on the 
price and type dynamics. We set 𝑛 = 100, 𝐾 = 2, 𝜌= 0.2 as in the top panel of Fig. 16 and the initial conditions are a price deviation 
𝑝̃0 = 0.1, an expected dividend of 𝑑 = 1, a scaling 𝛿 = 2.5 in the demands (2), an interest rate of 𝑟 = 0.04, and initial types linear on 
the interval [0,1.95], so initial average type is 𝑔0 = 0.975. The performance feedback parameter is set at 𝛾 = 180. Dividend shocks 
𝜀𝑡 are drawn from truncated-normal distribution with standard deviation 𝜎𝑑 = 1∕3 and support [−𝑑,𝑑], to ensure that dividends are 
bounded and non-negative. The dividend shocks 𝜀𝑡 are held fixed across simulations (identical sequences), so the only difference 
between simulations is the difference in the realised networks which are drawn from an identical distribution.

Fig. 17 shows the time paths of price and average type over 30 periods for 4 different random ‘draws’ of the network; one of these, 
shown with the dashed line, is the network shown in the top panel of Fig. 16. For these networks that differ only in the random links, 
the average type eventually settles on quite different values (left panel).

In three of the networks, the average type settles at a small enough value for price to converge on the fundamental price (Networks 
1--3), while for Network 4 (dotted line) average type settles above 1 + 𝑟, so that the price explodes (right panel). Since average type 
initially increases to exceed 1 + 𝑟 in all cases, we first see a growing price deviation, but this growth is halted in the cases of 
Networks 1--3 (since lower types gain a performance advantage given the sequence of dividend shocks) and price then falls toward 
the fundamental value. These price paths are reminiscent of the ‘price bubbles’ seen in Fig. 9 but they arise from random differences 

20 For 𝜌= 0 (no rewiring), a regular lattice is obtained; for 𝜌= 1 we obtain the random graph of Erdös and Rényi (1959). For a discussion of the emergence of small 
world properties, see Albert and Barabási (2002).
21 As before, we ignore self-loops in all figures including Fig. 16. Note, however, that for all simulations we have set the diagonal of the adjacency matrix equal to 1.
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Fig. 17. Average type and price deviation in four different small world networks, all drawn from an identical distribution with parameters 𝑛= 100, 𝐾 = 2, 𝜌= 0.2. In 
each case 𝛾 = 180 and 𝑝̃0 = 0.1. We see that price dynamics can differ substantially due to differences in the random links in the network.

Fig. 18. Consensus type and price stability as 𝐾 (mean degree/2) is increased: 𝜌= 0.2 and two values of 𝜎𝑑 . Each marker plots the consensus in one of 30 simulations; 
in each 𝑛 = 100, 𝛾 = 180 and only the random links vary. A marker is plotted in the figure only if a consensus was found in that particular simulation.

in the ‘small world’ interacting with a given sequence of dividend shocks, without any change in the performance feedback parameter 
𝛾 (which is fixed at 180).

We now investigate the impact of changing the network parameters, in particular, the parameter 𝐾 that determines expected 
degree and the rewiring probability 𝜌. We start with the degree parameter 𝐾 . In Fig. 18 we continue with the same parameter values 
and initial conditions as in the last example, except that we allow the mean degree 2𝐾 to increase and we record the consensus type 
(when applicable) in 30 simulations for which only the random links in the network differ, by varying the random seed.22 We plot 
consensus values for two different variances of dividend shocks, one where the standard deviation is 𝜎𝑑 = 3∕40 (grey circles) and the 
other for which 𝜎𝑑 = 1∕3 (black dots), as in Fig. 17.

The main finding is more variation in the consensus type when the mean degree is low (agents less connected). As the mean 
degree is increased from relatively low values, the consensus type increases and values are quite concentrated, despite differences 
in random link formation. As seen in Fig. 18, the price explodes to +∞ if the consensus exceeds 1 + 𝑟 = 1.04. Therefore, lower 
connectedness favours price stability in this example, as does a smaller variance of dividend shocks (for 𝜎𝑑 = 3∕40, most simulations 
have non-explosive price dynamics -- the grey circles -- but not when 𝜎𝑑 = 1∕3, black dots). Intuitively, higher variance increases the 
likelihood returns will change sign, and increased connectedness means that, if such a switch occurs, many agents can move toward 
a better-performing type.

Next, we vary the rewiring probability 𝜌. For each 𝜌 in Fig. 19, we plot the consensus type from 30 simulations in which only the 
random links in the network vary; this is done for both a ‘low’ dividend shock variance (𝜎𝑑 = 3∕40, grey circles) and a higher shock 
variance (𝜎𝑑 = 3∕20, black dots). For the low shock variance, there is relatively little variation in the consensus across simulations, and 

22 We did not find a numerical consensus in some simulations when 𝜎𝑑 = 1∕3 and 𝐾 is between 2 and 9. In these cases price did not converge, so there is no guarantee 
a consensus will be reached (see Proposition 5). Simulation length is 800 periods, but we ‘break’ simulations immediately once a (near) consensus is reached.
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Fig. 19. Consensus type and price stability as rewiring probability 𝜌 is increased: 𝐾 = 2 and two values of 𝜎𝑑 . Each marker plots the consensus in one of 30 simulations; 
in each 𝑛 = 100, 𝛾 = 180 and only the random links vary. A marker is plotted in the figure only if a consensus was found in that particular simulation.

price converges with the exception of some simulations at intermediate rewiring probabilities (and one for 𝜌 = 0.9). When the variance 
of dividend shocks is doubled (black dots), only very low rewiring probabilities lead to price convergence in all simulations. As the 
𝜌 is increased, the consensus type become highly variable across simulations and hence difficult to predict. At intermediate rewiring 
probabilities, there are some simulations for which price converges to the fundamental price, but when the rewiring probability 𝜌 is 
large enough we see that all simulations had price exploding to +∞.

In summary, we see that changes in network structure had non-trivial effects on consensus types and price dynamics for perfor

mance feedback and initial types held fixed. Notably, even when networks were drawn from a fixed distribution, there were non-trivial 
effects on the price-type dynamics, and increasing the mean degree (connectedness) in this example tends to raise the consensus type, 
leading to price divergence.

6. Conclusion

In this paper we presented a novel model of ``social finance'' in which prices and belief types evolve as a system of coupled 
dynamics that depend on social networks and relative performance of neighbours. Our model allows investors to be connected via 
arbitrary social networks and to adopt continuous types from fundamentalist to arbitrarily strong chartist.

The ifluence of the social network on price and type dynamics depends on investors’ attention to performance when they update 
their type. We characterised the long-run type distribution for the polar cases where (i) updates are purely social, and (ii) agents 
attend exclusively to performance. For pure social updating, a consensus type is reached and this is a ‘melting pot’ of initial types 
(with ifluence weights given by eigenvector centrality), while for exclusive attention to performance only the best performer(s) in 
each agent’s network are imitated, such that -- depending on the initial average type -- either the most fundamental initial type or the 
most chartist initial type is adopted in finite time, and price will converge only if these extreme types are not too strongly chartist.

For exclusive attention to performance, the network affects time to consensus and price may coincide with the rational expectations 
solution (fundamental price) if there are one or more pure fundamentalists, in which case mispricing will be eliminated in finite time. 
For intermediate attention to performance, the network ifluences the consensus type, and we gave conditions such that a long-run 
consensus is reached, although the consensus itself is analytically intractable. Our three numerical applications -- price bubbles, price 
fluctuations, and asset pricing on a ‘small world’ network -- illustrated some implications of network-performance effects both with 
and without dividend shocks.

Our results show how price and type dynamics depend on concrete features of networks and market conditions -- such as distance 
between agents (diameter), network centrality, expected degree (connectedness), and the initial distribution of types. We thereby 
provide an understanding of when performance-based updating from a social network is stabilising -- or not -- for asset prices. An 
implication of our results is that policymakers concerned with financial market stability will require information not just on social 
networks, but also on the extent to which performance comparisons among peers affect investment decisions.

Future research could proceed in three main directions. First, it would be instructive to relax some key assumptions in the model, by 
allowing memory of earlier trading performance or chartist beliefs with multiple time lags. Second, while agents take into account the 
trading profits and types of others, we did not model private information of agents and potential sources of misinformation. Extending 
a framework of opinion dynamics like Della Lena (2024) to our setting could yield useful insights into investment behaviour and 
information updating. Finally, it would be interesting to investigate empirical performance of our model. One important finding 
from experimental asset markets is that after several rounds with a particular group of participants, beliefs seem to coordinate on a 
common predictor (see Hommes et al., 2005, 2008; Bao et al., 2017). Since the standard framework of discrete types cannot replicate 
such belief-type consensus (except as an extreme case), it is an open question whether our model of continuous types would provide 
a good fit to empirical and experimental data while helping to explain this stylised fact.
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Appendix A. Proofs of the main results

In this section, we do not assume the networks to be strongly connected such that there may exist several closed and strongly 
connected groups 𝑖 and possibly empty Rest of the World  as dfined in Section 4. We start by showing two important Lemmas 
in Appendix A.1 before stating and proving more general versions of the results shown in the paper which only hold for strongly 
connected networks in Appendix A.2.

A.1. Two lemmas for the case of 𝛾 →∞

Lemma 1. Let 𝛾 →∞ and suppose there exists 𝑡∈ℕ such that 𝑠𝑔𝑛(𝑅𝑡) = 𝑠𝑔𝑛(𝑅0) or 𝑔𝑡 = 0 for all 𝑡 ≤ 𝑡. Then the following holds:

1. If 𝑝̃0𝑅0 < 0, then 𝑔𝑖
𝑡
≥ 𝑔min

𝑡−1 (𝑁
𝑖) ≥ 𝑔𝑖

𝑡+1 for all 𝑖 ∈𝑁 , for all 𝑡 ≤ 𝑡.

2. If 𝑝̃0𝑅0 > 0, then 𝑔𝑖
𝑡
≤ 𝑔max

𝑡−1 (𝑁
𝑖) ≤ 𝑔𝑖

𝑡+1 for all 𝑖 ∈𝑁 , for all 𝑡 ≤ 𝑡.

Proof. First, note that 𝑠𝑔𝑛(𝑝̃0) = 𝑠𝑔𝑛(𝑝̃𝑡) holds for all 𝑡 ∈ ℕ such that 𝑔𝑡 ≠ 0 by (4). With the assumption of the Lemma, this implies 
𝑠𝑔𝑛(𝑅0𝑝̃0) = 𝑠𝑔𝑛(𝑅𝑡𝑝̃𝑡) for all 𝑡 ≤ 𝑡.

1. Consider the case 𝑝̃0𝑅0 < 0, implying 𝑝̃𝑡𝑅𝑡 < 0 or 𝑔𝑡 ≠ 0 for all 𝑡 ≤ 𝑡. Note that if there exists 𝑡′ ≤ 𝑡 such that 𝑔𝑡′ = 0 then 𝑔𝑖
𝑡′
= 0

for all 𝑖 ∈𝑁 , and by weighted average updating (by row stochasticity of 𝐀̃) there is nothing to show since then 𝑔𝑖
𝑡′
= 0 for all 

𝑖 ∈𝑁 , 𝑡′ ≥ 𝑡 is implied.

Therefore, suppose for the remainder that 𝑝̃𝑡𝑅𝑡 < 0 holds for all 𝑡 ≤ 𝑡. Note that 𝑠𝑔𝑛(𝑅𝑡) = −𝑠𝑔𝑛(𝑝̃𝑡) implies 𝑢𝑖
𝑡
> 𝑢

𝑗

𝑡
if and only if 

𝑔𝑖
𝑡−1 < 𝑔

𝑗

𝑡−1 by (7) (since 𝑠𝑔𝑛(𝑝̃𝑡) = 𝑠𝑔𝑛(𝑝̃𝑡−1) = 𝑠𝑔𝑛(𝑝̃𝑡−2)). Hence, more fundamental types perform better for any 𝑡 ≤ 𝑡.

First, consider 𝑡 = 0 and let 𝛾 →∞. Since each agent 𝑖∈𝑁 only updates from those with maximal fitness in their neighbourhood, 
i.e. from those with minimal type. Note, 𝑔𝑖−1 = 𝑔𝑖0 for all 𝑖 ∈𝑁 by assumption on initial conditions. Hence, 𝑈max

0 (𝑁𝑖) =𝐺min
−1 (𝑁𝑖) =

𝐺min
0 (𝑁𝑖) for all 𝑖 ∈𝑁 recalling that 𝑈max

𝑡
(𝑁𝑖) ∶= arg max𝑗∈𝑁𝑖{𝑢𝑗𝑡 } and, similarly, 𝐺min

𝑡
(𝑁𝑖) ∶= arg min𝑗∈𝑁𝑖{𝑔𝑗𝑡 }.

We therefore get the following:

𝑔𝑖1 =
1 |||𝑈max

0 (𝑁𝑖)|||
∑

𝑗∈𝑈max
0 (𝑁𝑖)

𝑔
𝑗

0 =
1 |||𝐺min

0 (𝑁𝑖)|||
∑

𝑗∈𝐺min
0 (𝑁𝑖)

𝑔
𝑗

0 = min 
𝑗∈𝑁𝑖

𝑔
𝑗

0 ≤ 𝑔𝑖0 ∀𝑖 ∈𝑁,

since 𝑖 ∈𝑁𝑖 for all 𝑖 ∈𝑁 . Thus, 𝑝̃0𝑅0 < 0 implies 𝑔𝑖1 ≤ 𝑔𝑖0 for all 𝑖 ∈𝑁 .

Further suppose for some 𝑡 ≤ 𝑡 we have 𝑔𝑖
𝑡
≤ 𝑔𝑖

𝑡−1 for all 𝑖 ∈𝑁 . We show that this implies 𝑔𝑖
𝑡+1 ≤ 𝑔𝑖

𝑡
for all 𝑖 ∈𝑁 . Since 𝑅𝑡𝑝̃𝑡 < 0, 

we get similar to above:

𝑔𝑖
𝑡+1 =

1 |||𝐺min
𝑡−1 (𝑁

𝑖)|||
∑

𝑗∈𝐺min
𝑡−1 (𝑁

𝑖)

𝑔
𝑗

𝑡
≤

1 |||𝐺min
𝑡−1 (𝑁

𝑖)|||
∑

𝑗∈𝐺min
𝑡−1 (𝑁

𝑖)

𝑔
𝑗

𝑡−1 = min 
𝑗∈𝑁𝑖

𝑔
𝑗

𝑡−1 ∀𝑖 ∈𝑁

By weighted average updating (by row stochasticity of 𝐀̃) we have 𝑔𝑖
𝑡
≥min𝑗∈𝑁𝑖 𝑔

𝑗

𝑡−1 for all 𝑖 ∈𝑁 . Hence, we have shown that 
if 𝑝̃0𝑅0 < 0, then 𝑔𝑖1 ≤ 𝑔𝑖0 and if 𝑝̃𝑡𝑅𝑡 < 0 and 𝑔𝑖

𝑡
≤ 𝑔𝑖

𝑡−1, then

𝑔𝑖
𝑡+1 ≤ min 

𝑗∈𝑁𝑖
𝑔
𝑗

𝑡−1 ≤ 𝑔𝑖
𝑡
. ∀𝑖 ∈𝑁, (A.1)

Induction implies that (A.1) holds for all 𝑡 ≤ 𝑡 which is what we had to show.

2. Now, consider the case 𝑝̃0𝑅0 > 0 which is completely analogous to above. 𝑝̃0𝑅0 > 0 implies 𝑝̃𝑡𝑅𝑡 > 0 for all 𝑡 ∈ ℕ for which there 
exists 𝑖 ∈𝑁 such that 𝑔𝑖

𝑡
≠ 0. Note that we will show that for all such 𝑡 ∈ ℕ, we have 𝑔𝑖

𝑡
≤ 𝑔𝑖

𝑡+1. Hence, if there exists a 𝑖 ∈𝑁

such that 𝑔𝑖0 > 0, then this will hold for all 𝑡 ≤ 𝑡.

Note that 𝑠𝑔𝑛(𝑅𝑡) = 𝑠𝑔𝑛(𝑝̃𝑡) implies 𝑢𝑖
𝑡
< 𝑢

𝑗

𝑡
if and only if 𝑔𝑖

𝑡−1 < 𝑔
𝑗

𝑡−1 by (7). Hence more chartist types are always performing 
better at any point in time 𝑡 ≤ 𝑡.

Analogously to above for 𝑡 = 0, we get because of the initial assumptions,

𝑔𝑖1 =
1 |||𝑈max

0 (𝑁𝑖)|||
∑

𝑗∈𝑈max
0 (𝑁𝑖)

𝑔
𝑗

0 =
1 |||𝐺max

0 (𝑁𝑖)|||
∑

𝑗∈𝐺max
0 (𝑁𝑖)

𝑔
𝑗

0 = max 
𝑗∈𝑁𝑖

𝑔
𝑗

0 ≥ 𝑔𝑖0 ∀𝑖 ∈𝑁.

Assuming 𝑔𝑖
𝑡
≥ 𝑔𝑖

𝑡−1 for all 𝑖 ∈𝑁 , we get from 𝑅𝑡𝑝̃𝑡 > 0 that:
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𝑔𝑖
𝑡+1 =

1 |||𝐺max
𝑡−1 (𝑁

𝑖)|||
∑

𝑗∈𝐺max
𝑡−1 (𝑁

𝑖)
𝑔
𝑗

𝑡
≥

1 |||𝐺max
𝑡−1 (𝑁

𝑖)|||
∑

𝑗∈𝐺max
𝑡−1 (𝑁

𝑖)
𝑔
𝑗

𝑡−1 = max 
𝑗∈𝑁𝑖

𝑔
𝑗

𝑡−1 ∀𝑖 ∈𝑁

and, hence,

𝑔𝑖
𝑡+1 ≥ max 

𝑗∈𝑁𝑖
𝑔
𝑗

𝑡−1 ≥ 𝑔𝑖
𝑡
. ∀𝑖 ∈𝑁, 𝑡 ≤ 𝑡. □ (A.2)

Lemma 2. Let 𝛾 →∞ and suppose there exists 𝑡∈ℕ such that 𝑠𝑔𝑛(𝑅𝑡) = 𝑠𝑔𝑛(𝑅0) or 𝑔𝑡 = 0 for all 𝑡 ≤ 𝑡. Then the following holds:

1. If 𝑝̃0𝑅0 < 0, then 𝑔𝑖
𝑡
→ 𝑔min

0 ( 𝑖) ∀𝑖 ∈𝑁 , 𝑡 ∈ℕ ∶ 2𝑑(𝑖,𝐺min
0 ( 𝑖)) − 1 ≤ 𝑡 ≤ 𝑡.

If for a closed and strongly connected group  we have 𝑡≥ 2𝐷(𝐀 ) − 1, then 𝑔𝑖
𝑡
→ 𝑔min

0 () for all 𝑡 ≥ 2𝐷(𝐀 ) − 1.

2. If 𝑝̃0𝑅0 > 0, then 𝑔𝑖
𝑡
→ 𝑔max

0 ( 𝑖) ∀𝑖 ∈𝑁 , 𝑡 ∈ ℕ ∶ 2𝑑(𝑖,𝐺max
0 ( 𝑖)) − 1 ≤ 𝑡 ≤ 𝑡.

If for a closed and strongly connected group  we have 𝑡≥ 2𝐷(𝐀 ) − 1, then 𝑔𝑖
𝑡
→ 𝑔max

0 () for all 𝑡 ≥ 2𝐷(𝐀 ) − 1.

Proof. For some agent 𝑖 ∈𝑁 , recall that  𝑖 ∶= {𝑗 ∈𝑁|∃𝑘 ∈ ℕ ∶ (𝐀𝑘)𝑖𝑗 > 0} denotes the set of agents to which there exists a path 
from 𝑖. Since 𝑎𝑗𝑗 = 1 for all 𝑗 ∈ 𝑁 , we have 𝑗 ∈ 𝑗 for all 𝑗 ∈ 𝑁 . Further recall that for any 𝑀 ⊆ 𝑁 , we denote by 𝑔min

𝑡
(𝑀) ∶=

min{𝑔𝑗0|𝑗 ∈𝑀} the minimal initial type of all agents in the set 𝑀 and by 𝑔max
𝑡

(𝑀) ∶= max{𝑔𝑗0|𝑗 ∈𝑀} the maximal initial type of 
all agents in the set 𝑀 for some point in time 𝑡 ∈ ℕ. Clearly, 𝑗 ⊆  𝑖, and hence, 𝑔min

𝑡
( 𝑖) ≤ 𝑔min

𝑡
(𝑗 ) while 𝑔max

𝑡
( 𝑖) ≥ 𝑔max

𝑡
(𝑗 ) for 

all 𝑗 ∈  𝑖, 𝑡 ∈ℕ. Note that by weighted average updating (by row stochasticity of 𝐀̃), we have 𝑔𝑗
𝑡+1 ≥ 𝑔min

𝑡
(𝑗 ) ≥ 𝑔min

𝑡
( 𝑖) ≥ 𝑔min

𝑡−1 (
𝑖)

and 𝑔𝑗
𝑡+1 ≤ 𝑔max

𝑡
(𝑗 ) ≤ 𝑔max

𝑡
( 𝑖) ≤ 𝑔max

𝑡−1 (
𝑖) for all 𝑗 ∈  𝑖, 𝑡 ∈ℕ.

1. Consider the case 𝑝̃0𝑅0 < 0 such that (A.1) holds for all 𝑡 ≤ 𝑡 by Lemma 1. Hence, the first inequality in (A.1) must be satified 
with equality if min𝑘∈𝑁𝑗 𝑔𝑘

𝑡−1 = 𝑔min
𝑡−1 (

𝑖) for some 𝑗 ∈  𝑖. Thus, all agents 𝑗 ∈  𝑖 who listen to agents within the set 𝐺min
𝑡−1 (

𝑖)
must adopt 𝑔min

𝑡−1 (
𝑖) at latest by period 𝑡+ 1. Hence,

𝐺min
𝑡+1 (

𝑖) ⊇
⋃

𝑗∈𝐺min
𝑡+1 (

𝑖)

𝑀𝑗 (𝐺min
𝑡−1 (

𝑖)) ∀𝑡 ∈ℕ. (A.3)

Note that (A.1) also implies 𝐺min
𝑡+1 (

𝑖) ⊇ 𝐺min
𝑡

( 𝑖) for all 𝑡 ∈ ℕ. Since, further, by assumption on initial conditions, 𝐺min
−1 ( 𝑖) =

𝐺min
0 ( 𝑖), (A.3) implies

𝐺min
𝑡+1 (

𝑖) ⊇

{
𝐺min
𝑡

( 𝑖) if 𝑡 is even⋃
𝑗∈𝐺min

𝑡
( 𝑖)𝑀

𝑗 (𝐺min
𝑡

( 𝑖)) if 𝑡 is odd

Since 𝑗 ∈𝑀𝑗 for all 𝑗 ∈𝑁 , the set 𝐺min
𝑡

( 𝑖) just expands over the path  𝑖 at latest at every odd time-step by the neighbours 
of the previous set. Thus, each agent 𝑗 ∈  𝑖 within distance 𝑑(𝑗,𝐺min

0 ( 𝑖)) of the agents with initial minimal types of  𝑖 has 
adopted this minimal type at latest at time step 2𝑑(𝑗,𝐺min

0 ( 𝑖)) − 1 and will keep it from there for all 𝑡 ≥ 2𝑑(𝑗,𝐺min
0 ( 𝑖)) − 1 as 

long as 𝑡 ≤ 𝑡.

Now, for a closed and strongly connected set , we have by definition  𝑖 = 𝑗 for all 𝑖, 𝑗 ∈ . Thus if 𝑡 ≥ 2𝐷(𝐀 ) − 1, then all 
agents in  obtain a consensus on 𝑔min

0 () after at most 2𝐷(𝐀 ) − 1 steps where, as before, 𝐀 is the matrix 𝐀 restricted to the 
set  and 𝐷(𝐀 ) is the length of the longest path within the network 𝐀 . Since 𝑔𝑖2𝐷(𝐀 )−1

= 𝑔min
0 () for all 𝑖 ∈  if 𝑡 ≥ 2𝐷(𝐀 )−1, 

these will not change henceforth by the nature of weighted average updating. Hence, 𝑔𝑖
𝑡
= 𝑔min

0 () for all 𝑡 ≥ 2𝐷(𝐀 ) − 1.

2. Now, consider the case 𝑝̃0𝑅0 > 0 such that (A.2) holds for all 𝑡 ≤ 𝑡 by Lemma 1. Analogously to above, we conclude that for any 
𝑖 ∈𝑁 ,

𝐺max
𝑡+1 (

𝑖) ⊇

{
𝐺max
𝑡

( 𝑖) if 𝑡 is even⋃
𝑗∈𝐺max

𝑡
( 𝑖)𝑀

𝑗 (𝐺max
𝑡

( 𝑖)) if 𝑡 is odd

Thus, for a closed and strongly connected set , all agents in  obtain a consensus on 𝑔max
0 () after at most 2𝐷(𝐀 ) − 1 steps and 

do not change types after that. □

A.2. Proofs of the main results

Proposition 1a (For non-strongly connected networks). The following holds in any steady state (𝑝∗,𝐠∗):

1. The types in any closed and strongly connected set  coincide: 𝑔𝑖,∗ = 𝑔,∗, ∀𝑖 ∈ .

2. The steady-state weights matrix satifies 𝐀̃∗
(𝑁⧵)(𝑁⧵) =𝐀(𝑁⧵)(𝑁⧵) and the fitness vector is fixed at some 𝐮∗ ∈ℝ𝐧. In a fundamental 

steady state, 𝐀̃∗ =𝐀 and 𝐮∗ = 𝟎.
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3. The types of investors belonging to the Rest of the World are convex combinations of the types of the closed and strongly connected sets, 
i.e. 𝑔𝑗 ∈ 𝑐𝑜𝑛𝑣{𝑔𝑖,∗|𝑖 ∈𝑁 ⧵} for all 𝑗 ∈. In a fundamental steady state, Rest of the World types satisfy

𝐠,∗ =
(
𝐈|| −𝐀

)−1
𝐀(𝑁⧵)𝐠𝑁⧵,∗. (A.4)

Proof of Proposition 1a. 1. Suppose that 𝐠̂ is a steady state type vector and suppose to the contrary that for some closed and 
strongly connected set  there exists 𝑖, 𝑗 ∈  such that 𝑔̂𝑖 ≠ 𝑔̂𝑗 . Let 𝑔̂max() = max𝑘∈ 𝑔̂𝑘. Since  is strongly connected, there 
must exist 𝑖, 𝑗 ∈  with 𝑔̂𝑖 = 𝑔̂max(), 𝑔̂𝑗 ≠ 𝑔̂max(), and 𝑎𝑖𝑗 = 1. But since  is closed, we have 𝑎𝑖𝑘 = 0 for all 𝑘 ∈𝑁 such that 
𝑔̂𝑘 > 𝑔̂𝑖. Hence, 

∑
𝑙∈𝑁𝑖 𝑎̃𝑖𝑙𝑔̂

𝑙 < 𝑔̂𝑖 contradicting that 𝐠̂ is a steady state type vector.

2. Consider a closed and strongly connected group . Then, by part 1 we have 𝑔𝑖,∗ = 𝑔𝑗,∗ for all 𝑖, 𝑗 ∈  in any steady state, implying 
𝑢𝑖,∗ = 𝑢𝑗,∗ by (7), and thus 𝑎̃∗

𝑖𝑗
= 𝑎𝑖𝑗 . Further since by (7), fitness only depends on price and types, 𝐮∗ is invariant to the law of 

motion in a steady state (𝑝∗,𝐠∗). In a fundamental steady state, 𝑝̃∗ = 0, thus 𝐮∗ = 𝟎 by (7), implying 𝑎̃∗
𝑖𝑗
= 𝑎𝑖𝑗 for all 𝑖, 𝑗 ∈𝑁 .

3. Suppose to the contrary that there exists a 𝑗 ∈ with 𝑔𝑗 ∉ 𝑐𝑜𝑛𝑣{𝑔𝑖|𝑖 ∈𝑁 ⧵} where 𝑐𝑜𝑛𝑣 denotes the convex hull, i.e. wlog let 
𝑔max() > 𝑔max(𝑁 ⧵). Analogously to proof of part 1, this leads to a contradiction.

In a fundamental steady state, we have 𝐀̃∗ =𝐀 by part 2. Thus,

𝑔𝑖,∗ =
∑

𝑗∈𝑁⧵
𝑎𝑖𝑗𝑔

𝑗,∗ +
∑
𝑘∈

𝑎𝑖𝑘𝑔
𝑘,∗ ∀𝑖 ∈.

With 𝐠𝑆,∗ =
(
𝑔𝑖,∗

)
𝑖∈𝑆 for some 𝑆 ⊂𝑁 this implies

𝐠,∗ =𝐀(𝑁⧵)𝐠(𝑁⧵),∗ +𝐀𝐠,∗

𝐠,∗ =
(
𝐈|| −𝐀

)−1
𝐀(𝑁⧵)𝐠(𝑁⧵),∗. □

Proof of Proposition 1. 1. Since for strongly connected networks, 𝑁 is a closed and strongly connected set, the statement following 
from part 1 Proposition 1.

2. Since in a steady state, all types of agents 𝑖 ∈𝑁 are identical, we have 𝑢𝑖 = 𝑢𝑗 = 0, implying 𝑎̃∗
𝑖𝑗
= 𝑎𝑖𝑗 for all 𝑖, 𝑗 ∈𝑁 . □

Proposition 2a (For non-strongly connected networks). Suppose 𝛾 = 0. For any realisation of the dividends, types converge to a steady state 
group type vector 𝐠𝐯 such that for any closed and strongly connected group ,

𝑔𝑖,𝐯 =
∑
𝑗∈

𝑣
𝑗


𝑔
𝑗

0 ∀𝑖 ∈ 

where 𝑣𝑗


is the 𝑗-th entry of the (unique) left-unit eigenvector 𝐯 of 𝐀 with 
∑

𝑖∈ 𝑣
𝑖

= 1. Further, the Rest of the World converges to

𝐠,𝐯 =
∑

𝑗∈𝑁⧵

(
𝐈|| −𝐀

)−1
𝐀𝑗𝐠𝑗,𝐯.

There is convergence to a fundamental steady state if 𝑔𝐯 < 1 + 𝑟, while convergence to a non-fundamental steady state is obtained if 
𝑔
𝐯 = 1 + 𝑟. Price diverges to ±∞ if 𝑔𝐯 > 1 + 𝑟.

Proof of Proposition 2a. The type dynamics characterization follows from standard results of the DeGroot model (see e.g. Golub 
and Jackson, 2010; Buechel et al., 2015). If the limit average type 𝑔𝑣 is below 1 + 𝑟, then there exists a 𝑡′ ∈ ℕ such that 𝑔𝑡′ < 1 + 𝑟

for all 𝑡 ≥ 𝑡′ which implies by Eq (4) that lim𝑡→∞ 𝑝̃𝑡 = 0, i.e. price converges to the fundamental price. If the limit average type 𝑔𝑣 is 
above 1 + 𝑟, then there exists a 𝑡′ ∈ ℕ such that 𝑔𝑡′ > 1 + 𝑟 for all 𝑡 ≥ 𝑡′ which implies by Eq (4) that price diverges (to +∞ if 𝑝̃𝑡 > 0
and to −∞ if 𝑝̃𝑡 < 0). If 𝑔𝑣 = 1+ 𝑟, then for any 𝜈 > 0 there exists 𝑡𝜈 such that |𝑔𝑡 − (1+ 𝑟)| < 𝜈 for all 𝑡 ≥ 𝑡𝜈 . By Eq (4), price will settle 
on some value. □

Proof of Proposition 2. The result follows straightforwardly from Proposition 2a by noting that in case of a strongly connected 
network the set 𝑁 is the only closed and strongly connected set and the Rest of the World is empty. □

Proposition 3a (For non-strongly connected networks). Suppose 𝑑𝑡 = 𝑑 for all 𝑡 ∈ℕ. For 𝛾 →∞, we get the following

1. If 𝑔0 < (1 + 𝑟)2, then any agent adopts the most fundamental type on their path in finite time, i.e. for all 𝑖∈𝑁 , 𝑡 ≥ 2𝑑(𝑖,𝐺min
0 ( 𝑖)) − 1, 

we have 𝑔𝑖
𝑡
→ 𝑔min

0 ( 𝑖). 
2. If 𝑔0 > (1 + 𝑟)2, then any agent adopts the most chartist type on their path in finite time, i.e. for all 𝑖∈𝑁 , 𝑡 ≥ 2𝑑(𝑖,𝐺max

0 ( 𝑖)) − 1, we 
have 𝑔𝑖

𝑡
→ 𝑔max

0 ( 𝑖). 
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3. Price converges to the fundamental price if 𝑔0 < (1 + 𝑟)2 and 
∑

𝑖∈𝑁 𝑔min
0 ( 𝑖) < 𝑛(1 + 𝑟), price converges (to some finite limit) if 𝑔0 <

(1 + 𝑟)2 and 
∑

𝑖∈𝑁 𝑔min
0 ( 𝑖) = 𝑛(1 + 𝑟), and price diverges if 𝑔0 < (1 + 𝑟)2 and 

∑
𝑖∈𝑁 𝑔min

0 ( 𝑖) > 𝑛(1 + 𝑟), or 𝑔0 > (1 + 𝑟)2.

Proof of Proposition 3a. By (8), we get 𝑠𝑔𝑛(𝑅𝑡) = −𝑠𝑔𝑛(𝑝̃𝑡) if 0 < 𝑔𝑡 < (1 + 𝑟)2 while 𝑠𝑔𝑛(𝑅𝑡) = 𝑠𝑔𝑛(𝑝̃𝑡) if 𝑔𝑡 > (1 + 𝑟)2. If 0 = 𝑔𝑡 for 
some 𝑡 ∈ ℕ then 𝑔𝑖

𝑡
= 0 for all 𝑖 ∈𝑁 and by weighted average updating convergence to the fundamental belief is obtained in which 

case there is nothing to show.

1. Suppose now 𝑔0 < (1 + 𝑟)2 then 𝑠𝑔𝑛(𝑅0) = −𝑠𝑔𝑛(𝑝̃0) and by part 1 of Lemma 1, we get that 𝑔𝑖0 ≥ 𝑔𝑖1 for all 𝑖 ∈ 𝑁 . Hence, 
𝑔1 < (1 + 𝑟)2, implying 𝑠𝑔𝑛(𝑅1) = −𝑠𝑔𝑛(𝑝̃1). Repeatedly applying part 1 of Lemma 1 implies that 𝑔𝑖

𝑡+1 ≤ 𝑔𝑖
𝑡
< (1 + 𝑟)2 for all 𝑡 ∈ℕ

and hence, 𝑠𝑔𝑛(𝑅𝑡) = −𝑠𝑔𝑛(𝑝̃𝑡) for all 𝑡 ∈ℕ.

Lemma 2 then implies that for beliefs we have 𝑔𝑖
𝑡
→ 𝑔min

0 ( 𝑖)) for 𝛾 →∞ for all time steps 𝑡 ≥ 2𝑑(𝑖,𝐺min
0 ( 𝑖)) − 1 for all 𝑖 ∈ℕ. In 

particular, each closed and strongly connected group  obtains a group consensus on 𝑔𝑖
𝑡
→ 𝑔min

0 () for all 𝑖 ∈  and each agent 
in the Rest of the World 𝑗 ∈ does not change after obtaining the belief 𝑔min

0 (𝑗 ) since 𝑅𝑡𝑝̃𝑡 < 0 for all 𝑡 ∈ ℕ such that ∃𝑖 ∈𝑁 : 
𝑔𝑖
𝑡
≠ 0 implying that Lemma 2 holds for all 𝑡 ∈ ℕ.

2. If instead 𝑔0 > (1 + 𝑟)2 then 𝑅0𝑝̃0 > 0 and by part 2 of Lemma 1, we get, completely analogously to above, that 𝑔𝑖0 ≤ 𝑔𝑖1 for all 
𝑖 ∈𝑁 . Hence, 𝑔1 > (1 + 𝑟)2, implying 𝑅1𝑝̃1 > 0. Repeatedly applying part 2 of Lemma 1 implies that (1 + 𝑟)2 < 𝑔𝑖

𝑡
≤ 𝑔𝑖

𝑡+1 for all 
𝑡 ∈ℕ and hence, 𝑅𝑡𝑝̃𝑡 > 0 for all 𝑡 ∈ ℕ.

Lemma 2 then implies that for beliefs we have 𝑔𝑖
𝑡
→ 𝑔max

0 ( 𝑖) for 𝛾 →∞ for all time steps 𝑡 ≥ 2𝑑(𝑖,𝐺min
0 ( 𝑖)) − 1. In particular, 

each closed and strongly connected group  obtains a group consensus on 𝑔𝑖
𝑡
→ 𝑔max

0 () for all 𝑖 ∈  and each agent in the Rest 
of the World 𝑗 ∈ does not change does not change after obtaining the belief 𝑔max

0 (𝑗 ) since 𝑅𝑡𝑝̃𝑡 > 0 for all 𝑡 ∈ ℕ such that 
∃𝑖 ∈𝑁 : 𝑔𝑖

𝑡
≠ 0 and hence Lemma 2 holds for all 𝑡 ∈ℕ.

3. Clearly, if 𝑔0 > (1 + 𝑟)2 price diverges since from Case 2 we have 𝑔𝑡 > (1 + 𝑟)2 for all 𝑡 ∈ ℕ, implying price divergence by (4). 
Instead, suppose that 𝑔0 > (1 + 𝑟)2 < 0. By Case 1, 𝑔𝑖

𝑡
= 𝑔min

0 ( 𝑖) for all 𝑖 ∈𝑁 , 𝑡 ≥ 2𝐷(𝐀) − 1. Hence, 𝑔𝑡 =
1
𝑛 
∑

𝑖∈𝑁 𝑔min
0 ( 𝑖) for all 

𝑡 ≥ 2𝐷(𝐀) − 1 implying that price converges to the fundamental price, i.e. 𝑝̃𝑡 → 0, if 1
𝑛 
∑

𝑖∈𝑁 𝑔min
0 ( 𝑖) < 1 + 𝑟, price converges to 

some finite limit price, if 1
𝑛 
∑

𝑖∈𝑁 𝑔min
0 ( 𝑖) = 1 + 𝑟 and price diverges if 1

𝑛 
∑

𝑖∈𝑁 𝑔min
0 ( 𝑖) > 1 + 𝑟, see (4). □

Proof of Proposition 3. 1. For strongly connected networks, Part 1 of Proposition 3a implies that all agents’s types have converged 
to the minimal initial type 𝑔min

0 by time 𝑡 ≥ 2𝐷(𝐀) − 1 since 𝑁 is the single closed and strongly connected set. Since average type 
thereby satifies 𝑔𝑡 = 𝑔min

0 for all 𝑡 ≥ 2𝐷(𝐀) − 1, the statement on price follows from the law of motion of the price dynamics (4).

2. Similarly, Part 2 of Proposition 3a implies that all agents’s types have converged to the maximal initial type 𝑔max
0 by time 

𝑡 ≥ 2𝐷(𝐀) − 1 since 𝑁 is the single closed and strongly connected set. In this case, price diverges since 𝑔𝑡 > (1 + 𝑟) for all 
𝑡 ∈𝑁 . □

Proposition 4a (For non-strongly connected networks). For 𝛾 →∞, we get the following:

• If 𝑔0 < (1 + 𝑟)2, then for any closed and strongly connected  we have 𝑔𝑖
𝑡
→ 𝑔min

0 () for all 𝑡 ≥ 2𝐷(𝐀 ) − 1, 𝑖 ∈  if 𝑝̃0 > 0 and 
𝑑+ < min 

0≤𝑡≤2𝐷(𝐀 )−2
𝜎𝑡(𝐠0, 𝑟) or 𝑝̃0 < 0 and 𝑑− > max 

0≤𝑡≤2𝐷(𝐀 )−2
𝜎𝑡(𝐠0, 𝑟).

• If 𝑔0 > (1 + 𝑟)2, then for any closed and strongly connected  we have 𝑔𝑖
𝑡
→ 𝑔max

0 () for all 𝑡 ≥ 2𝐷(𝐀 ) − 1, 𝑖 ∈  if 𝑝̃0 > 0 and 
𝑑− > max 

0≤𝑡≤2𝐷(𝐀 )−2
𝜎𝑡(𝐠0, 𝑟) or 𝑝̃0 < 0 and 𝑑+ < min 

0≤𝑡≤2𝐷(𝐀 )−2
𝜎𝑡(𝐠0, 𝑟).

Proof of Proposition 4a. First note that by (6), we have that

𝑠𝑔𝑛(𝑅𝑡) = 𝑠𝑔𝑛

(
𝜀𝑡 −

(
(1 + 𝑟) −

𝑔𝑡

1 + 𝑟

)
𝑝̃𝑡−1

)
= 𝑠𝑔𝑛

(
𝜀𝑡 −

(
(1 + 𝑟) −

𝑔𝑡

1 + 𝑟

)
𝑝̃0

1 + 𝑟

𝑔0

𝑡−1 ∏
𝑗=0 

𝑔𝑗

1 + 𝑟

)
= 𝑠𝑔𝑛(𝜀𝑡 − 𝜎𝑡(𝐠0, 𝑟)) (A.5)

since 𝑝̃𝑡 = 𝑝̃𝑡−1
𝑔𝑡

1+𝑟 and 𝜎𝑡(𝐠0, 𝑟) =
(
(1 + 𝑟) − 𝑔𝑡

1+𝑟

)
𝑝̃0

1+𝑟
𝑔0

∏𝑡−1
𝑗=0

𝑔𝑗

1+𝑟 .

Hence, by (A.5), we have that 𝑅𝑡 < 0 if and only if 𝜀𝑡 < 𝜎𝑡(𝐠0, 𝑟). If the bound of the dividend shocks is such that 𝑑+ <

min 
0≤𝑡≤2𝐷(𝐀 )−2

𝜎𝑡(𝐠0, 𝑟), then clearly 𝜀𝑡 < 𝜎𝑡(𝐠0, 𝑟) and hence also 𝑅𝑡 < 0 for all 0 ≤ 𝑡 ≤ 2𝐷(𝐀 ) − 2. Moreover, we get from (A.5) that 

𝑅𝑡 > 0 if and only if 𝜀𝑡 > 𝜎𝑡(𝐠0, 𝑟). If the bound of the dividend shocks is such that 𝑑− > max 
0≤𝑡≤2𝐷(𝐀 )−2

𝜎𝑡(𝐠0, 𝑟), then clearly 𝜀𝑡 > 𝜎𝑡 and 

hence also 𝑅𝑡 < 0 for all 0 ≤ 𝑡 ≤ 2𝐷(𝐀 ) − 2.

For 𝑔0 < (1+ 𝑟)2, we then conclude from the proof of Proposition 3 that convergence to the minimum type 𝑔min
0 () obtains if either 

𝑝̃0 > 0 and 𝑑+ < min 
0≤𝑡≤2𝐷(𝐀 )−2

𝜎𝑡(𝐠0, 𝑟) since this implies 𝑅𝑡 < 0 for all 0 ≤ 𝑡 ≤ 2𝐷(𝐀 ) − 2 or 𝑝̃0 < 0 and 𝑑− > max 
0≤𝑡≤2𝐷(𝐀 )−2

𝜎𝑡(𝐠0, 𝑟) since 

this implies 𝑅𝑡 > 0 for all 0 ≤ 𝑡 ≤ 2𝐷(𝐀 ) − 2.
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Similarly, for 𝑔0 > (1 + 𝑟)2 and 𝑝̃0 > 0, we conclude from the proof of Proposition 3 that convergence to the minimal type 
𝑔max
0 () obtains if either 𝑝̃0 > 0 and 𝑑− > max 

0≤𝑡≤2𝐷(𝐀 )−2
𝜎𝑡(𝐠0, 𝑟) since this implies 𝑅𝑡 > 0 for all 0 ≤ 𝑡 ≤ 2𝐷(𝐀 ) − 2 or 𝑝̃0 < 0 and 

𝑑+ < min 
0≤𝑡≤2𝐷(𝐀 )−2

𝜎𝑡(𝐠0, 𝑟) since this implies 𝑅𝑡 < 0 for all 0 ≤ 𝑡 ≤ 2𝐷(𝐀 ) − 2. Note that max 
0≤𝑡≤2𝐷(𝐀 )−2

𝜎𝑡(𝐠0, 𝑟) = 𝜎0(𝐠0) for 𝑔0 > (1+ 𝑟)2

and 𝑝̃0 > 0 since 𝑔𝑡 is increasing and 𝑔𝑡 > (1 + 𝑟) in this case. □

Proof of Proposition 4. The result follows straightforwardly from Proposition 4a by noting that in case of a strongly connected 
network the set 𝑁 is the only closed and strongly connected set. □

Proof of Proposition 5. In the proof of this result, we allow the network to be non-strongly connected and use the notation intro

duced in Section 4. The result straightforwardly also holds for strongly connected networks.

1. Note 𝑔max
𝑡+1 ≤ 𝑔max

𝑡
and 𝑔min

𝑡+1 ≥ 𝑔min
𝑡

for all 𝑡 ∈ ℕ by row stochasticity of 𝐀̃. Hence if 𝑔min
0 > 1 + 𝑟, then 𝑔𝑡 > 1 + 𝑟 for all 𝑡 ∈ ℕ, 

implying 
∏𝑡

𝑘=1
𝑔𝑘

1+𝑟
𝑡→∞
⟶ ∞ and, hence, price diverges by (4). On the other hand, if 𝑔max

0 < 1 + 𝑟, then 𝑔𝑡 < 1 + 𝑟 for all 𝑡 ∈ ℕ

implying 
∏𝑡

𝑘=1
𝑔𝑘

1+𝑟
𝑡→∞
⟶ 0 and, hence, price converges by (4).

Now suppose some vector of types 𝐠0 ∈ℝ𝑛
+ with 1+ 𝑟 < 𝑔max

0 and, wlog, consider 𝛾 →∞ such that agents only update from best

performing agents that they observe.23 Let 𝑝̃0 > 0 which together with (8) implies 𝑢𝑖
𝑡
> 𝑢

𝑗

𝑡
if and only if 𝑝̃𝑡 < 𝑝𝑐𝑟𝑖𝑡

𝑡
. In particular, 

we can show completely analogously to Proposition 3 that the maximal type 𝑔max
0 will be adopted by all agents if 𝑝̃𝑡 < 𝑝𝑐𝑟𝑖𝑡

𝑡
for 

all 0 ≤ 𝑡 ≤ 2𝐷(𝐀) − 1 since 𝐀 is strongly connected. In the remainder of the proof, we will show that choosing 𝑑+ large enough, 
ensures a positive probability that the realizations of 𝜀𝑡 in periods 0≤ 𝑡 ≤ 2𝐷(𝐀) − 1 are large enough to ensure this.

First, note that due to (4), price deviation 𝑝̃𝑡 is bounded by |𝑝̃𝑡| ≤ (
𝑔max
0
1+𝑟 

)𝑡 |𝑝̃0| and that a lower bound for average type 𝑔𝑡 is 

𝑔𝑡 ≥ 𝑔0 given that 𝑝̃𝑘 < 𝑝𝑐𝑟𝑖𝑡
𝑘

for all 𝑘 ≤ 𝑡− 1. Thus, we have,

𝑝̃𝑡 < 𝑝𝑐𝑟𝑖𝑡
𝑡

⇔ 𝜀𝑡 >

(
(1 + 𝑟)2

𝑔𝑡
− 1

)
𝑝̃𝑡

⇐ 𝜀𝑘 >

(
(1 + 𝑟)2

𝑔0
− 1

)(
𝑔max
0

1 + 𝑟

)𝑘

∀𝑘 ≤ 𝑡

This is satified if 𝜀𝑡 >
(
(1+𝑟)2
𝑔0

− 1
)(

𝑔max
0
1+𝑟 

)2𝐷(𝐀)−1
=∶ 𝜀 for all 𝑡 ≤ 2𝐷(𝐀)−1. Clearly, if 𝑑+ > 𝜀 and 𝑑− is bounded from below, the 

probability that the realization of 𝜀𝑡 exceeds 𝜀 in any period 𝑡 is positive, i.e. 𝑃 (𝜀𝑡 > 𝜀) = 𝑃 (𝜀0 > 𝜀) > 0 for all 𝑡 ∈ ℕ. Hence, also the 
probability that the first 2𝐷(𝐀)−1 realizations of 𝜀𝑡 exceed 𝜀 is positive, since 𝑃 (𝜀𝑡 > 𝜀|0 ≤ 𝑡 ≤ 2𝐷(𝐀)−1) =

(
𝑃 (𝜀0 > 𝜀)

)2𝐷(𝐀)−1
>

0.

The proof for the cases of 𝑝̃0 < 0 is analogous and requires small enough 𝑑−. 
2. This case of 𝑔min

0 < 1 + 𝑟 can be fully analogously shown to part 1.

3. Suppose 𝑝̃𝑡 is bounded for all 𝑡 ∈ ℕ. Since dividends are bounded, 𝑑𝑡 ∈ [𝑑 − 𝑑−, 𝑑 + 𝑑+], and 𝛾 is some (finite) non-negative real 
number, we get that 𝑢𝑡

𝑖
is bounded for all 𝑖 ∈𝑁 for all 𝑡 ∈ℕ. Hence, there exists 𝜁 > 0 such that

𝑎𝑖𝑗 > 0 ⇒ (𝑎̃(𝑡))𝑖𝑗 ∶=

( ∑
𝑘∈𝑁𝑖

exp(𝛾𝑢𝑘
𝑡
)

)−1

exp(𝛾𝑢𝑗
𝑡
) > 𝜁 ∀𝑡 ∈ ℕ

(otherwise as stated before, (𝑎̃(𝑡))𝑖𝑗 = 0).

Now, for all strongly connected and closed groups 𝑘, denote by 𝐀𝑘
the restriction of 𝐀 to 𝑘. Hence, 𝐀̃𝑘

(𝑡) is strongly connected 
with a positive diagonal and each entry is bounded below by 𝜁 . Thus, for each 𝑡 ∈ℕ, the matrix 𝐀̃𝑘

(𝑡, 𝑡+ 𝑛), dfined by

𝐀̃𝑘
(𝑡, 𝑡+ 𝑛) ∶= 𝐀̃𝑘

(𝑡+ 𝑛) ⋅ 𝐀̃𝑘
(𝑡+ 𝑛− 1) ⋅… ⋅ 𝐀̃𝑘

(𝑡),

is strictly positive with all entries bounded below by 𝜁𝑛 for every closed and strongly connected group 𝑘. Finally note that 
𝐀̃𝑘

(𝑡, 𝑡 + 𝑛) is still row stochastic since the product of two row stochastic matrices is also row stochastic. If such a sequence of 
sub-accumulations 𝐀̃𝑘

(𝑡, 𝑡+ 𝑛) appears ifinitely often, then by Theorem 3.2.33 in Lorenz (2007), convergence to consensus in 
all closed and strongly connected groups is obtained. Hence, denoting by 𝐠𝑘

𝑡
the type vector in period 𝑡∈ℕ restricted to 𝑘, we 

get that

23 By (9), the updating weights are a differentiable function of 𝛾 . Thus, for any 𝐮𝑡 and 𝛿 > 0 there exists a 𝛾 ∈ℝ such that |||𝑎̃𝑖𝑗 (𝐮𝑡|𝛾) − lim𝛾 ′→∞ 𝑎̃𝑖𝑗 (𝐮𝑡|𝛾 ′)||| < 𝛿 for all 
𝛾 > 𝛾 implying that this proof works for any finite but large enough 𝛾 .
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lim 
𝑡→∞

𝐠𝑘
𝑡

= lim 
𝑇→∞

𝐀̃𝑘
(0, 𝑇 )𝐠𝑘0

exists, and is such that consensus is achieved, i.e. 𝑔𝑖∞ = 𝑔
𝑗
∞ for all 𝑖, 𝑗 ∈ 𝑘. Since all 𝐀̃(𝑡) are row stochastic, the consensus must 

be such that 𝑔𝑘∞ ∈ [𝑔min
𝑘

, 𝑔max
𝑘

] such that the consensus in the interior of the interval if 𝑔min
𝑘

≠ 𝑔max
𝑘

.

Finally, if lim𝑡→∞ 𝑝̃𝑡 = 0, then expectations of all types converge to the fundamental price, lim𝑡→∞ 𝐸̃𝑖
𝑡
[𝑝̃𝑡+1] = 0. Hence, lim𝑡→∞ 𝑢𝑖

𝑡
=

lim𝑡→∞ 𝑢
𝑗

𝑡
for all 𝑖, 𝑗 ∈𝑁 . Thus, lim𝑡→∞ 𝑎̃𝑖𝑗 (𝑡) =

1 |𝑁𝑖| =∶ 𝑎𝑖𝑗 for all 𝑖 ∈𝑅. Thereby lim𝑡→∞ 𝐀̃(𝑡) = lim𝑡→∞𝐀(𝑡) = 0, and hence 

lim𝑡→∞ 𝐀̃𝑘(0, 𝑡) =
(
𝐼 −𝐀

)−1
𝐀𝑘. Thus, lim𝑡→∞ 𝐠

𝑡
=
(
𝐼 −𝐀

)−1
𝐀𝑘𝐠 . □

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jedc.2025.105059. 
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