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I. Introduction

In an age where climate change poses a significant challenge for humanity, while at the same time having a constant
increase in air travel [1]], it is of paramount importance for aircraft to become more sustainable and reduce carbon
emissions. With the European Union imposing more stringent regulations on air travel [2], novel technologies are
necessary to stay competitive. In this aspect, (hybrid-) electric flight is a promising solution. Hence, the interest in such
designs as well as the research effort has increased drastically in the last years.

In current research on the design and feasibility of (Hybrid-) Electric Aircraft (HEA), many assumptions regarding
future expected technology levels are made [3H7]. Due to a lack of definite data, often the performance of highly
influential design parameters is solely based on predictions of their achievable performance, especially regarding
components of the energy network [6, [8]]. Thus, these values are highly dependent on the underlying data sources.
Predictions and expected values of a parameter can vary widely between different studies. This causes difficulties in
the comparison of different aircraft designs and the assessment of the credibility of these predictions regarding their
resulting feasibility. In current conceptual design studies, this parameter takes on values between 250 — IOOO‘Z—; on
cell [9] or even pack-level [3}16,[7]. The current state of the technology achieves energy densities around 200‘2’—; [10].
In literature, a cell-level gravimetric energy density of approximately 500 Wh/kg is named as a minimum goal for
all-electrical propulsion to become competitive with today’s conventional propulsion systems [11}|12]]. Some studies
acknowledge the uncertainty within their estimations and take it into account, by providing different designs with
assumptions for short (250%) and longer-term improvements (SOOVIZ—;) [6]. Other studies utilize more optimistic
assumptions of the attainable energy density for mid- and longer-term, using 700% [3] or even 650 — 1000% [7]. In
order to attain these energy densities, large improvements in the current state of the art are hence required. However,
although this technological performance availability is a key driver in the feasibility of the design, the uncertainty around
whether it is an achievable design parameter is rarely taken into account when designing new HEA concepts.

Uncertainties are sometimes considered in qualitative terms, such as by the ICAO defining long term goals for
sustainable aviation [[13]. ICAO uses the terms attainability as a measure of a concept overcoming non-technical barriers,
and readiness as a degree of achieving technical maturity including overcoming technical barriers [14]]. However, both
terms are used to evaluate technologies and full designs on a more conceptual scale.

A lack of consideration of whether the proposed technology performance will be available at the time of implementing
the design could lead to the design being either unfeasible or sub-optimal, thus diminishing the value of the initial
research. Overly optimistic assumptions in which the design parameters are overestimated can lead to scalability
problems of a realizable design. On the other hand, conservative assumptions would lead to a more realistic design,
albeit with limited scalability and lower economic efficiency. Scalability in this sense is the feasibility of next generation
key technologies when applied to different vehicle classes. To address this issue, we introduce a novel concept in aircraft

Multidisciplinary Design Optimization (MDO): design credibility. We define the design credibility as a measure of the



probability that a design is realizable based on the maturity and performance levels of the underlying technologies.
A 100% credible aircraft can only be achieved with current state-of-the-art technologies, which are already available.
Any assumption beyond the state of the art will improve the performance, but will reduce the design credibility, as it
includes a probability that such an improvement might not be achieved by the targeted time. In their previous publication
[L5], the authors mathematically formulated the concept of design credibility. Probability functions were developed to
quantify the credibility of an electric aircraft based on the state of selected key technologies which have the highest
impact on the design scalability.

In this research, credibility-based design optimization is introduced, where the design credibility is defined as a
constraint. Such an optimization is used to determine the scalability of full battery electric aircraft with respect to
a few key underlying technologies. To achieve this, the study uses credibility predictions initially developed in [[15]
for the optimization of a Boosted-Turbofan (BTF) regional jet and an electric commuter class aircraft, to evaluate the
effect the credibility estimations have on the final design. The aircraft are optimized for maximum mission range under
credibility constraints for a range of different optimization formulations. The final results can assess the impact of
the performance assumptions for different credibility levels on the final aircraft performance and energy network size.
An MDO framework is created with a constrained Efficient Global Optimization (EGO) algorithm using a Bayesian
optimization approach at its core. In this approach, Gaussian Process (GP) models are used to predict the objective and
the constraint functions as surrogate models. The main advantage of the Bayesian optimization approach using GPs is
that only very few sample points are necessary for the initialization of the surrogate models [16,[17]. EGO is a global
optimization algorithm that searches the full GP model to evaluate the best locations for new data points to only refine
the model at potential minima [[18} [19]. It is thus an efficient algorithm to find a global optimum on a GP surrogate with
a low number of required additional data points. With the mission simulation as an expensive objective function, using
EGO is a promising solution for global optimization at lower computational cost also for higher fidelity optimizations.

Section [[T| defines the credibility criterion that will be applied as well as describe the chosen variables that will
be treated as uncertain and their corresponding credibility distributions. Then, the individual parts of the created
surrogate-based optimization framework are described in section |[II} Section [[V|shows results from the verification
process of the individual components used for the optimization. Lastly, section [V]|presents the results of credibility

based optimizations under a variety of optimization formulations for two test case aircraft.

I1. Design Credibility

A. Credibility Definition
Any prediction of a future event or the future performance of a system is inherently uncertain. The quality and

certainty of any predictions depend on a multitude of factors, such as historical developments, steadiness of improvements



and maturity of technology. Accordingly, predictions about the improvement in state-of-the-art for futuristic aircraft
designs show a large variability in assumptions. Hence, instead of assuming future performance parameters and using
them as deterministic variables, it is reasonable to define probabilistic distributions over these variables, thus treated as
stochastic variables, that assign a certain chance of realization to each improvement in performance.

In this research, the concept of design credibility is applied, and the following definition for design credibility is used:
"The probability that at a certain timeframe the technology will have reached at least a certain maturity (performance)
level”. This means the credibility of a parameter is large when the probability that the performance of the technology
can exceed the desired value is large. In mathematical terms, this is translated to eq. (I)), showing that the Credibility

Function (CF) is equal to the complementary Cumulative Distribution Function (CDF) of the parameter.

C=P(X>x)=1-P(x<X)=1-CDF (1

The current state-of-the-art performance of a parameter will result in a very high credibility, while a large improvement
from this value will result in a low credibility. To assess the credibility of predictions for a parameter, it is hence
necessary to define the corresponding Probability Density Functions (PDFs) that define the probable performance range
of the parameter for a given time. Their shape is influenced by a range of factors inherent to each parameter and the
expected quality of performance predictions. To visualize this approach, an example of this concept is shown in fig. [T}
The figure showcases three possible shapes of an underlying PDF (Normal, uniform and exponential distribution shapes)
and their resulting credibility functions for a generic parameter. All three distributions have an expected improvement in
parameter performance of 3.5% over the status quo. At the current performance level (0% improvement), the credibility
is by definition 100%. At the expected value, a 50% credibility level is attained. Further improvements reduce the
credibility level. For the shown sample distributions, approximately 0% credibility is attained at around 7% parameter

performance improvement for the three distribution shapes.

B. Uncertain Parameters

The goal of this research is to assess and optimize concepts for future aircraft designs for their overall design
credibility. Thus, every individual required design input might be considered an uncertain parameter (a stochastic
variable in probability theory) and be used in conjunction with a credibility distribution for this investigation.

An assessment of potential parameters for their impact on a viable aircraft design and their projected performance
uncertainty from the fields of novel airframe/aerodynamic concepts, propulsion subsystems and energy storage and
distribution systems has been performed [20] and credibility curves created [15]. Based on this work, the following

parameters are used in this study.

» Gravimetric battery energy density
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Fig. 1 Credibility function shapes for three different types of underlying probability density functions

» Gravimetric electric motor power density
* Volumetric electric motor power density
* Percentage of laminar flow over the main wing

* Percentage of structural weight reduction due to novel materials and production techniques

All five parameters have a direct and significant impact on HEA designs. They are applicable to a wide range of
possible architectures and for aircraft of all sizes. Furthermore, some parameters and their future performances are
already well-established in research, while others are still in the laboratory phase. Hence, the approaches to quantifying
the credibility will have to be varied for each component, necessitating the establishment of different methods for
literature studies and performance predictions. While it can be argued that the selection of only five parameters to set
the uncertainty design bounds for a full aircraft is a relatively low number of design parameters, the differences in nature

of these parameters will require varied approaches that can easily be extended to further parameters in the future.

C. Method of Parameter Estimation and Curve Fitting
The available data and the level of uncertainty for future performance vary widely between the different parameters.
Some parameters, like battery performance, are well-established research areas in literature and have plenty of future

performance estimations. The uncertain parameters concerning airframe technologies have low Technology Readiness



Levels (TRLs) at the moment. Thus, direct estimation of the performance and applications by a given time frame
are difficult and additional assumptions may be required before it is possible to create credibility curves. Due to this
inherent variability of data, each parameter required a bespoke approach in the estimations and curve fitting. Still, the
general structure of the approaches is consistent.

As the first step, a thorough literature study on the current state of the art of the parameter is performed, followed
by studying estimations of how the performance will improve in the future. This can include finding and evaluating
predictions on their accuracy in the past and extrapolations for the future. If it is not possible to find pre-existing
predictions, then the credibility curve is used in a less time-specific approach to the potential performance benefits of
the technology as a whole. Lastly, a statistical distribution is fitted over the gathered underlying data, and the best-fitting
curves are determined based on a statistical test. The specific test used depends on the distribution and plenitude of the

underlying data defining the respective distributions.

D. Credibility Curves
The curves were initially created in [15] and the most important parts of this publication are summarized in this
subsection. A more detailed explanation of the individual curves, their underlying datasets and the rationale behind the

final PDFs is presented in [15]].

1. Energy Storage

The estimations for cell-level gravimetric battery energy density are created based on a linear regression of the
performance development and predictions over the upcoming years available in the literature. This method makes use
of a wide range of predictions on the performance of Li-lon batteries as an input, yielding more robust results. In
the case of the battery, it is expected that technologies based on lithium will remain predominant [12]]. However, the
chemistry, anode and cathode materials are expected to change paving the way to improved energy densities. Using
linear regression to fit the data follows the standard use in literature of this method to forecast Li-ion energy densities
[21].

From the interpolations, a set of energy density estimates for the desired year 2035 are derived. Fitting a Normal
distribution, a mean and standard deviation are calculated, to define the distribution function [[15]].

The conversion from battery cell mass to battery system mass depends on the packing method, included system
peripherals and applicable safety requirements [21]. Here, a constant scaling factor of mpar system = 1.43 - Mpar celis
suggested for electric aircraft is used [22].

An objective of the credibility curves is to project realistic performance improvements of current trends, confirmed
by the nominal projections in [23]]. If unexpected developments in battery chemistry, including solid-state batteries

should be included in performance predictions, further increases in gravimetric energy density beyond the current



expectations can be derived from the optimistic projections in [23].

2. Electric Machines

Depending on the application, a large range of power is required for the electrification of aviation. The total power
required depends on the size of the aircraft [24], as well as power management strategies for hybrid-electric concepts
[9]. This can range from small machines acting as booster motors to shave-off power peaks at take-off or cruise, to
megawatt-class machines propelling large fully-electric aircraft.

A key parameter for electric machines in aviation is the gravimetric power density. In a recent study, the continuous
power density of current electric machines is investigated [25]. The study includes 25 machines from various
manufacturers with an average gravimetric power density of 4.072 kW/kg. The machine with the highest gravimetric
power density has 8.3 kW/kg.

In order to select the most suitable distribution function for the uncertain parameter, a statistical analysis using the
Chi-Squared test is performed. This statistical test examines whether there is a statistically significant relationship
between two variables. Since here the empirical data are compared with those of the distributions, the Chi-Squared
test is an instrument to measure the goodness of fit of the distribution. The Chi-Square value measures the deviation
between the empirical bin counts and the bins that would be projected by the respective fitted distribution function.
The smaller the deviation, the lower the Chi-Square value and the better the goodness of fit. The best fit of this data is
achieved with a Weibull distribution [[15]].

The second uncertain parameter characterizing the electric machine is the volumetric power density. The methodology
used to create the PDFs is identical to the one used for the gravimetric power density. To establish a uniform basis,
the same machines from Bird’s study are investigated [25]. Compared to the gravimetric results, it is noticeable that
there are outliers in the volumetric power density which have a significantly higher performance than average electrical
machines. The reason for this is that these are high-speed machines operating above 20,000 rpm. These machines have
high gravimetric and volumetric power densities and also max out at over 8 kW/kg for gravimetric power density. This
effect is even more pronounced for the volumetric power density. Compared with other machines, however, it should be
noted that the speed is also physically limited and therefore the total power is rather low. Although high-speed machines
could be rules as outliers, they were included for the purposes of this study since they provide valuable data points for
the technological advancements done in terms of volumetric power density. Again, the Weibull distribution shows the

best fit according to a Chi-Squared test [15]].

3. Airframe Technologies
The third major part of the credibility distributions considered in this study concern aircraft technologies. Due to the

current low TRLs of both technologies and hence a lack of reliable forecast data for an entry-to-service date, a different



approach needs to be taken. For both parameters, an extensive literature study is performed with the aim of finding data
points of achieved performance in a laboratory setting, either through flight tests, wind tunnel testing, or high-fidelity
numerical simulations. This is done with the underlying assumption that once these technologies have matured enough
to be used on new aircraft designs, the achievable range in performance gain will be distributed similarly to current
studies on the topic. As such these distributions are not directly related to a specific forecast year but to a forecasted
expected performance of the technology.

To find the best fitting statistical distribution, more than 90 continuous functions from SciPy were fitted over the
available data and evaluated using the Kolmogorov-Smirnov-test [15]. Due to the scarcity of the data, in this case, the
KS-test is preferred over the Chi-Square-test used to estimate the fit for the electric motor parameters as it can be used
with sample sizes as small as one per section of the histogram [26]. The Chi-Square-test requires at least 5 points per

histogram bar, which would severely distort the shape of the samples.

4. Structural Weight Reduction

Current composite technology has revolutionized aircraft structural design. Modern aircraft such as the Boeing 787
or the Airbus 350 already demonstrated the benefits of large composite structures on aircraft design and structural mass.
Composite aircraft structures are currently predominantly built using a tape lay-up process.

Studies for advanced composite lay-up techniques investigate the effects of different levels of freedom regarding
the lay-up. A simple method allows the individual plies to be rotated during the layup, allowing better tailoring than
the classical 0/45/90 orientations currently in use. Further advances in manufacturing techniques could allow full tow
steering. Here, the fiber orientation is constantly varied along the component, either in one or two dimensions [27]].
These novel manufacturing techniques have been proven in a laboratory setting, with tow steered coupons achieving
significant benefits in strength compared to conventional composite panels [28, [29]].

Current studies investigating the effects on wing mass use high-fidelity simulation and optimization techniques to
compare mass savings over an optimized wing using conventional layup. Most studies are performed using the NASA
Common Research Model (CRM) aircraft model and find mass savings between 5-6% [27, 30, 31]] for ply rotations.
Using Variable Angle Tow Steering (VAT), the mass saving can increase up to 6-14% [27} 130-33]]. The data is best
represented by functions of the exponential distribution family. The best representation is found using a Nakagami
distribution, a form of generalized Chi-distribution [15].

The baseline for these weight reductions is an optimized wing using conventional composite lay-up techniques. If a
metal wing is used as a reference, an additional factor of 20% should be applied [34] to convert to a basic composite
structure. For highly aeroelastically tailored composite structures, overall total savings of as much as 40% could be

achieved [31}135].



5. Laminar Flow Estimations

For sustainable aircraft, a further means to improve efficiency is by reduction of aircraft drag. For a large subsonic
aircraft, skin-friction drag can amount to up to 50% of the total drag. For laminar flow, skin friction can be up to 90%
less compared to turbulent flow [36]. Keeping the flow over the wing laminar can hence yield significant reductions
in overall drag. This concept has been extensively applied to low-speed gliders for many years. However, transonic
transport aircraft operate at much higher speeds and Reynolds-numbers [37]]. Hence, keeping the flow laminar is more
difficult to attain. To achieve this, different methods can be employed [37, 38]]. The two main research areas are Natural
Laminar Flow (NLF) and Laminar Flow Control (LFC). For transport aircraft, LFC is more attainable, as it does not
require the airfoil alone to provide extended areas of laminar flow but utilizes e.g. boundary layer suction systems to
prevent boundary layer growth and thus a transition to turbulent flow. The technology has already provided promising
results, albeit mostly in a laboratory environment. Using LFC over 15-20% of the wing chord for an A340 type aircraft
could yield cruise drag reductions of 14% [36]. The LFC is mostly useful in cruise, hence the benefits are larger for
long-range aircraft. Different LFC architectures have been developed and tested in wind tunnels, with some also applied
to components in flight test aircraft. Flight tests of NLF airfoils have shown laminar flow over 20-45% of the chord
[39-42]. Numerical simulations predict higher achievable ranges up to 60% [3} 143} 144]. For LFC, flight tests have
shown ranges of 12-65% of the wing chord [41 145-48]], with simulations as high as 85% chord [49H54].

Due to the differences in the achievable laminar area for NLF and LFC, as well as different applicable flight regimes,
it is better to have separate curves for the two technologies. Furthermore, the attainable performance depends on the
flight regime of the aircraft. A credible estimation needs to be sensitive to this. Thus, as a first step, the data set is split
by the laminar flow method; and the associated Reynolds number and sweep angle are determined. This data is used
to create multidimensional distributions to take the effect of wing sweep (and by proxy Mach number) and Reynolds
number into account as well [55]].

Most data points are taken from research regarding larger aircraft in a transonic regime. Hence, the initial credibility
curves tend to underestimate performance possibilities for smaller aircraft and at lower speeds/sweep angles. The
sweep-Reynolds curves are used as a correction term to increase the credibility of these flight regimes. The higher the
wing sweep, and hence the relevant Mach numbers, the better the final points will approximate the original credibility
curves [55].

Previous studies into performance limits for both technologies have led to a range of curves estimating the range of
flight regimes where either technology can be used sensibly [56|57]]. The curves presented by Hepperle in [56] are
selected as baseline for the credibility corrector. The superposition of the data set with the curves shows good agreement
if the curves are assumed as mean values for the limits [55]]. To create a statistical distribution around Hepperle’s curves,
the data points are assumed to be normally distributed and mean and standard deviation for sweep-Reynolds-curves for

NLF and LFC can be found [55]. From this combined function, a flight condition corrected credibility curve can be



created for any combination of sweep and Reynolds number [55].
For laminarity below 20%, the credibility is very high, as such values can already be obtained with current transport
aircraft wing designs. Maintaining laminarity beyond 80% chord is not significant. At those locations, movables such as

ailerons or flaps are commonly mounted, and thus the laminar flow is difficult to maintain [38]].

6. Resulting Credibility Curves
The credibility curves that have been created from this literature study and curve fitting [[15]] for all the previously
discussed parameters are summarized in fig.[2] The multidimensionality of the laminar flow estimations creates different

curves per wing sweep. Here, plots for 10°of wing sweep are presented exemplarily.

ITI. Optimization Methodology
An MDO framework is created to optimize aircraft under credibility constraints. A global optimization is desired to
survey the entire design space. As the mission simulation is an expensive objective function, the goal is to reduce the
number of necessary function evaluations to a minimum. Thus, the Bayesian optimization using GP modeling is chosen

as EGO framework. The following subsections describe each part of the optimization algorithm and the framework.

A. Gaussian Process

The surrogate model is created using GP regression, a concept of supervised machine learning [16,117]. A GP
approximates an unknown function as a set of random variables that follow a multivariate Gaussian distribution whose
mean vector and covariance matrix are expressed by a function m(x) and a covariance matrix parameterized by a kernel
function k(x,x"), respectively (eq. (2)). In this model, a Gaussian kernel and a linear expectation function are used for
k(x,x”) and m(x), respectively. The Gaussian kernel assumes that the output values of the data are smooth on the input
variables space and is a sensible assumption for the given problem (eq. (3). The fitting of the kernel is done by tuning
the hyperparameters # by maximizing the likelihood function when the sampled data points are given. The number of
hyperparameters that need to be fitted depends on the problem dimensionality (D). Own investigations into the quality
of created metamodels for the objective and constraint functions have shown that a linear function for m(x) with the

shape parameter also being tuned numerically is preferable over a constant or quadratic function with respect to x.

f(x) ~ GP(m(x), k(x,x")) ()
D

k(x,x") = exp —Zej|xj—x}|2 3)
j=1

The initial sample of the unknown design space to generate the metamodel is obtained using a Sobol-sequence [58].
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Fig. 2 Probability density and credibility functions for the uncertain parameters

The created GP can then be used similarly to an analytical function within the bounds of the sample set. Every obtained

data point can be characterized by an expectation and a standard deviation. Hence, the model is not only outputting the

11



predicted point but also a measure of the certainty level for this prediction. At a sampled point, the standard deviation

will be minimal, while in an unsampled area, it will be maximal.

B. Efficient Global Optimization

EGO is an optimization strategy that utilizes the property of the GP to also output a credible interval to evaluate
the Expected Improvement (EI) criterion [18]], shown in eq. (). The equation determines the expectation (E) of the
improvement (I) over a current minimum point (y,,;,) using the GP’s mean (§ (x)) and variance (52 (x)), with ® and ¢
being the CDF and PDF respectively. When the dataset is given, then the predicted mean $ (x) and variance § (x) can
be obtained by calculating the conditional Gaussian distribution of the GP model.

This criterion is a combination of expectation and standard deviation of the predicted output of the GP and hence
is able to both exploit the data set (low expectation) and explore the data set (high standard deviation). The point of
maximum EI will be either an optimum candidate or within an unexplored region of the design space, hence potentially
yielding a better (unknown) optimum. The so-determined data point is then evaluated with the full model and added to
the input data set. The GP model is updated to reflect the inclusion of the new point, and a new candidate point is found
until a certain convergence threshold is met. Utilizing this approach, global minima for complex, expensive functions

can be found efficiently.

E[L(] = (min = 9 (1)) ® (—y"“'" ~J (x)) v (—ymm ~5 ()

§(x) §(x)
E[I(x)]=0 if s=0

) if s>0
“

The necessary constraints are modeled in a similar way. Instead of an EI criterion, an Expected Violation, or
Probability of Improvement (PI), is used (eq. (E])) [L7]. This equation calculates the probability (P) of a point’s feasibility
(F), the difference between a constraint realization (G (x)) and the constraint limit value (g;,;,). Analogous to the EI,
the function now uses the constraint GP’s mean (9 (x)) and variance (§2 (x)). This estimates the mean and one-sided
standard deviation of a point exceeding the constraint boundary and takes on values between 0 and 1. The higher the
chance of the constraint being adhered to, the higher this value. The multiplication of EI and PI form the decision basis

for the choice of new candidate points.

1
SV2m

The comprehensive optimization process is described in fig.[3} The optimization algorithm is initialized with a small

PIF (v)] =

0
f ISP 4G, F =G (%) - gmin 5)

sample (grey), of which GP metamodels are created (blue). The crucial part of estimating the EI and PI parameters

form the core of the optimizer (purple). The adaptive sampling point is then determined by maximizing the acquisition
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Fig. 3 Flowchart of the EGO implementation used in the optimization framework

function (eq. (6)) which is composed of EI and PI. The PIs thus act as correction terms for the feasibility of a point. If
the criterion has not yet found a global optimum, the objective and constraint functions are evaluated again (green) and
added to the initial data set. If the EI is zero, a global optimum has been found.

Nconstraint

Xnew =argmax [E[1)] - []  PIF®] ©)

C. Aircraft Evaluation

The core performance simulation of the aircraft is performed within the SUAVE software [59]. SUAVE is a mission
simulation tool created by Stanford Universityﬂ The aircraft is modeled through basic geometric parameters as well as
a model of the propulsion system. The design mission is divided into multiple individual segments with individual
configuration and performance options. Each segment is further discretized, and an iterative solver is used to determine
the required thrust and angle of attack to achieve a trim condition for each discretization point. The found thrust and
aerodynamic conditions are used to investigate the behavior of the aircraft throughout the full mission. SUAVE also

includes a mass breakdown module that estimates the masses of all major aircraft components.

*https://suave.stanford.edu/
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D. Energy Network Model

This optimization strongly depends on detailed simulation models of the propulsive and electrical networks. Common
energy network models, such as the one implemented in SUAVE and used in conceptual design, are simplistic, accepting
a reduction in model fidelity for a low evaluation time. For the optimization studies, a more detailed simulation model
for the energy networks in hybrid-electric aircraft is used and integrated into the SUAVE environment [60]. This
new network model is able to give higher fidelity simulation results for gas turbine and propeller-driven aircraft. The
model also includes more detailed simulations for individual parts of electric networks, such as motors, converters,
generators, and energy storage systems. A variety of different machine types, converter topologies, and storage systems
are implemented that allow a variety of customization options for the aircraft designer. More detail on the creation of
the network models, design options and verification results are presented in [60]]. In this study, the full-electric and
parallel-electric architectures defined in [60] and shown in fig. @ are used. With the network, not only the effect of
changes in the uncertain parameters can be modeled and assessed, but also the influence of a variety of other relevant
parameters for energy network sizing and performance.

All Electric Architecture

| Battery H DC/DC HEIectricBusI I DC/AC H Motor | Propeller
| : DC/AC H Motor | Propeller
Parallel Hybrid Architecture
| Battery H DC/DC H Electric Bus|—>| DC/AC |—>| Motor | Power
Split Turbofan
Fuel Combustion Chamber ynit

Fig. 4 Individual components of the full-electric and parallel hybrid (BTF) energy network architecture

E. Multidisciplinary Design Optimization Framework

The full MDO framework is shown in flowchart form in fig.[5] Grey boxes denote the necessary initial inputs to
create the SUAVE mission simulation environment. Green denotes the mission evaluation and iteration. Lastly, blue
refers to all steps taken by the actual surrogate modeling and optimization process.

SUAVE, as a mission analysis tool, will always simulate the mission over the full design range, as well as require as
much power from the energy model as the mission simulation requires to converge at a specified flight phase. This can
result in physically impossible aircraft, e.g. with negative charges of the batteries in case the mission is longer than
the onboard batteries allow, or power requirements that can exceed the maximum power available. This would make
creation of a smooth surrogate difficult. To avoid calculations with a large number of physically impossible aircraft, an
internal iterator is added into the SUAVE model that only passes converged/feasible designs to the optimizer.

The internal iteration loop simulates the given mission and computes the aircraft performance, including energy

requirements for the full mission. It then applies a mass breakdown of the aircraft components to check if the aircraft is
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Fig. 5 Optimization procedure flowchart

consistent mass-wise for the flown mission. If not, then the energy network is resized based on the required mission
energy for the battery mass and the initial design point power loading for the engines. To account for changes in the
Maximum Take-Off Mass (MTOM) of the aircraft, the wing is also resized in accordance with the initial design wing
loading. Resizing the wing and engine with the original design point’s specified wing and power loading assures that
the overall aircraft design point does not change within the iterations.

Once the aircraft is converged, the data point is stored as a sample point. Before the actual optimization takes place,
an initial sample is generated for the creation of the initial metamodels. Within the iteration loop, this new sample point
represents the chosen new point according to a maximized EI/PI criterion. While an EGO approach will eventually
converge to the global minimum of the (constrained) design space, it is not known a-priori how many additional
sampling points are required. Hence, a more efficient approach is used. For both initial and adaptive sampling, the
number of sample points is prescribed. The total number of infill points is variable and depends on the aircraft type
and exact optimization formulation. However, generally a split of 1:2 between the initial sample and infill points [17].
On the final refined metamodel, a gradient-based optimizer is then used to improve the resulting minimum. As the
metamodel is an analytical function, this gradient-based optimization is very fast. Lastly, as the resulting optimum point
is not necessarily a sampled point anymore, the quality of the metamodel at this point is verified by confirming that the

final optimum is approximated well and that all constraints are adhered to properly.
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IV. Verification

Following the creation of the methodology for the optimization and the creation of the optimization framework, the
next step is a thorough verification of the created codes. The nature of an optimization framework makes a validation
with experimental or real-world data difficult. Hence, operational status of the full framework is proven through a series
of unit and system tests as appropriate.

The mission simulation software SUAVE and its components was extensively tested and verified by the creators at
Stanford [59}61]], and is not further investigated in this article.

This chapter will describe the verification efforts undertaken to verify the implementation of the energy network
models and the mass modeling in SUAVE against a reference aircraft design. The pure implementation of the EGO
algorithm is tested against analytical test functions. Lastly, the coupling of EGO and SUAVE is tested against a

gradient-based optimization routine within the optimization setup provided by the SUAVE software itself.

A. Verification Against Initiator Design

To verify the integration of the energy network with SUAVE, a verification against a design created by TU Delft
using their well-verified in-house tool Initiator [62] is chosen. A good agreement with the TU Delft design is particularly
of interest as all aircraft described, used, and optimized in the later sections are originally designed with this tool.
However, it has to be kept in mind that the two tools have differences in the methods and fidelity of individual modules.
SUAVE actually simulates a full engine cycle with individual parts for turbine and compressor stages. Initiator only
has simple statistical relations. Initiator can vary power splits of hybrid architectures and flight speed/climb rates
continuously throughout a mission. SUAVE needs to discretize the mission in small sub-segments of constant speeds
and boost motor power.

The aircraft shown in fig. [6]is a 50 passenger BTF regional jet. It is designed according to CS-25 regulations with
a design range of 500 NM at a cruise speed of M0.7. Contrary to the SUAVE implementation, a mission segment
in the Initiator is prescribed by a throttle setting and thus speeds and climb rates vary. For the implementation with
SUAVE, the climb and descent segments are discretized into three segments each. The Initiator boosting strategy for the
electric motors is prescribed as a fraction of total propulsive power. This is converted to corresponding fractions of total
available motor power for the SUAVE implementation.

The results of the SUAVE mission simulation and the TU Delft results are shown in table[ll The SUAVE aircraft uses
less total energy over the mission, visible by a lower battery and fuel mass. This leads to reductions in the Operational
Empty Mass (OEM) and MTOM. The structural masses are similar, indicating that the mass estimations based on
geometric parameters are similar. The propulsion network used by the Initiator is simple, similar to other networks
currently used in conceptual design. Thus, variations in the network performance, resulting battery mass and fuel

requirements are expected due to the differences in fidelity, which will manifest themselves in different total mission
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Fig. 6 Initiator designed BTF regional jet

energy consumptions.

Table 1 Comparison of TU Delft Initiator values and SUAVE simulation results

Parameter Initiator [t] SUAVE [t] Difference

Payload 53 53 0

Battery 10.5 10.0 -5.1%
Fuel 2.07 1.89 -8.6 %
OEM 28.4 29.5 +3.9 %
MTOM 357 36.7 +2.6 %

Overall, the values show good agreement between the two models and indicate that SUAVE and the network model

are working well within the inherent limitations and uncertainties of conceptual design methods.

B. Optimization Verification

The implemented optimization algorithm has been verified against multiple analytical functions with known minima.
Here, the results of a constrained optimization using the Branin-Hoo function are shown. The Branin-Hoo function has
three global minima and is shown in equation[7} It is a common and well-suited function for verifications of global

optimizers as it has multiple global minima [17].

2
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Figure [7] shows the true reference function. The three global minima are well visible. To test if both EI and PI
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criteria work properly, two constraints are imposed as shown in fig. [8] The blue area shows the feasible design space

where both constraints are satisfied.

U= wf | \

121 12 ] o
5,
101 101 S
(@) 2
o (‘\)
4 ] 3N
% 0 % ° 2 1IN\
6 6 3\ | \\\
N ‘\\
41 4 IN ~
/ \\ \\ T~
21 21 // \\\\ 1
01 04
-50 -25 00 25 50 75 100 -50 -25 00 25 50 75 100
Xo Xo
Fig. 7 True objective function (Branin-Hoo) Fig. 8 Constraint functions (satisfied in blue area)

The improvements of the GP-based objective function metamodel being refined by EGO-based new sample points
are shown in fig.[9} Starting off with an initial metamodel after 8 sample points, neither the final shape nor any optimum
is represented well. After 5 additional points have been added, significant improvements in the model are visible. At 9
additional points, the function is already well modelled, and at 14 points, the constrained optimum is found to machine
precision. Furthermore, it can be seen that even though additional samples are only added in the feasible subspace, the
quality of the model is visibly improved over the full design space. Differences in the numerical contours between fig.[7]
and the final shape in fig. §]are due to differences in the input data of the full metamodel due to the sampling, but have
no influence on the actual minimum. These differences show that the metamodel is not perfectly refined outside of the

optimum, and will increase further away from the highly sampled area around the minimum.

C. Verification Within SUAVE

Following successful verification of the optimization framework on a simple test function, the framework is integrated
into the SUAVE environment. The implementation verification test case is a conventional turbofan regional aircraft
which will be optimized for fuel burn on a typical mission with wing area and cruise altitude as design variables. A
constraint is imposed that the total available fuel mass must be larger than the fuel burnt during the mission. The given
aircraft and mission are not changed, and solely the optimizer is replaced for an equal comparison. The resulting design
space based on a grid of SUAVE simulations is shown in fig.[T0} Figure[TT|shows the resulting GP metamodel initialized
with 8 samples and after 10 further function evaluations.

At only 18 total data points, the optimizer has converged to the global optimum and the resulting metamodel has an

error of less than 1% at the optimum value (model: 6953 kg vs. true: 6949 kg).
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Fig. 9 Improvement of the objective metamodel with the infill sampling strategy considering the constrained
design space

V. Test Case Optimization Results

This section shows the results of two aircraft case studies that are optimized for maximum mission range under a
range of credibility constraints. The results showcase the impact of different optimization formulations and feature
discussions on the relative importance of the uncertain parameters defined in section [T}

e Natural Laminar Flow (NLF)

e Structural Weight Reductions (SWR)

 Battery Gravimetric Energy Density (BGE)

* Electric Motor Gravimetric Power Density (EMG)

* Electric Motor Volumetric Power Density (EMV)

The aircraft are optimized for four levels of average credibility, 30%, 50%, 70%, and 90%, under different

optimization formulations, and with varying sets of uncertain parameters. These levels are chosen to showcase changes
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for low/medium/high levels of credibility, and to show how parameter influences change along different credibility levels.
The objective is to showcase applications for credibility criteria, how different subsets influence relative importances,

and how the underlying credibility function curves influence the results.

A. CS-25 50-Passenger Boosted-Turbofan Regional Jet

The first case study considers a regional aircraft. The aircraft is designed with 50 seats and a twin BTF layout.
Figure 6] shows the initial design that was created at TU Delft using their in-house tool Initiator [62], using the same
process as described in the previous subsection. Table[2] gives some key design parameters characterizing the baseline
aircraft. The BTF layout required some changes in the SUAVE setup compared to the Initiator baseline. The Initiator
computes the respective motor boost power for each mission segment as a fraction of the total propulsive power. The
SUAVE network implementation does not allow for this split, as the total propulsive power at a certain point along the
mission is the final output of the whole network operation. The SUAVE model requires a constant motor boost power as
fraction of maximum rated motor power per mission segment. Thus, for every segment of the original mission that is
discretized for the SUAVE simulation, an equivalent average boost power that is constant throughout the segment is
computed. This value is converted into fraction of maximum rated power and used as a constant for the respective flight
phase.

In this study, the optimization goal is to maximize the achievable mission range of different HEA while staying
within certain mass or wing span limits. As design variables for this optimization problem, only the previously described
uncertain parameters and the mission range are used.

The credibility is passed to the problem in the form of a set of individual component credibility constraints (C;).

The leading parameter for the assessment is average credibility (Cqy g, 1imir). Individual component credibilities are
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Table 2 Key design parameter of the BTF regional jet for the optimization

Parameter Value

Wing loading 4682.3 N/m?
Thrust-to-weight ratio 0.193
Electric motor power loading  0.0677 N/W
Number of passengers 50

Cruise speed 207.6 m/s
Cruise altitude 10668 m
Wing aspect ratio 8.43

Wing taper ratio 0.32

Wing sweep 22.5°

allowed to be lower than this value, with limits set to 10% less. These constraints force a trade-off between the uncertain
parameters while limiting the allowable decrease in credibility. This prevents large spreads of individual credibility
values, which would still have an acceptable average result, which in turn reduces the inherent credibility of the overall
optimization results. This could happen, e.g., if one parameter optimizes to a very low component credibility while all
other parameters optimize to high credibilities. The average would be within its respective limit, yet the overall design
credibility would still be low due to the singular low value. The final results will show a Pareto front of the maximum
mission range (Rission) Versus average credibility for the given aircraft. With the use of an internal iterator taking into
account necessary consistency requirements for a physically possible design, the final optimization problem to be solved

by the EGO can be stated as shown in eq. (§).

min - Rmission

s.t. b < byax,i1cA0gate

. ®
Ci =2 Ci timir Vi=1,2,...,n

1
; Z Ci 2 Cavg,limit

i
n=1
The aircraft is constrained by a maximum wing span limit (b,,ax,7CcA0gaze) to adhere to the respective ICAO
gate category. Due to the fixed design point in the internal iterator, for a fixed-wing geometry, this is equivalent to a
MTOM constraint and will be visible as such in the result analyses. If wing geometry parameters are added as design
variables, a further constraint on the maximum fuel burn (W1 imi;) is implemented to ensure that aerodynamic
efficiency is equal or higher for an optimized result over an aircraft of the same credibility level without an optimized

planform. Furthermore, the wing span constraint is changed to a mass constraint to allow fair comparison between

all optimization cases for this aircraft. The MTOM limit (MTOM,,,4x) is set equal to the resulting limiting MTOM
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from the fixed-geometry optimizations. For the described case of a CS-25 aircraft and variable wing geometry, the full
optimization formulation when using wing geometry as design variables is given in eq. (9). Trade-offs between the
uncertain parameters at different credibility levels will influence the internal mass distribution between the performance
parameters. changes in the component masses result in the resizing the batteries and fuel capacities, and thus the
achievable mission ranges. While lower design credibility will always allow an increase in range due to higher individual
parameter performance, the optimal internal distribution resulting in the highest gains needs to be found through a

numeric optimization.

min = Ruyission
s.t. MTOM < MTOM 4%
Wiruet £ Wpuel, limi ©))
Ci > Ciiimir Vi=1,2,..n

1 i
; Z Ci > Cavg,limit

n=1

For each of the uncertain parameters as main inputs, the bounds are set such that the lower bounds exceed the
credibility constraint limits. The upper bounds are set high enough to still obtain a sensible aircraft yet not limit the final
optimized results. The mission range is a necessary input parameter as SUAVE simulates a fixed flight distance. Hence,
this parameter must be explicitly given as an input to the optimizer. The objective function directly uses this input value
without further conversions. Again, the bounds are found experimentally such that neither has an impact on the final
result. Any further necessary constraints or assumptions to assure a realistic aircraft are taken care of by an internal
aircraft iterator.

The BTF aircraft was optimized for four levels of average credibility, 30%, 50%, 70%, and 90%, under three different
optimization formulations. The first case optimized only the parameters pertaining to the electrical network. The
second set of optimizations utilized all uncertain parameters. The third optimization case introduced the wing geometry
parameters as additional design variables to concurrently optimize the wing and credibility for a further improvement in
aircraft performance. Allowing changes in the wing geometry will not only change the internal mass distributions but
also influence the aerodynamic performance on the aircraft, allowing further improvements in achievable mission range.
The first two optimizations use the formulation given by eq. (I0), replacing the MTOM limit with a limit on the wing
span (ICAO class C). The third optimization uses the formulation given by eq. (9).

The results shown in fig.[I2] are normalized relative to the reference aircraft (fig.[6) performance. The reference

aircraft was designed using common values in the electric aircraft design literature as inputs for the uncertain parameters.
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Fig. 12 Credibility-mission range Pareto front curves for the regional jet optimizations

For a comparison with the optimized aircraft results, its performance, as modeled in SUAVE, is shown in the leftmost
column of the following tables. As the aircraft was transcribed into the SUAVE format with the accompanying
assumptions on the mission profile, the performance differs compared to the original Initiator result, but is consistent
within the SUAVE simulations and thus the optimized aircraft results.

Comparing the curves, the more design variables are added to the optimization, the better the overall performance of
the resulting aircraft. The relative change in mission range between highest and lowest credibility is ca. 17% for the
network only case, while the other two cases using all five design variables have a relative change of ca. 21%. Thus,
despite an absolute performance benefit, the combination of uncertain and wing geometry as design parameters has only
a small impact on the relative performance difference between different credibility levels. Furthermore, it is interesting
to note that allowing the wing geometry to be optimized as well results in 7-10% improvements of relative mission range
over the same case with a fixed wing geometry. This shows that while the use of credibility in the optimization can be
applied to any aircraft design to provide an interesting evaluation of risk for performance benefit, other changes with
less development risk might actually provide larger benefits. Thus, the implementation of credibility-based optimization
presented in this paper is best applied to a previously optimized airframe.

For all curves, lower credibility limits imply better component performance for all considered parameters. Improved

performance is mostly represented in smaller and lighter components. As the MTOMs are active constraints, the
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overall aircraft design doesn’t change. Improvements in range are mainly a result of transporting more total energy
for the mission, in larger batteries and more available mission fuel, filling up the remaining mass allowance. Further
improvements are gained through a trade off between fuel and battery mass as battery energy density increases for lower
credibility levels.

However, even though the effect of varying credibility on achievable range seems straightforward, the relative
importance between the individual components at different credibility levels is more complex and investigated in detail
in the following paragraphs. Component trade-offs show sensitivity to both the component’s current actual mass, and
the underlying credibility curves determining the rate of mass improvements for credibility changes.

The table 3] shows the corresponding aircraft mass breakdowns for the most restricted case, only varying the energy
network parameters. It can be seen that the results for all four credibility levels have a very similar breakdown for
their MTOM, wing and structural masses. For lower credibilities, the motor mass is consistently decreasing, while
the fuel mass is increasing. As the installed motor power is related to the MTOM through a power-to-weight ratio,
with an increase in the gravimetric energy density, the motor becomes lighter for similar power ratings. Due to the
whole electrical system getting lighter and the batteries being more efficient, more fuel can be uplifted by the aircraft,
increasing its range. The resulting battery mass is a result of the two other factors. At high credibility values (shifting
from 90% to 70% credibility), the large decreases in motor mass are due to the underlying Weibull distribution of the
parameter. This decrease in motor mass allows the aircraft to take more battery and fuel mass onboard to keep the same
total MTOM. For further reductions in credibility, higher battery energy density allows larger ranges despite reductions
in the actual battery mass. Mass reductions in the other parameters are used to carry more fuel to support the batteries
in achieving the higher ranges as well. For the low 30% credible results, the battery mass is again decreasing compared

to the 50% credible results, although more energy is stored on the aircraft.

Table 3 Mass breakdown of the optimized regional jet at different credibility levels for the network parameter
only (Battery Gravimetric Energy Density (BGE), Electric Motor Gravimetric Power Density (EMG), Electric
Motor Volumetric Power Density (EMYV)) optimization

Parameter Reference 30% Cred 50% Cred 70% Cred 90% Cred

MTOM [kg] 33024 33026 33045 33086 33029
Structure [kg] 7335 7331 7334 7339 7337
Wing [kg] 2685 2683 2685 2691 2688
Motor [kg] 1202 480 450 507 714
Battery [kg] 8243 8868 8965 8999 8851
Fuel [kg] 1595 1695 1643 1586 1483

Investigating the resulting component credibility and performance values in table ] shows that the battery energy
density always converges to the highest allowable performance value. The credibility values shown in parenthesis in the

table have always converged to the lower limit of 10% less than the specified average level. Similar to the previous
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aircraft design, the battery proves to be the dominant performance driver. The electrical motor shows the behavior
discussed in the previous paragraph. For high credibilities, the improvement in performance to the next lower data point
is larger than for low credibility values. The volumetric power density is a tertiary component for all optimizations. The

main parameters have an influence on the mass of the aircraft, not the performance.

Table 4 Resulting component performance and credibility levels of regional jet for given average credibility and
network parameter only (BGE, EMG, EMYV) optimization

Parameter Reference 30% Cred  50% Cred  70% Cred  90% Cred
BGE [Wh/kg] 5434 (12%) 532 (20%) 513 (40%) 496 (60%) 476 (80%)
EMG [kW/kg] 4.0 (99%) 11.1 34%) 10.4(45%) 9.5 (60%) 6.7 (91%)
EMV [kW/1] 352 (31%)  33.7(36%) 26.0(65%) 16.1(90%) 8.3 (98%)

When the airframe parameters are also included in the optimization problem, the results change in magnitude and
shape. Firstly, the influence of the wing weight reductions becomes visible in the wing and structural masses in table 3}
The lower the credibility, the lower the mass. The motor, battery, and fuel masses show clear trends. Again the motor
mass improvements are the largest mass-wise when comparing high credibility data points. Both fuel and battery mass
increase for lower credibilities. The reduction in wing and motor mass now allows the batteries and fuel volume to be

larger compared to the previous, more constrained case. This benefit directly translates to a higher achievable range.

Table 5 Mass breakdown of the optimized regional jet at different credibility levels for all uncertain parameters
(NLF, Structural Weight Reductions (SWR), BGE, EMG, EMYV) optimization

Parameter Reference  30% Cred 50% Cred 70% Cred 90% Cred
MTOM [kg] 33024 33046 33094 33026 33026
Structure [kg] 7334 6919 7008 7083 7182
Wing [kg] 2685 2270 2359 2434 2533
Motor [kg] 1202 403 451 582 621
Battery [kg] 8243 9309 9299 9130 9058
Fuel [kg] 1595 1756 1676 1583 1519

The observation that both motor and wing masses have the highest absolute reductions at high credibilities, is also
visible for the relative changes in table[6] The exponential distribution used to model the structural weight reductions is
well visible. For the 90% credible case, the parameter is barely used due to the large reduction in credibility that a small
improvement would yield. An initial improvement of the parameter of 3% requires a reduction in credibility from of
30%, whereas an improvement of a further 3% would only require a less than 20% further reduction in credibility.

Utilizing all five uncertain parameters, the relative importance also shifts. The battery is still the dominant parameter,
but now the relative importance of the electric motor has become more pronounced than in the previous optimization.

Regarding the parameters having an influence on the aerodynamic performance of the aircraft, the optimal laminar flow
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results seem to lie in the region of 38-40% of the wing. All optimizations (30%, 50%, 70%) where this result was within
the bounds of the optimizer converged to similar values for the laminar flow. Only the 90% credible aircraft shows a
significantly lower value due to its lower bound limitations. The volumetric power density of the machines shows a low
influence at high credibility values, and even at lower allowable credibility data points, it is never a limiting (or close to

limiting) value. Hence, again the volumetric power density shows to be of low importance to the final aircraft design.

Table 6 Resulting component performance and credibility levels of regional jet for given average credibility and
all uncertain parameter (NLF, SWR, BGE, EMG, EMYV) optimization

Parameter Reference 30% Cred 50% Cred 70% Cred 90% Cred
NLF [%] 0 (100%) 38.9 (57%) 40.2 (53%) 37.8 (60%) 23.7 (90%)
SWR [%] 12 (31%) 12.2 (29%) 10.7(43%) 7.45 (62%) 4.55 (99%)

BGE [Whikg] 543 (12%) 533 (20%) 513 (40%) 496 (60%) 476 (80%)
EMG [kW/kg] 4.0 (99%)  11.95 (20%) 10.68 (40%) 8.26 (78%) 7.73 (83%)
EMV [kW/1] 352 (31%) 32.9(39%) 23.0(73%)  8.0(96%) 5.0 (99%)

Lastly, including the wing geometry as three additional design variables shows some interesting effects. The new
parameters are Aspect Ratio (AR), taper ratio (1) and leading edge sweep angle (A). Similar to the previous case,
without wing optimization, wing structure and motor mass show a monotonous decrease in mass for a decrease in
average credibility as shown in table

Due to the allowable wing variations, an additional constraint was included, the mission fuel burn must be equal to
or lower than the fuel burns reported in table[5} This constraint became necessary due to the optimization framework
set-up shown in fig.[5| By constraining the maximum allowable wing span, and iterating around a given design wing
and thrust loading, the aircraft can converge to a very low aspect ratio design. This allows a large increase in wing area
before the span constraint becomes active with a corresponding increase in allowable MTOM. Thus, the final aircraft
will be very heavy and thus capable of carrying a large amount of fuel and batteries, but be aerodynamically much less
efficient than the baseline. This is an undesired effect, and thus a constraint on fuel efficiency was added.

The addition of this constraint, in combination with the optimized wing geometry, resulted in more efficient aircraft.
The design point was kept constant, and thus the installed engine thrust and motor power were constant. The reduction
in fuel mass indicates that improvements in aerodynamic efficiency reduced the required thrust throughout the flight.
This corresponds to higher battery masses. As the boost power was kept as a constant fraction of the installed power, a
more efficient airframe corresponds to longer flight ranges and hence heavier batteries.

Comparing the credibility results in table[8] it can be seen that now both battery and wing weight parameters have
become dominant, whereas the motor mass becomes less limiting for low credibility levels. The level of laminar
flow has a varying impact on the final design. For the 90% credible case, mass parameters are absolutely dominating

the design. For credibilities of 50% and less, a larger application of laminar flow brings performance benefits. This
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Table 7 Mass breakdown of the optimized regional jet at different credibility levels for all parameters and wing
geometry (NLF, SWR, BGE, EMG, EMYV, AR, 4, A) optimization

Parameter Reference 30% Cred 50% Cred 70% Cred 90% Cred

MTOM [kg] 33024 33046 33051 33020 33026
Structure [kg] 7334 6791 6911 6977 7030
Wing [kg] 2685 2163 2258 2329 2373
Motor [kg] 1202 467 485 506 598
Battery [kg] 8243 9755 9580 9374 9562
Fuel [kg] 1595 1390 1431 1518 1206

shows that at high credibility levels when the uncertain parameter performance is most limited, the largest benefits
are achieved by reducing the total aircraft mass and thus allowing more fuel and batteries to be taken aboard. If the
credibility constraints are relaxed, the mass parameters are already at good levels, and a further increase in gravimetric
density would only yield a small relative improvement for a larger reduction in credibility. At this level, the performance
influencing parameters start becoming more relevant for further improvements. However, they are always of lower

importance than mass reductions.

Table 8 Resulting component performance and credibility levels of regional jet for given average credibility and
all uncertain parameter plus wing geometry (NLF, SWR, BGE, EMG, EMV, AR, 1, A) optimization

Parameter Reference 30% Cred 50% Cred 70% Cred 90% Cred
NLF [%] 0 (100%) 50 (27%) 44 (40%) 25 (82%) 10 (99%)
SWR [%] 12 (31%) 13.4 (24%) 10.3 (40%) 7.4 (62%) 4.4 (99%)

BGE [Whikg] 543.4 (12%) 531 (21%) 514 (40%) 496 (60%) 476 (80%)
EMG [kW/kg] 4.0(99%)  10.3 (47%) 9.9 (53%) 9.5 (60%) 8.1 (80%)
EMV [kW/I] 352 (31%)  25(66%)  20.0 (77%) 14.8(92%) 15.4 (91%)

AR 8.43 7.6 7.99 7.89 7.52
A 0.32 0.29 0.35 0.37 0.43
ALE 25.44 18.3 16.9 20.7 23.8

The changes in the wing geometry show that a lower aspect ratio of the wing is desired. The interactions of wing
weight reductions, laminar flow, and taper seem to correlate; and the optimal taper ratio decreases for a lower credibility
limit. Both taper and aspect ratio have an influence on the distribution of the aerodynamic load, and thus, the required
wing mass. For this flight condition, the optimal wing also has a lower sweep angle than the reference aircraft. As the
credibility for laminar flow is a function of the sweep angle and wing Reynolds number and changes in these parameters
have a direct impact on the laminar flow results. As such, the optimal area of laminar flow increases from 38-40% to
44-50% of the wing for a less swept design, with a corresponding increase in aerodynamic efficiency that manifested

itself in the lower total fuel burn while flying a longer range. The design changes of the wing geometry are graphically
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shown in fig.[T3] compared to the original wing design.

o —— Baseline
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Fig. 13 Optimized wing planform geometries of the regional jet for average credibilities

B. CS-23 19-Passenger Fully-Electric Commuter Aircraft

The second case study aircraft features 19 seats and is certified under EASA CS-23 certification specifications [63].
The aircraft has an aluminum structure and two electric motors that are powered by a battery assembly stored in the main
wing. The aircraft is created by the Initiator [62]], a conceptual aircraft design tool, with industry-accepted performance
figures for its energy network and shown in fig.[I4]with design parameters presented in table[9] The aircraft is specifically
designed to be at the corner of the CS-23 limits and to investigate the limits of this certification specification for electric
aviation. It has a no-reserves mission range of 237 NM (440 km). This shows how challenging this aircraft configuration
can be, with a severely limited potential market. Hence, improvements in the network performance and reductions in
specific battery mass are of the utmost importance for this aircraft concept, to achieve higher mission ranges and create
a commercially viable design.

The aircraft is converted into the SUAVE format retaining the same performance requirements and design point.
The mission is approximated by discretization of the flight phases. As the Initiator models aircraft designs based on
reference aircraft constructions, the wing is sized as aluminum construction. With an increase in the use of composites
in wing designs of state-of-the-art aircraft, a composite wing structure will most likely be a primary choice for next

generation aircraft of all sizes. The credibility assessment regarding structural weight reductions works on assumed
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Fig. 14 (CS-23 19-passenger fully-electric commuter aircraft baseline design

improvements in composite tailoring techniques. Thus, in the modeling of the SUAVE aircraft, a conversion factor is

implemented to account for the weight savings of a composite wing over an aluminum structure [34].

Table 9 Key design parameter of the 19-passenger commuter for the optimization

Parameter Value

Wing loading 2712 N/m?
Power loading 0.0948 N/'W
Number of passengers 19

Cruise speed 113.75 m/s
Cruise altitude 3658 m
Wing aspect ratio 9

Wing taper ratio 0.45

Wing sweep 0°

For CS-23 aircraft, the MTOM is limited to 6818 kg [63]. Thus, the wingspan constraint from eq. (§) is replaced by
a mass constraint, resulting in the optimization problem shown in eq. (I0). Optimization is again performed for four
levels of average credibility, 30%, 50%, 70%, and 90%. For each individual component credibility, the limit was set to

10% less than the prescribed average.
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s.t. MTOM < MTOM pax,cs23

. (10)
Ci 2 Ci timir Vi=1,2,...,n

1 i
; Z Ci > Cavg,limit

n=1

The average credibility constraint is created to force a trade-off between the different uncertain parameters while
keeping the limiting values close to the desired average. The result will be an aircraft where the most influential
parameters have credibility levels below the average while less influential parameters are above. This approach is
well suited to investigate the relative importance of the parameters between each other. However, one goal of this
optimization is to evaluate the performance increases against the increase in development risk. For this, a multiplicative
criterion is better suited. The total credibility (Cyorq;) defined in eq. can be used to quantify the total credibility (or

risk) of a given aircraft design.

Crotal = Hilzlci (11)

This multiplication of the individual credibilities ensures that the total performance risk is accounted for in the
constraints. This constraint formulation prevents highly influential parameters from resulting in very low credibility
while keeping every other parameter at very high credibility and thus obscuring the true performance risk with an
unrealistic average. In the total credibility criterion, the most ambitious parameter always drives the attainable credibility,
while preventing highly ambitious values due to the presence of multiple parameters. Due to the multiplication, it
is also highly sensitive to the number of uncertain parameters used in the evaluation, and comparisons can only be
made for optimizations using the same uncertain parameters. However, it allows to remove all constraints on individual
component credibility in the optimization problem as it is specifically designed to not have the weaknesses of an average.

Hence the updated optimization formulation using total credibility can be seen in eq. (12)).

min = Ryigsion
s.t. MTOM < MTOMmax,CSZS (12)

i
anlci > Ctot,limit

The effects of this criterion compared to the average criterion are shown in fig. As the total criterion results in
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Fig. 15 Credibility-mission range Pareto front curves for the fully-electric 19-passenger commuter optimizations

low values, while component credibilities are relatively high, the curve is shifted to show a range of 10% to 70% total
credibility. This shift results in component credibilities for the most limiting parameter to a similar range as the average
cases of a 20% higher limit. The reference aircraft is represented with two points due to the difference in credibility
when assessed by the average or total criterion. The respective colors match the reference aircraft to the corresponding
credibility curve. The resulting curves show better performance at the respective credibilities compared to the reference
design. The reference uses realistic input values from current literature, but is not optimized for performance and
credibility yet.

The curves show a decreasing performance gain for each subsequent step in reducing credibility. Even higher
credibility results for the average curve show improvements over the baseline design, with further increases of 15% in
range over the investigated credibility range. The total credibility curve shows the more limiting nature of this criterion.
While the optimized results show an improvement over the baseline, the initial point is close to the optimized curve
and higher total credibility results show a lower performance. However, the total relative improvement over the full
credibility range is higher than in the average case.

The previous subsection utilized all uncertain parameters in their optimization and concluded that the network
parameters are more influential than the airframe parameters, especially for higher credibilities. This set of optimizations

focuses on the energy network and has a closer look at its effects on mission performance. Thus, the airframe parameters
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are not used for this aircraft. The mass results shown in table[T0|reflect this by showing very similar values for wing and
structural masses. The electric motor mass shows a decreasing trend, with the largest change having a 30% reduction in
mass when moving from 90% to 70% credibility, and only a further 10% per step in limiting credibility. A reason for
this difference is the high limiting credibility in the 90% case where a direct trade-off in performance with the battery
energy density is forced. Thus, the change between the two highest credibility limits is larger than for every subsequent
step. The mass savings due to the motor as well are directly invested in the battery mass, to increase the achievable
mission range.

In the motor gravimetric power density results, again the underlying credibility function shape is well visible. A
steep decrease from 90% to 60% component credibility for the 90% and 70% average credible cases respectively
corresponds with a large increase in component performance and corresponding reduction in component mass. Further
reductions in credibility (past 50%) show a shallowing slope on the respective CF (fig.[I)), and as such further mass

reductions are of smaller magnitude.

Table 10 Mass breakdown of optimized 19-passenger commuter at different average credibility levels for the
network parameter only (BGE, EMG, EMYV) optimization

Parameter Reference 30% Cred 50% Cred 70% Cred 90% Cred
MTOM [kg] 8593 8618 8620 8624 8629
Structure [kg] 1916 1956 1956 1956 1956
Wing [kg] 747 786 786 786 786
Motor [kg] 323 122 135 152 213
Battery [kg] 3100 3248 3237 3224 3168

The forced trade-off for the motor for the 90% credible design is very well visible in the component credibility levels
shown in table[I1] The 30% to 70% credible results show a clear parameter hierarchy. Both battery energy density
and motor gravimetric power density are dominant over a reduction in motor volumetric power density. Removing the
airframe parameters from the optimization problem thus shows a very obvious optimum. For the 90% credible design,
the hierarchy between the battery and motor is shown clearly. Thus, for an average limiting criterion, the hierarchical

order for the network parameters is: batteries, motor mass, and motor volume.

Table 11 Resulting component performance and credibility levels of 19-passenger commuter for given average
credibility and network parameter only (BGE, EMG, EMYV) optimization

Parameter Reference 30% Cred 50% Cred 70% Cred 90% Cred

BGE [Wh/kg] 486 (71%) 533 (20%) 513 (40%) 496 (60%) 476 (80%)
EMG [kW/kg] 4.0 (99%)  11.9 (20%) 10.7 (40%) 9.50 (60%) 6.78 (91%)
EMV [kW/I]  18.2(86%) 29.8 (50%) 24.0 (70%) 16.1 (90%) 5 (99%)

Investigating the results of the total credibility in table it can be seen that while the general trends are the same
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compared to the previous results, now the motor has a larger performance change at low credibilities, while having
comparatively high masses at higher credibilities. The battery mass is still increasing, although at lower ranges than the

average case, and with a much flatter slope for range improvement at lower credibilities.

Table 12 Mass breakdown of optimized 19-passenger commuter at different total credibility levels for the
network parameter only (BGE, EMG, EMYV) optimization

Parameter Reference 10% Cred 30% Cred 50% Cred 70% Cred

MTOM [kg] 8593 8596 8595 8593 8595
Structure [kg] 1916 1916 1916 1916 1916
Wing [kg] 747 747 747 747 747
Motor [kg] 323 151 180 190 193
Battery [kg] 3100 3274 3246 3233 3230

This effect of lower performance can also be seen in the component credibilities in table[I3] The battery performance
is again a clear driving force, always reaching values within 10% of the total limit. This severely limits improvements in
the motor performance, with values for both parameters around 90% credible or more. It is interesting to note that in
contrast to the previous optimization, now the volumetric power density is also used more actively, such as for the 50%
result where it has a lower credibility than the gravimetric result. However, overall both parameters are of secondary
importance to the battery performance. Only for the 10% credible case show the motor parameters some notable
improvement, with values in the 70s for both. The data shows that while the battery performance dominates the results,
for each credibility level there is a point at which improvements in the motor performance are more advantageous overall
than a further change in battery energy density. Thus, while the previous study showed a clear hierarchical order, the

motor parameters retain an eventual relevance for further performance gains.

Table 13 Resulting component performance and credibility levels of 19-passenger commuter for given total
credibility and network parameter only (BGE, EMG, EMYV) optimization

Parameter Reference 10% Cred 30% Cred 50% Cred 70% Cred

BGE [Wh/kg] 486 (71%) 534 (19%) 517 (35%) 494 (62%) 476 (80%)
EMG [kW/kg] 4.0 (99%)  8.54 (74%)  7.20 (88%) 6.80 (91%) 6.52 (93%)
EMV [kW/I] 182 (86%) 23.74 (71%) 7.51(99%) 17.0 (88%) 13.1 (95%)

VI. Conclusions
This paper presents a novel approach to optimization under uncertainty in the time domain. By using credibility
curves to assess the future performance of key design parameters, it is to add a layer of chance-of-realization to the
necessary assumptions regarding future network performance. The proposed credibility criterion assesses the probability

that at a specified time a certain technology will have reached at least a certain performance level. For five uncertain
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performance parameters, probability distributions were fitted to represent the probability of performance levels for 2035,
from which the resulting credibility distributions can be directly extracted. A surrogate-based global optimization
framework based on Gaussian Process (GP) and using an Expected Improvement (EI) infill criterion is created and
verified, both on the optimization algorithm and full model integration level.

A set of credibility-based optimizations is performed on a Boosted-Turbofan (BTF) CS-25 regional jet using a
wingspan limit as defining geometric constraint. Credibility results are obtained for using just the energy network
parameters, using all uncertain parameters, and using all parameters and a variable wing geometry. Results show
benefits of approx. 17% when optimizing for all uncertain parameters compared to optimizing just for the network
parameters. For the optimization cases with all uncertain parameters, the laminar flow results show consistently that
approx. 50% Natural Laminar Flow (NLF) is an optimal point. For this aircraft, changes in the wing geometry to lower
aspect ratio and sweep angles resulted in a further 20% benefit over the fixed geometry case. This shows that the initial
aircraft design was not yet fully optimized. While changes in wing sweep have a direct effect on the credibility results
for the laminar flow parameter, the overall wing changes and resulting performance gains show that the pure geometry
optimization have the larger effect. The credibility-based optimization thus can be used both in the design optimization
phase and as a second step on a finalized design to investigate the sensitivity of the chosen uncertain parameters.

A second set of credibility-based optimizations of a fully electric CS-23 aircraft for maximum mission range is
performed, using credibility and the CS-23 mass limit as constraints. Results obtained for an average credibility criterion
are similar to the previous case, and consolidate the notion of a hierarchical structure in the importance of network
parameters. The batteries are the most limiting, followed by the gravimetric motor power. The volumetric power density
has only a small influence on the total achievable mission range. Results obtained using a multiplicative total credibility
criterion show similar results as well as a reduction in mission range due to the stricter requirements.

The total credibility criterion is better suited for assessing the overall design credibility of a proposed concept.
However, its bounds and interpretation must be handled with care as the results depend strongly on the amount of
design variables. The average criterion is more robust regarding changing amounts of design variables, but it requires
individual credibilities to be constrained to sensible minimum values to prevent on-average credible, yet unrealistic
results. It is thus best suited as a sensitivity criterion to assess the relative impact of parameters and their credibility
functions amongst each other.

The methodology of defining credibility and using it as a measure of performance risk estimation is easily scalable
and applicable to virtually all (sub-) components of an engineering design. A limited number of parameters is chosen
for this study. However, the developed software is capable to include any number of parameters, provided sufficient
computational power is given and sufficient data for a credibility curve generation can be found.

Factors influencing computational costs are the complexity of the underlying models and the optimization algorithm.

Simple models and surrogates can allow increased problem sizes. In more complex designs, the choice of an appropriate
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optimization algorithm is of increasing importance. Most important is the availability, quality and accuracy of the
underlying performance prediction data. Prognostic data found in literature is usually scarce and hence different
approaches to credibility curve creation might be required. The performed studies show, however, that the problem can
be solved to some degree by incorporating different types of distribution functions, depending on the type of available
data. The choice of distribution function can be a limiting factor. Due to low data availability, statistical curve-fitting
tests have limited accuracy, hence the final choice of ideal distribution is both dependent on mathematical results and
engineering judgment.

The idea of combining probability functions, describing the development of state-of-the-art technology, with
a design optimizer is shown to be a promising concept. Although aircraft design was chosen as the application
example, the method can be transferred to other technological fields, applying the developed statistical methods and
functions. Advantages of applying the credibility measure can be especially imagined to explore design spaces where
new technologies are investigated. Also, one can think of advantages in the support of management decisions, e.g. the

quantification of investment risks.
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