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A B S T R A C T

In the study of influence maximization, most existing research often assumes a one-off resource
allocation at the start of a competition. As a result, they overlook the benefits of dynamic,
time-sensitive strategies. To overcome this limitation, we propose a novel approach using inter-
temporal allocations within a non-progressive voter model to optimize the timing and distribution
of limited resources for maximizing opinion spread. Our objective is twofold: (i) to provide
understanding of patterns of opinion spread in complex networks subject to inter-temporal
control, and (ii) to use insights from (i) to develop optimization strategies that balance resource
constraints and temporal dynamics. Specifically, our study examines two scenarios: a constant-
opponent setting and a game-theoretical framework. In the constant-opponent setting, we find
that network heterogeneity significantly influences optimal campaign timing, with late initiation
benefiting short time horizons in heterogeneous networks and early starts favoring longer
horizons. To further enhance this strategy, we introduce a node-specific optimization strategy that
outperforms uniform approaches, especially under resource constraints. In the game-theoretical
framework, our results reveal that resource-rich controllers tend to start campaigns early, while
resource-limited controllers strategically delay to counter their opponent’s advantage. Through
analytical approximations and simulations, we provide insights into the temporal dynamics
of influence spread. These findings offer practical guidelines for designing effective influence
campaigns in competitive and time-sensitive contexts, with applications in marketing, politics,
and public health.

1. Introduction
The intervention from influential agents in social networks can yield substantial social and commercial impacts,

particularly evident in scenarios like viral marketing [24, 48], political campaigns [5, 18], and significant societal
movements such as the Brexit campaign [46] or general radicalization [22]. Understanding how these influential agents
shape public discourse is crucial for mitigating manipulative practices or steering public opinion constructively. Central
to this is the concept of influence maximization (IM) [28], where influential agents, acting as external controllers,
strategically deploy resources (e.g., money, information, incentives) to maximize their influence within the network.
This approach typically operates within a budget constraint, as resources available for allocations to agents are often
inherently limited [6, 28].

Existing IM research has predominantly relied on progressive models, such as the independent cascade (IC) and
linear threshold (LT) models [11, 13, 24]. These models assume that once individuals adopt an opinion, they maintain
it indefinitely. While these models have yielded valuable insights into influence dynamics [50], they fail to capture the
bi-directional and reversible opinion shifts common in real-world scenarios. For instance, studies have demonstrated
that opinions often fluctuate and oscillate over time due to various mechanisms, such as aging effects [45] and response
latency [44]. These opinion fluctuations, also common in political campaigns, public health messaging, and social
movements, reflect how individuals continuously update their views through social interactions and in response to new
information.

Recognizing the limitations of progressive models, researchers have increasingly turned to non-progressive models
[35, 39, 42] that account for multiple state changes and reversible influence. Among these, we choose the voter model
in this study, which allows opinions to change iteratively through neighbor interactions, reflecting how people adapt
their views based on ongoing social influence. This choice is motivated by three key factors beyond the prominence of
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the voter model in research [49]. First, its conceptual simplicity provides analytical tractability, which enables detailed
analysis of how network structure shapes opinion propagation or consensus formation [39]. Second, the model captures
the evolution of opinions towards minimal conflict states, which realistically represents opinion formation or consensus
processes [14]. Third, the voter model aligns with empirical observations, such as election outcomes in the USA and
UK [9, 19, 54], demonstrating its practical relevance.

In addition to the limitations posed by the prevalent use of progressive influence models, another significant gap
in current IM research lies in the focus on maximizing opinion spreads at equilibrium – the state after dynamics
stabilize [33]. This approach, while valuable for understanding long-term outcomes, often fails to capture the critical
transient dynamics that precede equilibrium. However, in many real-world scenarios, such as seasonal promotions,
political campaigns, and public health interventions, the ability to influence opinions swiftly and effectively is crucial
for achieving impact [26]. For instance, during a flu outbreak, rapidly disseminating vaccination information and
encouraging uptake within a short time frame is crucial to preventing widespread infection, while a political campaign
must shape public opinion before election day. These scenarios highlight the need to develop strategies that optimize
influence during transient phases and better understand the spread of opinions in networks under temporal control.

Regarding this, recent studies have begun to integrate temporal considerations into IM [1–3, 10, 23, 34, 53].
However, most of existing approaches fail to allow time-variant resource allocations or focus exclusively on single-
controller scenarios, which limits their relevance to competitive, real-world contexts. For instance, the most directly
relevant work to our modeling approach is by Brede et al. [10], who first explored time-constrained influence
maximization in the voter model. While their work provides valuable insights into the impact of time constraints
on IM strategies, it does not allow for varying resource allocations over time. This limitation restricts its ability to
capture real-world flexibility in dynamically optimizing budgets to respond to the evolving landscape of opinions and
market conditions. Beyond Brede et al. [10], several studies have explored the timing of influence strategies [1–3, 53].
Specifically, Alshamsi et al. [3] focus on speeding up diffusion by strategically targeting individuals with varying
connectivity levels at different stages of diffusion. Tong et al. [53] advance this concept by adapting strategies in
response to early outcomes of diffusion. However, a common limitation in these studies is their focus on scenarios with
only a single influencer (controller). This simplification restricts their applicability in real-world competitive contexts
like politics or radicalization prevention [47, 55], where multiple influencers interact and compete for influence.

The only studies solving inter-temporal influence maximization in the competitive setting are [1] and [2], which
utilize reinforcement learning for node selection and timing. However, their frameworks are built on progressive
models, which assume monotonic opinion shifts and are unable to capture real-world scenarios where opinions
fluctuate based on events, new information, or peer interactions. Furthermore, to manage computational complexity,
they rely on predefined, discrete seed selection and timing strategies, which limits their ability to develop robust
optimization strategies for complex networks under inter-temporal control. Additionally, they do not investigate the
interplay between timing strategies and transient opinion dynamics, leaving unexplored how network structure shapes
opinion spread patterns under inter-temporal control.

To address these research gaps in the inter-temporal IM problem, our paper leverages transient dynamics to
maximize influence within both time and budget constraints based on the non-progressive voter model. Specifically, our
study has two primary objectives: (i) to develop optimization strategies that balance resource constraints and temporal
dynamics by identifying the optimal timing of resource deployment to steer opinion trajectories effectively over short
timescales, and (ii) to decode the black-box nature of numerical optimization outcomes by analyzing how these inter-
temporal control strategies shape opinion dynamics across different network structures. A key aspect of this approach
involves navigating a critical trade-off in resource allocations: Delaying resource allocations might offer more budget
per time unit but reduces the time window for influence to manifest. Conversely, earlier allocations allow more time for
the impact to accumulate. However, this can lead to inefficiency as resources might be wasted before the critical period
when the impact of the allocations is finally measured. Through systematic analysis of this temporal trade-off, our study
aims to provide both theoretical insights and optimization strategies under transient control in complex networks.

Our exploration of the inter-temporal IM is structured into two main scenarios: the constant-opponent setting
and the game-theoretical setting. In the constant-opponent setting, we analyze the dynamics of an active controller
competing against an opponent with a predetermined, unchanging strategy. We first investigate a simplified model
where the active controller only decides the starting point of its campaign, applying resources uniformly across all
individuals in the network. We then extend this to more sophisticated numerical simulations involving individual
optimization and agent heterogeneity. This progression allows us to isolate the effects of timing and resource
distribution, providing insights into the fundamental dynamics of influence spread. Moreover, in the game-theoretical
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setting, we introduce strategic competition between two controllers, where both strive to maximize their influence
without prior knowledge of their opponent’s strategy. This scenario more closely mimics real-world competitive
environments, where multiple actors simultaneously attempt to shape public opinion. By examining the strategies that
emerge in this setting, we gain insights into the complex interplay between timing, resource allocation, and competitive
dynamics in influence maximization.

By doing so, we make the following contributions. (i) Building upon our previous work [12], we provide the
first comprehensive study of IM from the perspective of inter-temporal allocations using non-progressive models.
This approach marks a significant shift from traditional static allocation methods, which enables a more accurate
representation of the dynamic nature of influence spread in social networks. (ii) By employing the heterogeneous
mean-field method [10] and utilizing Taylor expansions, we derive analytical approximations that provide insights
into the temporal dynamics of influence spread. These techniques enable us to quantify the timescales required for
networks to reach equilibrium, with a particular focus on scale-free networks. Moreover, this analytical framework
enhances the understanding of the patterns and outcomes of inter-temporal strategies. (iii) Our framework derives
optimal strategies in both constant-opponent and game-theoretical settings. In constant-opponent scenarios, we newly
incorporate agent heterogeneity to reflect realistic variations in susceptibility. We also extend our investigation to
include game-theoretical scenarios under uniform strategies, a novel aspect not explored in [12]. (iv) Through extensive
numerical experiments, we demonstrate that inter-temporal optimized influence strategies consistently outperform
baseline approaches. This highlights the importance of optimizing both timing and resource allocation to adapt to
the dynamic and competitive nature of influence propagation. Our findings also provide actionable guidelines for
practitioners in various domains, such as targeted marketing, public health interventions, and social media campaigns
with insights into designing effective, time-sensitive influence strategies.

We obtain the following main findings: (i) In the constant-opponent scenario, the best strategy for the active
controller is to delay its influence. This involves initially allowing the system to be dominated by the opponent,
and then strategically deploying its budget towards the campaign’s end. Notably, for shorter timeframes, the active
controller tends to begin its influence relatively later in networks with high heterogeneity than in more homogeneous
ones. Conversely, for longer time horizons, initiating control earlier is advantageous in highly heterogeneous networks.
(ii) In the game-theoretical context, the controller with a larger budget typically commences its influence earlier than
its opponent. This preemptive start aims to secure a lead in vote shares before its rival begins its influencing efforts.
(iii) Compared to the simplified scenario where all agents begin at the same time, individual optimization shows a
relatively modest advantage when total budgets are equal or more than that of the opponent. In contrast, in settings
where the active controller has fewer resources, individual optimization, focusing on influencing agents with fewer
connections, can significantly improve the final vote shares. (iv) Regarding agent heterogeneity within the individual
optimization scenario, we observe that agents that are less susceptible to influence (for example, staunch supporters)
are prioritized with more resources and should be targeted earlier when the active controller has a substantial budget.
Conversely, with a smaller budget, these agents are deprioritized.

The structure of this paper is as follows: Section 2 introduces the formulation and algorithms for inter-temporal IM,
covering constant-opponent, node-specific, and game-theoretical settings. Section 3 presents the heterogeneous mean-
field analysis, which provides theoretical approximations for understanding opinion dynamics under temporal control.
Section 4 provides experimental results, including the dataset setup, network heterogeneity impact, and analysis of
optimal strategies across constant-opponent, individual optimization, and game-theoretical settings. Finally, Section 5
summarizes the findings and outlines future research directions.

2. Formulation and Algorithms for Inter-temporal Allocations
In this study, we conceptualize social networks through the mathematical framework of graphs denoted as 𝐺(𝑉 ,𝐸).

Here, vertices 𝑣𝑖 ∈ 𝑉 for 𝑖 = 1,⋯ , 𝑁 represent a collection of𝑁 individuals, and edges𝑤𝑖𝑗 ∈ 𝐸 denote the magnitude
of interactions between individuals 𝑖 and 𝑗. Adhering to prevalent conventions in network studies, our model assumes
un-directed graphs with positive edge weights and excludes self-loops. In our model, agents can hold one of two
distinct opinions: 𝐴 or 𝐵. In addition to these internal agents, the model incorporates two external entities, referred to
as controller 𝐴 and controller 𝐵, supporting opinion 𝐴 or 𝐵, respectively. Unlike the internal agents in the network,
these two controllers maintain their opinions unchanged at all time, and exert influence on agents in the network without
being affected in return. To influence the network, controllers can strategically build time-varying, unidirectional links
with agents in the network. The strength of the influence at time 𝑡 is captured by control gains 𝑎𝑖(𝑡) and 𝑏𝑖(𝑡) for
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Figure 1: Schematic diagram of how controllers interact with the opinion dynamics and how agents update their opinions.
Triangles stand for controllers and agents are represented by circles. White and black symbols indicate that the agents
(or controllers) are holding opinions 𝐴 or 𝐵, respectively. The lines between agents correspond to the social connections.
External controllers 𝐴 and 𝐵 influence opinion dynamics by building unidirectional links to agents in the networks. Assuming
unit link weights from the neighbours and controllers, if picked for updating, agent 𝑖 will have probability 3∕4 to stay in
opinion 𝐴 and probability 1∕4 to flip its opinion.

controllers 𝐴 and 𝐵, respectively. These gains reflect how much resource is allocated to agent 𝑖 at time 𝑡 and the
sum of these gains is subject to the budget constraints:

∑

𝑁 ∫ 𝑎𝑖(𝑡)𝑑𝑡 ≤ 𝑏𝐴 for controller 𝐴 and
∑

𝑁 ∫ 𝑏𝑖(𝑡)𝑑𝑡 ≤ 𝑏𝐵 for
controller 𝐵, where 𝑏𝐴 and 𝑏𝐵 are the total resources for each controller. Moreover, control gains must be non-negative,
i.e., 𝑎𝑖(𝑡) ≥ 0 and 𝑏𝑖(𝑡) ≥ 0.

The opinion updating process with competing controllers using the voter model is described as follows [39]. At
each time step 𝑡, an agent 𝑖 is randomly selected from the network. Then, agent 𝑖 chooses to interact with either a
neighboring agent or one of the controllers. The choice is weighted, with probabilities tied to the strength of the
connection, including any influence exerted by the controllers given by the control gains 𝑎𝑖(𝑡) or 𝑏𝑖(𝑡). More specifically,
the likelihood of agent 𝑖 adopting a particular opinion is determined as follows. (i) For adopting the opinion of a
network neighbour, the probability is 𝑤𝑗𝑖

∑𝑁
𝓁=1 𝑤𝓁𝑖+𝑎𝑖(𝑡)+𝑏𝑖(𝑡)

. (ii) For adopting the opinion of controller 𝐴, the probability

is 𝑎𝑖(𝑡)
∑𝑁

𝓁=1 𝑤𝓁𝑖+𝑎𝑖(𝑡)+𝑏𝑖(𝑡)
. (iii) For adopting the opinion of controller 𝐵, the probability is 𝑏𝑖(𝑡)

∑𝑁
𝓁=1 𝑤𝓁𝑖+𝑎𝑖(𝑡)+𝑏𝑖(𝑡)

.
For a better understanding of the opinion updating process, consider a real-world scenario illustrated in Fig. 1.

Imagine a social media user, Alice (represented as agent 𝑖), who is deciding whether to support a new city policy
(opinion A) or oppose it (opinion B). In Fig. 1, Alice is connected to three friends on the social network. Two friends
(represented by white circles) support the policy (opinion A), while one friend (represented by a black circle) opposes
the policy (opinion B). Additionally, Alice sees a sponsored post from a group advocating for the policy (controller A,
represented by a white triangle). When Alice logs onto the platform and starts scrolling through her feed (analogous to
being "picked" for updating in our model), she’s exposed to these various opinions. Assuming all connections (friend
relationships and the sponsored post) have equal influence strength, Alice’s opinion update process works as follows:
The probability of Alice maintaining support for the policy (staying with opinion A) is 3∕4. This comes from the two
supporting friends plus one sponsored post, out of four total influences. Conversely, the probability of Alice changing to
oppose the policy (flipping to opinion B) is 1∕4, stemming from the one opposing friend, out of four total influences.
Therefore, while Alice is more likely to continue supporting the policy due to the majority influence, there’s still a
chance she might change her mind based on her opposing friend’s influence.

Here, following the work by Masuda [39], we employ the mean-field rate equation for describing probability flows.
Specifically, we introduce 𝑥𝑖(𝑡) as the probability that agent 𝑖 adopts opinion 𝐴 at time 𝑡. Consequently, the dynamic
of 𝑥𝑖(𝑡) is determined by the following differential equation:

𝑑𝑥𝑖(𝑡)
𝑑𝑡

=
(

1 − 𝑥𝑖(𝑡)
)

∑

𝑗 𝑤𝑗𝑖𝑥𝑗(𝑡) + 𝑎𝑖(𝑡)
∑

𝑗 𝑤𝑗𝑖 + 𝑎𝑖(𝑡) + 𝑏𝑖(𝑡)
− 𝑥𝑖(𝑡)

∑

𝑗
(

1 − 𝑥𝑗(𝑡)
)

𝑤𝑗𝑖 + 𝑏𝑖(𝑡)
∑

𝑗 𝑤𝑗𝑖 + 𝑎𝑖(𝑡) + 𝑏𝑖(𝑡)
. (1)

In Eq.(1), the first term quantifies the transition of agents from holding opinion 𝐵 to adopting opinion 𝐴, influenced by
their peers and external control. The second term, in contrast, tracks the shift from opinion 𝐴 to 𝐵, considering similar
effects.

Building on this framework, the goal of controller 𝐴 is to maximize its influence in the network, quantified as the
vote share at time 𝑇 :

𝑆𝐴(𝑇 ) =
1
𝑁

∑

𝑁
𝑥𝑖(𝑇 ). (2)
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Here, 𝑆𝐴(𝑇 ) denotes the fraction of agents holding opinion 𝐴 across the whole network at time 𝑇 .
Note that, the system dynamics described by Eq. (1) are non-autonomous, driven by the time-dependent control

variables 𝑎𝑖(𝑡) and 𝑏𝑖(𝑡). Fully flexible influence allocation using these continuous variables is both computationally and
theoretically infeasible for large networks due to the high dimensionality of the solution space and the interdependence
among agents. Even in the simplified single-node case analyzed in Appendix A, deriving solutions requires resolving a
transcendental equation. As the network size increases, the problem’s complexity grows exponentially, exacerbated by
the intricate coupling between agent states and control variables. These difficulties underscore the need for simplified
models and computational approximations. To this end, we develop our analysis through three progressive stages
of increasing complexity. We begin with a simplified model in Section 2.1 that focuses solely on determining the
optimal starting time for one of the controller, rather than considering arbitrary control functions. This approach, while
simplified, provides valuable insights into vote share trajectories and opinion control strategies. We then advance to a
more sophisticated model in Section 2.2 that incorporates agent-specific allocations and start times. This refinement
enables more complicated influence strategies while preserving computational tractability. Finally, we examine the
game-theoretical framework in Section 2.3 where both controllers actively compete against each other.

2.1. Inter-temporal Allocations against a Constant Opponent
We first examine the scenario where controller 𝐴 competes against a constant opponent influence. In this setting,

we optimize a uniform campaign strategy characterized by a single start time and equal resource allocation across all
agents. Our objective remains maximizing the vote share for opinion𝐴 at time 𝑇 , as defined in Eq. (2), while competing
against controller 𝐵 who maintains a constant influence from the beginning of the competition. This formulation allows
us to isolate the temporal aspects of campaign optimization before introducing more complex strategic interactions.
Specifically, the influence of controllers 𝐴 and 𝐵 on each agent 𝑖 (where 1 ≤ 𝑖 ≤ 𝑁) can be expressed as:

𝑎𝑖(𝑡) =

{

0 0 ≤ 𝑡 ≤ 𝑡𝑎
𝑏𝐴

(𝑇−𝑡𝑎)𝑁
𝑡𝑎 < 𝑡 ≤ 𝑇 ,

𝑏𝑖(𝑡) =
𝑏𝐵
𝑇𝑁

0 ≤ 𝑡 ≤ 𝑇 ,

(3)

where 𝑡𝑎 represents the controller 𝐴’s campaign start time for all agents.
To elucidate this scenario, consider the following example based on a social media influence campaign: Let𝐺(𝑉 ,𝐸)

represent a social network with |𝑉 | = 𝑁 = 104 users. The competition duration 𝑇 is set to 30 days, representing a
month-long campaign. Initially, 55% of users favor opinion 𝐴 (𝑆𝐴(0) = 0.55) and 45% favor opinion 𝐵 (𝑆𝐵(0) = 0.45).
Controllers𝐴 and𝐵 have advertising budgets of 𝑏𝐴 = 1.5×104 and 𝑏𝐵 = 1.2×104 respectively. Under these conditions,
the influence functions from Eq. (3) become:

𝑎𝑖(𝑡) =

{

0 0 ≤ 𝑡 ≤ 𝑡𝑎
1.5×104

(30−𝑡𝑎)104
𝑡𝑎 < 𝑡 ≤ 30,

𝑏𝑖(𝑡) =
1.2 × 104

30 × 104
= 0.04 0 ≤ 𝑡 ≤ 30,

(4)

Here, 𝑎𝑖(𝑡) and 𝑏𝑖(𝑡) can be interpreted as the daily advertising spend per user (in dollars) for controllers 𝐴 and 𝐵
respectively. This formulation illustrates the trade-off controller 𝐴 faces in determining 𝑡𝑎. For instance: If 𝐴 starts
immediately (𝑡𝑎 = 0), it spends 0.05 per user per day over 30 days. If 𝐴 delays by 15 days (𝑡𝑎 = 15), it spends 0.10
per user per day, but only for the latter 15 days. Meanwhile, 𝐵 maintains a constant spend of 0.04 per user per day
throughout the 30-day period.

The inter-temporal influence maximization problem thus reduces to identifying the optimal start time 𝑡∗𝑎 that
maximizes 𝑆𝐴(𝑇 ).

𝑡∗𝑎 = argmax
𝑡𝑎

𝑆𝐴(𝑇 ) for 0 ≤ 𝑡𝑎 ≤ 𝑇 . (5)

Here,𝑆𝐴(𝑇 ) is the fraction of agents holding opinion𝐴 at time 𝑇 defined in Eq. (2). We solve this optimization problem
using the interior-point algorithm [4]. The choice of the interior-point method is driven by its robustness and efficiency
in handling large-scale, constrained optimization problems, which are typical in influence maximization scenarios.
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2.2. Inter-temporal Allocations with Individual Optimization
Above, we have investigated the inter-temporal allocations in a simplified scenario. As it may be too restrictive to

assume that all nodes start at the same time with the same intensity, a question naturally arises: if the controller has
more flexibility to deploy its resources, will it lead to a significant improvement in obtainable vote share? Regarding
this, we have proposed the individual optimization scenario where the controller can choose different starting times and
split its resources unevenly over individual nodes. Specifically, we consider a case in which controller 𝐴 can choose
specific campaigning starts 𝑡𝑎,𝑖 for individual node 𝑖 and has the option to split its budget unevenly between nodes by
assigning individual node 𝑖 with budget 𝑏𝐴,𝑖. To reduce the number of parameters we still retain the assumption that,
once started, campaigns proceed with constant intensity, i.e.,

𝑎𝑖(𝑡) =

{

0 0 ≤ 𝑡 ≤ 𝑡𝑎,𝑖
𝑏𝐴,𝑖

(𝑇−𝑡𝑎,𝑖)
𝑡𝑎,𝑖 < 𝑡 ≤ 𝑇 (6)

where 𝑏𝐴,𝑖 should satisfy
∑

𝑖 𝑏𝐴,𝑖 = 𝑏𝐴.
Correspondingly, the optimization problem expands to incorporate both temporal and resource allocation decisions

across individual agents. In other words, we need to optimize two variables for each agent 𝑖: the campaign start time
𝑡𝐴,𝑖 and the budget allocation 𝑏𝐴,𝑖. The optimization problem can be formally expressed as:

max
𝑡𝑎,𝑖,𝑏𝐴,𝑖

𝑆𝐴(𝑇 ) for
∑

𝑖
𝑏𝐴,𝑖 = 𝑏𝐴, 𝑏𝐴,𝑖 ≥ 0, 0 ≤ 𝑡𝑎,𝑖 ≤ 𝑇 (7)

where 𝑆𝐴(𝑇 ) is the vote shares at time 𝑇 . Here, we use the stochastic hill climbing algorithm for the individual
optimization. The pseudo-code for the algorithm is presented in Algorithm 1, and its detailed procedure is described
below: (i) Start with a given network configuration and an initialization of starting times {0 ≤ 𝑡𝑎,𝑖 <= 𝑇 } and budget
allocations {𝑏𝐴,𝑖} for each agent 𝑖 = 1,⋯ , 𝑁 . Note that, the initial budget allocations {𝑏𝐴,𝑖} should meet the budget
constraint

∑

𝑖 𝑏𝐴,𝑖 = 𝑏𝐴. In practice, we set the initial budget allocations as {𝑏𝐴,𝑖} = 𝑏𝐴∕𝑁 . Let 𝐿𝑚𝑎𝑥 be the maximum
number of iterations. Then, compute the vote share of the initial configuration via Eqs. (1) and (2) (see lines 1-2 in
Algorithm 1). (ii) If the current iteration is less than 𝐿𝑚𝑎𝑥, continue with step (iii). Otherwise, jump to step (iv) (line
4). (iii) Generate a random number 𝑟 according to the uniform distribution with lower bound 0 and upper bound 1 (line
5). If 𝑟 < 0.5, randomly pick two nodes 𝑖 and 𝑗 (𝑖 ≠ 𝑗), and transfer a random fraction of budget allocations from
node 𝑖 to node 𝑗 (lines 6-15). It’s important to note that transferring budgets between nodes ensures the total budget
remains unchanged, thus satisfying the budget constraint. Otherwise, randomly select one node and randomly modify
its starting time within the range of [0, 𝑇 ] (lines 17-23). Update the vote share only if improvements are achieved via
the above modification. Return to step (ii). (iv) The procedure is ended (line 27).

2.2.1. Individual Optimization Considering Agent Heterogeneity
Building on the individualized optimization framework, we next incorporate agent heterogeneity to better reflect

real-world network dynamics. Following established research on voter models [40, 41], we introduce the concept of
partial zealots agents with inherent biases towards particular opinions. Specifically, we introduce a zealotry parameter,
𝑞𝑖, representing the probability that node 𝑖, when holding opinion 𝐵, resists adopting opinion 𝐴 despite neighbor or
controller influence. Consequently, the rate equation for the probability, 𝑥𝑖, of agent 𝑖 holding opinion 𝐴 becomes:

𝑑𝑥𝑖(𝑡)
𝑑𝑡

=(1 − 𝑞𝑖)
(

1 − 𝑥𝑖(𝑡)
)

∑

𝑗 𝑤𝑗𝑖𝑥𝑗(𝑡) + 𝑎𝑖(𝑡)
∑

𝑗 𝑤𝑗𝑖 + 𝑎𝑖(𝑡) + 𝑏𝑖(𝑡)
− 𝑥𝑖(𝑡)

∑

𝑗
(

1 − 𝑥𝑗(𝑡)
)

𝑤𝑗𝑖 + 𝑏𝑖(𝑡)
∑

𝑗 𝑤𝑗𝑖 + 𝑎𝑖(𝑡) + 𝑏𝑖(𝑡)

=
(

1 − 𝑞𝑖 + 𝑞𝑖𝑥𝑖(𝑡)
)
𝑎𝑖 +

∑

𝑗 𝑤𝑖𝑗𝑥𝑗(𝑡)
𝑘𝑖 + 𝑎𝑖 + 𝑏𝑖

− 𝑥𝑖(𝑡).

(8)

Note that, our probabilistic approach to modeling opinion persistence described in Eq. (8) differs fundamentally from
latency-based mechanisms like [30], where agents enter waiting periods of complete resistance after an opinion change.
While latency models provide insights into how temporary opinion freezing affects system-wide opinion propagation,
partial zealotry instead captures continuous variations in resistance levels. This distinction allows us to explore how
heterogeneous susceptibility patterns influence strategic resource allocation and campaign outcomes.

Additionally, this enhanced model captures several key aspects of real-world influence campaigns. First, it
acknowledges that individuals have varying susceptibilities to persuasion, reflecting natural differences in opinion
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input : 𝑏𝐴, 𝑁 , 𝑇 , maximum iterations 𝐿𝑚𝑎𝑥, adjacency matrix 𝑨
output: Optimal starting times {𝑡𝑎,𝑖}, optimal budget allocations {𝑏𝐴,𝑖}, maximized vote share 𝑆𝑏𝑒𝑠𝑡

𝐴

1 Initialize: 𝑡𝑎,𝑖 = random values in [0,T]; 𝑏𝐴,𝑖 = 𝑏𝐴∕𝑁 for all 𝑖;
2 𝑆𝑏𝑒𝑠𝑡

𝐴 = compute vote share using Eqs. (1) and (2);
3 iteration = 0;
4 while iteration < 𝐿𝑚𝑎𝑥 do
5 𝑟 = random number from uniform distribution [0,1];
6 if 𝑟 < 0.5 then
7 randomly select nodes 𝑖, 𝑗 (𝑖 ≠ 𝑗);
8 𝛿 = random fraction of 𝑏𝐴,𝑖;
9 𝑏𝑡𝑒𝑚𝑝𝐴,𝑖 = 𝑏𝐴,𝑖 − 𝛿;

10 𝑏𝑡𝑒𝑚𝑝𝐴,𝑗 = 𝑏𝐴,𝑗 + 𝛿;
11 𝑆𝑛𝑒𝑤

𝐴 = compute vote share with {𝑏𝑡𝑒𝑚𝑝𝐴,𝑖 };
12 if 𝑆𝑛𝑒𝑤

𝐴 > 𝑆𝑏𝑒𝑠𝑡
𝐴 then

13 𝑏𝐴,𝑖 = 𝑏𝑡𝑒𝑚𝑝𝐴,𝑖 ; 𝑏𝐴,𝑗 = 𝑏𝑡𝑒𝑚𝑝𝐴,𝑗 ;
14 𝑆𝑏𝑒𝑠𝑡

𝐴 = 𝑆𝑛𝑒𝑤
𝐴 ;

15 end
16 else
17 randomly select node 𝑖;
18 𝑡𝑡𝑒𝑚𝑝𝑎,𝑖 = random value in [0,T];
19 𝑆𝑛𝑒𝑤

𝐴 = compute vote share with 𝑡𝑡𝑒𝑚𝑝𝑎,𝑖 ;
20 if 𝑆𝑛𝑒𝑤

𝐴 > 𝑆𝑏𝑒𝑠𝑡
𝐴 then

21 𝑡𝑎,𝑖 = 𝑡𝑡𝑒𝑚𝑝𝑎,𝑖 ;
22 𝑆𝑏𝑒𝑠𝑡

𝐴 = 𝑆𝑛𝑒𝑤
𝐴 ;

23 end
24 end
25 iteration = iteration + 1;
26 end
27 return {𝑡𝑎,𝑖}, {𝑏𝐴,𝑖}, 𝑆𝑏𝑒𝑠𝑡

𝐴
Algorithm 1: Stochastic Hill Climbing for Individual Optimization

formation processes. Second, it allows us to study how these inherent biases interact with strategic resource allocation
decisions. Third, it provides insights into the role of network structure when agents exhibit heterogeneous behavior.
Similarly, in this scenario, the optimization involves two variables for each agent 𝑖: the campaign start time 𝑡𝑎,𝑖 and the
budget allocation 𝑏𝐴,𝑖 as described in Eq. (7) with 𝑎𝑖(𝑡) and 𝑏𝑖(𝑡) defined in Eq. (6). To achieve this, we employ the
stochastic hill climbing algorithm outlined in Algorithm 1 with dynamics defined in Eq. (8).

2.3. Inter-temporal Allocations in the Game-theoretical Setting
In Section 2.1, we investigate the competitive influence maximization for one of the competing controllers. In this

section we explore the game-theoretic aspects of competitive influence allocations. Specifically, in the game-theoretical
scenario, we consider a zero-sum game of competitive vote-share maximization on social networks. Players of the
game are controller 𝐴 and controller 𝐵 who have complete knowledge of graph 𝐺. In addition, the two players have to
simultaneously decide on an inter-temporal allocation protocol at time zero. In the simplified campaign scheme, both
controllers have the flexibility to choose the starting time of allocations, defined as 𝑡𝑎 and 𝑡𝑏. More precisely, the sets of
actions available to controller 𝐴 and controller 𝐵 are 𝜙𝐴 = {𝑡𝑎 ∣ 0 ≤ 𝑡𝑎 ≤ 𝑇 } and 𝜙𝐵 = {𝑡𝑏 ∣ 0 ≤ 𝑡𝑏 ≤ 𝑇 } respectively.
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Hence, agent 𝑖′𝑠 (1 ≤ 𝑖 ≤ 𝑁) budget allocation per unit time is given by:

𝑎𝑖(𝑡) =

{

0 0 ≤ 𝑡 ≤ 𝑡𝑎
𝑏𝐴

(𝑇−𝑡𝑎)𝑁
𝑡𝑎 < 𝑡 ≤ 𝑇

𝑏𝑖(𝑡) =

{

0 0 ≤ 𝑡 ≤ 𝑡𝑏
𝑏𝐵

(𝑇−𝑡𝑏)𝑁
𝑡𝑏 < 𝑡 ≤ 𝑇

(9)

Moreover, the payoff functions for controller 𝐴 and 𝐵 are 𝑢𝐴 = 𝑆𝐴(𝑇 ) and 𝑢𝐵 = 1 − 𝑆𝐴(𝑇 ) where the vote shares
𝑆𝐴(𝑇 ) are continuous and satisfy 0 ≤ 𝑆𝐴(𝑇 ) ≤ 1.

While pure-strategy Nash equilibria are theoretically guaranteed to exist in two-player zero-sum games under
continuity, convexity and boundedness assumptions [37], explicitly calculating these equilibria through analytical
means remains challenging for games with infinite, continuous strategy spaces [25]. This holds in our problem
setting, where the unknown strategies used by the opponent yield continuous action spaces that are mathematically
intractable for closed-form equilibrium analysis. Additionally, the absence of closed-form expressions for the payoff
functions of either competing controller further hinders direct analytical tractability for deriving equilibria. Given these
constraints, we develop an iterative numerical approach to approximate the Nash equilibria based on the minimax
theorem [20]. This approach builds on the work of Bonomi et al. [8] but adapts their framework to the specific context
of inter-temporal influence maximization in the voter model. More specifically, this algorithm operates on the minimax
theorem’s key insight: in a two-player zero-sum game, each player can achieve their optimal strategy by maximizing
their objective function while accounting for their opponent’s minimization efforts. We implement this through iterative
maximization and minimization of 𝑆𝐴(𝑇 ), with several important modifications for our context. First, we introduce
an adaptive learning rate 𝜇 (0 ≤ 𝜇 ≤ 1) [36] that decreases with each iteration. This adaptation helps ensure stable
convergence by gradually reducing step sizes as the algorithm progresses toward equilibrium. Additionally, we develop
specific initialization and update rules for the starting times 𝑡𝑎 and 𝑡𝑏 that reflect the unique constraints of our inter-
temporal allocation framework. The complete algorithm implementation is detailed in Algorithm 2.

input : 𝑏𝐴, 𝑏𝐵 , 𝑁 , 𝑇 , adjacency matrix 𝑨, threshold 𝜃
output: approximations for 𝑡𝑁𝐸

𝑎 and 𝑡𝑁𝐸
𝑏 at Nash equilibria; corresponding vote shares at time T, 𝑆𝐴(𝑇 )

1 Initialization: 𝑡(0)𝑎 = 0; 𝑡(0)𝑏 = 0; Δ𝑡𝑎 = 1; Δ𝑡𝑏 = 1; i=0;
2 while |

|

Δ𝑡𝑎|| + |

|

Δ𝑡𝑏|| ≥ 𝜃 do

3 𝑡(𝑖+1)𝑎 = 𝑡(𝑖)𝑎 + 𝜇
(

argmax
𝑡𝑎

{

𝑆𝐴(𝑇 )
|

|

|

𝑡𝑏 = 𝑡(𝑖)𝑏
}

− 𝑡(𝑖)𝑎

)

;

4 𝑡(𝑖+1)𝑏 = 𝑡(𝑖)𝑏 + 𝜇
(

argmin
𝑡𝑏

{

𝑆𝐴(𝑇 )
|

|

|

𝑡𝑎 = 𝑡(𝑖+1)𝑎

}

− 𝑡(𝑖)𝑏

)

;

5 Δ𝑡𝑎 = 𝑡(𝑖+1)𝑎 − 𝑡(𝑖)𝑎 ;
6 Δ𝑡𝑏 = 𝑡(𝑖+1)𝑏 − 𝑡(𝑖)𝑏 ;
7 𝑖 = 𝑖 + 1;
8 𝜇 = 1∕𝑖;
9 end

10 𝑡𝑁𝐸
𝑎 = 𝑡(𝑖−1)𝑎 ;

11 𝑡𝑁𝐸
𝑏 = 𝑡(𝑖−1)𝑏 ;

12 𝑆𝐴(𝑇 ) = {𝑆𝐴(𝑇 ) ∣ 𝑡𝑎 = 𝑡𝑁𝐸
𝑎 , 𝑡𝑏 = 𝑡𝑁𝐸

𝑏 }
Algorithm 2: Iterative searching for Nash equilibria

Algorithm 2 begins by initializing the start times of controllers 𝐴 and 𝐵 (𝑡(0)𝑎 and 𝑡(0)𝑏 ) to zero, indicating that both
controllers initially begin their influence strategies at the earliest possible time (see line 1). The step sizes Δ𝑡𝑎 and
Δ𝑡𝑏 are initially set to 1, and the iteration counter is set to zero. Next, the algorithm enters an iterative loop (lines
2-9) that continues until the combined changes in the start times for both controllers fall below a specified threshold
𝜃. This threshold is set to a very small value (e.g., 10−9), ensuring that the algorithm converges only when the start
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times have stabilized sufficiently, indicating that the Nash equilibrium has been reached. Within each iteration, the
algorithm alternately updates the start times for controllers 𝐴 and 𝐵. Specifically, for controller 𝐴, the algorithm seeks
to maximize the vote share 𝑆𝐴(𝑇 ) by adjusting 𝑡𝑎 while holding 𝑡𝑏 fixed at its current value (line 3). This optimization
step identifies the best response for controller 𝐴 given the current strategy of controller 𝐵. Similarly, for controller 𝐵,
the algorithm minimizes 𝑆𝐴(𝑇 ) by adjusting 𝑡𝑏 while holding 𝑡𝑎 fixed at its updated value (line 4). This step determines
the best response for controller 𝐵, considering the updated strategy of controller 𝐴. To ensure stable convergence, an
adaptive learning rate 𝜇 is used, which is inversely proportional to the iteration count (𝜇 = 1∕𝑖). This decreasing
learning rate reduces the magnitude of adjustments as the algorithm progresses, helping to avoid oscillations and
overshooting. The changes in start times (Δ𝑡𝑎 and Δ𝑡𝑏) are computed after each update (lines 5-6), and the iteration
counter is incremented (line 7). The loop continues until the changes in start times are negligible, indicating that further
adjustments will not significantly affect the vote shares. Once convergence is achieved, the algorithm outputs the Nash
equilibrium start times for controllers 𝐴 and 𝐵 (𝑡𝑁𝐸

𝑎 and 𝑡𝑁𝐸
𝑏 ), along with the corresponding vote share 𝑆𝐴(𝑇 ) at time

𝑇 (lines 10-12). At this point, neither controller can improve their outcome by unilaterally changing their strategy,
consistent with the definition of a Nash equilibrium.

3. Heterogeneous Mean-field Analysis
Before exploring strategy optimization, we first focus on our objective of understanding how opinions spread

in complex networks under temporal control. This understanding requires analyzing the complex voter dynamics
described in Eq. (1). However, obtaining full analytical solutions proves challenging due to two key factors: the system’s
large degree of freedom, which scales with network size, and the time-variant terms introduced by control gains. To
obtain an analytical estimate of vote-share trajectories of nodes, we take the heuristics called heterogeneous mean-
field theory to investigate the complex dynamical processes of Eq. (1) in the context of competing against a constant
opponent. This theoretical approach simplifies our analysis by assuming that agents with the same network degree
exhibit statistically equivalent dynamics. Such an assumption proves particularly effective for degree-uncorrelated
networks, where no assortative or dis-assortative mixing occurs [27]. Through this analysis (detailed derivations can
be found in Appendix B), we obtain the probability of nodes with degree 𝑘 adopting opinion 𝐴 at time 𝑡 (𝑥𝑘(𝑡)) and
the corresponding vote share (𝑆𝐴(𝑡)):

𝑥𝑘(𝑡) =
𝑎𝑘𝛼 − 𝛽𝑘 + 𝑘𝑒𝛼𝑡(𝛽+𝛼𝑥𝑘(𝑡𝑎))

𝛼+1
𝛼(𝑎𝑘 + 𝑏𝑘 + 𝑘)

− 𝑒−𝑡
⎛

⎜

⎜

⎝

𝑎𝑘𝛼 − 𝛽𝑘 + 𝑘(𝛽+𝛼𝑥𝑘(𝑡𝑎))
𝛼+1

𝛼(𝑎𝑘 + 𝑏𝑘 + 𝑘)
− 𝑥𝑘(𝑡𝑎)

⎞

⎟

⎟

⎠

,

𝑆𝐴(𝑡) =
∑

𝑘
𝑝𝑘𝑥𝑘(𝑡),

(10)

where

𝛼 =
∑

𝑘

𝑘2𝑝𝑘
⟨𝑘⟩

1
𝑘 + 𝑎𝑘 + 𝑏𝑘

− 1,

𝛽 =
∑

𝑘

𝑘𝑝𝑘𝑎𝑘
⟨𝑘⟩

1
𝑘 + 𝑎𝑘 + 𝑏𝑘

,

𝛾 =
∑

𝑘

𝑘2𝑝𝑘
⟨𝑘⟩

1
𝑘 + 𝑏𝑘

− 1,

𝑥𝑘(𝑡𝑎) = 𝑥0𝑒
−𝑡𝑎 + 𝑘

𝑘 + 𝑏𝑘
𝑥0

(

𝑒𝛾𝑡𝑎 (1 − 𝑒−𝑡𝑎 )
)

.

(11)

Here, 𝑎𝑘 and 𝑏𝑘 stand for allocations to nodes with degree 𝑘 from controllers 𝐴 and 𝐵, 𝑝𝑘 is the fraction of nodes
with degree 𝑘, ⟨𝑘⟩ =

∑

𝑘 𝑘𝑝𝑘 is the average degree of the network, and 𝑥𝑘(𝑡𝑎) is the probability of nodes of degree
𝑘 holding opinion 𝐴 at time 𝑡𝑎. Note that, Figs. 4 (c)(d) in Section 4.3.1 have validated our theoretical predictions of
vote shares derived from the heterogeneous mean-field analysis in Eq. (10). These figures show that the mean-field
approximations closely match the results obtained from direct numerical simulations using Runge-Kutta integration
by accurately capturing the dependence of vote shares 𝑆𝐴(𝑇 ) on starting times in scale-free networks. This agreement
demonstrates the reliability of our analytical framework.
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Research by Brede et al. [10] suggests that a node’s equilibrium dynamics are influenced by its degree. For instance,
hub nodes typically exhibit slower equilibration. This slow response adversely impacts their ability to influence the
overall vote share effectively over short time intervals. This insight leads us to consider how the inherent timescales
of equilibrium within a network affect the strategic allocation of budgets over different periods. Consequently, our
research focuses on analyzing how equilibration dynamics vary across networks with diverse levels of heterogeneity.
We approach this by examining relaxation times, as characterized by Son et al. [51]. Here, to quantify relaxation times
for nodes of degree 𝑘, we introduce a normalized order parameter, defined as follows:

𝑟𝑘(𝑡) =
𝑥𝑘(𝑡) − 𝑥𝑘(∞)
𝑥(0) − 𝑥𝑘(∞)

. (12)

Then, the mean relaxation times for each node with degree 𝑘 can be written as:

𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 =∫

∞

0
𝑟𝑘(𝑡)𝑑𝑡 = ∫

∞

0

𝑥𝑘(𝑡) − 𝑥𝑘(∞)
𝑥(0) − 𝑥𝑘(∞)

𝑑𝑡 (13)

Building on the mean-field solutions outlined in Eq. (10), and assuming a uniform initial state across nodes
(𝑥(0) = 𝑥0), we derive an expression to calculate the mean relaxation time for each node with degree 𝑘 under the
heterogeneous mean-field assumption:

𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 =
𝛼
(

𝛼𝑥0(𝑎𝑘 + 𝑏𝑘 + 𝑘) − 𝑎𝑘𝛼 + 𝛽𝑘 − 𝑘𝑥0
)

− 𝛽𝑘

𝛼
(

𝛼𝑥0(𝑎𝑘 + 𝑏𝑘 + 𝑘) − 𝑎𝑘𝛼 + 𝛽𝑘
) . (14)

Incorporating the values of 𝛼 and 𝛽 from Eq. (10) into Eq. (14) results in a complicated expression. To facilitate
understanding of how equilibration times depend on node degree, we simplify Eq. (14) in the limit of 𝑎𝑘+𝑏𝑘

𝑘 ≪ 1.
Under this condition, we perform a second-order Taylor expansion. The resulting approximation is as follows:

𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 ≃𝛼 − 1
𝛼

+
𝑎𝑘(𝑥0 − 1) + 𝑏𝑘𝑥0

𝛽 + 𝛼𝑥0
𝑘−1

− 𝛼
(

𝑎𝑘(𝑥0 − 1) + 𝑏𝑘𝑥0
𝛽 + 𝛼𝑥0

)2
𝑘−2 + 𝑂

(1
𝑘

)3
.

(15)

In particular, if controller 𝐴 and controller 𝐵 target all nodes equally, i.e. 𝑎𝑘 = 𝑎 and 𝑏𝑘 = 𝑏, we have:

𝛽 + 𝛼 = −𝑏
𝑎
𝛽. (16)

As 𝛽 is strictly positive and the sum of 𝛼 and 𝛽 is negative, we obtain that 𝛼 is negative as well. Therefore, we have

𝑎𝑘(𝑥0 − 1) + 𝑏𝑘𝑥0
𝛽 + 𝛼𝑥0

=
𝑥0(𝑎 + 𝑏) − 𝑎
𝑥0(𝑎+𝑏)−𝑎

𝑎+𝑏 𝛼
= 𝑎 + 𝑏

𝛼
< 0.

Eq. (15) can now be simplified to:

𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 ≃ 𝛼 − 1
𝛼

+ 𝑎 + 𝑏
𝛼

𝑘−1 −
(𝑎 + 𝑏)2

𝛼
𝑘−2 + 𝑂

(1
𝑘

)3
, (17)

which indicates that the approximation of average relaxation times for nodes with degree 𝑘 is independent of the initial
state if both controllers target all nodes uniformly. Notably, the dependence of 𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 on 𝑘 primarily emerges from
two terms. The first term 𝛼−1

𝛼 establishes a baseline influence. The second term 𝑎+𝑏
𝛼 𝑘−1 shows a linear decay. This

term has a negative coefficient 𝑎+𝑏
𝛼 , which suggests an inverse relationship: higher-degree nodes have longer relaxation

times. Additionally, the quadratic term (𝑎+𝑏)2
𝛼 𝑘−2 acts as a moderating factor. It reduces the variation in relaxation times

among nodes with different degrees.
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Datasets Congress votes [52] Facebook [21] Advogato [38] Wikipedia Elections[31] Twitter[32]

Network Size (𝑁) 219 3862 6541 7118 22322
Number of Edges (|𝑉 |) 764 87324 51127 103689 31823
Average Degree (⟨𝑘⟩) 7.0 45.2 15.6 29.1 2.9
Degree Exponent (𝜆) ≈ 1.9 ≈ 1.6 ≈ 1.7 ≈ 1.5 ≈ 4.3

Table 1
Statistical properties of the real-world datasets used in this study. The datasets span diverse domains, including political
discourse (Congress votes), social interactions (Facebook, Twitter), trust networks (Advogato), and voting behavior
(Wikipedia Elections). 𝑁 denotes the number of nodes, |𝑉 | is the number of edges, ⟨𝑘⟩ represents the average degree,
and 𝜆 is the degree exponent estimated using the method given in [43]. Data sources are cited for each dataset.

4. Experimental Results
In this section, we focus on investigating how network heterogeneity affects influence propagation dynamics and

optimization strategies under temporal control. Specifically, we begin with an overview of our experimental framework
in Section 4.1, including the datasets, network structures, and experimental parameters essential for context and
reproducibility. Building on this foundation, Section 4.2 analyzes how node degree and network heterogeneity influence
system relaxation times—the periods required for systems to reach equilibrium. This analysis reveals crucial insights
into the relationship between network structure and transient dynamics, providing the theoretical basis for developing
timing-sensitive influence strategies. Then, Sections 4.3.1-4.3.3 evaluates the effectiveness of both uniform and agent-
specific optimization approaches within a constant-opponent framework. Finally, in Section 4.3.4, we examine the
optimal strategies in a game-theoretical setting where both controllers actively compete against each other.

4.1. Dataset Description and Experimental Setup
To validate our theoretical findings and evaluate temporal control strategies, we conduct extensive experiments

using both synthetic and real-world networks. For synthetic networks, we employ the configuration model [15],
which serves as a standard null model for testing analytical solutions and examining the effects of power-law degree
distributions. These networks follow a distribution 𝑝𝑘 ∝ 𝑘−𝜆, where 𝑘 represents the node degree and 𝜆 is the
degree exponent. More details on the network generation process and choice of network parameters are provided
in Appendix C. In addition to synthetic networks, we complement our analysis with experiments on five established
real-world networks. These datasets include Congress votes [52], representing mentions between U.S. politicians with
edges indicating supportive or opposing references; Facebook [21], a social network among users affiliated with a
specific corporation; Advogato [38], a trust network where nodes represent users and edges signify trust relationships;
Wikipedia Elections [31], a voting network where nodes correspond to users and edges represent votes (positive or
negative) between them; and Twitter [32], a network capturing user-following relationships. The properties of these
datasets, including network size, number of edges, average degree, and degree exponent, are summarized in Table 1.
By comparing the results from both synthetic and real-world networks, we aim to demonstrate the general applicability
and robustness of our methods across diverse settings.

To ensure consistency, we initialize the opinion states uniformly at 0.5 unless specified otherwise, which represents
a neutral starting point. Additionally, we conduct experiments across different time horizons: 𝑇 = 16 for analyzing
short-term influence dynamics and 𝑇 = 256 for studying long-term equilibrium behavior. For fair comparisons across
networks of varying sizes, the control gains are normalized by network size. All simulations are performed using the
4th-order Runge-Kutta method with a time step of 0.01, which ensures both numerical accuracy and computational
efficiency.

4.2. Impact of Network Heterogeneity on Relaxation Times
To validate our theoretical findings in Section 3, we first perform detailed numerical experiments to compare the

relaxation times 𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 for nodes with degree 𝑘 using three methods: direct integration via the Runge-Kutta method,
mean-field approximations (Eq.(14)), and Taylor expansions (Eq.(17)). Here, direct Runge-Kutta integration serves as
the ground truth. It is obtained by numerically solving the original, non-approximated system dynamics described in
Eq. (1) to compute the vote-share trajectories 𝑥𝑖(𝑡), and then nodes are grouped by their degree 𝑘 to calculate average
relaxation times via Eq. (13). The corresponding results are displayed in Fig. 2 (a), which shows a consistent increase
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Figure 2: Results for networks with 𝑁 = 104 nodes and an average degree of ⟨𝑘⟩ = 10.5 averaged over 100 realizations.
Controllers 𝐴 and 𝐵 initiate resource allocation at time 0 with magnitudes of 0.1 and 1 per node per unit time for Fig. 2 (a)
and Fig. 2 (b), respectively. Fig. 2 (a) presents the relationship between the degree 𝑘 and the relaxation time 𝜏𝑟𝑒𝑙𝑎𝑥,𝑘. Here,
𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 is calculated using direct integration with a Runge-Kutta method (black boxes), a mean-field estimate derived from
Eq. (14) (blue boxes), and a Taylor series expansion of Eq. (17) (red boxes) in 𝑘 up to the second order for networks with an
exponent of 1.6. Data are presented as box plots displaying the median, 25𝑡ℎ and 75𝑡ℎ percentiles, with whiskers extending
to the extreme values. Fig. 2 (b) explores how overall average relaxation time 𝜏𝑟𝑒𝑙𝑎𝑥 varies with network heterogeneity. Here,
we compare 𝜏𝑟𝑒𝑙𝑎𝑥 calculated via direct integration with a Runge-Kutta method (blue), and the mean-field approximation
(black). Error bars reflect 95% confidence intervals.

in 𝑥𝑘 with the node degree 𝑘 for all the methods. This trend aligns with the Gershgorin circle theorem [17]. According
to the theorem, the eigenvalues of nodes, are situated within discs. Each disc’s radius, computed as −1 + 1

1+ 𝑎𝑘+𝑏𝑘
𝑘

is

centered at zero. As node degree 𝑘 increases, the term 𝑎𝑘+𝑏𝑘
𝑘 decreases, leading to a reduction in the radius of the disc.

This smaller radius implies a tighter clustering of eigenvalues around zero, which in turn indicates longer relaxation
times for nodes with higher degrees. Additionally, Fig. 2 (a) indicates that the estimates of 𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 derived from the
mean-field method and Taylor expansion align closely with the direct integration, validating the theoretical prediction
in Section 3 that nodes with higher degrees exhibit longer relaxation times.

In the following, we use the overall average relaxation time 𝜏𝑟𝑒𝑙𝑎𝑥 to quantify network’s natural timescales towards
equilibrium under uniform targeting. 𝜏𝑟𝑒𝑙𝑎𝑥 is calculated using a weighted average where the relaxation time 𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 of
nodes with degree 𝑘 contributes proportionally to their frequency 𝑝𝑘, written as:

𝜏𝑟𝑒𝑙𝑎𝑥 =
∑

𝑘
𝑝𝑘𝜏𝑟𝑒𝑙𝑎𝑥,𝑘 =

∑

𝑘
𝑝𝑘

𝑘 (𝛽(𝑎 + 𝑏) + 𝑎) + 𝛽(𝑎 + 𝑏)2

𝛽(𝑎 + 𝑏)(𝑎 + 𝑏 + 𝑘)

≃
∑

𝑘
𝑝𝑘

⎛

⎜

⎜

⎜

⎝

⟨𝑘⟩
(

𝑘(𝑎 + 𝑏) − (𝑎 + 𝑏)2 − 𝑘2
)

𝑘2(𝑎 + 𝑏)
(

∑

𝑘
𝑝𝑘
𝑘 (𝑎 + 𝑏) − 1

) + 1

⎞

⎟

⎟

⎟

⎠

+ 𝑂
(1
𝑘

)3
(18)

Our next aim is to analyze how network heterogeneity, characterized by the degree exponent 𝜆, affects overall
average relaxation times 𝜏𝑟𝑒𝑙𝑎𝑥. To achieve this, we compute the average relaxation time 𝜏𝑟𝑒𝑙𝑎𝑥 across various 𝜆 settings.
Fig. 2 (b) displays the dependence of 𝜏𝑟𝑒𝑙𝑎𝑥 on network heterogeneity 𝜆. We again compare the values of 𝜏𝑟𝑒𝑙𝑎𝑥 obtained
via Runge-Kutta integration, which serves as the ground truth, with the theoretical estimates from Eq. (18). The results
in Fig. 2 (b) confirm that the simulation and theoretical estimates align well. Moreover, the trend of dependence of
𝜏𝑟𝑒𝑙𝑎𝑥 on network heterogeneity 𝜆 indicates that networks with more heterogeneity have longer timescales to reach
equilibrium. By integrating this observation with that from Fig. 2 (a), it becomes evident that the extended timescales
observed in networks with high degrees of heterogeneity predominantly originate from nodes with higher degrees.
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Figure 3: Results for networks with 𝑁 = 104 nodes and an average degree of ⟨𝑘⟩ = 10.5. Error bars represent 95% confidence
intervals across 100 realizations. Both controllers 𝐴 and 𝐵 initiate resource allocation at time 0 with magnitudes of 1 per
node per unit time. The legends 𝜆 = 1.6 or 𝜆 = 5 correspond to power-law distributions 𝑃 (𝑘) ∝ 𝑘−1.6 or 𝑃 (𝑘) ∝ 𝑘−5,
respectively. Panel (a) of Fig. 3 explores the dependence of relaxation times 𝜏 𝑙𝑟𝑒𝑙𝑎𝑥 on degree of equilibrium 𝑙 for different
levels of network heterogeneity 𝜆 = 1.6 and 𝜆 = 5. Here, we compare the results calculated by direct integration using the
Runge-Kutta method (labelled as RK) and the mean-field approximation (labelled as MF). Panel (b) of Fig. 3 presents the
evolution of average vote share changes in proportion. It distinguishes between “low-degree nodes”, which represents the
first 80% of nodes, and “high-degree nodes”, which represents the top 20%. The y-axis measures the proportion of average
state changes in these groups relative to the total changes.

In the previous discussion, 𝜏𝑟𝑒𝑙𝑎𝑥 represents the timescale for reaching equilibrium. However, our interest extends to
the timescales associated with approaching non-equilibrium states. To address this, we introduce a new metric termed
the degree of equilibrium 𝑙. This metric quantifies the progress toward equilibrium as a fraction of progress towards
the equilibrium state, measured by 𝑙 = |𝑆𝐴(𝑇 )−𝑆𝐴(0)|

|𝑆𝐴(∞)−𝑆𝐴(0)|
. Here, 𝑆𝐴(0) represents the initial vote share, and 𝑆𝐴(∞) is the

vote share at equilibrium. We then define the average timescale for approaching 𝑙𝑆𝐴(∞) as the 𝑙-percentage relaxation
time, 𝜏𝑙𝑟𝑒𝑙𝑎𝑥, calculated with the integral:

𝜏𝑙𝑟𝑒𝑙𝑎𝑥 = ∫

𝑡′

0
𝑟(𝑡)𝑑𝑡 = ∫

𝑡′

0

∑

𝑘
𝑝𝑘𝑟𝑘(𝑡)𝑑𝑡 (19)

where 𝑡′ is the time at which the vote shares satisfy 𝑆𝐴(𝑡′) = 𝑙𝑆𝐴(∞) + (1 − 𝑙)𝑆𝐴(0). The expression quantifies the
average timescale at which the system’s vote-share dynamics reach the specified 𝑙-percentage of the equilibrium vote
share.

We then investigate how different levels of network heterogeneity 𝜆 and the degree of equilibrium 𝑙 influence the
𝑙-percentage relaxation times 𝜏𝑙𝑟𝑒𝑙𝑎𝑥, as defined in Eq. (19), and present these results in Fig. 3 (a). The relaxation time
𝜏𝑙𝑟𝑒𝑙𝑎𝑥, in this context, refers to the time it takes for the system to reach a certain percentage (𝑙) of its equilibrium
state. Understanding how this relaxation time varies with network heterogeneity provides insights into the temporal
dynamics of influence propagation in complex networks.

In Fig. 3 (a), we observe the relationship between network heterogeneity and the 𝑙-percentage relaxation times.
Specifically, when 𝑙 values are low—indicating that the system is far from equilibrium—networks with lower
heterogeneity (higher 𝜆 values) exhibit longer 𝑙-percentage relaxation times compared to more heterogeneous networks
(lower 𝜆 values). This suggests that in the early stages of the dynamics, less heterogeneous networks take longer
to progress towards equilibrium. The initial delay in these networks may be due to the uniform distribution of
connections, which results in a more gradual propagation of influence. However, as 𝑙 increases and the system
approaches equilibrium, this pattern reverses: more heterogeneous networks begin to show longer relaxation times.
This reversal in behavior, highlighted in the inset of Fig. 3 (a), indicates that the structure of more heterogeneous
networks causes a slowdown as they near equilibrium. This can be attributed to the presence of high-degree nodes
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(hubs) in these networks, which require more time to align their state with the rest of the network, thereby delaying the
overall system’s approach to equilibrium.

This crossover behavior suggests a two-stage process in the dynamics of heterogeneous networks as they approach
equilibrium. Initially, low-degree nodes, which are more numerous, drive the changes due to their relative ease of
influence. As the system moves closer to equilibrium, the influence of high-degree nodes becomes more pronounced.
To support this hypothesis, we present Fig. 3 (b), which tracks the evolution of average vote share changes over time,
distinguishing between low-degree and high-degree nodes.

In Fig. 3 (b), we classify the first 80% of nodes as low-degree and the remaining 20% as high-degree, following
the Pareto principle. We then calculate the rate of state change 𝑑𝑥𝑖

𝑑𝑡 for both groups by summing the rates within each
group and normalizing these rates by the number of nodes in each group. This approach allows us to compare the
average impact of low-degree and high-degree nodes on the overall changes in vote shares, providing a more detailed
understanding of the network’s dynamics.

The results in Fig. 3 (b) provide clear evidence of the shifting dynamics between these two groups. Initially,
low-degree nodes contribute the most to vote-share changes, especially in networks with high heterogeneity (low
𝜆). This is likely because the influence propagates more quickly through the numerous low-degree nodes. As time
progresses and the system nears equilibrium, high-degree nodes increasingly dominate the vote-share changes. This
transition is more pronounced in highly heterogeneous networks, where the initial influence of low-degree nodes is
more significant compared to their influence in less heterogeneous networks. Over time, the high-degree nodes in
these highly heterogeneous networks take over as the primary drivers of change, accounting for a larger proportion of
the total vote-share changes.

By combining the results from Figs.3 (a) and 3 (b), we gain a comprehensive understanding of the dynamics. For
small values of 𝑙, the changes in vote shares are primarily driven by low-degree nodes, as shown in the early part of
Fig.3 (b). In this phase, highly heterogeneous networks, which contain many low-degree nodes, reach the desired states
more quickly than less heterogeneous networks. Conversely, for large 𝑙, high-degree nodes become the key contributors
to the changes in vote shares. Networks with a high degree of heterogeneity have more high-degree nodes, which tends
to delay reaching equilibrium due to the more complex dynamics associated with these influential nodes.

These insights into the relaxation dynamics are crucial as they highlight the dual role of network heterogeneity
in shaping the speed and pattern of influence spread. In the initial phase, low-degree nodes in highly heterogeneous
networks facilitate rapid early changes, making them important targets for early-stage influence efforts. However, as
the system approaches equilibrium, the role of high-degree nodes becomes more pronounced, especially in highly
heterogeneous networks where their influence can slow down the final convergence to equilibrium. Understanding this
two-stage process will inform our investigation of optimal resource allocations in the next section, as it underscores
the importance of timing and targeting in influence strategies.

4.3. Analysis of Optimal Strategies
In the previous sections, we have validated our theoretical analysis and gained insights into voting dynamics,

particularly how network heterogeneity and time horizons influence optimal campaign timing. Building on these
findings, in this section, we focus on our second objective of evaluating the performance of inter-temporal optimization
strategies across various settings. Section 4.3.1 explores the effects of time horizons and relative budgets on optimal
starting times under constant-opponent settings, followed by a comparison with individual optimization strategies in
Section 4.3.2. Section 4.3.3 further extends the analysis by incorporating agent heterogeneity. Finally, in Section 4.3.4,
we investigate inter-temporal control strategies in a game-theoretical setting.

4.3.1. Optimal Strategies in the Constant-opponent Setting with Same Starting Time
We start with finding the optimal strategies in the simple scenario described in Section 2.1, where controller 𝐴 only

has the flexibility to determine when to start control, and once started, it has to target all nodes equally. Specifically,
we obtain the optimal starting time of controller 𝐴 by interior-point optimization when controller 𝐵 starts its control
from time 𝑡 = 0 under equal budgets. First, in order to have an intuition of how the optimal starting time affects the
vote shares regarding network heterogeneity, we depict the evolution of vote shares for networks with degree exponents
𝜆 = 1.6 and 𝜆 = 5 within two very different time horizons 𝑇 = 16 and 𝑇 = 256 in Figs. 4 (a) and (b) respectively.
The choice of time horizons 𝑇 = 16 and 𝑇 = 256 allows us to investigate two scenarios: One where there is enough
time for the network to approach the equilibrium state (𝑇 = 256) and one where the campaign ends before reaching
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Figure 4: Figs. (a) and (b) illustrate the evolution of total vote shares under optimal control by controller 𝐴 for time
horizons of 𝑇 = 16 and 𝑇 = 256, respectively. The turning points in these figures mark when controller 𝐴 initiates optimal
control. Figs. (c) and (d) explore how the timing of controller 𝐴’s control start affects vote shares for 𝑇 = 16 and 𝑇 = 256,
respectively. Figs. (e) and (f) examine how the degree of equilibrium 𝑙 varies with the starting time of the A controller
𝑡𝑎. To determine the optimal starting timing, networks must balance the budget per node with the degree of equilibrium.
Results are based on networks with 𝑁 = 104 nodes and an average degree ⟨𝑘⟩ = 10.5 for 100 realizations. Controller 𝐵
begins its control at time 0 in all cases. Black squares represent networks with a degree exponent 𝜆 = 1.6, while blue
triangles indicate those with 𝜆 = 5.
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Figure 5: Fig. (a) shows how the optimal effective control time of controller 𝐴 (𝑇 −𝑜𝑝𝑡𝑡𝑎) varies with network heterogeneity
and time horizons. In this scenario, the control gains of controller 𝐵 for each node are fixed at 1 per unit time starting
from time 0. controller 𝐴’s total budgets are aligned with those of controller 𝐵; for instance, when 𝑇 = 10, 𝑏𝐴 and 𝑏𝐵 are
both set to 𝑁 × 𝑇 . The y-axis measures the difference between the time horizon and the optimized 𝑡𝑎. Fig. (b) explores
the relationship between the optimal starting times of controller 𝐴 (𝑜𝑝𝑡𝑡𝑎) and network heterogeneity, along with varying
budget ratios. Here, the time horizon is fixed at 𝑇 = 16. Similar to Fig. (a), controller 𝐵’s control gains remain constant
at 1 per unit time from the start. The total budget of controller 𝐴 is presented as a ratio to controller 𝐵’s budget, which
is depicted on the x-axis. This analysis is conducted on networks with 𝑁 = 104 nodes and an average degree ⟨𝑘⟩ of 10.5,
with results aggregated from 100 realizations. The curves represent networks with different power law exponents, where
𝜆 = 1.6 on the legend corresponds to a power law distribution exponent 1.6. Initial opinion states are set to 0.5 for all
nodes in each case. Error bars represent 95% confidence intervals.

equilibrium (𝑇 = 16). Further, the turning points where vote shares change dramatically in Figs. 4 (a) and (b) indicate
the optimal times for controller 𝐴 to start control.

We make the following observations. First, we note from Fig. 4 (a) that the optimized controller for networks with
degree exponent 𝜆 = 1.6 will start later than for networks with degree exponent 𝜆 = 5 for the short time horizon
𝑇 = 16. Additionally, at the very beginning of the competition, vote shares for networks with degree exponent 𝜆 = 1.6
decline slightly faster, which roughly indicates that highly heterogeneous networks respond more quickly to the resource
injection in the early stage. Second, in Fig. 4 (b) we show the evolution of vote shares under the optimized control for a
long time horizon 𝑇 = 256. We also note here that compared with networks with degree exponent 𝜆 = 5, the optimized
controller for networks with degree exponent 𝜆 = 1.6 has to start slightly earlier (see inset). Moreover, vote shares for
networks with degree exponent 𝜆 = 1.6 have been slightly exceeded at the end of the competition by networks with
degree exponent 𝜆 = 5. Given that for both networks, the vote shares when controller 𝐴 starts control are the same
(i.e., 𝑆𝐴(𝑡𝑎) = 0), the changes in vote shares can only be a result of budgets and the network response speed.

To demonstrate the accuracy of interior-point optimization, we also present the relationship between vote shares
and the starting times of controller 𝐴 in Figs. 4 (c) and (d). These figures display a convex curve that peaks at the
optimal starting times, indicated by arrows. Note that, these peak values are consistent with the turning points shown
in Figs. 4 (a) and (b). This peak in the curves represents a balance of two competing factors. On the one hand, an early
start for controller 𝐴 (i.e., when 𝑡𝑎 is small) allows more time for network influence but with limited resources per node
per unit time. This extended period of influence helps the system move closer to equilibrium by increasing 𝑙. However,
the sparse resource allocation results in smaller final vote shares, which decreases 𝑆𝐴. On the other hand, a later start
provides controller 𝐴 with more resources per node, enhancing the final vote share. However, this approach reduces
the time available for exerting influence on the network. Thus, the optimal starting time strikes a balance between
maximizing resources per node and allowing sufficient time for their effective deployment.

To proceed, we move on to investigating the dependence of the optimized starting times on time horizons 𝑇 and
relative budgets 𝑏𝐴∕𝑏𝐵 . To this end, Fig. 5 (a) illustrates the dependence of optimal control times (𝑇 − 𝑜𝑝𝑡𝑡𝑎) on
network heterogeneity and time horizons. Generally, the optimized controller reserves its budget until the campaign’s
latter stages. Initially, the system is influenced solely by the opponent’s actions. As the campaign deadline approaches,
the optimized controller significantly increases its allocations. This abrupt shift is evident from the sudden increase in
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vote shares shown in Figs. 4 (a) and (b). Moreover, as illustrated in Fig. 5 (a), the timing of optimal control varies with
network structure. In more detail, for shorter time horizons, optimal control times tend to start later in networks with
high heterogeneity (indicated by smaller 𝜆 values). Conversely, in the case of longer time horizons, it’s beneficial for
control to commence earlier in these networks. This pattern can be explained from earlier observations in Fig. 3 (a). At
the end of shorter campaigns, the network is far from equilibrium, characterized by a low equilibrium degree 𝑙. This
state is primarily influenced by nodes with low degrees, which equilibrate more quickly. Hence, more heterogeneous
networks, which typically have many low-degree nodes, react faster to resource allocations, and lead to a later start for
short campaigns. On the other hand, for longer campaigns, as the network approaches a higher degree of equilibrium
(𝑙 → 1), more heterogeneous networks exhibit slower response times due to larger inherent relaxation times, which
necessitates an earlier start for effective control.

To validate our conclusion, we analyze the degree of equilibrium achieved with optimized control for different time
horizons: 𝑇 = 16 and T= 256, as illustrated in Figs. 4 (e) and (f) respectively. Specifically, Fig. 4 (e) indicates that for
a short time horizon of 𝑇 = 16, the degree of equilibrium never exceeds 0.82. Additionally, Fig. 3 (a) reveals that when
the degree of equilibrium 𝑙 is below 0.9, highly heterogeneous networks have shorter relaxation times 𝜏𝑙𝑟𝑒𝑙𝑎𝑥 compared
to less heterogeneous ones. Consequently, in such networks, the rapid response to control allows for a later start in
the application of optimized strategies. Conversely, with longer time horizons, as shown in Fig. 4 (f), the degree of
equilibrium approaches 1. Under these conditions, less heterogeneous networks adapt more swiftly to control measures.
This faster response enables optimal control strategies for these networks to start later.

Fig. 5 (b) shows the dependence of the optimal starting times of the targeting controller on network heterogeneity
and relative budgets. In this figure, we observe that, when the optimized controller is in resource superiority, it will
start earlier than if it is in a budget disadvantage. Moreover, network heterogeneity leads to slight differences between
starting times under the same control settings when relative budgets are not extremely small or large.

In addition to analyzing synthetic networks with controlled network heterogeneity, we extend our investigation
of inter-temporal control to diverse real-world networks. As shown in Table 1, these networks exhibit substantially
different structural properties, ranging from sparse to dense connectivity patterns and varying degrees of network
heterogeneity. In Table 2, we present a comprehensive comparison between two strategies of controller A: one using
optimized inter-temporal allocations and another starting at time 0. For each network, we evaluate the optimized starting
times (Opt 𝑡𝑎) and compare the resultant vote shares (Opt 𝑆𝐴) with the baseline scenario where controller 𝐴 begins
targeting agents from time 0 (𝑆𝐴 for 𝑡𝑎 = 0). To ensure robustness, we conduct this analysis across different time
horizons (𝑇 = {16, 256}) and budget ratios (𝑏𝐴∕𝑏𝐵 = {0.1, 1, 10}). Despite the significant variations in network
size, average degree, and degree exponent among these real-world networks (as detailed in Table 1), the results in
Table 2 demonstrate that our optimization strategy consistently outperforms the baseline across all network topologies.
For example, in the Congress votes network with 𝑇 = 16, optimizing the starting time yields an improvement in
vote share from 0.5 to 0.7 when 𝑏𝐴∕𝑏𝐵 = 1. Furthermore, we observe that when the optimized controller possesses
resource superiority (𝑏𝐴∕𝑏𝐵 = 10), they consistently start earlier than when operating under a budget disadvantage
(𝑏𝐴∕𝑏𝐵 = 0.1). For instance, in the Congress votes network with 𝑇 = 16, the optimal starting time decreases from
14.730 when 𝑏𝐴∕𝑏𝐵 = 0.1 to 10.476 when 𝑏𝐴∕𝑏𝐵 = 10. Similar patterns can be observed across other real-world
networks for all time horizons, which demonstrates the alignment with our observations from synthetic networks.

Even though the simplicity of all nodes having the same starting time allows for analytical solutions for vote-share
trajectories, we are also interested in obtaining numerical results for a more general scenario in which the controller
can assign different starting times and budget allocation for individual nodes. Therefore, in Section 4.3.2, we further
investigate the influence-maximizing strategies in the context that nodes can have different starting times and budget
allocations by combining optimization schemes with numerical integration of Eq. (1).

4.3.2. Individual Optimization
In the following, we present the numerical results for the individual optimization setting described in Section

2.2 according to Algorithm 1. Here, due to the large parameter spaces involved in individual optimization, we have
reduced the size of networks from 𝑁 = 104 to 𝑁 = 102 for computational efficiency. Specifically, Fig. 6 (a) evaluates
the performance of individual optimization by showing the vote shares achieved by node-specific optimization relative
to the baseline scenario where the optimized controller assigns a single starting time for the whole network based on
different relative budgets of the controllers (𝑆 𝑖𝑛𝑑𝑖𝑣𝑖

𝐴 (𝑇 )∕𝑆𝑐𝑜𝑛𝑠𝑡
𝐴 (𝑇 )). From our analysis of Fig. 6, we find that for a small

relative budget, a large improvement can be achieved (but note that the improvement is nevertheless small in absolute
numbers). In Figs. 6 (b) and (c) we further explain why the individual optimization is more efficient for the small
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Network Control Settings Performance Metrics

Opt 𝑡𝑎 Opt 𝑆𝐴 𝑆𝐴 for 𝑡𝑎 = 0

Congress votes

𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 0.1 14.730 0.248 0.117
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 1.0 12.533 0.705 0.500
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 10 10.476 0.958 0.909

𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 0.1 251.930 0.783 0.091
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 1.0 250.025 0.972 0.500
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 10 248.060 0.997 0.909

Facebook

𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 0.1 15.295 0.378 0.369
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 1.0 13.149 0.531 0.500
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 10 7.897 0.907 0.889

𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 0.1 251.317 0.389 0.092
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 1.0 247.199 0.934 0.500
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 10 245.771 0.996 0.909

Advogato

𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 0.1 14.942 0.313 0.233
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 1.0 13.085 0.634 0.500
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 10 9.800 0.941 0.906

𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 0.1 252.239 0.645 0.091
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 1.0 248.804 0.960 0.500
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 10 247.780 0.996 0.909

Wikipedia

𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 0.1 14.995 0.378 0.289
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 1.0 13.490 0.638 0.500
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 10 9.760 0.920 0.893

𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 0.1 252.918 0.583 0.091
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 1.0 247.588 0.938 0.500
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 10 247.356 0.996 0.909

Twitter

𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 0.1 14.752 0.284 0.100
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 1.0 12.725 0.738 0.500
𝑇 = 16, 𝑏𝐴∕𝑏𝐵 = 10 10.594 0.960 0.909

𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 0.1 252.216 0.810 0.091
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 1.0 250.157 0.973 0.500
𝑇 = 256, 𝑏𝐴∕𝑏𝐵 = 10 248.090 0.997 0.909

Table 2
Comparison of optimized starting times (Opt 𝑡𝑎) and resulting vote shares (Opt 𝑆𝐴) for controller 𝐴 against baseline
scenarios where controller 𝐴 starts targeting agents from time 𝑡𝑎 = 0 (𝑆𝐴 for 𝑡𝑎 = 0). The analysis is conducted on
real-world networks with diverse properties, as detailed in Table 1, and considers different time horizons (𝑇 = {16, 256})
and budget ratios (𝑏𝐴∕𝑏𝐵 = {0.1, 1, 10}).

budget scenarios. There, we clearly see two regimes for the optimized control gains and starting times under varying
relative budgets. For small relative budget ratios, the control gains decrease with the nodes’ degree while the starting
times increase with the nodes’ degree. However, for large relative budget ratios, the opposite holds. Moreover, for
small budgets, the optimized controller only targets nodes with small degrees and ignores large-degree nodes. Thus,
the optimized controller does not need to waste its resources on nodes that are hard to change states in a short period,
and can achieve improvements in the vote shares compared with the non-individual-optimization scenario where the
controller has to target all nodes equally. A more detailed exploration of the individual optimization in the special case
of 𝑏𝐴 = 𝑏𝐵 can be found in Appendix D, which shows the convergence of Algorithm 1 and the positive correlation
between budget allocations and degree under node-specific control.

In conclusion, by applying individual optimization, we observe that the vote shares can be improved, especially for
highly heterogeneous networks. However, we also note that the improvement is consistently very small in relative
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Figure 6: Fig. (a) shows the dependence of average relative vote share 𝑆 𝑖𝑛𝑑𝑖𝑣𝑖
𝐴 (𝑇 )∕𝑆𝑐𝑜𝑛𝑠𝑡

𝐴 (𝑇 ) on relative budgets. Figs. (b)
and (c) show the dependence of control gains and starting times by individual optimization on degrees and relative budgets,
respectively. All the calculations are based on networks with degree of heterogeneity 𝜆 = 1.6. The network size is 𝑁 = 102
and ⟨𝑘⟩ = 6 and tested in 10 realizations. The control gains of controller 𝐵 pertaining to each node are all fixed as 1 per
unit time from time 0. The time horizon 𝑇 is set as 𝑇 = 10. The initial states of opinion distribution are 0 for all nodes.
Error bars indicate 95% confidence intervals.

numbers for equal or large relative budget settings and very small in absolute numbers for the setting of budget
inferiority.

4.3.3. Individual Optimization Considering Agent Heterogeneity
In this section, we further explore the combined effect of the levels of zealotry and degrees on optimal starting times

and budget allocations in heterogeneous networks. The model formulation for individual optimization accounting for
agent heterogeneity in terms of zealotry levels, are illustrated in Section 2.2.1. For our experiments, we randomly select
20% of the population to become zealots with the same zealotry 𝑞, and keep the remaining nodes as normal agents.
In Figs. 7 (a)-(d) we show the relationship between optimal budget allocations and nodes’ degrees for varying levels
of zealotry. We find that, regardless the levels of zealotry, more resources will be allocated to normal agents than to
zealots. For example, even for a low level of zealotry 𝑞 = 0.1, the maximum budget allocation for zealots is less than 20
but it is near to 25 for normal agents. Moreover, from Figs. 7 (a) and (b), we find that, similar to the optimal strategies
observed in the complete network (see Appendix E), there are two regimes of optimal strategies for the zealots regarding
the levels of zealotry. In more detail, for medium and large levels of zealotry, with increasing degrees, zealots will be
allocated fewer resources and start later. However, the opposite holds for small levels of zealotry. Furthermore, in Figs.
7 (c) and (d), we show the optimal budget allocations and starting times for normal agents. We find that, regardless
of the different levels of zealotry of zealots, the patterns of the dependence of budget allocations and starting times
on nodes’ degrees are similar: the larger the node’s degree, the larger the budget allocation and the earlier the optimal
starting time for normal agents. The positive correlation between nodes’ degrees and budget allocations for normal
agents regarding different levels of zealotry is also observed by Moreno et al. [41] in a stationary state.

4.3.4. Optimal Strategies in the Game-Theoretical Setting
Similar to the analysis of influence-maximizing strategies in the constant-opponent setting, we start our investiga-

tion for optimal strategies in the game-theoretical setting by depicting the evolution of vote shares at Nash equilibria.
To fully explore the best responses of both controllers in the case of budget inequality, we start with the context where
one of the controllers is in resource superiority. In more detail, Figs. 8 (a) and (b) show the evolution of vote shares
for a short time horizon 𝑇 = 16 in a Nash equilibrium when controller 𝐴 has a larger budget than controller 𝐵. We
note that, in both Figs. 8 (a) and (b), controller 𝐴 always starts earlier than controller 𝐵. Given that the initial setup
for controller 𝐴 and controller 𝐵 is the same except for the budgets, we see that the controller with a budget advantage
will start control earlier. Furthermore, a closer inspection of Figs. 8 (a) and (b) gives us an insight into the game played
by controller 𝐴 and controller 𝐵 to maximize their pay-off functions. In general, the evolution of vote shares can be
divided into three stages (see the sequence numbers in Figs. 8). 1) No controller exerts any influence. 2) The first mover
changes system states. 3) The second mover starts control and the system is subject to both controllers. In contrast to
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Figure 7: Figs. (a) and (b) show the dependence of budget allocations and starting times on nodes’ degrees for varying
zealotry obtained by individual optimization for zealots. Figs. (c) and (d) are the dependence of budget allocations
and starting times on nodes’ degrees obtained by individual optimization for normal agents. Calculations are based on
heterogeneous networks with 𝑁 = 102, ⟨𝑘⟩ = 6, degree exponent 𝜆 = 1.6 and tested in 10 realizations. In each realization,
we randomly choose 20% population of the network becoming zealots with the zealotry level denoted by 𝑞, i.e., 0.1,0.5,0.9.
The control gains of controller 𝐵 pertaining to each node are all fixed as 1 per unit time from time 0. The time horizon 𝑇
is set as 𝑇 = 10. The initial states of opinion distribution are 0 for all nodes. Error bars indicate 95% confidence intervals.

the vote-share trajectories in the constant-opponent setting where the vote shares increase monotonously when the
active controller starts control, we note that there are turning points in the intersection of the second stage and the third
stage. In the game-theoretical setting, the controller with budget advantages (i.e., controller 𝐴) always starts control
first to seize the initiative. In contrast, the other controller will concentrate its resources in the final stage in order to use
limited resources more effectively and achieve some pull-back from the other controller’s initial advantage (see Figs. 8
(a) and (b)). In addition, by comparing Figs. 8 (a) and (b), we observe that the starting time of the first mover in highly
heterogeneous networks tends to be later than in less heterogeneous networks. However, the starting time of the second
mover in highly heterogeneous networks is later than that in less heterogeneous networks. These phenomena can be
explained by our earlier observations about network’s timescales towards equilibria in Section 3. Since, for short time
horizons (e.g., 𝑇 = 16), highly heterogeneous networks respond to the resource allocation faster, the networks with
degree exponent 𝜆 = 1.6 tend to start control later compared with networks with degree exponent 𝜆 = 5.

Next, we consider the effect of relative budgets on Nash equilibrium strategies. In Fig. 9(a), we present the optimal
starting times of controllers 𝐴 and 𝐵 for budget ratios 𝑏𝐴∕𝑏𝐵 equal to 0.1, 1, and 10 in networks with varying degrees of
heterogeneity, characterized by degree exponents from 1.6 to 5. We make the following key observations: (i) Symmetry
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Figure 8: Evolution of total vote shares in the game-theoretical setting. Calculations are based on networks with 𝑁 = 104
and ⟨𝑘⟩=10.5. The budgets of controller 𝐵 are 𝑏𝐵 = 𝑁𝑇 and 𝑏𝐴 = 10𝑏𝐵 for controller 𝐴. The initial states of opinion
distribution are 0.5 for all nodes and the time horizon is set as 𝑇 = 16. The dotted line distinguishes three stages. 𝑡𝑎 and
𝑡𝑏 shown by arrows are the solutions for Nash equilibrium. Fig. 8 (a) and Fig. 8 (b) represent the evolution for networks
with degree of heterogeneity 𝜆 = 1.6 and 𝜆 = 5 respectively.
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Figure 9: Fig. (a) shows the dependence of starting time at Nash equilibria on network heterogeneity and budgets under
the game-theoretical settings. Black squares show the Nash equilibrium strategy for both controller 𝐴 and controller 𝐵 in
the condition of equal budgets. Blue triangles show the Nash equilibrium strategy for controller 𝐴 if 𝑏𝐴 = 0.1𝑏𝐵 and the
Nash equilibrium strategy for controller 𝐵 if 𝑏𝐴 = 10𝑏𝐵. Red rhombi show the Nash equilibrium strategy for controller 𝐴
if 𝑏𝐴 = 10𝑏𝐵 and the Nash equilibrium strategy for controller 𝐵 if 𝑏𝐴 = 0.1𝑏𝐵. Fig. (b) shows the dependence of resource
allocations on relative budgets. The black and blue lines represent the resources for each node per unit time allocated by
the controller 𝐴 and 𝐵 respectively. Calculations are based on networks with 𝑁 = 104 and ⟨𝑘⟩ = 10.5 and averaged over
10 realizations. The time horizon is set as 𝑇 = 16 for all cases.

in Nash equilibrium starting times: Due to the symmetry of the game played by controllers 𝐴 and 𝐵, we have merged
the optimal starting times of controller 𝐴 in the setting of 𝑏𝐴∕𝑏𝐵 = 0.1 and that of controller 𝐵 in 𝑏𝐴∕𝑏𝐵 = 10 (see the
blue line in Fig.9(a)). Similarly, the optimal starting time of controller 𝐴 in 𝑏𝐴∕𝑏𝐵 = 10 is identical to that of controller
𝐵 under 𝑏𝐴∕𝑏𝐵 = 0.1, represented by a single red line in Fig.9(a). (ii) Effect of network Heterogeneity: There is a jump
in the optimal starting times of the controller with a budget advantage for networks with degree exponents around 2.2.
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Specifically, when degree exponents are greater than 2.2, the controller with a budget advantage will start control from
the very beginning of the campaign. Otherwise, it will use its budget closer to the end of the campaign. Moreover,
for a short time horizon (e.g., 𝑇 = 16), controllers in highly heterogeneous networks will start later, as indicated by
the monotonically decreasing curves. This behavior is consistent with the results observed in the constant-opponent
case. (iii) Effect of budget inequality: By comparing the optimal starting times in scenarios of budget inequality, it
becomes clear that the controller with a budget advantage will always start earlier compared to the controller with a
lower budget.

We further explore the dependence of allocation per node on the budget ratio in Fig. 9 (b). It is clear that, although
the controller with budget advantages tends to start earlier, it allocates more resources on each node per unit time as
well. Therefore, for stage (3) in Figs. 8 (a) and (b), the second mover can only buffer the increase of 𝑆𝐴, it is impossible
for the second mover to gain a larger vote share than the first mover.

Similar to Section 4.3.2, we can apply the individual optimization in the game-theoretical setting. However, as the
individual optimization only has small improvements in the absolute value of vote shares, we do not further investigate
it in the game-theoretical setting.

5. Conclusion
This study presents a comprehensive investigation of the influence maximization problem from the perspective of

inter-temporal budget allocations in the voter model. By relating IM to network control and integrating time information
into opinion dynamics, we explore optimal campaign strategies within limited time horizons, considering competing
controllers and agent heterogeneity.

Our study makes several contributions to the field of transient control in voting dynamics, building upon and
advancing prior work in this area. First, we provide a comprehensive analysis of IM from an inter-temporal allocation
perspective using non-progressive models, extending our previous work to incorporate agent heterogeneity. This
approach offers a more realistic representation of influence dynamics in diverse populations, addressing a crucial factor
often overlooked in previous studies. Second, we expand our investigation to include game-theoretical scenarios under
uniform strategies, providing initial insights into competitive influence maximization in multi-agent environments.
This novel aspect enhances our understanding of strategic interactions in settings where multiple entities compete for
influence within the same network. Third, by employing the heterogeneous mean-field method and utilizing Taylor
expansions, we derive analytical approximations that offer insights into the temporal dynamics of influence spread.
These techniques enable us to quantify the timescales required for networks to reach equilibrium, with a particular
focus on scale-free networks prevalent in many real-world systems. Our analytical framework significantly enhances the
understanding of how influence propagates through complex network structures over time. Fourth, through extensive
numerical experiments, we demonstrate the superiority of individually optimized influence strategies compared to
uniform allocation approaches. This contribution highlights the importance of tailoring influence tactics to specific
agents within a network, considering their unique characteristics and positions.

The key findings of our study reveal several important aspects of inter-temporal influence maximization. In
the constant-opponent setting, we show that competing controllers can dominate the campaign at later stages by
strategically timing their budget consumption. We also find that networks have a natural time scale for information
propagation, requiring controllers to balance start-up time with the time needed for control to take effect. This implies
different optimal starting times for networks with varying degrees of heterogeneity and different time horizons. In
the game-theoretical setting, we demonstrate that the controller with a budget advantage should start earlier to ensure
superiority in vote shares. Our analysis of individual optimization reveals that strategic allocation is most effective
when resources are limited, focusing on low-degree nodes. Furthermore, we identify distinct regimes of optimal budget
allocations and starting times in the presence of agents with different levels of zealotry.

Several promising directions for future work emerge from our study. First, while the voter model provides a
solid analytical foundation for understanding inter-temporal influence strategies, it focuses on binary opinions and
simple contagion, which simplify complex real-world opinion dynamics. Extending this framework to incorporate
more sophisticated mechanisms, such as complex contagion or multi-state opinion formation models, presents an
exciting opportunity to deepen our understanding of inter-temporal influence propagation in diverse social contexts.
Additionally, our framework assumes complete knowledge of network topology, which offers clarity and precision in
strategy optimization. However, in many real-world applications, such comprehensive information may be unavailable
or impractical. Investigating scenarios with incomplete or probabilistic knowledge of network structure and opponent
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strategies represents an important and challenging direction for future work. Exploring methods to optimize influence
strategies under partial network visibility or uncertain opponent behaviors could also enhance the practical applicability
of the framework.

A. Fully Flexible Resource Allocation in a One-Node System
In this section, we analyze optimal inter-temporal influence allocation for a single-node system (𝑁 = 1) involving

two controllers, 𝐴 and 𝐵. Both controllers have finite resource budgets over the time horizon 𝑇 , given by 𝑏𝐴 =
∫ 𝑇
0 𝑎(𝑡) 𝑑𝑡 and 𝑏𝐵 = ∫ 𝑇

0 𝑏(𝑡) 𝑑𝑡, where 𝑎(𝑡) and 𝑏(𝑡) represent the time-dependent control gains of𝐴 and𝐵, respectively.
We focus on a constant-opponent scenario where controller 𝐴 optimizes its influence allocation 𝑎(𝑡) against a passive
opponent 𝐵, whose influence 𝑏(𝑡) = 𝑏𝐵

𝑇 remains constant throughout the time horizon.
The dynamics of the node’s opinion, following Eq. (1), are described as:

𝑥̇(𝑡) =
𝑎(𝑡)

𝑎(𝑡) + 𝑏(𝑡)
− 𝑥(𝑡), (20)

where 𝑥(𝑡) is the probability that the node holds opinion 𝐴 at time 𝑡. The objective of controller 𝐴 is to maximize its
vote share at the final time 𝑇 , given by:

𝑆𝐴(𝑇 ) = 𝑥(𝑇 ). (21)

Assuming that controller 𝐴 begins its influence at time 𝑡0, we set 𝑎(𝑡) = 0 for 𝑡 < 𝑡0 and 𝑎(𝑡) = 𝑎̂(𝑡) ≥ 0 for
𝑡 ≥ 𝑡0, and the initial condition for the opinion is 𝑥(0) = 𝑥0. Solving the non-autonomous inhomogeneous differential
equation of Eq. (20) yields:

𝑥(𝑇 ) = 𝑥0𝑒
−𝑇 + 𝑒−𝑇 ∫

𝑇

𝑡0
𝑒𝑡

𝑎̂(𝑡)
𝑎̂(𝑡) + 𝑏(𝑡)

𝑑𝑡. (22)

The term 𝑥0𝑒−𝑇 is constant, so maximizing 𝑥(𝑇 ) reduces to maximizing the second term:

∫

𝑇

𝑡0
𝑒𝑡

𝑎̂(𝑡)
𝑎̂(𝑡) + 𝑏(𝑡)

𝑑𝑡, (23)

subject to the budget constraint:

∫

𝑇

𝑡0
𝑎̂(𝑡) 𝑑𝑡 = 𝑏𝐴, 𝑎̂(𝑡) ≥ 0 for 𝑡 ≥ 𝑡0. (24)

To solve this optimization problem, we use the calculus of variations. Introducing a Lagrange multiplier 𝜆 for the
budget constraint, the functional to be maximized becomes:

(𝑎̂, 𝑡) = 𝑎̂(𝑡)
𝑎̂(𝑡) + 𝑏(𝑡)

𝑒𝑡 + 𝜆𝑎̂(𝑡). (25)

Taking the derivative of  with respect to 𝑎̂(𝑡), we obtain:

𝑏(𝑡)𝑒𝑡

(𝑎̂(𝑡) + 𝑏(𝑡))2
+ 𝜆 = 0. (26)

Rearranging terms of Eq. (26) gives:

𝑎̂(𝑡) =
√

−
𝑏(𝑡)
𝜆

𝑒𝑡 − 𝑏(𝑡). (27)

Substituting this into the budget constraint:

∫

𝑇

𝑡0
𝑎̂(𝑡) 𝑑𝑡 = 𝑏𝐴, (28)

allows us to eliminate 𝜆, yielding the optimal control:

𝑎̂(𝑡) =
𝑏𝐴 + 𝑏(𝑇 − 𝑡0)
2
(

𝑒𝑇 ∕2 − 𝑒𝑡0∕2
)𝑒𝑡∕2 − 𝑏. (29)
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Additionally, the positivity condition 𝑎̂(𝑡) ≥ 0 determines the starting time 𝑡0, where 𝑎̂(𝑡0) = 0. Regarding this, the
starting time 𝑡0 is determined by solving the transcendental equation:

𝑒(𝑇−𝑡0)∕2 −
𝑇 − 𝑡0

2
=

𝑏𝐴
2𝑏

+ 1. (30)

Here, the left-hand side 𝑒(𝑇−𝑡0)∕2 − 𝑇−𝑡0
2 depends on 𝑇 − 𝑡0, which determines how far from 𝑇 the influence starts. On

the other hand, the right-hand side grows with the ratio 𝑏𝐴
𝑏 . For larger 𝑏𝐴

𝑏 , the right-hand side becomes larger, so 𝑇 − 𝑡0
must increase to satisfy the equation. In other word, a larger budget for controller 𝐴 relative to controller 𝐵 allows 𝐴
to start influencing earlier, which aligns with the conclusion drawn in Section 4.3.1.

B. Heterogeneous Mean-Field Analysis
Here we provide the detailed derivation of the heterogeneous mean-field analysis for vote share trajectories under

temporal control. Starting from Eq. (1), we employ the heterogeneous mean-field approximation by grouping nodes of
the same degree 𝑘. Under this framework, we approximate the neighbor influence term as:

∑

𝑗
𝑤𝑗𝑖𝑥𝑗 ≈ 𝑘𝑖 ⟨𝑥⟩ , (31)

where 𝑘𝑖 =
∑

𝑗 𝑤𝑗𝑖 is the sum of incoming links of node 𝑖 and ⟨𝑥⟩ represents the average behaviour of a neighbour.
Specifically, ⟨𝑥⟩ is equal to

⟨𝑥⟩ =
∑

𝑘

𝑘
⟨𝑘⟩

𝑝𝑘𝑥𝑘, (32)

where 𝑝𝑘 is the fraction of nodes with degree 𝑘 and ⟨𝑘⟩ =
∑

𝑘 𝑘𝑝𝑘 is the average degree of the network. Note that 𝑘
⟨𝑘⟩

term stands for nodes with higher degree are more likely to be connected. Inserting Eq. (31) into Eq. (1) and rewriting
for the dynamics of nodes with degree 𝑘, we have

𝑥̇𝑘 =
𝑎𝑘

𝑘 + 𝑎𝑘 + 𝑏𝑘
+

𝑘 ⟨𝑥⟩
𝑘 + 𝑎𝑘 + 𝑏𝑘

− 𝑥𝑘, (33)

where 𝑎𝑘 and 𝑏𝑘 stand for allocations to nodes with degree 𝑘. Multiplying Eq. (33) by 𝑘𝑝𝑘∕ ⟨𝑘⟩ and summing over 𝑘,
we obtain a differential equation for ⟨𝑥⟩

𝑑
𝑑𝑡

⟨𝑥⟩ = 𝛽 + 𝛼 ⟨𝑥⟩ (34)

with coefficients

𝛼 =
∑

𝑘

𝑘2𝑝𝑘
⟨𝑘⟩

1
𝑘 + 𝑎𝑘 + 𝑏𝑘

− 1,

𝛽 =
∑

𝑘

𝑘𝑝𝑘𝑎𝑘
⟨𝑘⟩

1
𝑘 + 𝑎𝑘 + 𝑏𝑘

,
(35)

which are constants for a given network. As Eq. (34) is a first-order differential equation, that can be solved by
eigenvalue decomposition. Based on the assumption that controller 𝐵 starts control at time 0 and controller 𝐴 has
the freedom to choose the starting time 𝑡𝑎, we calculate the probability that nodes with degree 𝑘 will adopt A at time 𝑡
(𝑡 > 𝑡𝑎) and the corresponding vote share as follows:

𝑥𝑘(𝑡) =
𝑎𝑘𝛼 − 𝛽𝑘 + 𝑘𝑒𝛼𝑡(𝛽+𝛼𝑥𝑘(𝑡𝑎))

𝛼+1
𝛼(𝑎𝑘 + 𝑏𝑘 + 𝑘)

− 𝑒−𝑡
⎛

⎜

⎜

⎝

𝑎𝑘𝛼 − 𝛽𝑘 + 𝑘(𝛽+𝛼𝑥𝑘(𝑡𝑎))
𝛼+1

𝛼(𝑎𝑘 + 𝑏𝑘 + 𝑘)
− 𝑥𝑘(𝑡𝑎)

⎞

⎟

⎟

⎠

,

𝑆𝐴(𝑡) =
∑

𝑘
𝑝𝑘𝑥𝑘(𝑡),

(36)
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where

𝛾 =
∑

𝑘

𝑘2𝑝𝑘
⟨𝑘⟩

1
𝑘 + 𝑏𝑘

− 1,

𝑥𝑘(𝑡𝑎) = 𝑥0𝑒
−𝑡𝑎 + 𝑘

𝑘 + 𝑏𝑘
𝑥0

(

𝑒𝛾𝑡𝑎 (1 − 𝑒−𝑡𝑎 )
)

.
(37)

Here, 𝑥𝑘(𝑡𝑎) is the probability of nodes of degree 𝑘 holding opinion 𝐴 at time 𝑡𝑎.

C. Synthetic Network Generation
To investigate the impact of network heterogeneity on influence propagation under temporal control, we generate

synthetic networks using the configuration model [15]. This model enables the creation of networks with precisely
controlled degree distributions, allowing us to replicate the scale-free structures commonly observed in real-world
networks. Moreover, it allows systematic exploration of how variations in power-law degree distributions influence
network dynamics while maintaining other network properties, such as the average degree ⟨𝑘⟩, approximately constant.

The network generation process consists of two main steps. First, each vertex 𝑖 in a network of size 𝑁 is assigned
a degree 𝑘𝑖 drawn from a power-law degree distribution, defined as:

𝑝𝑘 = 𝑐𝑘−𝜆, 𝑘min ≤ 𝑘 ≤ 𝑘max, (38)

where 𝑐 is the normalization coefficient, 𝑘min is the minimum degree, and 𝑘max is the maximum degree that serves as a
structural cut-off to prevent degree correlations from finite-size effects [7]. Moreover, the parameter 𝜆 determines the
network’s degree heterogeneity, with smaller values producing networks with highly connected hubs and larger values
yielding more homogeneous structures. Second, node stubs (half-edges) are randomly paired to form edges. To ensure
network validity, we rewire stubs to remove self-loops and multi-edges while preserving the target degree distribution
as closely as possible.

To enable fair comparisons across networks with different 𝜆, we keep the average degree ⟨𝑘⟩ approximately constant
by adjusting 𝑘min according to the following constraints:

𝑘max
∑

𝑘=𝑘min

𝑐𝑘−𝜆 = 1,

𝑘max
∑

𝑘=𝑘min

𝑐𝑘−𝜆+1 = ⟨𝑘⟩,

(39)

which establishes a direct relationship between network parameters. Here, the first equation ensures the sum of the
probabilities for all possible degrees must equal 1, while the second equation ensures that the average degree matches
the desired target. By numerically solving these equations, we can determine 𝑘min for each 𝜆, given the target ⟨𝑘⟩ and
𝑘max. Note that, since 𝑘min must be an integer, slight deviations in ⟨𝑘⟩ can occur. For example, a target ⟨𝑘⟩ = 10 yields
an actual ⟨𝑘⟩ = 10.5, as shown in Figs. 2, 4 and 8.

Specifically, for larger networks (i.e., 𝑁 = 104), we set 𝑘max =
√

𝑁 , following the natural cutoff scaling observed
in uncorrelated networks [15], and specify a target average degree ⟨𝑘⟩ = 10. Note that, while our synthetic dataset
focuses on isolating the influence of network heterogeneity by fixing target average degree as 10, we also validate our
findings using real-world networks with varying average degrees (see Tables 1 and 2). For computationally demanding
individual optimization experiments (Figs. 6 and 7), we use smaller networks with 𝑁 = 102 nodes. In these cases,
we set 𝑘max = 30 and ⟨𝑘⟩ = 6, which balances a sufficiently broad degree range with the need to avoid excessive
degree correlations. Additionally, to systematically explore the effects of degree heterogeneity, we vary the power-law
exponent 𝜆 from 1.6 to 5. This range captures both highly heterogeneous networks (low 𝜆) and more homogeneous
ones (high 𝜆). The lower bound 𝜆 = 1.6 is chosen because values below this threshold fail to yield a discrete 𝑘min that
satisfies the constraints defined in Eq. (39), and aligns with real-world networks where heterogeneity typically around
or exceeds 1.6 [16, 29].
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Figure 10: Fig. (a) shows the optimization process characterized by the dependence of average relative vote share
𝑆 𝑖𝑛𝑑𝑖𝑣𝑖
𝐴 (𝑇 )∕𝑆𝑐𝑜𝑛𝑠𝑡

𝐴 (𝑇 ) on iterations of the optimization algorithm. 𝑆 𝑖𝑛𝑑𝑖𝑣𝑖
𝐴 (𝑇 ) stands for vote shares at time 𝑇 calculated

by individual optimization while 𝑆𝑐𝑜𝑛𝑠𝑡
𝐴 (𝑇 ) represents vote shares calculated by assigning a single optimized starting time for

the whole network. The black line, blue line, and red line stand for networks with degree of heterogeneity 𝜆 = 1.6, 𝜆 = 3
and 𝜆 = 5 respectively. Figs. (b) and (c) show the corresponding distributions of budget allocations and starting times on
nodes with degree 𝑘 when the system depicted in Fig. (a) reaches the maximum in the scenario of individual optimization.
All the calculations are based on networks with 𝑁 = 102 and ⟨𝑘⟩ = 6 and tested in 10 realizations. The control gains of
controller 𝐵 pertaining to each node are all fixed as 1 per unit time from time 0. The time horizon 𝑇 is set as 𝑇 = 10. The
total budgets of controller 𝐴 are set to be the same as controller 𝐵’s, i.e., 𝑏𝐴 = 𝑏𝐵 = 𝑁 × 𝑇 . The initial states of opinion
distribution are 0 for all nodes. Error bars indicate 95% confidence intervals.

D. Individual Optimization for the Special Case of 𝑏𝐴 = 𝑏𝐵
In Fig. 10 (a), we evaluate the performance of individual optimization by showing the vote shares achieved

by optimization with node-specific starting times and budget allocations relative to the simple scenario where the
optimized controller assigns a single starting time for the whole network. From our analysis of Fig. 10 (a), we
observe that, roughly 𝑁2 iterations yield near-optimal allocations, as each node is updated 𝑁 times on average and no
further improvements are observed beyond this point. Therefore, in the individual optimization experiments, we set
𝐿𝑚𝑎𝑥 = 𝑁2.

Even though the improvements of vote shares achieved by individual optimization are very small, a clear difference
in vote shares achievable for networks with different degrees of heterogeneity is apparent. Specifically, individual
optimization is relatively more efficient for networks with larger heterogeneity. A possible explanation for this
observation is that the degrees of highly heterogeneous networks are distributed over a larger range compared with less
heterogeneous networks and thus differences between degrees can be fully exploited in the individual optimization case.
To further confirm our hypothesis, in Figs. 10 (b) and (c), we present the dependence of optimized budget allocations
(𝑏𝐴,𝑘) and starting times (𝑡𝐴,𝑘) on the degree. Two observations stand out. First, we note a positive correlation between
budget allocations and degrees (see panel (b)). Second, it is apparent that there is an inverse relationship between
nodes’ degrees and starting times. This implies that a node with a larger degree should be allocated more resources
and the campaign for such a node should start earlier. Moreover, we also find that networks with different degrees of
heterogeneity have a similar distribution of budget allocations and starting times regarding nodes’ degrees.

E. Individual Optimization Considering Agent Heterogeneity in Complete Networks
To gain some intuition about how different levels of zealotry influence optimal starting times and budget allocations,

we also explore influence-maximizing strategies in a complete network with a uniform distribution of zealotry in the
range [0, 1]. Here, the complete network is chosen for its simplicity, which allows us to focus on the effects of zealotry
without the added complexity of network structure. Moreover, we use the above-mentioned stochastic hill climbing
algorithm to determine both the optimized control gains and starting times in the presence of zealotry.

From Figs. 11 (a) and (b), we identify two regimes of optimal control gains and starting times. For small budget
ratios (e.g., 𝑏𝐴∕𝑏𝐵 = 0.1, 1), controller 𝐴 only targets nodes with low to moderate levels of zealotry. In these scenarios,
control gains decrease as zealotry increases, and the optimal starting times shift to later periods. In contrast, when the
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Figure 11: Figs. (a) and (b) show the dependence of control gains and starting times on the level of zealotry 𝑞𝑖 and relative
budget 𝑏𝐴∕𝑏𝐵 obtained via the individual optimization method on a complete network with size 𝑁 = 102. Fig. (c) shows
the resulting improvements of vote shares via individual optimization compared with assigning a single optimized starting
time for the whole network for varying relative budgets. The control gains of controller 𝐵 pertaining to each node are all
fixed as 1 per unit time from time 0. The time horizon 𝑇 is set as 𝑇 = 10. The initial states of opinion distribution are 0
for all nodes.

budget ratio is large (e.g., 𝑏𝐴∕𝑏𝐵 = 100), controller 𝐴 adjusts its strategy based on the level of zealotry. Before
reaching a critical level of zealotry (around 𝑞𝑖 ≈ 0.7), controller 𝐴 allocates more resources and starts the influence
campaign earlier as zealotry increases. However, beyond this threshold level of zealotry, the pattern reverses: as zealotry
continues to increase, controller 𝐴 begins to allocate fewer resources and delays the starting times. This reversal can
be attributed to the diminishing returns of influence efforts on highly zealous nodes, who are already inclined towards
the desired opinion. Therefore, investing additional resources in these nodes becomes less effective. Additionally, Fig.
11 (c) supports the findings from Fig. 6 (a), that individual optimization is more effective with smaller budgets, as it
allows the controller to focus on a select few nodes.
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