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theory approach. We then compute the gravitational-wave memory through second
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1. Introduction

The direct detection of gravitational waves (GWs) sourced by compact binary
coalescences has confirmed many predictions of the theory of general relativity (GR) [1].
One prediction that has yet to be experimentally established is the permanent
displacement of test masses after the oscillatory part of a GW has passed. This imprint
of a passing wave is known as GW memory.

There are a variety of effects that fall under the umbrella of GW memory. Linear
(displacement) memory is sourced by the motion of bodies that may initially be bound
but end up unbound in their final state [2], e.g., supernova explosions [3] and hyperbolic
scatterings [4]. Compact binary coalescences, the only type of source observed so far
by GW detectors, cannot generate linear memory, but instead can source the so-called
nonlinear (displacement) memory, which arises from nonlinear interactions between
different multipole modes of the linear piece of the GWs [5—14]. Recently, other higher-
order memory effects have also been studied, though in general these have a smaller
influence and are thus more difficult to observe [15-19]. The influence of memory on
test gyroscopes has also been explored [20, 21].

In addition to being an interesting physical prediction of GR, GW memory is
of significant theoretical interest. Memory represents the set of conserved charges
associated with the Bondi-Metzner-Sachs (BMS) group [22, 23], the infinite-dimensional
symmetry group of future null infinity [24, 25] (see [26] for a review of the Bondi-
Sachs formalism). Memory is also closely related to the soft graviton theorem [27-29].
Together, memory, BMS symmetries, and soft theorems form an “infrared triangle” [30],
which plays a fundamental role in the celestial holography program [31-33]. Memory
effects (BMS charges and analogous charges on black hole horizons [34-36]) can also be
interpreted as soft hair on black holes [37-41], suggesting they could be significant for
the black hole information paradox.

Detecting GW memory is challenging due to its low frequency and low amplitude
compared to the oscillatory part of the GW. A variety of methods have thus been
proposed to detect it with different GW detectors. Current ground-based detectors are
not sufficiently sensitive to detect memory from a single binary coalescence, but by
detecting hundreds or thousands of events, they could achieve a cumulative signal-
to-noise ratio large enough to confirm the presence of the memory effect [42, 43].
Future low-frequency GW detectors are more promising for detecting GW memory [44—
46]. Pulsar timing arrays have already searched for GW memory in the nano-hertz
regime [47], and the recently adopted space-based Laser Interferometer Space Antenna,
LISA [48], will observe massive black hole binary coalescences in the millihertz band;
with signal-to-noise ratios in the thousands, these sources should provide a direct
detection of GW memory from a single event [49]. In addition to the above, there have
also been proposals to detect the effect of GW memory via astrometric observations of
distant light sources [50, 51].

The nature of GW astronomy means that, in order to detect and characterise GW
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memory, we need theoretical predictions of its effect that we can compare with the
data from the detectors. By comparing with GW template models computed with and
without memory, we can decide which is a better fit to the data, and thus further
test GR. The inclusion of GW memory in template models may also bolster parameter
estimation efforts by breaking degeneracies between parameters, e.g., inclination and
luminosity distance [52-54]. If we have models that include corrections to GR, then
these can be used to search for new physics [55]. For example, in alternative theories of
gravity such as scalar-tensor theories, memory effects can enter a lower PN order than
in GR [56-58].

There has been much progress in modelling the memory effects in different regimes
of the compact binary parameter space. When the two bodies are widely separated, the
post-Newtonian (PN) expansion can be employed. In that context, GW memory effects
have been studied at various PN order for both circular and eccentric binaries, featuring
both non-spinning and spinning black holes [11, 12, 59, 60]. This effort has recently
culminated in the completion of the memory piece of the waveform at 3PN order for
spinning black holes (with aligned or anti-aligned spins) on eccentric orbits [61]. In the
case on eccentric orbits, memory effects do not only enter the waveform, but also the
angular momentum flux [62-64], which arises at 2.5PN beyond the leading quadrupolar
expression. In the deep strong-field regime, the PN approximation breaks down, so we
instead turn to numerical relativity (NR) simulations [65]. This approach solves the full
non-linear Einstein field equations on supercomputers. Until recently, the methods used
to extrapolate the waveform from the edge of the computational domain to future null
infinity made it challenging to directly compute memory effects from NR simulations
(though post-processing methods were developed for displacement memory [66, 67]).
Recently developed Cauchy-characteristic evolution methods have enabled the memory
to be directly calculated from NR simulations [68, 69]. However, the already high
computational cost of NR simulations grows as the mass ratio becomes more extreme
due to the high resolution requirements and the need to resolve many more orbits. This
places systematic studies of binaries with mass ratios beyond ~ 15 : 1 out of reach of
current NR technology.

By combining PN and NR results, fast-to-generate waveform models have been
developed that include GW memory contributions. This was achieved via a variety
of methods including surrogate [70], phenomenological models [71] and effective-one-
body models [72]. Black hole perturbation theory (BHPT), specifically gravitational
self-force (GSF) theory [73, 74], can also assist in building these models. Traditional
BHPT sources like extreme-mass-ratio inspirals are not ideal for measuring memory
(though intermediate mass ratio inspirals hold more promise [75]). Nonetheless, BHPT
results can be useful in developing global models that span a wide portion of the binary
configuration parameter space. Concurrently with the development of the present work,
two other authors have taken this approach [76]. In that work, they computed the
memory effect at first order in the mass ratio to a very high PN order for a circular
orbit around a non-spinning black hole and used the result to inform a more global
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model for non-spinning binaries developed by fitting to NR data.

While GW memory can be viewed purely as a feature of the waveform at future
null infinity, it is also directly associated with hereditary, nonlocal-in-time effects within
the two-body systems that generate the GWs. Such effects have a storied history in
PN theory [77], where they are generated both by tails describing the backscattering of
waves off of spacetime curvature and by memory effects associated with GW fluxes that
re-radiate soft, zero-frequency waves back into the near zone. Tail effects, which enter
the waveform at relative 1.5PN order, were critical in completing the 4PN two-body
dynamics [78]. Memory effects, which enter the waveform at relative OPN order, are
at the center of disagreements in the 5PN two-body dynamics [79-83]. These near-
zone memory effects in the 5PN dynamics enter at second order in the mass ratio [82],
suggesting they should enter GSF theory at second order. They have also been loosely
studied directly within GSF theory in the context of a nonlinear scalar toy model [84],
where it was found they do enter at second order, in agreement with the recent PN
results.

In this work, we study GW memory at future null infinity, as well as memory effects
in the near zone, for quasicircular inspirals via a variety of approaches. The overarching
approach we use to compute the GW memory is described in section 2. In section 3,
we first apply it to the case of widely separated, non-spinning, structureless, compact
objects using PN techniques. Making use of the recent completion of the oscillatory
piece of the 3.5PN waveform [85], we are able to obtain the GW memory piece at
3.5PN, which completes the waveform and extends the 3PN results of Favata [11].

Next, we consider the case where the mass ratio is small (without restrictions
on the separation), and overview the required GSF theory in section 4. At second
order in the mass ratio, there is considerable subtlety in extracting the asymptotic
amplitudes of the metric perturbation at null infinity due to an infrared divergence,
which arises in the multiscale expansion underpinning second-order self-force (2SF)
calculations [84]. We give a detailed derivation of our waveform extraction in section 5,
where we develop a post-Minkowskian approximation to handle the far-zone behavior,
following reference [84]. This method was used in all 2SF calculations to date [86-88] but
was never detailed before now. We explore for the first time how it introduces memory
effects into GSF theory, in both the near and far zones. We use it to show that memory
enters into the near-zone two-body dynamics at second order in the mass ratio, consistent
with the 5PN effects recently highlighted in PN theory [82, 83]. The appearance at
second order is in contrast with far-zone memory effects, which enter the waveform at
first (rather than second) order in the mass ratio; this difference between near- and
far-zone orders is analogous to the difference (of 2.5PN orders) between near and far
zone orders in PN theory. Our post-Minkowskian analysis also reveals possible new
second-order contributions to the far-zone metric, ‘memory distortion’ terms generated
by an interaction between memory and emitted waves.

For spinning black holes, we employ BHPT to calculate GW memory for circular
orbits at first order in the mass ratio in section 6. We do this both numerically and
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analytically via a double PN-BHPT expansion, which we carry through to 5PN order.
Returning to non-spinning black holes, we make use of the recent results extending GSF
theory to second order [86-88] to compute the GW memory through second order in
the mass ratio for circular orbits around a non-spinning black hole — see section 7.
Our calculation omits the possible contribution from new memory distortion effects
mentioned above, but we nevertheless find that our results agree remarkably well with
NR simulations for mass ratios as small as 10:1.

Except in section 3, we use geometrized units where G = ¢ = 1, and we take
the metric signature (—,+,+,4). We denote Euler’s constant as vyg. The index [ is
used to denote spherical harmonic modes, while ¢ denotes spheroidal harmonic modes.
We also define € = mgy/m; as the small mass ratio, ¢ = m;/my as the large mass
ratio, M = my + msy as the total mass and v = mymo/M? as the symmetric mass
ratio. In an asymptotic frame and in a set of radiative coordinates, the position of
a distant observer will be denoted X = RN, where R is the Euclidean norm of X,
and N is the unit normal N = (sin© cos ®,sin ©sin @, cos O) associated to angles
©4 = (0,®). Time is denoted t whereas retarded time is defined as U = t — R.
The components of spatial vectors decomposed onto a Cartesian basis are denoted with
Latin indices, denoted equivalently N; or N, since, asymptotically, indices are raised
and lowered with the flat background metric 7,,,, whose restriction to the spatial sector
is the Kronecker 0;;, associated with the Levi-Civita symbol €;;;,. A multi-index of
length [ will be denoted L =14y ---1;, whereas L — 1 =14 ---7;_1, etc. We use uppercase
Latin indices from the middle of the alphabet (L, M, N,...) for multi-indices, reserving
indices from the beginning of the alphabet (A, B, C, ...) for angular components. These
multi-indices are compatible with the Einstein summation conventions, and we write,
e.g., N, = N;, ---N;,. The symmetric projection is denoted with parentheses, as in
6By = %(Oéiﬁj + a;f;), whereas the symmetric trace-free (STF) projection is denoted
with angled brackets, as in ;35 = o35 — ééijak,ﬁk. A common abbreviation will be to
denote the STF projection with a hat, e.g., Np = Ny, Ny, - - - N;,_, Nyy. Angled brackets
on angular indices refer to the STF projection with respect to the metric 245 on the
unit 2-sphere, as in hiapy = hap — %Q 4892°Phep, and angular indices are lowered and
raised with Q45 and its inverse Q45

2. Calculation of gravitational wave memory

The non-linear displacement memory was first discovered independently by Blanchet [5]
and by Christodoulou [6] and subsequently studied by different groups [7—10]. Later on,
Favata [11, 12] developed a systematic formalism for obtaining the memory contribution
to the waveform, which we will follow. The displacement memory can be interpreted
as the non-oscillatory component of the waveform arising from the re-radiation of GWs
by massless gravitons [8, 9]. Decomposing the asymptotic metric g, into background
and perturbation as g,, = 7, + hu + O(1/R?), the dynamical piece of the metric
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perturbation is expressed by the elegant formula

EGW N/ N/
TT mem b
by ] = wab/ d¢ /dQ? dt'dQ,1 - N’- N’ @

where the angular integration element is defined as df), = sin(©)dO'dd®’ and is
associated with IN', whereas R, N and U refer to the field point. The angular
flux distribution of GWS is denoted Céfm ,
projector for asymptotic metrics is defined by [89]

and the algebraic transverse-traceless (TT)

1
5 J—ijJ—ab ) (2)

J‘z] ab— J-a(iJ-j)b - 5

where 1,;= d;; — N;N;. In particular, this means that it is possible to predict the
non-oscillatory memory contribution to the waveform solely based on the asymptotic
expression of the oscillatory waveform at future null infinity. Despite its elegance, it will
prove more useful to decompose equation (1) as a multipolar expansion, which reads [89]

mem _ 8 X (20 +1)! dESY
TT TT
' 17 = 7 Liiw 29 NLZ/ dt/dg wrgpae O

=2

We now need to control the oscillatory piece of the waveform before we can derive
the non-oscillatory piece. Regardless of the approximation method used to solve the
Einstein equations, the T'T asymptotic metric can be written as a multipolar expansion
in terms of so-called radiative moments, decomposed either in a basis of spin-weighted
spherical harmonics or on a basis of symmetric trace-free tensor harmonics [89, 90]:

hit = szg' +O(1;2)
i;i: +@(;>. (4)

In the first line, we have introduced the STF radiative moments Uy, and V;, which are

21
Ni_oU, ——N, cd(aV
L—2Uabr—2 111 L—2 €cd(a Vb)dL—2

STF in their [ indices and pure functions of retarded time U. In the second line, we
have introduce the spherical-harmonic radiative moments ;,, and V;,,, which are pure
functions of retarded time U, as well as the basis of “pure-spin tensor harmonics” [90-92]
denoted Ti?’lm and Ti]jQ’lm, which are given explicitly in (2.30) of [90]. Note that the two
types of radiative moments are straightforwardly related by the algebraic expressions

1+ 1)(1+2)
200 —1)

8 1+2)
Vim = Z¢z+1z—nLV“ (5b)

Z/{lm — émuL ) (5&)
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where the change-of-basis matrix reads [93]

olm — \/4_(— )QO/Ql' —(M;L—M)
LD +m)( - )mo C (6)

We have introduced some non-corotating reference triad (ng, Ao, lp), with ly orthogonal

to the orbital plane, and My is the complex conjugate of mg = (1 + i) /V2.

Another useful formulation of the waveform is to express it in terms of the usual
“plus” and “cross” polarizations (see p. 80 and footnote 90 of [89] for the exact
conventions), and recast them into a single complex number that can be expanded
onto a basis of spin-weighted spherical harmonics [94]:

00 l
, 1
hy —ihy = EZ > him —2Yim (O, ®). (7)

1=2 m=—1

The strain amplitudes are straightforwardly expressed in terms of radiative momentsi:
1

V2

We can also write the polar components of the strain in terms of the Bondi shear Cyp

and tensor harmonics in Bondi-Sachs coordinates (U, R, ©4) [26]:

him = == (Ui — iVim) - (8)

hAB = RCAB<U @C —RZ Z Z/{lm + VlmXZ%% (9)

where Y% and X7, are even- and odd-parity tensor harmonics, respectively [95]. The
two representations are related by hy — ihy, = mAmPh,p, where m* = \/%R(l, icscO)
and its complex conjugate m” form a (Newman-Penrose) complex dyad on the celestial
sphere of radius R [96]. We refer to [23, 97, 98] for detailed translations between the two
common treatments of radiative spacetime asymptotics: Bondi-type formulations and
the Cartesian multipolar formulations used in the multipolar post-Minkowskian (MPM)
approach. For Bondi quantities, we follow the conventions of references [23, 99].

By comparing the memory piece of the waveform (3) with the general ansatz (4), we
can then identify the memory contribution to the radiative moments. The contribution
to the mass-type radiative moment is given by [7, 11]

2(20+ )N dEGW
) _ / / 49 10
I+ +2) 2atde, (10a)
/ l —2)! EGW
(mem) _ dt [ d§2 10b
/ / 2970 dtdQ lm ) ( )
I This corresponds to the Blanchet et al. convention as described by Favata [11], namely « = —1. This

sign difference originates from the passage from the “gothic” metric perturbation h** = ,/gg"” — nt¥
to the usual metric perturbation h,, = gu, — 1. See reference [89] for details.
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whereas the memory contribution to the current-type moments always vanishes, namely
Ve = 0 and VI = 0.

We now use the expression of the angular energy flux distribution df;zw in terms
of the waveform, which reads
d EGW R2 . .
= (A +2). 11
did2; 6 U2+ (11)
This can equivalently be written in terms of the Bondi news tensor, Cap, as
dESW 1
= ——C,pC*5. 12
dtdQ, 327 P (12)

Injecting equation (7) into equation (11), one obtains the angular energy flux
distribution in terms of the spherical harmonic (I, m) modes [11]:

l//

dESY  R? K&
atdQy, 16WZZ Z > hw B <2V Y (13)

V=2 1"=2 m/'=—1' m!'=—]"

Plugging (11) into (10b) and applying a time derivative (so as to remove the hereditary
time integral), we finally obtain [11]

I l//

mem l - — = " - —
U( ) l + 22 Z Z Z Z m+m iy hl”m” Glz’:l”?;vg’,—m", —-m> (14)

=2 " =2 m/=—1" m!'=—]"

where we have introduced the numerical constant

Gif,’li%ij?ml,m%m = /dQZ *Slnlml (@7(1)) *52}/227”2(@7@) 753K3m3(@?q)) . (15)

This is related to the quantity C ;21;121521 Lsms.sg: Used in 2SF literature and the
3 3 l ) ) R T 92,

PerturbationEquations package [100], by O 0h, = (= 1)™MF LGy T s

If the condition s; + s3 + s3 = 0 is satisfied (which will always be the case for us), the
angular integral can be expressed in terms of the Wigner 3-j symbols [101]:

G \/(251+1)(2524+ 1)(2l5 + 1) (zl Ly zg> (zl Iy z3> )
rererT e ™

S1 S2 83 my MMz M3

This expression is useful because the Wigner 3-5 symbols are efficiently implemented
in Mathematica [102]. We also note the useful symmetry, inherited from the 3-j
symbols [101],

GI51+52,53 — ( 1>(l1+lz+lg GI51+52:53 (17)

l1,l2,l3,m1,m2,m3 l1,l2,l3,—m1,—m2,—m3 *

In equation (14), one could worry that the memory piece of the waveform is sourced
by the time-derivative of the complete waveform hy,, which contains the memory terms
L{l(;lem) we are trying to compute. However, this cyclic definition is easily solved within
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perturbation theory, because the non-oscillatory memory terms evolve on slow radiation-
reaction time scales, whilst the oscillatory terms evolve on much faster orbital timescales.
Thus, the contributions of time derivatives Z/‘{l(;ilem) on the right-hand side of (14) enter
at 5PN and 2SF orders beyond the leading-order oscillatory terms, and can thus be
treated hierarchically.

In the case of a non-precessing quasicircular orbit, there is a clean split between the
oscillatory modes, which correspond to m # 0, and the non-oscillatory memory modes,
which correspond to m = 0. Since there is no memory contribution to the current-type
radiative moments, we will in fact only need to compute

ot s

Once the derivative Ul(()mem) is calculated, all that is left to do is to perform the time
integral in equation (10). In the case of circular orbits, this is achieved by changing
variables in the integral, eliminating time in favor of, e.g., the orbital frequency (2.
Crucially, this requires controlling the “chirp” or time-evolution of the frequency €. The
chirp can be controlled to low PN or GSF orders using rigorous asymptotic matching,
but as we will see, it can be controlled to much higher order by assuming the validity
of some flux balance laws.

3. Post-Newtonian calculation through 3.5PN order for nonspinning,
quasicircular binaries

The memory contribution to the waveform can be computed fully analytically within
the PN approximation. After a review of the modern theoretical framework for PN
calculations, we will discuss how the nonlinear memory naturally arises for it, but can
a priort only be controlled at low PN orders. Then, assuming that the flux balance law
for energy holds at 3.5PN and applying the formalism of section 2, we will be able to
derive the memory contribution for nonspinning quasicircular orbits up to 3.5PN order.

3.1. Review of the PN-MPM construction

The first concrete estimates for the memory effects were performed in the PN
approximation, and more specifically using the formalism of Blanchet and Damour |7,
77, 103-105]. This formalism combines the PN expansion in small orbital velocities
(v/e — 0) with the multipolar post-Minkowskian (MPM) method, which combines
the PM or non-linearity expansion (G — 0) with multipolar series parametrized by
specific multipole moments. The PN expansion is performed in the “near zone”, which
encompasses the matter source, but whose radius is much less than a gravitational
wavelength. The MPM expansion is valid in the “exterior vacuum zone”, which overlaps
with the near zone of the source (but excludes the domain where there is matter) and
extends into the far wave zone. The MPM field represents the most general solution of
the Einstein field equation (say, in harmonic coordinates) in the exterior zone. The PN
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and MPM expansions are matched in the “buffer zone”, which is the region where both
expansions are valid: the whole procedure is called the post-Newtonian-multipolar-post-
Minkowkian (PN-MPM) formalism.

In this section, we will restore G and ¢, as they are useful for power counting
within the PN approach. The starting point of the formalism is the Einstein equations,
written in the “relaxed” form of Landau and Lifschitz [106]. Introducing the gothic
metric deviation§, defined by h* = \/—gg"” — n*”, and imposing the harmonic gauge
condition 9,h*" = 0, the Einstein equations read

167G

O, = ==, (19)

where [, = 79,05 is the flat-space d’Alembert operator, and the stress-energy pseudo-
tensor is given by ,
v v c v «
T = (—g)T" + e [h7]. (20)

Here, T is the stress-energy tensor, ¢ is the determinant of the metric and A®? is
a functional that is at least quadratic in h*” [see (56) of [89]]. We also introduce the
harmonic coordinate system (¢, = rn), associated to retarded time u =t —r/c.

When specializing to the MPM construction, the metric is first written as a formal
expansion thanks to the book-keeping parameter G, namely

+o00
K/[VPM = Z G"by". (21)
n=1

Since the MPM construction is valid only in the exterior vacuum zone, the stress-energy
tensor will drop out of the field equations. At linearized order (n = 1), one needs
to solve O, b1 = 0 along with the harmonic gauge condition 9, = 0. The most
general solution (under some usual physical conditions, such at asymptotic flatness
and no-incoming radiation) can be parametrized by a set of six moments: a mass-
type source moment Iy, a current-type source moment J;, and four gauge moments,
denoted Wy, X1, Y, and Zp, which are symmetric and trace-free (STF) with respect
to their [ indices [see (64-66) of [89]]. For now, these moments are entirely free and
parametrize the possible solutions to the field equations, but we will determine them
shortly. At nonlinear orders (n > 2), one then needs to solve a hierarchy of equations,
O,b = A, 537, ..., 527 ], also under the harmonic gauge condition 8,h*” = 0. Since the
source requires the metric at order n, one only needs to know the metric at order < n—1,
so the procedure is constructive.

Once the whole MPM construction is performed, one can show [105] that the
matching procedure between the exterior PM metric and the interior PN metric entirely

§ At linearized level in h, we have h#*¥ = —hH" + %hn‘“’ + O(h?), where W = g — nH" is the
perturbation of the inverse metric, and h = h*"7,, its trace. Thus, asymptotically and in the TT
gauge, we have b, = —hT + O(1/R?).
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determines the source and gauge moments as functionals of the gravitation stress-energy
pseudo-tensor 7*° (the overbar indicates a PN expansion). For instance,

I, = FP /d3x (1)35@ 7+ 7] 4. (22)
B=0 70

where we recall the notation for the STF projection #; = xy;,...7;,, the finite part
(FP) denotes a particular IR regularization when B — 0 depending on an arbitrary
regularization scale ry, and the ellipsis denote other terms, known to all orders for
general systems [see (135) and (141) of [89]]. In the case of compact binary systems, the
multipolar moments can be determined explicitly in terms of the positions, velocities
and spins of the two particles, see e.g. [107-109] for Z;; at 4PN in the nonspinning
case (at these high orders, (22) must be modified to account for the introduction of
dimensional regularization).

Note that the matching procedure also determines the unspecified homogeneous
solution that appears in the PN near-zone metric in terms of the exterior multipolar
moments [77, 110-112], hence effectively acting as a boundary condition. This result
has been used to determine the radiation-reaction part of the equations of motion up
to 4.5PN order [113-115] as well as the conservative tail contribution at 4PN (see also
[82, 83] for recent discussions of the conservative memory contributions to the equations
of motion at 5PN).

An alternative version of the MPM construction consists in fixing the residual
gauge freedom of the harmonic gauge by asking that the MPM metric be described by
only two canonical moments, namely My and S;. This is practical as it reduces the
number of moments one needs to work with, but an explicit matching to the source
(analogous to (22) for the source moments) cannot be obtained. Instead, one usually
first determines the source and gauge moments explicitly, then finds relations of the type
Mp =T + O(c™) and S; = Jr, + O(c™?), where the O(c™®) terms contain at least
quadratic combinations of source or gauge moments (see [116, 117] for a 4PN-accurate
relation between Z; and Myp).

Finally, once the full MPM metric is determined in terms of the canonical moments,
which are themselves determined in terms of the orbital variables of the source, one can
read off the asymptotic expression of the metric at future null infinity. Due to tail
effects, harmonic coordinates do not have the correct peeling properties and the leading
fall-off is in fact In(r)/r. This is corrected by a coordinate transformation towards so-
called radiative coordinates, which can either be performed at the end or by introducing
yet another MPM algorithm in terms of radiative canonical moments [104, 118]. In
radiative coordinates, the dominant 1/R can be written as a multipolar expansion in
term of radiative moments Uy, and V, as in equation (4). The radiative moments are
related to the canonical moments by relations of the type U, = M%’ + O(c™3) and
Vo = 8P 4+ O(c3), where the O(c™3) terms are at least quadratic in the canonical
moments. These corrections contain hereditary terms such as tails, which stem from
the interaction between the mass-type quadrupole M;; and the conserved mass-type
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monopole M (which is in fact the ADM mass of the system), and read [7]
+o0
L{Z./]\./(XMW = _QCi;\/l /o dr ME?)(U —7) [ln (20—;)> + %} . (23)
Note the arbitrary length scale by appearing in the previous tail term. In fact, when
decomposing the final spherical harmonic modes in terms of the orbital phase ¢, this
scale will appear in complex corrections to the amplitudes of the GW. This is because
the orbital phase ¢ is not a physical observable for an asymptotic observer. To solve this,

we introduce an auxiliary phase [119], which corresponds to the half-phase associated
to the (2,2) mode, and reads

2GMQ Q
=6, (). (24)
where we recall that the orbital frequency reads € = d¢,/dt and that

Qo =exp (11/12 — ) ¢/(4by). At 3.5PN order, the orbital frequency and gravitational-
wave frequency di/dt associated to the two phases are identical, so we do not have
to worry about distinguishing them (see [117, 120] for how they differ at 4PN order).
Finally, we introduce the PN parameter

L (GMQ>2/3 | (25)

c3

which is dimensionless, invariant under a large family of gauge transformations, and a
small 1PN quantity. The amplitudes can then be decomposed as

16 :
hem, = 2Muvx TﬂHgmeﬂmw , (26)

where Hy,, is generically complex-valued to account for the dephasing between different
modes, and the ADM mass reads [89]

Mvc*x 3 1 27 19 1L\

675 34445 205 155 35
+< +|: ——Q}V——VQ 3>ZE3+O<1’4)}.

T64 | 576 96 " 06~ 5184"
(27)

3.2.  Memory terms in the standard PN-MPM approach

In the context of the PN-MPM approach, the displacement memory arises from nonlinear
interactions. The first memory contribution stems from a quadrupole-quadrupole
interaction [10], which reads

“+o0
MM §{ 2 [ ar[MEM)w -7
0

)
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The instantaneous terms entering (28) are irrelevant for the memory, but the integral
is crucial. Note that, unlike the case of tails, taking a time derivative of (28) entirely
removes the nonlocal-in-time behavior, so we refer to these terms as semi-hereditary.
Thus, the energy flux does not exhibit any memory-like integrals, because it only
depends on the time-derivatives of the radiative moments.

Consider now the case of circular orbits [121], where in the center-of-mass frame,
the canonical quadrupole moment reads M;; = Mvw;xj), at leading order. Performing
the time-derivatives and reducing to the case of quasicircular orbits, we find at leading
order that||

10,,..5
(MOMP] -7 = 27 {n&(U — (U = 7) + MU = XU n} .
(29)

In view of the integration, we now project the corotating basis vectors at any time in
the remote past onto the corotating basis vectors at retarded time U, namely

n'o(U — 7) = cos [w(U — 7')] nty(U) + sin [w(U — 7')] ML (U), (30a)
No(U —7) = —sin [w(U - T)}nziQ(U) + cos [w(U - 7')] Mo (U). (30b)

Injecting (30) into (29) and doing some trigonometry, we find that

162 [ 4 ; i ;
e T M RV I FEACE] PR

o] ) -
Remarkably, at leading order, MSZiMS’Z does not have any oscillatory piece (at
subleading order, an oscillatory piece will appear though). In this approach, the
nonoscillatory memory term can be interpreted as the interference at quadratic order
between two quadrupole moments oscillating at the same frequency. One could worry
that, for a perfectly circular orbit, injecting (31) into the integral appearing in (28) will
lead to an infinite contribution. However, we are dealing with a quasicircular orbit,
and the time dependence of (31) is now entirely contained in the frequency variable z,
which secularly increases due to radiation reaction. At leading order, its evolution [11]
is dictated by # = 64c3vz®/(Gm), such that we can perform a change of variables
analogous to (57), namely

400 z(U) 5
/ dr (U — 7) = / bl = M oy, (32)
0 0

T - 64c3v

Using this formula to integrate (31), injecting the result into (28), working our way back
to the spherical harmonic decomposition using (5) and (8), and normalizing the mode

|| Here, the positions of the two particles are denoted y; and yo and their velocities v1 = dy; /dt and
vy = dyy/dt . The relative separation vector is given by ri2 = |y1 — yo| and ni2 = (y1 — y2)/712,
whereas the relative velocity is defined as v12 = v; — v5. We then define the right-handed orthonormal
triad (n12, A12,112) such that Ajs - v12 > 0 and ly5 is orthogonal to the orbital plane.
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as prescribed by (26), we finally find that

S
Hyp = ——— .
20 14\/6

Although our computation started at relative 2.5PN order, we have found that the

(33)

memory contribution enters at Newtonian order! It is in fact well known [121] that when
dealing with non-oscillatory effects, one acquires a —2.5PN correction to the order one
is working at (this corresponds in fact to the order of radiation reaction!). Do note,
however, that numerically, we have Hyy ~ —0.146, which is small compared to Hsy ~ 1.

When going to higher orders, we find that the non-oscillatory memory terms stem
from various quadratic interactions between two canonical moments, which should of
course be evaluated at the relevant PN order. Cubic interactions contribute to the
memory for the first time at 4PN in the PN-MPM counting, which corresponds to
1.5PN order in the waveform, once the —2.5PN correction to the order counting is
accounted for. These so-called “tails of memory” arise from the interaction between the
ADM mass and two mass-type quadrupole moments, and read [14]

2 +00 “+oo
ul:/;/[XMinMij St {/ dp./\/l((;g(U — p)/ dTMSBL(U —p—7)In <£)
0 0

7c8 210

+ (tail-like terms) + (instantaneous terms)} : (34)

where 1y is another arbitrary length scale. Thanks to this expression and the higher-
order memory terms, the memory terms in the (2,0) mode were computed for circular
orbits at 1.5PN order. Although both the cubic tails of memory and the higher PN
corrections to the quadratic memory have non-vanishing 1.5PN contributions to the
memory, these remarkably cancel out in the final result, which reads [117]

4
Hy = ) [1 ( 075 = 67

3.3.  Favata's approach to memory and its extension at 3.5PN

When the complete oscillatory part of the 3PN waveform for quasicircular orbits was
available [122], Favata used the methods presented in section 2 to complete it with the
corresponding non-oscillatory (memory) piece [11]. First, he computed Uyy consistently
at 3PN order by injecting the modes given in reference [122] into equation (14). Then,
using the 3PN phasing [123-125], he was able to perform the time integration in order
to obtain hyy, thus completing the 3PN waveform. Note, however, that the 3PN phasing
obtained in reference [124] relies on the key assumption that the flux-balance law for
energy holds at 3PN order. This law was only recently proven to hold at 2PN order [115],
and subtleties in the formulation of the flux-balance laws, due to the difference between
orbital and GW frequency, enter at 4PN [120].
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Since the oscillatory waveform for quasicircular orbits is now available at 3.5PN [11,
13, 85, 93, 126], we were able to compute the full memory piece of the waveform at 3.5PN
order, using exactly the same methodology as Favata [11]. We obtain the following
expressions for the time-derivatives of the radiative moments:

: 256 |7 1219 1
u(mem) _ = 2 5 1 o . 4 3/2
20 7 V15”7 tr\ Ty Togv) T
14 4201 4
2 (_ 793 023 420 V2> +x5/27r( 2435 23 )

1782 6336 1584 144 127
174213949439 1 1712
3[7 3949439 16 , 17 356 1 g(162)

_ 2y
1816214400 T 37 105 B 105 8

( 126714689 41 2) 4168379 142471V3]

T iz ™ )V T 193552 Y T u6332

+ 1%
8448 38016 864

64 [m 10133 25775
u(mem) _ 2 5 1 4 3/2
40 315\/; T T T e V) T

9 <322533 721593 237865 2) 5/2 ( 1028 11114 )
x vt +xm —Vv

1 2 2794
s (_33 99 532000 279 9V2> +O(x4)}’ (36a)

1576 2288 © 5148
3[32585924257 16, 1712 856

B 11 T 33

22080928501 _ S0 0e(1
203603200 T 37 T 105 "B 105 08(162)

(4669843 41 2) L 16531 , 1145725 3]
1%

164736 48" 52~ 92664
37621537 8366815 8011895
7/2 _ _ 2 4 b
T W( 82368 4576 10296 ) +Ol )}’ (36b)

mem) 839 [ 1, 4 3612 N 982361 N 56387 62244
=———\/T==VT v+z|— v — v
60 693\ 2730 839 75510 839 839

8 (5540 23184 )

839 839
o (302491414 15164579571/ n 27377867y2 1106868 ¥
4492845 3851010 42789 14263

188407 | 7810432 9431984
5/2 - 2 O 3 36
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Jmem) 75601 T a1l 452070 N 733320
= VT — 1% 1%
80 347490\ 1190 75601 75601
7655551 N 369735869 248030070 , N 135873360
— vV — 1% 1%
604808 4309257 1436419 1436419

708606 4245492 6707184
3/2 o 2 O 2 36d
L 7T(75601 75601~ 75601 ”>+ (z )}’ (364)
. 525221 [ 70841784 198570240
u(mem) _ _ 908 1— 2
10,0 15752880 \/ 385" * 0079199 © * "9979199 7
172307520
~ 9979199 v +O(m)}. (36e)

Of course, these expressions agree at 3PN order with equation (3.13) of [11]. In view of
performing the time integration, we recall the 3.5PN-accurate expression of dz/dt¢ given
by equation (3.19) of [11], which we reproduce here:

do _ Gdcty 5{1 +zx (—E - El/) + 4mad/?

At saM” 336 4

2 (34103 13661 59 5\ g, ( 4150 189
18144 ' 2016 ' 18 672 8

3[16447322263 16 , 856

D200
139708800 T 37 10527 +nl6z)

217728 A8 " 896" 2592
4415 358675 91495 1
72 ( _ 2 L
M < 2032 T 60w T 312 Y ) 0 (c8> } (37)
Note that (37) was obtained under the assumption that the 3.5PN flux-balance law for

energy holds. We can now perform the time integration appearing in (1) by performing
the change of variables

<_56198689 451 2)y 541 , 5605 3]

U z(U) T
/ at f(x(t)) = / LTy (38)

0o 0 z

which can then be performed explicitly by using (37) and then PN-expanding the
integrand in powers of x. Finally, we can work our way back to the hjy modes using (8).
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The modes are then normalized following (26), and read

- 5 . 4075 67 , (151877213 123815 205 ,
= —— T| ———x + =V x| = - V4 —
T 146 4032 ' 48 67060224 44352 ' 352
253 253
s/2, (200 | 299
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3[ 4397711103307 (700464542023 205 2) V
T

T 532580106240 \ 13048526502 96 "

69527951 2+1321981 3
v v
166053888 5930496

38351671 3486041 652889
7/2 _ _ 9 o 4 29
”(%mm% 598752 wmw”)* @>}> (39)
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u 75601 , 452070 733320
= — €T — 1% 1%
0 9134978561/119 75601 75601
265361509 18177808147 ~ 722521125 , 261283995
— vV — 1% —_—
33869248 | 321757856 5745676 2872838
812404 1624808 2515936
3/2 _ 2 O 2 39d
v 7T(226803 75601~ 75601~ ) +0( )}’ (39d)
y 525221 X TOSAITS 198570240 , 172307520 @)
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(39)

These expressions are also in perfect agreement with the 3PN results given in (4.3)
of [11]. Note that with this approach, we have very easily recovered the result of
equation (35), obtained with the PN-MPM approach, which featured a very nontrivial
cancellation at 1.5PN order between the tails of memory and the higher-order PN
correction to the quadratic memory. This result, combined with reference [85], completes
our knowledge of the full 3.5PN waveform, including both oscillatory and memory
contributions.

Finally, note that we were not able to obtain the full memory contribution to the
4PN waveform, despite the amplitude of the (¢,m) = (2,2) mode being known at 4PN
order [117, 120]. This is because other necessary modes are only known at 3.5PN order€.
More specifically:

° h;glem at 4PN requires hsy and hys at 4PN

° hffélem) at 4PN requires hsa, has, hse and hgy at 4PN
h(mem) at 4PN requires has, hse, he2, hro and hgs at 4PN
o héo °m) at 4PN requires hgo, hro and hgy at 4PN

hipe™) at 4PN requires hg, at 4PN

Note that hg?%m) is the only mode that can already be computed at 4PN order, since it
only requires the oscillatory modes at leading order, which are known analytically for
any (¢, m) provided m # 0, see reference [127].

4. Calculation of gravitational-wave memory via the gravitational self-force
approach: overview

In this section, we describe the necessary formalism for calculating GW memory in GSF
theory. We begin with the multiscale expansion of the Einstein field equations as our
overarching computational framework. We then summarize the calculations at first and

§ When discussing modes, the PN order-counting convention is that Newtonian order refers to the
leading order of the (2,2) mode. This means that the (2, 1), (3,3) and (3, 1) modes first enter at 0.5PN
order, the (3,2), (4,4) and (4, 2) modes first enter at 1PN order, etc. Thus, if the (3,2) mode is known
at 3.5PN, it means it is known at relative 2.5PN beyond its leading order expression.



Gravitational memory: new results from post-Newtonian and self-force theory 20

second order in the mass ratio. The breakdown of the multiscale expansion on large
spatial scales at second order [128] necessitates a more thorough analysis of spacetime
asymptotics for asymmetric binaries, which we carry out in section 5.

Throughout this section, we appeal to standard methods of black hole perturbation
theory. We refer to [74] for a detailed exposition of those methods.

4.1. Multiscale expansion

The GSF framework applies when the mass ratio € is small, such that the secondary
object can be treated as a point mass that perturbs the spacetime of the primary black
hole. One then solves the Einstein field equations using a series expansion in powers
of € [73]. Here, we specifically use a multiscale formulation of that expansion [129, 130],
which accurately captures both the periodic behavior on the orbital time scale and the
slow, secular evolution on the radiation-reaction timescale [74, 131].

We work with the standard Boyer-Lindquist spatial coordinates y* = {r,0, ¢}
defined on the background spacetime of the primary. For our time coordinate, we
use a hyperboloidal time T = t — k(r,) that interpolates between (i) advanced time
v =t + 7, at the future horizon, (ii) Boyer-Lindquist time ¢ in a region including the
particle, and (iii) retarded time u = ¢ — r, at future null infinity. Here, r, is the tortoise
coordinate satisfying dr,/dr = (7% + a*)/(r* — 2myr + ) and a is the spin parameter
of the background Kerr black hole [129, 130, 132, 133]." Using a hyperboloidal time
variable significantly simplifies calculations at second order in €, as we review below.
However, we note that when solving field equations at first order in €, we use Boyer-
Lindquist ¢ throughout the spacetime and then perform a simple transformation to
obtain the solution as a function of T.

We specialise to quasicircular motion with orbital phase ¢, and define the orbital
frequency to be Q = d¢,/dt. During the inspiral, the orbital phase evolves rapidly, on
the fast orbital timescale, whereas the orbital frequency evolves slowly, on the radiation-
reaction timescale. In our multiscale expansion the evolution of the binary is given by

dop
E — Q, (40&)
% = [FO(Q) + FO©Q) + O] | (40b)

where F(©(Q) and FM () are known as the adiabatic (OPA) and post-adiabatic (1PA)
forcing terms, respectively. Inclusion of these two terms ensures that over a radiation-
reaction timescale the error in ¢, scales linearly with e. This accuracy is expected to be
sufficient for EMRI modelling [134]. The mass and spin of the primary also evolve at
1PA order due to the absorption of GWs by the black hole; we include their evolution
consistently throughout our calculation, but for brevity we will mostly elide them here.

* As explained below, the background parameters rm; and & differ from the physical black hole
parameters by O(¢) due to the black hole’s interaction with the particle [129]. However, we always
re-expand final results to express them in terms of the physical parameters.
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In order to compute the forcing terms F(™(Q) and the waveform, we expand the
metric as a product of slowly evolving amplitudes and a rapidly evolving phase:

Gas = G+ D | (") + ERE ()| e, (41)
meEZ

where ¢,5 is the background Kerr metric. We treat the background mass and spin
parameters m; and @ as constants and include the evolving O(e€) corrections to them
in h&lg’o. The metric g,3 is assumed to have no time dependence apart from its
dependence on ¢, and 2 (and the corrections to the primary’s evolving mass and spin),
and ¢, and 2 are promoted to fields on spacetime by extending them off the particle’s
worldline as constant on slices of constant T. Field equations for the metric amplitudes,
hgg’m, can be obtained by substituting equation (41) into the Einstein field equations
Gogplg] = 87T, where G is the Einstein tensor, T, is the stress-energy tensor of the
particle [135], and hereafter we omit indices on tensorial arguments of functionals. We
can expand the stress-energy and Einstein tensors in powers of the mass ratio as

Top = ET(l) + €T, (2) + O(€*), (42a)
Gaplg] = €0Ga5[h V] + E262Gop[hV, BV + O(e?), (42b)
where
i) =" hlmemimen, (43)
mEZ

0Gop is the linearized Einstein tensor, §°G,s is quadratic in its arguments, and we
have used that G.g[g] = 0. Time derivatives appearing in G,s can be evaluated
using O; = ¢p8¢ + Q0 = 00y, + eF©9q + O(e?). Using this, we further expand the
linearized and quadratic Einstein tensors as §"G,p = 0"G ﬁ),+ 65"G( + O(€?), where
n € {1,2}, 0. is replaced by 04, in 5”G(0 , and 5”Ga x FO . For detalls, we refer
to equations (26)—(40) in reference [130] (noting the differences in notation T — s and
"GY) — G,

These expansions put the Einstein equation in the form of a series in e with
coefficients that depend on Q(7,€) and ¢,(T,€). Within the multiscale framework, ¢,
and ) are treated as independent variables, such that we can equate coefficients of
explicit powers of € in the expanded Einstein equation despite the € depence in 2 and
¢p. The field equations at each order in the mass ratio then take the following form:

S =T 5 O O sty

where the exponential e™? has been factored out of each equation, and the sum
over m' and m” runs over all pairs satisfying m’ +m” = m. The linear operator
5G$§’m on the left-hand side is identical to the linearized Einstein operator one would
obtain when applying the full linearized Einstein tensor G,z to a function of the form
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h(ojg’m(yi)e*imm; this is the standard linearized Einstein tensor in the frequency domain,
with frequencies w = mf2.

Equations (44) represent an expansion of the Einstein field equations in powers of
e at fixed (¢, Q,2%) (i.e., treating ¢,, 2, and z* as independent variables). Because the
point-particle source TOEIB) only depends on ¢ and ¢, in the combination (¢ — ¢,), this
functional dependence propagates through every order, such that the only ¢ dependence
in hgg’m, Tcig)’m, and 5”Ggg’m is an overall exponential e"?. The Fourier mode number
m hence becomes identified with the azimuthal mode number m in the spherical (or
spheroidal) harmonic expansions we adopt throughout the paper.

We note that the quadratic source term in equation (44b) is highly singular. While
it admits a distributional interpretation that makes equation (44b) well defined [135], in
practice we regularize the equation via the introduction of puncture fields in the vicinity
of the secondary’s worldline [136, 137]. This subtlety will not enter into our analysis of
the GW memory, which will involve studying the asymptotic behaviour of the metric
perturbation outside the support of the puncture fields near the worldline.

Finally, for the waveform, we decompose the metric perturbation at future null
infinity into h, and h, polarizations in a TT gauge; see section 2. Expanding
equation (41) on a basis of spin-weight —2 spherical harmonics, we write the waveform
as

h=hy —ihy, = %Z [h(©) + @) e Y0 (6.0), (45)

Ilm

noting that » and R are asymptotically equal.

The distinguishing feature of memory in the multiscale context is that it
accumulates on the radiation-reaction timescale, promoting it by one order in e,
analogous to the —2.5PN promotion described in section 3.2. Consider an integral
of the form (10) with a multiscale integrand, which for illustration purposes we write as

O (u) = /u Klm(Q(u'))e_im‘bp(“,)du' (46)

for some Kj,,, working with u rather than U for simplicity. If m # 0, the rapidly
oscillating phase factor prevents the integral from accumulating. In that case, we can
repeatedly integrate by parts to reduce the integral to an instantaneous function of wu:

_ K, 1 d (K, 1 d 1 d (K, —ima,
Oum = {imQ * im$ du <zmQ> + im$ du LmQ@ <zmQ>] T } c - (47)

Since dQ/du = O(e), each successive term in curly brackets is suppressed by one

additional order in e. Contrast this with an integral for a quasistationary (m = 0)
term. Adopting €2 as the integration variable and using equation (40b), we can write

u Q(u)
O = /_ Kio(Qu))du' = % /0 ﬁg((%)) dQ + O(). (48)
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The implication of this is that, while the GW flux is O(€?), it generates an O(e)
quasistationary contribution to the waveform. Concretely, the memory terms in
equation (45) are
mem -7 1mem 1 .
e — ipzen = =3 el (@) + Q)] 2Yio(0,0). (49)
1=2

We emphasize that traditional GSF waveform models have always omitted these terms,
making the models technically incomplete even at leading order in €.

As alluded to below equation (18), actually evaluating the time integral in
equation (10) at 1PA order currently requires us to adopt some additional assumptions;
cf. the discussion in the PN context in section 3.3. In principle, F(© and F®) can be
computed from the local first- and second-order self-forces acting on the particle [129],
and the integral at 1PA order is given by

Q) Z/'{(mem) 1 QU) Z/'{(mem)
u(mem) — ZO—dQI — _/ 10 dQ’ 50
" /0 Q € Jo F(O)(Q/) + EF(l)(Q/) ( )

without additional assumptions or approximations. The relationship between orbital
frequency (2 and retarded time U at future null infinity depends on the choice of slicing
T, as different foliations will connect a time at future null infinity to different points
on the particle’s worldline. However, the choice of slicing also affects (1) through the
foliation-dependent source term (5G((115)’m in the field equation (44b). These two effects
cancel out, such that the function "™ (U) is in fact insensitive to the choice of slicing
(up to 2PA differences).

Unfortunately, at the time of writing, the local second-order self force has not yet
been computed. As a consequence, the forcing functions F™ are instead obtained from
an energy-balance law. For a given choice of time variable T, we define a binding energy

gZMB—ml—MQ, (51)

where the Bondi mass My and the black hole mass m; are evaluated, respectively, on
the cuts of future null infinity and of the future horizon defined by T = constant. Note
that here we work with the physical black hole mass

my = my + edm,. (52)
€ can be calculated as a function of {Q(T),mq(T), m2,a(t)} [86, 138], such that
differentiating equation (51) yields

o€ ..~ of o€ . _
8_QQ+ aml./_"y—i-%a— —Foo —Fu=—F. (53)

On the left-hand side, we have applied the chain rule. On the right, we have used the
balance laws dMg/dt = —F,, and dm,/dt = F, where F,, and F3 are the flux of

energy to future null infinity and the future horizon at time T; these flux-balance laws
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are exact results in GR [26, 139]. We have also used the fact that ms is exactly constant
to high order in € [140]. Rearranging equation (53) for 2, we obtain

_F +(08)0mn) Fa + (85/8@)61'

= 9E /00

(54)

At this stage we have not made any additional assumptions. We can now expand the
binding energy in powers of ¢,

£ = mo [5(0) (le, CLQ) -1+ 68(1) (mlﬁ, (ZQ) + O<€2>] y (55)

where £ is the specific orbital energy (rather than specific binding energy) of a circular
Kerr geodesic, and we have used Mg = m; + ma&(g) + moe Ey. Similarly, we expand
the fluxes as

Fooprp = EF o (m1Q,aQ) + EFL), (19, a) + O, (56)

o0

where féi)m is calculated from products of hsﬁ)ﬁm with itself, and fg}% is calculated
from products of hfﬁ)’m with hsﬁ)’m. Fully expanding equation (54) in powers of € yields
the forcing functions F(™ in equation (40b) in terms of quantities measurable at infinity
and the horizon. However, we now adopt one approximation and one assumption:

e We neglect 1PA horizon flux terms. This includes the explicit O(e®) terms
(O€ JOmy)Fy and (0€/0a)a in equation (54), as well as the contribution of ]-"7(_12 ) to
the total flux F. The second-order horizon flux, .7-"7({2 ) , cannot presently be included
as it has not been calculated, but all 1PA horizon flux terms are expected to be
numerically small [141].

e We assume that the binding energy &y(m1€2, af2), as defined by equation (51), is
equal (at least to a sufficiently good approximation) to the binding energy defined
from the first law of binary mechanics [142]. This assumption is required because
the binding energy calculated from equation (51) was calculated with a different
choice of T than the fluxes. Even with these different slicings, the two quantities
are numerically very close to one another [86], but the difference between them has
a potentially significant impact on the GW phasing [141].

Given these assumptions, we write €2 as

@ _F

At 9EJAN (57)

with the understanding that we neglect }"3{[2 ) in F and use the first-law value of Emy. We
provide more detailed formalism required to calculate the metric perturbation and the
associated memory contribution at first and second order in the next sections.
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4.2.  First-order memory for quasicircular orbits around a Kerr black hole

To calculate the first-order metric amplitudes, K'Y we use the Teukolsky formalism [74,

Ilm>
143-145]. In this section, we derive a convenient formula for the memory in terms of

the asymptotic amplitudes of the (first order) spin-weight —2 Weyl scalar 1/19,

Y=Y (Onrmenmt = p Z Z LR (1) 58 (0, ¢)e ™. (58)

uryo fmw
1=2 m=—1
Here, ¢ s [h] is the linearized Weyl tensor (neglecting Q terms that arise from time
derivatives), n* and m* are legs of the Kinnersley tetrad, p = —1/(r — iacosf), and

_5S§% is a spin-weighted spheroidal harmonic [74]. The frequencies are harmonics of the
orbital frequency, w = mf). The spin parameter appearing in the spheroidal harmonics
is the background spin a. However, our calculations in a Kerr background are limited
to first perturbative order, meaning they can neglect the evolving correction to the spin
and set a = a.

As mentioned above, we can use t rather than T as our time coordinate in

first-order calculations, in which case R( satisfies the radial Teukolsky equation

Imw
in the form given in equation (84) of reference [74]. After obtaining the solution

in the tfoliation one can transform to the time coordinate T = t — k(7,) using
Ré")w — —QRzmw e~™* [129, 130]. Note that such a simple transformation only applies

at leading order in e.

We stress that, at first order in our multiscale expansion, the coefficients —23272“; are
identical to those sourced by a particle on a precisely circular, nondissipating geodesic
with orbital frequency €2; the evolution of the frequency only affects the field equations
at second order. In the geodesic case and in the t-foliation, the phase factor e~"m%»

becomes e~ S

, and the radial Teukolsky equation is insensitive to this replacement.
Therefore, when calculating the m # 0, oscillatory waveform amplitudes hl(,lyz, one can
either consider geodesic, circular source orbits or evolving, quasicircular source orbits.
The waveform amplitudes hl(;) themselves are straightforwardly extracted from
_QREBM. Writing the Weyl tensor in terms of h, projecting it onto the relevant tetrad
legs, and taking the limit as r — oo, one finds that most of the terms in the Weyl scalar

drop out, leaving
1.

1 . .

Yy = _§hmfn = —§(h+ —ihy), 1 —00; (59)
this holds fully nonlinearly, not restricted to leading order. At first order, the field
equation is homogeneous at all points away from the particle. Since the solution to the
homogeneous radial Teukolsky equation (in the ¢-foliation) goes as

LRI () = rietier o o0, (60)
this leaves us with
00 l
1 —zm u aw
4(11) = ; Z Z —QZlHrFL)w ¢>p( )72SZm(‘97 ¢)7 T — 0, (61)

=2 m=—{
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where the Teukolsky amplitude _ Zanw is an ()-dependent constant (determined by
solving the inhomogeneous Teukolsky equation and reading off the coefficient of 1/r
at large r), and we have cancelled the factor et by transforming to the t-foliation.

Integrating with respect to u leaves us with

Z ZK 2 Zoms i )
mw 77,m D u SCL(.U 9 . 62
imQ @m( 7¢) ( )
A second integration yields
14 ZUp

Z 2 T " -aSE0.0) (63)

These integrations are performed in the manner of equation (47), neglecting all
subleading terms. Such terms are automatically accounted for in the second-order metric
amplitudes.

Calculations in the Teukolsky formalism in Kerr spacetime are done in a spheroidal
harmonic basis. To facilitate analytical integrations over the combinations of harmonics
appearing in, e.g., equation (10), and in keeping with the expressions shown in section 2,
we must project these results onto a basis of spherical harmonics. This has the fortunate
side effect of allowing easier comparisons with PN and NR. The expansion is written as

LS =) LY, b (64)
l:lmin

where the b coefficients can be obtained following Appendix A of [146], and
Imin = lmin = max(m, 2). This allows us to write

Z hﬁmbélma (65)

l= gmln

and by considering the form of Ay, we can further define

Zz(iz) = Z Zt}jﬁw Dt - (66)
O=linin

Using these expressions, we can express equation (62) in a spherical basis by making
the swap ¢ — [, and replacing each spin-weighted spheroidal harmonic with the
corresponding spin-weighted spherical harmonic. In the Schwarzschild case, where
a = 0, we get that b)), = d4 because spheroidal harmonics reduce to spherical ones
in this case, and no projection is necessary. In either case, in the expansion (45), we
have

B0 _ 27,)

= Tm)E (67)
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Substituting A in the above form into equation (14), we can write the time derivative
of the radiative mass moment as

(1, mem) l - 2 m+m”
Ui S ZZ > Z o
2 l// 2 m/:_l/ m// //
X Zl(’?rr)ﬂ Zl(/},zn//eiz(m 7m//)¢p(u) G?’:;’?i?m’, —m/ —m (68)

Finally, we reduce the summation using several symmetries. We eliminate the sum
over m” using the fact that GZQ, 1”2 lom i _m Vanishes unless m’ —m” = m, by virtue
of the 3-5 symbols in equation (16) We restrict to positive m’ by using the symmetry
Zl(;) = (_1)ZZ1(B;' Also restricting ourselves to the non-oscillatory m = 0 modes, we

obtain

2(1 —2)!

ulmem)_
10 (+2)

(1 2,-2,0
< l )/ lll /) Gl/ l”,l,ml, 7m/70 9 (69)
20/=2m
where we have additionally used the symmetry (17). Note that by virtue of the system’s
up-down symmetry, Uy vanishes for odd values of [.

We calculate the accumulated memory over the inspiral using equation (50). The
evolution of the frequency is governed by equation (40b), which can equivalently be
rewritten in terms of energy as equation (57). At leading (OPA) order, we have

eFI(Q)

where &) is the specific energy of a circular geodesic [147],

1 —2(miQ)¥3(1 — a)'/3
V1= (aQ)% = 3(m, Q231 — aQ)¥/3’

Eo) = (71)

and FU is the instantancous flux of energy (per unit mass squared) carried by hsg into
the black hole and out to infinity. This flux is readily calculated from the Teukolsky
mode amplitudes at infinity and the black hole horizon [74]. Unlike the 1PA balance
law, the OPA balance law (70) is known to hold exactly and is independent of one’s
choice of T [129]. We also note that if calculations are restricted to OPA order, as ours
are in Kerr, then we can everywhere replace m; and a with m; and a and treat them
as constants (though the horizon flux ]-"7(; ) must be included in F ™).

4.3.  Second-order memory for quasicircular orbits around a Schwarzschild black hole

We now turn to the computation of the memory at second order in the mass ratio. In
this section, we develop a simple extension of the formula (69) in terms of a certain
effective second-order Teukolsky amplitude.

Our calculation of the second-order memory begins from the metric amplitudes
hgfrz that were computed in Schwarzschild in reference [87]. Rather than involving the
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Teukolsky formalism, these were computed by directly solving the field equations (44a)
and (44b) in the Lorenz gauge, as described in Refs. [129, 130, 148] and utilizing the
ingredients from Refs. [128, 137, 149, 150]. At second order and beyond, the relationship
between the orbital frequency €2 and the asymptotic metric amplitudes depends on the
choice of time foliation. The calculations in reference [87] specifically use a “sharp
slicing” [130] in which T = ¢ in a shell r_ < r() < ry centered on the particle’s leading-
order (evolving) orbital radius r(); T = v in a region extending from the shell to the
horizon; and T = u from the shell to infinity.

The GW memory is calculated from ki, which we can obtain from a time derivative
of equation (45),

h:_z[( imQBY + 2(—imh? + EFO9,h0 | e ,V,(0,6).  (72)
r

lm
Here we have accounted for the time derivative of the amplitude hl(:rz and used
equation (40b). We can work directly with this formula, but it will be convenient
to define an effective second-order Teukolsky amplitude Zl(;) that allows us to easily

extend the first-order expression (69):

1
Zl(qi) = -
2

1 FO)
imQ (—imﬂhl(,fj + F<0>agh§;3) = S (mQ)? (hl(” ! =0 h(l)) L (73)
This amplitude is what would arise by ignoring € terms when taking the second time
derivative in equation (59). Since the derivation at first order assumed d/du = —imS2
when relating h to 14, we can immediately extend equation (69) to second order by
making the simple substitution

2 = 20 4 e 2 o), (74)
and reading off the terms linear in e. We then write the total /"™ as
ul(()mem) = [ul(()l’ mem) uzo2 e O(Ez)} ; (75)
with UZ%Q’ mem) given by equation (69) with the replacement

a%(z“) ZD ) = a%( Z2 4z, Zf,,)*) . (76)

l/m/ l/m/ l//m/

An equivalent formula for Z/'{Z(OZ mem)

can readily be obtained in terms of the physical
first-and second-order Teukolsky amplitudes (as opposed to the effective Zl(;i) ). To do
so, one would (i) take a time derivative of equation (72) and include all Q2 terms, (ii) use
equation (59) to equate the physical second-order Teukolsky amplitude to terms in the
derivative of equation (72), and (iii) integrate over u as in equation (47) (including the
first subleading term) to obtain the second-order piece of h in terms of the physical

Teukolsky amplitudes.
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5. Spacetime asymptotics and hereditary effects in the self-force regime

In the preceding section, we have implicitly assumed that solving equation (44) gives us
direct access to the asymptotic waveform amplitudes hz(iz) and hl(i) At first order in SF
theory, this assumption is correct: we can obtain hl(;) simply by evaluating hgﬁ) at r — oo

(at fixed u). If hSﬁ) is calculated in a gauge that is asymptotically irregular, such as the
Regge-Wheeler-Zerilli gauge, then there are standard prescriptions for transforming to
a gauge that extends smoothly to future null infinity; see, e.g., reference [151] for the
case of the Regge-Wheeler-Zerilli gauge. If h(alﬁ) is calculated in the Lorenz gauge, no
transformation is required.

At second order in perturbation theory, extracting the waveform becomes
significantly more difficult due to an interplay between the multiscale expansion and
gauge choice. As explored in reference [128], in a gauge in which the linearized
Einstein tensor reduces to a wave operator (as it does in the Lorenz gauge), the field
equation (44b) suffers from logarithmic infrared divergences stemming from the source
terms’ slow falloff at large distances.

The infrared breakdown confines the multiscale expansion to the near zone defined
by r <« M/e (note this definition of the near zone is not related to the wavelength of
the emitted radiation, unlike the definition used in the PN-MPM construction). To
overcome the breakdown, we introduce a weak-field, PM expansion in the far zone
r > M, inspired by the MPM formalism. Information is transmitted between the
multiscale expansion and the PM expansion in a buffer region (the ‘near far zone’
M < r <« M/e) where both approximations are valid, corresponding to the large-r
limit of the near zone and the small-r limit of the far zone. Re-expanding the far-
zone PM solution in this buffer region provides physical boundary conditions for the
multiscale solution.

We illustrate the breakdown of the multiscale expansion in section 5.1, and we
outline the PM expansion in section 5.2. We then apply the formalism to show that

(i) matching to the far-zone solution introduces hereditary, nonlocal-in-time effects
in the near-zone dynamics, which cannot otherwise be captured by the multiscale
expansion,

(ii) the hereditary near-zone effects arise from precisely the same piece of the metric
that corresponds to memory in the GW,

(iii) ‘most’ of the oscillatory part of the waveform at true asymptotic infinity, in the very
far zone r > M /e, can be directly extracted from a certain piece of the multiscale
solution in the large-r limit of the near zone; this part of the metric propagates
undistorted from the near zone to the very far zone.

(iv) additional oscillatory modes with hereditary amplitudes arise from products
between first-order memory terms and first-order oscillatory terms. The impact
of these new modes will require further investigation.

The first three of these are in close analogy with classic results of the PN-MPM
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construction [7, 77]. However, we note that in the PN-MPM calculations, both tails and
memory effects give rise to nonlocal-in-time integrals, while in our context, nonlocal-in-
time integrals are always associated with memory-type, low-frequency effects. Ordinary
tails, which involve oscillatory integrands, are always reduced to local-in-time functions
by virtue of equations such as (47).

The framework we describe in this section underlies the 2SF results in
references [86-88]. Here we describe it and its links to GW memory for the first time. To
clearly split between quasistationary and oscillatory effects, in this section we introduce
the notation

fu) = (f(w) + 7 (u) (77)

for functions f(u) =3, . fin(Q(u))e™ ™) where
(fy=/fo and fo¢ = Z frme M (78)

m#0

5.1. Breakdown of the multiscale expansion

As context for our analysis in the next sections, we first review the infrared breakdown of
the multiscale expansion. This breakdown, as mentioned above, stems from the large-r
behavior of the source terms in equation (44b). Since the problem arises from large-r
behavior, our illustration in this section will focus on the large-r limit of our multiscale
field equations.

If the t-foliation is used, then the first-order solution behaves as h&lﬁ)’m ~ £
at large r, meaning the source (5ng’m[h(1)’m] behaves particularly poorly. A second
t-derivative in the orginal four-dimensional G4 gives rise to terms like Q00q, leading

to , ,
ezmer* imT

5G$6)/m[h(1)’m] ~ QF(O)thgllb)/m ~ QF(O)ﬁQT = imQF(O)%- (79)

This is immediately cured by using hyperboloidal time T in the multiscale

imr« (and hence eliminates the

expansion [128-130], which eliminates the exponential e
2 derivative of it) as well as eliminating second time derivatives from 0G,5 (and hence
replacing Q200q terms in 5G&1g’m with Q0,00 terms).

A more pernicious problem arises from the quadratic source term 52G(()?5)’m. In a

generic gauge and the t-foliation, this decays as the product of two oscillating GWs,

eimQr*

52G((X06),m ~ Z m/m//QZh(l),m’h(l),m” ~

’

> (80)

m/,m'

In hyperboloidal slicing, the exponential ™ is removed but the falloff is otherwise
unchanged. We will explain the consequences of this by adapting an analysis from
reference [128] (see also section VI of [152]). First, recall that in the multiscale
framework, after e~% is factored out, the field equations only involve spatial



Gravitational memory: new results from post-Newtonian and self-force theory 31

derivatives and functions of €. For example, at large r in ¢ slicing, the field
equation (44b) in the Lorenz gauge reduces to™
imQr

(0)52)m _ €
Dn haﬁ T2

s (€2, 0)e™?, T — 00, (81)

where s7%e™™? is the coefficient of "+ /r? in the large-r expansion of the quadratic

source, and D(O) (mQ)? + V2 is the flat-space d’Alembert operator with 9, = —imf).
One solves each such field equation at fixed 2. We can hence formally define the retarded
solution to equation (44b) as the integral of the source against a retarded Green’s
function Gagalﬁl (w,x%, 2"*) for the frequency-domain linearised Einstein equation. The
contribution from the source’s large-r tail, as written in equation (81), is then

/dr /dQ’ Gos®? (w, 2, ") ™ s s (2,0)e mé’ 4 (82)
where the Green’s function is evaluated at w = m{ and we have cancelled the r—2 in
the source with the r? in the volume element. The ellipses indicate that this formula
only represents the contribution of the large-r behavior of the source.

Since we are considering the behavior at large r coming from the source at large 7/,
we can approximate Gaga/ﬁ, as its flat-spacetime limit,

Y 1 / /ezw|f—fl|
Gos™? = ——02'5] 83
B 47T a VB x—: —*/‘7 ( )
which satisfies
(w? + V) Gog®? = 6565 8%(7 — ). (84)

Here ¥ = (z,y, z) are Cartesian coordinates and we work with Cartesian components.
Expanded in scalar spherical harmonics, for large r and r’, and for w # 0 modes, this
becomes

Gaﬁalﬂl ~ —

a 5/2 Z l iwr _e—iwr} eiwr’ l;l(el’gb/)nm/(e’ ¢) (85)

=0 m'=—1

22wr7’

for v > r (and r <> r" if r > 1’); cf. equation (14) of [149]. For w = 0, the dominant
behavior is confined to [ = 0, and the Green’s function reduces to

. 1 . a(O0(r—1 O(r' —r
Gaﬁaﬂz_ﬂawg((r ) 1 & )); (36)

74/

cf. equation (15) of [149].
First, consider w # 0 modes. The approximations (82) and (85) imply

- 1 . r N iwr! 00 ,2iwr’
W - LSy, {ezwr i BUlwr)e™ 4 gy / — dr’} sim (), (87)
0

2iwr r’ ,
1>|m|

* cf. the exact form of the Lorenz-gauge linearized Einstein tensor, (92) below.
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where for convenience we have introduced fi(wr) = [(—1)'e™" — e7™"]. We have set
an arbitrary (large) lower limit Ry < r for the radial integral; this is freely done in
the present illustration because we are only interested in the contribution of the large-
r source. Also note that the integration over ¢ has imposed m’ = m. The radial
integral from 7 to oo converges and yields a subdominant term of order 1/7? in h((f[;m).
The first term in the integral from Ry to r, [p dr'e* " /1, does likewise (at leading
order for large Ry). However, the second term in that integral contributes a logarithm:
Jr, @' (=1)*1/r" = (=1)"*"In(r/Ry). Therefore, for m # 0 modes, the retarded integral

converges but yields the irregular, logarithmic asymptotic behavior

_ In(r)emer

h(2)1m
of 2imSQr

D 5a5()Yim, (88)

1=|m|

mirroring well-known behavior in harmonic coordinates [104]. Here we have discarded
the arbitrary radius Ry, which will not appear in the actual retarded integral using the
fully relativistic source and Green’s function; that integral will run from the horizon to
infinity and involve no arbitrary constants.

Next, consider w = 0 modes. The approximations (82) and (86) imply

( /RO dr' + /T ) (2)Yoo - (89)

The first integral contributes a constant term oc 70 in hgﬁ , making it already
asymptotically irregular. The second integral does not converge at all. Its logarithmic
divergence is the principal signature of the breakdown of the multiscale expansion. Note
that here it occurs in the [ = 0 mode, but this is an artefact of having expanded Cartesian
components in scalar spherical harmonics. What appears as a pure [ = 0 mode in this
expansion would contribute to 0 < [ < 2 modes in an expansion of tetrad components
in spin-weighted spherical harmonics (while remaining confined to m = 0).

We have performed the analysis in this section in ¢ slicing for simplicity, but the
results are the same in T slicing; the only effect is to remove the exponential factor from
equation (88). We refer to [128] for a more detailed analysis in the case of a nonlinear
scalar toy model.

Before proceeding, we comment on an underlying cause of this breakdown: in a
generic gauge, u = constant is not a light cone of the perturbed spacetime (cf. historical
references given on p. 386 of [104]). As highlighted in reference [153], this can be cured
by transforming hg{lﬁ) to a Bondi-Sachs gauge [26], which enforces that v = constant is
an outgoing null cone in both the background and perturbed spacetime. If we were to
transform h(alﬁ) to a Bondi-Sachs gauge before constructing the source for the second-
order field equations, then certain components of the quadratic source term in the
field equations would decay more rapidly at large r. This suffices to eliminate infrared
divergences in the retarded integral for the second-order Teukolsky equation [153],
though the impact of this gauge choice on the full second-order Einstein field equations
has not been fully investigated.
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In principle, one could follow a three-step procedure: (i) solve for hsﬂ)m in any

convenient gauge, (ii) transform hsﬁ)m to a Bondi-Sachs gauge and construct the source
terms in equation (44b) from it, and (iii) impose any convenient gauge for hfﬂ)m when
solving equation (44b). This strategy, which would mirror an analogous approach in
reference [118], will be further developed in a sequel paper [154]. For the remainder of
this section, we describe instead the strategy used in [86] and [87], which will also allow
us to directly relate our calculations to the derivation of GW memory due to Blanchet
and Damour [7].

5.2.  Post-Minkowskian expansion in the far zone r > M

We cure the multiscale expansion’s large-r pathology by adopting a far-zone, MPM-
like expansion based on reference [128]. The essential point in this construction is
that we solve the field equations directly on spacetime rather than treating (¢,,2)
as independent variables, using four-dimensional retarded integrals rather than three-
dimensional, fixed-frequency retarded integrals. FEvaluating the retarded integrals is
made tractable by working in the PM limit outside the source region, at r > M,
meaning we solve flat-spacetime wave equations rather than curved-spacetime ones.

Our starting point is the self-consistent formulation of the small-¢ expansion [84,
155], as extended in reference [129]. This formulation is valid over the entire spacetime,
in both the near zone and the far zone. When the self-consistent formulation is re-
expanded in multiscale form, it recovers the multiscale formulation in the near zone [129].
In this section, we expand it in a PM form valid in the far zone.

In the self-consistent framework, we treat h,s as a function of spacetime
coordinates, of the particle’s mass and the background black hole parameters, and of
a set of matter variables W(t,€) = {7(t, €),0m (¢, €),da(t,€)} comprising the particle’s
trajectory v and the black hole’s small, evolving mass and spin corrections. We then
define an expansion in powers of the mass ratio at fixed spacetime coordinates and
fixed U:

hap = eh[jg(x“; U) + €2h§}3(x“; ) +..., (90)

where we use square brackets to distinguish orders in this expansion from orders in the
multiscale expansion. As we did when solving the multiscale-expanded field equations
through second order, we adopt the Lorenz gauge condition, which we now state
explicitly:

éaﬁ%aﬁﬁw =0, (91)

where Bag = hop — % Gap " hyy and %a is the covariant derivative compatible with g.g.
With this gauge choice, the linearized Einstein tensor reduces to a wave operator,

1 /.- . _ 1 B
5Ga13[h] = —5 <|:|ha,3 + QRQ'U/BV}LW/) = _§Eoéﬁ[h‘] ) (92)

where [1 = §0‘5%a%5 and where }O%ng is the Riemann tensor associated with the
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[n]

background metric g,3. We can write a sequence of field equations for each h, Y

Eos[hV] = —167T.}, (93a)
Eos[h?] = —161T) + 26°G o[nlV, h1]. (93b)

These are coupled to the equation for the particle’s self-forced trajectory z;,

WPV~ = ed foThM] 4 €2 (6£[hP] + 62 o[l R (94)

8
where 4% = ‘?—; is the particle’s four-velocity normalized in the background spacetime,
and ff, and f§, are the linear and quadratic self-forces [156]. The evolving corrections

to the primary’s mass and spin are incorporated into h[;}j as described in reference [129].
The field equations (93) and matter equations are to be solved together, self-consistently,
as a coupled set. The gauge condition (91) is then automatically enforced by the matter
evolution equations, so long as initial data satisfies the gauge condition [157].

To see why the self-consistent expansion evades the infrared divergences of the
multiscale expansion, we can formally write the self-consistent solutions as retarded
integrals over all spacetime,

Rl (z") = —167 / Gag®? (2, ") Ty /=g d"s’ + RJF, (95a)
I =1 ].
hZ(a") = 167 / Gop®™? (2, 2™ (T[Q,]B, — 8—7T<52Ga/5/[h[”,hm]) V—gd'a'.  (95b)

Here Bi’gl’éal represents the contribution from the primary’s evolving mass and spin
corrections, and Ga[go‘lﬁl is the retarded Green’s function for the operator E,z, satisfying

4 /
DG + 2R G, 0 = 53’5§'M. (96)
V=7

Crucially, the integrals (95) involve integration over time, and the trajectory (and the
primary’s mass and spin) and metric perturbations evolve self-consistently within that
integration. This is important because the amplitude of GW content in hg]ﬂ decays
toward u = —oo (since the binary asymptotes to a Newtonian, nonradiating state in
the infinite past). Consequently, the problematic, 1/7% term in §2G o5 [h, A1) also has
decaying amplitude toward v = —oo; this can be understood from the fact that the
1/72 part of 62G g [hI), K] arises from the product of two GWs, as in equation (80).
The decay of 2G5 [hY, A1) in turn ensures the convergence of the four-dimensional
integral (95b). In the multiscale solution, on the other hand, the second-order field
equation (44b) is solved at fixed values of {2 and therefore at fixed values of the GW
amplitudes. The solution in that case is given by a three-dimensional integral of the
form (82) (see reference [130] for the explicit, fully relativistic construction), which does
not naturally capture the quadratic source term’s decay to zero in the distant past. This
is analogous to the discussion in Sec. 3.2 in the PN context; see also [121].
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We take the self-consistent expansion as our starting point for our PM expansion
in the far zone. Outside the source region, where Rng[g + h] = 0, the self-consistent
field equations (93) become

Eas[h"] = 0, (97a)
Eas[n®] = 262 Rag R, 1], (97D)

where we have used dR,s[h| = E,s[h] in the Lorenz gauge. All information about the
matter fields ¥ will now be transmitted to hgg through matching to the multiscale near-
zone solution. We do not directly impose the gauge condition but instead allow it to
be enforced indirectly through this matching; this suffices because the field equations
automatically preserve the gauge condition if the boundary data satisfies it [157].

The expansion (90) is, effectively, an expansion in powers of the mass my (while
holding the orbital trajectory fixed). We next introduce a post-Minkowskian expansion
by formally expanding in powers of the background mass my, under the assumption that
in the weak-field region, the effect of m; is a small, post-Minkowskian perturbation.
Concretely, we expand at fixed Cartesian coordinates (¢,z%) and at fixed ¥. We
define z* from the tortoise polar coordinates (r., 0, ¢), such that r, = \/W . This
ensures that the outgoing null surfaces of the Minkowski background n,s, defined

by constant retarded time w = ¢t — r,, are also the outgoing null surfaces of g,s:
NP0, dsu = 0 = §*%0,udsu = 0. The expansion puts the operators E,5 and §° R,z in
the forms
Eoaplh] = Oyhas + Y _ (11 EZL 1], (98)
Jj=1
0*Reglh, ... h] = (i} 8*RIL R, ... h], (99)
Jj=0

and the metric perturbations in the form

B =" (i )R (¢, 27 ©). (100)

Jj=0

Here all components are in the coordinate basis O,t, 9,2°.

Equations (98) and (99) represent expansions in powers of my /r and a/r (o< my/7)
because they are expansions of operators constructed from the Kerr metric, which
contains no length scale other than my. In contrast, equation (100) does not correspond
simply to an expansion in powers of m; /r; indeed, inverse length scales other than 1/r,
such as /Q, arise to form dimensionless combinations with the dimensionful expansion
parameter m;. Also note that equation (100) is not an expansion in powers of m;2; we
must avoid such an expansion because m4€2 is not small here (unlike in the PN-MPM
context).

With these expansions, the field equations become a sequence of Minkowskian wave
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equations, one at each order in my and m;. The equations read

Dnhﬁé’] —0. (101a)
Dnhgél] _ —E([)él}g[h[l’o]] — SE/;”, (101Db)
O, h[z 0 _ 252R [h“ o gl o] 5550]7 (101c)
) 23 R0 4 AR 10— B = S5, (ot

We demand that the solutions to these equations match the multiscale solution when
they are re-expanded in a common regime, meaning the multiscale solution is re-
expanded for r > M and the far-zone solution is expanded for r» < M /e. This shared
regime is the ‘near far zone’ at M < r < M/e.

5.3.  Algorithm for constructing the GSF-MPM far-zone solution

We now develop a scheme to solve the field equations (101) in a manner consistent
(i) with retarded propagation and (ii) with matching to the multiscale near-zone
solution. Since our method draws heavily on the PN-MPM formalism, we refer to
it as a GSF-MPM scheme.

The retarded solutions take a form analogous to equations (135)-(136) in
reference [128]. Explicitly, the retarded solution to the vacuum equation (101a), meaning
the solution with no incoming radiation, can be written as [158]

Wi =39, Fapy (1 ) (102)

>0

[1]

where the multipole moments F ;; are STF in their last [ indices, and

Oy = n; = 027 [, (103)

meaning 0;u = —n;. As in the PN-MPM scheme, the multipole moments will encode the
full freedom in our far-zone solution, and they are what will be determined by matching
to the near-zone solution. Here it will be important that no corrections to the multipole
moments appear in the higher-order terms h[ ] , such that F ] 51, on its own appropriately
matches the coefficient of 1/r appearing in the near-zone, multiscale solution. In other
words, we require that no terms of order 1/r appear in h[;éj] for 7 > 0.

Before proceeding to subleading orders h[ , we first explain the importance of
avoiding new 1/r terms in those subleading orders. Consider re-expanding (102) in
multiscale form. For a function K (u,¢€), the multiscale expansion reads

=D > R (Qu, €))e Mo, (104)

meZ n=0
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Here for simplicity we assume that T = u in the region where we perform the matching
to the near zone, such that we do not need to expand u in terms of T and r,. Starting
from a multiscale expansion of F| ilﬂ] 1, we then have

[e%9) l
1 .
W= 2SS mO(u, i E (O, e 1 Oe 1), (105)

=0 m=—1

observing that the leading term in € and 1/r comes from 0y, acting on the phase factor
e~ in the multiscale expansion of F 0[55]’ .- Recalling the notation for the STE projection
A L _

n- =

in their indices to write n”F EB}Lm = n*F OEIB]Lm The contraction ﬁLFO[}ng is equal to an

nli ... n we have used the fact the the multipolar moments are intrinsically STF

expansion of each Cartesian component in scalar (spin-weight 0) spherical harmonics,
> F. C%mlm (2)Y},y. Matching to the near-zone solution will enforce m’ = m, such
that

[} l
10 _ 1 : 1],lm —im
hily) = - SN (imQ) F ™ Q) Yime ™ + O(e, 1/12), (106)
=0 m=-—I
discarding the now-extraneous second azithumal mode number m’ (i.e., defining F, gﬁ]zm =
F[l],mlm>.
af

Now consider if we allowed additional 1/r terms of the same form in each hgﬁj I such

that the total coefficient of 1/r is proportional to the sum Fc[:g,lm + ZPO(ml)jFEB’ﬂ
This would need to match the 1/r term in the large-r expansion of the multiscale solution

JIm

hil), say
00 l
1 Im —im
hgg) = Z Z Gsﬁ)’ (Q)Yime ™ + O(1/r?), (107)
=0 m=-1

which would imply Ggg’lm = (imQ)! [Fgﬁ]lm - zj>0(m1)jF£2j]’lm}. Such an equality
would not be useful because Ggﬁ)’lm is obtained numerically on a grid of €2 values; there
is not a sense in which we can further expand it in powers of m; in order to match each

term Fgﬁgﬂ’lm. More fundamentally, the corrections FO[jB] bm are ruled out by dimensional

is a function of Q only, and each term (7h;)’ Fo[élﬂ’ﬂ’lm

same dimension as F gﬂ]zm Therefore the only possible form these higher-order terms

], im

analysis. F Eﬁj must have the

can take is ()7 bgﬂj W™ for some dimensionless numbers b([jﬁj W™ “Such an expansion is
only sensible if m;{2 < 1 — the slow-velocity, PN limit. Hence, we must exclude such
higher-order terms to keep our GSF-MPM expansion relativistic.

To construct the subleading terms without introducing these problematic new 1/r
outgoing waves, we adopt the solution

nbfh = FP Ot (B8 + kL (108)

af T B=0 «@
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Here O, f denotes the integral [ G(t—t', %, &) f(t', Z')dt'd*s" against the flat-spacetime
retarded Green’s function,

1Lo6(t—t —|&d—2)
4 |7 — 2| '

Git—t,2,7)=—

(109)

We have introduced a Hadamard finite part operation FPp_g because S([lléj] diverges
at 7. = 0, as is clear from the form (102) (see [103] for the origin of this
finite part regularization procedure in the PN-MPM context). However, note that

FPp_oU, ! <rf SLl[;j ]> is a particular solution to [, h[ ] = =5, (-7 ], with causal propagation,
k[lvj]

for all . > 0. The second term in equation (108), k.3, is a homogeneous solution of
the form (102), such that equation (108) represents the most general causal solution to
O h([iﬁj = S, i 3 . We choose k[ 9 through our requirement that h[ 4 contains no terms of

the form Gag(u n')/r,. The mtegral FPp_oO, ' (r2S [1’]]) generlcally involves outgoing

,J]

waves of that form, which we precisely cancel Wlth k[ Note that this involves no loss

of generality: the solution 3 (1)’ hL 5J is the most general solution to equation (97a)
containing no incoming radiation; all the freedom in that solution is contained in the
multipole moments F C[tlﬁ]L( ) in h[l 0]

We follow the same general procedure in solving the higher-order field equations
in the sequence (101). The most general solution to equation (101c) with no incoming
radiation can be written as

niy = FP O, ( Sk ’J]) + K, (110)

Here k([géj] is a homogeneous solution of the form (102). For each n, the leading

homogeneous solution, k[nﬁ’o], is left arbitrary, to be determined through matching to

J]

the near-zone solution. The subleading homogeneous solutions, k with 7 > 0, are

chosen to cancel any outgoing radiation in FPp_g Dn < B SEE] > ThlS contrasts with

the traditional MPM scheme, where k[n’j J would be chosen to enforce the gauge condition

n,j].

on each h[ ; we avoid that choice in order to isolate the outgoing wave entirely in the

leading PM term h[aﬁ] at each order in ¢, recalling that the gauge condition will be
enforced through matching to the near-zone solution.

As illustrated in section 5.1, the breakdown of the multiscale expansion at second
order in the near zone is specifically associated with the presence of 1/r? source terms.f
This breakdown is cured, and physical boundary conditions are found for our near-zone

multiscale field hf/;, by examining the part of hféo]

sz  Soplt ) +O<l), (111)

72 r3

*

sourced by the most slowly falling
piece of S, 550]. Writing

# A practical consequence of our choice of tortoise coordinates 2° is that no source terms ~ 1/72 arise
in the field equations for h[ Il
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we define
*

Jop = FP 0,7 (r7%sas) . (112)

The retarded integral converges even without the finite part operation, since 1/r? is
integrable at r, = 0, meaning we can equivalently write

Jag =0, " (1 %508) - (113)
We then define
. -1 { ..B 2,0 Sap (U, ni) _ -1 (..Bl2,0] .
Ajos = gf@ O, (T* Sap — T) = Efo [, (T* S > — Jag- (114)

This can be decomposed into an outgoing-wave homogeneous solution plus a particular
solution to 0, Aj.s = (Sgéo} — 1, %545) that decays more rapidly than 1/r toward infinity.
The particular solution is constructed in the same manner as described previously:
calculate the (finite part) retarded integral, read off the large-r coefficient of 1/r in
the solution, and then subtract an outgoing-wave homogeneous solution with that same

coefficient of 1/r. The homogeneous solution, of the form (102), we denote Akgéo}. This
]

allows us to write h[jéo in the alternative form

2,0 . ~12,0 . 2,0
RES = o + RE + (Djas — ARE) (115)

The second term, %ff] = k;ggjo] +Ak‘5§0], is a homogeneous, outgoing-wave solution, while
the combination of terms in parentheses decays more rapidly than 1/r toward future
null infinity, meaning it will not contribute to the emitted GWs.

In the next sections we show the following:

(1) Jjap is sourced by the emitted GW flux (plus oscillatory source terms).
(ii) When re-expanded in the near far zone M < r < M/e, jop provides a boundary

condition for hfﬁ) that introduces nonlocal-in-time terms into the orbital dynamics.
We define a certain piece of this re-expansion of j,3 as a puncture field hfgp (so
called because it is singular at the large-r limit of the near zone), and we adopt the
residual field hffgn = hgg — h((fgp as the numerical variable in the near zone [130].

(iii) When re-expanded in the very far zone r > M /e, the quasistationary piece of jugs

becomes the first-order GW memory hl%) in equation (49).

(iv) The numerically calculated hfﬂm determines the nonhereditary oscillatory part of
the second-order waveform hl(fn) in equation (45).

(v) Oscillatory modes of hg’}, can be sourced by products of first-order memory modes
and first-order oscillatory modes, promoting them by 1/e. These oscillatory terms

might contribute to the oscillatory modes of hl(i) in equation (45), and consequently
they could contribute to the second-order GW memory hl(OQ).
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5.4.  Asymptotic source and GW flux

The source for j,s is the 1/r2 term in 20°R,s, which is computable entirely from the
1/r, term in hgéo]. We write that term compactly as

(1] i
9 1
hlly) :M+O< ) (116)

Ty r2

In this section we develop a useful decomposition of f ([116} into a mass piece plus oscillatory
pieces. We then derive an expression for the coefficient of 1/r? in 262R,s in terms of
those pieces, which will be the starting point for our subsequent derivations.

Equation (116) must match the 1/r term in the multiscale solution h&lﬁ). We see
from equations (106) and (107) that this term can be divided into an oscillatory piece
(m # 0) and a quasistationary monopole (I = 0). More explicitly, we can write

2M](31)(u)5a5 + zgﬂ) (u,n?) N O(lnr)

Ty 72

hl) = (117)

(1)

in (¢,z%) coordinates. Here z 5 1s an oscillatory function made up of m # 0 modes, and

M](gl) represents a contribution to the Bondi mass coming from the particle’s leading-
order orbital energy ms&) as well as the evolving correction dm; to the primary black
hole’s mass [129]:

eME) = ebmy + ma&). (118)

The Kronecker-delta form of the mass term in equation (117) follows from the Lorenz
gauge condition.
Given equations (116) and (117), matching between the near- and far-zone solutions
requires
=2 n®) 4+ 28 (1) 645 + Oe) (119)
af af \™ B af :

The order-e differences arise because the matching condition involves a re-expansion
of h[;/éo]. In the remainder of our calculations, we will work with the leading-order
approximation, discarding the O(¢) remainder.

To evaluate the source for j,z, we further specify z((llg using the Lorenz gauge

condition (91). The gauge condition simplifies due to

Sty ik, 1
\Y% = — o = 120
v r, r, + ’I“f ’ ( )
where a dot indicates differentiation with respect to u,
ko = —0qu = (—1,n) (121)

is the outgoing principal null vector, and there is no contribution from a derivative
acting on the n’ dependence in fgﬁ] because 9;n? o 1/r,. It immediately follows that
the gauge condition imposes

1
(1 .
SOk = §z(l)ka, (122)
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1)

with () = 8z 5- Integrating this with the initial condition zgﬂ)(—oo) = 0 gives us

1
1
2K = §z<1>ka. (123)

In retarded polar coordinates (u,7,,64), we have k* = (0,1,0,0) and k, = (—1,0,0,0).
Equation (123) then implies
AN =20 =0B:0) o (124)

TxTx

The last equality shows that zgg is equal (up to a factor of r?) to the Bondi shear

contained in hm
(1) (1) 20[1 O 125
Zap = %apy = T:Cap + O(e), (125)

where we recall that the angular brackets denote the STF combination of indices with
respect to the unit-sphere metric 245. Note that CE]B accounts for the full oscillatory
part of the shear at linear order in the mass ratio, but it does not include the first-
order memory contribution, which will emerge from a 1/¢ promotion of j,z. We reserve
the symbol CSI); for the complete linear-in-e contribution to the waveform (45). Now
substituting equation (119) into the explicit expression for 26° R, s — equation (6) of [74]
— using equation (123), and simplifying, we find

9
Sap = ~Ikaks + o - (2015200 kakia + 4My £ qkg5, (126)

(1)~pv

which should be compared to (2.10) of [7] in the PN-MPM context. Here, ¢/ = 0* + ntk,
projects orthogonally to the ingoing principal null vector n*, whose Cartesian
components are n# = %( 1, —n'), and we have defined the quantity

1 1
11 52(‘;?2&1[3 - 77050, (127)

Using the coordinate form (124) of the gauge condition, it is straightforward to relate IT
to the angular distribution of GW flux (12) carried by hsg:

d2EGW
dud()y

1. ...
I = 505‘1302}9 — 167 (128)

Kl

Equation (124) also allows us to write the second and third terms in equation (126)
in terms of the Bondi shear and Bondi news, leading to another useful form of
equation (126),
0

Sap = O[IBC 4 5 (cﬁBoﬁg)] kaks + 4r2 MBI CLLOAOE, (129)
where Q4 = r2048,,5(02° /06P) reduces to 62 in retarded polar coordinates (u, 7, 64)
and to r;1Q486,,(0n'/06P) in Cartesian coordinates (¢, z°). Note that the second and
third terms in equation (126) vanish if averaged over ¢, (up to terms that are higher order
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in €, which arise from the u derivative in the second term acting on the {2 dependence of
Zop). Equations (126) and (129) hence split s, into a flux term plus a purely oscillatory
one,

8koks d?ECW

6% Rop[hM, RV] =
/8[ ’ ] r2 dUdQQ Bl

1
+ oscillatory terms + O ( 3) (130)
r

Moreover, this same equality holds for §*G,ps since all three terms in equation (126)
have vanishing trace. The fact that 02Gas[hlt, hlV] = 2kaks f’f;w on average is
T U 2 h[l]

the familiar statement that the averaged °G,z/(87) can be thought of as an effective

stress-energy tensor of the emitted GWs [159]. The oscillatory terms, in particular the
final term in equation (129), give rise to GW tails [7].

5.5.  Puncture fields and memory in the near zone r < M /e

To obtain physical boundary conditions for the near-zone solution, we must re-expand
our far-zone solution ), € (i)’ h[ot;’?] for r < M/e — or equivalently, for e < M/r.

Here we focus on the leading second-order term, hfbo], which suffices to resolve

the infrared divergence in the near zone. More specifically, we focus on the dominant
2,0]

piece of h,;", namely jog = U, Lri2sap(u, n')], which contributes the dominant large-r

behavior in the near zone and resolves the infrared divergence.

We first note that the function s,s(u, n"), as given in equation (126), is constructed
from the coefficient of 1/r, in h[o}éo]

moments F 0[415} ;(u) in equation (102). As explained below that equation, the multipole

, meaning it can be calculated from the multipole

moments inherit a multiscale form through matching to the coefficient of 1/r in the
near-zone solution hfxlﬁ). Hence, we can write

l
Sap(,n') = " sapL(Wi” =Y " st (Qu, €))e M Int (131)

>0 >0 m=—1

up to O(e) corrections. j,s can then be written as

Jap = 0, (17 %505) Z Z O, [ 2sms, (Qu, €))emmer(Ipt] | (132)

>0 m=—1

again up to O(e) corrections. Reference [128] derived near-zone expansions of such
integrals, exploiting methods from reference [77]. Here we will merely quote the results
and discuss the implications.

Since 7’ diagonalizes 0, 1. jap naturally decomposes into the 2 basis,

Jog = Y Japr(u, 1sy €)RF, (133)

1>0
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1

with jagrn® = 0% [r7%sapr”]. Moreover, as shown in reference [128], ;! also

7
preserves the expansion in Fourier modes e="%»_ such that

[e.e]

l
jaﬂ = Z j(%(Q(ua 6)7T*7ni)eiim¢p(m€) = Z Z jZ?BL(Q(Ua 6)77’*)7?&L67im¢p(u’6).

m=—00 >0 m=-I
(134)
with j7 alemor = O, sl anle™ ™00 + Oe).
For oscillatory, m # 0 modes, reference [128] found that the harmonic coefficients

in the near-zone expansion of equation (132) are given by

T2 = st +.0( 1), (135)
where we emphasise the O(1/r) terms contain no Inr. The choice of length scale in the
logarithm is discussed in Appendix A. For simplicity we suppress the ¢ dependence
of Q here and below. Equation (135) agrees with the solution (88) found directly
from the near-zone retarded integral, after converting (88) to T-slicing by removing
the exponential. In other words, matching to a far-zone solution is not strictly needed
for m # 0 modes at first and second order in €; the correct solution is obtained in the
near zone without any additional information from the far zone. However, because of its
irregular, In(r)/r behavior, treating ji; as a puncture is still most practical, subtracting
it from the numerical variable and solving for the residual.

For quasistationary, m = 0 modes, reference [128] derived the following near-zone
expansion of equation (132):

(sasn @) n2r) — 11 = [z Lot ) 0y 10,

—00

(JapL) =

(8aL(2)) .
_ l(lﬁ+ 5 + O(e) if [ > 0,

(136)

where we adopt the () notation for m = 0 modes, as in equation (77). This result can
be compared to equation (5.22) of [77] in the PN-MPM case. Note that in this instance
any choice of length scale in the logarithms cancels between the terms inside and outside
the integral.

Unlike in the oscillatory case, in equation (136) there are no omitted terms of order
¢®/r; omitted terms all come with powers of € and higher, rather than lower, powers
of r. However, the next order in the GSF-MPM expansion, hfg], involves terms of order

In(r,)/r. sourced by EL% [7]. These terms must be included in hfgp in order to ensure

the 1/r terms in h((jb))R represent a regular, outgoing homogeneous solution. However,
we leave the description of hgg] to future work as it does not directly enter into the
calculation of GW memory at the orders in € we consider.

The most important aspect of (jasr) is the presence of a hereditary integral over all

past times. Such nonlocal-in-time behavior could not be predicted within the multiscale
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2) % and influence the

expansion. This term will enter the multiscale solution <h( )> = h,
conservative sector of the 2SF dynamics, in analogy with memory effects that enter the
5PN dynamics [82, 83].

At this order in € the memory contribution is confined to [ = 0 due to a suppression
by € that arises when re-expanding j,s in the near zone [128]. However, the reader
should recall that [ here refers to an expansion of Cartesian components in scalar
spherical harmonics. One can straightforwardly check, using the tensorial structure
(JaprL) < kokp, that the hereditary integral contributes to both | = 0 and | = 2 (m=0)
terms in an expansion in spin-weighted or tensor harmonics. To see this, we recall that
the m = 0 piece of s,p is given by — (II) k,ksz, where II is related to the GW flux by

equation (128). Expanding IT as

=Y ma" (137)

>0

and using equations (2.7) and (2.13) of reference [158], we find

(su) = — Y (1) ", (138a)

(8ta) = Z (ﬁaL () + 51 i 1ﬁL—1 <HaL—l>> , (138b)

. 20 1 .
(Sab) = — Z (nabL () + 2l—+3nL—1(a <Hb)L—1> + 2l—+35aan (L)

I(1-1)
20+ 1)(20—1)

np o <HabL2>) : (138c¢)

Equation (136) then implies that the scalar [ = 0 terms contribute the following to the
near-zone re-expansion of j,g:

(=) = =[], (1392)
1
(Jz=") = Al(TL)] (139b)
2
(Jie=0) = — 5 ko] — 1—5/‘€[<Hz‘j>]a (139c¢)
where “l. = 07 is a reminder that this corresponds to the [ = 0 term in a scalar-

harmonic decomposition of Cartesian components. We have introduced the shorthand

klf] = f(Qu))[In(2r) — 1] — /u dz m

—0o0

In(u — z), (140)

and used Il to denote the [ = 0 term in the expansion (137), observing that IT, = (Ilo).
The Cartesian quantity (II;) in equation (139a) corresponds to an [ = 1, m = 0 even-
parity vector harmonic mode in polar coordinates; see equations (A4b) and (A7) in
reference [160], for example. But note that [ = 1, m = 0 even-parity vector harmonic
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modes vanish for up-down symmetric systems [129], implying (II;) = 0 for the binaries
we consider. On the other hand, the quantity (II;;) corresponds to an [ = 2, m = 0
even-parity vector harmonic mode, which is nonvanishing. This quadrupole mode in the
near-zone metric is the counterpart of the GW memory at future null infinity. While
the GW memory represents re-emission of soft gravitons toward future null infinity, the
memory term in the near zone represents the re-emission back into the binary system.

The physically correct near-zone solution must match the behavior of the re-
expanded far-zone solution. To enforce this boundary condition, we adopt a puncture
scheme, as outlined in reference [130]. We define the puncture field hff’m as the right-
hand side of equation (135) for m # 0 and (136) for m = 0. We then define the residual
field

2)Rm _ 1(2),m (2)yP,m

which we take as our numerical variable. Defining the right-hand side of equation (44b)

as S ((jgm, we move the puncture to the right-hand side to obtain an equation for the
residual field

0),m m 2),m 0),m m1 2),m eff
OGP = ST — 6GS T WP = S (142)

m eff

The effective source SSB) decays sufficiently rapidly to ensure that h((fﬁm’m satisfies
regular, outgoing boundary conditions as r — oo. Solving equation (142) subject
to these boundary conditions then fully determines the physical near-zone solution
hffg) = hfﬂm + hfgp. Reference [130] derives necessary and sufficient conditions on
when punctures must be introduced in order to obtain the physical solution in the near
zone.

By adding a memory integral to the large-r boundary conditions of the near zone,
h((fgp,o will insert a term proportional to that integral in the metric perturbation at the
particle’s location. Since this is an m = 0 mode, it will contribute to the conservative
2SF and therefore to the 2PA phase evolution [74, 128, 129].

We will show in the next section that the logarithmic term in equation (135) does

not contribute to the waveform. By construction, h%n’m then contains the only outgoing
wave content in the near-zone field h(a?ﬂ) This outgoing wave (i.e., the coefficient of 1/r
when r — 00) uniquely determines the outgoing wave content in h[jéo], which comprises
the homogeneous solution 12;5’30] together with any outgoing wave content in j,s; recall
equation (115). Since /%5@0] contains all the unknowns in hf]ﬂ, it follows that h((XZB)R,m fully
fixes the freedom in the far-zone solution hf]ﬂ In the next section, we show that the

1/r term in hfgn’m represents ‘most’ of the second-order contribution to the oscillatory
part of the waveform at future null infinity, but it potentially omits terms arising from
interactions between memory and emitted waves.

5.6. Waveforms and memory in the very far zone r > M /e

The expressions (135) and (136) represent the large-r behavior of the near-zone solution.
However, this is the behavior found by taking the limit ¢ — 0 at fixed r and then taking
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the limit » — oo. This differs significantly from the metric’s genuine large-r behavior
obtained by taking the limit » — oo at fixed ¢; the latter limit, which represents the
behavior in the very far zone r > M/e, is the relevant one for computing asymptotic
quantities such as the waveform. Here we show that in this limit, the field (j,5) —
which is associated with hereditary effects in the near zone — contributes the first-
order GW memory hl%) in the far zone. We also show that ‘most’ of the oscillatory part
of the waveform (45), h?) | can be extracted directly from the near-zone residual field

Ilm>
hg@),R’m, but there is potentially an additional contribution from the interaction between

the memory (j,g) and the oscillatory wave modes hl(j,f We conclude by discussing the
second-order memory hl(g) and its relationship to the third-order PM field h j éo].

The expansion in the very far zone can be obtained using an alternative formula
for the retarded integral [7],

D;l [%S(t — r*)} = —sz/ dx Qi(x)S(t — r.x), (143)
T 1

where @), is a Legendre function of the second kind, with a branch cut on (—o0, 1]. From
this we have

JapL = — /loodz Qu(x)sapr(t — rez). (144)

The large-r expansion is then obtained using the Legendre function’s asymptotic
behavior as & — 07 [7]
x

Qi(l+z)= —%ln (§> — H +O(z ' Inx), (145)

where H; = 22:1 % is the harmonic number. After a change of integration variable to
z = (z — 1)r,, the integral becomes

1 [~ |1
Jopr = — | dz {— In ( © ) + Hl] Sapr(u —2) + O(r;?Inr,), (146)
T« Jo 2 2r,
decaying as In(r,) /7.
First consider this large-r expansion for oscillatory modes. Writing

Sap = 2 ym Smar (Qu))e™ (Wi, we can immediately evaluate the integral (146) using
the expansion (47), which yields

Inr,

-m

jaﬁ =

m ~L
T l;| st (R + O(1/ree), m# 0. (147)
This is identical to the result (135) in the near-zone re-expansion of j,z, which in turn
was identical to the result (88) that was found directly in the near zone. In other words,
the oscillatory part of the solution propagates through the entire far zone r > M

without any change in the leading behavior.tf

n ract, 1or oscilatory modes, one camn derive a unirorm approximation to - T “Sa vall or a
In fact, f illat d deri if imation to O, [r; ?sqs] valid for all
> M:

m In(—2imQr,) +vg — 2H; ,, . _
ol = Z SO smaL (A" + O(r;?Inry,€), m#0, (148)
1>[m|

where g is the Euler gamma. We omit the lengthy derivation of this formula.
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For quasistationary, m = 0 modes, equation (146) instead becomes

(Japr) = % /0 mu% E In (%W) v Hl} (5050(Q)) + O 2 Inr,). (149)

Here we have changed integration variable to Q(u — z), with e/ (Q) the leading term
in Q, as in equation (40b). The quantity u()(Q) is the inverse function of Q(u); i.e.,
it is the solution to du/dQ) = 1/[eF ¥ (Q)] satisfying u()(Q(u)) = u. Unlike m # 0
modes, which have the same radial behavior throughout the far zone, for m = 0 modes
we see starkly different behavior in the different regimes: the near-zone re-expansion of
the retarded integrals went as Inr at large r, while the very-large-r expansion goes as
In(r)/r. More significantly, the integral enhances the perturbation by one order in e,
such that the second-order quantity € (j,,) becomes first order near null infinity. And
unlike in the near zone where the hereditary integrals are suppressed by €, here in the
very far zone they enter at the same order in ¢ for all .

We can now consolidate our findings for the behavior of the metric in
the very far zone. The first-order metric perturbation h[;}g has the form
h[;}ﬁ = fM(u,n?)/r, + O(r;?) given in equation (116). At second order, equation (115)
implies hféo] = Jop + /;:([350] + O(r?Inr,), where l%f;”

as h(% However, j,s also contains outgoing wave content in the omitted, non-

has the same outgoing-wave form

logarithmic O(1/r,) terms in equations (135) and (147). Since we do not include those
terms in our puncture field hfgp, we define the ‘puncture’ part of j,z as the sum of (i)
the m = 0 piece (jnp), and (ii) the m # 0 terms o< In(r,) /7, in equation (147). We also
recall, as mentioned below equation (137), that the subleading term (hfg]) in the PM
expansion includes In(r,)/r, terms when re-expanded in the near zone, and we must
account for it when matching near-zone and far-zone solutions. Combining these three
pieces, we define the total ‘puncture part’ of h([f]ﬁ as

. . Inr, poe. ; i ,
it = (Jop) + — 0 (w ') + 1 (") (150)
where
osc. 1 = 1 m ~ —imaep(u
9o (“7”)=stam(9(u»n% Pol) (151)
m#0

can be read off equation (A.14). The total metric gog + ehLlf]B + GQhS}ﬁ then divides into
a well-behaved outgoing-wave term plus the ‘puncture piece’:
€fans (1) + € foiy (u, 1)

T

Inr,
+ 57 + (9( r; ) +O@B) (152)

*

Gap = éaﬁ +

for some ffg We use ‘O(3)’ to indicate that h[j}ﬁ and higher terms in the GSF-MPM
expansion are neglected. We stress that this does not necessarily correspond to only
omitting O(e®) terms in the very far zone because memory terms are promoted by one
order in e.
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In this section our aim is to understand how the various terms in the metric
contribute to the waveform, but we also want to convey how that waveform can be
obtained from the numerically computed near-zone field variables. We first note that
equation (152) is valid throughout the far zone. If re-expanded in the near zone, it must
match the large-r expansion of the near-zone metric g,z + ehsﬁ) + €2 (haﬁ + h(g)P) The

puncture terms match by construction; hffgp

is defined from the near-zone re-expansion
of j75. Therefore the regular, outgoing field ri Done12€" fo[:g must match the 1/r term
in the large-r expansion of ehsg - thSﬁ)R

Focusing first on the oscillatory terms, we write the matching condition as

efad ™+ fA = 220 + 207+ 0(3), (153)

[0}

where we have introduced

2(2)R(u n')
WG = 28 L O(r 2 1) (154)

Tx

in analogy with the oscillatory part of hsﬁ) discussed in section 5.4. The total oscillatory
part of the metric, expanded in the very far zone, is therefore

1) 2, (2)R P,osc.
€z, + 2,5 +€a, ;)  Inr, Inr,
g — g g + (’)(

) +O(3). (155)

Ty 72

*

This does not yet have the form of a regular outgoing GW due to the presence of
logarithms. However, the logarithms are an artefact of the Lorenz gauge condition.
Transformed to regular, Bondi-Sachs coordinates X = (U, R, ©4) [26], the oscillatory
part of the metric becomes

(1) 2 (2R
€2,45 + €2, 1
gzs;.:%+o(]%2>+0( ). (156)

We detail the coordinate transformation in Appendix A. The angular components
(or equivalently, the TT components) z;% and Zggz are naturally decomposed into
a sum of modes in the form (45), as in zl(éu)gm MmP = 3150 D ko hl(;)(Q)e_zmd’P,zYzm.

Equation (156) hence establishes our first key conclusion:

Up to possibly relevant O(3) contributions, the oscillatory modes of the 1PA
waveform (45) are given directly by the mode amplitudes hﬁi and hl(i)R of the

near-zone field variables h( ) and h(2)R.

We comment on the O(3) terms in equation (156) at the end of this section.

Next, we turn to the quasistationary terms in the metric (152). In this case it
is clear that O(3) memory terms will be promoted to O(e?). We hence restrict our
attention to O(e) terms. Recalling equation (119), we see that (f [1]> only contributes

a mass term, (fgg) = 2M1(31)5a5. Meanwhile, (h[j 1]> falls off at least as fast as In(r,)/r?
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in the very far zone, implying ( j§ﬂ> reduces to (ja.g). Appealing to equation (149), we

<j73 > _ <a£ﬁ(Q)>lnT* + bEB(Q) + O(lnr*) (157)

ap €T r2

write

for some hereditary integrals <a§ﬁ(Q)> and b75(Q). The quasistationary part of
equation (152) is therefore

(158)

] € [2M1(31)5ag + <a§5(ﬂ)> Inr, + bgg(Q)] , In7,

E b
Ty r2

Again this is not yet regular at future null infinity due to the logarithms. However, after
the transformation to Bondi-Sachs coordinates described in Appendix A, we find that
this becomes

e 2 kaks + ()] -
(9ap) = Jap + +0 : (159)

R R

where (cfj}g)mAmA = D >0 hl%)(Q) _2Y)y is the first-order GW memory. This is our
second key conclusion:

The field (jog), which cures the near-zone infrared divergence by introducing
memory effects into the near-zone field hfﬁ), also becomes the first-order GW
memory at future null infinity.

We round out our analysis by assessing the impact of the neglected O(3) terms. By
construction, only the leading term in hfgg can contribute to the waveform. That term
satisfies the next equation in the sequence (101),

Oyhy) = 48 RIL[APO, RO 4 263 R (1101, 101, pIL01], (160)

The cubic source decays as 1/R3, generating a regular outgoing solution. The quadratic
source is difficult to analyze due to the logarithms in h[;éol. However, if we first

transform h[jéo] to the Bondi-Sachs gauge, then the quadratic source falls as 1/R?

just as 52R[O?]ﬁ[hm, hlM]. The ‘oscillation times oscillation’ part of this source creates a
quasistationary term proportional to the GW flux, as in equation (130); this ultimately
generates the second-order GW memory, in perfect analogy with how ((52R£% RN
generates the first-order GW memory through (j.g). However, the ‘oscillation times

L] have a different structure than the

stationary perturbation’ terms in (521%([3[]3 [R120] Al
analogous terms in 52R[C?]6[h[1], hlY] because (h5é0]> includes memory (in addition to a

mass perturbation). In the Bond-Sachs gauge, these terms are

1

[0] , 07 —
462Ra6[<h[20]> 7h[l 0}] — E

A 0sc. 1
<C’é§9> L)% koks + mass term 4 O <ﬁ) . (161)

where (C’Eg) = R2<cf41])9) is the first-order memory’s contribution to the shear. The mass
term in equation (161) has the form of the final term in equation (129), now involving
the second-order mass perturbation.
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A source of the form (161) will give rise to oscillatory terms of order 1/¢ in hfbo},

621%) contributions to the asymptotic metric. These

generating oscillatory ~ % (and ~
terms are straightforwardly calculated following the same steps as we used to solve the
field equation for (j,gs), since the source in equation (161) has the same functional form
as the source for (jag), which read — (IT) k,kg/ R%. Concretely, if we (i) put (h[j’ﬁo}) in the
Bondi-Sachs gauge, (ii) solve equation (160) for the part of hféo] sourced by (161), and
(iii) transform the result to the Bondi-Sachs gauge, then we arrive at the solution (A.25)
with % du’ replaced by 1/(—im§) and with (IT) replaced by (minus) the coefficient of
koks/R? in equation (161). Making those replacements in equation (A.25), we find the

contribution to the emitted GW in Cartesian Bondi-Sachs coordinates (U, X¢) is

1 2Ny _ InR
pROQ — SN S T o () + O 2t 162
ab R i (l + 1)([ +2) ab,ij Q]L 2( )+ R2 ) ( )
where Q = —<C’é§3> .1(4%’086' is expanded as Q@ = >, QLNE, and Ly is the TT

projection operator defined in equation (2). Since @ is oscillatory, it appears that the
O(3) terms that we omitted throughout this section do in fact generically contribute to
the oscillatory part of second-order waveform modes hl(fn) (m # 0). They will also then
modify the O(e*) GW flux, altering the results of reference [87]. This change in the GW
flux will additionally alter the second-order memory modes hl(g).

We will further investigate these terms in a followup work. Here we only comment
that they might be associated with the asymptotic (BMS) frame in GSF calculations.
Over the course of a binary’s evolution — from an initial stationary epoch in the distant
past, through a radiative epoch, and into a final stationary epoch — the accumulated
memory at future null infinity is equivalent to a BMS transformation between asymptotic
frames [27, 161]. Terms in the asymptotic metric sourced by equation (161) represent
the distortion of the oscillatory modes due to their interaction with this slow evolution
of the asymptotic frame. We will refer to them as ‘memory distortion’ terms.

We also observe that these terms, even if they contribute to the O(e?) GW flux,
cannot contribute to the 1PA evolution of the binary, unlike other O(e?) fluxes. This
is clear from the fact that memory terms are not promoted by 1/¢ in the near zone,
as mentioned in section 5.5. Like the apparent disagreement between the first-law
binding energy and the binding energy defined from the Bondi mass [86], this might
point to a breakdown in the relationship between binary quantities and asymptotic
quantities, suggesting further subtlety in the application of balance laws as described
around equation (57).

Finally, we notice that these terms are in close analogy to potential ‘cubic memory’
terms arising from a cubic interaction between three quadrupole moments in the MPM
expansion (namely M;; X My x M,,), which will arise for the first time in the 5PN
flux. Indeed, if terms of the type

Uy (U) ¢ /+Oodp MY (U - p) /+Ood7 [M@M@} (U—p—7)+... (163a)

ij ; ab ; ai?" " 5)b

c10
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or of the type
U G? 5 [T (3) 4 4(3)
0

were to appear, the memory-like integral in 7 would feature a non-oscillatory DC
component and thus acquire a —2.5PN promotion. This DC term would multiply an
oscillatory term, leading to a 2.5PN correction to the radiative moment and the energy
flux. Equation (163b), in particular, has the same form as (162): a memory integral
multiplying a time derivative of a radiative moment — meaning, at leading PN-MPM
order, a quadrupole memory integral multiplying a third time derivative of a source
quadrupole moment. A complete calculation of these terms can be performed using the
same methods as for the tails of memory [14]; such a calculation will hopefully exclude
such terms. This will be the subject of future work.

6. Gravitational-wave memory at first order in the mass ratio for quasicircular
inspirals into a Kerr black hole

We now present results for GSF calculations made at first order in the mass ratio,
along with details of the computational methods used. In this section we focus on
quasicircular inspirals into a Kerr black hole. In section 6.1 we compute a double PN-
GSF series expansion for the memory through 5PN order. We find in the non-spinning
case that these results agree with the 3.5PN results from section 3.3, and for the spinning
case agreement is found with the 3PN results in the literature [61]. In section 6.2, we
numerically compute the memory using the Teukolsky formalism. We use these results
to further validate our PN-GSF series, finding agreement between the numerical and
analytic results — see figure 3.

6.1. Post-Newtonian calculation at first order in the mass ratio

To analytically calculate the GW memory at leading order in the mass-ratio using our
equation (69), we solve the Teukolsky equation with the additional assumption that the
small body is on a PN-like orbit. Generating PN solutions to the Teukolsky equation
has been well described in the literature; see e.g. [162-166]. As such we will provide
only a brief overview.

Exact homogeneous solutions for the radial Teukolsky equation were given by Mano,
Suzuki and Takasugi (MST) [167-169] in terms of an infinite sum of hypergeometric
functions. In the PN regime, the particle’s orbital radius is large, .e., 7, > M, and
likewise w = mf) ~ \/W;?) . Introducing the order counting parameter n, and defining
the variables 7, = r,n? and @ = wn~?, one finds that the PN solutions are given by
expanding the MST solutions for small 7 and fixed barred variables. In this way, every
second power of 7 is a full PN order. Our code to generate these expansions and those
for the asymptotic amplitudes is publicly available [170].
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The asymptotic amplitudes (in the spin-weighted spheroidal basis) exhibit the

following PN scalings as a function of their mode number:

2y L6

. (yn*) 2
=2 mw 47
(yn*)=

if [ +m is even

if [ 4+ m is odd

(164)

where y = (m,9)%3. From this scaling it is a straightforward computation to see which

modes, and to what PN order, are required to determine a mode of the memory to a

given PN order — see figure 1 for details.
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Figure 1. The PN order to which each _QZETSW must be calculated for the memory
Uyp to be accurate to 5PN for [ € {2,4,6,8} read left to right, top to bottom. On
the plots OPN refers to the order at which Uy appears. The spheroidal ¢-number is

plotted on the horizontal axis. The (red) dot represents the order at which _QZUp

Imw

first appears. The (black) dashed horizontal line represents the 5PN cutoff. We can
read off how many orders are needed by counting the difference between the cutoff and
the order at which a mode appears. For example, to calculate Ugg to 5PN the ¢ = 9
amplitude should include 4PN orders beyond its own leading order. Note that due to
the spheroidal-spherical coupling, equation (66), that we are forced to include higher
¢ modes in our calculation than Favata [11].

We compute the GW memory for [ € {2,4,6,8,10,12,14} for a particle on a
circular orbit to all orders in the Kerr spin parameter, each computed with 5PN

accuracy relative to the leading order of the mode-summed memory, which is set by
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the dominant contributions of [ = 2 and [ = 4. In addition to the 5PN calculation,
we also compute the [ € {6,8} modes to 5PN order relative to their respective leading
order contributions (i.e. to 6PN and 7PN overall). While formally, upon computing the
total mode-summed memory, the higher PN orders for [ € {6,8} contribute only as
partial contributions beyond 5PN, they are useful to have as more stringent checks on
the numerically computed modes of the memory in the next subsection.

To present our results we define the adimensionalised spin as a = a/m;. We first
give the series for the news for the (I,m) = (2,0) mode:

“ (1. mem 256 1219 505a 63a> 793
u2((1)7 ):_ 1y5{1__y+(4ﬂ___a)y3/2+( a . )yQ

7 V15 288 192 32 1782
(_257& - 24357r) e (_103&2 ~ 339ma  8561og(y)
144 144 192 32 105
1672 1712y, 174213049439  3424log(2)\
3105 1816214400 105 )y
) (_241&3 |12t 111s4ta 331997?) ”
96 16 31104 8448
31a' 1183692 57ma  1789615log(y) 48677
( 32 14256 8 49896 216
1780615y 4080360541183 1789050710g(2)) )
24948 14384413048 124740
. <_3191a3 | 565ma | 153083alog(y)  20417%a  153083ysa 15694804039
162 288 5040 144 2520 61916400
308351alog(2) 3424 6848m | 7790099187109 13696\ o
w0 105" el — g 19372953600 105 " 08 )) Y
331a"  4977@® 1819, 857262 1810ypa2 6942066096132
( o6~ a8 1z’ Wt 5~ T 55 ioseas2n
TUL g o) 2932TInG | 3131532667 log(y) _ 1076725m° | 3131532667
120 19008 1284323040 85536 642161520
_ 1328426420865600503 _ 33241880710g(3) 4284517401110g(2)) 4 0! /2)}‘
3033958530002400 14094080 642161520
(165)

Following equation (50), we integrate the news along the inspiral to compute the
memory. In practice we evaluate the following integral:

Yy Z/‘{(L mem) (y/)
U™ (y) = / 0 _sdy 166
o () 7 B (166)
where d
- ! y / /
() =32 W) (=F™N)) - (167)

In this case F'N are PN-GSF series for the fluxes [171]. The explicit expressions we
used are available in a digital format from the PostNewtonianSelfForce package [172]
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of the Black Hole Pertubation Toolkit. We convert from Lll(omem) to Hl%nem) using
equations (18) and (26) to get our final result for the (I, m) = (2,0) mode:

mem 5 4075 1303a 33a* 151877213
5 e () (25 - )

B 146 10327 480 32 67060224
(3&3 4936811a 253%) 52 4 ( 29107a*  23ma 439771 1103307) 3
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with 1) being the digamma function, and g being Euler’s constant. We give PN-
GSF series for the [ € {4,6,8,10,12,14} modes in appendix Appendix B. The series
expressions above are also available in a digital format in the PostNewtonianSelfForce
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package [172] of the Black Hole Perturbation Toolkit.

In order to compare the series above to PN results, we note that the PN-GSF inverse
separation is linked to the PN inverse separation (25) wvia the relation y = z 4+ O(e),
whereas the ADM mass (27) reads M = my + O(e) in the EMRI limit. With these
relations, we find that, through 3.5PN, the non-spinning terms in the above series agree
with the results of section 3.3. Similarly, the spinning terms are found to agree through
2PN with the results of Ref. [60] and through 3PN with the results of Ref. [61]. We
will further test our PN series against the numerical GSF results presented in the next
section.

6.2. Numerical calculation in Kerr spacetime

In order to numerically compute the memory using equation (69), we need to
perform calculations within the Teukolsky formalism [143]. We do this using tools
provided by the Black Hole Perturbation Toolkit [173]. First, we compute the
asymptotic amplitudes _Qngl’w of the spheroidal harmonic modes of the perturbation
using the GremlinEQ [174] and the Teukolsky [175] packages. For all orbits,
we compute spheroidal harmonics modes up to ¢ = 32. We then compute the

spherical harmonic amplitudes _,Z l%)w

using equation (66). The spheroidal-to-spherical
expansion coefficients bj that appear in equation (66) are computed using the
SpinWeightedSpheroidalHarmonics [176] package. Formally, we must sum over
infinitely many spheroidal harmonic modes, but, since the mode-sum converges
exponentially with ¢, in practice we find that computing them up to f.x = 32 is
sufficient for this work. As an estimate of the error in our result from truncating the
spheroidal harmonic mode sum, we compute our results with a lower ., < 32 and
define the relative error as
,(mem) _ j,(mem)

1 ‘ZmaXZZ runc “emax:32
Ahy = |- h(mtem) o : (169)
10 ZInax:32

T=TI1SCO

Details of the convergence rate with spheroidal harmonic /-modes are shown in figure 2.
Due to the coupling between the spheroidal and spherical harmonic modes, the accuracy
of our final result varies depending on the spin of the black hole. The rate of convergence
is more rapid for larger orbital radii, so we present results at the ISCO, which is the
smallest orbital radius during the inspiral. For a = 0, we find that truncating the sum
over modes in equation (69) at ¢ = 32 gives an estimated relative error of ~ 1075
in fyo. Similarly, for @ = 0.9m,, we find that truncating the spheroidal harmonic modes
at £ = 32 gives an estimated relative error of ~ 1078.

In order to make detailed comparisons between our numerical calculations and the
PN results of section 6.1, we will consider Al™™ rather than ™™™ | as this avoids having
to align the waveforms at a given frequency. In the terminology of the BMS framework,
we are effectively making comparisons of (a scaled version of) the Bondi news rather
than the shear. In figure 3, we present our results for the dominant hao mode, scaled
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Figure 2. The convergence of hl((r)n em) upon truncating the sum over spheroidal

harmonic f-modes at fiunc. The relative error is computed with respect to the sum
with {ax = 32 for an orbit at the ISCO. The left plot shows the convergence in the
Schwarzschild case (¢ = 0) and the right plot shows the Kerr case with a = 0.9m;.
On both plots the convergence for [ = 2 is shown by (blue) circles, [ = 4 by (yellow)
squares, | = 6 by (green) diamonds, [ = 8 by (orange) triangles, and [ = 10 by (purple)
upside-down triangles. The mode-sum converges more rapidly for larger orbital radii,

and thus the figures above show the convergence at the most computationally intensive
possible point of each inspiral. Note that, in the Kerr plot, the rapid convergence of
relative error after £y une =~ 27 is due to the spheroidal-to-spherical harmonic expansion

coupling to spheroidal harmonic modes with ¢ > 32, which we have not computed.

by the leading PN term. The difference between our numerical data and the leading

PN term is consistent with the 1PN term, and repeatedly subtracting PN orders shows

consistency through all available PN orders. The difference between our numerical data,

and the full 5PN result shows a residual which scales as 3%, as expected. In agreement

with Favata [11], we find that the odd-l modes (corresponding to the odd-parity piece

of the Bondi news) are zero to the required PN order and within numerical precision.

In order to compute the accumulation of memory, we integrate hy over an adiabatic

quasicircular inspiral. We do this by integrating equation (50) and using equation (167)
to obtain g, in which we replace FF'N by a numerical flux calculated from the Teukolsky

formalism. The flux we used was precomputed by Taracchini et al. [177] and is available
through the Black Hole Perturbation Toolkit [173]. As we only have the numerical
flux tabulated over a finite range of orbital radii, we truncate the integral in equation (50)

by introducing a finite lower bound, and then estimate the contribution from the rest of

the integral using the PN expressions in section (6.1). The total accumulated memory

is thus given by

1, mem
iy ™"

() = AL ™mFN () + /

Y
10

Ymatch

; (17

Up(y')

mem) ;
Day, )

where Ymaten 18 the (inverse) radius at which the PN and numerical results are matched.

In practice, we find that choosing 100 < 1/ymaten < 200 is sufficient to ensure a relative

accuracy in the memory of ~ 1075 The comparison of the numerically computed

memory with the PN-GSF results are presented in the top row of figure 4. For inspirals
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Figure 3. The (Newtonian normalised) I = 2,m = 0 Bondi news computed from
perturbation theory as compared to the 5PN series at leading order in the mass ratio.
The top panel shows the comparison for a Schwarzschild black hole (a = 0), and the
bottom panels shows the comparison for a Kerr black hole with spin a = 0.9m;. In
both panels the (dark blue) solid dots show the numerical calculation of A2, while
the solid (dark blue) line shows the PN prediction. To get the (yellow) solid squares
and (yellow) dashed line, we subtract the leading PN term from both the numerical
data and the PN series. We then subtract the next-to-leading term to get the green
line, and so on. The (light blue) open squares show the numerical data minus the
entire 5PN series. These data points lie close to the (light blue) dotted y°-5 reference
curve, which shows that the residual has the expected PN scaling. The (light gray)
dot-dashed vertical line marks the location of the ISCO.
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Figure 4. (Top row) The (Newtonian normalised) memory accumulated over an
inspiral, as measured by an observer in the equatorial plane of the primary black hole
(i.e., ® = 7/2). The (black) solid curve shows the results of the numerical calculation
using equation (170). The dotted and dashed curves show the results of the PN-
GSF calculation given in section (6.1). In both plots, the vertical dot-dashed line
shows the Schwarzschild ISCO, i.e., y = 1/6. The top left plot shows the comparison
for a Schwarzschild primary. Here we see that the 5PN result well approximates the
numerical result all the way down to the ISCO. The top right plot shows the result for a
Kerr primary with a = 0.9m;. In the strong-field regime past the Schwarzschild ISCO,
the PN series converges poorly towards the numerical result. (Bottom row) Memory
accumulated over an inspiral from infinity to the ISCO, measured as a function of polar
position of the observer, ©. The (black) solid curve shows the numerical result. This
figure is similar to figure 1 of reference [11].

into a Schwarzschild black hole, the 5PN result approximates well the numerical result
even close to the ISCO. For prograde orbits around Kerr black holes, the ISCO moves
inward, and we see that the PN expansion is less accurate in the strong-field regime,
close to the ISCO.

Finally, we present the dependence of the total accumulated memory at the ISCO
on the inclination angle of the binary, ©, in the bottom row of figure 4. The memory
signal is maximal for © = 7/2 and tends to zero for © € {0,7}. This dependence
on the inclination angle is opposite to the dominant (2,2) mode, and thus including
memory in GW models may help to break the degeneracy between luminosity distance
and inclination angle [52-54].
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7. Gravitational-wave memory through second order in the mass ratio for
quasicircular inspirals into a Schwarzschild black hole

We now present results for the GW memory through second-order in the mass ratio.
Unlike the previous section, here we focus on inspirals into a non-rotating Schwarzschild
black hole. We first calculate the news before integrating it along a 1PA inspiral to
compute the memory. We compare our results to numerical relativity simulations and
find good agreement for mass ratios as small as ¢ ~ 10. We also show that the residual
between our second-order results and NR scales in the expected way with the mass
ratio. Finally, we compare with the PN results from section 3.3. Here we do not find
agreement on a mode-by-mode basis and we discuss why this might be.

As reviewed in section 4, the calculation of memory at second order in the mass
ratio builds upon the framework for computing second-order perturbations that has been
developed over the last decade [86-88, 101, 129, 130, 136, 137, 150, 178]. Specifically, we
need the second-order metric amplitudes [87] and the parametric derivative (with respect
to Q) of the first-order metric perturbation [130, 150], from which the second-order
effective Teukolsky amplitudes in equation (73) can be computed. With this in hand,
the second-order contribution to the news, h§§ ’mem), can be computed via equation (69)
with the replacement given in equation (76).

Our computation of waveform amplitudes utilizes the results of the GSF-MPM far-
zone formalism in section 5 and Appendix A. However, we omit the possible ‘memory
distortion’ terms (162) in the second-order, oscillatory (m # 0) mode amplitudes. This
could limit the accuracy of our second-order memory results and of our frequency
evolution that we use to compute the memory hl(g mem) grom the news hl(g mem) e
return to these issues below.

Previous works only computed the second-order metric perturbation for spherical
harmonic modes up to [ = 5 [87, 179]. This proved to be insufficient input for
equation (10), leading to a large truncation error especially for memory modes with
[ > 4. To solve this, we computed the second-order metric amplitudes for all modes
with [ < 10. This improved our results for the [ € {2, 4} memory modes, but was
still insufficient for [ > 6 (and thus we do not show any results for these modes). In
order to compute the memory along the inspiral, we used the 1PA inspiral as outlined
in [88]. Finally, in order to improve the comparison with comparable-mass binaries, we
re-expand our results in terms of the symmetric mass ratio and the total mass using
equations (31) — (33) of reference [179].

We first compare our second-order memory results with those from numerical
relativity. Until recently it was difficult to extract the m = 0 modes from NR
simulations, as extrapolation techniques were not able to resolve modes of the strain
necessary to calculate the modes of the memory [68]. In recent years these issues
were resolved by using Cauchy-Characteristic Extraction (CCE) where the metric
perturbation at the edge of the computational domain is numerically propagated
outward to null infinity [68]. NR results including memory have been hybridized with
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PN results and interpolated across the quasicircular parameter space for ¢ < 8 in the
NRHybSur3dq8_CCE surrogate model. Unfortunately, we find the output of this surrogate
model to be too noisy to facilitate an accuracy comparison with our results. Instead, we
turn to the BMS balance laws to compute the memory from the radiative modes of the
NR simulations [66]. Here, we make our comparisons with the “electric component” of
the memory, AJ®) which generally will contain information on BMS charges and the
memory [68, 180]. The SXS waveforms we want to extract the memory from involve
negligible super-translations and super-Lorenz translations [68], meaning the change in
the BMS charge in AJ®) is dominated by the null memory which we have computed
with our GSF methods. To explicitly extract the electric memory from SXS waveforms,
we used the waveforms.memory.J E function [66] in the sxs Python package.

The results of the comparison with NR for the [ € {2,4} modes and ¢ € {10, 1} are
shown in figure 5. For ¢ = 10, we find that the second-order result agrees remarkably
well with NR. For ¢ = 1, the agreement is still surprisingly good for the [ = 2 mode,
although the [ = 4 mode does not agree as well. It is interesting to note that, for [ > 2,
it was possible to resum the flux to improve the agreement with NR [87]. The same
resummation does not work with the memory modes, but it may be possible to resum
the amplitude data before the memory is computed. We leave this for future work. In
figure 5, we also plot the PN results for comparison, including our new 3.5PN results
from section 3.3. In the strong-field, we find that the 3.5PN results agree better with
the NR results than the 3PN results for the [ = 2 and ¢ € {1, 10} cases. For [ = 4 and

= 1 the 3.5PN result again performs the best of the PN results, but for [ =4, ¢ = 10
it performs worse than 3PN. This is consistent with the well-known alternating nature
of the PN series; see, e.g., figure 1 of [181].

In order to check that our results capture the GW memory through second order
in the mass ratio, we can compare them with NR simulations for different mass ratios
at a fixed frequency. The time derivative of the memory is compared for the [ € {2,4}
modes in figure 6. The full memory scales as v? and, after subtracting the first-order
self-force (1SF) result, we find that the residual follows closely the 2SF result, which
scales as v®. After further subtracting the second-order result, we find that the residual

scales as v*

. This is most clearly seen for the [ = 4 mode. In the [ = 2 mode, there
is significant noise in the residual which appears to come from small oscillations in the
NR waveforms (likely from residual eccentricity and/or centre-of-mass motion in the NR
simulation [182]). This comparison strongly suggests that there is either no contribution
from the omitted ‘memory distortion’ terms or that the numerical magnitude of those
terms is small.

Next, we compare the NR waveform (including the memory) with the GSF
waveform, with and without memory. The radiative modes, the frequency and the phase
evolution of the GSF waveform are computed as outlined in reference [87]. The result of
the comparison for the I = 2, m € {0,2} modes for a ¢ = 10 binary are shown in figure 7.
Both the NR and GSF waveforms are given zero memory contributions at the reference

time in the NR simulation. Without including the (2,0) mode, the amplitude of the
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Figure 5. Comparisons of iy between NR, PN and GSF for ¢ = 10 (top row) and
g = 1 (bottom row). In each plot, the two solid grey lines show the NR results
computed by extrapolating the waveform to null infinity with third- and fourth-order
polynomials. The shaded grey area between them thus gives an estimate of the error
in the NR result. The (blue) circles and (red) squares show our first- and second-order
perturbation theory results, respectively. The second-order results agree remarkably
well with NR in all cases except ¢ = 1,1 = 4. The dashed lines represent PN results up
to 3.5PN. The (grey) dot-dashed vertical lines mark the location of the ISCO, while
the (grey) dashed vertical lines show where the NR simulations start. The NR data is
from simulation SXS:BBH:1107 (¢ = 10) and SXS:BBH:1132 (¢ = 1).

GSF waveform does not closely follow the NR waveform as the memory accumulates.
After including the (2,0) mode, we find that the amplitude of the waveforms are closely
matched from the reference time to the end of the GSF waveform (where the multiscale
expansion breaks down due to the onset of the transition to plunge). At ¢ = 10, the
first-order contribution to hSy™™ dominates the GSF result, with the second-order
amplitudes having an almost negligible contribution. We find that this remains true
even for equal mass binaries. We also consider a model that hybridizes the GSF phasing
with the PN amplitudes, where the frequency evolution is computed using the GSF
equation (40b), including the 1PA forcing function (), and the memory amplitude at
each frequency is computed using our 3.5PN result from equation (39a). We find this
also agrees well with the NR waveform. These results suggest that we only incur small
errors, if any, by using the first-law binding energy in the flux-balance law (57) and in
our omission of possible memory distortion contributions to the asymptotic energy flux.
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Figure 6. Behaviour of the Bondi news, hl%n °™) as a function of the symmetric mass
ratio, v, for x = 2/19. The (blue) circles show the result from the NR simulation,
which closely follows the full GSF result (blue, solid curve) which scales as v2. After

subtracting the first-order result, the residual (orange, squares) follows the 2SF result,
which scales as v3. Finally, after further subtracting the second-order result, the

residual (green, diamonds) scales as v*, as expected. For the [ = 2 mode (left panel)
there is significant noise in the residual, which appears to come from small oscillations
in the NR waveforms. The SXS simulations used to make this figure are listed in table
Cl1.

Finally, we compare our second-order results to the second-order contribution to
the PN series from section 3.3. The results of this comparison are presented in figure 8.
For the [ = 2 and [ = 4 modes, we find agreement with PN up to 2PN order but beyond
this there is no clear agreement with either the 3PN terms or our new 3.5PN terms.
This lack of agreement for the individual modes is reminiscent of the lack of agreement
between the modes of the second order and 4.5PN fluxes, as observed in reference [181].
In that work, it was found that comparing the total flux did bring agreement between
the PN and GSF results. The agreement for the total flux but not the individual modes
suggests that the GSF and PN waveforms are computed in different frames. In this
work we have only computed the [ = 2 and [ = 4 second-order GSF memory modes
(the [ > 6 results contain significant numerical error) and so we cannot perform the
same check. Resolving this lack of agreement between the GSF and PN results for the
modes of the second-order memory will likely require a combination of (i) understanding
the frame the GSF calculation is in, (ii) numerical results for the metric amplitudes for
higher (I,m) modes, and (iii) more accurate GSF results at large orbital radii. As each
of these is a significant undertaking, we leave them for future work.

8. Conclusions

In this work, we have computed the displacement memory contribution to GWs from
quasicircular compact binaries with a variety of different methods. We have also
developed the necessary theoretical framework for memory computations in GSF theory,
which has facilitated our calculations and revealed the emergence of memory effects in
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Figure 7. Comparison of an NR waveform and the 1PA GSF waveform for a binary
with ¢ = 10. In each case, the memory starts to accumulate at the relaxation time
t/M =~ 320, where the waveforms are also aligned. The top panel shows the NR
waveform (in black) including both the (2,2) and (2,0) modes. The 1PA waveform is
shown without the contribution from the (2,0) mode, and we see that the amplitudes
do not match the NR waveform as the memory accumulates. The middle panels shows
the same NR waveform, but now the 1PA waveform includes both the (2,2) and (2,0)
modes, which brings the amplitudes into close alignment. The bottom panel shows
just the (2,0) mode for both the NR and 1PA waveforms, which are seen to be in close
agreement until near the end of the 1PA waveform, where the transition to plunge
sets in and the multiscale expansion breaks down. The (blue) dotted curve shows the
contribution from just the second-order amplitudes, which is almost negligible. The
(red) dot-dashed curve shows the result from a hybrid model that combines the 1PA
phase with the 3.5PN amplitudes. This hybrid model also compares well with the NR
simulation. The NR waveform used in this figure is SXS:BBH:1107 [183].

binary dynamics and waveforms at second order in the mass ratio.

Our explicit computations of GW memory began by extending the 3PN results of
Favata [11] to 3.5PN order for non-spinning black holes on circular orbits. We then
used GSF theory to compute GW memory contributions at first and second order in
the mass ratio. The first-order memory was computed for inspirals into a spinning
black hole both numerically and via a 5PN-1SF expansion. The second-order results
are numerical and restricted to the non-spinning case. We find that a 1PA waveform
model including memory corrections agrees well with NR simulations with mass ratios as
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Figure 8. The second-order part of the Bondi news computed from Schwarzschild

perturbation theory as compared to the PN computation, all normalised by the leading
mem

(1SF) PN term. The blue points show the numerical calculation of hlo , while the
(blue) circles and solid line shows the PN prediction. To get the (yellow) points and
dashed line we subtract the leading PN term from the numerical data and the PN
series. We then subtract the next-to-leading term to get the (green) diamonds and
dashed line. The (orange) triangles and dashed line follow. The (purple) upside-
down triangles show the numerical data minus the entire PN series. Since we have
no PN expression to compare at this order, we plot this data with a (purple) dotted
y* reference line, showing that our data has approximately the expected subleading
behaviour.

small as ¢ = 10. In particular, we observe that including only the first-order memory is
sufficient to closely match the NR results. Similarly, a hybrid model where the waveform
phase is computed from the 1PA GSF model but the memory amplitude is computed
via PN is also in close agreement with NR.

Our 2SF calculations (and all previous ones) rely on a framework of matched
asymptotic expansions, in which we match a near-zone multiscale expansion to a
far-zone post-Minkowskian expansion. Here we laid out that formalism for the first
time, highlighting its essential role in introducing memory effects into GSF theory.
Our analysis demonstrated how first-order GW memory is associated with nonlocal-
in-time effects in the second-order near-zone binary dynamics. It also revealed
that potential additional ‘memory distortion’ effects might arise in the second-order
waveform, potentially contributing to both the oscillatory and memory pieces of the
waveform at second order in the mass ratio. While our results for the first-order
GW memory are complete, our numerical results at second order might be incomplete
through omission of these effects. Our comparisons with NR suggest that the omitted
effects are numerically small if they are present, but they bear further investigation.
Moreover, we argued that analogous effects with the PN-MPM framework, which could
arise from the ‘cubic memory’ entering formally at 5PN, but in practice contributing to
the 2.5PN flux, should in fact identically vanish.

There are a number of ways this work could be extended. In the PN-MPM
context, once the missing 4PN waveform amplitudes listed at the end of section 3.3
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are known, the memory can be computed through 4PN order for non-spinning black
holes on quasicircular orbits. A natural extension would be including eccentricity and
spin when these are available. Moreover, a full investigation of the ‘cubic memory’,
which arises from an interaction between three quadrupole moments, appears to be in
order to exclude potential ‘memory distortion’ terms from the PN-MPM waveform.

In the GSF context, at first order in the mass ratio there are a variety natural of
extensions. These include:

o Completing the model with the transition and plunge. Recent work has extended
the multiscale expansion to the transition [184] and plunge regime [185, 186]. The
metric amplitudes from these calculations could be used to complete inspiral models
developed in this work to include the merger and ringdown phases of the waveform.

e Fatending the PN-GSF expansion beyond 5PN order. As we see from figure 4, 5PN
results already capture the numerical result well in the non-spinning case, but for
the spinning case, higher-order PN results would be useful in the strong field. These
results could be combined with a resummation to capture the behaviour near the
ISCO [134] to produce a first-order memory amplitude model that is accurate for
spinning binaries. As we saw with the comparisons with NR — see figure 7 — a
model including only first-order memory contributions is likely to be sufficient for
almost all mass ratios.

o Fxploring near-extremal spins. This work computes the memory for black holes with
spins up to a = 0.9m;. For near-extremal spins (a 2 0.999m;) new symmetries
appear in the near-horizon regime which allow for new analytic treatments. These
were previously exploited to compute the flux and the waveform in this near-
extremal, near-horizon regime [187, 188], and these results could be extended to
compute the memory contribution here as well. Memory in this regime for an
extremal Kerr-Newman black hole was recently explored in reference [36].

o Fxtending our results beyond quasicircular inspirals. This extension is theoretically
straightforward for Ulm, where one would extend the Zgrzw coefficients of
equation (61) to to Z}an, where the change from ¢mw indices to fmnk corresponds
to the change w = mQy, — w = My + nQ, + kQy, where Q, and Qy are the
frequencies of the radial and azimuthal motion respectively. Many codes now
exist that can compute these Zé}n)nk coefficients [189-191], including the open-
source Teukolsky package from the Black Hole Perturbation Toolkit [175]. In
practice, the sum over n and k for each (I, m) mode will involve computing hundreds
to thousands of modes, which will be computationally burdensome. Moreover,
the time integration of Ulm requires computing the inspiral, which in practice
necessitates an interpolated model of the GW flux across the parameter space.
Currently, such an interpolated flux model is readily available for eccentric orbits
into a non-rotating black hole in the FastEMRIWaveforms code [192]. The PN-GSF
results could also be extended to more generic inspirals using the results of [193—-195]
for eccentric orbits, or in [196] for generic cases. For eccentric orbits the numerical
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and PN-GSF results could be compared to PN results for eccentric orbits [12, 72].

At second order in GSF theory, there are several obvious next steps. One step
will be to establish whether the ‘memory distortion’ terms highlighted here modify the
waveform and GW flux at second order. Given that these possible corrections cannot
enter the local 1PA binary dynamics, as discussed in section 5.6, another step will be
to further study the validity of the balance law (57) and of the first-law binding energy
at 1PA order. A third step will be to calculate the memory contribution to the second-
order binary dynamics (which affects the 2PA orbital evolution) and see if it can shed
light on discrepancies in the 5PN dynamics, which arise precisely at second order in the
mass ratio [82, 83]. As discussed in reference [83], disagreements at 5PN might be due to
different choices of BMS frame, and analysis of near- and far-zone memory effects might
also illuminate the little-understood issue of frame choice in 2SF calculations [181].

Once second-order calculations become available for spinning black holes and/or
eccentric and precessing orbits, these can also be used to calculate the memory using
the framework described in this paper. In advance of those calculations, the results of
this paper can be used as a check on the source for the second-order field equations. As
pointed out in section 5.4, the asymptotic behaviour of the second-order Ricci tensor
at null infinity can be related to the first-order memory. Thus, the results for memory
from circular orbits around a Kerr black hole presented in this paper can be used as a
check on a future source for the second-order field equations in the Kerr spacetime.

Finally, other memory effects could prove to be interesting, for example, centre-
of-mass memory or spin memory [15, 66] (Table I of [68] provides a nice breakdown
of the different types of memory). These effects are subdominant compared to the
displacement memory and are likely to be challenging to detect even with third-
generation detectors [75, 197].
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Appendix A. Transformation to a Bondi-Sachs gauge

To characterize the contributions to the waveform in section (5.6), we transform the
metric (152) to a Bondi-Sachs coordinate system X< = (U, R, ©4). This eliminates all
the logarithmic contributions to the very-far-zone metric, and it isolates the waveform
content in the Bondi shear C'45. In this appendix we provide the transformation to a
Bondi-Sachs gauge.

The Bondi-Sachs gauge conditions read

grr = gra =0 and Q*Pgup = Q"5 = 2R%. (A1)

These conditions ensure that surfaces of constant U are outgoing null cones of the
full spacetime, curves of constant (U, ©4) are outgoing null rays parameterized by R,
and surfaces of constant (U, R) have the surface element R%d{); (and hence surface
area 4w R?). Completing the analysis in section (5.6) will only require imposing these
conditions at order 1/R. Like in section (5.6), we limit our attention to O(e) for
quasistationary terms and to O(€?) for oscillatory terms.

The transformation will combine an O(e’) transformation of the background
coordinates along with O(€") gauge transformations. Under a perturbative gauge
transformation generated by a vector e£*, the metric gog = Gag+ -0 e”h[gg transforms
to [84, 201]

. 1 .
where £ denotes a Lie derivative. This corresponds to a coordinate transformation
1
=% —e€” + 56255(‘9@50‘ + O(3). (A.3)

Appendix A.1. Background coordinates

We first note that the background metric g, itself contains In(r,)/r, terms due to our
use of r, as a radial coordinate. These logarithms appear in the angular components



Gravitational memory: new results from post-Newtonian and self-force theory 68

of the Schwarzschild metric: r2(d€s)? = r2[1 + In(r,)/r.|(d€2)?. To eliminate them, we
revert to ordinary retarded background coordinates (u,z’), with 2* = rn’. This puts
the background metric in the form

. 2m
Gup = Nag + le;ak;g +O(1/r?), (A.4)
with the Minkowski metric components
Nuuw = —1, Nui = —Ny, and 77ij = 6ij — nmj. (A5)

)
2M,
E—d,s becomes

Tx

In the coordinates (u,z'), the first-order mass perturbation

(1)
2M
L—pag, where p,p has components

Puuw = 1, Pui = Ny, and p;; = ;5 + niny;. (A.6)

Otherwise, the only effect of transforming our expressions to (u,z") coordinates is that
we simply replace r, with r; this replacement only changes subleading terms of order
In(r)/r?. The total metric, given by the sum of equations (155) and (158), then reads

. 1, 2 (2R
iikaks + 2e M pa €2,5 T €2, .
gaﬁ :naﬁ—i— ! g , B p p + A . p +€2-]ZZ8+7 (A?)

where the ellipses indicate the following omitted terms: O(3) terms (meaning hg’]ﬁ and
beyond), O(e?) quasistationary terms, O(e?) oscillatory terms, and O(r~2Inr) terms.
We consistently use ellipses in this way below.

Appendix A.2.  Transformation of the mass perturbation

(1)
2eMp
r

We next put the mass perturbation Pap into the Bondi-Sachs gauge. An

appropriate generator is given by
¢ =2MP In(r/P) and & =—M{"n'. (A.8)

Here we have introduced an arbitrary length scale P to adimensionalize the argument
of the logarithm. We will return to this scale below.
Applying equation (A.2), we arrive at

1) 2, (2R w (1)
2M, €z,4 + €2, . 4z,
ggﬁ:na,@+ Bkakﬁ+u+€2 <]§6+ 6) +7 (Ag)

r r r
where we have appealed to equation (A.4) and identified the total Bondi mass
Mg = 1y + MY + O(). (A.10)

The manifestly nonlinear terms in equation (A.2) have all cancelled, up to O(e3,1/r?)
remainders, except the term oc £“Z,.
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Appendix A.3.  Transformation of oscillatory terms

Turning to the oscillatory terms in the metric, we first note that for oscillatory terms of
order 1/r, the Lorenz gauge condition already enforces the Bondi-Sachs gauge condition;
compare equation (124) to equation (A.1). Hence, in equation (A.9), the quantities

2 op and za 6 ® do not need to be transformed, leaving only jP 225 %fuz((llﬁ) to transform,

-P,osc.

where j, ;" is the oscillatory part of jaﬁ.

Transforrning these terms into the Bondi-Sachs gauge requires knowledge of the

P0%¢- We could start with the expression ]P 08¢ — 1 111(7«)@(7;&050-’

tensorlal structure of j, 3
with aaﬁ 2% given by equatlon (151), after putting sag in the form ), sas nk, starting
from equation (126). Alternatively, we can obtain j P:os¢ 1yv noting the tensorial structure
of the source in equation (129) and seeking a solution to

OSC k k)ﬂ -+ SABQ Qﬁ
2

0o [ Pose 4 O(r 21117“)] — (A.11)

r

with an ansatz

Posc. In(r/P
Joi ™ = —# [Zuu(u, 0 kaks + Zap(u, 09)Q00F] (A.12)

again adimensionalizing the argument of the logarithm using the arbitrary scale P. Note
that ssp is purely oscillatory, meaning ssp = s%%, and recall that D%O) is the flat-space
d’Alembert operator neglecting € terms.

In either approach, we straightforwardly find

Zuu = sy, and ZAB = SAB;, <A13)

uu

where overdots should be understood as €0,,. Substituting spy- and s%F from

equation (129) then yields

e = %{[aﬁnow— (rt2dl280) " | haks — 400008 (A14)

Here we have introduced 9, ! as the inverse of 9, that acts on oscillatory functions as

0, == Zme’” e, (A.15)

m##0

P ,osc.

To evaluate j, 15“ aﬁ we now combine equation (A.14) for ]7) 2% with

) = 2 Wkaks — 2:Wkirs) — 2200k Q8 + 2150205, (A.16)
where 73 = 0pgr, along with equation (A.8) for . The result is
u 5 (1)
2, P osc.
j(’féosc. +§ B — (7"/ ){2 |:a IHOSC . (7"_42{1)321(41)3) i| kakﬂ

r r

+2M§>( Whaks — 2:Wkiars) — 20k QA>} (A.17)
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We eliminate the logarithms using a gauge transformation generated by (¢ with

21n(r/P

(v = 2/P) MO0, (A.18a)
T

l P 1 ) 1 OscC.

gzl%%lmlbmﬂwo—5044fﬁﬁ «+mﬁ%$}—&, (A.18b)
21n(r/P
CA _ n(?;/ >M](31)QABZ&);- (A.18c)
T

This leaves the following O(€?) oscillatory contribution to the metric:

2 Q -P,osc. « « 3
— : Lnag | = Ole,— . A19
€ . +tJag T+ . + LNag . + (6 rz) ( )
Our total metric (A.9) now reads
W, 2 (@R
M €2,5 1+ €°2, )
Gols = g + = haks + —F——— 1€ (jog) + ... (A.20)

Although it might not be obvious, the metric now depends on the choice of scale P,

O

while it did not previously. In practice, P is chosen when specifying jfé *“ because

jféosc' is used as input in the field equation (142) for the near-zone field variable hc(fgn.

Whichever choice of P is used in jf‘;osc', the same P is used in the gauge generator (A.8).
Our numerical results use P = my, but any other choice is possible. The physical
field h((ngp + h(jﬂ)n is invariant under this choice: through the field equation (142),
hng depends on P, and a change of P simply exchanges terms between h(jgp and
hfng, leaving the sum invariant. This type of invariance under change in puncture
is established in section VC of reference [130]. However, after we gauge away the

contribution of jZfB’OSC' to arrive at the metric in the form (A.20), we now have no

counterbalance to the P dependence of hfén, meaning our extracted waveform depends
on P.

This dependence on P is precisely analogous to the dependence on the arbitrary
scale by in PN-MPM calculations, discussed around equation (24). Like P, by arises as
an arbitrariness in relating the coordinate system used for concrete calculations (the
harmonic coordinate system in the PN-MPM context) to a radiative coordinate system
used to extract waveforms [202]. We discuss the implications of this below.

Appendix A.4. Transformation of nonlinear quasistationary term

Our final task is to transform (jog) = O, [r;* (sas)] to the Bondi-Sachs gauge. The
large-r expansion of this term is given in Cartesian coordinates (¢, z') by equation (146),
or somewhat more explicitly by (149), where the coefficients s, in the source can be
read off equation (138). In this section we follow an analogous calculation in reference [7],
omitting many details for that reason.
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We transform (j,g) with a generator

XY = -, (k—a /u (TT(u', n™)) du') : (A.21)

2
2r J_

We can apply the same large-r expansion (146) to A%, after using k% = (1,n") and
equation (2.7) of [158] to decompose n'Al into STF tensors. We then find, in (¢, %)
coordinates,

M= —% S ik { / ") du’] L0 <h;—2T) | (A.22)

>0 o
“ 1 . “ / '
e {naLle [/ (T, () du]
" >0 o0
+ Lﬁ k /u (I (u)ydu'| » + ln_r (A.22D)
2l+1 L—1N—1 . al—1 T‘2 ) .
where for convenience we have introduced
& 1 z
kil fr(u)] E/ dz (§1n 5 +Hl) folu—2z). (A.23)
0 T

We see that A\* is of order 1/e* due to the double integration over w, such that
X = O(e%). However, because €\ is of order In(r)/r, it can still be treated as
a perturbative transformation. Moreover, it can only contribute at order 1/r when a
u derivative acts on it, demoting its impact on the metric to O(e/r). Since we limit
our analysis to O(e) terms for the quasistationary part of the metric, we only require
Lanas = 20 Mg in the transformation law (A.2); all other terms are either O(e?) or
O(er—2Inr).

Calculatig (jag) = (Jap) + 20 Ag) involves the following steps: (i) combining
equations (146) and (138) to calculate (jug); (ii) noting that 1/r terms in 9 Agy only
arise when derivatives act on u, and that these derivatives pass through k; to collapse
the integrals over w; using O,u = —k, = (—1,n,) and equation (2.7) of [158] to
decompose JaAg) into STF tensors 7iz; summing (jag) + 20(aAg) and writing all 7y,
combinations in terms of ny using equations (2.7), (2.13), and (2.14) of [158]. The
result of these straightforward but lengthy manipulations is

(ju)’ = O(r—*Inr), (A.24a)
. ! ]- 1 v ! / / —
(Jta) = o —/ du' (na Xy (u') —np_ 11 (v)) + O(r~2Inr), (A.24b)
r = l+1)_

RN 1 1 “ / / /
(Jab) = Ty ; +D(+2) /_oo du <(l + Dnapc Iz (u') = (1= 2)np1@llyyr—1(u)

— Oapnp Iy (u') — 2nL_2HabL_2(u’)> + O 2Inr). (A.24c)
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Converted to (u,z®) coordinates, the components are

<]uu>/ = <jtt>/ - O<T_2 In T)7 (A25a)
<jua>/ = <jta>/ + <,jtt>/na

_ _i nr—1 A b 1T / —9

=3 2741 Lai /oo du’ (I, (u")) + O(r—=1Inr), (A.25D)

Gab) = Gan)' + 2 Girga) 1y + (Gee) e

1 R v /u T / —2
= ; EE Labij i du’ (1o (u')) + O(r " 1Inr), (A.25¢)

where we note that on the left-hand side a, b denote components in (u,x*) coordinates,
while on the right-hand side they denote components in (¢,z%) coordinates. Here L,;
and LaT,fij are the projectors defined in equation (2); these projectors are not inserted
by hand but arise from the transformation to retarded coordinates.

It is now trivial to check that (j,s)" in equation (A.25) satisfies the Bondi-Sachs
gauge conditions (A.1). Translated to Cartesian coordinates (u,z®), these conditions

read
(jap) n° = 0= (ja) 6. (A.26)

We immediately see these are satisfied due to the T'T projector J—;Fz;,rij in equation (A.25).
Explicitly, the nonzero polar components are

(Gua) = Q% Gua)’ and  (Jap) = Q4% (), (A.27)

where Q% = gai: = rgaiz automatically projects out components along n®, such that

ab,ij —

) o 1 .
04 L= and Q4Q% 17T = qlol) — 5 250", (A.28)

Appendix A.5.  Summary: waveform and phase redefinition

Having completed our transformation, we now relabel our final, Bondi-Sachs coordinates
as X = (U, R,0%). They are related to the original coordinates (u,r,6%) by

X = g% — ef® — €2 (ga T %gﬁaﬁga) +0(3). (A.29)

Our total metric in these coordinates is obtained by combining equations (A.20) and
(A.25). It reads

2 My (U) (cap(U,0%)) | 245U, 0%)
7 koks + A + R

s = Nap + +... (A.30)

Here we have defined z,5 = EZSB) + EZZé?R

as the total oscillatory coefficient of 1/R.
Similarly, we have defined (cas(U, ©4)) as the total non-oscillatory, I > 0 coefficient of
1/R:

(cas) = € () + O() = R (jag) + O(%,1/R), (A.31)
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noting that (j.g) = O(1/¢) due to the memory-type integrals in equation (A.25). This
term’s contribution to the shear is (Cag) = R™2 (cap).
a

Equation (A.30) confirms that the near-zone 1/r coefficients z

) and zc(ng directly
yield the asymptotic oscillatory part of the waveform, as promised in section 5.6, up to
possible O(€*) memory distortion terms that arise from the omitted O(3) pieces of the
metric.

We can likewise now confirm that (j,;) represents the first-order GW memory.
Equation (A.25) is precisely the linear-in-mass-ratio part of the GW memory as written
in equation (224) of reference [202]. (The sign difference arises from use of the field
variable h*® = \/=gg®® —n*? in reference [202].) One can rewrite equation (A.25) in the
form (3), noting the relationship between IT and the GW flux in equation (128). We can
read off the memory contribution to the radiative multipole moment U}, by comparing
equation (A.25) to equation (4), or read off the shear <C’§11£;> = limp_o(€eR7" (jan)).

Finally, we address the dependence on the arbitrary scale P, as discussed below
equation (A.20). Equation (A.12) implies that if we change P to a new scale P’, the

puncture field jZ:‘gOSC' changes by an amount

In(P/P')

“P,osc.
A]aﬁ T 9

[Zuu(u, 09 kakis + Zap(u, 09)Q5Q5] . (A.32)

The oscillatory part of the residual field changes by the opposite amount: AthR’OSC' =
—AjI+0O(1/R?). From the explicit equation (A.14), we read off Z45 = —AM 5.

This implies that the change in scale induces the following change in the shear:
AR = 2M (P P)\), (A.33)

which is simply proportional to a time derivative of the lower-order shear. If we write
the total shear in terms of Im modes, as in equation (45), we see that the modified
waveform is hence given by

[ehin) () + (R Q) + EARIR(Q) + O3)| e
- [ehl(}n)(ﬂ) + EhPR(Q) — 2ime QM) (P /PR (Q) + 0(3)} e~imer (A.34)
Here we see that we can absorb the change into a redefinition of the phase:

[ehin (@) + ERER Q) + AL () + O(3)] e
- [ehﬁf(@) + PR (Q) +O(3)} e~ (A.35)
where the new phase is
W= ¢, + 2 QM In(P'/P). (A.36)

This is a 2PA shift in the waveform phase. Therefore, since we only control the 1PA
phase, we can choose P to be any convenient value and safely ignore the waveform’s
sensitivity to the choice.
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Equation (A.36) can be compared to the analogous equation (24) in the PN-
MPM context. Just as the arbitrary scale by drops out of the complete 4PN
waveform [117, 120], we expect the arbitrary scale P to drop out of the complete 2PA
waveform.

Appendix B. Further PN-GSF results and comparisons with numerical self-force
calculations and numerical relativity

In this appendix we present the expressions for the PN-GSF for modes
1 €{4,6,8,10,12,14}. These results extend the | = 2 results given in section 6.1. We
then present a comparison between our numerical 1SF results and these PN-GSF series
for modes with [ > 4 in figure B1. These results extend the [ = 2 comparison presented
in figure 3 in section 6.2. Finally, we present a comparison of the 2SF results with a
numerical relativity simulation with ¢ = 1 in figure B2. This complements the ¢ = 10
waveform shown in figure 7.

The PN-GSF series for Ul(izlfgem) are given below. The results of [ = 2 can be found
in equation (165).

imem 64 [T o[ 10133 1070 4, . (76® | 322533\ ,
== Ll o2 4r — ¢ faz
Uig 315 \/;y { o YT\ T Tm )Y T\ T e )Y

(26749& B 10287T> 2 <_199511a2 _ 2357a _ 856log(y) | 167° 17124
704 11 6336 24 105 3 105
32585924257  34241og(2)\ s 41a°  15ma®  411053a 376215377\ -,
103603200 105 ) vt <_ 24 T2 T 138 33 )
<3_a4 | 165544767 | 3139797a | 25254577 log(y)  103937x° | 252545773
4 27456 1056 135520 528 67760

~1809104091184543 n 142155 log(3) n 13858871 log(2)> 4

622658836800 352 40656
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Integrating over an inspiral as in section 6.1 yields the following series for H,_,

series for [ = 2 is given in equation (168).
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The series expressions above are also available in a digital format in the
PostNewtonianSelfForce [172] package of the Black Hole Perturbation Toolkit.

The comparison between the above series and our numerical results is given in
figure B1 below. As in the case for | = 2, presented in figure 3, we find excellent
agreement between numerical and series results.
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Figure B1. The same as figure 3 but for the a = 0 and [ € {4, 6,8} (left column, from
top to bottom) and a = 0.9m; and I € {4,6,8} (right column, from top to bottom).

Finally, we present a comparison of a 1PA waveform with memory to an numerical
relativity simulation with ¢ = 1 in figure B2. Although the oscillatory part of the
waveform dephases significantly close to the merger (as expected for a 1PA waveform
at this mass ratio) the memory contribution compares well to the NR waveform until
closer to the merger.
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Figure B2. Comparison of the (2,0) memory form an NR waveform and from a
1PA waveform. The NR memory (in black) is compared to the 1SF (in blue), 2SF (in
green) and full GSF (in yellow) memory generated along the 1PA inspiral. We observe
that the 1SF memory matches the NR memory closely for most of the duration of the
inspiral, even without the 2SF contribution. The 2SF contribution is negligible until
the transition. The SXS waveform used in this figure had the ID SXS:BBH:1132 [203].
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Appendix C. List of SXS data used in this work

In this section we list in table C1 the data from the SXS Collaboration used in creating
figure 6.

SXS ID q v Ix1] Ix2| dataset reference
SXS:BBH:2477 | 15.00, 0.05859 | 6.43 x 107°,  4.52 x 1076 [204]
SXS:BBH:2480 | 14.00, 0.06222 | 7.62 x 1076,  4.14 x 1076 [205]
SXS:BBH:1107 | 10.00, 0.08264 | 3.659 x 1076, 1.058 x 10~7 [183]
SXS:BBH:1108 | 9.200, 0.08843 | 2.254 x 1075, 1.464 x 1076 [206]
SXS:BBH:0186 | 8.267, 0.09626 | 1.370 x 1075, 9.153 x 1078 [207]
SXS:BBH:0188 | 7.187, 0.1072 | 1.553 x 107¢, 2.445 x 10~° [208]
SXS:BBH:0166 | 6.000, 0.1224 | 4.527 x 10~", 4.672 x 1077 [209]
SXS:BBH:0113 | 5.000, 0.1389 | 3.160 x 10~7, 3.877 x 107 [210]
SXS:BBH:1220 | 4.000, 0.1600 | 5.627 x 107>, 3.311 x 1075 [211]

[212]
[213]
[214]
[215]
[216]
[217]
[203]

SXS:BBH:1906 | 4.000, 0.1600 | 5.767 x 107°, 8.544 x 107
SXS:BBH:2265 | 3.000, 0.1875 | 2.238 x 1076, 5.413 x 1076
SXS:BBH:1165 | 2.000, 0.2222 | 7.908 x 107>, 1.954 x 107°
SXS:BBH:1143 | 1.250, 0.2469 | 1.365 x 1074, 2.545 x 107°
SXS:BBH:0198 | 1.203, 0.2479 | 5.042 x 107°, 8.544 x 107°
SXS:BBH:0116 | 1.080, 0.2496 | 1.067 x 10~*, 2.119 x 10!
SXS:BBH:1132 | 1.000, 0.2500 | 1.135 x 10~7, 1.137 x 10~

Table C1. List of numerical relativity datasets from the SXS Collaboration [218] used
in creating figure 6.
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