Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/0JVT.2024.1234567

A 3D Spatial Information Compression
Based Deep Reinforcement Learning
Technique for UAV Path Planning in

Cluttered Environments

Zhipeng Wang, Soon Xin Ng and Mohammed El-Hajjar

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
Email:{z.wang@soton.ac.uk, sxn@ecs.soton.ac.uk, meh@ecs.soton.ac.uk }

Mohammed El-Hajjar would like to acknowledge the support of the Future Telecoms Research Hub, Platform for Driving Ultimate
Connectivity (TITAN), sponsored by the Department of Science Innovation and Technology (DSIT) and the Engineering and Physical
Sciences Research Council (EPSRC) under Grants EP/X04047X/1, EP/Y037243/1 and EP/X04047X/2.

ABSTRACT Unmanned aerial vehicles (UAVs) can be considered in many applications, such as wireless
communication, logistics transportation, agriculture and disaster prevention. The flexible maneuverability
of UAVs also means that the UAV often operates in complex 3D environments, which requires efficient
and reliable path planning system support. However, as a limited resource platform, the UAV systems
cannot support highly complex path planning algorithms in lots of scenarios. In this paper, we propose
a 3D spatial information compression (3DSIC) based deep reinforcement learning (DRL) algorithm for
UAV path planning in cluttered 3D environments. Specifically, the proposed algorithm compresses the 3D
spatial information to 2D through 3DSIC, and then combines the compressed 2D environment information
with the current UAV layer spatial information to train UAV agents for path planning using neural
networks. Additionally, the proposed 3DSIC is a plug and use module that can be combined with various
DRL frameworks such as Deep Q-Network (DQN) and deep deterministic policy gradient (DDPG). Our
simulation results show that the training efficiency of 3DSIC-DQN is 4.028 times higher than that directly
implementing DQN in a 100 x 100 x 50 3D cluttered environment. Furthermore, the training efficiency of
3DSIC-DDPG is 3.9 times higher than the traditional DDPG in the same environment. Moreover, 3DSIC
combined with fast recurrent stochastic value gradient (FRSVG), which can be considered as the most
state-of-the-art DRL algorithm for UAV path planning, exhibits 2.35 times faster training speed compared
with the original FRSVG algorithm.

INDEX TERMS 3D path planning, Deep Reinforcement Learning, 3D Spatial Information Compression,
Unmanned Aerial Vehicles, Training Efficiency.

I. Introduction

N the past decade, with the rapid development of un-

manned aerial vehicles (UAVs), UAVs have demonstrated
their strong potential in a wide range of application fields,
such as weather forecasting, low altitude economy, logis-
tics transportation, disaster prevention and control, agricul-
ture, safety assurance, and wireless communication [1]-[8].
Rotor-UAVs have extremely high flexibility, and can carry
modules with different functions according to the application
scenarios [9]. However, UAVs have clear shortcomings. The
main challenge is limited energy, which leads to limited

endurance of UAVs, requiring them to complete tasks in the
shortest possible time. Therefore, autonomous navigation of
UAVs has always been one of the main challenges in this
research field.

A. Background and Motivation

At present, there is a lot of research work on autonomous
navigation and path planning for UAVs, where different
optimization methods are used. The A-star algorithm is a
commonly used navigation and path planning algorithm for
ground vehicles and various ground operation robots [10].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME

Although the A-star algorithm is considered one of the most
effective static global path planning algorithms, its efficiency
and robustness is unsatisfactory when working in complex
environments [11]. The Dijkstra algorithm, similar to the A-
star algorithm, is also a static global path planning algorithm.
In [12], the Dijkstra algorithm was used to assist UAVs
in trajectory planning, which improved the 3D deployment
efficiency of UAVs. Although the results showed that using
the Dijkstra algorithm is better than using algorithms such
as K-mean, the delay in path planning is still significant.

There are other sampling based path planning algorithms
for the UAV such as rapidly-exploring random tree (RRT)
[13], [14], probabilistic road-map (PRM) [15], and artificial
potential field (APF) [16], [17] algorithms, all of which are
sampling based static global path planning algorithms that
require knowledge of all environmental information. The
research on path planning based on these three algorithms
has produced rich results in 2D environments [16]-[20], but
limited research in 3D environments [21]. The CTopPRM
algorithm was proposed in [22] that can perform path plan-
ning in 3D space, and the probability of finding a path is
20% higher than traditional PRM algorithms. However, this
result cannot meet the requirement of path planning task for
UAVs in 3D environments.

In addition, some biologically inspired optimization al-
gorithms have been used to solve path planning problems.
The ant colony optimization (ACO) algorithm is a typical
example, and [23] proposed an ACO-APF algorithm that
improves the convergence speed of path planning and re-
duces the triggering probability of local optimal solutions. A
3D path planning algorithm was proposed in [24] for UAVs
based on ACO and it was shown to be effective in disaster
prevention and control scenarios. However, the convergence
efficiency and path planning quality of ACO algorithm are
not satisfactory when facing complex environments.

Furthermore, particle swarm optimization (PSO) has been
used to solve path planning problems. For example, [36]
proposed a mobile robot path planning algorithm that com-
bines A-star and PSO, which is about 16% faster than
the A-star algorithm in path planning time. A hybrid-PSO
algorithm was proposed in [37], which not only reduces the
possibility of falling into local optima but also improves the
convergence efficiency of path planning. Additionally, it has
better robustness than traditional PSO algorithms applied to
UAV path planning in 3D environments. On the other hand,
a genetic algorithm (GA) based UAVs 4D path planning
algorithm was proposed in [38], which considers both 3D
UAVs paths and multi UAV conflict problems, which shows
high robustness in discrete 3D space. As mentioned in [39],
a 2.5D’ modeling method which can generate a very coarse
3D model based on the 2D footprint and the height of
obstacles can work for 3D UAV path planning. However,
when there are complex obstacles in the environment, such
as overpasses and tunnels, using obstacle height to construct
a 2D matrix can damage the optimal path of the UAV. In

addition, this method also has limitations in complex indoor
environments.

Deep reinforcement learning (DRL) is considered one of
the promising algorithms for solving UAV path planning
problems [40], which allows UAV agents to automatically
track and learn changes in the environment, while some
classic path planning algorithms cannot plan paths in dy-
namic environments. Among all the DRL algorithms, Deep
Q-Network (DQN), actor-critic (AC), and deep deterministic
policy gradient (DDPG) are three commonly used algorithms
for solving UAV path planning problems, especially when
path planning tasks are considered as Markov decision pro-
cess (MDP). An improved DQN algorithm was proposed in
[41], which introduced an empirical value evaluation network
to effectively eliminate path planning drift and improve the
accuracy of path planning. The introduction of experience
replay [42] has improved the network convergence stability
of DRL algorithms such as DQN, DDPG, and AC, while
introducing the problem of key experience sparsity when
using DRL algorithms for path planning tasks [43]-[45]. A
cumulative reward model was proposed in [32] to reduce
network divergence caused by sparse rewards, and also
introduced a region segmentation algorithm to further reduce
the possibility of intelligent agents trained by multiple DRL
algorithms falling into local optima. Besides, some works
combined DRL algorithms with sampling based algorithms
to achieve better path planning performance and higher train-
ing efficiency. For example, bidirectional artificial potential
field deep Q-network (B-APFDQN) was proposed in [46],
which combined APF and DQN to improve the training
efficiency of autonomous UAV agents.

Although the DRL algorithm is powerful, the training pro-
cess consumes a lot of time and computing resources, which
can be feasible in a two-dimensional environment. However,
when the environment expands to three dimensions, the
search space rapidly increases, the consumption of time and
the demand for computing resources can not be ignored.
Researchers have made great efforts in the path planning
problem of UAVs in 3D environments. For example, [25]
proposed an improved sparse A-star algorithm, which has
been proven to be capable of 3D path planning for UAVs. A
3D tangent (3D-TG) method based on obstacle geometry
information was proposed in [26], which can complete
UAV path planning in a 3D urban environment. In [30], a
high efficient state decomposition deep deterministic strategy
gradient algorithm has been proposed, which has improved
convergence rate, navigation performance, and generalization
ability compared to traditional DDPG algorithms. In [35], the
authors proposed a fast recurrent stochastic value gradient
(FRSVG) that can perform path planning in continuous 3D
environments. The experimental results show that FRSVG
has higher training efficiency and path planning performance
compared to DDPG and traditional SVG algorithms.

In the UAV 3D path planning, the problem of large
search space and sparse data remains a challenge. If effective

VOLUME ,

TABLE 1: Novelty comparison with the state-of-the-art literature.

our paper [25] [26] [27] [28] [29] [30] [311 [32] [33] [34] [35]
Deep Q-Network v v v
Deep Deterministic Policy Gradient v v v v v v
Information Compression v v
3D environment v v v v v v v v v v
Continuous Workspace v v v v v v v v v v

dimensionality reduction can be applied to 3D spatial infor-
mation, it can greatly reduce the search space and alleviate
various problems caused by data sparsity. Principal compo-
nent analysis (PCA) is a commonly used data dimensionality
reduction method in machine learning and related fields,
which tunes the Rayleigh quotient to find a suitable pro-
jection to reduce the dimensionality of the dataset [47]. The
PCA algorithm has shown good performance in classification
and regression problems [48]. For example, [49] uses PCA
to classify ground targets, and [50] uses PCA algorithm
to predict the trajectory of UAVs. However, when using
DRL technology to solve path planning problems, the data
learned by the neural network is the real experience obtained
by the UAV agent through interaction with the simulator
or the environment, which is difficult to linearly compress
through PCA algorithm. A more reasonable approach is to
reduce the size of the search space to obtain more dense
and effective data for training neural networks. However, the
PCA algorithm cannot accomplish this task. Similarly, non-
linear manifold dimensionality reduction methods such as
Locally Linear Embedding (LLE) and t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [51] are also unable to
reduce the dimensionality of 3D environmental information.
Moreover, the dimension of the experiences obtained by the
interaction between UAV agents and environment can not be
reduced by either PCA nor t-SNE. At the time of writing this
manuscript, research on the path planning problem of UAVs
in 3D environments is still very limited and mainly focus on
improving algorithms rather than information compression.

In this work, we propose a 3D spatial information com-
pression (3DSIC) method that utilizes the topological fea-
tures of spatial information for compression and simplifica-
tion, reducing information redundancy while retaining key
information. This simplifies the navigation problem in 3D
space into a 2D path planning problem.

B. Contributions
Our contributions can be summarized as follows:

e We propose a 3DSIC method to compress the 3D
spatial information into 2D while retaining important
environmental information, which can greatly reduce
the redundancy of environmental information and the
search space for path planning problems.

VOLUME ,

e We propose the 3DSIC-DQN algorithm, which com-
bines 3DSIC and DQN algorithm. During training,
UAV agents consider both compressed 3D spatial in-
formation and obstacle distribution information at the
current flight altitude, enabling efficient path planning
training in a cluttered 3D space.

e We consider the path planning training in cluttered
continuous 3D MDP environments, then extend 3DSIC
to continuous environments, and combine it with DDPG
algorithm to achieve efficient path planning training
algorithms in complex continuous 3D MDP environ-
ments.

e The simulation results show that the training efficiency
of our proposed 3DSIC algorithm to train DQN agents
is nearly four times higher than using advanced B-
APFDQN algorithms.

The contributions of our paper are compared to the lit-
erature in Table 1. The rest of the paper is organized as
follows. In Section II we introduce the system model. In
Section III, we introduce the 3DSIC algorithm, 3DSIC-DQN
and 3DSIC-DDPG algorithms. In Section IV, we demonstrate
the feasibility of our proposed method through simulation
results and compare with the traditional DRL techniques. In
Section V, we offer our conclusions and propose potential
future directions.

Il. System Model and Problem Formulation

A. System model

In our proposed system, when the deployment point of the
UAV is given, the UAV will plan a collision free path to move
from its current position to the deployment point. Fig. 1
shows a UAV workspace modeled using the VRSink module
of Simulink in Matlab. The yellow dot represents the UAV’s
destination, while the orange rectangular objects represent
obstacles distributed in 3D space. The UAV’s path planning
task is to plan a path as short as possible, so that the UAV
can fly from its current position to the destination marked
in yellow in that 3D space. In this paper, we consider the
UAV path planning problem as a MDP and consider the
situation in both discrete and continuous 3D environments.
A discrete 3D environment is a 3D mesh based on division
of a real 3D working environment, dividing space into many
fixed sized cube nodes. The motion of UAVs is seen as a

FIGURE 1: 3D view of UAV working environment in
Simulink VRSink.

state transition process within these cube nodes. Each cube
node has its 3D coordinates and sorting number. In order to
simplify the motion process of the UAV, we only consider
the motion between adjacent nodes, that is the UAV motion
space A = a; = {Forward, backward, left, right, up, down}.
The continuous 3D space directly uses the 3D workspace
as the emulator model, where the UAV directly uses the
current 3D coordinates to represent the state Si(x¢, s, 2¢)
and complete interaction with the entire state space, where
x4,y and z; are the 3D coordinates at time ¢. The motion
and flight control in continuous 3D space are very complex
and not the focus of this study. Therefore, horizontal flight
speed, horizontal heading angle, and vertical flight speed are
used to represent the action space a(V,*, V,*,9;), where V,*
is horizontal flight speed and its value is limited to (0,2m/s),
V¥ is vertical flight speed and have 3 option values [-1m/s,
0, 1m/s], ¥, is horizontal heading angle satisfy ¥, € (0, 2m)
[35]. Hence, the state update of UAVs in a continuous 3D
environment can be represented by the following formula:

Tip1 = ¢ + Vt'jrl x cos (Jy1) X At
Yeyr = Yo + Vi xsin (9y41) x At (1)
Zt41 = 2t + ‘/;I_),'_l x At

B. Problem Formulation

In this 3D simulation environment, the path planning re-
sult of UAV can be expressed as an ordered path vector
P =[P, P,,...,Pgus], where P; represents the i-th node
in the path, Pj,4 represents the last node in the path. The
ordered vector P satisfies the condition P; = Sgart, Plast =
Send, VD C P satisfies p € S,p ¢ O, where S is the set
of all possible states, Ssiqr+ is the start node, Se,q is the
destination node, and O is the set of all obstacle nodes.

1) Path Planning in discrete space

Explicitly, we consider the path planning problem of UAV as
a MDP, which includes several main parts: state set S, action
set A = a; = {Forward, backward, left, right, up, down},

transfer function 7'(s’|s,a), and reward function R(s'|s,a).
The main advantage of Q-learning is that it uses the time
differential (TD) method (a combination of Monte Carlo and
dynamic programming) for off-line learning, and Bellman
equation can be used to solve the optimal strategy of the
Markov process [52], [53].

The solution of the Bellman equation is based on the op-
timal cumulative expectation V*(s), which can be expressed
as follows [54]:

t=n
V*(s) = mjLXE Z’YtR(St+1,At,St|7T,S) , (2
t=0
where v is the discount factor, ¢ is current time index, 7 is
the action policy which can be presented as the probability
of executing action a at state s. The Q value Q(s,a) is a
function of the action state value, expressed as the expected
accumulation of the action reward value as follows:

Q(s,a) = E[res1 +yres2 + Vrevs + ... Ja,8)], (3)

where 7., is the reward value of next n steps of the current
time index ¢. The update of the Q value is based on the
Bellman’s equation:

Q(st41,at41) = (1 — @)Q(s¢, ar)+

o[R(s0,) + 7 max(Q(su41,a))], @

where « is the learning rate of the agent. If the agent executes
action a; in state s; at time ¢, it will get immediate reward
R(s¢,a¢) and delayed reward max(Q(s¢11,a)). It is not
difficult to see that Q-learning considers not only the current
reward expectation, but also the maximum reward that may
be obtained in the future when making decisions according
to the Q value [55].

However, there is an obvious limitation of using tables
to store Q values. That is, when the working area expands
or the motion freedom of the agent increases, the table size
will grow exponentially. In order to overcome this problem,
DQN has been proposed, which uses deep neural network
to map the relationship between input information and Q
value [56]. This method has many advantages, such as
making Q-learning work in a high-dimensional and complex
environment without worrying about the size of the Q table.
On the other hand, it can adapt to various input signals,
which improves the flexibility of the system [57].

Furthermore, we need a loss function to guide the adjust-
ment of neural network weight. In DQN, the loss function
can be expressed as the expectation of the square of the
difference between the observed value (real value) and the
network predicted value:

Li(0:) = ((Resr +ymax Q(Spsr,a07) -

NG
QSi, Al0))

where 6 is the parameter set of the agent’s network and it
represents the agent’s policy of action. DQN uses a target
network, which has parameters from several steps earlier.

VOLUME ,

A target network is used to estimate Q-values at the step
t + 1. Furthermore, (R:41 + v max Q(Sty1,a’|07)) is the
a/

observed Q value and Q(S;, A¢|9) is the predicted Q value
of the network [58]. With the loss function, we only need to
use the gradient descent method to continuously update the
network weight to achieve the purpose of training [27]. In a
discrete MDP environment, both the state space and action
space are discrete, and the iteration index of the training
process is a discrete time point. At each discrete time point,
the state s; and upcoming actions a; of the UAV can be
obtained.

2) Path Planning in continuous space

However, in a continuous 3D environment, the DQN algo-
rithm faces a fatal problem. It is not difficult to see from (5)
that the calculation of loss requires finding the maximum Q
value among many actions, but the continuous action space is
infinite and it is extremely hard to find the maximum value.
The DDPG algorithm uses the Q function to replace the
process of finding the maximum value in the action space:

max(Q(s, a)) = Q(s, u(sl0)), ©)

where p is the actor network and 6 is the network weight.
There are four neural networks in the DDPG algorithm, g,
i, Q and Q'. Among them, p and p’ are actor network and
target actor network that output actions through input states,
while @, and Q' are critic network and target critic network
that output evaluation value results of state transitions, which
is Q values. In the DDPG algorithm, the random exploration
of UAV agents is achieved by adding noise to the actions
output by the actor network:

a; = u(sg|0*) + N, 7

where N is the noise, and 0* is the network weight for actor
network . The update of the critic network is similar to the
DQN network, using mean square error as the loss function:

1
LZN;(yi—Q(Si,ai|9Q))2y (8

where y; is the actual Q value of s; and a;, Q(s;,a;|09) is
the output of critic network. The update of the target network
can be completed through soft updates after a certain delay.
Similar to a 3D discrete environment, in a 3D continuous
environment, although the state space and action space are
continuous, we can still sample on continuous time line and
determine the corresponding UAV states (3D coordinates)
and actions to be executed (velocity and heading angle) at
these time points.

lll. Proposed Information Compression and Path
Planning Techniques

In this section, our proposed 3DSIC algorithm will be in-
troduced in detail. Furthermore, the 3DSIC-DQN algorithm
will be introduced in detail as a scheme for applying the

VOLUME ,

FIGURE 2: Schematic diagram of 3D space cutting.

3DSIC algorithm in discrete 3D space, while the 3DSIC-
DDPG algorithm will be introduced as a scheme for applying
the 3DSIC algorithm in continuous 3D space.

A. 3D Spatial Information Compression

When conducting path planning in a 3D space, the search
space is too large, and the spatial information that is far
from the current position of the UAV, cannot bring significant
benefits to the current action decision. In addition, changes in
altitude during UAV flight require more energy consumption
than horizontal flight, so in a good action strategy UAVs will
not change flight altitude unless absolutely necessary. In this
consideration, the spatial information of the layers far away
from the current flight layers could be the redundant infor-
mation which lead to a large and complicated search space.
Therefore, we can only focus on the spatial information of
several layers adjacent to the current flight altitude of the
UAV and compress it into 2D as prior information to reduce
the complexity of the UAV path planning.

Based on the above analysis, we believe that it is com-
pletely feasible to compress 3D space information in 3D
space, and the compressed information can also meet the
requirements of collision free path planning for UAVs in 3D
space.

Hence, we propose the following 3D spatial information
compression method. The spatial information required in
the path planning process in a 3D environment includes the
location of the destination and the distribution of obstacles
in space. For the meshed 3D space, the spatial information
is first set to binary, where the non obstacle node is set to
0, and the obstacle node is set to 1. Then we cut the 3D
space in the direction perpendicular to the Z axis to obtain
multiple 2D planes with the same size as shown in Fig. 2. It
is worth noting that the thickness cut along the Z direction
is a predetermined value, and the Z-direction dimension of
this 3D environment is an integer multiple of the cutting
thickness. The cutting thickness can vary in different 3D
environments. Generally, the more cluttered the 3D space,
the smaller the required cutting thickness value, but it should
not be smaller than the size of a UAV in the real world.

Each of the resultant two dimensional planes represents
the distribution of obstacles at its height. The spatial infor-
mation of these planes is two-dimensional, where the n x n
two-dimensional plane space information as shown in Fig. 3
can be expressed as:

S»L‘ll Siln
S, — 5%21 Si?n e (1,2,...,n), 9)
Sml Sinn

where ¢ is the number of the plane, S;1; presents the cube
node of plane 7, X =1 and Y = 1 is free space or obstacle,
if the value of S;11 equals to 1 means this node is obstacle
and if the value of S;1; equals to O that means node S;11
is free space. Then, we can reduce the dimension of 2D
information of each plane, and convert these 2D information
into row vectors as shown in the following:

Sill Siln
Sinl Sznn
(10)

In Fig. 4 we consider an example having a size of n Xnxn
in the 3D space, which is a special case of the more general
case presented previously with 3D space of size m x n X h,
where m, n and h are the length, width, and height of the
space. Hence, we can combine the spatial information of
each 2D plane after dimension reduction to obtain the 3D
spatial information S, which can be expressed as:

S S1n S1,mn
S _ 52.,1 SQ,n 52,.mn (11)
Shai oo Shm oo Shmn

Here, the reduced dimension 3D information has not been
compressed. If we conduct information compression now, the
compressed information will contains the obstacle distribu-
tion of all flight height. When planning the path of UAV, we
only want to consider the obstacle distribution information
of the layers adjacent to the current flight altitude layer of the
UAV. Therefore, we need to introduce a compression field
to limit the range of 3DSIC method.

Since the spatial information meshed is discrete, the
compressed field also needs to be discrete. For example, if
we only consider the current layer of the UAV flight altitude
and the upper and lower 2 layers adjacent to the current layer,
the compression field will have 5 elements. In the section IV,
we will study the effect of number of layers to compress.
The compression field can be expressed as a row vector [3,
whose dimension is determined by the number of layers to
be compressed. For example, with 5 layers compression, 3
can be represented as:

FIGURE 3: Spatial information representation of 2D plane.

n*n*n environment

L7

FIGURE 4: nxnxn 3D environment information dimension
reduction process.

5
B=(p1 p2 ps pa ps).0<p <L) pi=1, (12)
i=1
where p; is the compression coefficient of the i-th layer from
bottom to top in the compression field.
If we do the dot product operation for the compression
factor § and the spatial information of the corresponding
layer after dimension reduction .S, we can get:

S.=08-8
S11 S1n S1in2
(e pa) | T S,
St oo Sen ... Sopa)Y
= (Se(1) Se(2) Se(n) Se(n?))

VOLUME ,

where S. (i) is the compressed spatial information element.
For the example of compressing 5 layers, it can be expressed
as:

Se(i) = p1 X S1i + p2 X S2; + p3 X S3;+
pa X Syi + ps X Ssiyi € (1,2,...,n2).

Here, if the compressed row vector is restored to two-
dimensional plane information, the two-dimensional plane
information is 3D spatial information weighted by the com-
pression factor weight of the current layer and the adjacent
upper and lower four layers of spatial information. The
design of the compression factor value can be based on
any prior information or human experience. For example,
based on the principle of not changing the flight altitude
unnecessarily, the current layer has a certain weight w,
while the adjacent upper and lower layers only have half of
the weight of the current layer, which is 0.5w. Following
this rule, the flight altitude layer further away only has
a weight of 0.25w, and then all layers to be compressed
are normalized. Taking 5-layer compression as an example,
8 = 0.1,0.2,0.4,0.2,0.1. Additionally, the compression
factor can also be designed based on other considerations
such as energy loss, expectation of cost, etc.

The physical meaning of 3DSIC can be explained as
follow: if the value of a node is not 1, it means that there
must be a layer in the 3D space adjacent to the current layer
that can pass through the node without collision. If a node
value is 1, it means that the current layer and adjacent layers
cannot pass through the node.

Theoretically, the compressed spatial information can meet
the requirements of collision free path planning of UAVs in
the 3D space. The size of the search space is reduced from
mXxnxh to mxn. Ina 3D environment with a compression
factor § size of k and an environment of m x n X h, the
compression process involves multiplying a matrix of 1 row
and k columns by a matrix of k£ rows and m X n columns.
Therefore, the time complexity is O(k, m,n) =k X m x n.
In actual training, the size k of 3 is often less than 10, the
values of m and n will not be very large either as discussed
in Section IV. Explicitly, in the most complex scenario we
discussed k = 7, m = 100 and n = 100, the time complexity
O(7,100,100) = 7 x 10*%. Similarly, the space complexity
of this algorithm is low, where during the execution process,
only one matrix multiplication calculation space needs to
be pre-allocated. Taking the compression factor of size k for
compressing environmental information on the xy plane with
size m x n as an example, S(k,m,n) = k? +(2x k+1) x
m X n.

(14)

B. 3DSIC-DQN in Discrete Environment

The 3D space to be compressed is the space that the UAV
agent has explored rather than the real world environment.
Besides, the space that has not been detected by the UAV
can be assumed to be free space. The UAV agent update
the space information and obtain the reward value through

VOLUME ,

the interaction with the real world environment. The output
of the 3DSIC algorithm is a 2D normalized map. This map
is discrete, so we can directly combine 3DSIC and DQN
algorithms to use the compressed normalized discrete map
as the weight coefficients for the DQN reward model and
penalty value model. Therefore, the final reward value for
each state transition can be expressed as:

R(st,at, St+1) = (1 — C(St+1)) X ’I"(St, Clt)"‘
C(st41) X (pe(at) + peot(St41)),

where R(st, at, S¢4+1) is the final reward value of transition
(8¢, az, 8411, R), which will be fed to the neural network
for training, C'(sty1) is the value at position s;11 in the
compressed normalized discrete map, 7(s:, a;) is the reward
value given by the reward model, p.(a;) is the motion
energy cost punishment of action a;, and peo;(S¢y1) is the
collision punishment of position s, in the original 3D map.
Generally, the collision punishment can be set as a very
large negative value. The pseudo-code process of 3DSIC-
DQN is shown in Algorithm 1. The initialization part of the
3DSIC-DQN algorithm is similar to traditional DQN, with
the only difference being that it needs to compress spatial
information using the 3DSIC algorithm at the beginning of
each episode to obtain an initialized 2D map. In addition,
during the training process, after each action is executed, it
is necessary to first detect whether the current flight altitude
has changed. If there is a change, the compressed 2D map
needs to be updated through the 3DSIC algorithm. Then,
the reward is evaluated and the state transition experience is
generated.

5)

C. 3DSIC-DDPG in Continuous Environment

In a 3D continuous environment, we can also divide the
3D environment into many equally sized cube nodes, and
then use these nodes to compress 3D spatial information.
However, since the workspace and action space are both
continuous, the coordinates of the UAV may not be integers.
Therefore, for each node, there is a corresponding range
Crange(x) and Crqynge(y), and when the current coordinates
of the UAV are in the range of node (7,7), that is when
2 € Crange(z;) and ¥, € Crange(y;), the UAV is con-
sidered to be in node cube (i,7). It is worth noting that
we need to set the duration At of each vertical action to
precisely allow the UAV to switch altitude to the integer
z index of the discrete 3D environment, which can be
presented as V;ﬁl X At = Azjnger. The pseudo-code process
of 3DSIC-DDPG is shown in Algorithm 2. It is worth
noting that in a continuous 3D MDP environment, each C(-)
records compressed value of each node and a specific range
constraint for each node, so the node value C(s) can be
determined by the x and y coordinates of s.

IV. Simulation Results
In this section, computer simulations are used to validate,
analyze and discuss the algorithms proposed in this paper.

Algorithm 1 Deep Q-Network algorithm based on 3D spatial
information compression in discrete 3D MDP environment

Algorithm 2 DDPG algorithm based on 3D spatial informa-
tion compression in continuous 3D MDP environment

1: Initialize experience replay memory M to capacity 7.
2: Initialize the network weight randomly to 6.
3: for episode = 1 to M, do
4: Initialize sequence s; = z; and prepossessed se-
quence ¢1 = ¢(s1)
5: Initialize compressed normalized map by execute
3DSIC algorithm with 8 and s1(%).
fort=1to 7, do
According to the value of €, choose the random
exploration strategy or the current network output
A(6) to determine the current action.
8: if s141(2) # s¢(z) then
: Update compressed normalized map by execute
3DSIC algorithm with 8 and s;41(2).
10: end if
11: Execute the action and calculate the reward value
R(St,at,5t+1) = (1 — C(St+1)) X T(St7at) +
C(st41) X (Pelat) + peot(st+1)) -

N

12: Save the transition set (s, a;, Ry, S¢+1) into M.

13: Sample random mini-batch I from M and do
gradient descent of (5) to update network weight
0.

14: end for

15: end for

The simulation experiments are divided into three parts.
The first part uses the B-APFDQN [45], which is a high
performance DQN algorithm that can do path planning tasks
in 3D environment, DDPG and fast recurrent stochastic
value gradient (FRSVG) [35]. The FRSVG technique is
an advanced value gradient based DRL technique proposed
in [35], where detailed pseudo code is presented. Our
simulations use these three techniques combined with 3D
spatial information compression to train UAV agent for 20
runs in a 100 x 100 x 50 3D cluttered urban environment,
where we compare the training efficiency with those DRL
algorithms without 3DSIC in the same 3D environment. The
second part is the simulation of collision free path planning
rate of DQN, DDPG and FRSVG with and without 3DSIC
algorithm. The third part is the simulation of 3DSIC-DQN
UAV agents training with different size of compression factor
B, corresponding to compressing different number of layers.

A. Training Efficiency of 3DSIC

We consider the scenario of UAV deployment in a real urban
environment as shown in the satellite image of Fig. 5. In this
scenario, the UAV performs the path planning task in the
central area of the city with buildings of different heights.
We chose an area near the Museum of London and used
a shadow index algorithm [58] to estimate the height of
the building in the environment through satellite images,
where the size of this area is measured as 200 meters x 200

Initialize experience replay memory M to capacity 7.
2: Randomly initialize the actor network u(s|0*) with
weight 6%,
Randomly initialize the critic network Q(s, a|0%) with
weight 69,
4: C9py networks x4 and @) to get target networks u/ and

for episode = 1 to M, do
6: Initialize a random process N for action exploration.
Initialize compressed normalized map by execute
3DSIC algorithm with 8 and s1(%).
8: fort=1toT, do
Select action a; = u(s;|0") + N, and execute a; to
get state sy41.
10: if s141(2) # s:(z) then
Update compressed normalized map by execute
3DSIC algorithm with 8 and s;41(2).
12: end if
Calculate reward R; = (1 — C(i,7)) X (8¢, ar)
C(Zvj) X (pe(at) +pcol(5t+1))7 Ti41 € Crange(xi)
and Yi+1 € Crange(yj)

14: Save the transition set (s¢11, ¢, ar, Ry) into M.
Sample random mini-batch I from M
16: Set Yi = R7 + "}/Q (5i+17ﬂ/(51+1|9'u)‘QQ)

Update critic network by minimizing the loss: L =
&Y (i = Q (s1,0il09))”

18: Update actor network using sam-
pled policy gradient: Voud =
% ZZ V. Q(s, a|9Q)|s=sqz,a=u(si)v9*‘ p(sl0")]s,
Update target networks after K steps:
09" «— 109 + (1 — 7)Y
O TOF + (1 — 7)o"

20: end for

end for

meters. While the size of UAV should not exceed the size
of discrete space node, the rotor UAV generally has a size
smaller than 2 meters X 2 meters X 1 meter, and the height
of buildings do not exceed 50 meters. Based on the analysis
above, we discretize the continuous environment model to a
100 x 100 x 50 discrete 3D environment. In this environment,
the fixed flight altitude of the UAV is set at 20 meters above
the ground, which is about 6 floors high. In the environment
shown in Fig. 5, the UAV will start from the area with dense
buildings in the top left corner and plan a collision free path
to the target point in the bottom right corner of the map.
After being processed and modeled by the shadow index
algorithm of [59], the working environment in the simulator
is shown in Fig. 6, which is the 3D environment modeled
based on the distribution of obstacles and the height of
each obstacles estimated by shadow index algorithm. The 3D
MDP environment for B-APFDQN is a grid world generated

VOLUME ,

[sl dams
FIGURE 5: Satellite image of the real experimental environ-
ment.

100 5 60 80 100

FIGURE 6: Path planning results of UAV in a simulator
environment.

based on the binary map, while the 3D environment for
DDPG and FRSVG is a continuous numerical space based
on the binary map. After the UAV is trained by B-APFDQN,
DDPG and FRSVG algorithms based on the 3DSIC, it can
quickly plan a collision free flight path. The path planning
results in the simulator are also shown in Fig. 6, where the
red trajectory is a path planning result of the UAV agent,
where the surface shows the distribution of buildings.

The hyper-parameters of B-APFDQN in the experiment
are shown in Table 2, where we set the size of the mini-
batch for every single training to double of the environment
size index IV, and the size of the experience pool is set to
100000 times of the environment size index N to ensure
the experience can include sufficient transition experiences
of different episodes. We change the frequency of € value
reduction to one reduction per episode rather than one

VOLUME ,

TABLE 2: Hyper-parameters of Deep Q-network.

Parameter Value Definition

The sampling size
of each

Mini-batch 2x N training, N is

the size of N X N

environment.

Discount factor

Capacity of
experience pool,
N is the
size of N X N

environment.

n N x 100000

Possibility to select
random actions,
The initial
¢ 0.9:0.01:0.1 value is 0.9,
and the minimum
value is 0.1.

The decline step of

each episode is 0.01.

reduction after a certain number of agent exploration steps,
which will be 0.9 initially, with a decrease of 0.01 for each
episode, until it dropped to 0.1. Such changes are conducive
to the exploration of agents in large scale environments.

In this experiment, the network for DQN has four inputs,
which include the 3D coordinates and previous action exe-
cuted, and has one output of action, while employing two
fully connected hidden layers, while each layer contains 128
neurons. The activation function uses rectified linear unit
(ReLu), where the actor neural network structure of 3DSIC-
DQN and B-APFDQN is shown in Fig. 7. On the other
hand, the neural network for 3DSIC-DDPG and FRSVG
has the same structure, which has 3 inputs including the
3D coordinates and it has 3 outputs corresponding to the
vertical velocity, the horizontal velocity and the horizontal
direction angle, with two fully connected hidden layers,
where each layer contains 256 neurons. The actor neural
network structure of DDPG and FRSVG is shown in Fig. 8.

Considering the fairness of experimental comparison, we
adopted DNN as the hidden layer, which allows for the use
of exactly the same neural network structure before and after
spatial information compression, thus eliminating the perfor-
mance and training efficiency impact caused by differences
in neural network structure. The hyper-parameters of the
neural network training for DDPG and FRSVG are shown
in Table 3. For the energy consumption of the UAV, [60]
derived a simplified energy consumption model for UAVs,
where the energy consumption of UAVs vertical motion can
be expressed as:

3 Vl—i—at 2
Pvertical(t) :R) (1 + (]2”>
tip
%
V, +at|* ||V +at|?
+P1< Ly Vit Vi) "
4vg 2u;

where V; is the initial velocity and a is the acceleration or
deceleration, Py and P; are functions of speed related to the
physical properties of the UAV and the flight environment,
the tip speed of the rotor blade Uy;, and the mean rotor
induced velocity vg. In the horizontal direction, the power
consumption at a speed of v(¢) is

Phrorizontal (t) = ”F””V(t)Ha

where F is the pulling force, v(t) = ||V, + at| is the
instantaneous velocity at time ¢ . When flying at a constant
speed of V', ||F|| = dopsAV?/2 equals to the fuselage drag
D = pSV? /2, where S is the rotor solidity, A is the rotor
disc area, p is the air density.

In the reward model for all DRL agents, the penalty
value for all horizontal movements is -0.5, the penalty value
for vertical movements is -2, and the penalty value of
collision equals to the negative value of the reward needed
for the UAV to reach its destination. This setting reduces
the frequency of UAV changing flight altitude and keep the
UAV away from potential collision. However, this traditional
reward model can lead to the problem of sparse rewards. [32]
proposes a cumulative reward model that can effectively
solve the problem of sparse rewards caused by traditional
reward models. The representation of cumulative reward
model in 2D environment is:

C
V(@ =24+ (y —ya)? x D(z,y,1)’
(16)
where (x,y) is the destination coordinates, [is the size of
the safety range, C' is a reward constant, and D is the spatial
obstacle density in the adjacent space of the current node. In
the cumulative reward model, the collision penalty value is
equal to —C'. More explicitly, the value of C is half or less
of the reward value for arriving at the destination, while D
can be expressed as:

Reward(z,y,l) =

1+ Obs(x,y,l
D(x’y’l):S(x;l))’

where S(z,y,1) is the number of points in the adjacent
points in size ! square of the current point (z,y). The
2D form of the cumulative reward model can be directly
applied to compressed 2D environments by setting the value
of Obs(x,y,l) to the sum of the node values within the
range | of (x,y) nodes in the compressed map, because
the compressed value also contains information from all
compressed layers. If we consider applying the cumulative
reward model to the original 3D environment, we need to

a7

Fully Connected
128 Neurons

Fully Connected
128 Neurons

4 Inputs 1 Gutput

FIGURE 7: Actor neural network structure of 3DSIC-DQN
and B-APFDQN.

Fully Connected Fully Connected
256 Neurons 256 Neurons

3 Inputs 3 Outputs

FIGURE 8: Actor neural network structure of 3DSIC-DDPG
and FRSVG.

extend it to 3D, which can be expressed as:

C
R(z,y,2,1) = /G 20r (s (csa)2xDwn (18

where z is the current z coordinate and z, is the z coordinate
of the destination.

Fig. 9 shows the average learning curve of 30 runs
of B-APFDQN agent and 30 runs of 3DSIC-DQN agent,
where we can see that the runs 3DSIC-DQN agent converge
on average at 792.3 episodes while the B-APFDQN agent
converge on average at 3191.4 episodes. Hence, the training
efficiency of the 3DSIC-DQN scheme is 4.028 times than
that of the B-APFDQN scheme. It is not difficult to see from
the Fig. 9 that 3DSIC-DQN not only converges quickly but
also has a smooth curve, while B-APFDQN’s learning curve
converges slowly and fluctuates greatly. The convergence
value of B-APFDQN is slightly lower than that of 3DSIC-
DQN after adding the same ratio of random exploration after
the curves of the two algorithms converged. This indicates
that the path planning quality of the 3DSIC-DQN agent may

VOLUME ,

TABLE 3: Hyper-parameters of the DDPG and FRSVG
model.

Parameter Value Definition
The sampling size of
Mini-batch 2xX N each training, IV is the
size of N X N environment.
v 0.95 Discount factor
Capacity of experience
n N x 100000 pool, IV is the
size of N X N environment.
- 0.001 Learning rate of actor
and critic networks
OInit 1.0 Initial exploration variance
OMin 0.05 Final exploration variance
M 10000 Maximum number of
training episodes
K 10 Steps delay of target
networks update

be slightly better than that of the B-APFDQN. While 3DSIC-
DQN and B-APFDQN use the same reward model, higher
reward values mean fewer actions or lower energy were used
to achieve the target. The average number of actions of
3DSIC-DQN path planning result is 218.53 actions, while
that of B-APFDQN is 226.80 actions, which proves the
above analysis.

Fig. 10 shows the average learning curve of 20 runs of
DDPG agent and 20 runs of 3DSIC-DDPG agent, where it
can be seen that the 3DSIC-DDPG agent converge faster
than the DDPG agent. Specifically, traditional DDPG agents
converge on average at 1.73 x 10* episodes while 3DSIC-
DDPG agents converge on average at 4.47 x 10 episodes.
The average learning curve of the UAV agents trained
with traditional DDPG algorithm fluctuates significantly, and
the average convergence value after adding the same ratio
of random exploration noise after convergence has more
significant fluctuations compared to 3DSIC-DDPG. Besides,
the average number of actions of 3DSIC-DDPG is 614.3,
while that of DDPG is 617.6 actions.

Fig. 11 shows the average learning curve of 20 runs of
FRSVG agent and 3DSIC-FRSVG agent, where we compare
our proposed 3DSIC scheme to the FRSVG scheme proposed
in [35]. As can be seen in Fig. 11 the training efficiency
of the combined 3DSIC-FRSVG is higher than the original
FRSVG in 3D environment. It is worth noting that in the
simulation results, the learning curve of 3DSIC-FRSVG is
only retained up to 10000 episodes, and the subsequent part
is based on the results of average padding. Based on this
simulation result, the FRSVG algorithm using 3DSIC has
improved training efficiency by nearly 2 times compared to
the original algorithm, and the learning curve is as smooth
as the original algorithm. Therefore, 3DSIC has been proven

VOLUME ,

1000

500 -

3DSIC-DQN | |
B-APFDON | |

-500 |

-1000

Reward

-1500

-2000

-2500 -

-3000

-3500 -

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Training episode number

FIGURE 9: Learning curve of 3DSIC-DQN and DQN agents
in path planning training.

2000

1000 -

-1000 -

-2000 -

Reward

DDPG
3DSIC-DDPG

-3000

-4000

-5000 -

-6000 : ‘ ‘
0 0.5 1 1.5 2
Training episode number x10*

FIGURE 10: Learning curve of 3DSIC-DDPG and DDPG
agents in path planning training.

to be a plug and use module combined with different DRL
algorithms for UAV path planning tasks in 3D environments.

B. Collision Free Path Planning Rate of 3DSIC

In the path planning tests conducted after the agents of
3DSIC-DQN, 3DSIC-DDPG, and 3DSIC-FRSVG satisfy the
convergence conditions, they can all achieve collision free
path planning. This can also be seen from the learning curve,
as the huge penalty value of collisions can cause a significant
decrease in the reward curve, which is not reflected in
their learning curve. However, this is only the result of the
training part, and in actual deployment, a certain amount
of random exploration is often added to track the dynamic
changes in the environment. In the DQN algorithm, random
exploration is achieved through the e-greedy algorithm, while
in the DDPG and FRSVG algorithms, random exploration is

11

2000

3DSIC-FRSVG
FRSVG

-2000

-4000

Reward

-6000

-8000

-10000 : ‘ ‘
0 0.5 1 1.5 2
Training episode number x10*

FIGURE 11: Learning curve of 3DSIC-FRSVG and FRSVG
agents in path planning training.

TABLE 4: Collision free path planning probability of differ-
ent DRL algorithms.

Type of agent m.m.lber of Total number | Collision
collision paths of test free rate

3DSIC-DQN 181 3000 93.96%
B-APFDQN 164 3000 94.53%
3DSIC-DDPG 217 2000 89.15%
DDPG 149 2000 92.55%
3DSIC-FRSVG 105 2000 94.75%
FRSVG 52 2000 97.40%

achieved by adding random noise to the output of the action
network. In order to compare the collision free path planning
probabilities of different algorithms in actual deployment, we
conducted 100 path planning tests on each trained 3DSIC-
DQN, B-APFDQN, 3DSIC-DDPG, DDPG, 3DSIC-FRSVG,
and FRSVG agent, and recorded the number and probability
of collision free path planning. The experimental results
are shown in Table 4, where we added random exploration
with a probability of 0.1 for 3DSIC-DQN and B-APFDQN.
Random noise with a mean of 0 and a variance of 0.05
was added to 3DSIC-DDPG, DDPG, 3DSIC-FRSVG, and
FRSVG. Additionally, for the fairness of the simulations,
the random generator seeds used for tests with the same
serial number are the same. It is not difficult to see from the
simulation results that the application of 3DSIC does have an
impact on the probability of collision free path planning. The
highest among them is the DDPG algorithm, which reduces
the probability of collision free path planning by 3.4%.
Meanwhile, the success rate of collision free path planning
in 3DSIC-DQN is only reduced by 0.57% compared to B-
APFDQN, and its impact can be almost ignored.

TABLE 5: Different compression factors

Parameter Value Definition
Bi1 NaN No use of 3DSIC
P (02,06, 02) compress factor

1 oo for 3 layers.
(0.1, 0.2, 0.4, compress factor
B
s 0.2, 0.1) for 5 layers.
(0.05, 0.1,
3 0.15, 0.4, compress factor
i 0.15, 0.1, for 7 layers.
0.05)
(0.1, 0.2, 0.4,

Br1 02, 0.1) compress factor 1
P (0.05, 0.2, 0.5, factor 2
f2 compress factor

0.2, 0.05)

It can be proved that the combination of 3DSIC algorithm
and DRL algorithms greatly improve the training efficiency,
and the reduction in the quality of path planning is limited.

C. Training Efficiency Comparison of Different 3DSIC
Compression Factor

In order to better compare the performance of 3DSIC
schemes that compress different numbers of layers, we
designed a 20 x 20 x 20 complex forest environment as shown
in Fig. 12, which can obtain more number of simulation
runs than 100 x 100 x 50 environment, where black dot
represents the start point, the red dot denotes the destination,
and other filled dots are the obstacles at different height.
In this simulation experiment, the UAV agents are trained
using different number of compression layers, not using
compression, and using the same compression layer but
different compression factors, with 1 layer (only considering
the current flight altitude), 3 layers, 5 layers, and 7 layers.
More specifically, the size and value of the compression
factor 5 used in training UAV agents will be set different,
which can be find in Table 5, and those compression factors
will be used to train 10 runs of UAV agent and draw their
average learning curves to compare training efficiency under
different compression factors.

We compared the learning curve of 1 layer with §;; =
(1), 3 layers with 83 = (0.2,0.6,0.2), 5 layers with
Bis = (0.1,0.2,0.4,0.2,0.1) and 7 layers with 57 =
(0.05,0.1,0.15,0.4,0.15,0.1,0.05). Let us consider 53 as
an example, the middle element in the compression factor
vector represents the compression weight of the current layer,
while the first and third elements represent the compression
weight of the above and below layers of the current layer, re-
spectively. The average learning curve of 10 runs of training
agent for different compression layers are show in Fig. 13.
The simulation results show that using more compression
layers leads to an improvement in learning efficiency, but
the improvement becomes less significant as the number of

VOLUME ,

20

FIGURE 12: Cluttered 3D forest environment.

layers increases. When the 3DSIC algorithm is not used,
changes in flight altitude may lead to a significant slowdown
in the learning rate, as shown by several “gentle steps” in
the blue curve in Fig. 13. Moreover, in terms of the time
required for training, more training time for each episode is
required when more compression layers are considered.

Additionally, for the same number of compression layers,
different compression factors may have some impact on the
training efficiency, although not significant, which is shown
in Fig. 14. Explicitly, in Fig. 14, it can be seen that the two
learning curves are very similar with compression factor 1
using 81 = (0.1,0.2,0.4,0.2,0.1) and compression factor 2
using B = (0.05,0.2,0.5,0.2,0.05). Therefore, selecting
the compression factors, and the number of layers to be
compressed represents a trade off of performance and train-
ing time requirements. We suggest to use fewer compression
layers in indoor dense and complex environments, which not
only improves compression efficiency, but also reduces the
receptive field of interaction between agents and the environ-
ment, which is beneficial for agents to consider planning for
local situations. For open and sparse obstacle environments,
we recommend using more compression layers. Although it
will increase the demand for computing resources, it will be
more accurate for global planning. If the compression factor
is designed based on energy consumption, then when the
energy consumption of vertical motion is much greater than
that of horizontal motion, fewer compression layers should
be considered, and the weight of the current layer should be
increased and reduce the weight of heights away from the
current layer. If the energy consumption of increasing height
is greater than that of decreasing height, then the layers with
a higher height than the current layer should have a smaller
weight than the layers with a lower height than the current
layer.

Fig. 15 shows the average learning curve of 10 runs of
agent training with 2D traditional reward model, 10 runs

VOLUME ,

e | Layer

= 3 Layers
5 Layers
— 7 Layers

Reward

0 260 4(;0 660 8(‘)0
Training episode number
FIGURE 13: Learning curve of DQN-3DSIC with different
compression layers.

1000

factor 1
= facotr 2

Reward

0 200 200 600 800
Training episode number
FIGURE 14: Learning curve of DQN-3DSIC with different
compression factors.

1000

of agent training with 3D traditional reward model, 10 runs
of training with 2D cumulative reward model and 10 runs
of agent training with 3D cumulative reward model in a
20 x 20 x 20 3D environment shown in Fig. 12. All agents in
the simulation use (31 as the compression factor. To minimize
the impact of random exploration, each agent with the same
index number uses the same random number generator seed.
It is not difficult to see that using the cumulative reward
model in the compressed 2D environment has the fastest
convergence speed. Traditional reward model with the 2D
environment after compression converged earlier than the
cumulative reward model with the original 3D environment.
This is because the small environment size does not have
serious reward sparsity problem.

13

= Traditional Reward 2D
Traditional Reward 3D |
Cumulative Reward 3D
Cumulative Reward 2D

Reward

600
0 200 400 600 800

Training episode number

FIGURE 15: Learning curve of DQN-3DSIC with different
reward models in 20 x 20 x 20 3D environment.

1000

As the size of the environment increases, the rewards
of data in the experience pool become sparser. Fig. 15
shows the average learning curves of 40 runs UAV agent
with 4 different reward modes trained in a 40 x 40 x 40
3D environment. Similarly, each reward model trained 10
runs of the UAV agent to obtain an average learning curve.
From Fig. 15, it can be observed that when the environment
size is expanded to 40, the cumulative reward model brings
a significant improvement in training efficiency. Whether
combined with the compressed 2D environment or the orig-
inal 3D environment, the cumulative reward models exhibits
higher learning efficiency than the traditional reward models.
Therefore, the problem of excessive search space and sparse
rewards is related. More specifically, data that is not sparse
in low dimensional or small size spaces will exhibit sparsity
in large size or high-dimensional spaces.

V. Conclusions

In this paper, we proposed a 3D spatial information compres-
sion method for significantly reducing the search space for
path planning problems of UAVs in 3D MDP environments.
This method reduces the redundancy of environmental in-
formation while keeping the key spatial information. Our
proposed 3D spatial information compression method can be
combined with various DRL algorithms to train UAV agents
more efficiently. Therefore, the 3DSIC algorithm can adapt
to both continuous and discrete 3D MDP environments.
The simulation experiment results show that the training
efficiency of the DQN agent using 3DSIC for compres-
sion is 4.028 times higher than that of the B-APFDQN
algorithm without 3DSIC, when considering discrete 3D
space. The efficiency of training UAV agents using 3DSIC-
DDPG algorithm is 3.9 times higher than that of training
UAV agents using traditional DDPG algorithm, when con-
sidering a continuous 3D MDP environment. The FRSVG

Traditional Reward 2D
Traditional Reward 3D
Cumulative Reward 3D
Cumulative Reward 2D

-200

-400

-600

Reward

-800

-1000

-1200

1500 2000 2500 3000 3500
Training episode number

FIGURE 16: Learning curve of DQN-3DSIC with different
reward models in 40 x 40 x 40 3D environment.

-1400 g
0

500 1000 4000

algorithm, which has been proven to be efficient, attains an
improved training efficiency when combined with the 3DSIC
algorithm. Finally, using more compression layers exhibits
higher training efficiency, but this improvement becomes less
pronounced as the number of layers increases.

REFERENCES

[1] Jeongeun Kim, Seungwon Kim, Chanyoung Ju, and Hyoung Il Son.
Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of
Platform, Control, and Applications. IEEE Access, 7:105100-105115,
2019.

[2] Mingze Zhang, Yifeng Xiong, Soon Xin Ng, and Mohammed El-
Hajjar. Content-Aware Transmission in UAV-Assisted Multicast
Communication. IEEE Transactions on Wireless Communications,
22(11):7144-7157, 2023.

[3] Suttinee Sawadsitang, Dusit Niyato, Puay Siew Tan, Ping Wang,
and Sarana Nutanong. Shipper Cooperation in Stochastic Drone
Delivery: A Dynamic Bayesian Game Approach. IEEE Transactions
on Vehicular Technology, 70(8):7437-7452, 2021.

[4] Mingze Zhang, Mohammed EI-Hajjar, and Soon Xin Ng. Intelligent
Caching in UAV-Aided Networks. IEEE Transactions on Vehicular
Technology, 71(1):739-752, 2022.

[5] Wu Yi, Chen Liming, Kong Lingyu, Zhang Jie, and Wang Miao.
Research on application mode of large fixed-wing UAV system on
overhead transmission line. In 2017 IEEE International Conference
on Unmanned Systems (ICUS), pages 88-91, 2017.

[6] Mingze Zhang, Yifeng Xiong, Soon Xin Ng, and Mohammed El-
Hajjar. Deployment of Energy-Efficient Aerial Communication Plat-
forms With Low-Complexity Detection. IEEE Transactions on Vehic-
ular Technology, 72(9):12016-12030, 2023.

[7] Chuanzheng Li, Chuang Xue, and Yue Bai. Experimental investigation
on aerodynamics of nonplanar rotor pairs in a multi-rotor UAV. In
2019 14th IEEE Conference on Industrial Electronics and Applications
(ICIEA), pages 911-915, 2019.

[8] Xukai Zhong, Yiming Huo, Xiaodai Dong, and Zhonghua Liang. Deep
Q-Network Based Dynamic Movement Strategy in a UAV-Assisted
Network. In 2020 IEEE 92nd Vehicular Technology Conference
(VTC2020-Fall), pages 1-6, 2020.

[9] Caiwu Ding and Lu Lu. A Tilting-Rotor Unmanned Aerial Vehicle for
Enhanced Aerial Locomotion and Manipulation Capabilities: Design,
Control, and Applications. IEEE/ASME Transactions on Mechatronics,
26(4):2237-2248, 2021.

VOLUME ,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Haoxin Liu and Yonghui Zhang. ASL-DWA: An Improved A-Star
Algorithm for Indoor Cleaning Robots. [EEE Access, 10:99498—
99515, 2022.

Gang Tang, Conggiang Tang, Christophe Claramunt, Xiong Hu, and
Peipei Zhou. Geometric A-Star Algorithm: An Improved A-Star
Algorithm for AGV Path Planning in a Port Environment. [EEE
Access, 9:59196-59210, 2021.

Nelapati Lava Prasad and Barathram Ramkumar. 3-D Deployment
and Trajectory Planning for Relay Based UAV Assisted Cooperative
Communication for Emergency Scenarios Using Dijkstra’s Algorithm.
IEEE Transactions on Vehicular Technology, 72(4):5049-5063, 2023.
Jie Qi, Hui Yang, and Haixin Sun. MOD-RRT*: A Sampling-Based
Algorithm for Robot Path Planning in Dynamic Environment. /EEE
Transactions on Industrial Electronics, 68(8):7244-7251, 2021.

Reza Mashayekhi, Mohd Yamani Idna Idris, Mohammad Hossein
Anisi, Ismail Ahmedy, and Thsan Ali. Informed RRT*-Connect: An
Asymptotically Optimal Single-Query Path Planning Method. [EEE
Access, 8:19842-19852, 2020.

Pritam Ojha and Atul Thakur. Real-Time Obstacle Avoidance Algo-
rithm for Dynamic Environment on Probabilistic Road Map. In 202/
International Symposium of Asian Control Association on Intelligent
Robotics and Industrial Automation (IRIA), pages 57-62, 2021.
Zhenhua Pan, Chengxi Zhang, Yuanging Xia, Hao Xiong, and Xi-
aodong Shao. An Improved Artificial Potential Field Method for Path
Planning and Formation Control of the Multi-UAV Systems. [EEE
Transactions on Circuits and Systems II: Express Briefs, 69(3):1129—
1133, 2022.

Jiayi Sun, Jun Tang, and Songyang Lao. Collision Avoidance for Co-
operative UAVs With Optimized Artificial Potential Field Algorithm.
IEEE Access, 5:18382-18390, 2017.

Cong Zhao, Yifan Zhu, Yuchuan Du, Feixiong Liao, and Ching-Yao
Chan. A Novel Direct Trajectory Planning Approach Based on Genera-
tive Adversarial Networks and Rapidly-Exploring Random Tree. IEEE
Transactions on Intelligent Transportation Systems, 23(10):17910-
17921, 2022.

Jie Qi, Hui Yang, and Haixin Sun. MOD-RRT*: A Sampling-Based
Algorithm for Robot Path Planning in Dynamic Environment. /EEE
Transactions on Industrial Electronics, 68(8):7244-7251, 2021.
Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and
Max Q.-H. Meng. Neural RRT*: Learning-Based Optimal Path
Planning. IEEE Transactions on Automation Science and Engineering,
17(4):1748-1758, 2020.

Jingcheng Zhang, Yugiang An, Jianing Cao, Shibo Ouyang, and
Lei Wang. UAV Trajectory Planning for Complex Open Storage
Environments Based on an Improved RRT Algorithm. /EEE Access,
11:23189-23204, 2023.

Matej Novosad, Robert Penicka, and Vojtech Vonasek. CTop-
PRM: Clustering Topological PRM for Planning Multiple Distinct
Paths in 3D Environments. IEEE Robotics and Automation Letters,
8(11):7336-7343, 2023.

Yanli Chen, Guigiang Bai, Yin Zhan, Xinyu Hu, and Jun Liu. Path
Planning and Obstacle Avoiding of the USV Based on Improved ACO-
APF Hybrid Algorithm With Adaptive Early-Warning. IEEE Access,
9:40728-40742, 2021.

Yuting Wan, Yanfei Zhong, Ailong Ma, and Liangpei Zhang. An
Accurate UAV 3-D Path Planning Method for Disaster Emergency
Response Based on an Improved Multiobjective Swarm Intelligence
Algorithm. [EEE Transactions on Cybernetics, 53(4):2658-2671,
2023.

Zhe Zhang, Jian Wu, Jiyang Dai, and Cheng He. A Novel Real-Time
Penetration Path Planning Algorithm for Stealth UAV in 3D Complex
Dynamic Environment. IEEE Access, 8:122757-122771, 2020.

Huan Liu, Guohua Wu, Ling Zhou, Witold Pedrycz, and Ponnuthu-
rai Nagaratnam Suganthan. Tangent-Based Path Planning for UAV
in a 3-D Low Altitude Urban Environment. [EEE Transactions on
Intelligent Transportation Systems, 24(11):12062-12077, 2023.
Jiehong Wu, Ya’nan Sun, Danyang Li, Junling Shi, Xianwei Li,
Lijun Gao, Lei Yu, Guangjie Han, and Jinsong Wu. An Adaptive
Conversion Speed Q-Learning Algorithm for Search and Rescue UAV
Path Planning in Unknown Environments. [EEE Transactions on
Vehicular Technology, 72(12):15391-15404, 2023.

Fatemeh Rekabi-Bana, Junyan Hu, Tomas Krajnik, and Farshad Arvin.
Unified Robust Path Planning and Optimal Trajectory Generation for

VOLUME ,

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Efficient 3D Area Coverage of Quadrotor UAVs. IEEE Transactions
on Intelligent Transportation Systems, 25(3):2492-2507, 2024.

Hao Xie, Dingcheng Yang, Lin Xiao, and Jiangbin Lyu. Connectivity-
Aware 3D UAV Path Design With Deep Reinforcement Learning.
IEEE Transactions on Vehicular Technology, 70(12):13022-13034,
2021.

Lijuan Zhang, Jiabin Peng, Weiguo Yi, Hang Lin, Lei Lei, and Xiaoqin
Song. A State-Decomposition DDPG Algorithm for UAV Autonomous
Navigation in 3-D Complex Environments. [EEE Internet of Things
Journal, 11(6):10778-10790, 2024.

Hu Teng, Ishtiaq Ahmad, Alamgir Msm, and Kyunghi Chang. 3D
Optimal Surveillance Trajectory Planning for Multiple UAVs by Using
Particle Swarm Optimization With Surveillance Area Priority. /EEE
Access, 8:86316-86327, 2020.

Zhipeng Wang, Soon Xin Ng, and Mohammed EI-Hajjar. Deep
reinforcement learning assisted uav path planning relying on cumu-
lative reward mode and region segmentation. I[EEE Open Journal of
Vehicular Technology, 5:737-751, 2024.

Chao Wang, Jian Wang, Yuan Shen, and Xudong Zhang. Autonomous
Navigation of UAVs in Large-Scale Complex Environments: A Deep
Reinforcement Learning Approach. [EEE Transactions on Vehicular
Technology, 68(3):2124-2136, 2019.

Lixin Lyu, Hong Jiang, and Fan Yang. Improved Dung Beetle
Optimizer Algorithm With Multi-Strategy for Global Optimization and
UAV 3D Path Planning. IEEE Access, 12:69240-69257, 2024.
Yuntao Xue and Weisheng Chen. A UAV Navigation Approach Based
on Deep Reinforcement Learning in Large Cluttered 3D Environments.
IEEE Transactions on Vehicular Technology, 72(3):3001-3014, 2023.
Changsheng Huang, Yanpu Zhao, Mengjie Zhang, and Hongyan
Yang. APSO: An A*-PSO Hybrid Algorithm for Mobile Robot Path
Planning. [EEE Access, 11:43238-43256, 2023.

Zhenhua Yu, Zhijie Si, Xiaobo Li, Dan Wang, and Houbing Song.
A Novel Hybrid Particle Swarm Optimization Algorithm for Path
Planning of UAVs. [EEE Internet of Things Journal, 9(22):22547—
22558, 2022.

Yu Wu, Kin Huat Low, Bizhao Pang, and Qingyu Tan. Swarm-Based
4D Path Planning For Drone Operations in Urban Environments. /EEE
Transactions on Vehicular Technology, 70(8):7464-7479, 2021.
Mehdi Maboudi, MohammadReza Homaei, Soohwan Song, Shirin
Malihi, Mohammad Saadatseresht, and Markus Gerke. A Review on
Viewpoints and Path Planning for UAV-Based 3-D Reconstruction.
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 16:5026-5048, 2023.

Ronglei Xie, Zhijun Meng, Lifeng Wang, Haochen Li, Kaipeng Wang,
and Zhe Wu. Unmanned Aerial Vehicle Path Planning Algorithm
Based on Deep Reinforcement Learning in Large-Scale and Dynamic
Environments. IEEE Access, 9:24884-24900, 2021.

Liangheng Lv, Sunjie Zhang, Derui Ding, and Yongxiong Wang. Path
Planning via an Improved DQN-Based Learning Policy. IEEE Access,
7:67319-67330, 2019.

David Silver Volodymyr Mnih, Koray Kavukcuoglu. Human-level
control through deep reinforcement learning. Nature, page 529-533,
2015.

Shimin Gong, Meng Wang, Bo Gu, Wenjie Zhang, Dinh Thai Hoang,
and Dusit Niyato. Bayesian Optimization Enhanced Deep Reinforce-
ment Learning for Trajectory Planning and Network Formation in
Multi-UAV Networks. [EEE Transactions on Vehicular Technology,
72(8):10933-10948, 2023.

Minah Seo, Luiz Felipe Vecchietti, Sangkeum Lee, and Dongsoo
Har. Rewards Prediction-Based Credit Assignment for Reinforcement
Learning With Sparse Binary Rewards. IEEE Access, 7:118776—
118791, 2019.

Matvey Gerasyov and Ilya Makarov. Dealing With Sparse Rewards
Using Graph Neural Networks. IEEE Access, 11:89180-89187, 2023.
Fuchen Kong, Qi Wang, Shang Gao, and Hualong Yu. B-APFDQN:
A UAV Path Planning Algorithm Based on Deep Q-Network and
Artificial Potential Field. JEEE Access, 11:44051-44064, 2023.
Zhuoyong Shi, Guoqing Shi, Jiandong Zhang, Dinghan Wang, Tianyue
Xu, Longmeng Ji, and Yong Wu. Design of UAV Flight State
Recognition System for Multisensor Data Fusion. IEEE Sensors
Journal, 24(13):21386-21394, 2024.

Xiaolin Xiao and Yicong Zhou. Two-Dimensional Quaternion PCA
and Sparse PCA. IEEE Transactions on Neural Networks and Learning
Systems, 30(7):2028-2042, 2019.

15

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Lingzhi Zhu, Shuning Zhang, Qun Ma, Huichang Zhao, Si Chen,
and Dongxu Wei. Classification of UAV-to-Ground Targets Based on
Enhanced Micro-Doppler Features Extracted via PCA and Compressed
Sensing. [EEE Sensors Journal, 20(23):14360-14368, 2020.
Jiandong Zhang, Zhuoyong Shi, Anli Zhang, Qiming Yang, Guoqing
Shi, and Yong Wu. UAV Trajectory Prediction Based on Flight State
Recognition. IEEE Transactions on Aerospace and Electronic Systems,
60(3):2629-2641, 2024.

Umit Celik and Haluk Eren. Classification of Manifold Learning Based
Flight Fingerprints of UAVs in Air Traffic. IEEE Transactions on
Intelligent Transportation Systems, 24(5):5229-5238, 2023.

Amit Konar, Indrani Goswami Chakraborty, Sapam Jitu Singh,
Lakhmi C. Jain, and Atulya K. Nagar. A Deterministic Improved
Q-Learning for Path Planning of a Mobile Robot. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 43(5):1141-1153, 2013.
Dongcheng Li, Wangping Yin, W. Eric Wong, Mingyong Jian, and
Matthew Chau. Quality-Oriented Hybrid Path Planning Based on A*
and Q-Learning for Unmanned Aerial Vehicle. IEEE Access, 10:7664—
7674, 2022.

Kyriakos G. Vamvoudakis and Nick-Marios T. Kokolakis. Synchronous
Reinforcement Learning-Based Control for Cognitive Autonomy. Now
Foundations and Trends, 2020.

Meng Zhao, Hui Lu, Siyi Yang, and Fengjuan Guo. The Experience-
Memory Q-Learning Algorithm for Robot Path Planning in Unknown
Environment. IEEE Access, 8:47824-47844, 2020.

Nan Zheng and Pinaki Mazumder. Fundamentals and Learning of
Artificial Neural Networks, pages 11-60. 2020.

Muhammad Affan, Junaid Jawaid, Syed Umaid Ahmed, Ali Isfand yar
Manek, and Riaz Uddin. Solving Combinatorial Problems through
Off-Policy Reinforcement Learning Methods. In 2020 International
Conference on Electrical, Communication, and Computer Engineering
(ICECCE), pages 1-5, 2020.

Chunxue Wu, Bobo Ju, Yan Wu, Xiao Lin, Naixue Xiong, Guangquan
Xu, Hongyan Li, and Xuefeng Liang. UAV Autonomous Target Search
Based on Deep Reinforcement Learning in Complex Disaster Scene.
IEEE Access, 7:117227-117245, 2019.

Nada Kadhim and Monjur Mourshed. A Shadow-Overlapping Algo-
rithm for Estimating Building Heights From VHR Satellite Images.
IEEE Geoscience and Remote Sensing Letters, 15(1):8-12, 2018.
Hua Yan, Yunfei Chen, and Shuang-Hua Yang. New Energy Con-
sumption Model for Rotary-Wing UAV Propulsion. [EEE Wireless
Communications Letters, 10(9):2009-2012, 2021.

VOLUME ,

