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by 
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Chronic lymphocytic leukaemia (CLL) presents as a biological and clinically heterogenous disease, 
with some patients requiring immediate intervention whilst other have a more benign disease. In 
this thesis, a large cohort of patients enrolled in chemo(immuno-) therapy clinical trials, CLL4, 
ARCTIC or ADMIRE, with extensive molecular characterisation is used to examine the clinical 
power of three novel CLL biomarkers, methylation based epitype, telomere length (TL) and 
genomic complexity (GC). Published work have reported that these biomarkers are clinically 
relevant. However, they have not been analysed together within a single clinical trial cohort. Also, 
a description of the biological context of these biomarkers is an additional aim.  

A systematic review with narrative synthesis was completed. Various experimental work and 
bioinformatic analysis, undertaken by myself, generated new copy number aberration (CNA) 
(n=153), TL (n=83) and variant (n=42) data using shallow whole genome sequencing, monochrome 
multiplex QPCR and HS2 target enrichment techniques, respectively. Extensive statistical and 
survival analysis was completed. Data classifying CLL patients into three epitype subgroups: naïve-
like (n-CLL), intermediate (i-CLL), and memory-like CLL (m-CLL) was utilised. GC was defined as low 
(0-2 CNAs), intermediate (3-4 CNAs) and high (≥5 CNAs) GC. Published TL cut-offs (TL-Short 
<2.92kb, TL-Intermediate 2.92–3.57kb, TL-Long >3.57kb) was also used.  

Results found the n-CLL epitype, TL-S and high GC variables were associated with many other 
poor risk features and were predictive of a poor survival. A strong relationship between TL and 
epitype was also found. As well as confirming previously reported results, the key results of this 
project include: 1) a significant enrichment of i-CLL epitype in intermediate GC patients was 
found; 2) greater GC was correlated with shortening TL (TL-S) and an increased prevalence of the 
n-CLL epitype; 3) survival analysis showed that the i-CLL subgroup can be further stratified by TL, 
with TL-L predicting a prolonged survival; 4) Both TL and epitype have prognostic utility in 
identifying patients destined to have poor survival; 5) high GC, but not intermediate GC, was an 
predictor of a dismal overall survival independently of TP53 aberration or unmutated IGHV status.   

In conclusion, for the first time the clinical significance of TL, epitype and GC was examined 
together within a clinical trial cohort. Results suggest that the combination of TL and epitype can 
further stratify the mutated IGHV group. Additionally, the biological composition and clinical 
significance of three GC subgroups was described. This work supports the use of GC as a 
prognostic biomarker in the clinical setting. However, as reported in the systematic review, a 
consensus within the CLL community about the metric used to define GC and what technology 
should be used to detect GC needs to be reached before this biomarker can be fully validated.  
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Definitions and Abbreviations 

Abbreviation Definition 

aCGH  Array Comparative Genomic Hybridisation 

AID   Activation-Induced Cytidine Deaminase 

ARC/ADM  ARCTIC and ADMIRE 

ATM  Ataxia Telangiectasia Mutated 

ATR   Ataxia-Telangiectasia and Rad3-related kinase 

BCR   B cell Receptor 

BR   Bendamustine and Rituximab 

BTK   Bruton Tyrosine Kinase 

CBA   Chromosome Banding Analysis 

CIT   Chemo-immunotherapy 

CK   Complex Karyotype 

CLL   Chronic Lymphocytic Leukaemia 

CNA   Copy Number Aberration 

cnLOH  Copy Number neutral Loss of Heterozygosity 

CNV   Copy Number Variation 

CpG   Cytosine Guanine Dinucleotide 

CR   Complete Remission 

Ct   Cycle Threshold 

DLBCL  Diffuse Large B Cell Lymphoma 

DME  DNA Methylation based Epitype 

DNA-PK  DNA-dependent Protein Kinase 

DOC   Depth of Coverage 

DOR   Duration of Response 

DSB   Double Strand Breaks 

ERIC   European Research Initiative on CLL 

FCR   Fludarabine, Cyclophosphamide, and Rituximab 

FCMR  FCR and Mitoxantrone 

FCMminiR  FCMR with low-dose Rituximab 

FCMminiR/FCR FCMminiR treatment cross over to FCR treatment 

FISH   Fluorescence in situ Hybridisation 

FPK-PCR  Full Process Kinetics-PCR 

GC   Genomic Complexity 
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HR   Hazard Ratio 

i-CLL  Intermediate CLL 

IGHV  Immunoglobulin Heavy Chain Variable 

IGV   Integrative Genomics Viewer 

iwCLL  Internation Workshop on Chronic Lymphocytic Leukaemia 

KM   Kaplan Meier 

LOH   Loss of Heterozygosity 

LRR   Log R Ratio 

mAb  Monoclonal Antibody 

Mb   Megabase 

MBL   Monoclonal B cell Lymphocytosis 

m-CLL  memory B-cell-like CLL 

M-CLL  IGHV Mutated CLL 

MDR  Minimally Deleted Regions 

MMQPCR  Monochrome Multiplex Quantitative PCR 

MVA  Multivariate Analysis  

n-CLL  Naïve B-cell-like CLL 

NHL   Non-Hodgkin’s Lymphoma 

NGS   Next Generation Sequencing 

OR   Odds Ratio 

OS   Overall Survival  

PFS   Progression Free Survival 

PI3K   Phosphatidylinositol 3-Kinase 

PI3KKs  Phosphoinositide 3-Kinase-related protein Kinases 

RFU   Relative Fluorescence Unit 

R/R   Relapsed/Refractory 

RS   Richter Syndrome 

S   Single copy gene signal 

SLL   Small Lymphocytic Lymphoma 

SNP   Single Nucleotide Polymorphism 

STELA  Single Telomere Length Analysis 

sWGS  Shallow Whole Genome Sequencing 

T   Telomere Signal 

TFS   Treatment Free Survival 

TL   Telomere Length 

TL-I   Intermediate Telomere Length 
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TL-L   Long Telomere Length 

TL-S   Short Telomere Length 

Tm   Melting Tempterature 

TMB  Tumour Mutational Burden 

TS   Targeted Sequencing 

TTT   Time to Treatment 

TTFT  Time to First Treatment 

TTST  Time to Subsequent Treatment 

U-CLL  IGHV Unmutated CLL 

VAF   Variant Allele Frequency 

WES   Whole Exome Sequencing 

WGS  Whole Genome Sequencing 

WHO  World Health Organisation 

95% CI  95% Confidence Interval 
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Chapter 1 Introduction 

1.1 Cellular and molecular biology of cancer 

1.1.1 Cancer development 

As cancer can arise from any cell type, there are over 200 distinct types each with distinctive 

clinical behaviour and pathobiology (1). In the UK, the top four most common cancers; breast, 

prostate, lung and bowel, account for more than half of the new incidences. Cancer Research UK 

has reported that in the last 50 years the 10-year survival rate of cancer has greatly improved 

from 24% to 50%. However, in 2020 1 in 4 deaths recorded in the UK were attributed to cancer 

and coupled with the growing incidence, it is clear that cancer remains a defining health burden in 

the UK and globally (2).  

A tumour is an abnormal mass of cells that proliferate abnormally due to deregulated cell division, 

and it can be defined either as benign or malignant. Benign tumours have abnormal and 

uncontrolled proliferation but remain in the original anatomical location. Malignant tumours have 

the ability to metastasize by invading surrounding normal tissue and moving to a secondary 

location using the lymphatic or circulatory system. It is these types of tumours that are referred to 

as cancer, with their ability to metastasize making them much more threatening to human health 

(3). Eukaryotes cells undergo two types of cell division which both have distinct functions, namely 

mitosis and meiosis. The latter is important in sexual reproduction as it produces gametes, a type 

of haploid cell which contain only half the genetic material as the parent cell. The former 

produces two identical diploid daughter cells from a parent cell and is required for growth and cell 

regeneration, and in some unicellular eukaryotic cells is used for asexual reproduction.       

The mitosis process can be divided into two phases; interphase and M phase, whereby a mother 

cell divides into two identical daughter cells. Within S phase of interphase, DNA replication must 

occur to duplicate the cellular content of the mother cell so that when cellular separation occurs 

at the end of M phase (comprised of prophase, metaphase, anaphase, and cytokinesis) there is 

sufficient DNA present for the two daughter progenies. This process is highly controlled with 

many checkpoints being present throughout the mitotic cell cycle to prevent the accumulation of 

genetic errors that would then be passed on to descendants (4). One example is the DNA damage 

checkpoint which, during interphase, can be triggered by DNA double-strand breaks (DSB) causing 

a rapid response that is dependent on a checkpoint protein kinase; ataxia telangiectasia mutated 

(ATM). The ATM protein acts to orchestrate the response, repairing the damage through the 
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recruitment of sensor and effector proteins. DSB can be repaired in two ways; non homologous 

end joining and homologous recombination, with the prior being able to occur throughout the cell 

cycle whilst the latter is favoured after DNA replication in the S and G2 phases of the cell cycle 

when a template strand is present (5). However, if a DSB cannot be adequately repaired, due to 

the severity of the damage or inability of the DNA damage repair machinery, the cell will 

permanently exit the cell cycle either by entering senescence or by undergoing apoptosis, all of 

which are orchestrated by cell cycle mechanisms (4). Many proteins involved in the cell cycle-

control signalling pathways are altered in cancer which gives rise to continued cell cycle 

progression (6). These signalling pathways can be defined into four groups which have different 

mechanisms of action, impact at different stages, and involve different proteins (Figure 1)(7). 

Research has reported that the continuous abnormal cell accumulation is typically driven by 

insufficiencies in the apoptosis pathway and issues with exiting the cell cycle rather than through 

uncontrollable cell cycle progression (8). In cancer, mutations in proteins involved in initiating cell 

cycle exit or that promote S phase entry are common (9). However, proteins involved in mitotic 

entry or exit are more rarely altered, are typically involved in the DNA replication stress or spindle 

assembly checkpoints and are seemly vital for cancer cells (7). For example, loss of function 

mutations in spindle assembly checkpoint proteins are rare as typically the loss of these proteins 

would result in a high level of aneuploidy that would not be viable for the cell (10). However, an 

overexpression of spindle assembly checkpoint proteins, such as MAD2, BUBR1 and CDC20, have 

also been reported in various cancers but its impact on tumour development is not clear (11,12). 

Evidence in cancer research has shown that faults in certain areas of the cell cycle, necessary to 

allow for continued cell division, then cause a significant dependency on the remaining cell cycle 

pathways to prevent excessive accumulation of genomic instability that would become lethal to 

the cancer cell (13). This dependency is a possible therapeutic target, as healthy cells are not as 

reliant on certain cell cycle pathways, making the cell cycle an important aspect of cancer 

research (7).   
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Figure 1-  The key cell cycle signalling pathways involved in cancer: DNA damage, growth/mitogens, 

replication stress, and spindle assembly. Mutations in proteins involved in each of the cell 

cycle control signalling pathways are shown, with red indicating proteins commonly mutated 

in cancers and blue showing the rarely mutated proteins. These mutations are also associated 

more with specific cell cycle control pathways: cell cycle exit, S phase entry, mitotic entry, and 

mitotic exit. From (7)  

A further important principle of cancer research is tumour clonality. Tumour clonality is the 

development of a tumour from a single normal healthy cell that begins to proliferate 

uncontrollably and abnormally due to alterations within the genetic sequence and in gene 

expression (14). These genetic changes typically impact mechanisms that function to regulate cell 

differentiation, proliferation, and survival. However, tumour clonality does not mean a cancer cell 

acquires all its characteristics in a single event from the original progenitor cell. And in fact, 

tumour development is a dynamic multistep process in which the cell undergoes a progressive 

series of alterations at the cellular, molecular, genetic and epigenetic level (3). Tumour 

development, also referred to as tumorigenesis, can be divided into three stages: initiation, 

progression, and metastasis (15). The multi-hit theory of tumorigenesis states that cancer is 

derived from a single somatic cell that has accumulated many mutations which give the cell a 

growth advantage, allowing it to multiply unchecked and at a rapid pace (16). This quick cell 

division allows additional alterations to readily occur, with selection for cells with greater capacity 

for proliferation, survival, invasion, and metastasis occurring within the expanding tumour 

population. This selection for properties which confer a selective advantage is continuous during 

tumour development and similar to Darwinian natural selection (17). Evolutionary clonal 

expansion of a cancer cell gives rise to intra-tumour heterogeneity. This happens as a result of 
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tumour cells having different levels of genetic instability and being exposed to a range of selection 

pressures. Therefore, these tumour subpopulations can acquire different driver and passenger 

mutations (18). Driver mutations are alterations that drive clonal expansion as they confer growth 

advantages for the cell in their current microenvironment, while the passenger mutations do not 

alter the fitness of the cell but could do if the selective pressures change, see Figure 2.  

 

Figure 2- Clonal evolution model. Clonal expansion of the cancer cell (blue colour) through the 

acquisition of early (red colour) and new (yellow colour) driver mutations resulting in 

evolution and growth of the tumour. Passenger mutations (green colour) do not confer a 

growth advantage to the cell under the current selection pressures within the tumour 

microenvironment, from (18).   

Understanding the order of genetic lesion acquisition during cancer development has been an 

important goal in cancer research as it can provide an insight into the cellular mechanisms in 

tumorigenesis thereby identifying better ways to detect and treat tumours early (19).  

1.1.2 Hallmarks of cancer 

The characteristics granted by the driver alteration accrued during tumour development have 

been extensively researched in the hope that the unifying features, present in all cancer types, 

can be defined. This was revealed by Hanahan and Weinberg who designated them as the 

hallmarks of cancer (1). These biological features of tumour cells function to promote growth, 

migration and survival and are acquired during the multistep tumorigenesis process. In the 

original publication, six hallmarks of cancer were described but subsequent work on this concept 

identified two further traits that were deemed emerging hallmarks, but now with additional 

evidence have been accepted along with the six core hallmarks (1,20). Further reflection upon this 

concept suggested that these hallmarks failed to address the complexities of tumorigenesis and 

did not answer the question of how these phenotypic capabilities were acquired (21). Therefore, 

the idea of enabling characteristics were included along with the eight hallmarks of cancer, see 

Figure 3.  
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Figure 3- The hallmarks of cancer reported and developed by Hanahan and Weinberg, including the 

original six hallmarks and the two emerging hallmarks that have recently been validated and 

accepted. Two enabling characteristic that are vital in allowing the hallmark abilities to be 

acquired are also shown, from (21) 

The eight validated hallmarks of cancer, as well as two enabling characteristics, reported in 

Hanahan and Weinberg’s seminal review are as follows (1,20).  

Sustaining proliferative signalling 

This is an essential first step in the tumorigenesis process as it grants the tumour an ability for 

chronic proliferation. This ability is caused by deregulation of growth-promoting signals that both 

triggers the cell to enter and progress through the cell cycle. Cancer cells can acquire this ability 

many ways including through producing growth factor ligands or by stimulating normal cells 

within the microenvironment to produce growth factors which act to stimulate the cancer cells 

(22). Additionally, cancer cells can also have increased levels of receptor protein on the cell 

surface, leading to a hyperresponsiveness to normal levels of growth factor ligands (23,24).    

Evading growth suppressors 

As well as increasing the proliferation signals, cancer cells also must avoid the negative regulatory 

cell proliferation signals which inhibit cell division. Various tumour suppressor genes have been 

validated through gain- or loss-of-function mice experiments. For example, the TP53 gene which 

has a multifaceted function as a cell cycle checkpoint protein, deciding when a cell can progress 
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through the cell cycle and proliferate or whether cell senescence and apoptosis programs should 

be activated (25). 

Activating invasion and metastasis 

Within the tumour microenvironment, cancer associated cells can change their shape and 

attachment to other cells and the extracellular matrix which allows for local invasion and then 

metastasis. An example of this is many cancers have a downregulation and/or mutational 

inactivation of E-cadherin, which functions normally to provide cell-to-cell adhesion that is 

required in the formation of epithelial cell sheets which inhibits tumour cell invasion by stopping 

cells from dissociating from each other (26).  

Enabling replicative immortality  

Most normal cell lineages only have a limited number of cell cycle divisions. This is due to two 

problems that can arise during cell growth: cellular senescence and cellular crisis leading to 

apoptosis. Immortalization is characterised by the ability of a cell to proliferate without evidence 

of crisis or senescence. Cancer cells acquiring immortality has been attributed to the cells ability 

to maintain a sufficient length of telomeric DNA (20). Telomere shortening is viewed as a 

biological clock indicating the proliferative potential of a cell and therefore cancer cells must 

counter the progressive telomeric shortening which would normally lead to cellular crisis, halting 

proliferation (27).  

Inducing angiogenesis  

Both normal and cancer cells require a constant supply of nutrients and oxygen in addition to the 

ability to remove waste and carbon dioxide. An early event in the development of an invasive and 

metastasising cancer is the angiogenesis process, whereby new blood vessels are formed (28). 

Angiogenesis is continuously activated in cancer so blood vessel branching, and formation of 

capillaries is occurring to help provide for the expanding tumour tissue (29).  

Resisting cell death  

Programmed cell death is an essential part of the normal cell cycle that protects the cell from 

passing down DNA errors to the resulting daughter cells thus inhibiting the development of 

cancer. Whilst the elements that complete apoptosis remain intact in cancer cells, it is the sensors 

that trigger apoptosis in response to the detection of errors that are abnormal (20). A cancer cell 

can use many strategies to avoid apoptosis, including the loss of TP53 tumour suppressor 

function, which typically triggers apoptosis after sensing substantial DNA damage (30). 

Furthermore, tumours may also overexpress antiapoptotic regulators, downregulate proapoptotic 
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factors or can avoid the death receptor pathway where death ligands bind to tumour necrosis 

factor (TNF) death receptors to trigger extrinsic apoptosis (31).  

Avoiding immune destruction 

An emerging hallmark that has since been validated and accepted along with the original six 

hallmarks of cancer. The immune system has a significant role in inhibiting the development and 

progression of tumours, but cancers can develop the ability to avoid detection and elimination by 

this system (20). Various reports and observations have indicated that immune surveillance and 

therefore tumour eradication is a significant barrier in tumorigenesis (32). One such observation is 

deficiencies of certain immune cells such as T and natural killer cells in mice resulted in increased 

tumour incidences (33). One-way tumours avoid immune destruction is by losing the major 

histocompatibility complex class I and II antigens, produced in an immune selection process, thus 

generating a tumour clone that can avoid immune destruction and therefore undergo clonal 

expansion (34).  

Deregulating cell metabolism  

A further validated emerging hallmark involves the adjustment to the cellular energy metabolism 

which is required to sustain the uncontrolled proliferation of a cancer cell. The phenomenon 

called “the Warburg effect” was characterized as the majority of glucose metabolism in cancer 

cells was completed under anaerobic condition via the glycolysis process, whereas normal cells 

primarily rely on mitochondrial dependent energy production (35). Whilst this process has a much 

lower efficiency of ATP production, cancer cells favour this glucose metabolism even under 

aerobic conditions. Whilst the complete rationale for this metabolic reprogramming is unclear, 

many hypothesises have been suggested such as the glycolytic intermediate products are utilized 

in many biosynthetic pathways to generate many elements required for the assembly of new cells 

(36).  

Enabling characteristic of tumour-promoting inflammation 

For many years it has been known that tumours have significant immune system infiltration and 

therefore have substantial inflammation (37). This infiltration can range from a small presence of 

innate and adaptive immune cells to considerable immune presence with a substantial 

inflammation (38). Whilst immune cells typically would function to target and remove these 

tumour cells and therefore the presence of such an immune response would be considered a 

negative factor in tumorigenesis, this is not the response that occurs (39). Instead, tumour-

associated inflammation aids tumour cells in acquiring hallmarks of cancer in several ways such as 

supplying growth factors, survival factors and proangiogenic factors to the tumour 
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microenvironment (40). Furthermore, during inflammation immune cells release many chemicals 

which can act on the surrounding tumour cells that has a mutagenic effect, furthering the quick 

acquisition of genetic alterations and thus the hallmark capabilities (41).  

Enabling characteristic of genome instability and mutation  

During the tumorigenesis process, many hallmarks described above require the presence of 

multiple genomic alterations for the trait to develop (20). Once a mutation has been acquired that 

has a selective advantage within a subclone of a tumour, clonal expansion occurs with this mutant 

being passed down to successional tumour cell progeny. This accumulation of genomic mutations 

can be aided by the cancer cell either through weakening the DNA surveillance systems or 

dismembering the genome maintenance machinery, both of which normally function to ensure 

genome stability (42). For example, many caretaker genes that are involved in the DNA-

maintenance machinery, in a tumour suppressor like function, are commonly lost during 

tumorigenesis either through inactivation mutations or epigenetic repression (43). Across many 

cancers there is substantial evidence of widespread disruption in nucleotide sequences and gene 

copy number, suggesting that genome instability is an important factor in tumorigenesis and in 

the acquisition of the hallmarks of cancer (44).  

1.1.3 Drivers of cancer and genomic variation in cancer cells 

Across all humans there is genomic variation with around 0.1% of the genome differ between two 

humans (45). Genomic variation in can broadly be divided into two groups; small alterations, 

including single nucleotide polymorphisms (SNPs), short tandem repeats and small insertions and 

deletions (indels) and large-scale alterations such as structural variation (46). Structural variation 

encompasses rearrangement of large DNA segments and the deletion or duplication of large DNA 

segments, which alters the number of copies of a DNA sequence i.e., copy number variations 

(CNVs) or copy number alterations (CNAs) when occurring in germline or somatic tissue, 

respectively. Whilst there is no definitive rule that distinguishes alterations between the small and 

large category, a widely used cutoff criteria of 50 bp is used, for example to classify indels and 

CNAs (47). SNPs are the most common cause of genetic variation across humans, accounting for 

~90% of all genetic variation, however not all occur in coding regions or result in an altered 

protein expression that then contributes to a disease (48). CNAs and SNP arise from different 

mechanisms, SNPs are typically due to lesions or repair mistakes in single stranded DNA. Whereas 

CNAs occur due to double stand DNA breaks, incomplete double-stand DNA repair, DNA 

replication or cell division insufficiencies. One such event that results in substantial structural 

variation that can co-occur with a deleted copy number state is chromothripsis (49). It is 
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suggested that a single catastrophic hit shatters one or a few chromosomal arms into >100 of 

fragments. Whilst the DNA repair pathway attempts to repair the damage, this repair results in a 

chromosome reassembled in the wrong order and/or orientation. Furthermore, many of the 

broken fragment are not rejoined during repair and therefore chromothripsis results in deletions 

(50). Two theories have been suggested to explain how these chromothripsis events occur. One 

theory is that when cells enter into telomere crisis due to excessive telomere shortening, end-to-

end chromosomal fusion and the formation of a chromatin bridge can occur. This chromatin 

bridge then can break and fragment the DNA strand, which is then errantly repaired (51). An 

alternative theory is the formation of micronuclei after incomplete mitosis, which are highly error 

prone and therefore DNA can be readily fragmented and reassembled (51).   

Cancer research has identified certain SNPs that target cancer either by influencing susceptibility 

or outcome. For example, in breast cancer, nonsense, frame shift and splicing SNP are the most 

common cancer-causing BRCA1 and BRCA2 mutations as they in a truncated protein which is 

unable to complete it function in homologous recombination DNA repair (52). Insufficient DNA 

repair results in genomic instability and an increased DNA-damaging agent sensitivity, allowing for 

the further accumulation of genetic alterations (53). Breast cancer patients with a BRCA gene 

mutation have a greater structural variant burden across the genome compared to wild type 

patients. Clinical research has found that having a BRCA mutant increases a person’s risk of 

developing breast cancer to 45-85% compared to only an 8% chance in individuals with wild type 

BRCA (54). Furthermore, patients with a BRCA1 mutation are more likely to have triple-negative 

breast cancer, earlier onset, aggressive disease and greater risk of relapse (55).   

Broadly these genomic alterations can be separated into germline and somatic changes, with the 

former occurring parental germ line cells that are then inherited by the offspring. The latter is 

instead acquired during the life cycle of the cell, either from environmental extrinsic factors or 

due to errors in intrinsic processes such as the DNA repair and DNA replication machinery (56). 

Extrinsic factors include tobacco, hormones, the tissue microenvironment, inflammation, and 

exposure to certain viral infections such as the human papillomavirus (HPV) (57). To examine if 

intrinsic or extrinsic factors have contributed to the tumorigenesis process, an analysis of the 

mutational signatures can be completed. Different external or internal stressors acting on a 

specific cell type will leave a specific imprint or mutational pattern on the human genome (58). 

Examining the mutational signature will indicate if, for example, UV radiation exposure has 

contributed to the development of cancer as the highly specific signature known as COSMIC 

signature 7 will be present (58). It has been reported that 70-90% of lifetime cancer incidences 

can be attributed to environmental factors (59), however the contribution has been argued to be 

a much lower value at around 30% (60). It is important to note that typically multiple driver 



Chapter 1 

10 

mutations, with both intrinsic and extrinsic origins, are required as a single mutation will not be 

sufficient in triggering the transformation of a normal cell to a cancerous one (57). 

As mentioned before, acquired changes can either be passenger or driver mutations, the latter of 

which confer the cancer cell a selective advantage. The discovery and understanding of these 

driver mutations has long been a significant aim in cancer research. Many of these drivers are 

tumour suppressor genes and oncogenes. Tumour suppressor genes, as the name indicates, 

function to maintain normal and controlled cell growth and development, stopping the formation 

of tumours. The tumour suppressor gene TP53 is known as the guardian of the genome due to its 

vital role in cell cycle control, specifically during the G1/S checkpoint, and in orchestrating 

apoptosis in response to DNA damage being detected (61). TP53 is commonly altered in many 

cancers, including haematological malignancies, whereby the activity of the p53 transcription 

factor is disrupted which allows for cancer development to occur (62). Further examples of 

tumour suppressor genes are BRCA1 and BRCA2, which are important in breast and ovarian 

cancer (63). Alternatively, driver mutations can occur in oncogenes, which is a mutated version of 

a proto-oncogene that normally functions in signal transduction pathways to control cell 

proliferation and differentiation. These modified oncogenes instead drive cell division and thus 

tumorigenesis (64). Oncogene modification can either alter the structure of the protein or cause 

an overexpression. For example, mutations in the oncogene Ras results in a protein with an 

altered binding site which causes continuous Ras activation, leading to aberrant proliferation and 

cell survival signals (65). It is hoped that the characterisation of these driver mutations that 

contribute to tumorigenesis will allow new preventative measures and novel therapeutic options 

to be developed.   

Within cancer research, understanding the biology of normal cells can help uncover critical 

aspects of how the cancerous version of the cell develops and progresses. As the focus of this 

thesis in a B cell malignancy, insight into normal B cell biology is communicated below.  

1.2 B-cell biology 

1.2.1 B-cell and B-cell development 

The main stages of B cell development are progenitor B cell, pre-B cell, immature B cell and 

mature B cell. B cell development starts in the bone marrow where VDJ recombination occurs 

whereby the immunoglobulin (Ig) heavy (H) chain gene loci (V, D, J) are rearranged to create 

highly diverse Ig molecules as this process is error prone (66). Pro-B cells undergo this VDJ 

recombination to become differentiated into pre-B cells, which contain IgM heavy chain 
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molecules that cannot be expressed on the membrane as they do not have an Ig L chain 

rearrangement. To allow the pre-B cell to develop further a surrogate B cell receptor (BCR) 

complex is formed using a surrogate L chain. At this point, as a complete BCR is not present the B 

cell cannot function as an immune cell. During the immature B cell stage, rearrangement of the Ig 

light chain V and J gene loci occurs, allowing a complete BCR to be expressed on the membrane 

surface, see Figure 4. The two variable heavy chain and two variable light chain are involved in 

antigen binding whereas the two constant heavy and two constant light chains are required for 

effector functions (67). Further development occurs to transform into a mature B cell which then 

can leave the bone marrow and express IgM and IgD class on the surface of the B cell.  

 

Figure 4- The recombination process as part of B cell development. Recombination of the heavy and 

light chain genetic regions that form the B cell receptor are necessary to increase antibody 

diversity, from (67)  

Further B cell development occurs within the secondary lymphoid organs once a B cell has 

recognized an antigen via its BCR. This activates the B cell to differentiate into plasma cells, 

become germinal center precursor cells or undergo class switch recombination (68). Germinal 

centers are specialized microstructures that are located within the secondary lymphoid organs 

and are constituted of a light and dark zone (69). The B cell development within the germinal 

center is initiated in the dark zone where the B cell rapidly proliferates and undergoes somatic 

hypermutation. Somatic hypermutation in B cells allows for affinity maturation of antibodies 

produced by the B cell and thus have a key function in optimizing antibody dependent immune 

responses (66). The process is initiated by Activation-Induced Cytidine Deaminase (AID) which 

allows V(D)J rearrangement as well as having a role in class switch recombination (70). AID activity 

deaminates cytosines within the DNA to deoxy-uracil. Further AID activity and error prone 

processing of this replacement uracil results in an increased mutation rate in the Ig genes that 

gives rise to a repertoire of antibodies with a greater range in affinity (71). Within the light zone 

clonal selection occurs in an antigen and T cell-dependent manner. Present in the light zone is a 

population of T follicular helper cells which function in the positive selection of higher-affinity B 
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cells by stimulating their proliferation and differentiation (72). A further outcome from the 

random somatic hypermutation is the introduction of mutations that generate B-cells that 

recognize self-antigens and thus produce autoreactive antibodies (73). Therefore, whilst a positive 

selection occurs for cells with high affinity BCR there is also the removal of self-reactive B cells 

through negative selection within the germinal center (74). As mentioned above AID also induced 

class switch recombination, a process in which deletion rearrangement within the Ig heavy 

constant regions occurs. This process allows B cells to switch Ig isotype from IgM and IgD into IgG, 

IgE, or IgA. Thus, adapting its effector function and tissue distribution to be more specific to the 

antigen triggering the immune response (71). After antigenic stimulation, a proportion of B cells 

can transform into small lymphocytes that stop proliferating and have a much greater life 

expectancy, known as memory B cells. The function of these cells is to be able to quickly 

differentiate into plasma cells to produce the same antibody if they come into contact with the 

same antigen again, which is an essential part of the secondary immune response.  

1.2.2 B-cell receptor 

BCR signaling is essential for B-cell development and survival and can occur either spontaneously 

or through interactions with ligands present in the environment (75). A unique aspect of BCR is 

that they, unlike other receptors, can be activated by a range of structurally different ligands. The 

BCR is also the most prevalent surface receptor on the B cell with around 100,000 to 200,000 per 

cell (76).  

As a monomeric form, the BCR is comprised of an IgM molecule and the Igα (CD79a) and Igβ 

(CD79b) heterodimer via a non-covalent link (77). IgM is constructed of two heavy and two light 

chains linked by a disulfide bond. Igα and Igβ are also covalently joined by a disulfide bond and 

both are compiled of an Ig domain, TM region, and a cytoplasmic tail that contains a ITAM motif 

(78). Research has found that most membrane BCR occur as oligomers instead of as monomeric 

receptors and B cell activation and signaling is linked to BCR oligomer opening and binding of 

regulatory molecules (79).  

The function of Igα and Igβ is to act during antigen binding as the main signal transduction 

molecules and to aid in the expression and transposition of membrane bound Ig. At rest B cells 

have self-inhibiting BCR oligomers but after antigen binding to BCR, these oligomers open and 

expose the ITAM domain (80). Once exposed the two tyrosines of the ITAM can be 

phosphorylated by the Src-family kinases which creates sites for recruitment and activation of 

Syk. Once recruited, a BCR/Syk complex is formed which activates various downstream signaling 

pathways, including BTK, which results in NF-kB activation leading to B cell differentiation and 
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survival (79). For the activation of the PI3K-AKT pathway the co-stimulatory molecule CD19 must 

also be phosphorylated in addition to BCR activation (81). BCR have an essential function in 

normal healthy B cell but also are heavily involved in B cell malignancy and B-cell dependent 

autoimmune diseases and therefore have been extensively studied.   

1.2.3 B-cell Malignancy 

There are many different types of B cell malignancies which can be defined as leukaemias or 

lymphomas with the former relating to malignancy that arises in the bone marrow that move into 

the bloodstream, while the latter originates in the secondary lymphatic organs such as the lymph 

nodes and spleen. B cell leukaemias are diagnosed as either acute or chronic, depending on the 

growth speed of the malignant cells, with acute leukaemias being associated with a more 

aggressive disease (82). Lymphomas can also be broadly split into two groups that have distinct 

growth rate, different effected lymphocyte and varied treatment response, namely Hodgkin’s 

lymphoma and non-Hodgkin’s lymphoma (NHL). (83). Further B cell malignancies such as follicular 

lymphoma and Burkitt lymphoma were given the classification of NHL. Additionally, within the 

NHL group are diffuse large B cell lymphoma (DLBCL), mantle cell lymphoma, splenic marginal 

zone lymphoma, small lymphocytic lymphoma (SLL) and chronic lymphocytic leukemia (CLL), see 

Figure 5. SLL and CLL have identical phenotypic and immunophenotypic characteristics but the 

former is mainly found in the lymph nodes whereas the latter occurs in the bone marrow and 

blood. The international workshop on chronic lymphocytic leukemia (iwCLL) guidelines have an 

arbitrary cut off of ≥5x109/L clonal cells to classify SLL from CLL. Due to the biological similarities 

SLL patients, in most guidelines, are given the same treatment as CLL patients (84). NHL is a 

common type of cancer with over 500,000 new cases being diagnosed each year worldwide (85). 

This group of B cell malignancies are highly diverse with each arising from a different stage of B 

cell development. The stage at which the cancer began is indicated on the malignant B cell by the 

stage-specific cell surface markers and a distinct molecular profile, which is used in the WHO NHL 

classification system (85). Whilst there are many types of NHL, each with unique biology and 

clinical presentation, CLL is the focus of this thesis and further detail on its biological 

characteristics and clinical presentation is given below.  
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Figure 5-  Schematic representation of B cell development, highlighting the cell of origin for various B 

cell malignancies, from (86). U-CLL: Unmutated IGHV CLL, DLBCL: Diffuse large b cell 

lymphoma, M-CLL: Mutated IGHV CLL.  

1.3 Chronic lymphocytic leukaemia 

1.3.1 Clinical phenotype of chronic lymphocytic leukaemia 

CLL is a B-cell malignancy characterized by the accumulation of CD5, CD19, CD23 and CD20 

expressing B-cells in the bone marrow, lymph nodes, spleen and peripheral blood (87). Diagnosis 

of CLL requires the detection of ≥5x103/µl B cells in blood for at least three consecutive months 

(87). Tumour cells cannot sufficiently complete their immunological function and crowd out 

normal immune cells, inducing many of the symptoms observed in patients. Formerly it was 

stipulated that CLL was the result of the accumulation of long-lived resting B cells with the build-

up being attributed to a defective cell death rather than excessive cell division. However, research 

has discovered the presence of a reservoir of active and proliferating CLL cells (88). CLL patients 

are, on average, 70 years old at diagnosis and follow a highly heterogenous disease course with 

some requiring immediate intensive treatment, whilst others can be on a ‘watch and wait’ 

intervention course for many years. If patients present with a clonal B cell expansion of <5x103/µl 

B cells in peripheral blood and no symptoms of lymphoproliferative disorders, they are then 

classified as having monoclonal B cell lymphocytosis (MBL) (89). Clinically MBL has overlapping 

entities with CLL and the majority of cases have the same immunophenotype of CLL. MBL is 

considered a pre-neoplastic condition to CLL with nearly all CLL cases preceded by MBL (90). MBL 
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can be divided into low-count and high-count MBL, with the latter progressing to CLL at a rate of 

1-2% per year (90). Additionally, 2-10% of CLL patients will progress and transform into Richter 

syndrome (RS) which is a type of aggressive lymphoma, most commonly being DLBCL (91).  

1.3.2 Treatment of chronic lymphocytic leukaemia 

CLL is currently incurable without an allogeneic stem cell transplantation and the efficacy and 

response to various treatments differs across the CLL patient population. Patient outcomes have 

improved significantly in recent years predominantly due to the development of new treatment 

regimes (92). In the past only chemo-immunotherapy (CIT) was available, such as a fludarabine, 

cyclophosphamide, and rituximab (FCR) or a bendamustine, rituximab (BR) regime. Fludarabine, 

cyclophosphamide and bendamustine are all chemotherapy drugs that function to kill cells that 

are rapidly dividing, including both tumour and normal cells. Fludarabine is a type of purine 

analogue which inhibits cell division by becoming incorporated into the newly synthesized DNA as 

has a similar structure to normal nucleotides present in the nucleus. Once erroneously 

incorporated into the DNA, apoptosis is triggered typically due to DNA breakages (93). Whereas 

cyclophosphamide and bendamustine are alkylating agents that cause apoptosis by cross-linking 

DNA strands which results in strand breaks, abnormal base pairing, and inhibition of cell cycle 

progression as DNA replication is incomplete (94). The addition of anti-CD20 monoclonal antibody 

(mAb), rituximab, to many chemotherapy treatments has significantly improved CLL patient 

response. For example, in one clinical trial, patients given FCR treatment as an initial treatment 

compared to just FC chemotherapy had a complete remission (CR) rate of 70% compared to just 

38% (95,96). The mAb rituximab binds to CD20, a B-cell specific transmembrane protein present 

on nearly all normal and malignant B-cell (97). Once bound apoptosis is triggered via a range of 

mechanisms including antibody-dependent cellular cytotoxicity, complement-dependent 

cytolysis, and direct apoptosis induction through intercellular signalling and downregulation of 

antiapoptotic factors (98). This evidence resulted in FCR being the gold standard for frontline 

treatment of CLL patients and for relapse patients. 

However, in recent years the treatment landscape for CLL patients has changed due to the 

emergence of novel oral targeted therapies and next-generation anti-CD20 mAb. The 

development of targeted agents has improved the treatment response, especially in patients with 

high-risk biomarkers such as TP53 aberrations or unmutated immunoglobulin heavy-chain 

variable (IGHV) region gene status (99). Patients with these biomarkers typically have a high 

relapse rate after CIT with a reported 35-50% of patients relapsing with a progressive disease 

within three years of treatment (100). Current guidelines state that FCR should no longer be used 

as frontline management of CLL and CIT should only be used in patients with low-risk features, 
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such as being young of age, but also whilst considering any additional patient comorbidities (101). 

The decision about when to treat and with what, are regularly reviewed at the iwCLL meeting. The 

iwCLL current decision tree for the management and treatment of newly diagnosed CLL patients is 

shown below in Figure 6, which clearly highlights the preferential use of targeted therapies for 

high and low risk untreated CLL patients.  

 

Figure 6- Chronic Lymphocytic Leukemia treatment algorithm from the 2018 iwCLL meeting. 

Abbreviations- BTKi- Bruton tyrosine kinase inhibitors, IGHV- immunoglobulin heavy chain 

gene, from (102).  

Currently there are a range of oral targeted agents that have been approved for use in treating 

CLL patients, either as first line treatment or for people that have relapsed. Not only have these 

targeted treatments been recorded to have a greater efficacy, as shown by improved progression 

free survival (PFS) and overall survival (OS) rates but are also more tolerable than chemotherapy 

and therefore are more appropriate for the elderly CLL population. Nevertheless, these targeted 

agents are expensive, and the patient can experience a relapse and refractory disease after 

treatment initiation. Therefore, greater accuracy of risk-adapted patient stratification is needed to 

ensure each patient is enrolled on a treatment regime that will have the greatest clinical outcome 

based on the genotype of the patient (103).    

These oral agents function by acting on a specific target that is present within a CLL cell. For 

example, by targeting and inhibiting phosphatidylinositol 3-kinase (PI3K), Bruton tyrosine kinase 

(BTK), or Bcl-2 regulatory proteins. Additionally, a next generation of anti-CD20 mAb has been 

developed and evaluated for use in CLL. A phase three study found that the anti-CD20 mAb 

obinutuzumab in combination with chlorambucil compared to rituximab with chloramucil or 

chlorambucil alone had a significantly greater PFS of 26.7 months, 15.2, or 10.7, respectively (p-



Chapter 1 

17 

value<0.001) (104). Due to this evidence of obinutuzumab improving outcomes of CLL patients 

this anti-CD20 mAb, in combination with chlorambucil, has been approved for the frontline 

treatment of CLL.  

An appealing target for these oral agents is the BCR, which has led to the development and 

approvals of two main groups of drugs in CLL that target BCR signalling pathways; PI3K inhibitors 

and BTK inhibitors. There are three classes of PI3K, each contains a range of different isoforms of 

the kinase (105). PI3K are key signalling molecules that are involved in cellular proliferation, 

development, and survival. Isoform PI3Kδ is primarily expressed in B cells and involved with the 

BCR whereas PI3Kγ is mainly expressed on other haematopoietic cells, such as T cells (106). 

Idelalisib and duvelisib are both PI3K inhibitors which function to trigger cell death by 

competitively binding to various PI3K isoforms, stopping their action. Idelalisib is a selective PI3Kδ 

inhibitor which causes cell death by inducing caspase-dependent apoptosis (105). Duvelisib is a 

dual inhibitor that stops the activation of both PI3Kδ and PI3Kγ isoforms (106). Inhibition of PI3Kγ 

aims to reduce cytokine production from T cells which promotes CLL-m, cell survival, cell cycle, 

metabolism and migration (107). Whilst these two treatments are associated with significant 

toxicities and have a high rate of relapse, the incurable nature of CLL still makes them a useful 

therapeutic option with good efficacy reported in patients with high-risk features (106). In 2018, 

duvelisib was approved for the treatment of CLL patients who have relapsed at least twice before; 

this decision was based on evidence from therapeutic trials. One such trial aimed to assess the 

efficacy of duvelisib as a monotherapy in patients with relapsed or refractory (R/R) disease 

compared to the current standard ofatumumab dose, a type of anti-CD20 mAb. The Duvelisib 

treatment group were found to have significantly improved PFS (median 13.3 vs 9.9 months, p-

value<0.001) and overall response rate (74% vs 45%, p-value<0.001) compared to the control 

group of ofatumumab-treated patients, even in high-risk patients with deletions of chromosome 

17p (106).  

BTK inhibitors, such as ibrutinib and acalabrutinib, are much more tolerated by CLL patients and, 

therefore, are more widely prescribed at any treatment line for patients with and without TP53 

dysfunction. Many clinical trials have found this treatment is superior to traditional CIT; for 

example, a significantly improved PFS and OS were identified in the ibrutinib-rituximab regime 

compared to FCR within untreated patients (PFS HR:0.27, p-value<0.001 and OS HR:0.47, p-

value<0.018) (108). This superior efficacy is also recorded in cohorts of R/R CLL patients. For 

example, a greater PFS, OS and response rate was found when ibrutinib was given compared to 

anti-CD20 mAb, ofatumumab. The overall response rate for the ibrutinib-treated group compared 

to ofatumumab was 43% vs 4.1%, p-value<0.001, with a greater OS rate also being found in the 

ibrutinib group (HR:0.43, p-value<0.005) (109). The mechanism of action of BTK inhibitors, such as 
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ibrutinib, is stopping BTK downstream signalling, such as NF-kB transcription factor activation, 

leading to reduced cell proliferation, migration, and survival (110).  

An additional target, outside of the BCR, is the family of B-cell lymphoma 2 (Bcl-2) proteins 

comprising of proapoptotic and antiapoptotic/prosurvival proteins that regulate apoptosis. Bcl-2 

is an antiapoptotic protein that is overexpressed in cancer cells as it inhibits the release of 

mitochondrial proapoptotic factors into the cytoplasm, which would lead to cell death (111). 

Currently, venetoclax is the only approved Bcl-2 inhibitor available for treating CLL. Inhibition of 

Bcl-2 occurs through the highly selective and competitive binding of venetoclax, displacing pro-

apoptotic proteins that have been bound and blocked by Bcl-2. Once released, these pro-

apoptotic proteins can trigger and restore the intrinsic apoptosis pathway in CLL cells (112). This 

targeted therapeutic was initially approved for use in patients with TP53 aberrations but has since 

been prescribed for all patients after evidence found no difference in response rates for patients 

without TP53 disruptions. A clinical trial with untreated CLL patients found that a venetoclax and 

obinutuzumab regime had a more significant PFS than a CIT-based chlorambucil and 

obinutuzumab regime. Additionally, the venetoclax treatment group had a significantly greater 

percentage of patients with PFS at 24 months than the CIT group (88% vs. 64%) (113). 

Furthermore, a clinical trial using a cohort of del17p CLL patients found that an overall response 

rate for patients on venetoclax monotherapy was 77%, with a complete response of 20%. At 24 

months, the 122 patients with a response had a median duration of response (DOR) 33.2 months 

and this translated into a median PFS of 27.2 months (114). They concluded that venetoclax 

monotherapy was well tolerated by patients and produced a durable response in high-risk 

patients, who typically have limited treatment options.  

Whilst targeted therapies as a monotherapy or as a combination therapy have shown to improve 

response and survival in treated and relapsed patients, a 2015 study found that BTK inhibitors 

were the most prescribed treatment for R/R CLL. However, CIT was still the most prescribed from 

treatment naive patients (115). Although improved efficacy and greater tolerance have been 

shown in patients given targeted agents compared to CIT, relapse is still a prevalent problem in 

the target agent treatment landscape and CIT is still heavily utilized. A further important 

conclusion from this research was that of the patients with unknown risk status, 25% of them 

received CIT which was potentially not the most appropriate treatment. Therefore, by validating 

additional prognostic and predictive biomarkers a more accurate risk stratification of these 

unknown risk patients can occur. Ultimately so a more appropriate treatment regimen can be 

chosen, which would positively impact patient outcome.  
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1.4 Prognostic and predictive biomarkers in CLL 

Various patient features, from serological to specific genomic characteristics, have been found to 

indicate patient prognosis or treatment response and, therefore, have clinical utility as prognostic 

and predictive biomarkers. Prognostic biomarkers include, but are not limited to, numerous host 

factors such as age, gender and ethnicity, serological markers such as beta-2microglobulin (B2M) 

and thymidine kinase levels, antigen expression such as CD38 and ZAP70 and genetic features 

such as TP53 gene disruption and IGHV gene mutation status (116). Predictive biomarkers include 

genetic characteristics such as IGHV mutation status, NOTCH1 mutations in the CIT setting, and 

TP53 disruption in the context of both CIT and oral agents (117,118). The first biomarkers used for 

risk stratification were the Binet and Rai staging systems, which are still used today (119). To 

understand the heterogeneity underpinning the pathogenesis of CLL, the genomic landscape has 

been extensively examined using a range of genomics techniques (120). These evaluations have 

shown the CLL genome to be complex, with many different combinations of genetic alterations 

occurring within the CLL population but also within a single tumour, demonstrating both intra- 

and inter-tumour diversity (121).  

1.4.1 IGHV mutation status 

The mutation status of IGHV genes approximately divides the CLL population into two groups 

named unmutated (U-CLL) and mutated (M-CLL) CLL. These two CLL subgroups arise during the 

normal multistep B-cell development process. If CLL arises from a B-cell pre or post-germinal 

centre reaction, where somatic hypermutation occurs, it is classified as U-CLL or M-CLL, 

respectively (122). A cutoff of ≥98% sequence homology with germline variable Ig gene has been 

used to classify patients with unmutated IGHV genes and <98% sequence homology with germline 

variable Ig gene for patients with mutated IGHV genes (123). The BCR present in U-CLL and M-CLL 

cases have distinct signaling responsiveness, with the former having high responsiveness whilst 

the latter has low anergic BCRs (124). Two landmark studies discovered the prognostic 

importance of identifying whether the B-cell of origin had undergone somatic mutation or not, 

with both studies finding that M-CLL correlated with greater PFS and OS (89,123). IGHV 

mutational status has also found be able to predict the durability of response to CIT with a PFS of 

53.9% of patients with M-CLL compared to just 8.7% in U-CLL patients after a follow up of 12 years 

(125). However, this greater response in M-CLL patients does not seem to be present when 

patients are treated with novel agents that impact the BCR, for example ibrutinib. In fact, it is the 

U-CLL patient that have a more rapid response. A three year follow up study that used ibrutinib as 

a frontline treatment recorded a complete response rate of U-CLL and M-CLL patients as 40% and 

6%, respectively (126). This is possibly due to an increased reliance of U-CLL cells in tonic BCR 
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signaling but this does not necessarily mean ibrutinib has a greater efficacy for U-CLL patients as a 

complete response is classed as a complete clearance of lymphocytosis, which is typically delayed 

in M-CLL even when patients are responding well to treatment (122). Unlike the PFS reported 

after CIT, the five-year PFS of patients treated with ibrutinib was equivalent for both U-CLL and M-

CLL (127). 

1.4.2 IGLV and BCR stereotype 

Whilst somatic hypermutation in B cell development is a random process, within CLL a recurrent 

or “stereotyped” amino acid changes of the BCR has been identified. The CLL Ig repertoire 

includes an overrepresentation of selected IGHV genes, with somatic hypermutation not 

occurring uniformly across the IGHV genes (128). Specifically, by examining the variable heavy 

complementarity determining region 3 (VH-CDR3) sequences for mutations, around 30% of CLL 

patients can be grouped into common subsets based on highly similar or identical sequences 

(129). Additional work using over 7,000 IGHV sequences identified 19 subsets that were the 

identified in 12% of CLL patients. Interestingly the expression of certain stereotyped BCRs is 

reported significantly more frequently in U-CLL or M-CLL patients with this ‘CLL-biased’ not being 

found in normal B cells. Furthermore, CLL cases that express the same stereotyped BCR can also 

share similar clinical and molecular features (128). For example, subset #4 (IGHV4-34) was 

associated with an indolent disease, high number of mutations, and with M-CLL status. Whereas 

subset 1# (IGHV1-5-7) is common in U-CLL and is associated with a poor prognosis. Further 

stereotypes that have been shown to be associated with poorer prognosis, independently of IGHV 

mutation status, include IGHV3-21, IGHV3-48 and IGHV3-53 (130). A bias in the immunoglobulin 

light chain (IGLV) repertoire has also been reported in CLL with IGLV3-21 being a frequency used 

IGLV stereotype. B cells expressing this IGLV3-21 stereotype can acquire a single point mutation 

(R110) which causes autonomous BCR signalling and aggressive disease presentation (131). 

Additionally, IGLV3-21R110 patients have an overexpression of the WNT5A/B gene, which regulates 

proliferation and apoptosis. 

The existence of these quasi-identical BCR may suggest the presence of a common antigen or 

classes of epitopes with similar structures, that interacts with specific BCRs to stimulate their 

proliferation and clonal expansion. This antigenic pressure on the cell of origin suggests that the 

reactivity of a CLL clone is linked with the BCR stereotype which influences the disease 

progression and outcome (132). Research into characterising these antigens have found specific 

binding of various microbes and motifs present on apoptotic cells with specific stereotypes, for 

example IGHV3-21 showed binding to cofilin-1 protein, which is present on the membrane of 

apoptotic cells. It was concluded that the presence of infections and self-antigens can 
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continuously trigger BCR signaling causing an increased chance of a tumour-transforming event 

through the rise in B cell proliferation and survival, however the full mechanism of BCR stereotype 

in CLL is not currently known (133). 

1.4.3 Döhner fluorescence in situ hybridization prognostic classification 

During thirty years of CLL genome research, numerous recurrent chromosomal lesions and gene 

mutations have been identified and shown to have clinical relevance. The fluorescent in situ 

hybridization (FISH) technique was developed in the 1980s. The technique utilizes single stranded 

fluorescent labelled DNA probes to examine chromosomes and allows the detection, 

quantification, and localization of specific target sequences (134). FISH can detect chromosomal 

structural changes, but due to a greater resolution than chromosome banding analysis (CBA), it 

can also examine small segments of chromosomal abnormalities, such as microdeletions and 

small translocations. In 1999, FISH technology was used to detect recurrent chromosomal 

abnormalities in CLL patients, which enabled their clinical significance to be described in a 

hierarchical prognostic model for CLL (135). This Dohner hierarchical model, groups CLL patients 

into five clinically relevant subgroups depending on the presence of four recurrent chromosomal 

abnormalities; 17p, 11q, and 13q deletions, and trisomy 12.  

The presence of a del17p is associated with the poorest patient survival, shorter time to 

treatment (TTT) and resistance to chemotherapy (136). This chromosome aberration results in the 

loss of TP53 and is the least common chromosomal abnormality with a prevalence of <5% of the 

newly diagnosed CLL population (137). As mentioned above, the gene TP53 synthesises the 

tumour suppressor protein p53, which has a function in responding to cellular stress and in 

maintaining genomic integrity through its involvement in the DDR pathway (138). The p53 protein 

can be activated in response to DNA damage, hypoxia or activation of oncogenes. P53 largely 

functions as a transcription factor that orchestrates a variety of antiproliferative pathways by 

activating or inhibiting the transcription of numerous effector genes (139). These pathways result 

in numerous biological outcomes including cell-cycle arrest, cell senescence, apoptosis or 

modulation of autophagy (140). Although p53 is an extensively studied protein in cancer research 

its biological function is not truly understood currently. This is in part due to the function of the 

protein being highly context-dependent with factors such as cell type and the oncogenic events 

acquired during tumour evolution, influencing its function (139).  

Deletions of the 11q chromosomal arm impacts the ATM locus, is present in around 20% of 

patients and predicts a dismal survival, however not as poor as del17p events. Around 80% of 

del11q patients also are U-CLL. Additional mutations of the ATM gene have been reported at 
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various frequencies (30-40%) and has been found to be associated with a poorer survival than 

sole del11q patients (141). 

Trisomy 12 is present in around 15-18% of CLL cases however much is unknow about its 

pathophysiology. These cases typically co-occur with a mutation in the NOTCH1 gene (~50%), are 

associated with U-CLL and have higher incidence of progressing to RS (142). Patients with a 

trisomy 12 have an intermediate survival, greater than patients with del17p or del11q but worse 

than patients with a normal karyotype (135).   

The most common, clinically relevant chromosomal abnormality is the deletion the long arm of 

chromosome 13 (del13q) which has a prevalence of 60-80%, based on the screen tool that is 

employed (137). When del13q occurs as the sole abnormality it indicates a good patient outcome 

and was ranked at the top of Döhner hierarchical model with the greatest median survival of 133 

months (135). The 13q minimally deleted region (MDR) includes DLEU1 and part of DLEU2 gene 

that encompasses the microRNA (miRNA) 15a/16-1 cluster. Both miRNAs function as tumour 

suppressors by targeting the oncogene BCL2, as well as others, as this gene is typically 

overexpressed in CLL meaning a greater threshold of proapoptotic signalling is required for 

apoptosis to be triggered (143). However, 13q deletions are highly variable in both size and gene 

content (144), with larger deletions being associated with a more aggressive phenotype and inferior 

survival in patients. In addition, these large deletions have been found to co-exist with elevated 

levels of chromosomal complexity (144). Various candidate genes have emerged to explain these 

characteristics of these large deletions, these include RB1 and RNASEH2B. RB1 is considered as a 

tumour suppressor gene that encodes the retinoblastoma protein, a critical regulator of the cell 

cycle (145). Whereas RNASEH2B functions in ribonucleotide excision repair, an important DDR 

pathway which removes ribonucleotides which are mistakenly added into DNA via DNA repair 

polymerase (146). Additionally, these deletions can be heterozygous (monoallelic) or homozygous 

(biallelic). Biallelic loss of 13q occurs in 30% of patients with del13 events, are typically smaller in 

size, do not involve RB1 and are associated with a more aggressive disease (145).  

Although the Döhner model was develop over 20 years ago it has been amended to include gene 

mutational data that has clinical relevance and therefore has remained the most accepted and 

utilized genomic prognostic model for CLL patients within the clinical environment (147).   

1.4.4 Genetic mutations 

More recently, the development of next generation sequencing (NGS) has allowed the CLL 

genome to be investigated at a base-pair resolution through whole-exome (WES) and whole 

genome sequencing (WGS) studies (147). These studies have allowed the mapping of the 
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mutational landscape of CLL and have identified numerous recurrent genetic mutations that 

disrupt many cellular processes. The average mutational burden of CLL is comparatively lower 

than the mutational burden of solid tumours with an average of 0.6-0.87 mutations per megabase 

(Mb) of genomic DNA in a CLL patient (148). Currently there has not been the identification of a 

unifying mutation that all CLL patients possess. Nevertheless, four genes, TP53, ATM, NOTCH1 and 

SF3B1, have been identified in numerous studies to be recurrently mutated at relatively high 

prevalence in the CLL population.  

Both del17p and the deletion of chromosome 11q (del11q), as previously discussed, are 

frequently observed in tandem with deficiency mutations of TP53 and ATM genes, respectively 

resulting in a biallelic loss of function of that gene (149). TP53 aberrations, including either del17p 

events or TP53 mutations, are a marker of an aggressive disease and resistance to chemotherapy. 

Therefore, it is among the strongest predicative markers that guide treatment decisions with all 

newly diagnosed patients screened for TP53 aberrations (136). The gene ATM, located on 

chromosome 11q, is vital for the repair of DSB which can occur after oxidative stress or during 

normal biological events such as the rearrangement of IGHV genes during B-cell maturation (150). 

The ATM protein is one of the three phosphoinositide 3 kinase-related protein kinases (PI3KKs). 

The primary sensor of DSB is the MRN complex which forms a physical bridge across the DSB and 

retains ATM at the site (151). Subsequently, ATM can phosphorylate many downstream effectors 

involved in DNA repair, cell cycle checkpoints and transcription, which then can in turn activate 

their own targets Figure 7. A prime example of this is the activation of p53 by ATM directly, by the 

phosphorylation of p53 on serine 15. Or indirectly by ATM, through the phosphorylation of MDM2 

which inhibits its ability to ubiquitinate p53 thus triggering checkpoint arrest to either allow for 

DNA repair to occur or cell apoptosis (152). Various DSB response proteins are also 

phosphorylated by ATM including MDC1 and histone H2AX, which generates y-H2AX. The 

activation of MDC1 by ATM also aids in the continued local phosphorylation of H2AX which form 

mega-base-size foci along the DSB (153). These foci are involved in the recruitment of many 

downstream repair factors including BRCA1 and 53BP1 (154). y-H2AX functions by sending an 

epigenetic signal to downstream DDR proteins, anchoring the broken ends of the DSB by 

repositioning the nucleosome and reduces the chromatin density to helps facilitate the re-joining 

of DSBs (155). It has also been found that H2AX can be phosphorylated by another member of the 

PI3KK family, DNA-dependent protein kinase (DNA-PK) and potentially by ataxia-telangiectasia 

and Rad3-related kinase (ATR), suggesting an ATM independent function for H2AX (156). ATM has 

been identified as the key target of chromosome 11q deletion which occurs in ~20% of CLL 

patients. Within CLL, del11q are associated with a shorter time to first treatment (TTFT) and 

poorer OS (135). Furthermore within 30-40% of patients with a del11q event an additional 
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mutation of the ATM gene is also found. Patients with this biallelic loss of ATM have inferior PFS 

and OS, comparable to the survival of patients with TP53 dysfunction (141). 

 

Figure 7- The biological function of ATM in repairing double-stranded DNA breaks. The MRN senses 

that a DDB has occurred and recruits ATM. ATM phosphorylates other sensor proteins, such 

as MDC1which also function in DNA repair. ATM also activates checkpoint kinase 2 (CHK2) 

which results in cell cycle arrest. ATM activates p53 directly and indirectly to cause checkpoint 

arrest and apoptosis of damaged cell. Chromatin relaxation to aid DNA repair is achieved 

through activation of KAP1. Furthermore, ATM activates pro-survival signals through 

phosphorylation of AKT and activation of NF-kB, which regulates cell proliferation (not 

shown). From (151) 

Additional mutations have been identified that occur at lower frequencies, around ~5%, within 

the CLL genome such as BIRC3, CHD2 and SETD2 (157,158). Whilst BIRC3 mutations are not 

common in the general CLL population, BIRC3 has been found to be monoallelically deleted in 

~80% of patients with a del11q (141). Within ~10% of CLL patients who have lost BIRC3 through a 

del11q event an additional mutation of BIRC3 can occur resulting in a biallelic loss of the gene 

which has been found to be an independent prognostic marker for a dismal TTFT and OS (159). 

Both the recurrent and less prevalent gene mutations have been found to impact eight key 

cellular pathways including cell cycle, chromatin remodeling and BCR signaling (147), see Figure 8. 
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Figure 8- The key biological relevant genes recurrently mutated in CLL and the pathways to which they 

disrupt. These include cell cycle regulation, DNA damage response, apoptosis, Notch 

signalling, RNA metabolism, NF-Kβ signalling, chromatin remodelling and BCR signalling, from 

(147) 

1.4.5 Telomeres 

A further genomic characteristic that has been identified to play a pivotal role in the progression 

and patient outcome of CLL is the length of telomeres. Telomeres are complex nucleoprotein 

structures composed of hexanucleotide tandem repeats ((TTAGGG)n) of up to 25kb (160), and a 

number of proteins with regulatory and structural functions (161). They function to protect the 

chromosomal ends from replicative damage and prevent the ends from being recognized as DNA 

double-stand breaks, thus conferring genomic stability (162). Telomeres shorten with each 

cellular division, due to the end-replication problem, until reaching a critical length. At this point 

apoptosis/senescence or repair is triggered by mechanisms regulated by TP53 and/or ATM which 

is part of their vital tumour suppressor function (163). Due to this progressive shortening as the 

cell ages, telomeres act as a mitotic clock (164). The repeated DNA sequence is organized into a 

looped structure known as a T-loop, using the 3’ telomere overhang by strand invasion. They are 

also associated with a number of proteins with regulatory and structural functions that, among 

others, form the Shelterin complex (165). In stem/progenitor cells, germ cells and in a range of 

cancers, including CLL, telomere length (TL) is maintained. TL is maintained by telomerase, a 

ribonucleotide complex that compensates for this continual loss by adding TTAGGG repeats to 

chromosome ends (166). Telomerase is composed of; hTERT (a catalytic human telomerase 

reverse transcriptase), hTR (a RNA) and DYSTERIN subunits, which regulate elongation; the 

shelterin complex (TRF1, TRF2, TIN2, hRAP1, TPP1, POT1) that controls length and prevents 

degradation and fusion; and additional multifunctional factors (RPA1, hEST1A, KU70/KU80, RAD-

MRE11-NBS1 complex) (167). Increased telomerase activity and overexpression of the hTERT 

subunit is observed in the germinal centers of proliferative lymphoid cells (166,168,169). This 
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facilitates long term proliferation by providing germinal centre-derived memory B-cells with an 

extended telomere reservoir for future cell divisions (166). 

However, dysfunctional telomeres are frequent observations in many human malignancies (170–

173) and play a complex role in the pathology of CLL. For example, cells with deregulation of the 

TP53 and ATM gene have compromised DNA damage checkpoints and can bypass the replicative 

senescence or apoptosis usually triggered by erosion and uncapping of telomeres. Consequently, 

cells enter replicative crisis, resulting in extensive telomeric fusions and dicentric chromosome 

formation, breakage-fusion-bridge cycles, genomic instability, and cell death. However, this 

telomere driven crisis can offer a proliferative advantage, generating the genomic 

rearrangements that drive clonal evolution and disease progression (174–177). Increased hTERT 

expression and telomerase activity is also observed in CLL cells compared to normal B-cell 

counterparts, and the consequent stabilization of shortened telomeres is one mechanism 

responsible for the unlimited proliferation of malignant cells (178–181). This activity is lower at 

diagnosis and increases with disease progression (182), and in poor prognosis groups including 

unmutated IGVH (183) and TP53 dysregulation (184). Although CLL is typically a disease of the 

elderly, the shortened telomeres observed at diagnosis are not just a function of aging, as the 

telomeres of aberrant cells are significantly shorter than their normal counterpart (169,170,176). 

Research within CLL have found that TL was significantly associated with IGHV mutation status, 

TP53 abnormalities (including TP53 mutation and/or del17p), ATM and SF3B1 mutations and 

genomic complexity (GC), defined as ≥3 CNAs (185). Survival analysis using TL as a continuous 

variable found that increased TL was associated with a significant (p-value<0.001) increase in PFS 

(Hazard ratio (HR)=0.89, 95% Confidence interval (95%CI): 0.85-0.93) and OS (HR=0.84, 95%CI:0.8-

0.89). TL was also assessed as a categorical variable using the cut offs of; short (TL-S) <2.92 kb, 

intermediate (TL-I) 2.92 kb≤ and ≥3.57 kb, and long (TL-L) >3.57 kb. Within a multivariate cox 

regression model, TL-S were found to be an independent marker poorer PFS and shorter OS (185). 

Additional research has shown that short telomeres are associated with GC, defined as having two 

or more genomic aberrations (186). This is biologically relevant as the progressive loss of the 

telomeric caps results in telomere crisis where extensive genome instability results in the 

subsequent rapid accumulation of genetic abnormalities (187). They also found that these losses 

and gains were concentrated at the chromosomal ends and therefore are typical of aberrations 

that occur through telomere fusion. 

Additional CLL research investigated TL using different definitions; the fusogenic mean and 

median. Previous work had found telomere end-end fusion events can be detected in CLL patients 

with short telomeres (177). This research was furthered, by using the ‘single telomere length 
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analysis’ (STELA) technique, which allows an absolute TL measurement, to identify the range of TL 

in which a fusion event is detected. The range was 0.44-3.81kb and the mean of this range was 

2.26kb which is known as the fusogenic mean. The upper threshold for telomere dysfunction 

was >3.81kb which was used to define the fusogenic median. The authors then examined the 

fusogenic mean as a prognostic marker and found that patients with TL below the fusogenic mean 

(≤FusoMean) had significantly (p-value<0.0001) poorer TTFT (HR=15.9, 95%CI:8-31.8), PFS 

(HR=14.1, 95%CI:6.5-30.3) and OS (HR=13.2, 95%CI:11.6-106.4). This was found even in a cohort 

of Binet stage A CLL patients and thus can stratify early-stage patients. A comparison of the 

fusogenic mean and median was completed to identify which threshold was the most prognostic 

for survival. Whilst both cut offs were found to highly prognostic compared to established 

markers such as CD38 expression, Binet stage and IGHV status, the fusogenic mean had the 

highest HR for progression and death and was found to be independent of all other biomarkers 

included in the multivariate analysis (MVA) (188). A further study used the fusogenic mean as a 

cut off to analyze TL as a categorical variable and found a significantly (p-value<0.001) shorter PFS 

and OS survival in the ≤FusoMean CLL group (189). Overall, many studies have shown the 

prognostic and predictive power of TL in CLL.  

1.4.6 Epigenome 

A more recent development is the investigation of the CLL epigenome which has been found to 

have disease-defining features. Epigenetics is an additional layer of complexity that guides the 

genomic function and activity of genes. Epigenetics can function in two ways; either through the 

modifications to chromosomal proteins to alter the genome and/or the protein-DNA interaction 

or through a chemical modification to the stranded DNA (190). 

One aspect of epigenetics that has been found to have clinical significance across many cancers is 

the changes in DNA methylation. DNA methylation is a type of epigenetic modification which is 

stable over time but also reversible. It is characterized by the addition of a methyl group to the 5’ 

carbon of any cytosine across the genome, however more than 98% occurs within the cytosine 

guanine dinucleotide (CpG) sites (191). This addition of a methyl group is orchestrated by DNA 

methyltransferases. In normal healthy cells DNA methylation functions to regulate gene 

expression and assures stable gene silencing (192). Alterations in DNA methylation patterns is one 

of the molecular hallmarks of cancer cells. These epigenetic hallmarks include global DNA 

hypomethylation and locus-specific hypermethylation (191). The first, hypomethylation, occurs 

due to a loss of methylation at sites of repeat elements, such as retrotransposons, that are 

normally heavily methylated. This can promote genomic instability and result in oncogene 

activation. The latter, occurs at promoter CpG islands of tumour suppressor genes which cause a 
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heritable transcriptional silencing (191). Therefore, DNA methylation functions in causing cancer 

by physically stopping the binding of transcriptional regulators to the gene and through the 

formation of chromatin via interactions with other epigenetic modifications including nucleosome 

positioning or the histone code. Many associations between cancer and DNA methylation have 

been identified with many of these epigenetic changes occurring early on in tumorigenesis (190). 

DNA methylation is functionally equivalent to genomic lesions such as deletions or mutations 

(192). Additionally, DNA methylation has been shown to be associated with cellular identity and 

memory of activity states and thus can be applied to investigate the cell of origin (193). 

Research using whole genome DNA methylation analysis, three clinicobiological CLL subgroups 

defined based on distinct epigenetic signatures develop from five epigenetic markers have been 

identified. These three novel subgroups named naïve B-cell-like CLL (n-CLL), intermediate CLL (i-

CLL) and memory B-cell-like CLL (m-CLL) were found, to some degree, to reflect the stage of B-cell 

maturation the tumour arises from (194). The original publication identified that this novel 

epigenetic classification was the strongest predictor of TTT in a multivariate cox model, with the 

m-CLL group being clinically favorable. Additional work completed by Wojdacz et al applied these 

epigenetic subgroups to a clinical trial cohort of 605 CLL patients (195). Similar to the original 

publication, the m-CLL epitype was an independent marker of prolonged PFS and OS in 

multivariate models (195). Therefore, research has found that these novel epigenetic subgroups 

have potential clinical use within CLL by identifying patients that are destined for prolonged 

survival after being given CIT. 

1.4.7 Deficiencies in current biomarkers 

As described above, numerous predictive and prognostic biomarkers have been identified in CLL. 

The most important being TP53 aberrations and IGHV mutation status due to their usage in the 

clinical environment. Nevertheless, there is currently a migration away from investigating the 

impact of a singular biomarker and instead a more global approach is being considered within 

many types of cancers but is championed in CLL research. Although these single markers do have 

utility in CLL, reality is far more complex as patients typically do not have just one of these 

biomarkers present (196). One inconsistency is that single biomarkers do not always accurately 

portray or predict disease pathogenesis, for example there is a subset of CLL patients with TP53 

aberrations that present with an indolent disease course which is not captured within current 

biomarkers (197). Moreover, clinical staging systems typically fall short in truly capturing the 

disease course for patients that are classified in the low stages, i.e. Binet A and Rai 0, which 

accounts for the majority of newly diagnosed patients (196,198).  
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In terms of predictive markers, the need for treatment algorithms to be updated has been driven 

by the recent development of targeted agents that have the possibility to replace traditional CIT 

as the golden standard for treatment (199). Current treatment guidelines state that patients with 

TP53 aberrations are only to be given targeted agents such as ibrutinib and venetoclax as frontline 

treatments (200). Additionally, frontline treatment options for patients without TP53 aberrations 

have been changed to also include targeted agents as older patients can struggle with traditional 

CIT treatment (116). The identification of reliable and accurate predictive markers has benefits in 

terms of guiding clinical decision-making to select specific regimes that will have the greatest 

efficacy and therefore result in the best patient outcome, thereby shifting towards personalized 

medicine (119). Conversely treatment selection also has economic considerations, especially as 

targeted agents are relatively expensive and therefore should only be given to patients who will 

have the greatest response (201). Although there is clear evidence that patients with TP53 

aberration respond poorly to CIT and therefore should not receive this treatment (202), the 

evidence for patients with TP53 aberrations responding well towards novel agents is lacking in 

long-term survival data with many of these studies still maturing (116). Additionally, it is not clear 

what other biomarkers may be present in this subpopulation of CLL patients that can further 

predict response to these targeted agents.  

The need for reliable and accurate prognostic and predictive biomarkers in CLL is clear, however 

current biomarkers seemly fall short of this endeavor. Therefore, there is a need for further work 

to identify a biomarker that not only captures the true complexities of a patient’s disease biology 

but also consolidate this into a reliable biomarker that can be used across the clinically 

heterogenous CLL population and within the emerging era of targeted therapies.  

1.4.8 Genomic Complexity 

One such novel biomarker that is the topic of much discussion within the CLL research community 

is GC. GC incorporates multiple established markers to create a useful and robust prognostic and 

predictive biomarker that can be used within CLL. Current published research shows that GC can 

accurately predict poor outcome in CLL patients, even within the high-risk subsets of the CLL 

population such as del17p patients (103,203,204).  A seminal paper completed by the European 

Research Initiative on CLL (ERIC) found that cytogenetic complexity, defined by the presence of ≥5 

CNAs, was an independent prognostic factor with adverse outcome in CLL within a retrospective 

study that included over 5,000 patients. Additional evidence has shown GC to be a predictive 

marker not only for refractoriness in chemotherapy (205), but also within targeted agent regimes 

such as ibrutinib and venetoclax (206,207). This illustrates that GC can feasibly be used to guide 

treatment regime decisions around when to treat and with which specific treatment to allow for 
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best patient outcome, even in high-risk individuals (208). However, many obstacles are limiting its 

application, such as the need for a universal GC classification with an optimized and reliable 

detection technique which can be easily replicated within various international research groups 

studying CLL. 

1.4.9 Genomic detection technologies 

The various genomic biomarkers that have been reported to have prognostic and/or predictive 

abilities within CLL incorporate various detection technologies used to measure specific genomic 

characteristics. For example, biomarkers including CNA, such as Dohner prognostic hierarchy and 

GC, have been detected using CBA, FISH, microarrays and shallow whole genome sequencing 

(sWGS). Whereas the presence of genetic variants has been detected using Sanger sequencing 

and more recently NGS techniques, such as targeted sequencing (TS), WGS and WES.   

CBA or karyotyping is a type of cytogenetic technique in which a cells chromosomes are isolated 

and stained. This staining creates the characteristic light and dark bands which allows the 

detection of large structural changes including deletions, insertions, translocation and 

aneuploidies. (209). The resolution of this technique is 2-3 Mb at best, with resolution being 

highly dependent on the cell of origin and the quality of the metaphase spread (209). In the 

1980s, FISH technique was developed and allows the detection, quantification, and localization of 

specific target sequences (134). Like karyotyping, FISH can detect chromosomal structural 

changes, but due to the greater resolution can also examine small segments of chromosomal 

abnormalities, such as microdeletions and small translocations. More recent developments in 

probe-labelling techniques and probe design have improved the sensitivity of FISH. FISH has a 

resolution of around 200 Kb-2 Mb but is limited by its genomic coverage as it uses targeted 

probes instead of examining the whole genome (210). Microarray techniques utilise probes that 

are designed to bind to complementary sample DNA sequences. Unlike FISH and karyotyping, 

microarrays, assess the entire genome for imbalances, at a greater resolution and does not 

require cells to be in metaphase. Whilst microarrays can assess CNAs at a higher resolution (~5-50 

kb), this is heavily influenced by the size of probes and the genomic distance between the probes.  

Sanger sequencing, also known as the chain termination method, was developed in 1977. Sanger 

sequencing is a first-generation DNA sequencing method for determining the nucleotide 

sequences of DNA and is used for variant calling (211). Whilst sanger sequencing has been the 

gold standard for mutation screening for many years due to its over 99% accuracy. It has been 

gradually replaced by high throughput and massively parallel NGS techniques, also known as 

“second” generation sequencing. The ability of NGS technologies to be high throughput has 
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greatly reduced the cost of sequencing a genome. Furthermore, the technique has a sequencing 

depth of coverage (DOC) of 1000x or higher, which is greater than Sanger sequencing and other 

non NGS base techniques. As TS examines only a specific panel of genes and/or coding regions, it 

can detect variants at a variant allele frequency (VAF) of around 0.1-0.2% (212). Whereas WGS 

and WES, which examined the whole genome or exome, respectively, can be employed in the 

discovery of new genomic variants as it has a more comprehensive coverage that is not limited to 

a panel of genes. The trade-off between a greater breadth of profiling is a poorer depth of 

sequencing as WGS and WES has a sequencing depth of 30-60x and 100-200x, respectively (212). 

Finally, sWGS can infer CNA data from WGS data at a ~0.1x coverage, which can be altered to 

adjust resolution. However, unlike SNP microarrays, copy number neutral loss-of-heterozygosity 

(cnLOH) events are not able to be detected using sWGS (213).  

1.4.10 Importance of genomic technology choice 

The use of certain genomic technologies for the detection of clinical biomarkers must be 

considered during biomarker validation. As highlighted above, this is because different detection 

techniques can introduce bias due the varying technical resolution and the limited genomic 

coverage that is offered by certain techniques. The advantages and disadvantage of the 

technologies used to detect certain genomic characteristics must be considered. The use of 

similar technologies, such as two types of microarrays which may have comparable outcome, may 

differ across different institutions or cohorts due to numerous reasons, such as technical expertise 

at an institution or budgetary reasons. However, understanding and evaluating these detection 

techniques is important when trying to develop and validate a novel biomarker for use in the 

clinical setting. In 2008, Cancer Research UK published the ‘strategic review in biomarkers’ that 

included many biomarker roadmaps which describes the process and steps required for 

biomarker validation. They stated that an essential part of biomarker validation is the 

development of an accurate and reproducible assay to measure the biomarker (214). Therefore, 

before a biomarker can proceed to being assessed in the context of clinical outcome, a single 

assay or genomic technology used to measure the biomarker must be chosen. Currently this a 

limiting step in the validation and application of GC as a prognostic and predictive biomarker in 

CLL. 

1.5 Rationale and Aims 

Currently only two biomarkers are clinically utilized in the assessment and treatment of CLL 

patients. Therefore, there is a real need for further development and validation of prognostic and 
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predictive biomarkers in CLL that will improve risk stratification of patients and allow a more 

personalized treatment regime to be chosen.  

Based on publicized evidence, GC is now a widely accepted biomarker in CLL. Regardless, these 

conclusions are predicated on limited experimental evidence and research that used cohorts that 

did not represent the whole patient population. Moreover, research that has shown GC to be an 

important biomarker have used a wide variety of definitions, as well as a range of technologies 

and cutoffs used for its detection (103). Furthermore, the discordance in the prognostic 

significance of different GC metrics that has been reported in CLL, suggests than an underlying 

biological heterogeneity may influence the clinical relevance of GC which has not been fully 

assessed in current published research. This is the principal concern within my PhD as the 

community is fully behind a biomarker that has yet to be thoroughly validated and optimised. 

Therefore, the first aim of this PhD research was to understand and assess the current ‘state of 

play’ of GC research in CLL, by completing a systematic review of published research with a 

narrative synthesis approach to analysis. Additionally, an aim was to increase the data available 

for patients enrolled in three clinical trials, CLL4, ARCTIC and ADMIRE, through the completion of 

extensive laboratory and computational work. Using this newly developed, data-rich CIT clinical 

trial cohort with extensive molecular characterization, I aimed to assess GC as a prognostic and 

predictive biomarker. Furthermore, I aimed to describe the biological heterogeneity of CLL 

patients in the context of GC, by analyzing the distinct genomic profile of each GC group.  

Two biomarkers, TL and DNA methylation based epitype (DME), have also been shown to be 

important in CLL pathogenesis and clinical presentation. However, due to a well-documented 

relationship between TL and DME, it is currently unknown which of these biomarkers contributes 

the most to clinical outcomes. Additionally, at present, these biomarkers have not been studied 

together within a singular clinical trial cohort. Therefore, an aim of this research was to establish 

the relative prognostic impact of TL and DME in a clinical trial cohort with extensive follow-up 

data, using pre-existing data augmented with a cohort of newly generated data. Furthermore, this 

project aims to establish the relationship between TL and DME subgroups and their association 

with many established biomarkers, using a large cohort that has extensive molecular 

characterisation.  
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Chapter 2 Systematic review of the clinco-biological 

importance of genomic complexity in chronic 

lymphocytic leukaemia 

2.1 Synopsis 

This chapter examines the published literature to create a systematic review, evaluating GC's 

current ‘state of play’ within CLL. Eligible studies are collated to explore and compare various 

features recorded in the publications, such as the definition used to describe GC. This chapter 

takes a comprehensive look at how GC has been reported in CLL previously, including a 

substantial discussion on the strengths and weaknesses of the current published literature and 

comments on how any insufficiency present in current research can be solved.  

Louise Carr performed the systematic review, including the literature search, manuscript 

selection, data extraction, and analysis of the results. Doctor Helen Parker was the second 

investigator to perform the search and study selection. Professor Jon Strefford, Doctor Helen 

Parker and Doctor Jane Gibson supervised the review and gave guidance on the analysis and 

interpretation of the data.   

2.2 Introduction 

A systematic review titled ‘A Systematic Review of the Clinico-Biological Importance of Genomic 

Complexity in Chronic Lymphocytic Leukaemia’ was employed. Systematic reviews are a type of 

research that allows the collation of empirical evidence from many studies that meet certain 

eligibility criteria intending to answer specific research questions. This type of analysis is used to 

present an unbiased report of up-to-date findings, to identify gaps in knowledge and evaluate the 

benefits or risk associated with interventions or policies. This information can also be used to 

identify any flaws within the evidence, all of which are important to feedback to researchers, 

clinicians, policymakers, and patients (215). When completing a systematic review, the principles 

of PRISMA-P must be followed, Preferred Reporting Items for Systematic Review and Meta-

analysis Protocols, to ensure transparent and unbiased reporting (216). Within this systematic 

review, three research questions were addressed; 

1. Does the patient composition of current published studies recapitulate the natural history 

of the disease? 

2. What techniques and metrics have been utilised to establish levels of GC in CLL? 
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3. Will CLL patients identified as having high GC compared to patients with low GC have 

poorer survival outcomes, irrespective of the metric used? 

An additional list of aims also included, focusing on the assessment of the published literature for 

a) the patient cohorts studied, b) the technological platform used for the detection of GC, c) the 

various definitions and cut-offs utilised for measuring GC, and d) the prognostic significance of GC.  

Numerous papers on CLL have identified GC as an important biomarker with potential use in 

patient risk stratification. However, these conclusions are based on evidence representing only 

part of the CLL population, as cohorts do not span the complete disease history. For example, GC 

must be examined in cohorts of treated, untreated, relapsed and refractory patients. With the 

former, there is currently a lack of evidence showing the utility of GC within patients treated with 

oral targeted agents, which are quickly becoming standard practice in CLL treatment regimes. 

Additionally, there is little to no representation of patients that have progressed to a clonal 

Richter transformation, an aggressive B-cell lymphoma that will be part of the natural history of 

the disease in 2-10% of CLL patients and which is associated with a dismal survival (217). A further 

factor limiting the application of GC is the lack of a universal metric to describe it, which is then 

compounded further by the issue of there not being a consistent technique used to detect it. The 

range of techniques used for its detection in current research influences the metric and the cut-

off that can be applied. This is because different techniques can examine different genetic 

features, i.e., CNA or mutations, and can have distinct resolutions, i.e., 5-10 Mb for karyotyping 

techniques, all of which influence what data can be included in the GC metrics (218). Therefore, a 

singular definition, detection technique, and cut-offs must be agreed upon within the CLL 

community before GC can be fully validated as a clinical biomarker. It is these limitations, as well 

as others, present in current CLL research that I wish to address in my PhD and something I aim to 

overcome within my research. A good starting point for this endeavour is to complete a 

systematic review to gain a comprehensive overview of published research to understand the 

current ‘state of play’ of GC in the context of the disease, CLL. 

2.3 Methodology 

2.3.1 Search strategies 

This project followed the principles of PRISMA-P, which aims to help researcher with transparent 

reporting within a systematic review (216). Relevant published literature was searched for using 

two independent search engines, PubMed (since 1966) and Ovid MEDLINE(R) ALL (since 1946), in 

September of 2023. Combinations of four keywords, either “Chronic Lymphocytic Leukemia” or 
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“CLL” with either “Genomic Complexity” or “Complexity,” were inputted into both search engines. 

The manuscripts identified from the eight searches combined resulted in 633 entries (n=345 in 

PubMed, n=288 in Ovid). 472 duplicate entries were removed, resulting in 161 unique 

manuscripts. The complete filtering stages, as well as the inclusion and exclusion criteria utilized, 

are given in Figure 9.  

 

Figure 9-  Decision tree used for the manuscript selection. The main steps of manuscript selection were 

as follows, assessment of the title, the abstract and then the full text and any supplementary 

material. The inclusion and exclusion criteria used in the three main steps are stated. If either 

reviewer needed clarification about any action, the manuscript passed to the next filtering 

stage to be further reviewed.  

2.3.2 Manuscript selection and data extraction 

Two independent reviewers (LC and HP) assessed the unique papers to determine study eligibility. 

Inclusion and exclusion criteria were first applied to the title, then the abstract and then the full 

text. If the title was ambiguous, the reviewer read further into the abstract and full text until this 

uncertainty was resolved. Inclusion criteria were as follows: (1) the title mentions CLL and a 

genomic characteristic(s); (2) the abstract specifies a GC metric; (3) full text or supplementary 

material reports survival analysis data including GC as a factor; hazard ratios (HRs) and 

corresponding 95% confidence intervals (95% CIs) or mean/median survival and p-values when 

comparing survival across different groups. Manuscripts that failed to meet these criteria or 
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lacked full text were excluded from future analysis. Review articles and editorial letters were 

omitted. The search was limited to papers written in English.  

Once a list of studies that met inclusion requirements was created, the following data was 

extracted from the papers: first author, year of publication, description of the cohort, GC metric, 

detection method and survival data. The survival data extracted was either HRs and 95%CIs or 

mean/median survival and p-values, or some studies reported on both. Data was extracted by 

reading the full text of all eligible studies and any additional supplementary material available.  

2.3.3 Data visualisation and analysis 

Descriptive statistics, such as percentages and ratios, were employed to assess patient 

composition and features that influence CLL prognosis. Graphical summaries were created using R 

(version 4.1.2) within the Rstudio environment (version 2021.09.1) and using various packages 

such as ‘ggplot2’ (version 3.3.5). Graphs were used to compare the different technologies, metrics 

and cutoffs used in the eligible publications to measure GC. The impact of GC on survival was 

considered statistically significant if the CI did not overlap with 1, and an HR>1 would indicate a 

poorer prognosis for that GC group compared to the control group, i.e., patients with GC 

compared to patients without GC (219). Survival was evaluated using many outcomes, for 

example, OS or TTFT. OS was measured from the study enrollment until death; however, some 

publications used time at diagnosis as a starting point. Also measured was TTFT, which was 

defined as the time of enrollment until the first treatment. In contrast, time to subsequent 

therapy (TTST) was measured between completion of chemotherapy before registration and the 

start date of the subsequent treatment. Both PFS and DOR used the end point of the detection of 

a progressive disease, whereas diagnosis date and first response to therapy were used as starting 

points, respectively.     

2.4 Results 

2.4.1 Study Selection 

The results from the manuscript selection are shown in Figure 10 below, with each step of study 

selection clearly shown. The reported values represent the number of papers included and 

excluded at each step. The concordance between the two independent reviewers used to control 

for selection bias was 100% on the final accepted manuscripts. Supplementary Table 1 gives an 

overview of the 25 eligible papers, identified during manuscript selection, that are used in this 

systematic review.  
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Figure 10-  Flowchart showing an overview of manuscript selection. The flowchart starts with the 

keywords and search engines used to compile manuscripts into a single list for further 

assessment. Duplicate entries were removed. The remaining papers had the eligibility of their 

titles and abstracts assessed, papers not meeting inclusion criteria were removed. Papers 

were also removed if full text was not available. Papers were excluded if genomic complexity 

was not a factor assessed within the survival analysis. Numbers denote the number of 

manuscripts excluded and included after each step. 

2.4.2 The composition of cohorts within the eligible studies 

Assessment of the composition of the cohort used within the 25 eligible studies identified that 

many of the publications used a cohort of only treatment naive (n=12) (121,220–230) or treated 

patients (n=3) (231–233). Whereas others included both treated and untreated patients in their 

cohorts (n=9) (103,198,203,204,234–238). Interestingly, only one paper included a cohort of 

relapsed and treated patients (239). Furthermore, none of the eligible papers had patients that 

had progressed to an advanced disease such as RS, which is part of the pathogenesis of CLL for 2-

10% of patients (91). A schematic timeline spanning the whole natural history of the disease is 

shown in Figure 11, with details about the cohorts used within the 25 eligible studies annotated to 



Chapter 2 

38 

the timeline. Across the papers inspected, at the time of GC assessment, 11052 patients were 

treatment naïve, 2774 were treated, 59 were relapsed patients, 48 were sequential samples, and 

228 had unclear status. Of the 12 publications that included treated patients above, 42% included 

the application of oral agent treatment regimens (n=5), such as BTK, Bcl2 or PI3K inhibitors (231–

233,236,238). Most treated CLL patients examined within the eligible studies were enrolled on 

CIT, see Figure 11.  

 

Figure 11-  Schematic presentation of the different stages of the natural history of the CLL disease. From 

the precursor disease, to treated, to relapsed and finally, for some, Ritcher’s transformation. 

A detailed breakdown of the different cohorts used in each of the 25 eligible studies are 

clearly annotated to different stages of the timeline, relevant to the patient’s status at time of 

GC testing. The values show the total number of patients analysed at that stage in the natural 

history and how many came from each publication, i.e. 2774 patients were treated with 130 

of these individuals were part of the Cherng et al 2022 paper. For treated patients, further 

information is provided to show the number of each cohort that were treated with either 
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chemo/immunotherapies or oral agents. For 228 patients their status at time of GC was 

unclear and therefore has been shown in a separate grouping. * signifies this cohort was 

treated but it was not clear which treatment option they were given. ? signifies that the exact 

number of patients in this treatment arm was not clear in the publication. Adapted from (240) 

The sample size of these cohorts was another highly variable feature, with a range of 42-5290 

patients and a mean of 572 patients. Five studies used a cohort of less than 100 patients 

(203,204,224,234,237) in their research. Of these five publications with a small sample size, three 

have focused on a subset of the CLL population, for example, including only CLL patients with 

TP53 aberrations (203,204,234). The prevalence of TP53 aberrations in untreated CLL patients is 

only 5-10%, which could explain the limited cohort that could be collected (241).  

2.4.3 Inspection of the metrics and technologies used for the assessment of genomic 

complexity 

Within the eligible publications, a broad series of metrics were used to measure GC (n=11). 

Metrics ranged from being a continuous or categorical variable, including CNAs and/or mutations 

and using a variety of cut-offs to categorise patients into having high, low or no GC. In certain 

publications, only specified CNA signatures were included in the GC variable, for example, only 

including chromosomal gains or losses into copy number count or only including CNAs of a specific 

size. The variety of GC metrics used within the eligible studies is displayed in Figure 12 where 

complex karyotype (CK), defined as ≥3 CNA, was shown to be most popular metric for GC and 

used in 44% of publications (n=11) (203,222,223,225,227,229,231,232,234,236,238). However, 

this GC metric varied across the 11 publications with some publication apply different inclusion 

criteria for defining CNA, for example including a size cut-off where CNA ≥5MB in size are included 

(223). The second most popular metric used were copy number count, either as a categorical or 

continuous variable, as both accounted for 17% of the different metrics used across the eligible 

studies. Copy number count as a categorical variable, referred to as copy number groups, had 

different grouping across the publications; for example, Ouillette et al., 2011 had groups of 

0, >1, >2, >3 and >4 CNAs, whereas Puiggros et al., 2022 used a cut off of >10 CNA to define GC 

(237,239). The categorical variable, named high complexity, described GC as ≥5 CNAs and 

accounted for 14% of GC metrics used across the publications (n=6) (103,223,229,231,232,238).  

Mutation data was also included to define GC, albeit less frequently and with various inclusions 

criteria and cut offs. Similarly to CNA count, mutation count can be defined as a continuous or 

categorical variable. The mutation count as a categorical variable, referred to as mutation count 

groups, was used in two publications and accounted for 5% of metrics used. Patients were 

classified as having GC if ≥21 mutations or ≥1 of the eight estimator genes, including ATM, SF3B1 
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and TP53, were detected (230,236). Remarkably, over half (52%, n=13) of the eligible publications 

reported using more than one metric to investigate GC, alluding to the discrepancy within the CLL 

community regarding how GC should be assessed.   

 

Figure 12-  A bar chart showing the 11 different GC metrics used across the 25 eligible studies. Metrics 

including CNA were frequently used via many different cut-offs and definitions. CNA was 

studied as a continuous variable in copy number count but also as a categorical variable, for 

example, in complex karyotype, using a ≥3 CNA cut-off, high complexity, using a ≥5 CNA cut-

off and copy number count groups where various cut-offs were applied (>1, >2, >4, >6 and 

>10 CNA). Dosage is calculated by the total length (Mb) of sub chromosomal losses and gains. 

The large undetected CNA metric was defined by the presence of a CNA greater than 5Mb in 

size, previously undetected by FISH. Mutation count, a continuous variable, included the 

number of mutations detected. As a categorical variable (mutation count group), various cut-

offs was used, including ≥21 mutations and the presence of ≥1 of eight gene estimators. 

Mutational complexity refers to the sum of driver alterations, including both CNA and 

mutations. Percentages shown are calculated from the frequency of each metric out of the 

total number of metrics used across the 25 publications, i.e. Complex karyotype (11/42)*100= 

27%.  
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Across the 25 eligible studies, various detection techniques have been used to assess GC within 

CLL; a graphical display of the variation and their prevalence is shown in Figure 13. The nine 

different techniques can be divided into three main groups; cytogenetics, microarrays and NGS. 

Examining these three distinct groups, found that microarrays, including Array comparative 

genomic hybridisation (aCGH), SNP array and optical genome mapping, were the most common 

technique (64%, n=16). Conversely, cytogenetic techniques were used in nine publications (36%), 

whereas NGS techniques were only used in six eligible publications (24%). These various 

techniques have varying resolutions, coverages, and types of detail recorded in the data. 

Therefore, the type of technique used to detect GC can have a profound impact on biomarker 

measurement and therefore its usefulness. The two most frequently used techniques were SNP 

arrays and CBA, both present in 8 of publications and account for 23% of technologies used, see 

Figure 13. aCGH was the subsequent most frequently used detection technique, present in 24% of 

eligible publications (n=6) (103,204,224,233–235). For the application of GC metrics involving 

mutation data both targeted NGS and WES have each been used in two publications to detect 

mutation variants (121,230,233,236). Figure 13 also highlights Leeksma et al., 2020 as having 

greatest number of technologies used within a single publication with three techniques employed 

(103). Further inspection of this paper identified that the wide range of technologies used was 

due to it being a retrospective study collating data from 13 different research centres. This 

emphasises the lack of agreement across research groups regarding how GC should be studied.   
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Figure 13-  A bar chart showing the nine different technologies for detecting GC across the 25 eligible 

studies. The frequency of use of a technique is shown along the y-axis. Percentages indicate 

the frequency of use each technology has compared to all the technologies used, i.e. aCGH 

(6/34)*100=18%. Colours correspond to publications, with numerous papers using multiple 

technologies for GC detection. The three broader technology groups of cytogenetics, 

microarrays and NGS are shown in italics, underlined and bold, respectively. SNP array group 

includes 250k SNP, 50kXbaI SNP and SNP 6.0 arrays. aCGH- Array Comparative Genomic 

Hybridisation, CBA- Chromosomal banding analysis, FISH- Fluorescent in situ Hybridisation, 

NGS-Next Generation Sequencing, WES-Whole Exome Sequencing, WGS- Whole Genome 

Sequencing.  

2.4.4 Associations between genomic complexity and survival outcomes 

To investigate the final research question of this systematic review, the reported survival data 

from the 25 published papers were compared and assessed. Within 92% (n=23) of the studies, a 

univariant survival analysis has been completed (103,198,203,204,220–232,234–239) evaluating 

the impact of GC on a range of survival outcomes such as treatment free survival (TFS), TTFT, 

TTST, PFS and OS. Within ten publications a HR and 95% CI have been reported, with the 

remaining 13 only including p-value and median survival time for different GC groups analyses 

and therefore could not be included in a forest plot. Figure 14 displays the reported univariate 

analysis from five publication that have used the survival endpoint of TTFT; each GC metric and 
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detection technology is also indicated (221,223,230,235,239). The forest plot indicates that the 

presence of GC, measured and detected in numerous ways, indicates a significantly poorer TTFT. 

This trend was also found in univariate analysis using survival endpoints of PFS or OS, with 

Puiggros et al., 2022 recording a significant difference (p-value<0.014) in OS in patients with 

complexity (>10 CNA median; 2 months) and without complexity (<10 CNA median; 43 months). 

As highlighted above, many publications have included multiple metrics of GC. One such paper is 

Ramos-Campoy et al., 2022, which examined high GC (≥5 CNAs), intermediate GC (3-4 CNAs), and 

no GC (0-2 CNAs) metrics. Univariate analysis using these metrics found high GC group had a 

significantly shorter TTFT compared to no GC (p-value=0.006, 3 vs 17 months), but the 

intermediate GC v.s. no GC group did not reach 95% significance (p-value>0.05, 21 vs 17 months). 

 

Figure 14-  A forest plot of univariate results studying GC metrics using the TTFT survival endpoint. 

The technology and metrics used to examine GC are recorded. For each metric, however 

defined, a comparison of patients with GC and patients without GC is completed. 

Abbreviations: HR- hazard ratio, 95% CI- 95% confidence interval, SNP array- single 

nucleotide polymorphism microarray, CNA- copy number alteration, aCGH- array 

comparative genomic hybridisation, Targeted NGS- targeted next generation sequencing 

using a panel of genes.  

Many studies have completed a multivariate Cox regression model analysis including GC as a 

variant (n=21) (103,121,198,203,204,220–223,225,227–233,235,236,238,239). Within nineteen of 

these models, a GC metric has been significant and therefore found to be an independent 

biomarker for poorer survival. For example, Kater et al., 2020 reported in their PFS MVA that low 

GC (3-4 CNAs) compared to no complexity status (0-2 CNAs) had a shorter PFS (HR:2, 95% CI:1.1-



Chapter 2 

44 

3.6, p-value=0.025 and HR:1.7, 95% CI:1-2.7, p-value=0.039) in both an oral agent (venetoclax) 

and chemotherapy (bendamustine) based treatment cohort, respectively (233). Kittai et al. (2021) 

also found that GC, defined by CNA count as a continuous variable, remained an independent and 

significant covariate within the model, predicting a shorter PFS (HR:1.07, 95% CI:1.04-1.1, p-

value<0.001) in the presence of other covariates such as age, gender, Rai stage, FISH data and 

IGHV mutation status (232). This study also found that CNA count remained significant in the OS 

multivariate model (HR:1.09, 95% CI:1.05-1.12, p-value<0.001). Yu et al. investigated ten different 

GC metrics within their study. Seven were reported as independent markers of poor OS within 

their multivariant model, when adjusted for IGHV mutational status and del17p events (236). For 

example, total number of mutations (≥ 21 vs. <21) had a reported HR of 3.55 (95% CI:1.55-8.16 p-

value=0.003) and total number of CNA (≥4 vs <4) had a reported HR of 2.28 (95% CI:1.12-4.66 p-

value=0.02) (236). Additionally, the dosage metric was found to be significant only when genomic 

losses were calculated (HR:3.88, 95% CI:1.74-8.55, p-value<0.001) but not when gains were 

included (p-value>0.05). Conversely, both Mian et al. and Nadeu et al. reported that GC was 

insignificant in their OS MVA (121,221). However, both publications, found their GC metrics to be 

significant in the TTFT MVA. Nadeu et al. reported an HR of 1.44 (95% CI: 1.21-1.72, p-

value<0.001) and Mian reported a p-value=0.036 in the complexity groups compared to control, 

with GC defined as mutational complexity or presence of >1 lesions undetected by FISH 

respectively. Finally, a MVA using TTST as the survival endpoint found that both the number of 

copy number losses and the total number of CNAs (losses, gains and loss of heterozygosity (LOH)) 

remained significant and predicted a shorter TTST (HR:2.58 and 2.82, respectively p-value<0.05) in 

the final model, which included IGHV mutational status, Rai stage, CD38 expression, del11q and 

del17p events, and (198). The overarching conclusion from the survival data within the 25 eligible 

studies was that greater GC correlated with poorer survival outcomes, with multiple studies 

identifying GC as an independent prognostic marker of TTFT, TTST, PFS and OS. 

2.5 Discussion 

Within the CLL community GC is considered clinically valuable in risk stratification through the 

identification of patients that possess aggressive tumours. Many obstacles are limiting its 

application, such as the need for a universal GC classification with an optimized and reliable 

detection technique that can be easily replicated within various international research groups 

studying CLL. Currently in CLL, only two biomarkers have been fully validated and used in the 

clinical setting for patient risk stratification and as a predictive biomarker to guide treatment 

decisions. The 2008 iwCLL guidelines for the management of CLL highlighted the important 
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prognostic role of IGHV mutational status and the presence of TP53 alterations and gave the 

recommendation for screening all patients at point of diagnosis, before treatment initiation (242).  

Completion of this systematic review has allowed the current ‘state-of-play’ to be thoroughly 

investigated and critiqued with various suggestions on how to rectify any deficiencies within 

current evidence being discussed. Numerous limitations were identified within the papers 

studied, as well as limitations within the systematic review itself which hindered the scope of the 

analysis. Assessing the patient composition of current published studies, one of the aims of this 

systematic review highlighted limitations within the current literature. For example, four papers 

used a small sample size of less than 100 CLL patients, which suggests that these cohorts might be 

underpowered. Furthermore, none of these small cohort studies included a power analysis to 

establish if the sample size was adequate to investigate the survival trends within their specific 

CLL population. Therefore, insights into survival could have been missed, and the work could be 

statistically inconclusive (243). A further limitation within the literature examined is publication 

bias and selective reporting, with two studies omitting results from the MVA as it did not find GC 

to be an independent marker (121,235). Publication bias is the increased tendency of researchers 

to publish only positive results which then artificially increases the belief of the relationship that is 

being investigated (244). Therefore, research studying GC could have found it insignificant in their 

own MVA but chose not to include that work when it was published due to the desire of 

researchers to only report on positive results and therefore this unpublished data would not be 

included in the systematic review.  

This work has been limited by its research design of a systematic review with a narrative approach 

for data synthesis. Limitations that typically occur in systematic reviews, and that apply to this 

research, include variations in experimental designs hindering comparisons and a lack of detail 

within methodologies and the analysis reported in published work (245). I had difficulty in 

combining results, the first required step in a meta-analysis, as I was uncertain of the similarity of 

many aspects of the publications. For example, several manuscripts included a description of the 

technology they used to measure GC within their methodology that was detailed enough to 

replicate the experiment and analyse the raw data generated, whilst others were much less 

meticulous in their description, see Supplementary Table 1. Typically, the publications that included 

very basic information about how GC was detected were multi centre studies that had pulled data 

from many institutions over many years. This hindered my analysis into how different 

technologies influence the clinical utility of GC as I had to cluster the technologies into much 

broader groups of cytogenetics, arrays, and NGS. Furthermore, I was unable to include a meta-

analysis as part of the systematic review due to this varied reporting within the publications. 
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Despite these limitations, many important insights with valuable applications for CLL have been 

gained. As mentioned above, there were inconsistencies across the studies on how to define GC 

as a metrics and what technology were used to detect it. Using different technologies to detect 

GC can introduce a technical bias due the varying resolution and the limited genomic coverage 

that is offered by certain techniques. For example, CBA allows chromosomal deletions or 

duplications to be identified at a resolution of >10MB in size. This resolution is dictated by the 

resolution of the light microscope and the quality of the metaphase chromosomes that are being 

used. Whereas FISH has a better resolution of 200Kb-2Mb, but is limited by its genomic coverage 

as it uses targeted probes (210). Microarray resolution is heavily governed by its probe size and 

the genomic spacing which determines the density of the probes (246). For instance, SNP array 

uses ~2 million probes spanning across the genome resulting in a greater probe density and 

therefore greater resolution than FISH (246). Finally WGS, a type of NGS technology, that was 

used within one of the eligible studies and allows single-nucleotide resolution (247). This range of 

resolution abilities of different technologies has resulted in a bias for the detection of larger CNA, 

with smaller CNA going undetected by most of the techniques. Additionally, techniques that have 

limited genomic coverage incur a bias for regions that have probes designed for and therefore will 

have less validity than techniques that study the genome as a whole. This technical variation 

introduced within the studies highlights the need for a singular detection method to be selected, 

until then the validation of GC as a clinical biomarker within CLL cannot occur.  

The prevailing conclusion from the eligible studies is that increasing GC, measured and detected in 

numerous ways, is a prognostic biomarker indicating poorer survival. Numerous studies have also 

shown GC as a biomarker of progression independently of various factors that have a known 

survival impact, such as TP53 aberrations, IGHV status and ATM mutations. This indicates a 

potential application within patient risk stratification, allowing patients with an aggressive disease 

to be identified and treated accordingly. One exciting finding was the presence of high GC, 

detected using aCGH, within patients that had previously been classified as low risk based of FISH 

results, for example patients with a sole del13q events (224). Patients with high GC, defined by 

the presence of ≥15 CNA, had a significantly worse (p-value<0.01) PFS than patients with <15 

CNA. Whilst this high GC group included, as expected, patients with del17 events it also included 

patients with trisomy 12 and del13q events. Even patients identified as low risk can exhibit an 

aggressive disease course which is not truly captured using current prognostic markers. Therefore, 

further research is warranted to investigate GC within ‘low risk’ CLL patients in the hope that this 

clinically heterogenous group can be further risk stratified and thus lead to improved patient 

outcome. When assessing the various metrics used to describe GC it was found that increasing 

CNAs was a greater predictor of survival than increasing number of mutations (197). This 
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highlights the need to include CNA within the universal measurement of GC as it seemingly gives 

greater clinical insights. However, the aspect of CNAs to measure, i.e. dosage or CNA count, and 

the specific cut-offs, i.e. only include CNAs >5Mb in size, remains unclear. Within certain 

publications, GC has been shown to have utility as a predictive marker for refractoriness or short 

remission after initiation of a chemo/immunotherapy regime. Less evidence is available showing 

the clinical utility of GC in patients treated with targeted agents, which are becoming important in 

the frontline treatment of CLL. Notably, the first publication to include a cohort of patients 

treated with oral agents was published in 2017 (236). Since then, four additional publications 

included in this systematic review have included a cohort of oral agent treated patients see Figure 

11. Kittai et al., 2021 found that increasing karyotypic complexity (increasing 1 CNAs) was an 

independent predictor of shorter PFS (HR:1.07, p-value<0.0001) and OS (HR:1.09, p-value<0.0001) 

in a MVA using relapsed/refractory and treatment naïve patients treated with ibrutinib. This 

suggested that karyotypic complexity is an important prognostic and predictive marker in patients 

treated with oral agents as frontline and second line therapies. However, validation of this 

application is currently halted as the evidence showing GC utility as a predictive biomarker is 

based on small samples sizes or without extensive follow up data (236).   

This chapter had four main aims, all of which have been addressed. Firstly, the composition of the 

patient cohorts used in the current published literature was assessed, and various deficiencies 

were identified due to small sample sizes or not including patients that represent the whole 

natural history of the disease. The systematic review examined and reported not only the 

different technological platforms used for the detection of GC but also the various definitions and 

cut-offs used. Across the 25 studies employed in this systematic review, the most frequently used 

metric is complex karyotype defined as ≥3 CNAs, and the most used detection method is CBA and 

SNP arrays. The final aim of investigating the prognostic significance of GC was addressed and 

found that increasing GC, no matter how defined, was prognostically important in various 

institutional and clinical trials.  

Whilst GC is newly being investigated in the era of oral targeted therapies, recent published work 

is still using cohorts of patients enrolled in CIT regimes. These cohorts used historical clinical trials 

which included patients treated with CIT regimes, as CIT was the gold standard of treatment at 

the time of enrolment. The benefit of still using these historic CIT clinical trial cohorts is that these 

are typically larger cohorts, with rich molecular data and extensive survival data available. 

Furthermore, these oral agents, whilst they have a good response in many patients, they are 

expensive and thus their affordability and economic impact on a society must be considered. A 

simulation modelling the economic burden of CLL treatment in the era of oral agents in the 

United States reported a 590% increase in the annual cost, with an out-of-pocket cost to the 
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patient increasing by 520% compared to CIT (248). Therefore, oral agents may not be suitable for 

patients from all social-economic backgrounds and thus an evaluation of GC within a CIT treated 

cohorts is still vital and relevant research.   

In conclusion, current CLL research investigating GC is drawn from highly disparate cohorts, 

methodologies, and definitions for defining GC. Nevertheless, this research has consistency found 

GC to have importance within CLL as a prognostic and predictive marker. Presently, no definitive 

metric or detection technique can be stated from this systematic review although many have 

been mentioned with the advantages and disadvantages being debated above. Further work is 

required to expand the size and breadth of cohorts that have been used to study GC. Additionally, 

a singular detection method and definition of GC must be decided upon before GC can be fully 

validated as an important biomarker within CLL. Pending this research, GC cannot be used within 

the clinical environment to risk stratify patients and direct treatment regimens which would result 

in better patient outcomes.  
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Chapter 3 Methodology 

3.1 Synopsis 

This chapter presents the methods and techniques used within this thesis. Prior to my PhD, CNA, 

somatic variant, and TL data had been generated and used in published projects by other 

researchers based in Southampton and across other universities and institutions. During this PhD, 

new datasets were produced by completing laboratory work and bioinformatic analysis of the raw 

data generated. I produced the DNA libraries for the SureSelect sWGS and Agilent HS2 sequencing 

myself. Once sequenced, I processed the raw sWGS and HS2 sequencing data and manually 

curated the analysis output. Additionally, I completed the laboratory work to generate TL data 

using the MMQPCR technique and the analytical work required to quantify and convert the 

output to an absolute TL value. Infinium HumanMethylation450 (450k) array data was available as 

it had been generated for a sub-cohort of ARCTIC and ADMIRE patients beforehand for a previous 

project. I completed the analytical work to analyse this raw microarray data to extract CNA 

profiles for certain ARCTIC and ADMIRE patients. This preexisting data was integrated with newly 

generated data I created to form a large cohort of clinical trial patients. This cohort was then used 

in statistical and survival analysis. Finally, the methodology utilised to complete a systematic 

review is also illustrated in this chapter. 

3.2 Systematic Review 

3.2.1 Search Strategies 

The work presented in Chapter 2 followed the principles of PRISMA-P Preferred Reporting Items 

for Systematic Review and Meta-analysis Protocol which aims to aid transparent reporting within 

a systematic review (216). Relevant published literature was searched for using two independent 

search engines, PubMed and Ovid (MEDLINE) during September of 2023. Combinations of four 

keywords were inputted into both search engines: either “Chronic Lymphocytic Leukemia” or 

“CLL” with either “Genomic Complexity” or “Complexity”. The manuscripts identified from the 

eight searches were combined. Duplicate entries were removed resulting in a list of unique 

manuscripts.  
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3.2.2 Manuscript Selection  

Two independent reviewers (Miss Louise Carr and Doctor Helen Parker) assessed the unique 

papers to determine study eligibility. Inclusion and exclusion criteria were first applied to the title, 

then the abstract and full text. If the title was ambiguous the reviewer read further into the 

abstract and full text until this problem was resolved. Inclusion criteria was as follows: (1) title 

mentions CLL and a genomic characteristic(s), (2) abstract specifies a GC metric, (3) full text 

and/or supplementary material reports survival analysis data including GC as a factor; HRs and 

corresponding 95%CIs or mean/median survival and p-value when comparing survival across 

different groups. Manuscripts that failed to meet these criteria or that lacked full text were 

excluded from future analysis. Review articles and editorial letters were not included. The search 

was limited to papers written in English.  

3.2.3 Data Extraction 

Once a list of studies that meet inclusion requirement was created the following data was 

extracted from the papers; first author, year of publication, cohort details, GC metric, detection 

method and survival data. Survival data extracted was either HRs and 95%CIs or mean/median 

survival and p-values or some studies reported on both. Data was extracted by reading the full 

text of all eligible studies and any additional supplementary material that was available.  

3.2.4 Statistical Analysis 

To assess patient composition and features that are known to influence CLL prognosis basic 

descriptive statistics were employed, such as percentages and ratios. For the comparison of the 

difference technologies and cutoffs used to measure GC, graphical summaries were created using 

R studio. When assessing survival, reported HRs and CIs were studied across various GC metrics 

and detections techniques. The impact of GC on survival was considered statistically significant if 

the 95%CI did not overlap with 1 and a HR>1 would indicate a poorer prognosis for the specific GC 

group (219). Survival was evaluated using many outcomes for example OS or TTFT. OS was 

measured from time of study enrollment until death however some publications time at diagnosis 

was used as a starting point instead. Also measured was TTFT which was defined as time of 

enrollment until first treatment whereas TTST measured between completion of chemotherapy 

before enrollment to the start date of the next therapy. Both PFS and DOR used the end point of 

progressive disease detection but used diagnosis date and first response to therapy as starting 

points, respectively.     
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3.3 Data consolidation  

The complied dataset generated and analyzed in Chapter 4 and Chapter 6 were curated from 

three clinical trials; CLL4, ARCTIC and ADMIRE, which contained treatment naïve CLL patients. The 

UK LRF CLL4 (NCT00004218) clinical trial randomly assigned 777 patients into two chemotherapy 

treatment groups. ARCTIC and ADMIRE clinical trials (NCT02352948 and CRUKE/09/016) recruited 

216 and 196 patients, respectively, and assigned patients to several CIT regimes.  

3.3.1 CLL4 cohort 

The patients that were part of the CLL4 clinical trial were enrolled into either a Fludarabine plus 

Cyclophosphamide (FC), Chlorambucil (Chl) or Fludarabine (FDR) treatment regimes. This clinical 

trial has been used in a lot of published research and therefore many datasets have been 

generated for subsets of the cohort. Variant data has been previously generated for a cohort of 

499 patients, using the Illumina TruSeq custom amplicon targeted sequencing technology (159). 

CNA data has been previously generated for a cohort of 133 patients, using the Affymetrix SNP 6.0 

platform (141). TL data was generated for 384 patients using the monochrome multiplex QPCR 

(MMQPCR) technique (185).  

3.3.2 ARCTIC and ADMIRE cohort 

ARC/ADM patient were split into the following treatment arms; fludarabine, cyclophosphamide 

and rituximab (FCR), the addition of mitoxantrone to FCR (FCMR) or mitoxantrone with low-dose 

rituximab (FCMminiR). A final cohort of patients that started a FCMminiR regime but were 

recommended to cross over the FCR (FCMminiR/FCR), due to significant toxicities they experience 

with FCMminiR. Similarly to the CLL4 clinical trial, the ARC/ADM trials have been used extensively 

in previous projects and therefore a wealth of data is available for different subsets of patients. 

Previous work has generated variant and CNA data for a cohort of 250 ARC/ADM patients using a 

Illumina TruSeq custom amplicon panel and HumanOmni2.5-8 SNP array, respectively (249). 

Additionally, 260 patients had TL data generated using the STELA technique (189).  

The extensive catalogue of previously generated data for both clinical trial cohorts has been used 

within the research completed in this PhD, and directed what experimental work was completed. 

Starting with the previously generated data, experimental work was used to then ‘fill the gaps’ 

where patients were missing certain data points. This meant a large complete cohort of clinical 

trial patients with variant, CNA and TL data was created.  
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3.4 Data Generation 

3.4.1 Quality Control Assessment 

3.4.1.1 Qubit Fluorometer 

The Qubit fluorometer uses a fluorescent dye that once it binds with DNA emits a signal which is 

then recorded by the machine. The greater the level of fluorescence recorded by the fluorometer 

represents a greater concentration of DNA in the sample with the concentration given in ng/µl 

(250). A calibration curve is produced from measuring the fluorescence levels of two standard 

samples with a known concentration. Next the relative fluorescence units (RFUs) of the unknown 

sample are compared to the RFU of the standards to calculate the concentration of the DNA 

sample.    

3.4.1.2 NanoDrop Spectrophotometer 

The NanoDrop is a spectrophotometer instrument that allows the quantification of a DNA 

concentration and assessment of purity based on the absorbance measures of the sample. It 

works on the principle of ultraviolet-visible spectrum absorbance and Beer-Lambert law which 

states that the amount of light absorbed at 260nm is proportional to the concentration of nucleic 

acid in the sample (251). Conversely, purified proteins can be measured by assessing light 

absorption at 280nm. To calculate the purity and identify any potential contaminants in the 

sample a ratio of the absorbance values of 260nm vs 280 nm, with an increase or decrease in this 

ratio indicating a protein or RNA contamination of the sample, respectively. A 260 nm vs 230 nm 

ratio can examine the presence of other contaminants such as chaotropic salts (252).  

3.4.1.3 Fragment Analyzer 

The Fragment Analyzer 5200 is a multiplex capillary electrophoresis instrument that allows for the 

separation and quantification of DNA and RNA. The instrument functions by using conductive gel 

matrices, which when a high voltage is applied, causes the DNA/RNA to migrate through the gel 

within the capillary array as a function of size (253). For example, smaller fragments will travel 

through the gel much faster than larger fragments. Visualization of this size dependent separation 

is achieved by detecting the fluorescence of an intercalating dye added into the gel matrix. The 

recording of the RFU intensity over time not only allows the calculation of the size of the 

fragments but also the concentration of the sample. See Figure 15 below for an example of a 

fragment analyzer trace. Both these readings are required for calculating the volumes of each 

sample that will be added to the pool DNA libraries that will then be sequenced. Measuring the 
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concentration of these fragments is completed by integrating under the desired peak by 

adjustment of the peak bars. This step is completed using the ProSize data analysis software 

(254). 

 

Figure 15- A typical electropherogram produced by the Fragment Analyzer and visualized on ProSize 

software showing a successful sWGS DNA library with the average fragment size of 917bp 

(within the desired size range, 600-1000bp). 

3.4.2 Mechanical shearing to create DNA fragments 

Mechanical shearing of sample DNA was the first step in the SureSelect XT HS2 target enrichment 

DNA sequencing experimental procedure. A starting concentration of 2ng/µL was used for the 

DNA library preparation (255), this concentration was measured using the Qubit fluorometer. 

Next mechanical shearing of each DNA sample to fragment it was completed using the Covaris 

M220 focused-ultrasonicator. The Covaris fragments DNA by mechanically shearing the 

phosphodiester backbone using Adaptive Focused Acoustics technology. This technology employs 

controlled bursts of high-power acoustic energy to a sample in a temperature-controlled water 

bath. The use of this mechanical shearing in a water-controlled environment allows a high 

recovery of DNA with unbiased fragmentation (256). The settings used for the mechanical 

shearing followed the manufacturers advice for the desired fragment size of 180-250bp using the 

specific M220 model as shown below in Table 1.  
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Table 1- DNA shearing settings for M220 instrument as recommended by the manufacturer (257)  

Setting Covaris M220 instrument 

Bath Temperature (°C) 20 

Peak Incident Power (W) 75 

Duty Factor (%) 20 

Cycles Per Burst 200 

These settings differed from the HS2 methodology as the setting given in protocol were designed 

for a different Covaris model and therefore an adjustment to the protocol was required. 

Furthermore, as an additional quality control step, samples were run on the Fragment Analyzer to 

ensure the correct fragment size was produced from the Covaris step. 

3.4.3 Generation of telomere length data 

To generate new TL data for a cohort of 83 cases that lacked this dataset, I undertook laboratory 

work using the MMQPCR technique. The technique, which is discussed in much greater detail in 

5.4.2, calculates a relative TL using fluorescence measurements of a telomere signal (T) and a 

single copy gene signal (S), which gives a T/S ratio. This T/S ratio is recorded for both the unknown 

DNA sample and a series of a diluted standard. The TL given for the unknown sample is relative to 

the standard used (258).  

3.4.3.1 Experimental protocol 

This protocol was adapted from another the published work of Cawthon et al, 2009 (258). 

Experimentally, three PCR reaction wells are needed for each DNA sample and each of the five 

reference ‘standard’ dilution being examined. This is because each reaction is completed in 

triplicate and an average of these three replicates is taken during the data analysis stage. A 

concentration of 10ng/ul is required for each of the test DNA samples and therefore before the 

PCR reaction was set up all 83 samples included in this analysis underwent a quality control step. 

The Qubit 3.0 fluorometer was used to quantify the concentration of the experimental samples 

which was used to calculate the dilution factor of each sample, producing the correct 

concentration in a volume sufficient for three PCR reactions. Once a 386 well PCR was loaded up 

with a prepared PCR master mix, and the test DNA and reference DNA is added to the relevant 

wells, ensuring the replicates are spaced across the plate to account for edging, the plate is run on 

a Roche LightCycler 480 instrument. The LightCycler 480 instrument is a high-throughput real-

time PCR device that runs a specific cycling programme. It records cycle threshold (Ct) values for 
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the amplification of the telomere at 74⁰C, when the single copy gene is at baseline, at the next 

stage the temperature increases to 88⁰C and the single copy gene template amplification Ct 

values are recorded. Data generated on the LightCycler 480 machine is exported in a text file 

format as raw data formatted as fluorescence by cycles for downstream data analysis.   

3.4.3.2 Data analysis 

The first steps of analysis of this data was completed using RStudio (version 4.3.0) within the R 

environment and a R packaged called ‘minpack.lm’ (version 6.4). As part of the QPCR analysis, Ct 

calculations were completed using the Full Process Kintetics-PCR (FPK-PCR) method, a R-based 

technique that uses ‘minpack.lm’ R package. FPK-PCR protocol was included to optimize the data 

analysis of MMQPCR data, this decision is discussed in detail 5.4.2.2. Then Microsoft Excel was 

used to finish the analysis and covert the relative TL measurement given from MMQPCR to an 

absolute value, using a linear regression equation. This absolute TL value could then be integrated 

with the established TL dataset that were previously generated using MMQPCR and STELA 

techniques.  

3.4.4 Generation of genetic variant data 

To generate new variant data for a cohort of 52 cases that lacked this dataset, I undertook 

laboratory work employing the Agilent SureSelect XT HS2 DNA NGS Target Enrichment system to 

prepare the DNA libraries before Illumina sequencing. The HS2 DNA workflow is shown in Figure 

16, and can be broadly divided into probe design, DNA library preparation and target enrichment 

using hybrid capture. The captured libraries are then pooled, before sequencing using Illumina 

based technologies.  

3.4.4.1 Probe design 

Probe design was completed in November of 2021. A final custom panel of 72 target genes or 

regions was included, for more detail on probe design see 5.4.3.1.1. The complete list of genes or 

regions that were included in the probe design are shown in Supplementary Table 2.  
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Figure 16-  Overview of the SureSelect XT HS2 DNA NGS Target Enrichment workflow, detailing the steps 

involved to prepare a sample for sequencing, from (255).  

3.4.4.2 Library Preparation  

A starting concentration of 2ng/µL was used for the DNA library preparation (255), this 

concentration was measured using the Qubit fluorometer. Next mechanical shearing of each DNA 

sample to fragment it was completed using the Covaris M220 focused-ultrasonicator. The settings 

used for the mechanical shearing followed the manufacturers advice for the desired fragment size 

of 180-250bp using the specific M220 model as described in Table 1. 

Library preparation involved the addition of both a molecular-barcoded adaptor and a unique 

dual-index to the fragmented DNA sample. Furthermore, various PCR amplifications and sample 

purification steps, using AMPure XP beads, are completed. At the end of library of preparation, 

quality and quantity assessment of the DNA library was completed using the Fragment Analyzer.  

3.4.4.3 Hybridization and Capture 

The prepared DNA library is then hybridized with the previously designed target-specific probe. 

Probe hybridization is followed by the capture and amplification of the hybridized library. Capture 
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occurs through a streptavidin-biotin interaction whereby the streptavidin magnetic beads bind to 

the biotinylated target probes, allowing these probe bound DNA fragments to be extracted from 

the sample using a magnetic device.  

3.4.4.4 Post-Capture Processing and Pooling 

During this step, the captured libraries are amplified through a PCR process and then purified 

using AMPure XP beads. The quality and quantity of the final prepared DNA library is assessed by 

running 2ul of the sample on the Fragment Analyzer. The desired fragment size, post capture, is 

200 to 450 bp in length, see Figure 17. Only 42 of the 52 cases successfully passed the DNA library 

preparation and therefore only 42 samples were pooled together and sequenced. The minimal 

sequencing data required for this experiment it was 6.29 Gb of sequencing. To combine the 

libraries the concentration of each library was converted from ng/ul to nanomole. A 

concentration of 4nm of each sample was desired, 42 samples were pooled to give a final pool 

volume of 100 ul. The pooled library was then sequenced on the NovaSeq 6000 Illumina platform 

using v1.5 chemistry. The generated raw sequencing data, in the form of FASTQ files were then 

analysed using a bioinformatic pipeline. 

 

Figure 17- Fragment Analyzer result of a post capture PCR quality control check of a successful DNA 

library with an average fragment size of 434bp. 

3.4.4.5 Data analysis 
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I undertook the analysis of the raw sequencing data, this was started on the University’s high-

performance computing cluster IRIDIS 5 for preprocessing, alignment and variant calling and then 

finished with RStudio within the R environment whereby variant filtering was completed. I also 

used the Integrative Genomics Viewer (IGV) software to manually curate the final filtered list of 

variants. 

3.4.4.5.1   Preprocessing, alignment and variant calling 

FASTQ files are generated from the sequencing on the Illumina NovaSeq 6000 sequencer. The 

sequence quality of each FASTQ file is assessed using the FASTQC software (version 0.11.9) with 

the output of all files being merged to create a report, using the MultiQC tool (version 1.23). 

Preprocessing and alignment of the raw sequencing files was completed with IRIDIS 5, using 

various software including BWA (version 0.7.17), samtools (version 1.20), picard (version 2.18.14) 

and Mosdepth (version 0.3.4). Variant calling steps used GATK (version 4.1.9.0) and the Mutect2 

(version 4.1.4.1) software.  

Once FASTQ files pass the quality control step outlined above, preprocessing of the data is 

completed. The first step of preprocessing the data is the identification and removal of adaptor 

sequences using the trimmer tool (version 3.0.5) of Agilent’s AGeNT software (version 3.0.6). 

These trimmed FASTQ files were run through BWA-mem and aligned to the GRCh38 genome 

reference consortium human build 38, reference genome. The SAM file created during alignment 

is then converted to a BAM file using samtools. This aligned BAM file was the indexed using 

samtools index. Next, the trimmer tool is also used to extract the dual MBC that are then 

processed using the AGeNT CReaK (version 1.0.5) tool, so duplicate reads can be marked, and a 

consensus read generated. The aligned and indexed BAM file then sorted by coordinate using the 

SortSam tool from Picard (version 2.18.14). A further indexing of the BAM file is completed using 

the Picard BuildBamIndex tool. FixMateInformation for Picard is used to verify that all pair 

information is synced between paired reads. Finally, Mosdepth was used to calculate genome-

wide sequencing coverage, again MultiQC was used to merge all output files into a single report of 

all samples for easier examination. 

Variant calling was completed using the GATKs tool, Mutect2, which calls somatic mutation 

through the assembly of haplotypes. Next filtering of the raw output of Mutect2 was completed 

with the FilterMutectCalls tool with minimum median mapping quality and median base quality 

parameters being set to 20. Finally, GATKs Functotator tool was used to analyse the function of 

the called variants which allows additional annotations from data sources (version 

1.7.20200429s), see Table 2 for a list of data sources used. The final output file from this analysis 

for each sample was a MAF file, which is a tab-delimited file that contains somatic mutation 
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annotations. Therefore, these MAF files were consolidated into one MAF file and inputted into 

RStudio ahead of variant filtering.   

Table 2-  List of databases used for annotating called variants by GATKs Functotator tool 

Database 

Achilles 

Cancer_gene_census 

Clinvar 

Clinvar_hgmd 

Cosmic 

Cosmic_fusion 

Cosmic_tissue 

dbSNP 

Dna_repair_genes 

Familial 

Gencode 

Gencode_xhgnc 

Gencode_xrefseq 

Hgnc 

Oregano 

Simple_iniprot 

3.4.4.5.2   Variant filtering 

The MAF file containing the output of all samples was read into RStudio using the read.maf 

function from the maftools package (version 2.18.0). An additional clinical data text file containing 

patient data on certain variables was also included to create a maf object. Variables included were 

treatment arm, age, sex, IGHV mutation status, epitype and TL. Filtering using the gnomAD 

genome database with an inclusion criterion of <0.001 allele frequency (0.1% allele frequency) 

was applied. Similarly, the gnomAD exome database with a <0.001 allele frequency cut off was 

applied. These reference population databases were used to distinguish somatic variants from 

germline variation, as a matched germline sample not available so this could not be done a per 
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sample basis. Therefore, likely germline variation was removed during this filtering step. Using the 

maftools package, graphical summaries of these variants could be made to examine further the 

final filtered variant list. 

3.4.4.5.3 Manual curation 

Manual curation of the filtered list of variants, identified in the previous step, began by assessing 

whether the variant had a COSMIC ID. Any entries or additional references to published research 

that were linked to the variant in the COSMIC database (version 3.4), were assessed. If a variant 

did not have a COSMIC ID, an alternative identification was used such as; dbSNP number (NCBI 

SNP databased build 152), the cDNA change, or the protein change. Using this information, the 

variant was searched for in published CLL literature and was included if it was reported as somatic 

or likely pathogenic. For certain gene variants specific criteria was employed for manual curation, 

these criteria follow the manual curation methodology outlined in Blakemore et al (2020) (159). 

Firstly, variants were only considered if previously observed as somatically acquired in CLL or 

annotated in COSMIC (version 84). Variants in the TP53 gene were only included if they were 

present in the International Agency for Research on Cancer (IARC) TP53 database (updated in 

2018, version R19). Similarly, ATM variants were included if they were present in the Leiden open 

variation database (LOVD) as were observed in AT families as pathogenic. Additionally, ATM 

variants that were reported as an evolutionary rare missense mutation in pooled published data 

from mutation-screening studies (259) or if they were one of the 36 ATM variants reported to be 

somatically acquired in CLL (260). Finally, BIRC3 and NOTCH1 variants were included if they were 

predicted to result in protein truncation.  

The final step in manual curation is visual inspection of the variant and its surroundings using the 

IGV software. Established criteria for distinguishing true somatic variants were used (261); which 

included assessing if the change was present on both the positive and negative strand, what 

percentage of the reads had the change, if the surrounding reads have many changes (noisy 

reads), if the variant was present at the end of the gene or frequently at an end of a read. More 

complex cases were discussed with a second reviewer (HP) until a decision was agreed upon. The 

final list of variants produced by this technique was then integrated with previous generated 

variant data, for downstream analysis.  
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3.4.5 Generation of copy number data 

3.4.5.1 450k Array Data Analysis 

Previously generated raw 450k array data was available for a cohort of 285 ARC/ADM patients. 

This analysis was completed using R (version 4.1.2) within the Rstudio (version 2021.09.1) 

environment R with the package ‘conumee’ (version 1.30.0). This package allows copy number 

variant analysis in a two-step process using the data generated from the 450K array technique. 

The first step involves normalizing both the methylation and unmethylated channel at each CpG 

site. Next the neighboring probes are combined to create the minimal size and number of probes 

(262). For normalization the MSetEx dataset from the R package ‘MinfiData’ (version 0.42.0) was 

used (263). A log R ratio (LRR) is calculated for each DNA segment, with CNA being identified as 

deviations of the LRR from the baseline level, after correction. 450k array data is considerably 

noisy and therefore a widely accepted cutoff of +/- 0.1 segment median LRR is used to define 

aberrant copy numbers in a sample (264). A further parameter used was a p-value<0.001. As data 

was originally aligned to the hg19 reference genome, a liftover was completed to convert all data 

to the hg38 reference genome. This was completed so that all data complied together in the final 

cohort used in the following chapters were all aligned to the same reference genome. Relevant 

CNAs reported in CLL, were defined using the hg38 human reference genome location of certain 

genes that are associated with these specific CNAs, see Figure 18 for further detail. Of the 285 

ARC/ADM patients, 31 cases were used cohort described in Chapter 6. Only 31 cases were 

included as these patients were missing CNA data, therefore analyzing the 450k array sequencing 

data meant they met inclusion criteria.  
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Figure 18- 450k Array Bioinformatic pipeline overview. Steps are shown in numerical order. 3. Baseline 

correction is required to assess tumour samples as typically they include many large 

aberrations (shown by the large green segment at chr2) which can cause shifting in the probe 

intensities and therefore can affect downstream CNA calling. 4. LRR has been plotted for each 

read as shown by the many dots, with the average LRR for a segment being shown by the 

vertical line, deviation in the LRR for a segment result in a gain (highlighted in green) or a loss 

(highlighted in red). Known important CNA in CLL were identified and annotated with either 

total, partial or within, which depicts if the CNA completely encompasses, partially 

encompasses, or occurs within a set genomic region, respectively. Adapted from (264).   

3.4.5.2 Shallow whole genome sequencing 

sWGS describes a methodology developed in 2014 which allows copy number to be inferred from 

WGS data. The method uses DOC technique to estimate copy number profiles and identify CNAs 

in tumour samples. sWGS sequences the whole genome at an average coverage of around 0.1x 

and by assuming a relatively consistent DOC is captured across the genome the deviations from 

the normalised baseline can be called as CNAs. A total of 177 cases were included in this 

experiment to generate novel CNA data.    
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3.4.5.3 Library preparation  

SureSelect library preparation encompasses multiple steps that results in fragmented amplified 

adaptor-tagged and indexed DNA for pooling prior to sequencing. An overview of the 

experimental pipeline is shown in Figure 19. The Agilent SureSelectQXT whole genome library prep 

for Illumina multiplex sequencing protocol was used.  

Assessment of the concentration of DNA sample prior to the library prep was completed using the 

Qubit dsDNA BR Assay Kit. A starting concentration of 50 ng/ul for each DNA sample was 

required. Library preparation was completed on two separate occasions with a batch of 70 and 

107 CLL4/ARC/ADM clinical trial patients. Firstly, DNA samples were enzymatically fragmented. 

This fragmented DNA was then tagged with an adaptor and purified using AMPure XP beads. 

Next, the sample was PCR amplified using a specific thermal cycler program on the SureCycler 

8800 thermal cycler. During this step, the DNA library was also indexed using a unique 

combination of two index primers (P7 and P5 indexing primers). The DNA library was then again 

purified using AMPure XP beads. Finally, the assessment of quantity and quality of the prepared 

library was completed using the Agilent Fragment Analyzer 5200. The desired fragment size range 

of the created whole genome libraries are 600-1000 base pairs (bp). Both readings are required to 

calculate the volumes of each sample that will be added to the pool of DNA libraries that will then 

be sequenced using the Illumina NovaSeq 6000 platform. 

 

Figure 19- Adapted from the SureSelectQXT whole genome library preparation for Illumina multiplexed 

sequencing protocol, from (265). 
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3.4.5.4 Data analysis 

Sequencing data generated from sWGS DNA libraries were analysed using an in-house pipeline, 

with optimizations which will be discussed further below (5.4.4.2). The raw sequencing data 

generated from the Illumina platform is in the format of FASTQ files. The conversion of bcl files to 

FASTQ files includes the demultiplexing of data. Therefore, de-multiplexing using the sample 

specific combination of two 8-base indexes was completed prior to the data being returned to 

me. Thus, a FASTQ file for each sequencing read per patient assessed was produced and included 

in the data analysis described below.   

Computationally, FASTQ files containing raw sequencing data is aligned to the hg19 human 

reference genome that was constructed from the 100,000 genome project and an annotated file 

of all known common human SNPs. The hg19 reference genome was used in alignment as CNA 

data generated prior to this work was aligned to the hg19 and then was converted, by me, to 

hg38 by a liftover using the UCSC genome browser application. Therefore, to ensure all CNA that 

will be merged together for downstream analysis undergoes a similar processing, the sWGS data 

was first aligned to hg19 and then converted to hg38 via a liftover. An annotated file of know 

human SNP is used for base quality recalibration and is sourced from NCBI by selecting the dbSNP 

variation human database. 

Alignment and processing of aligned reads is completed using the IRIDIS 5, the high-performance 

computing facility at the University of Southampton. Multiple programs are required for this 

analysis including bwa (version 0.7.17) to maps the FASTQ files to reference genome. Next 

samtools (version 1.9) is used to convert the SAM file, containing aligned reads, to a BAM files 

which are a smaller, binary version of SAM files. Samtools is also used to sort this newly created 

BAM file. A further package is picard (version 2.18.14) which is used to remove PCR duplicates. 

Finally, the program samtools (version 1.9) is used to generate index files for each reference 

aligned sample BAM file which allows the visualization of the sequencing data downstream using 

the IGV software.  
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Figure 20-  Overview of the shallow whole genome sequencing data analysis workflow, from (266) 

Next, analysis using R (version 4.1.2) within the Rstudio (version 2021.09.1) environment and the 

R package QDNASeq (version 1.26.0) is completed. Once in the R environment data is divided into 

30kb bins, normalized and corrected for mappability and GC content, log2-transformed and CNA 

calls are made from segmented data (266), see Figure 20 for an overview of the workflow. Using a 

30kb bin size was decision was based on the literature and the comparison of other bin sizes using 

a small cohort of samples, see below for more detail (5.4.4.2). The output of QDNAseq includes 

a .txt file that gives the whole genome, per sample, segmented into the 30kb bin sizes with the 

mean log2 ratio for that bin. A positive or negative log2 ratio indicates that that a segment is 

present more or less than the baseline, respectively. A further output from QDNAseq is CNA count 

plots, which has a y axis on the left showing the log2 ratio and the y axis on the right is the 

probability scale. Segments with a bar extending beyond the middle axis, where the probability is 

0.5, are then called as CNAs (Figure 21). This CNA calling was completed using ‘CGHcall’ (version 

2.58.0), a calling method that was developed for cancer sample sets using a mixture model with 
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six states to reflect the six biologically important calls of double deletion, single deletion, normal, 

gain, double gain, and amplification (267).   

 

Figure 21- Copy number called plots showing examples of CNA that passed filtering but were then 

excluded during manual curation. The left y axis shows the log2 ratio and the right axis gives 

the probability scale: A. This CNA was discounted because there is not a clear gain with main 

points present at the baseline and below the baseline. B. This CNA was discounted because 

the distribution of the points in the called CNA, shown in red, is similar to the sections either 

side of the called CNA and if the orange mean log2 ratio for the section was removed it would 

look similar to the non-called sections. 

To classify CNAs from the data generated by QDNAseq, a cut off of +/-0.2 log2 ratio was applied 

which is a widely used threshold for the analysis of sWGS data (268–270). Furthermore, a size cut 

off of ~1Mb was included in the filtering in which 33 consecutive bins (33x30kb=990kb) all with 

the same log2 ratio were required to be counted as a CNA (103). This filtering, although stringent, 

was applied as the small CNAs where hard to be confident in, especially in cases that had noisy 
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data. After each filter had been applied and the list of potential CNAs were constructed for each 

case, manual curation was completed.  

3.4.5.5 Manual curation 

Manual curation was completed by two independent reviewers (LC and HP) which had the same 

inclusion and exclusion criteria. Cases that were not clear or were complicated were discussed 

and decided upon together. Manual curation started by examining the list of CNAs that passed 

the filtering requirements as outlined above. These CNA were assessed by looking at the copy 

number called plots which shows the distribution of the 30kb bins across the whole genome and 

per chromosome. The profile created by the CGHcall calling method colour codes the calls as 

such; red indicates the probabilities losses and blue indicates the probabilities of gains. From 

these figures the noise of the data can be ascertain by the vertical spread of bins. Additionally, the 

specific CNAs that had been called can be assess by looking at the region being called and see the 

spread of the data compared to the baseline and the surrounding data. Common reasons to 

remove a CNA during manual curation include if there were considerable data points across the 

baseline and therefore not a clear shift up or down if calling a gain or loss, respectively. Also, if 

there is a similar section next to the CNA called that has not been called then this CNA is 

disregarded, see Figure 21 for examples.  

Additionally, through the examination of the copy number called plots, CNAs that may have been 

removed through the filtering can be added back. For example, CNAs that are smaller than 990kb 

but are very clearly present when looking at the plots. This was especially important in regions of 

known recurrent CNAs such as del13q, del11q and del17p. Trisomy 12 events were clear to 

identify from the copy number called plots (see Figure 22), however there were cases where the 

CNA calling parameters called this as multiple different CNAs and therefore during manual 

curation these were consolidated into one trisomy 12 event. Additionally, biallelic events were 

also called by visual inspection of the copy number called plots in addition to the log2 ratio, see 

Figure 22B.  
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Figure 22- Examples of called CNA that passed manual curation as clearly show a (A) trisomy 12 event 

and a (B) biallelic and monoallelic loss of 13q. 

The 153 sWGS cases that passed all data analysis and manual curation steps were integrated with 

CNA data previously generated either from SNP 6.0 array, HumanOmni array or 450k array 

technologies.   

3.5 Statistical and Survival Analysis 

Statistical analysis was completed using Rstudio in the R environment (version 4.3.0). R packages 

‘tidyverse’ (version 2.0.0), ‘table1’ (version 1.4.3), ‘ggplot2’ (version 3.4.4), ‘dplyr’ (version 1.1.4), 

‘hrbrthemes’ (version 0.8.7), ‘viridis’ (version 0.6.5) and ‘networkD3’ (version 0.4) were used in 

statistical analysis. The statistical cohort used in Chapter 4 was compiled of 519 patients (CLL4: 

304 and ARC/ADM: 215) whereas Chapter 6 used a statistical cohort of 495 clinical trial patients 

(CLL4: 251 and ARC/ADM: 244).  
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 A Wilcoxon rank sum and chi squared test were employed to test for differences between 

continuous (i.e. Age) and categorical variables (i.e. IGHV mutation status), respectively. An odds 

ratio (OR) was calculated to test associations between variables assessed in Chapter 4 and 

Chapter 6. An OR is a statistic that quantifies the association between two events, i.e. one epitype 

group and one TL group. A value of OR >1 or <1 suggests a positive or negative association 

between two variables, respectively. The Fishers exact test is a non-parametric statistical test 

used to compare the proportion of categories in two independent categorical variables. These 

statistical tests were applied in a pairwise comparison of the variables and the output were 

adjusted using the Benjamini-Hochberg method to account for multiple testing. These values 

were visualised in an association plot. To test concordance between FISH and each of the four 

genomic technologies for the detection of copy number events; del17p, de;11q, Trisomy 12 and 

del13q, a Cohens kappa test was used. This statistical test states the degree of agreement 

between two raters. A Sankey plot was used to visualise the distribution of certain variables in 

cohorts of patients, i.e. the prevalence of the three TL groups within each of the three epitype 

groups, and vice versa. Many graphical displays of the data were used, including bar charts, 

scatterplot, violin plots and density plots. Descriptive statistics such as mean, median and 

percentage of cases, was also employed to examine the data.   

Survival analysis was also completed using Rstudio in the R environment (version 4.3.0). R 

packages ‘survival’ (version 3.5.7), ‘survminer’ (version 0.4.9) and ‘survivalAnalysis’ (version 0.3.0).  

Survival analysis was completed on separate clinical trial cohorts with the CLL4 patients forming 

the discovery cohort and ARC/ADM patients forming the validation cohort. These clinical trial 

cohorts were kept separate during survival analysis due to different amounts of follow up data 

available for each trial. Chapter 4 used a cohort of 304 and 215 CLL4 and ARC/ADM patients, 

respectively. Chapter 6 used a cohort of 251 and 226 CLL4 and ARC/ADM clinical trial patients, 

respectively. Kaplan Meier (KM) plots were created, and a log rank test was used to compare 

differences in survival curves. A cox regression analysis including only one covariate was 

completed as part of the univariate analysis. MVA was completed using Cox proportional hazard 

analysis. Covariates that were significant (p-value<0.05) in the univariate analysis were then 

included in the first multivariate model. A stepwise backwards elimination process was used to 

reach a final model that included covariates that were all significant in survival. In an iterative 

process, a covariate with the lowest significance in the model was removed. A comparison of the 

two models, one with and one without the removed covariate, using a likelihood ratio was 

completed, to assess if it was appropriate to remove the covariate (likelihood ratio p-value>0.05). 

This was completed until a final model was reached. For each clinical trial survival cohort two 

survival endpoints of PFS and OS were used, meaning four multivariate models was produced in 
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Chapter 4 and Chapter 6.  Results from the univariate and MVA were displayed in forest plots 

created using Rstudio and the ‘forestplot’ (version 3.1.3) package.  
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Chapter 4 Investigating telomere length and 

methylation based epitype as clinical biomarkers 

within a discovery and validation CLL clinical trial 

cohort  

4.1 Synopsis 

This chapter describes the research completed to assess the clinical impact of TL and DME 

biomarkers together within a singular clinical trial cohort. The analysis completed in the chapter 

assessed the relationship between the two biomarkers. The novelty of the survival analysis 

completed in this chapter is the inclusion of both TL and DME into univariate and MVA. Most data 

utilised in this chapter was generated previously and gifted, for example the epitype data was 

generated using pyrosequencing within a previous publication (195). The laboratory and data 

analysis work required to generate TL using either MMQPCR or STELA techniques were completed 

beforehand by other researchers (185,189). However, I supplemented this work by generating 

novel data for a sub cohort of patients. I completed the laboratory and analytical work to produce 

TL data using the MMQPCR technique. Additionally, I carried out all the statistical and survival 

analysis work that is reported within this chapter.  

4.2 Introduction 

Patients with CLL exhibit a highly heterogenous clinical course from the requirement of rapid and 

aggressive treatment to a benign disease with a life expectancy comparable to an age matched 

control population (116). Despite the discovery of a plethora of molecular and cellular 

biomarkers, discussed above in 1.4, only two are currently deployed in the clinical setting to aid 

risk-adapted patient stratification, namely the presence of TP53 aberrations and/or U-CLL status 

(84,271). A limitation of many CLL biomarkers lies in their co-existence with other poor-risk 

confounding indicators, and the consequent inability to provide clinicians with independent 

prognostic or predictive information over established clinico-biological features. For example, 

whole exome or genome sequencing projects have identified low frequency mutations such as 

SAMHD1 mutations which occur in occur in 3% of untreated CLL patients. Whilst this mutation has 

been reported to increase risk of chemotherapy relapse, its independent prognostic impact has 

not been able to be fully validated in a large, data rich clinical trial (272). The independent clinical 
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significance of any biomarker is most easily established in the context of large Phase II/III clinical 

trials with long follow-up and extended molecular characterization. As such, in this chapter, a 

large clinical trial cohort with extensive molecular characterisation has been employed within this 

publication to examine and validate two novel CLL biomarkers, DME and TL.  

Within CLL, patients can be classified into three distinct DME subgroups, defined as n-CLL, i-CLL 

and m-CLL using DNA methylation comparisons with normal B-cell maturation (194,273). A 

seminal paper published in 2012 discovered that these three epigenetic groups were associated 

with different clinico-biological features (p-value<0.05), for example, the majority of i-CLL (84%) 

and m-CLL (96%) also had mutated IGHV genes. The research also identified that this novel 

epigenetic classification was the strongest predictor of TTT in a multivariate cox model (Relative 

risk: 6.63, 95%CI: 3.91-11.24, p-value<0.0001), with the m-CLL group being clinically favorable 

(194). Work completed by Wojdacz et al furthered this research by applying these epigenetic 

subgroups to a clinical trial cohort of 605 CLL patients. Similarly, to the original publication, a 

significant association was found between epitype and IGHV status with the n-CLL, i-CLL, and m-

CLL signature being identified in 80%, 17% and 2%, of the U-CLL group, respectively. Additionally, 

a strong association (p-value<0.001) was also found between the epitype group and the presence 

or absence of various recurrent CNAs. For example, 68% of del11q cases and 77% of trisomy 12 

cases were in patients with the n-CLL signature. Completion of a MVA found that m-CLL retained 

independent prognostic significance in PFS (HR: 0.25, 95%CI: 0.1-0.57, p-value<0.01) and OS (HR: 

0.46, 95%CI: 0.24-0.87, p-value<0.05) when included in models with various variants such as 

del11q and del17p events, IGHV status, TP53 mutations, treatment and stage (195). It was 

concluded that the m-CLL epitype was an independent marker of prolonged PFS and OS using 

treatment naive clinical trial cohorts (195). Therefore, research has found that these novel 

epigenetic subgroups have potential clinical use within CLL by identifying patients that are 

destined for prolonged survival after being given CIT.  

As mentioned in 1.4.1.1 and 1.4.1.2 the survival and clonal selection of CLL cells is influenced by 

the nature of the BCR, which is composed of two heavy and two light chains. The level of somatic 

hypermutations within the variable region of the IGHV dichotomise CLL patients into two distinct 

subtypes (U-CLL and M-CLL) (274). Additionally, a bias in the IGLV and IGHV repertoire has been 

reported, with certain genes being present more in CLL compared to normal B cells. One such 

common light chain is IGLV3-21. The epigenetic subgroup i-CLL has a borderline IGHV mutational 

load and intermediate survival outcome however has a much higher IGHV3-21/IGLV3-21 usage. B 

cells expressing IGLV3-21 stereotype can acquire a single point mutation (R110) which causes 

autonomous BCR signalling and aggressive disease presentation (131). Research has found an 

enrichment of IGLV3-21R110 within the i-CLL epigenetic subgroup, with i-CLL/IGLV3-21R110 patients 
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having methylation patterns similar to n-CLL. Additionally, IGLV3-21R110 patients have an 

overexpression of the WNT5A/B gene, which regulates proliferation and apoptosis. A cohort of 

584 CLL patients identified that i-CLLs cases with IGLV3-21R110 had a shorter TTFT and OS. Whereas 

i-CLL patients without IGLV3-21R110 reported a better prognosis, like that of m-CLL and M-CLL 

patients (275). The presence of the IGLV3-21R110 mutation remained significant in the multivariant 

model which included epigenetic subgroups and the IGHV3-21 stereotype (131). Therefore, 

evidence suggests that the i-CLL epitype, which has intermediate survival outcome, can be further 

classified, with IGLV3-21R110 identifying individuals with a poor prognosis, similar to that of n-CLL 

and U-CLL patients. 

Whilst the presence of these DME subgroups have been shown to be associated with clinical 

survival in institutional and clinical trials cohorts (194,195), they exist in the presence of variable 

TL and other variable biomarkers, which are heterogeneous in patients and associated with 

survival in CLL cohorts (195). As explained in detail in 251.4.1.5, TL has been studied using many 

different metrics including published quartile cutoffs, which is the focus of this chapter, and the 

fusogenic range (fusogenic mean and median) which captures the threshold at which telomere 

fusion events occur (185,188). Research has shown that telomere dysfunction can not only 

precede disease progression but be used also risk stratify CLL patients further (188,189).  

Assessing TL using quartile cutoff and as a continuous variable in a CLL4 clinical trial cohort of 384 

CLL patients found that TL associated with many biological features and clinical outcomes (185). 

Firstly, increased TL, as a continuous variable, was found to reduce the risk of a short PFS and 

predicts a longer OS. Assessment of TL using quartile cutoffs found that the TL-I, and especially 

the TL-S group, were associated with many poor risk features such as U-CLL, TP53 aberration and 

GC. Furthermore, the TL-S emerged as an independent marker of a shorter PFS (HR: 2.1, 95%CI: 

1.37 to 3.21, p-value<0.01) and OS (HR:2.21, 95%CI: 1.27 to 3.87, p-value<0.01), in a multivariate 

cox regression model (185). Therefore, TL has been found to be prognostically important with 

various classification being used in the literature that captures different aspects of the TL 

distribution. An association between DME and TL, using published quartiles, has been reported, 

with 59% of n-CLL patients and 85% of m-CLL patients exhibiting TL-S and TL-L, respectively (195). 

This suggests that the co-existence of these two biomarkers might have a confounding or 

interacting effect on the observed clinical outcome. However, their clinical utility and relative 

power have yet to be fully validated together within a single cohort. 

This project will investigate the impact of DME and TL on survival using two endpoints of PFS and 

OS in three large, well characterised clinical trial cohorts; CLL4, ARCTIC and ADMIRE. The 
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hypothesis is that ‘Patient outcome is more significantly associated with TL than DNA methylation 

epitype.’ Aims of this project are to; 

A) Describe the biological associations and features of the TL and DME subgroups and 

investigate the relationship between the TL and DME biomarkers. 

B) Identify the clinical merit and relative power of these two biomarkers within a discovery 

and validation CLL cohort of patients enrolled in CIT trials. 

4.3 Methodology 

4.3.1 Cohort selection 

Our research included a cohort of 519 CLL patients enrolled in the UK LRF CLL4 chemotherapy trial 

(NCT00004218, n=304), UKCRN ARCTIC (‘ARC’, ID7136, n=107), or UKCRN ADMIRE (‘ADM’, 

ID6897, n=108) immunochemotherapy trials. Inclusion into our study cohort was dependent on 

the presence of pre-existing data, augmented with newly generated data on a subset of patients 

(n=60). All patients were required to have extensive clinical and follow up data, generated from 

clinical trial involvement, as well as DME and TL data generated subsequently during involvement 

in publications. DME was investigated using previously generated pyrosequencing data (n=605) 

(195). Stereotype data for 86 patients enrolled in the ARC/ADM clinical trial was included in this 

project which was shared from Genomics England. TL was measured using both STELA (n=260) 

and MMQPCR (n=444) techniques, as previously reported (185,189). Of the 444 patients with 

MMQPCR measurements, 60 cases were newly generated using the same technique as outlined in 

Strefford et al (185). For the assessment of TL, established published cut-offs were employed, 

namely TL-S <2.92kb, TL-I 2.92–3.57kb, TL-L >3.57kb. The cohorts analysed in this project were 

consistent for the prevalence of an extensive panel of biomarkers compared to each entire clinical 

cohort, see Supplementary Table 3 & 4.  

4.3.2 Generation of new data 

Generation of TL data for a subgroup of 60 CLL4 patients using the MMQPCR technique as 

outlined in section 3.4.3 and was transformed into an absolute value from a relative length using 

a linear regression equation further described in section 5.4.2.2. This new TL data allowed these 

60 patients to be included into the study as they then met the inclusion requirements.  



Chapter 4 

75 

4.3.3 Statistical and survival analysis 

Statistical and survival tests were completed using Rstudio in the R environment (version 4.3.0). A 

Wilcoxon rank sum and chi squared test were used to test for differences between continuous 

(i.e. Age) and categorical variables (i.e. IGHV mutation status), respectively. To test associations 

across 18 variables an odds ratio (OR) was calculated and the Fisher’s Exact test was used to 

evaluate the statistical significance. These statistical tests were applied in a pairwise comparison 

of 18 variables and the output were adjusted using the Benjamini-Hochberg method to account 

for multiple testing. Univariant analysis was completed using Cox regression analysis and KM 

plots. MVA was completed, by myself, using a Cox proportional hazard analysis. Multivariate 

models were built using a stepwise backward elimination process, starting with the covariates 

that were found significant in the univariate analysis. In an iterative process, a covariate is 

individually removed from the model and the two models (with and without the covariate) were 

compared using a likelihood ratio which assesses whether the significance of the small model is 

the same as the larger. Two survival endpoints of PFS and OS were used for this survival analysis. 

A sensitivity and specificity analysis using either a single and combined biomarker as the predictor 

of PFS or OS was completed. Within this analysis the likelihood ratios, accuracy, sensitivity, and 

specificity of each predictor was calculated. When the TL and epitype variable was used as a single 

predictor two of the three subgroups were combined for the analysis, for example n-CLL and i-CLL 

epitype were compared to the m-CLL patients. When two variables were used as a predictor, the 

epitype and TL groups were combined to give four unique groups, for example the epitype group 

n-CLL&i-CLL epitype was combined with either TL-S&TL-I or TL-L to give a group of n-CLL or i-CLL 

patients with TL-L. These four groups were then compared in a pairwise fashion.  

4.4 Results 

During statistical analysis, comparing the composition of the TL and epitype variable in the 

context of many other established biomarkers, the combined ARC/ADM and CLL4 cohort of 519 

patients was used. However, for all analysis using survival data the ARC/ADM (n=215) and CLL4 

(n=304) cohorts were kept separate as had an incomparable amount of follow up data available, 

see Table 3 for the baseline clinico-biological variables of the two cohorts. 

Table 3-  Baseline clinico-biological variables of the ARCTIC, ADMIRE and CLL4 trials. 

Variable 

ARCTIC & 
ADMIRE 

N (%) 

CLL4 

N (%) 

Concordance 

P-value 

Total number of patients 215 304  
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Age, median years (range) 62 (36-80) 65 (42-86) <0.001 

Gender    

Male 167 (77.7) 229 (75.3) 0.54 

Female 48 (22.3) 75 (24.7)  

Binet Stage    

A 34 (15.8) 81 (26.7) 0.013 

B 107 (49.8) 129 (42.4)  

C 74 (34.4) 94 (30.9)  

IGHV Mutational Status    

IGHV-U 116/196 (59.2) 163/267 (61) 0.69 

IGHV-M 80/196 (40.8) 104 /267(39)  

ATM Dysfunction    

Absent 120/156 (76.9) 184/234 (78.6) 0.159 

Del11q 25/156 (16.0) 43/234 (18.4)  

Biallelic inactivation 11/156 (7.1) 7/234 (3.0)  

TP53 Aberration    

Absent 151/176 (85.8) 223/250 (89.2) 0.291 

Present 25/176 (14.2) 27/250 (10.8)  

SF3B1 Mutation    

Absent 138/180 (76.7) 200/264 (75.8) 0.825 

Present 42/180 (23.3) 64/264 (24.2)  

NOTCH1 Mutation    

Absent 154/180 (85.6) 226/265 (85.3) 0.936 

Present 26/180 (14.4) 39/265 (14.7)  

Epigenetic Subgroup    

n-CLL 102 (47.4) 159 (52.3) 0.0068 

i-CLL 61 (28.4) 104 (34.2)  

m-CLL 52 (24.2) 41 (13.5)  

Telomere Length Group    

Short 48 (22.3) 158 (52) <0.001 

Intermediate 59 (27.4) 80 (26.3)  

Long 108 (50.2) 66 (21.7)  
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Telomere Length, median 
length kb (range) 

3.66 (1.13-7.68) 2.91 (1.93-10.86) <0.001 

Footnote: Continuous variables were summarised as median and range and categorical variables as proportions. The 

denominator for the percentages reported represented the number screened for each of the features in the respective 

cohorts. For example CLL4 cohort had 27 patients with TP53 dysfunction out of 250 patients who were screened for it 

(10.8%). Concordance across the two cohorts groups was tested using Wilcoxon rank sum and chi squared tests for 

continuous and catagorical variables respectively. P-value<0.01 indicated a statistically signficant difference between 

the variable interogated across the two cohort groups. 

4.4.1 DME and TL are strongly associated with each other and with established clinical 

biomarkers 

Firstly, associations between the two biomarkers of interest were established with a strong 

association being found between the two variables. A significant difference in TL was found across 

all DME groups (p<0.01). For example, 73% of m-CLL patients also had TL-L, whereas only 18% of 

n-CLL patients had TL-L (Figure 23). Conversely when studying the three TL groups there was a 

significant difference in epitype composition with TL-L and TL-S or TL-I (p-value<0.001). Unlike TL-

L, TL-S and TL-I constituted majority of n-CLL epitype, 63% and 60%, respectively. TL-S and TL-I 

also had few patients with the m-CLL epitype. Whereas the TL-L group included 28%, 33%, and 

39% of n-CLL, i-CLL, and m-CLL patients, respectively. Assessing the relationship between epitype 

and TL as a continuous variable found a significant difference (p-value<0.01) in TL across the three 
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epitype group. The m-CLL group (median:4.17 kb) had the greatest TL length, followed by i-CLL 

(median:2.94 kb), and n-CLL having the shortest (median:2.78 kb), see Supplementary Figure 1. 

 

Figure 23- Sankey plot showing the relationship between epitype and TL subgroups surrounded by 

stacked bar charts showing the percentage of each epitype groups within each telomere 

length group, and vice versa. The three epitype type groups are shown in green, grey and 

yellow for n-CLL, i-CLL and m-CLL epitype, respectively. The telomere length groups are shown 

in blue, purple, and red for short, intermediate, and long, respectively. A chi squared test was 

employed to examine the difference across the three stacked bar charts, p-value<0.01 is 

indicated by two asterisks (**). 

Next, we assessed these novel biomarkers in the context of established CLL biomarkers using an 

association plot. Similar to the Sankey plot in Figure 23, which showed that 63% of TL-S cases had a 

n-CLL epitype and 73% of m-CLL patients had TL-L, a significant co-occurrence between n-CLL and 

TL-S as well as m-CLL and TL-L was found in the association plot (p-value<0.01). Across the three 

TL and epitype groups a significant difference in IGHV mutation status was observed (p-

value<0.01). Whilst TL-S, TL-I and the n-CLL group co-occurred with an unmutated IGHV status, TL-

L, i-CLL and m-CLL patients were associated more with a mutated IGHV status (Figure 24). 

Assessing the relationship between TP53 aberration, a poor risk factor, and TL or epitype, a 

significant co-occurrence was found with TL-S (p-value<0.01) and n-CLL (p-value<0.05) patients. 

Specifically, of the 52 TP53 aberration cases reported, 34 (65%) of them occurred in patients with 

TL-S and 34 (65%) occurred in n-CLL patients. Furthermore, 23/52 TP53 aberration cases have 

both TL-S and a n-CLL epitype. Additionally, a significant negative correlation was found between 

TP53 aberration and TL-L (p-value<0.01). Further poor risk factors, such as del11q events (p-
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value<0.05) and IGLV3-21R110 mutations (p-value<0.05) were significantly associated with the TL-S 

group. However, only del11q events were positively associated with the n-CLL epitype, as the 

IGLV3-21R110 mutation had a significant degree of mutually exclusivity with n-CLL (p-value<0.01) 

and the m-CLL epitype (p-value<0.05). Instead, this mutation was strongly associated with the i-

CLL epitype (p-value<0.01). The presence of a good risk factor, del13q, was associated with the TL-

L and m-CLL group and negatively associated with the TL-I and n-CLL groups. Specifically of the 93 

m-CLL patients, 47% (44/93) also had a del13q event and 75 of the 174 (43%) TL-L patients had a 

del13q event.  

 

Figure 24- Association plot presenting an odds ratio (OR) that is calculated for each pairwise comparison 

of 18 variables. An OR with a p<0.05 (Fisher’s exact test) is shown by an asterisk (*), an OR 

with a p<0.01 is shown by two asterisks (**). A blue coloured square indicates an OR<1 and 

therefore the two variables are negatively associated, whereas a green square indicates an 

OR>1 and therefore the two variables are positively associated. The hashed-out boxes 

indicate a pairwise comparison of the epitype variable. 

4.4.2 IGLV3-21R110 mutation cases are prevalent in i-CLL patients. 

The investigation of the sub cohort of 86 cases with stereotype data available identified, as 

previously reported, an enrichment of IGLV3-21R110 mutations in the i-CLL epitype patients (n=13) 
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which account for 93% of the IGLV3-21R110 mutations recorded. A further IGLV3-21R110 mutation 

was identified in a n-CLL patient, however none were found in the m-CLL epitype, see 

Supplementary Figure 2. Due to having a limited stereotype dataset, only a cohort of 14 IGLV3-

21R110 mutated cases was available. Therefore, downstream analysis was restricted so the survival 

impact of this variable was not able to be investigated within this project, however the biological 

context of these cases was able to be examined. When ascertaining where the IGLV3-21R110 

mutations occurred in the context of TL groups, a significant difference (p-value<0.01) in TL was 

found across the mutated and wild type group (Supplementary Figure 3). Specifically, the IGLV3-

21R110 mutated cases were mainly composed of TL-S patients (58%) instead of TL-I (21%) and TL-L 

(21%). Additionally, the median TL in IGLV3-21R110 wild type patients was greater (median:3.7kb) 

than the IGLV3-21R110 mutated patients (median:2.8 kb). To further investigate the composition of 

the IGLV3-21R110 mutated patients a heatmap was constructed, containing further variables 

reported to be associated with this mutation. This highlighted again the enrichment of IGLV3-

21R110 mutated patients in the i-CLL epitype (see Figure 25 and Supplementary Figure 2). Similarly to 

published work, the 11 IGLV3-21R110 mutated patients included in the heatmap showed varied 

IGHV status with 3 and 8 cases of U-CLL and M-CLL, respectively. Interestingly, there were no 

events of TP53 aberration and IGLV3-21R110 mutants, both in the wider cohort of 14 patients with 

IGLV3-21R110 mutation or in the cohort of 66 patients which included 11 cases of IGLV3-21R110 

mutants. Conversely, 5 of the IGLV3-21R110 mutated patients also had an ATM mutation, 

accounting for 35% of the ATM mutation identified in this analysis of 66 ARC/ADM patients used 

in Figure 25. Similarly, of the 12 SF3B1 mutation reported in this cohort, a third were present in a 

IGLV3-21R110 mutated patient (n=4). Conversely of the 14 IGLV3-21R110 mutated cases, none were 

found to also have a NOTCH1 mutation which does not match current published findings, 

however this could be a limitation of the cohort size. Expanding the BRC stereotype dataset for 

this clinical trial cohort would also allow the IGLV3-21R110 mutation variable to be included in 

survival analysis completed below.  
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Figure 25-  A heatmap describing the prevalence of IGLV3-21R110 mutation its association with established 

biomarkers. Cohort of 66 patients from the ARC/ADM clinical trial that had data for all 7 

variables was used. The three epitype and TL groups are included. IGHV mutation status, TP53 

aberration, ATM and SF3B1 mutations are also shown. 

4.4.3 Both TL and DME have a significant impact on PFS and OS in a univariate analysis 

To verify the impact of each clinico-biological variable, including DME and TL, on PFS and OS we 

first completed a univariate analysis on a separate CLL4 (n=304) and ARC/ADM (n=215) cohort. A 

total of 11 variables were examined in the univariate analysis in both cohorts, these variables 

were chosen to be included in the univariate analysis based on current published CLL literature. 

An additional variable of IGLV3-21R110 mutation was also included in the ARC/ADM univariate 

analysis, using the cohort of 86 patients that had this data available. The variable ATM 

dysfunction was coded to include biallelic (BiATM), which are patients with both a deletion and 

mutation of the ATM gene, del11q and wild type patients. TP53 aberration (TP53ab) was classified 

as the presence of mutation of TP53 and/or del17p event. The treatment arm patients were 

enrolled onto was also included in the analysis as a covariate. The median PFS and OS for the CLL4 

cohort is 2.3 years (Range: 0-10.1 years) and 6.05 years (Range: 0.1-17.4 years), respectively. 

Whereas the median PFS and OS for the ARC/ADM cohort is 4.8 years (Range: 0.02-9 years) and 

6.5 years (Range: 0.02-9.1 years), respectively.  

4.4.3.1 Discovery survival cohort of 304 CLL4 clinical trial patients 

Both covariates, TL and epitype, were significant in the PFS and OS univariate analysis. KM 

analysis found a significant difference in PFS across the three epitype groups, see Figure 26A. A 

pairwise log rank test found a significant difference (p-value<0.01) in PFS with the n-CLL (median: 

2 years) have a significantly poorer PFS than i-CLL (median: 3 years) or m-CLL patients (median: 

2.8 years). From the KM plot, the percentage of cases with no progression event at 5 years was 

14%, 25% and 27% for n-CLL, i-CLL and m-CLL patients, respectively. The pairwise log rank test in 
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the KM analysis identified that m-CLL patients (median: 9.8 years) had a significantly (p-

value<0.01) greater OS than compared to n-CLL (median: 5.6 years) or i-CLL patients (median: 5.8 

years) (Figure 26B). The m-CLL also had a greater 10-year survival of 46% compared to 15% of n-

CLL and 25% of i-CLL patients.  

KM plots of the three TL groups identified the TL-L (median PFS&OS: 3.85 and 9.65 years) as 

having a significantly (p-value<0.01) better PFS and OS compared to the TL-I (median PFS&OS: 

2.35 and 6 years) and TL-S (median PFS&OS: 1.95 and 4.95 years), see Supplementary Figure 4. At 5 

years, 39% of patients with TL-L had not progressed, whereas only 10% and 21% of TL-S and TL-I 

had not progressed. Similarly, the 10-year survival rate was only 15% and 19% for TL-S and TL-I 

patients, respectively, compared to 47% of TL-L patients.   
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Figure 26- Kaplan-Meier plot of the three epitype groups for PFS (A) and OS (B) for the cohort of 304 

CLL4 patients. A pairwise log rank test was employed to compare survival plots, p-value<0.01 

is indicated by two astericks (**). The table shows the number and percentage of cases in 

each epitype group that have not had an event, i.e progressed or died, at a point in time. The 

number of PFS events for the n-CLL, i-CLL and m-CLL patients was 157/159, 92/104 and 30/41, 

respectively. The number of OS events for the n-CLL, i-CLL and m-CLL patients was 144/159, 

88/104 and 24/41, respectively.  
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Of the 11 variables analysed in the cox regression univariate analysis, the most powerful predictor 

of survival was TP53 aberration, which indicated an increased risk of progression (HR: 3.61, 95%CI: 

2.39 to 5.44, p-value<0.001) and death (HR: 3.66, 95%CI: 2.4 to 5.57, p-value<0.001). Patients 

with TP53 disruption had a shorter PFS (median: 0.3 v.s 2.5 years) and OS (median: 1.5 vs. 6.3 

years) compared to patients without. Similar to the KM analysis, the TL-S (HR: 2.36, 95%CI: 1.7 to 

3.29) and TL-I group (HR: 1.81, 95%CI: 1.26 to 2.6) had a significantly (p-value<0.001) poorer PFS 

compared to the TL-L, which was used as the reference. This trend was also found in OS with a 

significantly (p-value<0.001) shorter OS being shown in TL-S (HR: 2.66, 95%CI: 1.87 to 3.76) and 

TL-I (HR: 2.11, 95%CI: 1.43 to 3.12) groups compared to TL-L, see Figure 27. PFS univariate analysis 

of the DME variable found there was a significant difference between m-CLL, the reference, and 

n-CLL (p-value<0.001) but not between m-CLL and i-CLL (p-value>0.05). The n-CLL patients were 

reported to have nearly double the risk of progressing than m-CLL patients (HR: 1.96, 95%CI: 1.32 

to 2.9). Other covariates that were significant in predicting a poorer PFS are patients with a 

biallelic ATM dysfunction compared to ATM wild type patients, and U-CLL patients compared to 

M-CLL. Specifically, the median PFS of patients with biallelic ATM inactivation was 1.47 compared 

to 3.02 years of wild type patients (HR: 2.42, 95%CI: 1.12 to 5.2, p-value<0.05). Median PFS of 163 

U-CLL cases was 1.9 years compared to 3.4 years for 104 M-CLL patients (HR: 2, 95%CI: 1.5 to 2.6, 

p-value<0.001) (Figure 27). Additionally, the treatment arm patients were enrolled in was found to 

be significant (p-value<0.001) in PFS univariate analysis, with the FC treated (HR: 0.54, 95%CI: 0.4 

to 0.73, median: 3.84 years) patients have a greater PFS compared to the FDR treatment arm 

(median: 2.36), which was used as the reference group.  

After TP53 aberration, DME emerged as the second greatest predictor of OS with a reported HR of 

2.8 and 2.2 for the n-CLL and i-CLL epitype, see Supplementary Table 5 and 6. Both n-CLL and i-CLL 

epitype had a significantly (p-value<0.001) shorter OS compared to m-CLL patients (median: 5.6, 

5.8 and 9.8 years, respectively). 91% of n-CLL and 85% of i-CLL experienced an OS event compared 

to 59% of m-CLL patients. The univariate analysis of the TL covariate using OS endpoint found a 

significant (p-value<0.001) difference between TL-L and TL-S and TL-I, Figure 27. Both TL-S and TL-I 

patients have over double the risk of death compared to patients with TL-L with a reported HR of 

2.66 and 2.11, respectively. The IGHV mutation status covariate also was significant in predicting 

OS, with U-CLL having a greater risk of death than M-CLL patients (HR: 2.3, 95%CI: 1.73 to 3.06, p-

value<0.001). The presence of SF3B1 mutation (median:4.6 years) was found to predict a shorter 

OS compared to wild type (median: 6.95 years) patient (HR:1.77, 95%CI:1.31 to 2.38, p-

value<0.001). Median survival of the subgroups within the ATM dysfunction covariate was 4.93, 

5.3, and 7.04 years for the biallelic, del11q and wild type patients. However, only a significant 

difference in OS between patients with a del11q event compared to wild type patients was 
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reported (HR: 1.65, 95%CI: 1.16 to 2.34, p-value<0.01). This suggests that patients with a del11q 

event have over a 50% increase in risk of death compared to wild type patients. Age, as a 

continuous variable, was also a significant covariate (p-value<0.001) in OS, with increased age 

predicting a shorter OS (HR: 1.05, 95%CI: 1.04 to 1.07), see Figure 27. Of the 13 covariates 

included, only 8 were significant in either/or the PFS or OS univariate analysis using this discovery 

cohort. These were as follows; TP53 aberration (TP53ab), ATM dysfunction, TL, IGHV mutation 

status, epitype, treatment arm, SF3B1 mutations, and age. 

 

Figure 27- Forest plot including the variables that were significant in the univariant analysis using PFS 

and OS when using the 304 CLL4 cohort. The TL and epitype subgroups are coloured and 

shown in bold. For each covariate, number of cases, number of events and the hazard ratio is 

stated.  

4.4.3.2 Validation survival cohort of 215 ARCTIC and ADMIRE clinical trial patients.  

Within the univariate analysis both TL and DME variables were significant in predicting PFS and 

OS. KM analysis using a pairwise log rank test of the three DME groups identified a significant (p-

value<0.01) difference in PFS between all the groups. KM plot shows that n-CLL (median: 3.87) 

patients had a significantly shorter PFS than i-CLL (median: 5.45 years) or m-CLL (median: 6.93 

years) patients, Figure 28A. Additionally, a significant difference (p-value<0.01) was identified 

between the i-CLL and m-CLL patients, with the latter group having a greater PFS. After 5 years, 

34% of n-CLL patients, 54% of i-CLL patients and 71% of m-CLL patients had not progressed. KM 

analysis of OS across the three epitype groups only found a significant difference (p-value<0.01) 

between n-CLL (median: 6 years) and m-CLL (median: 7.03 years) patients, each group had a 5-

year survival of 65% and 83%, respectively Figure 28B. I-CLL patients had a median survival of 6.74 

years and a 5-year survival rate of 75%.  

The KM analysis, including a pairwise log rank test of the three TL groups showed a significant 

difference in PFS, with the TL-L group having a greater PFS than TL-S or TL-I (p-value<0.01), Figure 
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29A. The median PFS for the three TL groups was 3.84, 4.05 and 6.06 years for TL-S, TL-I and TL-L. 

After 5 years, 33% and 32% of TL-S and TL-I cases had not progressed, however 65% of TL-L had 

not progressed after 5 years. KM analysis of OS also found a significant difference between the TL 

groups. However, only a significant (p-value<0.05) difference in survival was found between TL-L 

(median: 6.99 years) and TL-S (median: 5.8 years) and not with the TL-I group (median: 6.28 

years), Figure 29B. The 5-year survival for the three TL group was 60%, 69% and 79% for TL-S, TL-I 

and TL-L, respectively.  
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Figure 28-  Kaplan-Meier plot of the three epitype groups for PFS (A) and OS (B) for the cohort of 215 

ARC/ADM patients. A pairwise log rank test was employed to compare survival plots, p-

value<0.01 is indicated by two astericks (**). The table shows the number and percentage of 

cases in each epitype group that have not had an event, i.e progressed or died, at a point in 

time. The number of PFS events for the n-CLL, i-CLL and m-CLL patients was 78/102, 34/61 

and 15/52, respectively. The number of OS events for the n-CLL, i-CLL and m-CLL patients was 

38/102, 15/61 and 6/52, respectively.  
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Figure 29- Kaplan-Meier plot of the three TL groups for PFS (A) and OS (B) for the cohort of 215 

ARC/ADM patients. A pairwise log rank test was employed to compare survival plots, p-

value<0.05 is indicated by an asterick (*) and a p-value<0.01 is indicated by two astericks (**). 

The table shows the number and percentage of cases in each epitype group that have not had 

an event, i.e progressed or died, at a point in time. The number of PFS events for the TL-S, TL-I 

and TL-L patients was 36/48, 44/59 and 47/108, respectively. The number of OS events for 

the TL-S, TL-I and TL-L patients was 18/48, 18/59, and 23/108, respectively. 

Of the 12 covariates included in the cox regression univariate analysis, the DME was found to be 

the strongest predictor of PFS and OS. Specifically, n-CLL patients had a significantly shorter PFS 
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and OS compared to m-CLL patients. For PFS, the n-CLL patients had over four times the risk of 

progressing than the reference group, m-CLL epitype (HR: 4.47, 95%CI: 2.56 to 7.82, p-

value<0.01), see Figure 30. i-CLL patients also had a significantly poorer PFS compared to m-CLL 

patients (HR:2.4, 95%CI: 1.3 to 4.41, p-value<0.001). Across the three epitype groups, 77% of n-

CLL, 56% of i-CLL and 16% of m-CLL patients progressed during follow up. Other covariates that 

had a significant impact of PFS included TP53 aberration (HR: 4.39, 95%CI: 2.69 to 7.17, p-

value<0.001) with patients with a TP53 aberration (median: 2.09 years) have a poorer PFS than 

patients without (median: 5.45 years), see Supplementary Table 7. The covariate ATM dysfunction 

was also significant, with both biallelic (median: 3.36 years) and del11q (median: 3.82 years) 

patients having a significantly (p-value<0.001) shorter PFS compared to wild type patients 

(median: 4.98 years). TL was also significant in the PFS univariate analysis, TL-S (median: 3.84 

years) and TL-I (median: 4.05 years) had significantly shorter PFS compared to TL-L (median: 6.06 

years), the reference group. Patients with TL-S have nearly 3 times high risk of progressing than 

TL-L (HR: 2.87, 95%CI: 1.85 to 4.46, p-value<0.001). Similarly, TL-I patient had double the risk of 

progressing than TL-L patients (HR: 2.45, 95%CI: 1.62 to 3.71, p-value<0.001). Across the three TL 

groups 75% of TL-S, 75% of TL-I and 44% of TL-L had progressed during the clinical trial follow up. 

Finally, IGHV mutation status had a significant (p-value<0.001) difference in PFS, U-CLL patients 

had a poorer PFS (median:4.09 years) compared to M-CLL (median: 6.76 years) patients (HR: 2.76, 

95%CI:1.81 to 4.21).  

As mentioned above, the epitype covariate was significant in the OS univariate analysis. n-CLL 

patients have a significantly shorter OS compared to m-CLL patients (HR: 3.95, 95%CI: 166 to 9.35, 

p-value<0.05), Figure 30. Across the three epitype groups, 37% of n-CLL, 25% of i-CLL and 12% of 

m-CLL have died within the follow up period. The univariant analysis did not find a significant 

difference in OS between the i-CLL (median: 6.74 years) and m-CLL (median: 7.03 years) groups. 

TL was also significant in the univariate analysis, with TL-S patients having a significantly shorter 

OS compared to TL-L patients (HR: 2.56, 95%CI: 1.37 to 4.79, p-value<0.05) but no significant 

difference between TL-I and TL-L was found (p-value>0.05). A further significant covariate was 

TP53 aberration (HR: 3.77, 95%CI:1.94 to 7.33, p-value<0.001), as patients with TP53 aberration 

(median: 3.62 years) had a shorter OS compared to patients without (median: 6.83 years). U-CLL 

patients were found to have a significantly poorer OS compared to M-CLL patients (median: 6.05 

vs. 6.99 years, p-value<0.05) and the reported HR of this covariate was 1.81 (95%CI: 1.01 to 3.26). 

Finally, age also was significant in the OS univariate analysis (HR: 1.04, 95%CI: 1.01 to 1.07, p-

value<0.05) this shows that as a patients age at diagnosis increases OS decreases, see 

Supplementary Table 8. From the univariate analysis which included 12 covariates, 6 were found to 

be significant in predicting PFS or OS in this validation cohort. These were as follows; TP53 
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aberration (TP53ab), ATM dysfunction, TL, IGHV mutation status, epitype, and age. The presence 

of a IGLV3-21R110 mutation was not found to impact either PFS (median: 4.53 vs. 4.38 years) or OS 

(median: 6.95 vs. 6.55 years) in the univariate analysis of the ARC/ADM cohort.  

 

Figure 30- Forest plot including the variables that were significant in the univariant analysis using PFS 

and OS when using the 215 ARC/ADM cohort. The TL and epitype subgroups are coloured and 

shown in bold. For each covariate, number of cases, number of events and the hazard ratio is 

stated. 

4.4.3.3 I-CLL cases can be further stratified by TL in univariate analysis. 

To further investigate survival trends, I completed a subgroup analysis across different metrics, in 

particular TL and DME, whereby patients in one TL subgroup were stratified by epitype and vice 

versa. Because the i-CLL epitype was identified to have survival outcomes somewhere between 

these two previously reported good and bad survival trends of the n-CLL and m-CLL epitype, we 

wanted to see if TL could identify clinically relevant subgroups within i-CLL patients. It was found 

that the i-CLL only ARC/ADM patients could be further stratified by TL (p-value<0.01), with the TL-

L group predicting a greater PFS (median PFS: 6.12 years) compared to TL-S (median PFS: 3.8 

years) or TL-I (median PFS: 4.35 years), Figure 31. Additionally, within the TL-L only ARC/ADM 

patients the n-CLL indicated a significantly shorter PFS (p-value<0.01) and OS (p-value<0.05), see 

Supplementary Figure 5. These survival trends were also found when assessing i-CLL and TL-L only 

patients in the CLL4 cohort.  
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Figure 31- Kaplan-Meier plot of the three TL groups for PFS using the cohort of 61 ARC/ADM patients 

with a i-CLL epitype. A pairwise log rank test was employed to compare survival plots, p-

value<0.01 is indicated by two astericks (**). The table shows the number and percentage of 

cases in each epitype group that have not had an event, i.e progressed or died, at a point in 

time. The number of PFS events for the TL-S, TL-I and TL-L patients was 12/15, 12/18 and 

10/28, respectively. 

4.4.4 Both TL and epitype are independently significant in PFS and OS in chemo(immuno-) 

therapy treated CLL patients  

A multivariate Cox regression was used to examine the impact of epitype and TL on PFS and OS 

while also controlling for confounding variables. The eight covariates that were found to be 

significant in the univariant analysis were included in the MVA. The eight covariates that were 

included in the first model were TL, epitype, TP53 aberration, ATM dysfunction, IGHV mutation 

status, age, SF3B1 mutation and treatment arm. The variable ATM dysfunction was coded to 

include biallelic, which are patients with both a deletion and mutation of the ATM gene, del11q 

and wild type patients. Starting the same 8 covariates, a stepwise backwards elimination process 

was applied whereby the least significant variable was removed. Before the least significant 

variable could be removed from the first model to create the second model, a likelihood ratio was 

calculated to compare the two models to prove that removing the variable would not impact the 

significance of the model. This process was repeated until a final model was reached that 

contained variables that all significantly impacted survival. The final CLL4 PFS model was based on 

246 cases with 221 events whereas the OS model was based on 246 cases with 205 events. The 

final ARC/ADM PFS model was based on 138 cases and 86 events whereas the OS model was 

based on 176 cases and 45 events. 
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Within the two final PFS models the TL-S category could independently predict a poorer PFS in 

both cohorts (CLL4 HR: 2.14, 95%CI: 1.39 to 3.3, p-value<0.001, ARC/ARM HR: 2.18, 95%CI: 1.17 to 

4.05, p-value<0.01), see Figure 32. Whilst the TL covariate remained in both final PFS models, it 

was only the TL-S subgroup that had a significant impact on PFS and TL-I was found to not impact 

survival (CLL4 HR: 1.42, 95%CI: 0.9 to 2.25, p=0.13, ARC/ARM HR: 0.92, 95%CI: 0.51 to 1.66, p-

value=0.78). Within the CLL PFS final model, DME remained in the model with both n-CLL and i-

CLL predicting a significantly shorter PFS. n-CLL patients had over twice the risk of progressing 

than m-CLL patients, as indicated by the HR of 2.35 (95%CI: 1.37 to 4.05, p-value<0.01), see Figure 

32. Whilst the DME covariate remained in the final PFS CLL4 cohort, this covariate did not remain 

in the ARC/ADM PFS model. Additional covariates that retained independent importance for PFS 

in the CLL4 cohort included TP53 aberration, SF3B1 mutations and treatment arm, see 

Supplementary Table 9. In fact, the highest increase in risk of progression was for patients with 

TP53 aberration. Patients with TP53 aberration were nearly at 4 times higher risk of progressing if 

they had TP53 aberration than if they did not (HR: 3.38, 95%CI: 2.13 to 5.37, p-value<0.001) which 

greatly impacted the median survival of the cases with TP53 aberration (median: 0.3 vs. 2.5 

years). The presence of a SF3B1 mutation was found to have an independent negative impact on 

PFS, with patients with this mutation having a 50% increase in risk of progression than wild type 

patients (HR: 1.55, 95%CI: 1.13 to 2.13, p-value<0.01). Finally, CLL4 patients in the treatment arm 

FC had a significantly longer PFS compared to patients treated with FDR (HR: 0.47, 95%CI: 0.33 to 

0.68, p-value<0.001). Within the validation cohort of 215 ARC/ADM patients, TL retained 

independences in the final PFS model, as detailed above, however the epitype variable was 

removed as did not reach significant level (p-value>0.05). Additional covariates that were 

independent markers of PFS included TP53 aberration, ATM dysfunction, and IGHV mutation 

status, see Supplementary Table 9 and 11.      

When assessing the multivariate OS models across the two cohorts, the epitype covariate 

retained independence in both. Specifically, n-CLL patients in the CLL4 cohort had two times the 

risk of death than m-CLL patients (HR: 2.07, 95%CI: 1.15 to 3.73, p-value<0.05). The n-CLL patients 

in the ARC/ADM cohort had a more than three times the risk of death than m-CLL patients (HR: 

3.4, 95%CI: 1.14 to 10.12, p-value<0.05) and was the strongest predictor of death in this model, 

see Figure 32. Similarly, the TL covariate also remained in both the final CLL4 and ARC/ADM OS 

model. CLL4 patients with TL-S had a significantly poorer OS compared to TL-L patients (HR: 2.4, 

95%CI: 1.51 to 3.81, p-value<0.001). Moreover, in the CLL4 model, TL-I also had a significantly 

shorter OS compared to TL-L patients (HR: 1.76, 95%CI: 1.08 to 2.86, p-value<0.05). Conversely, 

whilst the TL variable remained in the final ARC/ADM OS model, the TL-S and TL-I subgroups did 

not have a significant impact (p-value>0.05) on OS however the covariate was important in the 
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model itself and therefore could not be removed. Along with epitype and TL, the TP53 aberration 

covariate retained independence in the ARC/ADM OS model (HR: 3.28, 95%CI: 1.64 to 6.55, p-

value<0.001) (Supplementary Table 12). Whereas further covariates that were independent 

markers of OS in the CLL4 model included TP53 aberration, SF3B1 mutation, age and treatment 

arm (Supplementary Table 10). The MVA found that both TL and DME independent predictors of 

PFS and OS across a discovery and validation clinical trial cohorts.  

 

Figure 32- Forest plot including the variables that remained significant in the final multivariable models 

after a stepwise backwards elimination process was applied to the CLL4 and ARCTIC/ADMIRE 

cohorts. Asterisks highlight factors within a categorical variable that were not significant, as 

the confidence interval (CI) included 1, but the categorical variable itself was significant as the 

model had a better goodness of fit when the variable remained, for example the TL-I factor in 

the TL categorical variable. Abbreviations: TL-S- Short Telomere Length, TL- I-Intermediate 

Telomere Length, TL-L-Long Telomere Length, U-CLL- Unmutated IGHV genes, TP53ab- TP53 

Aberration, Tri12-Trisomy 12, biATM- Biallelic ATM inactivation, Chl-Chlorambucil, FC-

Fludarabine plus Cyclophosphamide, SF3B1- SF3B1 mutation, NOTCH1-NOTCH1 mutation 

4.4.5 TL and DME alone and in combination are strong predictors of PFS and OS 

To further quantify the clinical impact of epitype and TL, a sensitivity-specificity analysis was 

conducted. This allowed us to determine the likelihood ratios (LR+/LR-) of three biomarkers—

epitype, TL, and TP53 aberration status—in predicting the presence or absence of PFS and OS 

events in cohorts of 304 CLL4 and 215 ARC/ADM patients. For TP53 aberration assessment, 

cohorts were restricted to 250 and 176 patients for CLL4 and ARC/ADM cohorts, respectively, due 
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to limited data availability. Notably, due to zero false positive rates, the LR+/LR- for PFS events in 

the CLL4 cohort could not be calculated solely for TP53 aberration status. This type of analysis 

takes into account the sensitivity of the variable, which is the probability that the biomarker will 

indicate progression or death in cases that have a PFS or OS event. Also, by calculating the 

specificity of the biomarker, it shows the fraction of patients that have not progressed or died 

that were indicated by the biomarker to have a short PFS and OS.  

All three biomarkers exhibited discriminatory power to varying degrees, with TL and epitype 

emerging as the strongest predictor of PFS events in the CLL4 cohort (LR+/LR-: 7.30) and 

ARC/ADM cohort (LR+/LR-: 5.42), respectively (Table 4). The combined TL-S/TL-I group correctly 

predicted the 228/278 patients who did not have a PFS event (sensitivity of 82%), while 16/26 TL-

L patients did have a PFS event during follow-up (specificity of 61.5%). Within the ARC/ADM 

cohort, the greatest predictor of a shorter OS (presence of an OS event) was epitype, specifically 

the combined n-CLL/ i-CLL group (LR+/LR-:3.69). TP53 aberration was the second strongest 

predictor of an OS event (LR+/LR-: 3.30), while TL had a lower predictive power (LR+/LR-: 1.87) 

(Table 5). Similarly, in the CLL4 cohort, TL had the lowest LR+/LR- ratio (LR+/LR-: 5.10), with TP53 

aberration exhibiting the strongest predictive power of an OS event (LR+/LR-: 5.68). The combined 

n-CLL/i-CLL epitype group correctly predicted the 232/256 patients who did not have an OS event 

(sensitivity of 90.6%), while 17/48 m-CLL patients did have an OS event during follow-up 

(specificity of 35.4%) with a reported LR+/LR- of 5.3.  
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Table 4-  Sensitivity and specificity analysis of significant biomarkers to predict PFS events across the 

two clinical trial cohorts 

BIOMARKER 

(POSITIVE 

TEST€) 

SENSITIVITY SPECIFICITY ACCURACY 

LIKELIHOOD 

RATIO 

(LR+)¶ 

LIKELIHOOD 

RATIO 

(LR-)¶ 

LR+/ 

LR- 

   CLL4 
cohort 

(n=304*) 

   

Telomere 
length 

(Short + 
Intermediate) 

82.0% 

(228/278) 

61.5% 

(16/26) 

80.3% 

(244/304) 

2.13 0.29 7.30 

Epitype 

(n-CLL + i-
CLL) 

89.2% 

(248/278) 

42.3% 

(11/26) 

85.2% 

(259/304) 

1.55 0.26 6.06 

TP53^ 

(abnormal) 

12.0% 

(27/225) 

100% 

(25/25) 

20.8% 

(52/250) 

NE# 0.88 NE# 

   Arctic & Admire 
cohort (n=215*) 

   

Telomere 
length 

(Short + 
Intermediate) 

63.0% 

(60/127) 

69.3% 

(61/88) 

65.6% 

(141/215) 

2.05 0.53 3.85 

Epitype 

(n-CLL + i-
CLL) 

88.2% 

(112/127) 

42.0% 

(37/88) 

69.3% 

(149/215) 

1.52 0.28 5.42 

TP53~ 

(abnormal) 

19.6% 

(21/107) 

94.2% 

(65/69) 

48.9% 

(86/176) 

3.39 0.85 3.97 

Footnote: *With data for telomere length and methylation based epitype. ^ n=250 with data for telomere length, 

methylation based epitype and TP53 dysfunction. ~ n=176 with data for telomere length, methylation based epitype and 

TP53 dysfunction. €The presence of a biomarker condition with a poorer outcome is used to predict the occurrence of 

PFS events. In the case of telomere length, the better outcome group is the Long telomere group. ¶ LR+=sensitivity ÷ (1-

specificity); LR-= (1-sensitivity) ÷ specificity. #NE: not estimable because 1-sensitivity (false negative rate) is zero.  
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Table 5-  Sensitivity and specificity analysis of significant biomarkers to predict OS events across the 

two clinical trial cohorts. 

BIOMARKER 

(POSITIVE 

TEST€) 

SENSITIVITY SPECIFICITY ACCURACY 

LIKELIHOOD 

RATIO 

(LR+)¶ 

LIKELIHOOD 

RATIO 

(LR-)¶ 

LR+/ 

LR- 

   CLL4 cohort 
(n=304*) 

   

Telomere length 

(Short + 
Intermediate) 

83.6% 

(214/256) 

50.0% 

(24/48) 

78.3% 

(238/304) 
1.67 0.33 5.10 

Epitype 

(n-CLL + i-CLL) 

90.6% 

(232/256) 

35.4% 

(17/48) 

81.9% 

(249/304) 
1.40 0.26 5.30 

TP53^ 

(abnormal) 

12.4% 

(26/209) 

97.6% 

(40/41) 

26.4% 

(66/250) 
5.10 0.90 5.68 

   Arctic & Admire 
cohort (n=215*) 

   

Telomere length 

(Short + 
Intermediate) 

61.0% 

(36/59) 

54.5% 

(85/156) 

56.3% 

(121/215) 
1.34 0.72 1.87 

Epitype 

(n-CLL + i-CLL) 

89.8% 

(53/59) 

29.5.0% 

(46/156) 

46.0% 

(99/215) 
1.27 0.34 3.69 

TP53~ 

(abnormal) 

26.7% 

(12/45) 

90.1% 

(118/131) 

73.9% 

(130/176) 
2.69 0.81 3.30 

Footnote: *With data for telomere length and methylation based epitype. ^ n=250 with data for telomere length, 

methylation based epitype and TP53 dysfunction. ~ n=176 with data for telomere length, methylation based epitype and 

TP53 dysfunction. €The presence of a biomarker condition with a poorer outcome is used to predict the occurrence of 

PFS events. In the case of telomere length, the better outcome group is the Long telomere group (>75 percentile). ¶ 

LR+=sensitivity ÷ (1-specificity); LR-= (1-sensitivity) ÷ specificity. #NE: not estimable because 1-sensitivity (false negative 

rate) is zero.  

Additionally, we evaluated LR+/LR- ratios when TL and epitype were used together as predictors, 

to further examine the relative discriminatory power of the TL and epitype subgroups by 

combining the two biomarkers. The outcome of this analysis was similar to the single marker 

sensitivity and specificity analysis as when n-CLL/i-CLL or TL-S/TL-I groups were included in the 

predictor, a PFS or OS event is more likely to occur, as shown by a >1 LR+/LR- ratio, see Table 6. 

From this analysis, when n-CLL/i-CLL variable was combined with the TL-S/TL-I variable, a greater 

LR+/LR- ratio was reported in the PFS and OS analysis. For example, the LR+/LR- ratio for the sole 
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epitype variable (n-CLL&i-CLL) as a predictor for PFS event was 5.3 which is interpreted as a PFS 

event being over 5 times more likely in the n-CLL&i-CLL group compared to the control (m-CLL 

group). However, when both TL and epitype were combined (n-CLL&i-CLL(TL-S&TL-I)) as the 

predictor a LR+/LR- ratio was 13.08, see Table 4 and Table 6. However, the recorded LR+/LR- ratios 

varied across the cohorts, emphasizing the need for further analysis with expanded sample sizes. 

Furthermore, n-CLL/i-CLL combined with TL-S/TL-I had a higher accuracy in predicting a PFS event 

than when either variable was assessed alone. For example, in the ARC/ADM cohort, n-CLL/i-CLL 

alone had an accuracy of 69.3% compared to in combination with TL-S/TL-I variable, it had an 

accuracy of 77%. This improvement in the accuracy when using a combined TL and epitype 

variable as a predictor, was also found in OS. This analysis suggests that a biomarker that 

combined both the TL and DME variable has a greater predicting power than when these variables 

are used alone.  

Table 6-  Sensitivity and specificity analysis using two biomarkers, telomere length and epitype as 

predictors of PFS and OS when using separate CLL4 and ARCTIC/ADMIRE cohorts.  

 

Footnote: Both telomere length and epitype have been used as predictors of PFS and OS in both the CLL4 and 

ARCTIC/ADMIRE cohorts. By grouping the two variables and combining short/intermediate TL or long TL with n-CLL/i-

CLL or m-CLL, four groups were produced that where then compared in a pairwise fashion, for example comparing m-

CLL (TL-short & intermediate) against m-CLL (TL-long). The positive predictor group is shown on the first column and are 

being compared to the groups shown along the top. For each comparison sensitivity (%), accuracy (%), specificity (%) 

and diagnostic odds ratio (shown in bold) has been calculated and displayed.  

4.5 Discussion 

In summary, our analysis, for the first time, investigated both TL and methylation based epitype as 

prognostic biomarkers within a discovery and validation CLL cohort. We were able to ascertain 
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that TL and epitype are significant associated, specifically with a concordance between patients 

with TL-S and a n-CLL and TL-L patients with m-CLL being identified. This finding is consistent with 

previous work that found a high percentage of n-CLL and m-CLL patients with TL-S and TL-L, 

respectively (195). This project advanced on previous TL or DME statistical analysis that had been 

published, as it used a cohort of 519 clinical trial patient that had a wealth of molecular 

characterisation, so many established CLL biomarkers could be assessed alongside TL and epitype. 

This not only allowed us to examine how these two-novel biomarker interact with each other, but 

also investigated the biological context and characteristics of these TL and epitype subgroups. 

Furthermore, we were able to examine the clinical significance of TL and DME together within a 

discovery and validation study design. Whilst the impact of TL and DME on survival outcomes has 

been shown previously, we were able to investigate the independent impact each biomarker has 

on clinical progression through the construction of multivariate models, whilst controlling for 

confound variables. Completing this type of statistical and survival analysis is typically more useful 

as these CLL biomarkers do not occur in isolation, and patients will usually have a more complex 

combination of many of them. Therefore, by examining these biomarkers at the same time we 

aim to build a more representative idea of true clinical utility of this data.   

Firstly, as discussed above, TL and epitype were found to be significantly associated in the cohort 

of 519 patients used for this chapter. Association plots also identified that both the TL-S and n-CLL 

epitype subgroup co-occurred with many poor risk factors such as TP53 aberration and IGHV-U 

status. Similar associations were found in published work, for example a cohort of 211 CLL 

patients found 97% of the n-CLL patients also had unmutated IGHV genes (194). DNA methylation 

is a known hallmark of cancer cells, but it has also been identified as a tissue-of-origin signature 

and thus can reflect the development state of the B cell from which the tumour has arisen from 

(194). As both methylation based epitype and IGHV mutational status reflect this cellular origin of 

the tumour, unsurprisingly there is a strong correlation between these two classification systems. 

Additionally, a correlation between TL and IGHV status has been reported both in the literature, 

specifically unmutated IGHV status is associated with shorter telomeres (189,276). Published work 

has also found an increase in telomerase activity in unmutated patients (277). One theory behind 

this difference is that it may reflect the TL present in the cell at time of initial transformation and 

therefore represent the proliferative histories of the precursor cells. For example, IGHV mutated 

CLL has arisen from cells that have undergone the germinal centre reaction where increased 

telomerase activity elongates their telomeres. The increased activity of telomerase identified in U-

CLL has been hypothesized to be a compensatory action of the cell, which had excessive loss 

during clonal expansion and the enzymatic action ensures cell survival by avoiding the telomere 

length threshold at which cell senescence is triggered (276). Together, this evidence supports 
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disregarding the previous theory that CLL is caused by the accumulation of long-lived resting B-

cell and supports the involvement of B-cells with extensive proliferative histories.  

This chapter found that TL-S were associated with both del11q and ATM biallelic inactivation 

events, as previously published (278,279). Conversely, the i-CLL epitype has been reported in the 

literature to be composed of mainly stereotype subset #2 (IGHV3-21/IGLV3-21) and is enriched 

for ATM dysfunction, SF3B1 mutations and the recently identified IGLV3-21R110 mutation 

(131,279–281). However, within our cohort of i-CLL patients, no significant association was found 

with either biallelic ATM dysfunction or del11q events. Additionally, the ATM dysfunction 

reported in subset #2 was also associated with shorter telomeres, which was not captured in the 

i-CLL patients of our cohort (280). Whereas a significant enrichment of SF3B1 mutations in i-CLL 

patients (p-value<0.05) was identified in our results as 30% (n=46/153) of i-CLL patients had a 

SF3B1 mutation compared to just 22% of n-CLL or 17% of m-CLL patients. This association 

between stereotype usage, DNA methylation profiles, gene expression and genetic aberrations 

reported in the literature and within this cohort suggests that interactions within the tumour 

microenvironment with particular BCR stereotypes may result in a selection of certain genetic 

alteration that, in combination, effect the evolution and clinical outcome of the disease.  

As mentioned before, the i-CLL epitype has been reported to have a biased toward expressing 

IGLV3-21 (131). Recent research has reported in CLL cells with IGLV3-21 stereotype a single G>C 

substitution a splice site can occur during somatic hypermutation, which alters the glycine to 

arginine (R) at position 110 (282). This single point change in the IGLV3-21 genes allows for self-

recognition between a R110 mutated BCR and BCR in neighbouring CLL cells causing cell 

autonomous signalling, independently of any antigen stimulation. A published cohort of 584 CLL 

cases not only found that these IGLV3-21R110 mutations were enriched in the i-CLL epitype but it 

also conferred an aggressive disease with poor survival (283). These cases had a phenotype like 

that of n-CLL patients that was largely independent of TP53 dysfunction and had a specific 

transcriptomic signature including WNT5A/B overexpression. Wnt-5a bind to the ROR1 and ROR2 

receptor causing the activation of the wnt pathway, also known as the planar cell polarity 

pathway, which in CLL is involved in modulating the chemotactic response and dictates the 

migratory properties of the cell. Therefore, it is suggested that an overexpression of WNT5A/B in 

CLL contributes to an increased cell motility, decreased response to chemokines and presents as a 

more aggressive disease (283). Our research was also able to identify a significant concordance 

between the IGLV3-21R110 mutation and i-CLL, as 13/14 (93%) of the patients with the mutation 

also had a i-CLL epitype. Additionally, for the first time, we found that the IGLV3-21R110 mutation 

status significantly vary across TL groups (p-value<0.05), as the majority of mutated cases also had 

TL-S (58%). Moreover, the median TL was shorter in the IGLV3-21R110 mutated cases compared to 
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wild type patients (median 2.8 v.s. 3.7 kb). When assessing the clinical impact of IGLV3-21 

patients harbouring the R110 mutation in our univariate analysis, no significant difference 

between the mutated and wild type cases was found. Stereotype data was available on a limited 

number of cases (86/215) from the ARC/ADM cohort, with only 14 patients being detected to 

have an IGLV3-21R110 mutation. At present, insufficient data for this variable precludes further 

downstream analysis. And as IGLV3-21R110 was not included in the multivariant analysis, we were 

unable to account for the R110 mutation and rule out its potential impact, specifically in the i-CLL 

cases, which this study found to be useful in risk-stratifying IGHV-mutated patients.  

Conversely, a strength of this study is the novelty of reporting on both TL and DME variables 

within a clinical trial CLL cohort. Univariate analysis found that both TL and epitype were 

significant for predicting PFS and OS events, this result has also been reported in various 

published literature (185,195). Similarly, sensitivity and specificity analysis found that both TL and 

epitype were useful as single predictors but were, in some cases, more useful when combined 

together. Strefford (2015) also found from a sensitivity and specificity analysis that combined TL-S 

and TL-I group were the best predictors of a PFS event (185). In our data, the TL-S and TL-I group 

was the greatest predictor of a PFS event in the CLL4 cohort, however within the ARC/ADM data 

both the n-CLL and i-CLL group and TP53 aberration were a found to be a stronger predictor. 

Likewise, for OS, both TP53 aberration and the n-CLL and i-CLL epitype group were stronger 

predictors of a death event than TL. The results from when TL and epitype were used in 

combination as predictors were similar to when the variables were used as single predictor, 

further detail identifying specific correlation between the unique subgroups was not found. This is 

potentially due to a lack of power when using subgroups of a small cohort size. Further expansion 

of the cohorts used in this study will allow greater numbers in the subgroup that we wish to drill 

down into further.  

To further examine the relationship between TL and epitype, a subgroup univariate analysis was 

undertaken. This identified that the i-CLL group, that has a survival outcome greater than the n-

CLL cases but poorer than m-CLL, can be further stratified by TL with TL-L predicting a lower risk of 

progression. This has important implication for the management of CLL patients enrolled in 

chemo(immuno-)therapies as it has been reported that 20-30% of M-CLL cases, although a good 

risk factor, are associated with a poor outcome after first line FCR treatment (125,284). The 

outcome of these patients is not explained by current poor-risk factors, such as TP53 aberration. 

Therefore, if the i-CLL epitype, which accounted for 51% of the M-CLL cohort, could identify 

patients destined to have a poorer outcome than m-CLL patients (40% of M-CLL patients), the 

epitype biomarker could be useful in treatment decisions to improve patient outcome. Whilst the 

potential importance of the i-CLL epitype in further risk stratifying the M-CLL group has been 
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supported in previous research (195). We were able to further this idea by showing that the i-CLL 

epitype could be further dichotomized by the TL variable. Specifically, i-CLL patients with TL-L 

were shown to have a significantly greater PFS, compared to i-CLL patients with TL-S or TL-I. 

Therefore, TL-L and the i-CLL epitype have potential use as prognostic biomarkers in identifying 

M-CLL patients that are destined to have prolonged survival after commencement of a 

chemo(immuno-) based therapy.   

Due to the extensive follow up data available for CLL4 and ARC/ADM clinical trial cohorts, up to 17 

and 9 years respectively. We were able to build sophisticated survival models to assess the 

independent impact of TL and epitype, whilst controlling for confounding variables. Overall, both 

epitype and TL were found to provide independent prognostic information in both the discovery 

and validation cohorts. Final multivariate models identified n-CLL as an independent prognostic 

marker of poor OS across both cohorts and a marker of poor PFS in the CLL4 cohort. Including the 

TL covariate into models identified that patients with TL-S were independently associated with a 

shorter PFS and OS. Previous research using a CLL8 cohort of 620 patients also identified short 

telomeres as being significantly associated with poor PFS but only remained significant in the OS 

model when certain covariates were not included in the backwards elimination process (285). 

Within our OS ARC/ADM model, TL-S did not remain significant but in the CLL4 cohort it did retain 

independence. One explanation of this result is that the two cohorts have used two different 

techniques for measuring TL: MMQPCR and STELA. These techniques differ in running costs and 

labour intensity, which are relevant factors in biomarker validation, with the MMQPCR technique 

having a decreased cost and higher throughput (286). However, these two techniques have been 

previously compared with a high concordance reported (185). Additionally, across the PFS 

endpoint TL measured from both techniques remained significant. An alternative explanation is 

that as the ARC/ADM cohort also has less follow up data available, the prognostic significance of 

TL could not be captured in the OS endpoint.  

This chapter had two main aims, which were addressed in the results. Firstly, to describe the 

biological associations and features of the TL and DME subgroups and to investigate the 

relationship between the TL and DME biomarkers. Secondly, identify the clinical merit and relative 

power of these two biomarkers using CLL patients enrolled in CIT trials. Whilst the aim of 

identifying the clinical importance of TL and DME was able to be achieved through the completion 

of univariate analysis and by building sophisticated multivariate models, the hypothesis that 

patient outcome is more significantly associated with TL than DME should be rejected. The results 

from including both TL and DME in survival analysis for the first time, suggested that both TL and 

DME have a prognostic impact and, in fact, combining the two variables could identify a unique 
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cohort of patients destined to have poor prognosis, which is not explained by current clinical 

biomarkers.    

In conclusion, this analysis is the first of its type to directly compare the prognostic impact of the 

TL and epitype variables in a large cohort of CLL clinical trial patients that have extensive 

molecular characterisation and extended follow up data available. We were able to further 

describe the biological context of the TL and epitype subgroups, as well as examine the 

relationship between two biomarkers. Results of this work have indicated that TL and epitype 

have additional prognostic value compared to previous reported and established biomarker for 

predicting PFS and OS in CIT treated patients. Importantly, this work grants us further insight into 

the clinical outcome of the subset of M-CLL patients with a poor prognosis, that is not capture by 

current biomarkers. Application of this work would allow further risk stratification of CLL patients, 

ensuring the M-CLL patients who are likely to respond poorly to CIT are given alternative 

treatments, such as targeted agents, to improve patient’s response and survival.    
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Chapter 5 Data generation for the assessment of 

genomic complexity within CLL 

5.1 Synopsis 

This chapter describes the laboratory and bioinformatic work that I undertook to generate new 

data points for clinical trial patients that were missing certain datasets. The content of this 

chapter complements what is described in the methodology and it gives detail about the process 

of optimising the experimental procedures and bioinformatic pipelines used. Results from the 

main steps of HS2 raw sequencing analysis are reported, as well as a description of how the 

bespoke probe panel was designed. The optimization of the MMQPCR data analysis and CNA 

calling ability of the sWGS bioinformatic pipeline, completed by myself, are also discussed below 

in this chapter.  

5.2 Introduction  

During my PhD program I have aimed to generate the largest possible cohort of clinical trial CLL 

patients that have extensive biological and molecular characterisation with considerable follow up 

data available. This cohort will then be used to examine the prognostic and predictive ability of 

the GC biomarker which has been extensively reported to be clinically valuable in the current CLL 

literature but have yet to be validated. Firstly, the availability of published data for patients in the 

three clinical trials was verified, allowing a clear idea of the patients that were missing certain 

data points. Gene variant, TL and CNA data have been previously generated for different subsets 

of the CLL4 and ARC/ADM cohorts, during various projects and using different techniques. Both 

the CLL4 and ARC/ADM cohort had previously established variant data generated using two 

different TruSeq custom probe panel (159,249). CNA data for the two clinical trial cohorts was 

compiled using two distinct SNP technologies; the Illumina HumanOmni 2.5-8 BeadChips 

(ARC/ADM) and Affymetrix SNP6.0 array (CLL4) (144,249). Furthermore, two methodologies were 

previously used to generate TL data for the CLL4 and ARC/ADM cohort, namely MMQPCR and 

STELA, respectively (185,189).  

Once this step was completed, I then planned experimental work to generate new data points 

with the aim of filling the gaps in datasets, thus allowing more patients to meet the inclusion 

criteria for the GC project. For the generation of copy number, TL and genetic variant data the 

techniques of sWGS, MMQPCR and HS2 target enrichment sequencing were employed, 
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respectively. For each technique I completed the laboratory protocols, ran samples, analysed the 

raw data generated and manually curated the output from the data analysis steps. Additionally, 

Infinium HumanMethylation450 (450k) array was employed to generate CNA data for a cohort of 

31 ARC/ADM cases, see 3.4.5.1. 450k array data was previously generated for a prior methylation 

project, however due to similarities to SNP arrays in the principle and chemistry of the technique, 

CNA profiles can be inferred (287). 450k array data was available for a cohort of 280 ARC/ADM 

cases however only 31 cases met all inclusion criteria and were used in this project. As no 

laboratory work was completed as this 450k array data was given to be used in this project and no 

significant optimisation of the bioinformatic pipeline was required, this data set will not be 

discussed in detail in this chapter. I completed the analysis of the raw 450k array data as well as 

manually inspecting and curating the CNA called. This data was integrated to create a cohort of 

495 clinical trial patients used in subsequent chapters.  

5.2.1 Principles behind techniques employed to generate data 

The principles of the techniques utilized for the generation of new data, as well as technologies 

that were used by others to generate the data I included in the assessment of GC chapter, are 

described.  

5.2.1.1 Microarrays 

Previously produced CNA data generated using various types of microarrays. The principle behind 

these microarray techniques is similar to FISH in the sense of specific probes are designed to bind 

to complementary sample DNA sequences. However, microarrays assess the entire genome for 

imbalances, at a greater resolution and does not require cells to be in metaphase. There are two 

main types of microarrays; aCGH and SNP array. Both the SNP 6.0 and HumanOmni 2.5-8 array are 

examples of the latter. aCGH is a technique that allows genome-wide screening for CNV using 

both a test sample from a patient, and a control sample. The fluorescent signal intensity of the 

sample DNA compared to the control DNA can be assessed by a linear plot, allowing chromosomal 

abnormalities such as deletions, duplication, amplification and aneuploidies to be identified. 

aCGH also has the additional ability to detect submicroscopic chromosomal abnormalities such as 

subtelomeric and pericentromeric rearrangements (288). (289). Whilst aCGH has a much higher 

resolution compared to FISH, this is heavily influenced by the size of probes and the genomic 

distance between the probes. Unlike aCGH, SNP arrays do not require a control sample and the 

probes are designed to be complementary of known single nucleotide differences. For each SNP, 

two forms of the hybridization probe are designed, one for each of the known alleles. The 

genotype of the SNP can be determined by the signal intensity ratio of these two probes. 
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Additionally, any deletion or duplications at these sites can be inferred from decreases or 

increases of the total measured intensities. Whilst aCGH measures a relative fluorescence signal, 

SNP array gives an absolute measurement. This array is able to detect the chromosomal 

abnormalities the aCGH can but can also report on LOH events and copy-neutral anomalies (290). 

A further microarray used to generate CNA data was a 450k methylation microarray. The Illumina 

Infinium HumanMethylation450K BeadChip array is a technology that profiles CpG DNA 

methylation. The biochemical principles are similar to the Infinium SNP arrays, used in CNA 

experiments, and therefore CNA detections are a zero-cost byproduct of methylation studies 

(264). Sodium bilsufite is used, as it selectively changes unmethylated cytosines to uracils but 

does not affect methylated cytosines. By PCR amplifying this bisulfite converted DNA, the uracils 

are converted to thymines. Therefore, two probes are designed for each CpG site, one being a 

methylated (C) and one being a unmethylated (T) query probe. The relative ratio of C/T probe 

signal intensity in bisulfite converted DNA residues is used to define a specific locus methylation 

state. This principle has been applied to infer copy number with the total probe intensity 

(methylated and unmethylated) being used to detect copy number changes. Due to the higher 

number of probes used in this technology compared to SNP arrays, this technology can provide a 

high-density coverage of the genome. However, problems have been reported with using 450k 

array technologies including the impact of probe effect as well as with technical artifacts (287).   

5.2.1.2 Next generation sequencing 

NGS technology can be used for the sequencing of both DNA and RNA, allowing for genetic 

variants to be detected. Three main types of NGS are TS, WGS and WES, see Figure 33 for a visual 

summary of the three techniques. The technology can sequence thousands of genes or even the 

whole genome in a massively parallel process that is much more rapid and efficient than Sanger 

sequencing. Unlike previous techniques that used DNA chain growth termination and relied on gel 

electrophoresis and radioactive labelling, NGS involves reading sequences from multiple 

fragments simultaneously (291). The main steps include DNA fragmentation, library preparation, 

massive parallel sequencing, bioinformatic analysis, and variant annotation and interpretation. 
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Figure 33- Schematic overview of the three main types of next generation sequencing: Whole genome, 

whole exome and targeted sequencing. For targeted sequencing, the two target enrichment 

approaches are detailed, from (291).  

5.2.1.2.1 Targeted next generation sequencing 

For targeted NGS, a crucial step is the target enrichment of the desired sequences which ensures 

the high sensitivity and specificity sequencing of the target. Two methods for target enrichment 

are available, namely hybridization capture assay and amplicon assay. Hybridization capture uses 

biotinylated probes that are designed to be complementary to targeted sequences of interest, 

once hybridized these probes are captured using streptavidin-coated magnetic beads. Whereas 

amplicon assay PCR amplifies the target DNA sequences and it is these PCR products that act as 

the DNA segments that are used in library preparation (292). The technique has a sequencing DOC 

of 1000x of higher, which is greater than Sanger sequencing and other non NGS base techniques. 

Additionally, it is able to detect variants at a VAF of around 0.1-0.2% which is useful for detecting 

minimal residual disease (212).   

The SureSelect XT HS2 target enrichment system and Illumina TruSeq Custom Amplicon 

technology was used to generated variant data. The Agilent SureSelect XT HS2 DNA target 

enrichment system utilises the hybridization capture method for target enrichment of a custom 

probe panel containing genes or region of interest. After the custom probe panel is hybridized to 

the fragmented DNA sample, streptavidin-coated magnetic beads are used to capture the 

hybridized DNA. Similarly, Illumina’s TruSeq approach also uses the hybridization capture method 
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for target enrichment of a custom probe panel.  A further feature of the HS2 target enrichment 

technology is the use of 384 unique dual indexing which allowed the sequencing to be 

multiplexed, thereby reducing sequencing costs. Additionally, the HS2 system includes molecular 

barcodes which are integrated into both ends of each DNA fragment during library preparation, 

Figure 34. These MBCs are then identified during preprocessing steps and used for trimming and 

PCR duplicate read identification. These duplicates are merged or removed to create consensus 

reads which are used for downstream analysis.   

 

Figure 34- Each DNA fragment within the HS2 sequencing library contains a target insert (blue) with a 

duplex molecular barcode attached on each end (brown), surrounded by Illumina paired-end 

sequencing elements (black), unique dual sample indexes (red and green) and the library PCR 

primers (yellow). From (255)  

NGS can also be used for whole genome and whole exome sequencing. WGS does not target 

specific DNA sequences and instead investigates the complete genome, including the coding, non-

coding, and mitochondrial DNA. Whereas WES examines only the protein-coding sequences of the 

genome. As TS examines only a specific panel of genes and coding regions, these sequences can 

be examined at a much greater sequencing depth than WGS or WES. Whereas WGS and WGS can 

be employed in the discovery of new genomic variants associated with cancer as it has a more 

comprehensive coverage as is it is not limited to a panel of genes. The trade-off between a greater 

breadth of profiling is a poorer depth of sequencing as WGS and WES has a sequencing depth of 

30-60x and 100-200x, respectively (212). 

5.2.1.2.2 Shallow whole genome sequencing 

Several techniques have been developed to infer copy number from WGS data, such as depth of 

coverage (DOC), assembly-based or read-pair methods. Scheinin et al (2014) published a robust 

and cost-effective methodology that can identify CNAs with only a ~0.1x coverage (213). This 

method (sWGS) produces CNA profiles using the principles of DOC method. The DOC method for 

extrapolating copy number for WGS data uses observed whole genome sequence depth to infer 

copy number and relies on the assumption that the DOC across the genome is consistent (266). 
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sWGS is a multiplexed, single-read methodology which generates a small sequencing output and 

therefore only requires small quantities of input DNA and has comparatively low running costs.   

5.2.1.3 Monochrome multiplex quantitative PCR and STELA  

The MMQPCR technique has been developed from a similar assay which measured a telomere (T) 

signal in experimental sample DNA in one well, and a selected single copy gene (S) signal from 

another well and compared it to a reference DNA to calculate a relative T/S ratio that is 

proportional to the average TL of the experimental sample. The addition of a multiplex element to 

the assay improves the throughput whilst lowering the cost. Similarly to the original assay, a T/S 

ratio is calculated however both the T and S signal can be collected from the same well using a 

single DNA-intercalating dye, SYBR green. At first, the Ct of the more abundant target sequence, 

the telomere signal, is collected and as the temperature increases during the PCR cycle the 

telomere product is completely melted off and thus the T signal returns to baseline, and the S 

signal can then be measured (258). This difference in melting temperature (Tm) is achieved by the 

addition of primers which place GC-clamps on either ends of the single copy gene (highlighted 

below in Table 7) and by keeping the genomic sequence part of the primer short (non-highlighted 

section of the albumin sequence), raising its Tm. The primers for the telomeric amplification were 

designed to generate a short, fixed length product. This was achieved by having the telg primer 

only be able to prime DNA synthesis on telomeric sequences. The telc primer has a mismatched 

based at its 3’ end which means it can only prime to the telg primer extension (3bp overlap) 

thereby enabling the generation of a fixed length PCR product that is 3bp shorter than the sum of 

the two primer lengths used (258). Research has found that the correlation of T/S ratios with 

terminal restriction fragment lengths, another PCR-based technique that is measured using a 

Southern blot, was stronger with the novel MMQPCR assay (coefficient of determination 

[R2]=0.844) compared to the original technique (R2=0.677)(258,293). The output from the 

MMQPCR assay is a TL relative to a standard used in the serial dilution and tells us if the sample 

DNA has longer or shorter telomeres compared to the standard used. In this case the standard 

used is a commercially available cell line K562 which has TL of 6.5 kb.  

Table 7-  Details about the primers used in MMQPCR (258) 

Primer Gene Sequence Tm Product 

size 

telg Telomere ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT 74°C 79bp 

telc Telomere TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA 74°C 79bp 

albu Albumin CGGCGGCGGGCGGCGCGGGCTGGGCGGAAATGCTGCACAGAATCCTTG 88°C 98bp 
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albd Albumin GCCCGGCCCGCCGCGCCCGTCCCGCCGGAAAAGCATGGTCGCCTGTT 88°C 98bp 

A further technique used to measure TL is STELA, also known as single telomere length analysis. 

This technology uses a PCR-based approach that analyzes telomeres and reports an absolute TL 

value, unlike MMQPCR (294). However, compared to MMQPCR, STELA is a more expensive and 

labor-intensive technique for measuring TL.  

Work completed within the University of Southampton has compared the output from MMQPCR 

to the output from STELA. Originally 111 CLL4 cases with both STELA and MMQPCR data were 

compared and found to have an excellent correlation (Spearman correlation 0.8) (185). Within 

this cohort of 111 CLL4 cases, a patient sample was used as the standard to create the standard 

curve used within the MMQPCR. Therefore, this work was revised using 86 of the previously used 

cohort of CLL4 samples, but a commercially available cell line was used as the standard. Using this 

new standard, a strong correlation was again found between the two techniques (Spearman 

correlation 0.816).  

 

Figure 35-  Statistical comparison of two techniques for inspecting telomere length. The Spearman 

correlation found a high correlation between the two techniques based on a cohort of 72 CLL 

patients. The linear regression equation shown allows the conversion of a relative telomere 

length to an absolute with x representing the output from the MMQPCR technique. The 

coefficient of determination (R2) is calculated which reported on how much of the variation in 

the outcome variable is explained by the model, i.e R2 =0.75 is 75%.  
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A validation cohort of 72 samples were reanalysed using the MMQPCR technique with the 

commercially available standard. A Spearman’s correlation of 0.75 was reported when comparing 

this newly generated data to the original STELA data. From this a linear regression equation was 

calculated which allows the conversion of the MMQPCR result to an absolute TL value, see Figure 

35. 

5.3 Methodology 

The three main experiments I completed in this chapter are as follows; MMQPCR, HS2 target 

enrichment and sWGS, to generate TL, variant and CNA data, respectively. The laboratory 

protocols and data analysis steps involved in generating this data are given in detail in Chapter 3. 

Results from the analysis of HS2 raw sequencing data is included in this chapter. The bioinformatic 

pipeline used to generate these results is described in 3.4.4. For the MMQPCR and sWGS 

experiments, discussed here are the optimizations steps that resulted in the final methodology 

reported in 3.4.3 and 3.4.5.  

5.4 Results and discussion 

Results from the analysis of newly generated data, produced from either the MMQPCR, HS2 

target enrichment or sWGS technique are described in this chapter. Additionally, the process of 

optimizing the experimental procedures and bioinformatic pipelines is also reported and 

discussed below, starting with a description of how the three experimental cohorts were 

designed.   

5.4.1 Data consolidation and cohort design 

An aim of my PhD has been to create the largest possible clinical trial cohort of CLL patients with 

clinical, survival, gene variant, TL and copy number data available. Therefore, the first step in this 

task was to assess the total clinical trial cohorts, to ascertain where there were insufficiencies in 

the previously generated available data. Figure 36 shows the number of patients included in each 

of the three experimental cohorts to generate copy number, TL, and variant data. Figure 36 also 

illustrates the steps involved to generate this data and where samples have been excluded from 

the cohort are shown, for example removing ten cases from the HS2 experimental cohort as they 

failed library preparation. It is important to note that not all patients that required a specific 

datapoint could be included in the specific experimental cohort, for various reasons. One such 

reason being that these clinical trials are historic and extensively studied in previous research with 

only a finite DNA sample per patient available. Therefore, often there was insufficient sample 
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available, or the DNA had degraded over time resulting in the clinical trial patient not being 

included in the project. Therefore, a vital step in designing the three experimental cohorts 

involved completing quality control checks on the DNA patient samples located in the University 

of Southampton -20⁰C sample storage freezer. Quality control checks were completed using the 

Qubit fluorometer to measure the concentration of the stock DNA patient samples. In the cases 

where a stability of the DNA sample was in question, the NanoDrop spectrophotometer was used 

to assess if the DNA had degraded, which would result in exclusion from the experimental cohort. 

The final experimental cohort of sWGS, MMQPCR, and HS2 were 177, 83, and 52 CLL clinical trial 

patients, respectively. It should be noted that some patients were included in more than one of 

the experimental cohorts as lacked more than one datapoint. The next steps using these cohorts 

are outlined in further detail below.  

 

Figure 36- Flow diagram showing the cohorts and steps used for the generation of the three new 

datasets that are then integrated with pre-existing data. 
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5.4.2 Generation of Telomere Length Data 

5.4.2.1 Experimental Protocol 

This protocol was adapted from another the published work of Cawthon et al, 2009 (258). A 

cohort of 83 cases (CLL4:71 & AA:12) that were missing TL data formed the experimental cohort. 

Furter detail on the experimental protocol is given in 3.4.3.  

5.4.2.2 Data analysis and pipeline development 

During the analysis of the newly generated MMQPCR data for 83 samples it was noted that the 

old analysis pipeline relied on a web-based software called PCR miner. It requires raw 

fluorescence data as input and performs Ct calculation across various steps. Firstly, a four-

parameter logistic model is used to fit the raw fluorescence data, as a function of cycles, to 

identify the exponential phase of the reaction. Then a three-parameter simple exponent model 

and iterative nonlinear regression model is used to fit the exponential phase. Within the 

exponential section of the curve, the PCR miner method identifies candidate regression values 

using the p-value of regression and then uses a weighted average to calculate the final efficiency 

for quantification. Whereas to calculate the Ct values the first positive maximum of the second 

derivative of the five-parameter logistic model is used (295). 

Due to PCR miner being a web-based software I wished to ‘future proof’ the data analysis 

protocol by changing to an alternative method for QPCR data analysis. When I originally went to 

complete the analysis the PCR miner web domain was unavailable, and it was uncertain if this 

software would become available again. Therefore, I solved this problem by finding and 

implementing an alternative technique which was found to be comparable to the old method and 

possibly supersedes it. This not only allowed me to analyze the data I had just generated using the 

MMQPCR technique but also was used by another student in the group to analyze their data and 

will be used in the future by others in the Cancer Genomic research group. 

Examination of the literature identified a variety of different methods for QPCR analysis, one such 

method that was comparable to PCR miner was FPK-PCR. Similarly to PCR-miner it performs a Ct 

calculation using raw fluorescence data however is R based technique that employs the R package 

‘minpack.lm’. The FPK-PCR method estimates the initial target quantity using a bilinear and four-

parameter logistic model (296). Due to it being a R based technique it avoids the reliance on a 

webpage that may become unavailable if the web domain is not maintained. Additionally, the 

data retabulating steps that preceded the Ct calculation step were also converted to be produced 

in R whereas previously had been completed manually in excel. To assess the new FPK-PCR 

method an old dataset of 20 cases we processed with PCR miner was used. The concordance of 
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the two methods were assessed before FPK-PCR method was used to analysis the 83 new cases 

that had MMQPCR data generated. Comparing the absolute TL given when PCR miner or FPK-PCR 

were employed found a high level of concordance between the two methods with an average 

difference between to two values of +/-0.00989. Spearman’s correlation coefficient was 

employed and found a highly significant positive correlation between the two results given from 

the two methods investigated (p-value=0.000006), see Figure 37. Due to this result the FPK-PCR 

method replaced PCR miner in the processing of MMQPCR data and was used to analysis the 

cohort of 83 outlined above.  

 

Figure 37-  Scatterplot of the 20 samples used to compare the two methods for Ct calculation: PCR miner 

and FPK-PCR.  

Once the Ct calculations were completed within R studio, a macro enabled excel spreadsheet was 

used which calculated relative TL for each sample. The final step involved converting the relative 

TL value into an absolute value, using the linear regression equation developed during a series of 

projects described above. The process from setting up the PCR reactions to the analysis of 

generated data meet the requirements for quantitative PCR assay as outlined by MIQE (297) 

5.4.3 Generation of genetic variant data 

5.4.3.1 Experimental Protocol 

To generate novel variant data for the cases that lacked this dataset, the Agilent SureSelect XT 

HS2 DNA target enrichment system was used to for DNA library preparation and targeted 

enrichment for sequencing on an Illumina platform. To generate this dataset, the SureSelect HS2 

XT target enrichment library preparation and the Illumina NovaSeq 6000 system was used. The 
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experimental procedure can be broken down into; custom probe design, DNA library preparation, 

hybridization capture for target enrichment, pooling and sequencing using Illumina based 

technologies (Figure 16). A cohort of 52 patients (CLL4:32 & AA:20) was identified for library 

preparation, see Figure 36. However, only 42 samples (CLL4:24 & AA:18) had a successful library 

preparation and therefore were included in the DNA library pool and sequenced. 

5.4.3.1.1 Probe Design 

This system requires custom probe production that are designed to target a panel of selected 

genes and genomic regions (255). These targets were selected by myself by looking at gene panels 

previously used and by investigating the current CLL literature for any novel targets of interest. 

From this, a panel of 72 genes and genomic regions were selected and had probes designed 

against, see Supplementary Table 2 for the full list. 62 of these targets were part of a custom probe 

design created in 2018 for a previous target sequencing experiment. This probe design included 

various established CLL and lymphoid malignancy gene panels as well as any additional genes or 

genetic regions that were reported in the literature, at the time of probe design. To update the 

probe design I completed a literature search in 2021, with any new genes or genetic regions 

reported in CLL published research were considered to be added to the probe design. This 

literature search identified 10 new genes, that were reported to have importance in CLL biology. 

These 10 genes were added to the 2018 probe design of 62 targets, resulting in a panel of 72 

genes and genomic regions. The probes were designed with Agilent’s SureSelect DNA design tool, 

whereby a machine learning algorithm selects the probe sequences and calculates the probe 

coverage of the gene or genomic region. A few targets had lower coverage when using this 

machine learning algorithm and therefore required manual inspection to improve coverage 

before the probes were produced, which was completed by Agilent after a discussion with myself, 

see Supplementary Table 2. It is important to note that the new variant data produced during this 

experiment will be integrated with previously generated data for the CLL4 and ARCTIC/ADMIRE 

clinical trial cohorts. Variant data for these two cohorts were previously generated in two 

separate experiments using two separate TruSeq custom panel for target enrichment sequencing. 

These TruSeq panels, along with the HS2 custom panel, differed in size and in the selection of 

genes and genomic regions included, see Figure 38. However, there was an overlap of 9 targets 

that were included in all three panels, which will therefore be the focus of downstream analysis.  
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Figure 38- A outline of the two TruSeq custom panels used for the Arctic/Admire (green) and CLL4 

(yellow) cohort as well as the more recent HS2 custom panel (blue). The 9 targets included in 

the Arctic/Admire panel were also included in the CLL4 TruSeq and HS2 panel. 20 of the 22 

targets of the CLL4 TruSeq panel were included in the HS2 custom panel, 2 targets (shown in 

bold and underlined) were not included. The HS2 custom panel had 72 targets, not all are 

shown in the figure as multiple targets were included for a single gene and therefore have 

been simplified by only including the gene name.   

5.4.3.1.2 Library Preparation  

Once probe development was completed, preparation of DNA libraries was completed with the 

SureSelect XT HS2 DNA system. An overview of the main steps of the protocol is shown in Figure 

39, further detail is discussed in 3.4.4. As mentioned above, only 42 of the 52 cases passed the 

DNA library preparation and therefore only 42 samples were pooled together and sequenced. The 

minimal sequencing data required for the specific probe design used was calculated by doubling 

the recommended minimal sequencing and multiplying by the number of samples included in the 

final pool, for this experiment it was 6.29 Gb of sequencing was required. The pooled library was 

then sequenced on the NovaSeq 6000 Illumina platform using v1.5 chemistry. The generated raw 

sequencing data, in the form of FASTQ files were then analysed using a bioinformatic pipeline. 
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Figure 39- The main experimental steps involved in generated novel variant data using the SureSelect XT 

HS2 DNA system, from (255) 

5.4.3.2 Data analysis and manual curation 

Analysis of the generated data can be divided into three main sections, first preprocessing, 

alignment and variant calling was completed within the University’s high-performance computing 

cluster IRIDIS 5, then variant filtering was completed using RStudio within the R environment, and 

finally manual curation of the final filtered list of variants was completed using the IGV software, 

see 3.4.4.  

5.4.3.2.1 Results from the preprocessing, alignment and variant calling steps 

Raw sequencing data is inputted into the bioinformatics pipeline in the form of two FASTQ files, 

due to the paired-end run. FASTQC software (version 0.11.9) was used to assess the sequence 

quality of the FASTQ files. These outputted files were merged together using MultiQC, to allow 

easier comparisons of all samples. An example of the FASTQC output is given in Figure 40, the per 

sequence quality score report identifies sequences runs with low quality values that may have 

been caused by technical problems with the sequencing run. The plot shows the FASTQC check of 

per sequence quality score, with all samples passing with a sufficient mean sequence quality 

(green zone). A warning is given when the most frequently observed mean quality is below 27 

(orange zone), this reflects an 0.2% error rate. A FASTQ file is failed if the most frequently 

observed mean quality is >20 (red zone), which equates to an error rate of 1% (298). However, all 

FASTQ files passed this check and all other FASTQC checks.  
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Figure 40- Figure of per sequence quality score was generated by the MultiQC tool by merging all 

FASTQC files together.  

Mosdepth (version 0.3.4) was used to calculate genome-wide sequencing coverage, again 

MultiQC was used to merge all output files into a single report of all samples for easier 

examination. Mosdepth was used to produce coverage summaries across capture regions, 

specifically across the 72 target regions of interest. To examine the DOC at each of the targets the 

mean depth was calculated across all regions of the target and across all patients, this data was 

extracted from each mosdepth file created for each sample and was graphically represented in a 

scatter plot created in RStudio (Figure 41). Of the 72 targets, only two, BTK and PLS3, had a mean 

depth lower than 1000. Overall, there was sufficient sequencing depth of all targets across all 

samples for confident variant calling.   
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Figure 41- The mean depth of the gene target, across all regions and all patients. The mean sequencing 

depth of the 72 targets is shown by a horizontal dashed line.  

5.4.3.2.2 Results from variant filtering steps 

The output from the preprocessing and alignment stages of data analysis was a maf object that 

showed a total of 1272 variants had been called, these included frame shift deletions, nonsense 

mutations, splice sites and 3’UTRs (synonymous mutations). Filtering using the gnomAD genome 

database with an inclusion criteria of <0.001 allele frequency (0.1% allele frequency) resulted in a 

list of 176 variants remaining. Similarly, the gnomAD exome database with a <0.001 allele 

frequency cut off was applied, removing a further 7 variants resulting in a final filtered list of 169 

variants across the 42 patients. These two population databases were used to remove likely 

germline variation, as matched germline samples were not available on a per sample basis.  

Using the maftools package, graphical summaries of these variants could be made to examine the 

final filtered variant list. Below (Figure 42) is an oncoplot showing the 10 most mutated genes 

across the 42 samples. SF3B1, BIRC3 and NOTCH1 were the most frequently mutated genes each 

being present in 10, 9 and 9 patients, respectively.  
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Figure 42- Oncoplot of the top 10 most frequently mutated genes across the 42 samples. The rows 

represent each of the 42 patients included in this analysis. The colour indicates the type of 

variant, for example 3’UTR or a missense mutation. 

Lollipop plots of various genes allowed further examination of the filtered variants, for example 

the BIRC3 gene frequently (n=5) had a frame shift deletion resulting in a Q547fs protein change 

(Figure 43). Due to the frequency of the variant, there was uncertainty around whether this was a 

true variant and therefore this variant was manually inspected further.  

 

Figure 43-  Lollipop Plot of the BIRC3 gene, showing the 11 variants identified in the gene.  
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5.4.3.2.3 Results from manual curation steps 

As highlighted above in Figure 38, the three target sequencing panels used to generate the variant 

data for the ARC/ADM and CLL4 cohort in this project are integrated together, only 9 genes are 

present in all. Therefore, variants that were not one of the 9 gene targets present in all probes 

were removed (n=100), resulting in 69 variants that progressed to the final stage of manual 

curation where IGV software was used. 

The final step in manual curation is visual inspection of the variant and its surroundings using the 

IGV software. Established criteria for distinguishing true somatic variants were used (261); which 

included assessing if the change was present on both the positive and negative strand, what 

percentage of the reads had the change, if the surrounding reads have many changes (noisy 

reads) or if the variant was present at the end of the gene or frequently at the end of a read. 

Figure 44 shows two examples of variant visual inspection using IGV. Figure 44A is the view of a 

TP53 gene variant that has passed IGV inspection as the missense mutation is present on many of 

the reads (VAF 40%), was found similarly across both the positive and negative strand (382+ vs. 

533-) and the variant was not frequently occurring at the end of a reads. Furthermore, the 

immediate surrounding area was not laden with other changes or variants. Whereas Figure 44B 

shows a POT1 missense mutation that failed IGV inspection as it had a low VAF (4%), was in a bad 

position at the end of the POT1 gene and many of the missense mutations (C<T) were at the end 

of reads. Applying these criteria during visual inspection of each variant allowed a further 20 

variants to be disregarded, resulting in a final list of 49 variants across the 42 patients included in 

this analysis. The most commonly mutated gene was SF3B1 (8/42, 19%), followed by XPO1 (7/42, 

16.7%) and then NFKBIE (6/42, 14.3%). Three clinically important genetic variants in CLL: TP53, 

ATM and NOTCH1 were found in 2, 4 and 4 patients, respectively.  
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Figure 44- Output from two variant assessment using IGV. A. A region containing a missense mutation in 

the TP53 gene (A>C), an example of a variant that would pass IGV visual assessment. B. 

Assessment of a region containing a POT1 missense mutation (C>T), this variant did not pass 

visual inspection criteria as had a low variant allele frequency (4%) and was in a bad position 

at the end of the POT1 gene with many of the variants being identified at the end of reads.   

5.4.4 Generation of copy number aberration data 

The generation of copy number aberration data through shallow whole genome sequencing was 

completed in various stages. Firstly, a cohort of 70 clinical trial patients were identified as 

requiring this datatype and therefore underwent library preparation using Agilent SureSelect 

Whole Genome Library prep and multiplexed sequencing on the Illumina NovaSeq. Subsequently, 

a second batch of 107 clinical trial patients also underwent library preparation for sWGS. Of these 

cases 5 failed library preparation so only 102 cases were sequenced. Below (Figure 45) is a 

schematic of the main steps in generating this sWGS data across the two main cohorts, 

highlighting where samples had to be excluded and the final numbers reached.  
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Figure 45- Overview of the steps involved in generating copy number aberration data using shallow 

whole genome sequencing. Highlighted in red shows the number of cases removed from the 

experimental pipeline and the reason for the exclusion. Highlighted in green shows the final 

cohorts of patients with successful data generation completed.  

5.4.4.1 Library preparation  

The SureSelect library preparation kit was used to generate a DNA library for each patient 

included in the CNA experimental cohort. Greater detail of the library preparation process and the 

sequencing completing using the Illumina NovaSeq 6000 platform, is given in 3.4.5.2 

5.4.4.2 Pipeline development for improved CNA calling 

Sequencing data generated from sWGS DNA libraries were analysed using an in-house 

bioinformatic pipeline (described in 3.4.5.2) but required optimizations, which will be discussed. 

Work was undertaken to develop the Rstudio based pipeline and improve the CNA calling ability 

of the analysis. This work involved altering the bin sizes, deciding on various cut offs and 

classifications and defining the manual curation process. The first cohort of 70 cases with sWGS 

data was used to complete this work. Subsequently the optimized pipeline was applied to the 

remaining cohort of 102 patients.  

A parameter that was explored was the size of bins created as the first step of the QDNAseq 

analysis. There is no specific bin size as using a large bin size will have less noise but will have a 

lower resolution, with smaller bins having greater resolution but will suffer more from technical 

noise. Additionally, bin size depends on the type of analysis and how it will be used and therefore 

should be chosen in relation to the sequencing depth. Examining the current literature, a wide 
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range of bin sizes have been employed for the analysis of sWGS data including 5 kb, 15 kb, 20 kb, 

30 kb and 100 kb (213,299–301). 

To examine what the optimal bin size is for this data, I compiled a subgroup of six samples and 

applied various different bin sizes and compared the results generated from the analysis. These 

size cases were chosen to try and be representative of the greater cohort, for example samples 

with low and high levels of noise were included. Originally a 5 kb bin size was applied to this 

cohort. This resulted in many CNAs being called even after the +/-0.2 log2 ratio cut off being 

applied. Additionally, the copy number called plots showed significant noise making it hard to be 

confident in the small CNA that were being called when they were visually inspected during the 

manual curation step (see Figure 46A). 

 

Figure 46- Copy number called plot of sample 641 with bin size of 5 kb. A. Shows each 5 kb bins plotted 

across the whole genome. Considerable noise is present in the plot with many small 

insignificant CNAs being called but after visual inspection will be removed because it is 

difficult to distinguish from the technical noise variation. B. Chromosome 13 showing a del13q 

event that is identified using 5 kb bins even when the plot is noisy. 
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A more stringent bin size of 50 kb was employed and found that this removed a lot of the noise 

present however when assessing the copy number called plots the data points became very 

sparse and made visual inspection difficult, see Supplementary Figure 6. Finally, a bin size of 30 kb 

was used and was found to be a good compromise between removing technical noise, making the 

manual curation more manageable, but whilst keeping good resolution which allows smaller CNAs 

that were removed during the filtering process to be confidently identified during manual 

curation. For example, sample 641 has a del13q event which was constantly identified at all bin 

sizes (see Figure 46B and Figure 47B). However, when using bin size 30 kb compared to 5 kb, many 

of the smaller called CNAs were removed across the genome as shown in Figure 47A. On visual 

inspection at bin size 5 kb, these would be removed as cannot be distinguish against the 

considerable noise of the plots. Thereby using the larger bin size, these called CNAs are being 

removed as part of the filtering, thus making the manual curation step less time consuming. A 

further reason for selecting a bin size of 30 kb is that similar bin sizes (20 kb and 30 kb) have been 

frequently used in publications using sWGS data (299,301).     
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Figure 47- Copy number called plot of sample 641 with bin size of 30 kb. Shows each 30 kb bins plotted 

across the whole genome. A few small CNAs are being called across the genome which did not 

pass the filtering steps and were easily accepted or rejected during manual curation B. 

Chromosome 13 showing a del13q event that is identified clearly using 30 kb bins. 

 

Overall, completion of this work generated 153 new cases of CNA data which will be integrated 

with previously generated data for the CLL4 and ARC/ADM cohorts. Furthermore, undertaking the 

experimentation with certain aspects of the data analysis allowed greater certainty in the CNA 

calling ability of the pipeline. 

5.5 Conclusion 

Overall, completion of the work outlined in this chapter resulted in 273 new data points being 

generated. As a result, 199 new patients now met inclusion criteria for the project outlined in the 

chapter below. Therefore, the cohort that will be used included a total of 495 CLL patients from 
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CIT clinical trials that all had CNA, TL and variant data available. This cohort was then employed to 

describe the biological context of GC and assess its clinical utility as a prognostic biomarker with 

CLL. 
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Chapter 6 Evaluation of Genomic Complexity within a 

Discovery and Validation Cohort 

6.1 Synopsis 

This chapter is cumulative effort of the experimental and computation work outlined in the 

previous chapter, as the cohort complied in Chapter 5 was utilised in this project. For this chapter, 

I undertook the laboratory and analytical work for create novel CNA, somatic variant and TL data 

using sWGS, HS2 and MMQPCR techniques, respectively. Furthermore, I completed the analytical 

work to infer copy number profiles for a cohort of ARCTIC and ADMIRE patients which has 450k 

array data already available. The various datasets, generated by me or by others previously, were 

then collated together and used in statistical and survival analysis, all of which was completed by 

myself. Within this chapter the novel biomarker GC was assessed within a CIT clinical trial cohort 

of 495 patients. Evidence is given which suggests the GC is an important prognostic marker in CLL 

and an in-depth description of the biological background of GC and its association with a breath of 

genomic variables is given, many for the first time. 

6.2 Introduction 

As depicted in the systematic review completed in Chapter 2, there is a growing evidence base 

that concludes that GC is an important prognostic and predictive biomarker which has great utility 

in the risk stratification of CLL patients enrolled not only in CIT but also targeted agent treatment 

regimes (103,198,204,232–234,238). Whilst the overarching conclusion is that GC is a clinically 

powerful biomarker, this is predicated on research that has used a variety of technologies for its 

detection and even using different definitions of the GC metric. Whilst this chapter is not able to 

empirically state what the most appropriate technology and metric is for the GC biomarker, an 

evaluation of the four genomic technologies used within this work will be completed and other 

metrics of GC will be considered, i.e CNA count and dosage. Furthermore, there is disparity 

between the clinical utility of different GC groups, i.e. ≥3 CNAs and ≥5 CNAs, with some 

publications reporting that ≥3 CNAs is a useful cut off to describe GC whereas others only find a 

cut off of ≥5 CNAs has independent prognostic ability (103,238). It has been suggested that a 

biological heterogeneity maybe underpinning this variation, with different biological pathways 

and interactions driving the contrasting levels of GC and leading to a different clinical presentation 

and patient outcome. Thus, an aim within this chapter was to assess the biological composition 

and describe the genomic profile of three GC groups; low (0-2 CNAs), intermediate (3-4 CNAs) and 
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high (≥5 CNAs). Finally, this project aimed to investigate the survival impact of GC in the context of 

numerous other established CLL biomarkers, many for the first time, using a discovery (CLL4) and 

validation (ARC/ADM) CIT clinical trial cohorts. The inclusion of the GC, TL and DME biomarker 

within a single survival model has, to my knowledge, not been completed before.  

6.3 Methodology 

A cohort of patients enrolled in either the CLL4, ARCTIC or ADMIRE clinical trials was constructed 

and used in this chapter. The assembly of this cohort, whereby previously published data and 

newly generated data was augmented together, is explained in greater detail in Chapter 3 and 

Chapter 5. A cohort of 495 patients was used for the statistical analysis of GC. Whereas separated 

CLL4 (n=251) and ARC/ADM cohorts (n=226) were used for survival analysis due to having very 

different amounts of follow up data. 18 ARC/ADM cases were excluded from the survival analysis 

cohort due to concerns about the CNA data generated from the 450k array. Inclusion criteria for 

this project was dependent on if a patient had available CNA, variant and TL data. Furthermore, 

many patient characteristics and clinical biomarkers, such as age, gender, CD38 expression, Binet 

stage and IGHV mutation status were reported on as part of the clinical trial.  

6.3.1 Data analysis 

Extensive details on the methodology and optimization of the analysis of CNA and variant data are 

given in 3.4.5 and 3.4.4. Analysis of this data was completed firstly using IRIDIS5, the 

supercomputing system at the University of Southampton. Analysis was then completed within 

the R environment using R studio (version 4.3.0). An oncoplot and lollipop plots were constructed 

using the R package “maftools” (version 3.19). Both nonsynonymous and synonymous variants 

were included in the analysis, specifically the 3’UTR NOTCH1 variants were included. The analysis 

of TL data generated using the MMQPCR technique is given in 3.4.3. sWGS and 450k array CNA 

data was generated using two bioinformatic pipelines described in detail in 3.4.5.1 and 3.4.5.2. 

Optimization of the MMQPCR, HS2 and sWGS pipelines is discussed in great detail in 5.4.2, 5.4.3 

and 5.4.4.  

6.3.2 Statistical analysis 

Statistical analysis was completed using R studio within the R environment (version 4.3.0). Various 

graphs and diagrams, such as bar charts, scatter plots, and Sankey diagrams, were constructed 

using R studio. Packages used were “ggplot2”, “networkD3”, “dplyr” “plyr” and “table1”. Packages 

“viridis” and “RColorBrewer” were used to annotate the figures with specific colour schemes. GC 
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was defined using the three subgroups utilised in Leeksma 2020 study, with low, intermediate and 

high GC being defined as 0-2 CNA, 3-4 CNAs and ≥5 CNA, respectively (103). But CNA count and 

dosage, as continuous variables, were also employed to investigate GC at certain points during 

the statistical analysis. TP53 aberration was defined as the presence of a del17q and/or TP53 

mutation. ATM disruption variable was divided into biallelic ATM inactivation, sole del11q (CN loss 

of ATM), sole ATM mutation and ATM wild type patients. Similarly, BIRC3 disruption was assessed 

by the presence of a biallelic BIRC3 loss, sole CN loss of BIRC3, sole mutation of BIRC3 or BIRC3 

wild type. Comparisons of the genomic technologies; sWGS, HumanOmni array, SNP 6.0 array and 

450k array, with FISH data found a high concordance for calling the four recurrent CLL CNAs, Table 

10. Therefore, the presence of the four recurrent CNAs; del17p, del11q, trisomy 12 and del13q, 

was reported using CNA data generated using the four genomic technologies and not with FISH 

data. 

6.3.3 Survival analysis 

A post hoc power analysis was completed to identify the sample size which is sufficient to capture 

survival trends that are being studied in this chapter. A sample size calculator for designing clinical 

research was employed to calculate the number of cases required to have sufficient power for 

survival analysis. The software required the input of certain parameters for example; a type 1 

errors rate of 0.05 and a type 2 error rate 0.2 (302). As there were three GC groups included in the 

analysis, multiple power calculations were needed with each comparing two of the groups, for 

example low vs. intermediate GC and low vs. high GC. For each comparison the proportion of 

subject in each group were required to be inputted into the calculation. Finally, a relative hazard 

was needed and for this value published work was examined to identify a HR for each pairwise 

comparison and each survival endpoint was needed. The published work the HR were extracted 

from needed to include the same three GC classifications. For PFS, the HR reported in the Kater et 

al paper was employed (233). For OS, the HR reported in the Leeksma et al paper was used (103). 

However in the Leeksma paper, whilst they employed the same GC classifications, no comparison 

was reported between patients with intermediate and high GC and therefore this power 

calculation could not be completed.  

Included in the univariate and multivariate survival analysis was the covariate treatment arm. As 

the treatment regime patients were enrolled in differed across the two clinical trial cohorts. CLL4 

patients were divided into one of the following; Fludarabine plus Cyclophosphamide (FC), 

Chlorambucil (Chl) or Fludarabine (FDR). Whereas the ARC/ADM clinical trial patients were 

enrolled into either fludarabine, cyclophosphamide and rituximab (FCR), the addition of 

mitoxantrone to FCR (FCMR), mitoxantrone with low-dose rituximab (FCMminiR) or finally a 
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regime that started on FCMminiR but then crossed over to FCR following medical 

recommendations (FCMminiR/FCR). Additionally, BIRC3 disruption was assessed differently in the 

survival analysis compared to the statistical analysis, with only cases of BIRC3 biallelic loss being 

compared against patients without a biallelic BIRC3 loss.  

Univariate analysis was completed using a KM analysis with a log rank test as well as a Cox 

regression analysis, whereby each covariate was individually entered. The median PFS and OS for 

each subgroup of every variable was calculated. This analysis was completed using R Studio within 

the R environment (version 4.3.0) using “survival”, “survminer”, “survivalAnalysis” and “ggplot2” 

packages. The results from the univariate analysis guided which covariates were included in the 

primary multivariate models as only variables that were significant in the univariate analysis (p-

value<0.05) were included. A stepwise backwards elimination process was applied, using a 

likelihood statistic to test whether it was appropriate to remove a covariate from the model, until 

a final model was reached.  

6.4 Results 

6.4.1 Examining variant and copy number data for the statistical cohort of 495 patients 

Across the 495 patients, 211 did not have any variants present in the 9 genes of interest. A total of 

426 variants were recorded across the remaining cohort of 284 patients. Therefore, on average a 

patient had 0.86 variants (0-6). The most frequently mutated gene was SF3B1 with 111 patients, 

or 22% of the cohort, carrying a mutation in the gene. The NOTCH1, ATM and TP53 gene was 

mutated in 15%, 11%, and 9% of patients, respectively (Figure 48). The most common variant 

classification type identified in the data was a missense mutation, frameshift deletions and 

nonsense mutations accounting for 258, 105 and 29 of the 426 recorded variants. Included in the 

analysis were 7 cases of a 3’UTR NOTCH1 mutation.  
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Figure 48-  Oncoplot shows the overview of somatic mutations in the total clinical trial cohort of 495 CLL 

patients. 

Frequently, a gene had a greater number of variants than the number of patients, which indicates 

there are cases where a patient may have one or more genetic variant. For example SF3B1 

mutations are present in 111 patients but have a recorded 121 variants. Similarly, a total of 65 

variants in the ATM gene are recorded across 65 patients and a total of 59 TP53 variants have 

been identified across 47 patients. The lollipop plots of the four most commonly mutated genes 

shown in Figure 49, displays the distribution of variants and highlights the common and rare 

variants identified within our cohort. For example, the most common SF3B1 variant involved 

K700E which had a recorded 54 cases (45%). Within CLL, this K700E has been found to be the 

most frequently mutated site with it being identified in 50% of reported cases with a SF3B1 

mutation (303). Similarly in the NOTCH1 gene, the most common mutation site is the p.P2514fs, 

also known as a deltaCT mutation, with 31 of the reported NOTCH1 mutations (42%), which is 

concordant with the CLL literature. Next the compiled copy number data used in this project was 

examined.  
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Figure 49-  Lollipop plots of the four most frequently mutated genes across the 495 CLL patients.  

Of the 153 cases that had sWGS data generated for, 8 were not included in the final cohort of 495 

patients as lacked variant data as failed the HS2 library preparation or sequencing (Figure 36). 
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Therefore, of the 495 cases 144, 108, 212, and 31 were generated from sWGS, SNP6 array, 

HumanOmni array and 450k array, respectively.  

All raw CNA was aligned to the hg19 reference genome. Once all data was collated, I completed a 

UCSC genome liftover to the hg38 reference genome. During this step, a small percentage of the 

CNA events failed the liftover. This is due to certain regions not being well-conserved between the 

two genomes. As I was unable to be certain of their start and stop location but required all data of 

the cohort to be updated to a more recent human reference genome, these cases were excluded 

from any downstream analysis. Across the 495 cases there were 1595 CNAs. Of them 68 failed the 

liftover and a further 59 were removed as they were cnLOH events. The cnLOH were removed as 

not all techniques employed in the cohort were able to measure these events and thus were 

removed to standardise the analysis. This meant a remaining 1468 copy number changes were 

reported and included in this analysis.  

Assessment of these 1468 revealed that 62 were aneuploidy, most commonly of chromosome 12 

(n=58). However further inspection of the 450k array data, specifically of the CNA plots similar to 

those shown in Figure 47A, identified an additional 4 cases with trisomy 12 events, increasing the 

total number of aneuploidy events to 66 with 62 of them being trisomy 12. These were not 

included in the CNA count or GC calculations.  

I also used the hg38 location of certain genes to classify different CNAs. For example, TP53, ATM, 

DLEU2 for del17p, del11q and del13q events, respectively. Additionally, I assessed whether the 

CNA event impacted other relevant genes; BIRC3, RB1 and RNASEH2B (Table 8). Locations of the 

genes were reported from the UCSC genome browser (Hg38). When defining biallelic del13q I 

have included the diminished X2 and homozygous loss events and when the log -2 ratio as less the 

-1 (n=51). Furthermore, to examine del13q events with greater granularity I also classified these 

cases based on the two del13q classes and types. Class 1 and type 1 del13q copy number deletion 

overlaps the DLEU2 gene as this is in the MDR of del13q. Class 2 deletions are larger and has a 

target region that includes the DLEU2 and RNASEH2B gene. Similarly type 2 deletion targets a 

region including the MDR and the RB1 gene.  
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Table 8-  Genomic regions from the GRCh38 reference genome used to annotate the copy number data 

with important CNAs.  

Gene Hg38 location (Hg_start-Hg_stop) Number Cases (%) 

TP53 7668421-7687490 21 21 (4) 

ATM 108223067-108369102 89 89 (18) 

BIRC3 102317484-102339403 76 76 (15) 

DLEU2 49982552-50125541 258 234 (47) 

RNASEH2B 50909791-50956762 176 172 (35) 

RB1 48303751-48481890 133 131 (26) 

 
As mentioned above, CNA count, excluding aneuploidy events, was used to define the GC metric 

used in this project. Mainly three classifications of low, intermediate and high GC were used 

within this chapter. However, CNA count as a continuous variable was also employed to examine 

biological associations with GC. Similarly, dosage, the total size of the genomic region impact by 

the CNAs excluding aneuploidy (Mb), was also investigated.  

6.4.2 Assessing the prevalence of genomic features across the cohort 

The distribution of the three GC groups across the total cohort of 495 patients is shown below in 

Figure 50. The majority of patients were defined in the low GC groups (62%) with only 22% having 

intermediate GC and 16% having high GC. When excluding aneuploidy events, a total of 1406 CNA 

was recorded across the cohort with an average of 2.8 CNA per patient (range: 0-26 CNA). 

Furthermore, on average a patient reported a dosage of 30 Mb (range: 0-303.44 Mb).  
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Figure 50-  Density curve of CNA count across the total cohort of 495 CLL clinical trial patients. The three 

GC classification groups are coloured with the number of patients and percentage of the 

cohort each group has is also given.  

A table of variables important in this project is shown below, showing the prevalence of various 

variables across the two clinical trial cohorts that were combined for statistical analysis completed 

in this chapter. A chi squared test identified a significant (p-value<0.01) difference in GC groups 

across the two cohorts and a Wilcoxon rank sum test also identified significant difference in CNA 

count (p-value<0.01) and dosage (p-value<0.05) across the two cohorts. This difference across the 

two clinical trial cohorts will be examined in greater detail below. No significant difference in 

gender, IGHV mutation status, TP53 dysfunction, BIRC3 disruption, trisomy 12 events, del13q 

events, mutation count, SF3B1 and NOTCH1 mutations was found across the cohorts.  

Table 9-  Baseline clinco-biological variables of the ARCTIC, ADMIRE and CLL4 trials 

Variable 
ARCTIC & ADMIRE 

N (%) 

CLL4 

N (%) 

Concordance 

P-value 

Total number of patients 244 251  

Age, median years (range) 63 (36-80) 64 (42-86) <0.01 

Gender    

Male 183 (75%) 184 (73.3%) 0.67 

Female 61 (25%) 67 (26.7%)  

Binet Stage    

A 35 (14.4%) 64 (25.5%) <0.01 

B 127 (52%) 110 (43.8%)  

C 82 (33.6%) 77 (30.7%)  

IGHV Mutational Status    
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IGHV-U 129/218 (59.2%) 141/221 (63.8%) 0.32 

IGHV-M 89/218 (40.8%) 80/221 (36.2%)  

TP53 Aberration    

Absent 218 (89.3%) 227 (90.4%) 0.69 

Present 26 (10.7%) 24 (9.6%)  

ATM Disruption    

Absent 177 (72.6%) 193 (76.9%) <0.05 

CNA 30 (12.3%)  41 (16.3%)  

Mutated 24 (9.8%) 12 (4.8%)  

Biallelic 13 (5.3%) 5 (2%)  

BIRC3 Disruption    

Absent 201 (82.4%) 203 (80.9%) 0.62 

CNA 27 (11.1%) 36 (14.3%)  

Mutated 9 (3.7%) 7 (2.8%)  

Biallelic Loss 7 (2.9%) 5 (2%)  

Trisomy 12    

Absent 207 (84.8%) 226 (90%) 0.08 

Present 37 (15.2%) 25 (10%)  

Del13q    

Absent 115 (47.1%) 145 (57.8%) 0.05 

Monoallelic 104 (42.6%) 81 (32.3%)  

Biallelic 25 (10.2%) 25 (10%)  

SF3B1 Mutation    

Absent 193 (79.1%) 191 (76.1%) 0.71 

Present 51 (20.9%) 60 (23.9%)  

NOTCH1 Mutation    

Absent 209 (85.7%) 212 (84.5%) 0.71 

Present 35 (14.3%) 39 (15.5%)  

Epigenetic Subgroup    

n-CLL 103/220 (46.8%) 115/226 (50.9%) <0.01 

i-CLL 61/220 (27.7%) 83/226 (36.7%)  

m-CLL 56/220 (25.5%) 28/226 (12.4%)  

Telomere Length Group    

Short 56 (23%) 137 (54.6%) <0.01 

Intermediate 62 (25.4%) 61 (24.3%)  

Long 126 (51.6%) 53 (21.1%)  

Telomere Length, median length kb (range) 3.63 (1.13-7.68) 2.88 (1.93-10.24) <0.01 

CNA count, median count (range) 2 (0-26) 2 (0-23) <0.01 
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Dosage, median size Mb (range) 9.09 (0-303.44) 4.25 (0-268.93) <0.05 

Mutation Count    

0 95 (38.9%) 116 (46.2%) 0.42 

1 97 (39.8%) 87 (34.7%)  

2 35 (14.3%) 34 (13.5%)  

≥3 17 (7%) 14 (5.6%)  

Genomic Complexity    

Low GC 134 (54.9%) 172 (68.5%) <0.01 

Intermediate GC 63 (25.8%) 45 (17.9%)  

High GC 47 (19.3%) 34 (13.5%)  

Footnote: CNA data used in variables are generated from genomic techniques, not FISH. Continuous variables were 

summarised as median and range, and categorical variables were shown as proportions. A chi squared was to test the 

concordance between categorical variables and a Wilcoxon rank test was used for continuous variables.  

 

A significant difference between the two cohorts was identified across the TL groups and the 

continuous TL variable (p-value<0.01). To further inspect this difference, the results of the two 

technologies employed to generate TL data were examined. For the generation of the TL data in 

the CLL4 cohort, the MMQPCR technology was employed. Whereas the STELA technique was used 

predominantly to generate the ARC/ADM TL data. However, it is important to note that 11/244 

ARC/ADM patients had TL generated using the MMQPCR technology as part of the 60 cases that 

had TL data added during this project. A density plot displaying the distribution of the TL results 

given from each technology shows that there is a difference in the mean and median TL given by 

each technology, see Figure 51 and Table 9. The median TL of the MMQPCR cohort (mean: 2.87 kb) 

was significantly shorter than the median TL of the STELA cohort (mean: 3.66 kb) (p-value<0.001). 

Whilst the MMQPCR technology had a shorter mean and median TL compared to the STELA data, 

this cohort had a large spread of TL recorded, with the results ranging from 1.93 kb to 10.24 kb. 

This difference in TL recorded across the cohorts also was found in the TL groups, with the 

majority of ARC/ADM patients being reported as having TL-L (51.6%) whereas the CLL4 patients 

were predominantly in the TL-S (54.6%).  

 



Chapter 6 

138 

 

Figure 51- Density plot of the TL measurements across the two TL technologies; MMQPCR and STELA. 

The mean TL from MMQPCR (3.25kb) and STELA (3.82kb) technologies are annotated and 

shown in bold.  

To further examine the difference between the two technologies a sub cohort of 80 CLL4 patients 

that had TL generated by both MMQPCR and STELA was used. A Kendall’s rank correlation test 

found a significant positive correlation between the recordings from the two technologies (0.657 

correlation coefficient, p-value<0.001), see Supplementary Figure 7. Therefore, even though a 

significant difference in TL was identified across the two cohorts, the reported high correlation 

between the two technologies suggests that the difference across the cohorts is due to patient 

variation and not due to biases within the technology used. Therefore, the two clinical trial 

cohorts were combined for the following statistical analysis completed below. 

6.4.3 The prevalence of many established biomarkers shows biases towards certain GC 

subgroups. 

Firstly, a oncoplot which included many important genomic features was constructed to 

investigate how the three GC group lie in the context of other established CLL biomarkers. The 

somatic landscape shown in the tumour mutational burden (TMB) graph of the oncoplot (Figure 

52), highlights that as GC increases so does TMB. Additionally, the number of cases with zero TMB 

decreases as GC increases, for example 42/306 patients with low GC and 13/108 of intermediate 

GC have zero TMB compared to only 4/81 of patients with high GC.  
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Figure 52- Oncoplot of a variety of genomic features including CNAs and mutations as well as the IGHV mutation status, epitype and TL variables. The three GC groups were used to 

order the samples. Del13q were coloured to include both biallelic and monoallelic disruptions. Similarly, the TP53, ATM and BIRC3 rows were coloured to show if patient had a copy 

number deletion that overlapped this gene (CNA), a mutation of this gene (Mutation), or both a deletion and mutation (Biallelic). IGHV status and epitype was not reported for all 495 and 

this missing data is coloured in the IGHV mutation status and epitype row. Tumour mutation burden (TMB) was calculated from the mutation and CNA data. 
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Of the 10% of the total cohort that had TP53 aberration (n=50), 46% were in the high GC group 

and 18% had intermediate GC, whereas 36% had low GC. Interestingly, of the 23 cases with TP53 

aberration and high GC, in 9 cases this TP53 aberration was the only genomic change reported. 

Examining the least commonly mutated genes, XPO1 and SAMHD1 were found to have an even 

distribution across the three GC groups. For example, the percentage of cases in low, 

intermediate, and high GC group with a XPO1 mutation was 6.2% (19/306), 6.8% (7/108), and 

7.4% (6/81), respectively. Whereas the SAMHD1 gene was mutated in 2.3%, 2.8% and 2.5% of 

low, intermediate, and high GC cases, respectively. Trisomy 12 events were more frequent in the 

low GC group (17%) than the intermediate (5.6%) or high group (4.9%). Additionally of the 62 

trisomy 12 events, 24 patients also had a NOTCH1 mutation (38.7%). Examining this cohort of 24 

patients, most (n=20) were in the low GC group. Similarly, of the 125 cases which had either a 

mutation, CNA loss or both (biallelic) of ATM, 76 cases also had either a BIRC3 mutation and/or 

CNA loss. The cases where both ATM and BIRC3 was disrupted were more frequent in patients 

with high GC (24.7%) or intermediate GC (18.5%) than patients with low GC (11.7%). Finally, the 

oncoplot in Figure 52 shows a higher prevalence on U-CLL in the high GC group and a bias toward 

certain TL and epitype groups across the three GC groups. Therefore, further assessment of GC 

association with IGHV mutation status, TL and epitype was completed below.  

6.4.4 Increasing GC is negatively correlated with TL and closely connected with many 

biomarkers that reflect the proliferative history of CLL 

The three GC groups were found to have a significant difference in the proportion of U-CLL and 

M-CLL cases (p-value<0.001). Specifically, most patients with high GC also had a unmutated IGHV 

status (83%, n=62) compared to only 17% of patients having M-CLL (n=13). The high GC group had 

a significantly greater proportion of U-CLL cases than either low or intermediate GC, with both of 

these groups having only 57% of cases with U-CLL, see Figure 53. Similarly, a significant difference 

across the three GC group was also found when examining TL and epitype.  
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Figure 53- Stacked bar chart of the proportion of U-CLL and M-CLL cases in each of the three GC groups. 

A pairwise chi squared was employed to test the significance difference in the IGHV status 

prevalence across the three GC groups, p-value<0.001 shown by three asterisks (***). 

Figure 54A displays the significant difference in the cases of n-CLL, i-CLL and m-CLL across the three 

GC groups. The low GC against both intermediate and high GC were significantly difference in 

proportion of the three epitype groups (p-value<0.05). Specifically, the low GC group had 82 i-CLL 

cases (31%) but the intermediate GC group had 45 cases (44%), but had similar proportions of n-

CLL (47% vs. 41%) and m-CLL (22% vs 15%). In fact, the largest epitype group in the low GC group 

was n-CLL epitype (47%) whereas the i-CLL had the highest proportion of the intermediate GC 

group (44%). Comparing low to high GC groups, the n-CLL cases seemed to differ the most with it 

accounting for 64% of the high group whereas only representing 47% of the low GC group. 

Between the intermediate and high GC group epitype varied greatly (p-value<0.01). m-CLL cases 

were present in similar proportions of the intermediate and high groups, 15% and 14% 

respectively. But the high group was composed mainly of n-CLL cases (50/78) whereas the i-CLL 

epitype (45/102) was the most prevalent in the intermediate GC group. TL across the three GC 

group differed, with the high group having a significant difference against low (p-value<0.01) and 

intermediate (p-value<0.05). As Figure 54B shows, low and intermediate GC cases have a similar 

proportion of the three TL groups. However the largest proportion of low is the TL-L (39%) 

followed by TL-S (35%), whereas the greatest proportion of intermediate was TL-S (38%) followed 

by TL-L (35%). However the high GC group is mainly composed of TL-S (67%) with a smaller 
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portion of both the TL-L (26%) and TL-I (17%) groups. This relationship between TL and GC was 

also found when TL was assessed as a continuous variable and plotted against CNA count, a 

continuous variable. A Kendall’s rank correlation test found a significant (p-value<0.001) negative 

correlation (coefficient; -0.12) between the two continuous variables, scatterplot is shown in 

Figure 55. Therefore, as CNA count increases TL decreases which is concordant with the trends 

identified between the TL and GC categorical variables, Figure 54B. A Sankey plot was also 

compiled to examine the relationship between GC, epitype and TL (Supplementary Figure 8). The 

nodes and links of the Sankey diagram illustrates that patients with high GC typically also had TL-S 

and the n-CLL epitype. An even distribution of the intermediate GC across the TL groups was 

found as intermediate GC accounted for 21%, 24% and 21% of TL-S, TL-I and TL-L group, 

respectively. Conversely, the intermediate GC patients accounted for 19%, 31% and 18% of n-CLL, 

i-CLL and m-CLL cases, again highlighting the association between intermediate GC and i-CLL 

epitype. The biological characteristics of the three GC groups are further examined below through 

assessing their association with additional biomarkers.  

 

Figure 54- Stacked bar chart of the proportion of the three epitype (A) and TL (B) groups in each of the 

three GC groups. A pairwise chi squared was employed to test the significance difference in 

the IGHV status prevalence across the three GC groups, p-value<0.05 is shown by a single 

asterisk (*) and a p-value<0.01 is shown by two asterisks (**). 
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Figure 55-  Scatter plot of CNA count against TL, both as continuous variables, for 495 CLL patients. The 

points are coloured based on the three GC classification groups; low, intermediate and high. A 

Kendall’s rank correlation test was used to compare the TL given by the two metrics for each 

patient. 

6.4.5 High GC is linked with the presence of TP53 aberration and various other poor risk 

biomarkers  

Firstly, mutation count, the number of mutations recorded per patient from the screening of the 9 

genes, was assessed. Please note that in some cases more than one variant was reported in a 

gene, all variants were included in mutation count. A significant (p-value<0.05) difference in 

mutation count was found between the high GC group against low or intermediate GC, see Figure 

56. The low and intermediate GC group had a mean mutation count of 0.86 (range: 0-6) and 0.71 

(range: 0-3) mutations whereas the high GC group, on average had 1.07 mutations (range: 0-3). 

However, when comparing mutation count against CNA count as a continuous variable, no 

significant difference in CNA count was found as mutation count increased, see Supplementary 

Figure 9.  
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Figure 56- Boxplot showing the range of mutation count reported in each of the three GC groups; low, 

intermediate and high. A pairwise Wilcoxon test was utilised to examine the difference in 

mutation count between two GC groups, a p-value<0.05 is indicated by a single asterisk (*).  

Further mutations and CNA events across the three GC groups were examined through the 

construction of a bar chart (Figure 57), illustrating the prevalence of various genomic disruption 

events across the three GC groups. Firstly, the most prevalent genomic disruption reported was 

del13q, occurring in 235 patients with 185 cases being a monoallelic loss and 50 being a biallelic 

loss. A significantly higher prevalence of del(13q) monoallelic events was reported in the high GC 

group compared to low GC patients (p-value<0.01). The monoallelic del13q event was present in 

33%, 41% and 51% of low, intermediate and high GC patients, respectively. Whereas a biallelic 

del13q event was significantly more prevalent in patients with intermediate GC (19%) compared 

to low (8%, p-value<0.05) or high GC (7%, p-value<0.01). Next, TP53 dysfunction, a TP53 mutation 

and/or del17p event, was found to have a significantly (p-value<0.001) greater frequency in 

patients with high GC than either the intermediate or low GC patients, see Figure 57. 28% (n=23) 

of patients with high GC also had TP53 dysfunction compared to only 8% and 6% of intermediate 

and low GC patients.  
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Figure 57- A bar chart illustrating the prevalence of various genomic disruptions, including mutations of 

genes, CNA, biallelic losses of genes, across the three GC groups (coloured bars). The y axis 

shows the percentage of low, intermediate, and high GC patients that have each genomic 

disruption. For example, 25% of patients with low GC also have a SF3B1 mutation. Certain 

variables had many subgroups, for example ATM, del(11q) and ATM biallelic groups were 

cases with only a mutation of the gene, a copy number loss which overlapped the gene or 

both a mutation and copy number loss, respectively. A pairwise chi squared test was used to 

analyse the independence of mutation/CNA events across the three GC groups. For the 

comparison of GC groups with 5 or less events, a Fishers exact test was used instead. p-

value<0.05 *, p-value<0.01 **, and p-value<0.001 ***.  

Assessing the remaining two recurrent CNA events described in Dohners seminal paper, it was 

found that the frequency of both del11q and trisomy 12 cases differed across the GC groups 

(Figure 57). Specifically, a significantly greater proportion of the high GC group (21%) had del11q 

event compared to the low GC group (12%, p-value<0.05). No significant difference in del11q 

events was found between the intermediate group against low or high GC. Conversely, trisomy 12 

had a significant greater prevalence in low GC patients compared to intermediate or high GC (p-

value<0.01). Of the 306 patients with low GC, 52 patients also had a trisomy 12 event (17%) 

compared to only 6% of intermediate and 5% of high GC patients. The disruption of BIRC3 and 

ATM were classified using the same system. For example, ATM signifies the number of cases with 

a mutation in that gene, del11q signifies the presence of the copy number loss that overlapped 

the ATM gene and ATM biallelic represents a patient with both a mutation and copy number loss 

of the gene. As previously mentioned, del11q events differed across the GC groups, however ATM 

mutations and biallelic ATM loss was also found to be significantly dominant in certain GC groups. 
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High GC had a significant greater proportion of ATM mutations and biallelic ATM loss than low GC 

patients (p-value<0.01). Similarly, intermediate GC had a significant greater proportion of ATM 

mutations and biallelic ATM loss than low GC patients (p-value<0.05). Assessment of BIRC3 

dysfunction identified that both high (20%, p-value<0.01) and intermediate GC (18%, p-

value<0.05) group had a significantly greater proportion of BIRC3 copy number losses event than 

the low GC group (9%). In contrast, no significant difference in the presence of biallelic BIRC3 loss 

was found across the three GC groups and a greater prevalence of BIRC3 mutations was identified 

in the low GC group compared to intermediate GC (p-value<0.05). Of the remaining 6 mutation 

groups, only a significant difference in NOTCH1 (p-value<0.05) prevalence was found, with a 

greater percentage of the low GC patients having this mutation compared to high or intermediate 

GC group. Further examination of del13q events were investigated and is outlined below.  

6.4.6 Increased GC was not affiliated with del13q subtypes, a finding reported in the 

literature 

Published literature has further classified del13q events using two naming systems; class 1&2 and 

type 1&2 (144,304,305). Class 1 and type 1 del13q event are copy number losses that 

encompasses the MDR (DLEU2). The class 2 del13q events are much larger and impact not only 

the MDR but also the RNASEH2B gene whereas a type 2 event includes the MDR and the RB1 

gene. When comparing the reported CNA count of the 2 class groups and 2 type groups, no 

significant difference was found between the class groups or type group. However, patients with 

no del13q had a significantly smaller CNA count than patients with del13q (p-value<0.001) (see 

Supplementary Figure 10), irrespectively of the del13q subgroup. This result was also found when 

comparing the del13q subgroups and GC as a categorical variable as the distribution of the three 

GC groups was similar in the class 1, type 1, class 2 and type 2 (see Supplementary Figure 11). A 

final examination of the del13q cases where cases were classified not only based on class and 

type, but also if the deletion was monoallelic or biallelic. This analysis found there was a 

significantly higher percentage of low GC (64.7%) patients in the cohort of del13q cases which has 

a biallelic loss of both the MDR and RNASEH2B (p-value<0.05), see Figure 58. However, it is 

important to note that across the cohort of 495 patients, 17 cases have a biallelic loss of both 

genes (class2bi2) and only 11 cases where DLEU2 was a biallelically lost in combination with a 

monoallelic deletion of RNASEH2B (class2bi). No significant difference in GC prevalence across the 

del13q type events, including the various monoallelic and biallelic subgroups, was found 

(Supplementary Figure 12).    
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Figure 58- Stacked bar charting showing the distribution of the three GC groups across the different 

del13q subgroup. A pairwise chi squared was employed to test the significance difference in 

the GC prevalence across the five del13q classes, p-value<0.05 is shown by a single asterisk (*) 

6.4.7 GC significantly co-occur with many poor risk clinical biomarkers. 

Associations between GC and many clinically relevant CLL biomarkers were examined by 

calculating the OR, which quantifies the strength of association between two variables. The 

findings from this analysis supported much of the work previously completed in this chapter, but 

also add further granularity in describing the biological composition of the three GC groups.  

 Firstly, this analysis confirmed what was reported in Figure 56, as a mutation count of 2 were 

strongly co occurred with high GC. However, this association with high GC was not found between 

the 31 cases where three or more mutations were identified. Similarly, previously reported trends 

between GC and the three TL and epitype subgroups were also identified (Figure 54 and Figure 55). 

High GC and the n-CLL epitype were significantly associated (p-value<0.01). Furthermore, a 

significant co-occurrence between intermediate GC and the i-CLL epitype was also found (p-

value<0.01). TL-S was strongly associated with high GC (p-value<0.01) and significantly mutually 

exclusive with low GC (p-value<0.05). Similarly, high GC was found to be significantly negatively 

associated with TL-L. No significant association between the TL-I variable and the three GC 

classifications was identified. TP53 aberration was found to be significantly co-occurring with high 

GC, conversely, low GC was significantly mutually exclusive (p-value<0.01). Of the 81 patients with 
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high GC, 23 patients had a TP53 aberration (28%) compared to 18 patients (6%) of the low GC 

patients that were reported to have a TP53 aberration.   

 

Figure 59- Association plot comparing GC against 13 clinical CLL biomarkers. The three GC subgroups are 

shown in the plot’s columns and compared against all the variables, shown in rows, in a 

pairwise fashion. An odds ratio (OR) is calculated for each pairwise comparison of 27 

subgroups from the 13 clinical variables. The OR quantifies the strength of association 

between two events, i.e. high GC and TP53 aberration. A Fishers exact test was used to assess 

if the relationship between the two events was statistically significant. An OR with a p<0.05 is 

shown by an asterisk (*), an OR with a p<0.01 is shown by two asterisks (**), and p-values are 

corrected using false discovery rate (FDR) to account for multiple testing. A green-coloured 

square indicates an OR<1 and therefore the two variables are negatively associated, whereas 

a blue square indicates an OR>1 and therefore the two variables are positively associated. 

The association plot reported that the presence of unmutated IGHV mutation status also co-

occurred with high GC (p-value<0.01), which supports the previous finding reported in Figure 53. 

Trisomy 12 events were significantly associated with low GC (p-value<0.01) and significantly 

mutually exclusive with intermediate and high GC (p-value<0.05), as earlier reported (Figure 57). 

Assessing the presence of certain mutations identified that both NOTCH1 and BIRC3 mutations 

significantly co-occurred with low GC patients but were negatively associated with the 

intermediate GC (p-value<0.05), which is concurrent with previous analysis (Figure 57). ATM 

mutations and del11q events were significantly negatively associated with low GC (p-value<0.05), 

but not significantly associated with either intermediate or high GC (Figure 59). Conversely, 

biallelic ATM loss was negatively associated with low GC but strongly associated with high GC (p-

value<0.05). The presence of a sole BIRC3 copy number loss was also significantly associated the 

high GC group and mutually exclusive with low GC. Biallelic BIRC3 loss was not significantly 
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associated with either of the three GC groups. Similarly, gender and Binet stage was not found to 

be statistically associated with GC.  

6.4.8 450k array data reported, on average, significantly more CNA than the three other 

genomic technologies employed. 

As mentioned above, a significant difference in CNA count, dosage and GC groups was found 

between the two clinical trial cohorts employed in this chapter. On average, the ARC/ADM cohort 

had a significantly greater CNA count per person than compared to the CLL4 cohort, with a mean 

CNA count being reported as 3.36 and 2.34, respectively (p-value<0.001), as illustrated in Figure 

60. Whilst the median CNA count for both clinical trial cohorts was the same (2 CNA), the 

ARCADM cohort had a greater range of reported CNA count (0-26 CNA) than the CLL4 cohort (0-

23 CNA). This translated into a significant difference in GC groups recorded for the two cohorts (p-

value<0.01), with the proportion of CLL4 cases with low GC being greater than what was found 

when this GC classification was applied to the ARC/ADM cohort (low GC; 68% vs 55%), see 

Supplementary Figure 13 and 14 and Table 9. As four different technologies had been used to 

generate CNA data, we wanted to further investigate if this difference between the two trial 

cohorts was due to technical biases of the technologies or due to normal patient variation.  

 

Figure 60- Density plot of CNA count across the two clinical trial cohorts; ARCTIC/ADMIRE and CLL4. The 

mean CNA count from CLL4 (2.34 CNA) and ARCTIC/ADMIRE (3.36 CNA) clinical trial cohorts 

are annotated and shown in bold.  

 

A further density plot showing CNA count across the four technologies employed to generate CNA 

data was constructed, see Figure 61. 108 CLL4 patients had CNA generated using the SNP 6.0 array 
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technology and the remaining 143 cases were generated using sWGS technology. Whereas most 

of the ARC/ADM cohort CNA data was generated from HumanOmni array (n=212) with 450k data 

accounting for 31 patients and a single ARC/ADM clinical trial patient was processed using the 

sWGS technology. A pairwise Wilcoxon rank sum test identified a significant difference in CNA 

count between the 450k data and all three other technologies (p-value<0.001). The mean CNA 

count per patient was over double what the other technologies reported with 6.1 CNA per 

patient, compared to 2.99, 2.97 and 1.83 CNA reported in the SNP 6.0, HumanOmni and sWGS 

cohorts. Similarly, the 450k cohort had a greater median and a large range recorded (median: 5 

CNA, range: 0-26 CNA). This caused the cohort of 31 patients with 450k array data to be mainly 

defined as having high GC (52%, 16/31). Across all other technologies, this high GC group was 

reported the least frequently with it only account for 15%, 20%, and 9% of the HumanOmni array, 

SNP 6.0 array and sWGS cohort, respectively.   

 

Figure 61- Density plot of CNA count across the four technologies used to generate CNA data; 450k, 

HumanOmni array, SNP 6.0 array, and sWGS. The mean CNA count from sWGS (1.83 CNA), 

HumanOmni array (2.97 CNA), SNP 6.0 array (2.99 CNA) and 450k array (6.1 CNA) are 

annotated and shown in bold.  

Moreover, a significant difference in CNA count was found between patients in the sWGS group 

compared to the three other technologies (p-value<0.01). This technology, on average, detected 

less CNAs than the three other technologies and thus this group had a large percentage of 

patients that were classified in the low GC group (76%), see Figure 61. When comparing how this 

difference in CNA count influence the classification into the three GC groups, a significant 
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difference was found between sWGS and HumanOmni or SNP 6.0 array was found (p-value<0.05). 

However a greater statistical significant difference was reported when comparing the GC groups 

of the 450k array cohort to the three other technologies (p-value<0.001).  

To further inspect these 4 cohorts that utilised differing technologies, the prevalence of certain 

patient variables were compared. The patient variables assessed included TP53 dysfunction, IGHV 

mutation status, ATM disruption, BIRC3 disruption, trisomy 12 and del13q events. Firstly, no 

significant difference across the four cohorts was identified when assessing TP53 aberration or 

IGHV mutation status. A significant difference in the presence of del13q events (p-value<0.001) 

was found between SNP 6.0 array and the sWGS and HumanOmni array cohort, but not against 

the 450k array cohort. The SNP 6.0 array cohort reporting a del13q event in 31% of the cohort 

(33/108). Most strikingly, ATM disruption was significantly less prevalent in the sWGS cohort 

compared to all three other technologies (p-value<0.01). 20 patients out of 143 CLL4 patients with 

data generated by sWGS (14%) had either a mutation, copy number loss or biallelic loss of the 

ATM gene. Whereas, this variable was present in 35%, 27% and 32% of the SNP 6.0 array, 

HumanOmni array and 450k array cohorts. No patient variable was found to be significantly 

enriched or diminished in the 450k array cohort compared to the three other technologies.  

The output of the four different genomic techniques was then compared against the available 

FISH data gathered as part of the clinical trial, see Supplementary Table 13. FISH data was not 

available for all 495 cases and comparisons between the FISH data and genomic arrays were 

completed on a subgroup of the cohort which had FISH data. Table 10 reports a moderate to 

almost perfect concordance with FISH across sWGS, HumanOmni and SNP array for the detection 

of the four recurrent CNAs in CLL, del17p, del11q, trisomy 12 and del13q. A substantial 

concordance was found between FISH and 450k array data, except for the detection of del17p 

events in which a negative Cohen’s kappa value was reported (-0.03). A negative result suggests 

that the two technologies tend to disagree with the reporting of del17p events. Calculating the 

percentage of agreement between a genomic technique and FISH data, a high percentage of 

agreement across all four techniques was found when detecting del17p, del11q and trisomy 12 

events, compared to FISH data, see Table 10. For example, detecting del17p there was a 98%, 98%, 

97% and 94% agreement with FISH when using SNP array, sWGS, HumanOmni array, and 450k 

array, respectively. A lower percentage of agreement is detecting del13q was found, however 

these are the most common CNA events but least prognostic (135). Overall, the genomic data was 

used instead of FISH array as all 495 had data from one of the genomic techniques and good 

concordance was found with FISH (Table 10). These techniques also gave greater resolution than 

FISH and reported breakpoint information about the CNAs, so dosage, a suggested GC metric, 

could be assessed.  
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Table 10- Concordance of the four genomic techniques employed in this thesis with FISH data. 

 SNP Array  Cohen’s Kappa sWGS  Cohen’s Kappa HumanOmni Array  Cohen’s Kappa 450k Array  Cohen’s Kappa 

Del17p Yes No  Yes No  Yes No  Yes No  

Yes 5 1 0.82 5 2 0.83 8 5 0.71 0 1 -0.03 * 

No 1 94 98% 0 123 98% 1 191 97% 1 29 94% 

Del11q Yes No  Yes No  Yes No  Yes No  

Yes 28 7 0.84 12 8 0.61 31 7 0.77 5 4 0.64 

No 0 67 93% 4 107 91% 7 162 93% 0 22 87% 

Trisomy 12 Yes No  Yes No  Yes No  Yes No  

Yes 9 2 0.84 13 5 0.79 5 1 0.90 4 1 0.85 

No 1 90 97% 1 112 95% 0 74 99% 0 12 94% 

Del13q Yes No  Yes No  Yes No  Yes No  

Yes 30 27 0.44 59 18 0.60 48 7 0.73 5 3 0.63 

No 3 42 71% 8 46 80% 3 23 82% 0 8 81% 

Footnote: Cohen’s kappa to test concordance between FISH and each of the four genomic technologies for the detection of copy number events; del17p, de;11q, Trisomy 12 and del13q.  The magnitude of 

Cohen’s kappa value is used to interpret the strength of the agreement; <0=Poor, 0.01-0.2=Slight, 0.21-0.4=Fair, 0.41-0.6=Moderate, 0.61-0.8=Substantial and 0.81-1=Almost perfect. * A negative value 

indicates that the two technologies tend to disagree with the result. FISH data was not available for all cases and therefore the sample size is smaller than the total cohort. Percentage in agreement is shown 

in bold (number of agreed yes and no cases/number of cases with FISH*100) 
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Overall, whilst the sWGS cohort reported significantly less CNA per patient, this did not greatly 

impact the GC classification. Furthermore, as this cohort was found to be significantly diminished 

in cases that have disruption of ATM, a gene heavily involved in DNA maintenance and genomic 

stability, it could be suggested that these patients truly have less CNA due to sufficient protection 

of ATM and its involvement in DNA repair. Therefore, suggesting the difference identified in the 

result for this technology is likely to be patient variation. Conversely, the 450k array cohort 

reported a much higher CNA count per patient compared to the other technologies used. As the 

prevalence of certain patient variables did not differ significantly against the other cohorts, there 

is no biological explanation of this difference in the CNA data reported. Instead it suggests a 

technical bias has skewed the data. Fortunately this cohort was the smallest technical cohort and 

comprised only 31 cases out of the 495 patients included in the statistical analysis. However, a 

decision to remove these cases and supplement, where possible, with HumanOmni array data 

was made for the following survival analysis, which was complete on separate ARC/ADM and CLL4 

cohorts. Of the 31 patients that had CNA data generated using the 450k array technique, 13 cases 

also had HumanOmni array data available which was used instead. Therefore only 18 cases were 

removed from the 244 ARC/ADM clinical trial cohort, before survival analysis was completed. This 

resulted in a cohort of 226 ARC/ADM clinical trial patients, with all CNA data generated using the 

HumanOmni array technology.   

6.4.9 GC has a significant impact on PFS and OS in a univariate analysis   

To verify the impact of each clinco-biological variable, including GC, on PFS and OS a univariate 

analysis was completed on a separate CLL4 and ARC/ADM cohort. A total of 14 variables, including 

GC, was included in the univariate analysis. Theses variables were chosen based on published 

work of clinical biomarkers in CLL and availability of data for the cohorts used in the analysis. ATM 

disruption was defined with four groups; biallelic loss, sole del11q, sole mutation and wild type 

ATM. BIRC3 biallelic loss was included but sole BIRC3 mutation or deletion was not. TP53 

aberration included a cases with a del17p and/or mutation of TP53 gene. CLL4 survival cohort was 

comprised of 251 cases. Survival data for the PFS and OS came from the 2010 and 2016 update, 

respectively. Median PFS for the 251 CLL4 clinical trial patients is 2.4 years (Range: 0-10.1 years) 

and the median OS is 6 years (Range: 0.1-17.4 years). The ARCTIC/ADMIRE cohort was comprised 

of 226 cases. Survival data for the PFS and OS came from the 2022 update. Median PFS for the 

226 ARCADM clinical trial patients is 4.67 years (Range: 0.02-9 years) and the median OS is 6.43 

years (Range: 0.02-9.1 years). Post hoc power calculations from the two cohorts, across both 

survival endpoints, shows sample size is sufficient to examine the clinical utility of GC, see Table 11 

and Table 12. The number of cases needed for each pairwise comparison was smaller than the 
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cohort size in each clinical trial cohort, except for PFS between intermediate and high GC. To 

capture the survival trends between these two cohorts an estimated sample size of over 960 

patients is required, see Table 11. This power calculation was not able to be completed for OS due 

to the lack of an appropriate HR reported in the literature.  
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Table 11- The output from each pairwise power calculation for the PFS endpoint 

  HR Proportion Number needed 

 Low vs Intermediate 1.7 0.21 (45/217) 168 

CLL4 Low vs High 1.9 0.17 (34/266) 135 

 Intermediate vs High 1.2 0.43 (34/79) 963 

 Low vs Intermediate 1.7 0.27 (52/192) 141 

ARC/ADM Low vs High 1.9 0.18 (34/192) 129 

 Intermediate vs High 1.2 0.40 (34/86) 984 

Table 12- The output for each pairwise power calculation for the OS endpoint 

  HR Proportion Number needed 

 Low vs Intermediate 1.67 0.21 (45/217) 180 

CLL4 Low vs High 4.2 0.17 (34/266) 27 

 Intermediate vs High * 0.43 (34/79) * 

 Low vs Intermediate 1.67 0.27 (52/192) 151 

ARC/ADM Low vs High 4.2 0.18 (34/192) 26 

 Intermediate vs High * 0.40 (34/86) * 

 

6.4.10 Survival analysis in a discovery cohort of 251 CLL4 clinical trial patients 

KM analysis identified no significant difference in PFS across the three GC groups, see 

Supplementary Figure 15. However, when assessing OS, a significantly poorer survival was reported 

in the high GC group compared to the low GC group (p-value<0.05), see Figure 62. The 5-year 

survival rate was 60%, 62% and 41% for the low, intermediate and high GC patients, respectively. 

Whereas results from a univariate cox regression analysis continuously identified a significant 

difference in survival between high GC and low GC subgroup (p-value<0.05). The median PFS for 

high GC patients was 1.01 years compared to 2.53 years for low GC patients. Similarly, the median 

OS for high patients was significantly shorter than low GC patients, 4.2 years compared to 6.25 

years, see Supplementary Table 14 and 15.  
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Figure 62- Kaplan-Meier plot of the three GC groups for OS using the cohort of 251 CLL4 patients. A 

pairwise log rank test was employed to compare survival plots, p-value<0.05 is indicated by a 

single asterisk (*). The table shows the number and percentage of cases in each GC group that 

have not had an event, i.e progressed or died, at a point in time. The number of OS events for 

the low, intermedite and high GC patients was 141/172, 37/45 and 31/34, respectively. 

 

Other variables that were significant in the univariate analysis included TP53 aberration, IGHV 

mutation status, TL and epitype. The presence of a TP53 aberration resulted in a significantly poor 

PFS (HR: 3.72, 95% CI: 2.41 to 5.75, p-value<0.001) and OS (HR: 3.71, 95% CI: 2.38 to 5.78, p-

value<0.001) compared to patients without. Likewise, in U-CLL patients had a significantly 

different PFS and OS than M-CLL (p-value<0.001). PFS was shorter in the U-CLL group compared to 

M-CLL (HR: 2.39, 95% CI: 1.74 to 3.27), with a median survival of 1.87 years and 3.59 years, 

respectively. Equally, U-CLL had a poorer OS than M-CLL patients (HR: 2.31, 95% CI: 1.67 to 3.19) 

with a reported median survival of 5.23 years and 8.94 years, respectively, see Supplementary 

Table 15. Across the three TL groups, a significant difference in PFS and OS was identified, with 

both the TL-S and TL-I patients having a significantly poorer survival compared to TL-L patients, 

which was the reference group. Specifically, TL-L had a median PFS and OS of 4.04 and 10.1 years 

which was significantly longer than TL-I patients (p-value<0.01) and TL-S patients (p-value<0.001). 

TL-I patients had median survival PFS and OS of 1.99 and 6.25 years, respectively, whilst TL-S 

patients have a median PFS and OS of 2.46 and 5.3 years, respectively. Epitype also had a 

significantly different PFS and OS, with the m-CLL patients having the greatest outcome compared 

to n-CLL or i-CLL patients. In the PFS analysis, a HR of 2.8 (95% CI: 1.67 to 4.69, p-value<0.001) was 

reported when comparing n-CLL patients against m-CLL patients, which is reflected in the median 

survival of 2.1 years for the 115 n-CLL cases and 3.7 years for the 28 m-CLL cases. Additionally, i-
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CLL patients had a significantly poorer PFS than m-CLL patients (HR: 1.78, 95% CI: 1.05 to 3.02, p-

value<0.05) Correspondently, this trend was also found in OS with both n-CLL and i-CLL patients 

having a significantly shorter OS than m-CLL patients (p-value<0.001). Median OS for these three 

epitype groups; n-CLL, i-CLL and m-CLL, were 5.86, 5.39 and 10.82 years, accordingly.  

Examining the ATM disruption variable, a del11q event was the only significant subgroup in PFS 

analysis compared to patients with no disruption. Patients with del11q events were found to have 

a significantly poorer PFS than patients with no disruption to the ATM gene (HR: 1.97, 95% CI: 

1.39 to 2.8, p-value<0.001, median: 1.51 vs. 2.53 years). Del11q patients also had a significantly 

poorer OS (HR: 1.5, 95% CI: 1.05 to 2.15, p-value<0.05, median: 5.56 years vs. 6.25 years). The 

presence of a biallelic BIRC3 loss was only significant in the univariate OS analysis (HR: 2.73, 95% 

CI: 1.12 to 6.68, p-value<0.05), with a median OS of 3.32 years, which is significantly shorter than 

the patients without a biallelic loss (6.06 years).  

Inspecting the survival trends within the mutation count variable showed that patients with 

greater than zero mutations had a significantly poorer PFS and OS. Specifically, a significant 

difference in PFS was identified in patients with ≥3, 2 or 1 mutations compared to patients with 

zero (p-value<0.01). The median survival for patients with a mutation count of ≥3, 2, 1 or 0 was 

recorded as 1.1, 1.43, 2.13, and 3.07 years, respectively. Similarly, patients with ≥3, 2 or 1 

mutations compared to patients with zero had a significantly poorer OS. For example, the 

presence of 2 mutations lead to a significantly shorter OS (median: 4.47 years) than if zero 

mutations were recorded (median: 7.9 years, HR: 2.47, 95% CI: 1.64 to 3.72, p-value<0.001).  

The presence of SF3B1 or NOTCH1 mutations did not have a significant impact on PFS in the 

univariate analysis, however both variables were reported to have a significantly poorer OS. 

Similarly, the variables age and trisomy 12 also were not significant in univariate analysis when 

the PFS endpoint was used but were significant in OS. As age at diagnosis increased, the risk of 

death increased (HR: 1.05, 95% CI: 1.03 to 1.07, p-value<0.01). The presence of a trisomy 12 also 

presented with a shorter OS, with a median survival of patients with a trisomy 12 event being 4.16 

years compared to a median survival of 6.25 years for patients without a trisomy 12 event (p-

value<0.05). Contrastingly, the univariate analysis of PFS for the three treatment groups identified 

a difference between the FC group and FDR group, with patients in the former having a 

significantly prolonged PFS (median: 3.69 years) than the latter (median: 1.69 years). No 

significant difference in OS across the three treatment arms was identified. Finally, del13q events, 

either a biallelic or monoallelic loss, was reported as significant in the PFS or OS univariate 

analysis, see Supplementary Table 14 and 15.  
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6.4.11 Survival analysis in a validation cohort of 226 ARCTIC and ADMIRE clinical trial 

patients  

Firstly, this validation cohort also found a significant difference in OS, with patients in the high GC 

presenting with a poorer survival (median: 4.48 years) compared to patients with low GC (median: 

6.82 years) (p-value<0.05). Conversely, unlike the discovery cohort, a significant difference was 

also found between intermediate and high GC groups (p-value<0.05), with the 5-year survival 

being reported as 79% and 47%, respectively, see Figure 63B. Furthermore, a significant difference 

in PFS across the three GC was found. The high GC patients had a significantly shorter PFS than 

either the low or intermediate GC group, Figure 63A. The high GC had a median survival of 2.53 

years, whereas the intermediate GC patients were reported with a median survival of 4.86 years 

and the low GC group had 5.05 years median survival. The univariate cox regression analysis also 

discovered that the high GC group had a significantly poorer PFS and OS compared to the low GC 

group. A HR of 2.20 (95% CI: 1.27 to 3.22, p-value<0.01) was recorded for the high compared to 

low GC groups, using PFS as the survival endpoint, see Supplementary Table 16. Similarly, a HR of 

2.21 (95% CI: 1.17 to 4.17, p-value<0.05) was reported in the OS analysis between high and low 

GC groups, see Supplementary Table 17.  
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Figure 63- Kaplan-Meier plot of the three GC groups for A) PFS and B) OS, using the cohort of 226 

ARCTIC/ADMIRE patients. A pairwise log rank test was employed to compare survival plots, p-

value<0.05 is indicated by a single asterisk (*). The table shows the number and percentage of 

cases in each GC group that have not had an event, i.e progressed or died, at a point in time. 

The number of PFS events for the low, intermedite and high GC patients was 82/104, 33/52 

and 23/34, respectively. The number of OS events for the low, intermedite and high GC 

patients was 37/104, 12/52 and 13/34, respectively. 

The presence of a TP53 aberration was found to have a significant detrimental impact on PFS and 

OS. Patient with a TP53 aberration had a shorter PFS (median: 2.17 years) than patients with no 

aberration (median: 5.06 years) (HR: 4.65, 95% CI: 2.93 to 7.41, p-value<0.001). Likewise, patients 

with an aberration had a significant poorer OS (HR: 2.97, 95% CI: 1.58 to 5.59, p-value<0.001, 

median: 3.62 years) compared to patients who lacked this aberration (median: 6.69 years). As 
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previously shown, U-CLL patients had a significantly shorter PFS and OS compared to their 

counterpart, M-CLL patients (PFS, HR: 3.04, 95% CI: 2 to 4.61, p-value<0.001, OS, HR: 1.86, 95% CI: 

1.04 to 3.33, p-value<0.05), see Supplementary Table 16 and 17.  

Across the three TL groups a difference in PFS and OS was reported. TL-S patients had a 

significantly poorer PFS and OS compared to TL-L patients. The median PFS of TL-S, TL-I and TL-L 

patients was 3.7, 3.93 and 5.83 years, respectively. Similarly, median OS recorded for TL-S, TL-I 

and TL-L patients was 5.91, 5.99 and 6.92 years, respectively. The PFS HR comparing TL-S to TL-L 

patients was 2.57 (95% CI: 1.7 to 3.88, p-value<0.001) and the HR identified in the OS analysis was 

2.55 (95% CI: 1.39 to 4.67, p-value<0.01). Whilst TL-I had a significantly poorer PFS compared to 

TL-L patients (PFS, HR: 2.21, 95% CI: 1.48 to 3.31, p-value<0.001), it was not significant in OS. In a 

similar manner, the three epitypes significantly differed in PFS, with n-CLL (HR: 4.35, 95% CI: 2.51 

to 7.52, p-value<0.001) and i-CLL (HR: 2.09, 95% CI: 1.15 to 3.83, p-value<0.05) patients having a 

shorter survival than m-CLL patients. However, only a significant difference in OS was identified 

between n-CLL and m-CLL groups (HR: 4.69, 95% CI: 1.83 to 11.99, p-value<0.01).  

Across both survival endpoints a significant difference in survival was reported in the mutation 

count variable. For PFS, the presence of ≥3, 2, or 1 mutation predicted a shorter survival 

compared to if a patient had zero with median survival times for each group being 2.61, 3.56, 4.48 

and 5.83 years, respectively. Assessing OS identified a significant difference between ≥3 or 1 

mutations and zero group with a reported HR of 3.68 (95% CI: 1.51 to 8.96, p-value<0.01) and 

2.20 (95% CI: 1.11 to 3.69, p-value<0.05), respectively.  

In PFS results only, ATM disruption was found to be significant in the ARC/ADM cohort. 

Specifically, patients with a biallelic loss of the gene had a median survival of just 3.36 years 

compared to 4.99 years reported in patients who were ATM wild type (HR: 2.1, 95% CI: 1.05 to 

4.18, p-value<0.05) (Supplementary Table 16). Additionally, patients with a sole del11q event also 

had a poorer PFS of 4.02 years (HR: 2.1, 95% CI: 1.33 to 3.32, p-value<0.01). Conversely the age 

variable was only significant in the OS analysis, which found that as age at diagnosis increased the 

risk of death also increased (HR: 1.03, 95% CI: 1 to 1.07, p-value<0.05), see Supplementary Table 17.  

The variables, treatment arm, SF3B1 mutation, NOTCH1 mutation, BIRC3 biallelic loss, del13q and 

trisomy 12 events, were not found significant in either PFS or OS univariate analysis in this 

validation clinical trial cohort.   
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6.4.12 High GC is an independent predictor of poor survival within a multivariate analysis 

using a discovery and validation clinical trial cohort 

The variables included in the first cox regression model were selected based on if they were 

significant in the univariate analysis, this resulted in 13 variables being selected. Therefore, the 

first PFS and OS models, in both cohorts, were comprised of GC, TL, epitype, TP53 aberration, 

ATM disruption, BIRC3 biallelic loss, IGHV mutation status, SF3B1 mutation, NOTCH1 mutation, 

mutation count, trisomy 12, age and treatment arm. ATM disruption variable was defined by four 

subgroups; biallelic loss of ATM, sole ATM mutation, sole del11q event and wild type, which was 

used as the reference group.  Treatment arms differed across the two clinical trial cohorts as 

patients were enrolled into distinct treatment regimens and therefore the subgroups included in 

this covariate varied between the discovery and validation cohorts.  

Firstly, the final PFS models for the CLL4 and ARC/ADM cohort were based on 198 and 202 cases 

with 176 and 121 events, respectively. The GC covariate remain significant in the final ARC/ADM 

PFS model with the high GC group independently predicting a shorter time till progression for 

patients (HR: 1.94, 95% CI: 1.15 to 3.27, p-value<0.05), see Supplementary Table 20. However, GC 

did not retain independent significant in the CLL4 PFS model and was removed from a previous 

iteration of the model during the stepwise backwards elimination process that was employed. 

Across both cohorts TP53 aberration and epitype remained significant in the model (Figure 64). In 

the discovery cohort the presence of a TP53 aberration had a greatest detrimental effect on PFS 

with patients being reported to have three times the risk of progressing than patients with a wild 

type TP53 (HR: 3.13, 95% CI: 1.87 to 5.26, p-value<0.001), see Supplementary Table 18. TP53 

aberration was also significant in the validation cohort (HR: 2.60, 95% CI: 1.39 to 4.85, p-

value<0.01). Conversely, the epitype covariate had a greatest impact on PFS in the ARC/ADM 

cohort with n-CLL patients (HR: 3.67, 95% CI: 2.08 to 6.47, p-value<0.001) and i-CLL patients (HR: 

2.21, 95% CI: 1.20 to 4.07, p-value<0.05) independently predicting a significantly poorer survival 

than m-CLL patients. However, assessing the epitype covariate in the CLL4 cohort, only the i-CLL 

epitype was significant (HR: 2.34, 95% CI: 1.22 to 4.49, p-value<0.05).  

Along with the GC, epitype and TP53 aberration covariates as previously mentioned, mutation 

count retained independence in the final PFS ARC/ADM model. The results showed that the 

patients with three or more mutations had over twice the risk of progressing than patients with 

less mutations (HR: 2.59, 95% CI: 1.24 to 5.38, p-value<0.01).  

The CLL4 PFS multivariate model also included IGHV mutation status, ATM disruption, TL and 

treatment arm. Results from this analysis reflected previous established clinical trends as 

unmutated IGHV patients were found to independently predict a poorer PFS (HR: 2.34, 95% CI: 
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1.36 to 4.04, p-value<0.001). Similarly, the presence of a sole del11q event was also found to 

predict a shorter PFS (HR: 1.62, 95% CI: 1.07 to 2.49, p-value<0.05), which has been reported in 

previous literature. The treatment arm covariate also remained in the final PFS model with the 

treatment group FC predicting a significantly longer PFS (HR: 0.3, 95% CI: 0.2 to 0.45, p-

value<0.001), which corresponds with conclusions of the larger CLL4 clinical trial. Finally, the TL 

covariate remained in the final CLL4 PFS model and couldn’t be removed as indicated by a 

significant likelihood ratio when comparing two models, one with TL and one without. However, 

neither TL-S or TL-I was significant in the model with a reported p-value of 0.17 and 0.78, 

respectively.  

Subsequently, the final OS models identified many covariates that had an independent significant 

impact on patient survival. In both the two clinical trial cohorts, GC was found to have a significant 

impact on OS (Figure 64). In the ARC/ADM cohort, patients with high GC had over twice the risk of 

death than patients with low GC (HR: 2.44, 95% CI: 1.18 to 5.03, p-value<0.05), see Supplementary 

Table 21. Whilst the CLL4 cohort did find the high GC group had an independent detrimental effect 

on survival, it reported a HR of 1.6 (95% CI: 1.05 to 2.44, p-value<0.05) suggesting the difference 

in survival risk between high and low GC was less severe than the ARC/ADM cohort 

(Supplementary Table 19). Regardless, the GC covariate remained significant in both the discovery 

and validation final OS models, unlike PFS models in which it did not retain independent impact in 

the discovery cohort.  

In accordance with the PFS final models, the OS models also reported that TP53 aberration and 

epitype had a significant impact on survival in both the discovery and validation cohort, see Figure 

64. The presence of TP53 aberration was once again shown to independently predict a poorer 

survival, with these patients having around three times greater risk of death (CLL4, HR: 3.4, 95% 

CI: 2.05 to 5.64, p-value<0.001, ARC/ADM, HR: 2.72, 95% CI: 1.14 to 6.45, p-value<0.05). Epitype 

was also found to have an independent detriment impact on survival of CLL clinical trial patients. 

Specifically, n-CLL and i-CLL patient have a significantly poorer OS compared to m-CLL patients. In 

the discovery cohort, n-CLL was reported with a HR of 2.17 (95% CI: 1.18 to 3.99, p-value<0.05) 

whereas i-CLL had a HR of 2.19 (95% CI: 1.21 to 3.98, p-value<0.01). A comparable result from n-

CLL and i-CLL subgroups was found in the validation cohort, see Supplementary Table 21.  

In both OS final multivariate models, the covariates age and trisomy 12 were found to 

independently predict poor survival. For example, as age increased the risk of death also 

increased in both the discovery and validation cohort, each with a reported HR of 1.05 (p-

value<0.01). The presence of a trisomy 12 event in CLL4 clinical trial patients also predicted an 

inferior survival compared to patients without a trisomy 12 event (HR: 1.74, 95% CI: 1.08 to 2.83, 
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p-value<0.05), see Supplementary Table 19. A concordant result was reported in the ARC/ADM 

patients (HR: 2.58, 95% CI: 1.15 to 5.79, p-value<0.05).  

TL, SF3B1 mutation, and treatment arm were covariates that were only present in the CLL4 OS 

model. Results showed that TL-S and the presence of a SF3B1 mutation independently predicted a 

shorter OS with a recorded HR of 1.84 (p-value<0.05) and 1.79 (p-value<0.01), respectively. The 

treatment arm FC predicted a significantly longer OS (HR: 0.61, 95% CI: 0.41 to 0.89, p-

value<0.05). Likewise, the mutation count covariate only remained significant in predicting OS in 

the validation cohort, with the presence of three or more mutation independently predicting a 

higher risk of death (HR: 3.52, 95% CI:1.18 to 10.5, p-value<0.05).  

Overall, these results show that high GC was consistently important in predicting patients 

destined to have a poor survival, independently of many established poor risk CLL biomarkers. 
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Figure 64- Forest plot including the variables that remained significant in the final multivariable models of the CLL4 and ARCTIC/ADMIRE cohorts. A tilde (~) highlight factors within a 

categorical variable that were not significant, as the confidence interval (CI) included 1, but the categorical variable itself was significant as the model had a better goodness 

of fit when the variable remained, i.e TL-I factor in the TL variable. Abbreviations: TL-S- Short Telomere Length, TL- I-Intermediate Telomere Length, TL-L-Long Telomere 

Length, U-CLL- Unmutated IGHV genes, TP53ab- TP53 Aberration, Tri12-Trisomy 12, biATM- Biallelic ATM inactivation, Chl-Chlorambucil, FC-Fludarabine plus 

Cyclophosphamide, SF3B1- SF3B1 mutation, 1mut- mutation count of 1, 2mut- mutation count of 2, ≥3mut- mutation of ≥3. High and Intermediate GC are shown in bold. 



Chapter 6 

166 

6.5 Discussion 

This chapter has not only examined the biological context of the novel biomarker GC, but also 

analysed its clinical impact in a CIT therapy based clinical trial cohort. As previously discussed in 

Chapter 2, GC has been extensively reported in the CLL literature and it is proposed to be able to 

identify patients destined to have a poorer survival when given CIT and, as of recently, targeted 

agents regimes. However, the predictive power of GC in the context of targeted agents is not fully 

elucidated, with many conflicting reports being found across clinical trial using different target 

agent treatment options. Furthermore, because targeted agents are a newer development in the 

CLL treatment landscape, only recently larger scale clinical trials were constructed. Therefore, 

investigating the impact of GC in targeted agent treated patients is typically curtailed by a small 

sample size or limited follow up data. Nevertheless, GC has been shown extensively to be an 

important clinical biomarker in CLL.  

Recently the ERIC suggested further consideration as to methodology recommendations and the 

clinical interpretation of GC is required before this biomarker can be validated. Furthermore, they 

also concluded that more robust evidence regarding the predictive value of specific genomic 

profiles within GC is needed to refine its risk stratification ability (306). In various haematological 

malignancies, such as acute myeloid leukaemia and acute lymphoblastic leukaemia, CK, defined as 

the presence of three or more CNA, has been found to have an independent prognostic and 

predictive power. However, the prognostic significance has been found to vary when a definition 

of 3 or 5 abnormalities was used to define CK (307–309). This variability in prognostic significance 

across different GC definitions was also found in CLL (103,222,225). This suggests that an 

underlying biological heterogeneity can influence the clinical relevance of GC. Therefore, a 

clinically applicable definition of GC is only possible when the biological context of the disease, 

such as the presence of other mutations, chromosomal abnormalities, cell of origin biomarkers, 

and various patient characteristics and therapeutic intervention is considered. Thus, this chapter 

aimed to assess GC in the context of many established biomarkers, to examine the biological 

composition and create a genomic profile for each of the GC subgroups; low, intermediate and 

high. Whilst published work has shown GC to be associated with various biomarkers, this has 

typically been on a limited number of biomarkers and usually as a biproduct of a larger clinical 

analysis. Therefore, this chapter is unique in the fact that GC was able to be assessed in a clinical 

trial cohort with extensive genomic characterisation, allowing GC to investigated alongside many 

genomic features.  
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Overall, a distinct biological profile was identified in the high GC patients. Whereas, across many 

variables, but not all, considerable similarities in the biological context of the low and 

intermediate GC patients were found.  

Firstly, an association between GC and TP53 aberration was confirmed in this analysis, with a 

significantly higher prevalence of TP53 aberration in the high GC group being found. Biologically, 

the cellular environment of tumours with TP53 aberrations can promote the acquisition of 

structural and numerical abnormalities due to the loss of the genes function which protects 

genomic stability through numerous mechanisms. This relationship has been regularly reported in 

the literature, for example Baliakas et al (2019), which identified a significant association between 

CK (≥3 structural and/or numerical aberrations) and TP53 aberration (p-value<0.008) (103,238). 

They also identified a TP53 aberration in 65% of the high CK (≥5 structural and/or numerical 

aberrations) group (p-value<0.001). Their MVA concluded that high-CK predicted a poor clinical 

outcome, independently of TP53 aberration, clinical stage or IGHV mutation status. Conversely, 

they reported that CK only indicated a poor survival in patients that also had a TP53 aberration. 

This finding was also reported in Delgado et al, which found that GC was a key predictor of 

survival from MVA using a cohort of patients with TP53 aberration (HR:7.63, 95% CI: 1.62 to 33.3, 

p-value<0.05) (204). In a similar manner, the multivariate work completed in this chapter only 

found high GC to have an independent detrimental impact on survival, as shown in both the 

discovery and validation OS models. Conversely, the intermediate GC group did not remain 

significant in the multivariate models constructed in this chapter and perhaps this reflects the 

impact of TP53 aberrations in the intermediate GC/CK group. Median PFS for ARC/ADM 

intermediate GC patients with and without TP53 aberrations was 2.76 and 5 years (p-

value<0.001), respectively, suggesting that intermediate GC could be further stratify by TP53 

aberration (Supplementary Figure 16). Whilst the OS was greater for patients with intermediate GC 

without TP53 aberration (median: 6.72 years) compared to intermediate GC patients with TP53 

aberration (median: 5.99 years), this difference was not significant (p-value=0.71). Similarly, the 

CLL4 cohort reported no significant difference in median PFS and OS for intermediate GC patients 

with or without TP53 aberration (p-value>0.05). These expected survival trends were not 

consistently identified perhaps due to limitations of sample size during subgroup analysis. By 

drilling down into specific subgroups, i.e intermediate GC, the number of patients with TP53 

aberration were very small (ARC/ADM: 3 and CLL4: 6), with the majority, as previous stated, being 

present in the high GC patients. Therefore, further work expanding the cohort size used in survival 

analysis may allow the presence of genomic features that have low prevalence to be examined.  

As mentioned in 1.4, TP53 aberration is one of the two CLL genomic biomarkers that have been 

approved for use in the clinical setting. The iwCLL guidelines suggests newly diagnosed patients 
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should always be screened for the presence of TP53 aberrations and to identify the IGHV 

mutation status (84). In this chapter, as high GC was found to predict poorer OS, independently of 

TP53 aberrations and IGHV mutation status, it suggests that this biomarker represents a clinically 

relevant CLL population that is not captured by currently validated clinical biomarkers.  

Both reported in this chapter and in CLL literature is a distinct IGHV gene usage across GC, with an 

association being found, between high GC, intermediate GC, and U-CLL (103,238,310). My 

research has found that not only does the high GC patients have a greatest percentage of U-CLL 

cases, but also the low GC was significantly associated with M-CLL cases. Research published in 

2019, concluded that a combination of these two biomarkers refined the prognostic stratification 

of CLL and gave greater clinical insight. Specifically in identifying M-CLL patients with low GC 

which are predicted to have a prolonged survival after treatment with chemoimmunotherapy, 

with 90% of these patients reported as alive after 10 years (p-value<0.0006) (311). This research 

group also investigated the clinical significance of a major structural aberrations, such as 

unbalanced translocations, ring or marker chromosomes, and suggested a GC metric which 

included them should be considered. They found that CK patients with major structural 

abnormalities were associated with more cases of TP53 aberrations, shorter OS, and chemo-

refractoriness. Analysis of mRNA expression profiles of these cases also found they had 

deregulation of cell cycle control and DNA damage response genes (312). This finding highlights 

how the inclusion criteria of different GC metrics can be developed and altered to reflect different 

biology and clinical responses, resulting in a better risk stratification of CLL patients.  

25 years ago, CLL research reported that the IGHV mutation status dichotomizes patients into two 

clinically important groups, U-CLL and M-CLL (123). Since then, extensive research has tried to 

uncover the biological reasoning behind this distinct difference in clinical presentation. It is 

suggested that the cell of origin differs between U-CLL and M-CLL patients, with the latter arising 

from the B cell post germinal centre reaction and the former occurring from a pre germinal centre 

reaction B cell. Published work studying the epigenome of the two CLL subtypes found distinct 

differences in DNA methylation patterns between U-CLL and M-CLL (273). Furthermore, between 

the two subgroups, a difference in BCR reactivity and thus levels of proliferation, has been 

reported. Specifically, the U-CLL cases are found to have increased ability in phosphorylating 

downstream signalling pathways, such as Syk, triggering cell proliferation and survival. Conversely 

M-CLL has been reported to have decreased ability to activate BCR signalling pathways even to 

the point of signal anergy (124). The theory that U-CLL tumours have a greater proliferative 

history, due to these CLL cells having a greater BCR signalling capabilities, is supported by the 

finding of significantly shorter telomeres in these cases compared to M-CLL (276). The rate at 

which a cell proliferates will influence the rate at which mutations and chromosomal 
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abnormalities can accumulate. Furthermore, greater proliferative activity allows for greater clonal 

selection, an important mechanism in the tumorigenesis process (313,314). Thus, the significant 

association between high GC and U-CLL patients reported here and previously, is possibly 

explained by the difference in BCR signalling capabilities leading to a greater proliferative history 

in U-CLL. More recently, work reporting on the phenomenon of BCR stereotypes also reinforces 

the theory that BCR signalling plays an essential role in CLL presentation and progression. BCR 

stereotypes have also been reported to have unique methylation patterns. Specifically, subset #2, 

the largest stereotyped subset, the BCR is encoded by IGHV3-21 and IGLV3-21 genes, it is the 

predominate stereotyped subset in i-CLL epitype cases and most cases have mutated IGHV status 

(128,195). In survival analysis, subset #2 has been found to predict a poor survival, independently 

of IGHV mutation status. Furthermore, as previously mentioned, an association between the i-CLL 

epitype and IGLV3-21R110 mutation has been reported, with the mutation being shown to confer 

an aggressive disease with inferior survival (131,315). This chapter was able to, for the first time, 

show a significant association between the i-CLL epitype and GC (Figure 54 and Figure 59). Possibly 

this association is due to significant enrichment of IGLV3-21R110 in the i-CLL epitype (131). The 

higher WNT5A expression levels reported in IGLV3-21R110 cases have been associated with 

increased proliferation and chemotaxis of the CLL cell (316). In a similar fashion to U-CLL, this 

increased proliferation reported in IGLV3-21R110 cases allows the quicker accumulation of genomic 

abnormalities. This is supported by research, as i-CLL patients expressing IGLV3-21R110 were found 

to have a greater total number of driver alterations (median: 2.8) than i-CLL without an R110 

mutation (median: 1.9, p-value<0.05) and m-CLL (median: 1.5, p-value<0.001), but still less than 

the n-CLL epitype (median: 3.6, p-value<0.05) (131). Therefore, this suggests the relationship 

identified between i-CLL and intermediate GC in this chapter, could be confounded by the 

presence of IGLV3-21R110. To fully understand this association between i-CLL and GC, the 

generation of stereotype data for the cohort used in this chapter is needed so the IGLV3-21R110 

variable can be included in downstream analysis.  

This chapter found a significant enrichment of both trisomy 12 events and NOTCH1 mutations in 

the low GC group (Figure 57 and Figure 59). In fact, the presence of trisomy 12 was frequently 

found in combination with a NOTCH1 mutation, as out of the 52 low GC cases with trisomy 12, 20 

also had a NOTCH1 mutation (38%). Association between NOTCH1 mutations and trisomy 12 has 

been previously reported in CLL literature (142,317,318). These patients have been found to 

present with a more aggressive disease, more likely to progress to Richter transformation and 

respond poorly to chemoimmunotherapy (142,318). Subgroup analysis of my CLL4 survival cohort, 

identified that the 10 low GC cases with both trisomy 12 and NOTCH1 had shorter PFS (median: 

1.87 vs. 2.54 years, p-value=0.09) and significantly shorter OS (median: 3.39 vs. 6.61 years, p-
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value<0.05) compared to low GC patients without both a trisomy 12 and NOTCH1 mutation, see 

Supplementary Figure 17. Furthermore, both the NOTCH1 and trisomy 12 covariate were significant 

in the CLL4 univariate OS analysis (Supplementary Table 15). In both the discovery and validation 

multivariate OS models, the covariate trisomy 12 remained significant and it predicted a shorter 

OS independently of covariates including GC, TP53 aberration, IGHV mutation status and epitype 

(Figure 64). Therefore, perhaps the presence of both trisomy 12 and NOTCH1 mutations can be 

used to further risk stratify the low GC group, identifying patients that may have a more 

aggressive disease and poor response to treatment that is not currently being predicted by the GC 

biomarker. However additional work is needed to fully examine the heterogenous low GC group 

further to assess the role trisomy 12 and NOTCH1 plays in disease presentation and progression.  

Conversely, a biomarker that has been previously reported to be associated with GC was not 

found to be in this chapter. Large del13q events can be further classified based on whether the 

deletion overlaps the RB1 (type 2) or RNASEH2B (class 2) gene. The former has been shown to be 

associated with elevated levels of GC. Moreover, del13q size has been reported to be an 

independent predictor of GC (305). By contrast, a previous examination of class 2 del13q events 

found considerable genomic heterogeneity within these cases and, in one cohort analysed, an 

association with GC, defined as ≥3 CNAs, was found. However, two additional cohorts also 

examined in the paper did not find an association between class 2 del13q events and GC, and 

instead found the presence of mono- or biallelic del13q was more important (144). The results of 

this chapter found no significant difference in GC, either assessed as a categorical or continuous 

variable, across either the type (type 1 and 2) or class (class 1 or 2) del13q definitions. However, 

as similarly previously reported, a significant association of mono- and biallelic del13q with GC 

was found. Specifically, monoallelic del13q events were more common in high GC patients 

whereas biallelic del13q events were associated more with intermediate GC, Figure 59. However, 

del13q events, either mono- or biallelic loss, were not found to impact PFS or OS in the univariate 

analysis and therefore were not assessed in the MVA. This suggests that the relationship between 

the size of del13q and GC in CLL is an intricate interaction that is potentially influenced by 

unknown extraneous variables (144).  

Finally, whilst the clinical utility of GC could not be empirically tested in the project. The extensive 

characterisation of the patients included in this work has allowed a comprehensive examination 

of the biological context of the three GC groups. Therefore, survival analysis completed here 

surpasses much of the reported literature, as it includes many biomarkers into the univariate and 

multivariate work. Given the fact that the biomarkers typically do not occur in isolation, including 

as many elements into the construction of multivariate models will mean the conclusion from this 

analysis are more representative of CLL biology. 
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As highlighted before in Chapter 2, GC, measured and detected in various ways, has been 

identified as a prognostic biomarker in many CLL populations. For example, Herling et al (2016) 

identified that CK (≥3 aberrations), detected by conventional karyotyping, had a significant 

independent impact of OS (HR: 2.7, 95% CI: 1.4 to 5.3, p-value<0.01) in a clinical trial cohort of 

161 patients enrolled in chemo(immuno-)therapy-based treatments (205). Similarly, CK, defined 

as ≥3 aberrations excluding del17p, was prognostically significant in a cohort of 

relapsed/refractory CLL that were given FCR. CK was significant in both the PFS (HR: 2.6, 95% CI: 

1.5 to 4.4, p-value<0.001) and OS (HR: 1.9, 95%CI: 1.1 to 3.2, p-value<0.05) multivariate models 

and predicted an inferior survival independently of many variables including, age, del17p events 

and number of prior treatments (319). Additional definitions of GC have been found to be 

clinically important, for example, using a cohort of 321 untreated CLL patients both CK (≥3 

aberrations) and high CK (≥5 aberrations), detected using CBA, were reported to have significantly 

shorter TTFT in a univariate analysis (223). This definition of high CK was also used in a large 

retrospective study of 5290 CLL patients, with the majority being untreated. However, this 

research found that it was only cases with high CK, detected using CBA, that exhibited a poor 

clinical outcome, independently of TP53 aberration, IGHV mutation status or clinical stage (HR: 

2.23, 95% CI: 1.6 to 3.09, p-value<0.001) (238). And instead, CK patients were only found to have 

a dismal survival in the presence of TP53 aberrations. This supports MVA results in this chapter, as 

only high GC had an independent detrimental impact on survival. A further large multicentre 

study of 2293 patients with genomic array data found that high GC (≥5 aberrations, with a ≥5Mb 

size cut off) was an independent predictor of a shorter TTFT (HR: 2.15, 95% CI: 1.36 to 3.41, p-

value<0.01) and OS (HR: 2.54, 95% CI: 1.54 to 4.17, p-value<0.001) in MVA models including 

gender, age, Binet stage, IGHV mutation status, TP53 aberration and del11q (103). They also 

reported that reducing the size cut off to ≥1Mb did not significantly improve risk assessment. 

Within a sub cohort of 122 patients with both genomic array and CBA data, a direct comparison of 

the technologies found that although genomic arrays reported more chromosomal abnormalities, 

the high GC variable from each technologies had a similar risk stratification significance (103). This 

evidence supports the use of genomic arrays and the high GC definition in the prognostication of 

CLL patients, both of which have been employed in this chapter.  

GC has been found to be important outside of CLL, with various other haematological 

malignancies reporting its use as a prognostic biomarker. For example, in acute myeloid 

leukaemia the presence of CK (≥5 abnormalities) is associated with a poor prognosis (320). 

Similarly, a study including 632 Philadelphia-negative acute lymphoblastic leukaemia patients 

found at CK (≥5 abnormalities) was prognostic for relapse after allogeneic hematopoietic stem cell 

transplantation (HR: 1.69, 95% CI: 1.06 to 2.69) (321).  
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The main aims of this chapter were to assess the biological composition and describe the genomic 

profile of three GC groups: low, intermediate and high. The statistical analysis using the data-rich 

molecularly characterised clinical trial cohort of 495 patients found that the high GC had a unique 

genomic profile associated with many poor risk biomarkers. The other aim of this project was to 

investigate the survival impact of GC in the context of many established CLL biomarkers. As 

mentioned above, the clinical utility of GC could not be empirically tested. Still, this work 

evaluated the clinical significance of GC in a CIT clinical trial cohort with long follow-up and in the 

context of many established biomarkers, many for the first time, thus adding to the wealth of 

literature that suggests GC is a prognostically important biomarker in CLL.  

A post hoc power analysis was completed to assess whether the sample size used in the survival 

analysis was suitable for capturing survival trends. This analysis concluded that the cohort was a 

sufficient size to assess a difference in PFS and OS between low GC and high or intermediate GC, 

as both the discovery and validation cohorts were considerably larger than the required size, see 

Table 11 and Table 12. Whilst the usefulness of these post hoc power calculations has been 

disputed and even been suggested that the reporting of them can be misleading (322). In the case 

of this chapter a power calculation was unable to be completed at the start of the project, before 

the generation of data. Typically, power calculations in the clinical trial setting are used to decide 

the number of patients enrolled in each treatment arm, to ensure the results will be powered. 

The reason the power analysis was unable to be complete before, was that it was unknown what 

GC group each patient would be in until data generation was completed, as CNA data generated 

was used to define the three GC subgroups; low, intermediate and high. Therefore, the approach 

for this chapter was to expand the cohort to the greatest possible size, given restrictions in 

sample availability, money and time for the generation of new data, allowing more patients to 

meet inclusion criteria for the study. By constructing the largest possible cohort size, it was hoped 

that there would be sufficient cases in each GC group. However, the power analysis comparing 

the intermediate and high GC groups, highlighted that the current cohorts used were not 

powered enough to reported on survival difference between these subgroups. Therefore, future 

work expanding these clinical trial cohorts further will allow the investigation of survival trends 

between the intermediate and high GC patients.  

In conclusion, the biological profiles created of the three GC groups examined in this chapter 

frequently reflected previously reported associations. However, for the first time a significant 

enrichment between intermediate GC and the i-CLL epitype was identified. As this association was 

not found between high GC patients, it suggests a unique mechanism may be at play whereby 

genomic instability occurs but not to the severity of the disruption reported in high GC, TP53 

aberrant or U-CLL patients. This research, as supported by published data, suggests that the 
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intermediate GC should not be used in risk stratification as its biological profile was highly 

heterogenous, had only a borderline impact on survival, and potentially is confound by the 

enrichment of i-CLL, and therefore influenced by IGLV3-21R110 mutation. Conversely, this chapter 

has been able to identify that high GC, defined by the presence of ≥5 numerical and/or structural 

chromosomal abnormalities, predicts dismal survival independently of many high risk CLL 

biomarkers, in two CIT based clinical trial cohorts. This finding has been extensively reported in 

CLL literature but also in other cancers. Also, high GC has been reported as clinically important in 

numerous studies that have used CBA and/or genomic arrays to detect GC. Taken all together, 

this chapter supports the consensus conclusion that GC is an important clinical biomarker and 

thus a contender to become part of the regular screening services offered to newly diagnosed 

patients for risk stratification. This would allow the high-risk patients that are not currently 

captured by clinically employed biomarkers, to be identified and given a suitable treatment plan 

for a greater survival outcome. 
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Chapter 7 General Discussion 

In general, CLL presents with a relatively stable genome, with most patients only having 0-2 CNAs. 

No single acquired genetic defect has been identified to be adequate to trigger CLL development 

and the mutational landscape of this disease is strikingly heterogenous, with only a handful of 

mutations recurring at a frequency greater than 5% in newly diagnosed patients (323). Given the 

considerable heterogeneity in the biological and clinical presentation of the disease, the need for 

prognostic and predictive markers to be used to risk stratify patients is substantial. Additionally, 

as the CLL tumour, unlike other human cancers, is characterised by a low genomic burden with 

very few recurrent genomic mutations being reported, the use of GC observed in CLL cells, has 

been explored as a novel CLL biomarker in many clinical trial and institutional cohorts.   

Within the CLL community, GC has been extensively reported to have prognostic significance, 

both in CIT based clinical trials and patients treated with targeted agents (103,198,204,232–

234,238). As highlighted in Chapter 2, numerous different GC metrics have been employed as well 

as various technologies used to detect it. Recently, ERIC recommended that further consideration 

around the methodology being used in research assessing the GC biomarker is needed. This 

statement is supported by the biomarker validation roadmaps developed by Cancer Research UK. 

The roadmap depicted that the development of an accurate and reproducible assay or technology 

to measure the biomarker is needed before the biomarker can become validated and used in the 

clinical setting. An issue with validating GC as a clinically important biomarker using currently 

available evidence is that numerous different technologies have been employed. These different 

technologies have disparate resolutions, accuracies, and detection abilities. For example, the two 

most used techniques for GC detection identified in the systematic review, CBA and SNP array, 

have many technical differences in their ability to detect GC. The technical resolution of the CBA is 

around 4Mb and is dictated by the resolution of the light microscope whereas SNP array can 

detect CNAs to a resolution of around 5-50 kb, depending on probe density. Therefore, using 

these two techniques to explore GC can introduce technical biases, as CBA is not able to detect 

small CNAs that SNP array can. A previous study using a cohort of 506 CLL patients reported that a 

CK (≥3 abnormalities) detected by CBA was found in around 20% of patients (324). Within the 

cohort of 495 clinical trial patients employed in this thesis, the presence of ≥3 aberrations 

detected by a genomic techniques was reported in 38% of patients. This disparity between the 

number of detected CNA between the techniques has led to the suggestion of including a size cut 

off into the GC metric, therefore removing the smaller CNA that are only able to be detected by 

higher resolution techniques (325). Recent published work assessing the clinical significance of CK 

has used a conservative ≥5 Mb size cut off of CNAs (excluding recurrent CLL CNA) detected using 



Chapter 7 

176 

various genomic array (103). This size cut off was based on the FISH karyotype resolution and was 

hoped to improve the prognostic ability of GC by excluding smaller non tumour-associated 

aberrations (103). The researcher also included a lower size cutoff of ≥1 Mb, however found no 

significant difference in the risk assessment of GC compared to when the ≥5 Mb size cut off was 

used. Therefore, as it stands, no definitive answer as to the most appropriate size cutoff for GC 

detection can be stated. It seems to be a play-off between including small, novel and potentially 

clinically relevant CNAs and impacting the sensitivity of the assay by including non-pathogenic 

somatic or germline variations. Research comparing the CBA and genomic microarray methods for 

GC risk stratification in CLL found that they were significantly similar as a predictor of TTFT and OS 

(228). Additionally, this research reported that high GC, detected either by CBA (HR: 3.23, p-

value<0.001) or genomic microarrays (HR: 2.74, p-value<0.001) were significant in MVA for TTFT. 

This published data supports the methodology used in this thesis as genomic array techniques 

(SNP 6.0, Human Omni and 450k array) and a size cut off of ~1 Mb was employed to detect CNAs. 

A further difference is that certain techniques, such as SNP 6.0 array and WGS, can detected 

cnLOH events, whilst others; CBA, aCGH and sWGS, cannot. Within many human malignancies 

including CLL, LOH and cnLOH events are common and have been linked to the tumorigenesis 

process (326,327). LOH events occur when a segmental or numerical chromosomal deletion 

occurs and these events have been linked to the tumour suppressor gene inactivation theory of 

malignant transformation. Whereas cnLOH events occur when a duplication of one chromosome 

or one chromosomal region and a simultaneous loss of the other allele happen and result in a LOH 

that is not detected by traditional cytogenetics due to there being no change in copy number 

(328). Within CLL, LOH typically associates with a copy number loss whereas cnLOH occurs less 

frequently but typically impact 13q, 17p and 11q chromosomal regions. Additionally, cnLOH have 

been reported to significantly impact clinical outcome in CLL patients, for example cnLOH-17p 

which are typically associated with homozygous TP53 mutations (329). Within this research, 

cnLOH and LOH events were excluded from GC definition as certain techniques used did not 

detect them. Exclusion of these events removed 59 CNAs, some of which were recurrent clinically 

CNA for example del17p (n=3), del11q (n=9) and del13q (n=18). 13q14 cnLOH have been 

suggested to lead to dysregulation of micro RNAs miR15a/16-1 as well as other genes, typically 

occur with a biallelic deletion within the cnLOH region and are associated with a progressive 

disease (144,330). This brings into question whether cnLOH and LOH events should be included 

within the GC metric and whether a technical bias, introduced as sWGS and 450k array techniques 

were not able to detect such events, has impacted the reported clinical significance of GC. Whilst 

previous work has shown a comparable risk stratification of GC detected using CBA and genomic 

arrays, this work did not include cnLOH events in the CK metric (228). Therefore, further work is 
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required to fully assess the inclusion criteria of the GC metric and investigate the potential impact 

of cnLOH and LOH events on its prognostic ability.  

Within this thesis, numerous technologies have been used to detect GC; sWGS, SNP 6.0 arrary, 

HumanOmni array and 450k array. Whilst the inclusion of these four techniques meant a great 

number of clinical trial patients met the inclusion criteria of having CNA data available it did 

potentially introduce a technical bias into the assessment of GC. A significant difference in the 

CNA called by 450k array technique compared to the three other techniques was found and could 

not be explained by patient characteristics of the 450k array cohort. Due to this finding, this 

cohort was either removed from the ARC/ADM survival cohort or, if available, CNA data 

generated from HumanOmni array was used instead. Research comparing the 450k array 

technique to SNP array reported that 76% of CNA identified in the cohort were common between 

both technologies. Of the CNAs that had discrepancies between the two technologies, the 

majority (75%) were solely detected by the 450k array technology and were suggested to be 

candidate false positives (287). Likewise in my data, the 450k array on average called significantly 

more CNAs (mean: 6.1 CNAs) than any other technology used, suggesting that many of these 

could be false positives. Further research assessing the reliability of three popular methods of 

calling CNA from methylation data compared to SNP genotype data, found that all methods had a 

relatively low reliability (331). They found that the Conumee method, which is employed in this 

thesis, called the fewest CNAs within the 450k array. Overall, they found that all three of the 

methylation calling methods reported more CNA but also detected much larger CNAs compared 

to SNP array CNA calling. This highlights the need for further optimization of the 450k array data 

analysis pipeline by altering the default parameters to adjust for the effect of the array design. 

Additionally, an in-depth and systematic manual curation of this data is imperative for the 

removal of potential false positives reported by the 450k array technique. By completing this 

pipeline optimization, the number of patients in the ARC/ADM survival analysis cohort can be 

increased, allowing for greater statistical power in the validation cohort employed in this thesis. 

As it currently stands, from comparing the advantages and disadvantages of the four technologies 

employed in the research I would recommend SNP arrays for the generation of GC data. This is 

based on the fact this technique was found to be highly comparable to the gold standard FISH 

technique and is able to detect CNAs at a high resolution as well as cnLOH events that have a 

potential important but unknown role in GC CLL biology (228). 

Within the cohort of 495 clinical trial patients employed in Chapter 6, a significant association 

between mutation count and GC was found, specifically between the high GC and mutation count 

of two. Furthermore, the covariate mutation count remained significant in the multivariate PFS 

and OS using the validation survival cohort, however only a ≥3 mutation count retained 
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independence in the model. This finding was also supported in the literature as a study found a 

significant association between CK and higher mutational burden (p-value<0.009). Survival 

analysis reported that mutation burden, defined a ≥2 distinct mutation genes, TP53 aberration 

and CK independently predicted a poorer TTFT (332). Inclusion of mutation data into complexity 

metrics has been debated within the CLL community and has been shown to have clinical 

significance. Chauzeix et al developed an eight gene estimator to test the clinical significance of 

TMB. The presence of ≥2 mutations included in the estimator were found to predict TFS (HR: 3.4), 

however this finding was reported using a cohort of only Binet A patients (230). Conversely, 

Nadeu attempted to assess the clinical impact of mutational complexity, defined by combining 

the number of mutations and CNA (121). They found that increased mutational complexity 

predicted a shortened TTFT and this impact on survival was independent of clonal architecture, 

IGHV mutation status and Binet stage. This work was able to detect mutational complexity in 

tumour subclones and reported that the prognostic impact of a different genes was linked to the 

size of the mutated clone. Additionally, they reported that unlike mutations, CNA typically 

remained stable and were an early event in the evolution of the disease. Conversely subclone 

analysis found that mutation could be acquired at any time during CLL evolution and frequently 

later than CNAs. This strongly suggests that CNAs are the main initial events in CLL and thus 

employing a GC metric that includes CNAs, rather than mutation data, is backed by biological 

evidence. Overall, my data, as well as published data, suggests that involving CNAs rather than 

genetic mutations within the GC metric improves the risk stratification ability of the biomarker.  

Survival analysis completed in both Chapter 4 and Chapter 6 were conducted using a discovery 

and validation study design, as two separate clinical trial CLL4 and ARC/ADM cohorts were 

analysed. Whilst it was not possible to combine these cohorts together due to the CLL4 clinical 

trial recording follow up data for much longer than either the ARCTIC or ADMIRE clinical trials. 

Using these clinical trials in a discovery and validation study design has its limitations as the trials 

have used considerably different therapies, for example chemotherapy-based treatments and 

chemoimmunotherapy regimes. Biomarker discovery and validation are important steps in 

biomarker development, the latter aims to establish an association between the biomarker and 

an endpoint, i.e. survival endpoint. This clinical validation can be completed in retrospect using 

clinical trial data but given the impact on survival treatment can have, including such different 

regimes may influence this step (333). Thus, using two trials cohorts with different treatment 

regimes in a discovery and validation study design may limit the usefulness of the validation step 

due to the confounding effect on survival treatment may have. However, to control for this 

confounding impact, in both univariate and multivariate survival analysis completed in this thesis, 

treatment arm was included as a covariate. Whilst this work has been able to investigate the 
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clinical impact of various novel biomarkers in both chemotherapy and chemoimmunotherapy 

based trials, using these cohorts in a discovery and validation study design is potentially not 

suitable and this data rich clinical trial cohorts could be evaluated using a different study design.   

One important finding of this research was that GC, specifically high GC, predicted a dismal OS 

and was associated with many other biomarkers of an aggressive disease such as TP53 aberration, 

ATM disruption and TL-S. Three main hypotheses have been proposed to explain the association 

between GC and aggressive disease presentation; 1) defects in elements of the DNA damage 

repair and apoptotic cellular pathway leads to impaired response to genotoxic therapies, 2) 

ongoing clonal evolution drives progression and therapeutic resistance, 3) telomere attrition leads 

to genomic instability.  

Defects in the DNA repair and apoptotic cellular pathways have long been reported in human 

cancers, including CLL. Research has also found the elevated levels of GC is typically associated 

with disruptions in the genes (TP53 and ATM) involved in DNA damage repair, this relationship 

was reported in my data (103,238,310). As previously discussed, the cellular environment in 

tumours with TP53 aberration promote obtaining additional genomic alterations, including CNAs. 

Given the usual role of protein produced by TP53, p53, in halting cell cycle progression, 

orchestrating DNA repair and triggering apoptosis in response to a variety of stresses, including 

DNA damage. In the case where the TP53 gene has impaired function, either due to a mutation or 

a loss at the chromosomal loci, its tumour suppressor functions do not occur, and thus genomic 

stability is lost (305). Whilst most TP53 aberration CLL cases occur with increased GC, not all cases 

with increased GC are reported with TP53 aberration. Thus, other elements of the DNA damage 

repair pathway that ensure genetic stability have been suggested to contribute to GC, one such 

element is the ATM gene. Previous work has found that a deletion of this gene (del11q) and a 

mutation have been associated with GC. However, it has been reported del11q events are 

associated with a greater risk of GC (OR: 2.8, 95% CI: 1.6 to 5, p-value<0.001) but a sole ATM 

mutation was not. Neither did the presence of a mutation increase the risk of GC in del11q 

patients (334). In my data only a significance co-occurrence between high GC and biallelic ATM, 

patients with del11q and ATM mutation, was identified. Potentially the reason no significance 

enrichment between sole del11q and GC was found is that a different GC definition was used and 

if a combined intermediate and high GC group was used, a similar result to the literature would be 

found. This evidence taken together suggests that greater GC is not driven solely by the ATM locus 

and potentially a combination of defect in the DNA repair mechanisms is required to cause GC in a 

TP53 independent fashion. A potential candidate for future investigation is the H2AFX gene which 

encodes the protein H2AX. H2AFX is lost along with ATM in ~25% of del11q cases (334). During 

DNA damage, activation of ATM kinase at sites of DSBs leads to the phosphorylation of H2AX 
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resulting in y-H2AX. These y-H2AX molecules form nuclear foci covering many megabases of 

chromatin which is crucial for efficient DNA damage response and thus the maintenance of 

genomic stability (335). Work in this area has identified an increased γ-H2AX in in SF3B1 mutated 

CLL cells and, as expected, a decrease of γH2AX in ATM mutated cells compared to γ-H2AX levels 

in wild type CLL samples (336). Therefore, it would be interesting to investigate if certain DNA 

damage markers impact GC in CLL patients independently of ATM dysfunction, to further evaluate 

the role of the DNA repair machinery within the biology of GC (336). At the microscopic level, the 

recruitment of two DNA damage markers, y-H2AX and 53BP1 results in the formation of nuclear 

foci at the site of the DSBs that can be detected and quantified using a fluorescent microscopy 

technique developed by the Stankovic research group at the University of Birmingham (337,338). 

This technique has been successfully applied to a small cohort of 6 patients from the GC clinical 

trial cohort (data not included), but further work is needed to expand this to a statistically 

powerful cohort.  

GC has also been reported to be linked with clinical evolution. Clonal evolution is the Darwinian 

selection process by which cancer cells can acquire genomic alterations that present with an 

advantageous phenotype, allowing the CLL disease to further progress and become resistant to 

therapeutic interventions. The clonal evolutionary process is fuelled by intratumoural 

heterogeneity as the fittest tumour subclone is selected under certain selection pressures within 

the tumour microenvironment and expanded. Recently, research has used a longitudinal 

perspective to study the clonal evolution of CLL and the molecular mechanisms that contribute to 

RS. They found evidence to suggest that clonal expansion of a singular cell present many years 

before the clinical presentation of RS occurs (339). As a greater risk of developing RS is found in 

patients with CK, it suggests a mechanism whereby GC promotes clonal expansion of this singular 

cell resulting in RS. Furthermore, WGS of longitudinal CLL and RS samples identified a continuous 

increase in GC from CLL diagnosis to relapse and RS (340). This work found that the majority of 

increased GC reported in RS is caused by a chromothripsis event targeting certain genes including; 

CDKN2A/B, MGA and SPEN. They concluded that structural variants, including chromothripsis, are 

likely to be acquired early in RS. However, the true involvement of GC in the clonal evolution of 

the disease is not currently fully known and is beyond the scope of this research. Molecular 

methodologies employed in this thesis, sWGS and microarray analysis, are unable to identify the 

different subclones and therefore cannot provide information on the intraclonal cytogenetic 

heterogeneity. Despite that, the published evidence outlined above does indicate that GC could 

be useful in predicting patients destined to progress to RS, however to validate this theory a 

longitudinal study using single-cell DNA sequencing or SNP array data to detect tumour subclonal 

GC is needed.   
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The final hypothesis proposed to explain the relationship between GC and aggressive disease 

presentation theorises that greater telomere erosion leads to increased genomic instability, 

allowing for the accumulation of aberrations and thus GC. As the progressive shortening of 

telomeres corresponds to the number of cell divisions, TL reflects the proliferative history of a CLL 

cell. It has been suggested that the genomic instability associated with short TL promotes the 

selection of clones that can maintain the minimal TL by activity of telomerase or have defects in 

DNA damage checkpoint and repair (Figure 65). Thereby the critical erosion length is not reached, 

and the presence of telomere dysfunction induced foci does not trigger a DNA damage response, 

and thus the clone overcomes senescence and survives (341). Research has not only reported a 

correlation between TL shortening and genomic instability but also an inverse relationship 

between TL and telomerase activity (342). Results from this thesis were able to corroborate the 

relationship between TL-S and GC previously reported in the literature (185), but also found that 

TL-S and GC independently predicted dismal OS in the discovery cohort. Whilst GC was also 

significant in the final OS multivariate model using the validation cohort, the covariate TL was not. 

Conversely within the multivariate models described in Chapter 4, which did not include the GC 

covariate, TL-S was found to predict poor PFS and OS across both survival cohorts, which matches 

published research (185,189). Therefore, this suggests that the clinical significance of TL may be 

confounded by the presence of GC and other DNA damage repair defaults, such as TP53 

aberration which remained significant in multivariate work. And perhaps TL-S alone is not 

significant enough to result in an aggressive disease with poor survival.  

Similarly, evidence has shown BCR or Pi3K microenvironment-mediated signalling contributes to 

telomerase activation suggesting a role of BCR signalling capabilities of the cell in a mechanism 

that links epitype, TL, GC and CLL disease presentation together (277). This thesis was able to, for 

the first time, investigate together the clinical significance of TL and DME. A strong correlation 

between TL and DME groups was found in my data with both variables also being associated with 

GC. Additionally, my results highlighted the potentially utility of the i-CLL, risk stratified further by 

TL, in identifying M-CLL patients destined to respond poorly to CIT. Furthermore, the i-CLL epitype 

remained significant in all multivariate models constructed in Chapter 6 and in most cases 

predicted a worse survival than n-CLL patients. As previously mentioned, CLL is charactered by 

stereotyped BCR usage with the i-CLL epitype being comprised mainly of subset #2 stereotype. 

The BCR of subset #2 is composed of heavy and light chains encoded by IGHV3-21 and IGLV3-21, 

respectively. A BCR-BCR homotypic interaction is dependent on the IGLV3-21 light chains as 

clonotypic rearrangement of the IGLV3-21 genes (IGLV3-21R110) can occur and result in a cell 

autonomous signalling. This BCR autonomous signalling results in pro-survival signals being 

triggered as well as increased proliferation due to upregulated WNT5A expression (131,274,315).  
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Using previously reported evidence coupled with finding from this thesis, a narrative is suggested 

whereby the BCR stereotypes, which are associated with specific DME subtypes, have differing 

signalling capabilities and thus differing levels of proliferation (343). Increased levels of 

proliferation due to autonomous signalling of the BCR is reflected in TL shortening. This critical 

shortening of TL is a selection pressure on the CLL cell to acquire dysfunction at DNA damage 

checkpoint and repair genes, adding to the heterogeneity of the disease. Additionally, pro survival 

signals are triggered from the continuous BCR activation. Overall, this results in cells that have a 

greater genomic instability, clonal evolution and GC and thus present with an aggressive CLL 

disease and poor patient outcome, see Figure 65. However further work is required to fully 

examine the biological mechanisms of GC, in the context of TL and DME, to confirm this proposed 

theory.  

 

Figure 65- Schematic representing the proposed theory behind the relationship between epitype, TL and 

GC in CLL. Abbreviations: telomere dysfunction induced foci- TIF, breakage-fusion-bridge- 

BFB. Adapted from (163).  

It can be concluded from the results reported in this work that patients with high GC have a 

significantly worse outcome than patients with low GC. This analysis was based on clinical trial 

patient enrolled in CIT regimes and did not include patients that have been given targeted agents, 
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which are becoming a preferred treatment option for many CLL patients. Thus, to further this 

work a cohort of patients enrolled in targeted agent clinical trials is needed. Various publicized 

research has investigated the use of GC as a prognostic and predictive biomarker in various 

targeted agent treatment regimes. For example, GC, defined as CK, was found to predict a dismal 

OS (HR: 5.9, 95%CI: 1.6 to 22.2, p-value<0.01) in R/R patients that were then treated with 

ibrutinib, a BTK inhibitor (206). Further research looking into clonal evolution found that CK 

evolution at progression of the disease, after ibrutinib, predicts inferior survival in a cohort of 

untreated and R/R CLL patients (232). Conversely, results from the CLL14 clinical trial using 

previously untreated patients enrolled into venetoclax plus Obinutuzumab treatment regimes did 

not find a significant difference in PFS, OS or minimal residual disease response in patients with 

CK compared to patients without (344). Similarly, no difference between CK and no CK patients 

were found even within 5 year follow up data. Conversely, data from the MURANO study of R/R 

patients that were given venetoclax found that GC was associated with a poorer PFS (HR:2.9, 

95%CI: 1.4 to 6.3, p-value<0.01) and a lower undetectable minimal residual disease rate at end of 

treatment was lower for patients with GC compared to patients without (p-value<0.05) (233). 

Additionally a studying including 220 R/R CLL patients that were given idelalisib in combination 

with rituximab compared to a treatment of just rituximab found a difference in outcome in CK 

patients between the treatment arms. Specifically, CK patients responded better with a longer OS 

reported when given the idealalisib and rituximab treatment compared to CK patients in the 

rituximab only treatment arm. This suggests the combination of targeted agents increases the 

efficacy of treatment, even in high-risk cases such a CK patients. (232) 

The relevance of GC in the target agent treatment era is not conclusive within the current 

published evidence, however I accept this will change as the clinical trials mature and cohort size 

become larger. A limitation of published work is that the majority of studies are focused on R/R 

CLL patient whereas targeted agents are fast becoming the primary frontline treatment. Similarly, 

a limitation of this work was lack of representation in the cohort used as no R/R patients or cases 

which had progressed to RS were included. Further inspection of the GC biomarker within these 

specific CLL populations would allow the complete clinical value of GC to be defined, 

strengthening its need to be validated and applied to guide therapeutic decisions.   

In conclusion this work has investigated the biological characteristics and clinical significance of 

three novel CLL biomarkers; TL, DME and GC. Whilst the long-disputed question around which 

platform is most appropriate for GC data generation cannot be definitively answered, the 

evaluation of the techniques employed in this work found that SNP array was overall better than 

the other techniques. For the first time, TL and DME were assessed together within a clinical trial 

cohort. Not only was a strong association found between the two biomarkers, as previous 
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reported, but both biomarkers were found to independently predict poor PFS and OS in CIT 

treated patients. Furthermore, my data suggests that a combination of the two biomarkers leads 

to a greater ability in patient risk stratification, specifically in further stratifying the M-CLL cases. 

Similarly, it was found that high GC was an independent marker of dismal survival in patients 

given frontline CIT treatment and was associated with a unique genomic profile. The analysis 

completed within this project adds to the growing evidence that GC is a useful prognostic and 

predictive biomarker in CLL and therefore a great contender for further validation before 

implementation with the clinical setting. Due to the strong association found between the three 

biomarkers and all being found to correlate with poor survival, a theory was proposed. This theory 

outlines a biological mechanism whereby the three biomarkers all contribute to an aggressive CLL 

disease with dismal patient outcomes. Further investigation into this theory as well as the 

prognostic utility of the three biomarkers within the wider CLL population (i.e. targeted agent 

treated, R/R and RS patients) is needed before they can be fully validated and deployed within the 

clinical setting.  
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Supplementary Tables 

Supplementary Table 1- Overview of the 25 studies that meet the eligibility requirements and therefore will be used within downstream analysis. 

First Author Year Patient Description GC Metric Detection Method Survival Data 

L. Kujawski 2008 139 untreated and 39 treated CLL patients. 

Copy number losses, gains and loss-of-heterozygosity added for total 

genomic complexity scores. A further GC score was calculated by only 

counting losses 

50kXbaI SNP array 

HRs, CIs, p-values, 

means  

TTFT and TTST 

N. Kay 2011 48 untreated CLL patients.  
Total number of CNAs and the sum of genomic lengths of all detected 

gains and losses 
aCGH 

CIs, median, p-

value 

PFS, time to first 

response and DOR 

P. Ouillette 2011 196 untreated and 59 relapsed patients.  

Total sub chromosomal losses and gains: 0, >1, >2, >3 and >4. Dosage, 

total length of all sub chromosomal genomic lesions in Mb as a 

continuous variable and as a log-2 transformed variable 

SNP 6.0 array with matched germline 

samples 

HRs, CIs, p-value 

TTFT and OS 

M. Mian 2013 
329 CLL patients with normal FISH. 

Treatment naive.   

The presence of a large genetic lesion >5 Mb which are not detected by 

FISH 
SNP 6.0 array 

HRs, CIs, p-value  

TTFT and OS 

C. 

Schweighofer 
2013 168 untreated CLL patients.  

Number of CNAs as a continuous and categorical variable (1, 2 and 3 

CNV) 
SNP array 

HRs, CIs, p-value 

and mean 

TTT and OS 
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P.Baliakas 2014 1001 untreated CLL patients Complex karyotype; ≥3 abnormalities. CBA 

Median, p-value, 

HRs and CIs 

TTFT 

J. Delgado 2014 
55 CLL patients with TP53 disruption. 20 

treated and 35 untreated.  
CNA count SNP 6.0 and a custom 8x60K array  

HRs, CIs, p-value  

TTFT and OS 

I. Salaverria 2015 47 untreated and 133 treated CLL patients.  Number of CNAs (0->6) aCGH using two different probe series 
HRs, CIs, mean, p-

value TTT and OS 

G. Blanco 2016 
101 CLL patients with TP53 aberrations. 81 

treated and 20 untreated.  
Complex Karyotype; ≥3 abnormalities Chromosome banding analysis 

HRs, CIs, p-value 

and median  

OS 

R. Collado 2017 

60 CLL patients with chromosomal 

abnormalities in 17p. 47 treated and 13 

untreated.  

Complex karyotype; ≥3 abnormalities  FISH and aCGH 
p-value and mean  

PFS and OS 

A. Puiggros 2017 

1045 patients with or without high-risk 

FISH deletions. Untreated MBL/CLL 

patients.  

Complex karyotype; ≥3 abnormalities Chromosome banding analysis 

HRs, CIs, median, 

p-value 

TTFT and OS 

L. Yu 2017 

69 with del17p events and 208 without 

del17p events. Both 203 untreated and 74 

treated patients. 

Complex karyotype; ≥3 abnormalities. CNA low <4 and CNA high ≥4. Low 

and high mutation defined as <21 and ≥21 mutations respectively. Total 

length of CNA was also investigated 

176 cases had somatic mutation profiles 

by WES and 200 had CNAs detected by 

SNP 6.0 arrays 

HR, CIs, p-value  

OS 
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F Nadeu 2018 
406 untreated CLL patients including 44 

sequential samples. 
Mutational complexity, sum of mutations and CNAs 

CNA detected using SNP 6.0 array. 28 

driver genes examined using deep-

targeted NGS 

HR, CIs and p-

values. TTFT and 

OS 

P. Baliakas 2019 

5095 used in survival analysis. Majority of 

patients are untreated 4446 and only 461 

were treated. 

Complex karyotype; ≥3 abnormalities, high cytogenetic complexity ≥5 

CNAs 
Chromosome-banding analysis 

HRs, CIs, mean 

and p-values 

 OS 

N. Heerema 2020 329 untreated CLL patients. 
Cytogenetic complexity; ≥3 abnormalities. A cut-off of ≥5 abnormalities 

also used 
Chromosome banding analysis 

HRs, CIs, P-value 

 TTFT and OS 

A.Kater 2020 
194 Ventoclax treated and 195 

chemotherapy treated CLL patients.  

Array-based GC was defined as follows: noncomplex: 0-2 aberrations, 

low: 3-4 aberrations and high: 5 or more aberrations 
aCGH 

HRs, CIs, median, 

and P-value 

PFS and OS.  

J. Chauzeix 2020 150 CLL untreated patients 
Mutational count (≥1 eight gene estimator) and tumor mutational 

burden  

High-throughput sequencing using a 

custom panel of 65 targets 

HR and p-value 

Treatment free 

survival 

A. Leeksma 2020 
2293 CLL patients, 942 treated and 1351 

untreated CLL patients. 
High genomic complexity ≥5 CNAs. Included a size cut off 

Various genomic arrays and whole 

genome 

HRs, CIs, P-value 

TTFT and OS 

A. Kittai 2021 456 CLL patients treated with ibrutinib 
Complex karyotype, ≥3 or ≥5 cytogenetic abnormalities and as a 

continuous variable 
Conventional cytogenetics 

HRs and CIs, p-

value 

PFS and OS 
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Footnote: Patient description includes sample size, if they are selected based on a specific feature i.e. TP53 aberrations, patient CLL natural history status (untreated, treated, relapsed, progressed). GC metric 

is given, if numerous metrics were employed within a study, they are all included. Detection methods is given, if numerous techniques were employed within a study, they are all included. Survival data 

column explains the reported survival analysis included in each publication, such as the recorded values (HR, CI’s, median survival or p-value) and the type of survival endpoint used in either univariant or 

multivariant analysis. Mb-megabase, SNP- single nucleotide polymorphism array, aCGH-array comparative genomic hybridization, NGS-next generation sequencing, WES-whole exome sequencing, WGS-

whole genome sequencing, DOR-duration of response, TTFT-time to first treatment, TTT-time to treatment, TTST-time to subsequent treatment, PFS-progression free survival, and OS-overall survival. 

H. Cherng 2022 

130 CLL patients with TP53 alterations 

who received first-like BTKi-based 

treatment 

Karyotypic complexity defined as a continuous variable and as ≥3 or ≥5 

abnormalities. 
CBA 

HR, CIs, p-value 

PFS 

A.Puiggros 2022 
42 CLL patients, 2 treated and 40 

untreated 
Complex , ≥10 alterations Optical genome mapping 

Median, p-value, 

CIs 

TTFT  

S.Ramos-

Campy 
2022(a) 340 untreated CLL patients Copy number abnormalities; 0-2, 3-4, ≥5 

Chromosome banding analysis and 

genomic microarrays 

HR and p-value 

TTFT and OS 

S.Ramos-

Campy 
2022(b) 

162 untreated CLL patients with genomic 

complexity, of those 33 also had 

chromothripsis 

Complex karyotype (3-4 and ≥5 abnormalities) Various genomic microarrays 
HR and p-value 

TTFT 

P.Robbe 2022 485 untreated CLL patients 
Copy number gains only, copy number losses only and both gains and 

losses 
WGS TruSeq 

HRs, CIs, p-value 

PFS and OS 

G. Rigolin 2023 
119 untreated CLL patients with isolated 

del13q or no lesions 

Complex karyotype defined as ≥3 abnormalities, gains and losses of ≥5 

Mb in length were considered 
Genomic microarrays 

HR, CIs and p-

value 

TTFT and OS 
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Supplementary Table 2- The 72 probe targets that were designed as part of the SureSelect XT HS2 DNA 

target enrichment system for the identification of variants within these panel of genes. Of the 72 targets, 62 

were included in a previous probe design for variant detection experiment and 10 (shown in bold) were 

added during the design of the probes, as were recently reported in the CLL literature. The three cases were 

adjustments to the probe design was required to improve coverage are shown by an asterisk (*).   

Target ID Interval Size Coverage 

ARID1A chr1:26696394-26780766 7362 100 

ATM chr11:108227615-108365518 10430 100 

BCL2 chr18:63128615-63318676 793 100 

BCOR chrx:40049906-40077939 5707 100 

BIRC3 chr11:102324500-102337112 2118 100 

BRAF_EX15 chr7:140753275-140753393 119 100 

BTK chrx:101349875-101390559 2462 100 

CARD11 chr7:2906628-2958516 3945 100 

CCND3 chr6:41935841-41941659 1151 100 

CD79A chr19:41877295-41880990 1006 100 

CD79B chr17:63929216-63932271 813 100 

CDH23 chr10:71397179-71815288 12544 100 

CHD2 chr15:92901228-93024715 6666 100 

CREBBP chr16:3727708-3879926 7988 100 

CXCR4 chr2:136114859-136118070 1359 100 

DDX3X chrx:41334243-41364352 3178 94.3 

EGR2 chr10:62813197-62816039 1471 100 

EZH2EX12 chr7:148816684-148816778 95 100 

EZH2EX16 chr7:148811625-148811720 96 100 

EZH2EX18 chr7:148809310-148809390 81 100 

FBXW7 chr4:152322871-152411813 2898 100 

FLNC chr7:128830628-128858533 9138 100 

ID3 chr1:23558950-23559436 400 100 

IDH2EX4 chr15:90088587-90088747 161 100 

JAK3 chr19:17826733-17844427 3913 100 

KDM2B chr12:121430106-121580921 4856 100 

KLF2 chr19:16324914-16327041 1128 100 

KLHL6 chr3:183491917-183555663 2006 100 

KMT2D* chr12:49032813-49032962 150 100 

KRAS chr12:25209785-25245394 828 100 

LRP1B chr2:140233176-142130739 15754 100 

LTB chr6:31580699-31582427 815 100 

MAP2K1 chr15:66387338-66490625 1462 100 

MAP3K14 chr17:45264626-45290755 3144 100 

MDM2 chr12:68808468-68839859 1956 100 

MED12 chrx:71118745-71142228 7477 100 

MYD88 chr3:38138652-38141296 1054 100 

NFKBIE chr6:44259209-44265773 1623 100 

NOTCH1EX26 chr9:136504673-136505104 432 100 
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NOTCH1EX27 chr9:136503182-136503330 149 100 

NOTCH1EX28 chr9:136502272-136502488 217 100 

NOTCH1EX34_3'UTR chr9:136494444-136497558 3115 100 

NOTCH2 chr1:119915296-120069416 8480 100 

NOTCH2EX34+UTR chr1:119911553-119916694 5142 100 

NRAS chr1:114708525-114716170 650 100 

P53 chr17:7676521-7687538 264 100 

PAX5NONCODING chr9:37368943-37373596 4654 100 

PLCG2 chr16:81785980-81958008 4492 100 

PLS3 chrx:115610241-115649571 2502 97.0 

POT1 chr7:124822518-124897183 2444 100 

PRKDC chr8:47774163-47960136 14107 100 

PTPRD chr9:8317864-8733853 6712 100 

RHOA chr3:49360199-49375599 944 100 

RPS15* chr19:1438797-1438853 57 100 

SAMHD1 chr20:36892922-36951653 2249 100 

SETD2 chr3:47017083-47163934 8216 100 

SF3B1EX14 chr2:197402556-197402826 271 100 

SF3B1EX15 chr2:197401985-197402130 146 100 

SF3B1EX16 chr2:197401742-197401888 147 100 

SF3B1EX18 chr2:197400715-197400936 222 100 

SPEN chr1:15848058-15939437 11596 100 

STAT3EX21 chr17:42322282-42322494 213 100 

TCF3 chr19:1611697-1650258 2813 100 

TET2 chr4:105190460-105276529 6365 100 

TNFAIP3 chr6:137871218-137881329 2533 100 

TNFRSF14 chr1:2556655-2563283 1063 100 

TP53* chr17:7661929-7662024 96 100 

TRAF3 chr14:102870192-102905794 1987 100 

UBR5 chr8:102254292-102412244 9580 100 

USP34 chr2:61188092-61470702 12245 100 

XPO1EX15 chr2:61492325-61492481 157 100 

XPO1EX16 chr2:61492035-61492198 164 100 

 

Supplementary Table 3- Basic clinico-biological features of the ARCTIC and ADMIRE cohort used within this 

study compared to the total clinical trial cohort. 

Variable 
Study cohort  

N (%) 

Total cohort 

N (%) 

Concordance 

P-value 

Total number of patients 215 414  

Age, median years (range) 62 (36-80) 63 (33-80) 0.127 

Gender    

Male 167 (77.7) 298 (72) 0.123 
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Female 48 (22.3) 116 (28)  

Binet Stage    

A 34 (15.8) 60 (14.5) 0.876 

B 107 (49.8) 205 (49.5)  

C 74 (34.4) 149 (36)  

IGHV Mutational Status    

IGHV-U 116/196 (59.2) 205/356 (57.6) 0.716 

IGHV-M 80/196 (40.8) 151/356 (42.4)  

ATM Dysfunction    

Absent 120/156 (76.9) 162/209 (77.5) 0.988 

Del11q 25/156 (16.0) 33/209 (15.8)  

Biallelic inactivation 11/156 (7.1) 14/209 (6.7)  

TP53 Dysfunction    

Absent 151/176 (85.8) 202/231 (87.4) 0.627 

Present 25/176 (14.2) 29/231 (12.6)  

SF3B1 Mutation    

Absent 138/180 (76.7) 196/250 (78.4) 0.67 

Present 42/180 (23.3) 54/250 (21.6)  

NOTCH1 Mutation    

Absent 154/180 (85.6) 217/250 (86.8) 0.711 

Present 26/180 (14.4) 33/250 (13.2)  

Epigenetic Subgroup    

n-CLL 102 (47.4) 113/246 (45.9) 0.928 

i-CLL 61 (28.4) 70/246 (28.5)  

m-CLL 52 (24.2) 63/246 (25.6)  

Telomere Length Group    

Short 48 (22.3) 50/252 (19.8) 0.762 

Intermediate 59 (27.4) 68/252 (27)  

Long 108 (50.2) 134/252 (53.2)  

Footnote: Assessment of a variety of clinco-biological features were completed to examine the patient composition of 

the cohort using in this research compared to the complete clinical trial cohort. The number screened for each feature 

varied as the total cohort did not have complete data for all variables. Percentages were calculated using the frequency 

of that variable and the number of patients, in the specific cohort, that were screened for it, for example 33 patients 

had a NOTCH1 mutation out of the 250 clinical trial patients that were screened for it. For continuous variables, such as 

Age, the median and range were reported. Comparisons across the two cohorts were completed using a Wilcoxon rank 

sum and chi squared test for continuous and catagorical variables, respectively. A p-value<0.01 indicated that there was 

a signficant difference within the variable across the two cohorts. 
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Supplementary Table 4- Basic clinico-biological features of the CLL4 cohort used within this study compared 

to the total clinical trial cohort. 

Variable 
Study cohort  

N (%) 

Total cohort 

N (%) 

Concordance 

P-value 

Total number of patients 304 777  

Age, median years (range) 65 (42-86) 64 (35-86) 0.73 

Gender    

Male 229 (75.3) 573 (73.7) 0.593 

Female 75 (24.7) 204 (26.3)  

Binet Stage    

A 81 (26.7) 191 (24.6) 0.664 

B 129 (42.4) 352 (45.3)  

C 94 (30.9) 234 (30.1)  

IGHV Mutational Status    

IGHV-U 163/267 (61) 327/533 (61.4) 0.934 

IGHV-M 104 /267(39) 206/533 (38.6)  

ATM Dysfunction    

Absent 184/234 (78.6) 342/438 (78.1) 0.955 

Del11q 43/234 (18.4) 84/438 (19.2)  

Biallelic inactivation 7/234 (3.0) 12/438 (2.7)  

TP53 Dysfunction    

Absent 223/250 (89.2) 407/456 (89.3) 0.982 

Present 27/250 (10.8) 49/456 (10.7)  

SF3B1 Mutation    

Absent 200/264 (75.8) 352/462 (76.2) 0.895 

Present 64/264 (24.2) 110/462 (23.8)  

NOTCH1 Mutation    

Absent 226/265 (85.3) 396/462 (85.7) 0.874 

Present 39/265 (14.7) 66/462 (14.3)  

Epigenetic Subgroup    

n-CLL 159 (52.3) 186/359 (51.8) 0.987 

i-CLL 104 (34.2) 125/359 (34.8)  

m-CLL 41 (13.5) 48/359 (13.4)  

Telomere Length Group    

Short 158 (52) 239/453 (52.8) 0.912 



Supplementary Tables 

193 

Intermediate 80 (26.3) 113/453 (24.9)  

Long 66 (21.7) 101/453 (22.3)  

Footnote: Assessment of a variety of clinco-biological features were completed to examine the patient composition of 

the cohort using in this research compared to the complete clinical trial cohort. The number screened for each feature 

varied as the total cohort did not have complete data for all variables. Percentages were calculated using the frequency 

of that variable and the number of patients, in the specific cohort, that were screened for it, for example 396 patients 

had a NOTCH1 mutation out of the 462 clinical trial patients that were screened for it. For continuous variables, such as 

Age, the median and range were reported. Comparisons across the two cohorts were completed using a Wilcoxon rank 

sum and chi squared test for continuous and catagorical variables, respectively. A p-value<0.01 indicated that there was 

a signficant difference within the variable across the two cohorts. 

Supplementary Table 5- Univariate survival analysis of the CLL4 cohort examining progression free survival 

(PFS). 

Variable Status Total Events Median 
(Years) 

Lower 
Range 
(Years) 

Upper 
Range 
(Years) 

HR Lower 
CI 

Upper 
CI 

P-
value  

Telomere 
Length^ 

Short 
158 153 1.95 0.1 8.2 2.36 1.7 3.29 <0.001 

 
Intermediate 80 75 2.35 0 9 1.81 1.26 2.6 0.001 

 
Long 66 50 3.85 0.1 10.1 - - - - 

Epitype^ n-CLL 159 157 2 0.1 8.4 1.96 1.32 2.9 <0.001 
 

i-CLL 104 92 3 0 10.1 1.28 0.85 1.93 0.24 
 

m-CLL 41 30 2.8 0.1 8.6 - - - - 

TP53 
dysfunction” 

Yes 
27 27 0.3 0.1 6.3 3.61 2.39 5.44 <0.001 

 
No 223 198 2.5 0 10.1 - - - - 

ATM 
Dysfunction$ 

Biallelic 
7 7 1.47 0.8 3 2.42 1.12 5.2 0.024 

 
Del11q 43 41 2.17 0.1 8.8 1.53 1.09 2.17 0.015 

 
Wild Type 184 162 3.02 0 10.1 - - - - 

NOTCH1£ Mutated 39 38 2.2 0.1 7.7 1.28 0.9 1.81 0.17 
 

Unmutated 226 202 2.5 0 10.1 - - - - 

SF3B1+ Mutated 64 62 2.2 0.2 8.4 1.32 0.98 1.76 0.06 
 

Unmutated 200 177 2.5 0 10.1 - - - - 

Age^ - - - - - - 1 1 1 0.094 

Sex^ Female 75 67 2.9 0 9 - - - - 
 

Male 229 211 2.2 0 10.1 1.2 0.94 1.6 0.13 

Binet Stage^ C 94 86 1.9 0.1 9.5 0.98 0.69 1.4 0.91 
 

B 129 119 2.5 0.1 10.1 0.83 0.59 1.15 0.25 
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A 81 73 2.2 0 8.8 - - - - 

IGHV 
mutation 
status~ 

Unmutated 
163 159 1.9 0.1 8.3 2 1.5 2.6 <0.001 

 
Mutated 104 85 3.4 0.04 10.1 - - - - 

Treatment 
Arm^ 

FDR 
71 68 2.36 0.1 8.4 - - - - 

 
FC 120 104 3.84 0.1 10.1 0.54 0.4 0.73 <0.001 

 
Chl 113 106 2.07 0 9 1.13 0.83 1.53 0.43 

Fusogenic 
median^ 

Below 
224 214 2.55 0 9 1.77 1.33 2.36 <0.001 

 
Above 80 64 3.65 0.04 10.1 - - - - 

Fusogenic 
mean^ 

Below 
26 25 1.83 0.1 6.2 1.72 1.13 2.59 0.011 

 
Above 278 253 2.93 0 10.1 - - - - 

Footnote: CI- confidenence interval, HR-hazard ratio. Wald chi squared test, p-value<0.05 is considered significant. 

Within each variable with multiple statuses a reference is needed to be assigned for the univariant analysis, these are 

shown as do not have a calculated HR or CIs, for example in the Telomere length variable the Long status is the 

reference. ^ Based on 304 patients and  events. ”Based on 250 patients and  events. $ Based on 247 patients and 222 

events. £ Based on 265 patients and  events. + Based on 264 patients and 220 events. ~ Based on 267 patients and 243 

events. 

Supplementary Table 6- Univariate survival analysis of the CLL4 cohort examining overall survival (OS). 

Variable Status Total Events Median 
(Years) 

Lower 
Range 
(Years) 

Upper 
Range 
(Years) 

HR Lower 
CI 

Upper 
CI 

P-
value  

Telomere 
Length^ 

Short 
158 146 4.95 0.1 15.9 2.66 1.87 3.76 <0.001 

 
Intermediate 80 68 6 0.1 16 2.11 1.43 3.12 <0.001 

 
Long 66 42 9.65 0.1 17.4 - - - - 

Epitype^ n-CLL 159 144 5.6 0.1 16 2.8 1.81 4.34 <0.001 
 

i-CLL 104 88 5.8 0.1 16.6 2.2 1.4 3.45 <0.001 
 

m-CLL 41 24 9.8 0.1 17.4 - - - - 

TP53 
dysfunction” 

Yes 
27 26 1.5 0.2 15.6 3.66 2.4 5.57 <0.001 

 
No 223 183 6.3 0.1 16.6 - - - - 

ATM 
Dysfunction$ 

Biallelic 
7 7 4.93 1 10.2 1.93 0.9 4.13 0.091 

 
Del11q 43 41 5.3 0.1 13 1.65 1.16 2.34 0.0051 

 
Wild Type 184 146 7.04 0.1 16.6 - - - - 
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NOTCH1£ Mutated 39 35 5.9 0.1 16 1.36 0.94 1.95 0.099 
 

Unmutated 226 186 6.3 0.1 17.4 - - - - 

SF3B1+ Mutated 64 61 4.6 0.2 15.5 1.77 1.31 2.38 <0.001 
 

Unmutated 200 159 6.95 0.1 17.4 - - - - 

Age^ - - - - - - 1.05 1.04 1.07 <0.001 

Sex^ Female 75 58 6.3 0.1 17.4 - - - - 
 

Male 229 198 6 0.1 16.6 1.27 0.95 1.7 0.11 

Binet Stage^ C 94 83 4.3 0.1 16.4 1.38 0.95 2 0.089 
 

B 129 109 7 0.3 17.4 1.14 0.81 1.61 0.45 
 

A 81 64 6.7 0.2 16.5 - - - - 

IGHV mutation 
status~ 

Unmutated 
163 153 4.9 0.1 16 2.3 1.73 3.06 <0.001 

 
Mutated 104 74 8.7 0.1 17.4 - - - - 

Treatment Arm^ FDR 71 59 6.31 0.1 17.4 - - - - 
 

FC 120 98 6.86 0.2 16.6 0.89 0.64 1.23 0.47 
 

Chl 113 99 6.78 0.1 16.5 0.97 0.7 1.34 0.84 

Fusogenic 
median^ 

Below 
224 202 5.92 0.1 16 2.17 1.6 2.94 <0.001 

 
Above 80 54 8.9 0.1 17.4 - - - - 

Fusogenic mean^ Below 26 25 4.37 0.2 12.6 1.96 1.3 2.98 0.0015 
 

Above 278 231 6.92 0.1 17.4 - - - - 

Footnote: CI- confidenence interval, HR-hazard ratio. Wald chi squared test, p-value<0.05 is considered significant. 

Within each variable with multiple statuses a reference is needed to be assigned for the univariant analysis, these are 

shown as do not have a calculated HR or CIs, for example in the Telomere length variable the Long status is the 

reference. ^ Based on 304 patients and 256 events. ”Based on 250 patients and 209 events. $ Based on 247 patients 

and 206 events. £ Based on 265 patients and 221 events. + Based on 264 patients and 220 events. ~ Based on 267 

patients and 227 events.  

Supplementary Table 7- Univariate survival analysis of the ARCTIC/ADMIRE cohort examining progression 

free survival (PFS) 

Variable Status Total Events Median 
(Years) 

Lower 
Range 
(Years) 

Upper 
Range 
(Years) 

HR Lower 
CI 

Upper 
CI 

P-
value  

Telomere 
Length^ 

Short 
48 36 3.84 0.04 8.19 2.87 1.85 4.46 <0.001 

 
Intermediate 59 44 4.05 0.11 8.98 2.45 1.62 3.71 <0.001 

 
Long 108 47 6.06 0.02 9 - - - - 

Epitype^ n-CLL 102 78 3.87 0.02 8.98 4.47 2.56 7.82 0.005 
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i-CLL 61 34 5.45 0.11 9 2.4 1.3 4.41 <0.001 

 
m-CLL 52 15 6.93 0.16 8.68 - - - - 

TP53 
dysfunction” 

Yes 
25 21 2.09 0.04 8.98 4.39 2.69 7.17 <0.001 

 
No 151 86 5.45 0.02 8.86 - - - - 

ATM 
Dysfunction$ 

Biallelic 
11 11 3.36 1.25 6.43 3.37 1.76 6.47 <0.001 

 
Del11q 25 22 3.82 0.16 6.99 2.49 1.51 4.1 <0.001 

 
Wild Type 120 29 4.98 0.019 8.98 - - - - 

NOTCH1£ Mutated 26 14 5.6 0.33 8.86 0.82 0.47 1.44 0.49 
 

Unmutated 154 95 4.58 0.02 9 - - - - 

SF3B1£ Mutated 42 27 4.48 0.02 8.98 1.23 0.8 1.91 0.35 
 

Unmutated 138 82 5.27 0.04 9 - - - - 

Age^ - - - - - - 1.01 0.986 0.992 0.22 

Sex^ Female 48 24 5.57 0.33 8.19 - - - - 
 

Male 167 103 4.57 0.02 9 1.44 0.92 2.24 0.109 

Binet Stage^ C 74 39 5.16 0.02 9 0.68 0.4 1.13 0.14 
 

B 107 65 4.8 0.11 8.86 0.82 0.51 1.33 0.42 
 

A 34 23 4.52 0.04 8.03 - - - - 

IGHV mutation 
status~ 

Unmutated 
116 86 4.09 0.04 8.98 2.76 1.81 4.21 <0.001 

 
Mutated 80 30 6.76 0.02 9 - - - - 

Treatment Arm^ FCR 94 52 5.07 0.16 9 - - - - 
 

FCMR 54 30 4.92 0.28 8.86 1.05 0.67 1.64 0.84 
 

FCMminiR 39 27 4.65 0.37 8.16 1.41 0.88 2.24 0.15 
 

FCMminiR/FCR 12 7 4.15 2.03 6.07 1.38 0.62 3.05 0.43 

Fusogenic 
median^ 

Below 
70 54 3.6 0.04 8.19 2.49 1.74 3.57 <0.001 

 
Above 145 73 5.29 0.02 9 - - - - 

Fusogenic 
mean^ 

Below 
19 15 4.31 1.15 8.19 1.56 0.91 2.69 0.12 

 
Above 196 112 4.78 0.02 9 - - - - 

Footnote: CI- confidenence interval, HR-hazard ratio. Wald chi squared test, p-value<0.05 is considered significant. 

Within each variable with multiple statuses a reference is needed to be assigned for the univariant analysis, these are 

shown as do not have a calculated HR or CIs, for example in the Telomere length variable the Long status is the 

reference. ^ Based on 215 patients and 127 events. ”Based on 176 patients and 107 events. $ Based on 156 patients 

and 97 events. £ Based on 180 patients and 109 events. ~ Based on 196 patients and 116 events. * Based on 86 patients 

and 25 events. 
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Supplementary Table 8- Univariate survival analysis of the ARCTIC/ADMIRE cohort examining overall 

survival (OS) 

Variable Status Total Events Median 
(Years) 

Lower 
Range 
(Years) 

Upper 
Range 
(Years) 

HR Lowe
r CI 

Uppe
r CI 

P-value 

Telomere Length^ Short 48 18 5.8 0.04 8.19 2.56 1.37 4.79 0.0033 
 

Intermediate 59 18 6.28 0.11 8.99 1.6 0.86 2.96 0.14 
 

Long 108 23 6.99 0.02 9.1 - - - - 

Epitype^ n-CLL 102 38 6 0.02 9.1 3.95 1.66 9.35 0.0018 
 

i-CLL 61 15 6.74 0.11 9 2.22 0.86 5.73 0.1 
 

m-CLL 52 6 7.03 0.16 8.68 - - - - 

TP53 dysfunction” Yes 25 12 3.62 0.04 8.98 3.77 1.94 7.33 <0.001 
 

No 151 33 6.83 0.02 9.1 - - - - 

ATM Dysfunction$ Biallelic 11 4 5.25 1.66 8.02 1.47 0.52 4.17 0.47 
 

Del11q 25 5 5.88 0.16 9.1 0.73 0.29 1.88 0.52 
 

Wild Type 120 16 5.78 0.019 8.98 - - - - 

NOTCH1£ Mutated 26 8 6.69 0.47 8.86 1.36 0.63 2.91 0.44 
 

Unmutated 154 38 6.73 0.02 9.1 - - - - 

SF3B1£ Mutated 42 9 6.91 0.02 8.99 0.78 0.38 1.61 0.5 
 

Unmutated 138 37 6.67 0.04 9.1 - - - - 

Age^ - - - - - - 1.04 1.01 1.07 0.021 

Sex^ Female 48 11 6.61 1.03 9.1 - - - - 
 

Male 167 48 6.46 0.02 9 1.34 0.69 2.58 0.38 

Binet Stage^ C 74 18 6.56 0.02 9 0.53 0.26 1.08 0.079 
 

B 107 27 6.75 0.11 8.99 0.56 0.29 1.08 0.082 
 

A 34 14 5.99 0.04 9.1 - - - - 

IGHV mutation 
status~ 

Unmutated 
116 38 6.05 0.04 9.1 1.81 1.01 3.26 0.047 

 
Mutated 80 16 6.99 0.02 9 - - - - 

Treatment Arm^ FCR 94 28 5.86 0.16 9.1 - - - - 
 

FCMR 54 15 6.1 0.28 8.86 0.91 0.48 1.71 0.77 
 

FCMminiR 39 11 6.17 0.75 8.99 0.9 0.45 1.81 0.76 
 

FCMminiR/ 
FCR 

12 2 5.15 2.05 6.92 0.71 0.17 2.99 0.64 

Fusogenic 
median^ 

Below 
70 29 4.93 0.04 8.19 2.87 1.71 4.88 <0.001 

 
Above 145 30 6.26 0.02 9.1 - - - - 
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Fusogenic mean^ Below 19 7 5.34 1.38 8.19 1.63 0.74 3.61 0.23 
 

Above 196 52 5.88 0.02 9.1 - - - - 

Footnote: CI- confidenence interval, HR-hazard ratio. Wald chi squared test, p-value<0.05 is considered significant. 

Within each variable with multiple statuses a reference is needed to be assigned for the univariant analysis, these are 

shown as do not have a calculated HR or CIs, for example in the Telomere length variable the Long status is the 

reference. ^ Based on 215 patients and 59 events. ”Based on 176 patients and 45 events. $ Based on 156 patients and 

42 events. £ Based on 180 patients and 46 events. ~ Based on 196 patients and 54 events. * Based on 86 patients and 

16 events. 

Supplementary Table 9- CLL4 multivariate PFS final model after backward elimination after starting with 8 

covariates (Telomere length, Epitype, TP53 aberration, ATM dysfunction, IGHV mutation status, Age, SF3B1 

mutation, Treatment arm). 

Variable HR Lower CI Upper CI P-value 

TP53abs 3.38 2.13 5.37 <0.001 

n-CLL 2.35 1.37 4.05 0.002 

TL-S 2.14 1.39 3.3 <0.001 

i-CLL 1.9 1.12 3.22 0.017 

SF3B1 1.55 1.13 2.13 0.006 

TL-I 1.42 0.9 2.25 0.13 

Chl 1.21 0.84 1.74 0.3 

FC 0.47 0.33 0.68 <0.001 

Footnote: Abbreviations; CI, confidence interval; HR, hazard ratio; TL-S, short telomere length; TL-I, intermediate 

telomere length; TL-L, long telomere length. Candidate variables were entered in the iterative backward selection 

method were factors with P-values ⩽ 0.05 in the univariable analysis. Age was entered as a continuous variable for the 

multivariable analysis. The final CLL4 models were based on 246 subjects and 221 events for PFS.  

Supplementary Table 10- CLL4 multivariate OS final model after backward elimination after starting with 8 

covariates (Telomere length, Epitype, TP53 aberration, ATM dysfunction, IGHV mutation status, Age, SF3B1 

mutation, Treatment arm). 

Variable HR Lower CI Upper CI P-value 

TP53abs 2.77 1.74 4.4 <0.001 

TL-S 2.4 1.51 3.81 <0.001 

n-CLL 2.07 1.15 3.73 0.015 

SF3B1 1.96 1.42 2.71 <0.001 

i-CLL 1.78 1 3.18 0.049 

TL-I 1.76 1.08 2.86 0.023 

Age 1.06 1.04 1.08 <0.001 
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Chl 0.72 0.5 1.05 0.091 

FC 0.66 0.45 0.96 0.03 

Footnote: Abbreviations; CI, confidence interval; HR, hazard ratio; TL-S, short telomere length; TL-I, intermediate 

telomere length; TL-L, long telomere length. Candidate variables were entered in the iterative backward selection 

method were factors with P-values ⩽ 0.05 in the univariable analysis. Age was entered as a continuous variable for the 

multivariable analysis. The final CLL4 models were based on 246 subjects and 205 events for OS.  

Supplementary Table 11- ARCTIC and ADMIRE multivariate PFS final model after backward elimination after 

starting with 8 covariates (Telomere length, Epitype, TP53 aberration, ATM dysfunction, IGHV mutation 

status, Age, SF3B1 mutation, Treatment arm). 

Variate HR Lower CI Upper CI P-value 

TP53abs 4.94 2.58 9.48 <0.001 

biATM 2.70 1.27 5.76 0.01 

IGHV-U 2.20 1.23 3.95 0.01 

TL-S 2.18 1.17 4.05 0.01 

del11q 1.88 1.05 3.37 0.03 

TL-I 0.92 0.51 1.66 0.78 

Footnote: Abbreviations; CI, confidence interval; HR, hazard ratio; TL-S, short telomere length; TL-I, intermediate 

telomere length; TL-L, long telomere length. Candidate variables were entered in the iterative backward selection 

method were factors with P-values ⩽ 0.05 in the univariable analysis. Age was entered as a continuous variable for the 

multivariable analysis. The final ARC/ADM models were based on 138 subjects and 86 events for PFS.   
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Supplementary Table 12- ARCTIC and ADMIRE multivariate OS final model after backward elimination after 

starting with 8 covariates (Telomere length, Epitype, TP53 aberration, ATM dysfunction, IGHV mutation 

status, Age, SF3B1 mutation, Treatment arm). 

Variate HR Lower CI Upper CI P-value 

n-CLL 3.4 1.14 10.12 0.02 

TP53ab 3.28 1.64 6.55 <0.001 

TL-S 2.26 1.09 4.67 0.08 

i-CLL 2.08 0.65 6.7 0.22 

TL-I 0.96 0.45 2.04 0.91 

Footnote: Abbreviations; CI, confidence interval; HR, hazard ratio; TL-S, short telomere length; TL-I, intermediate 

telomere length; TL-L, long telomere length. Candidate variables were entered in the iterative backward selection 

method were factors with P-values ⩽ 0.05 in the univariable analysis. Age was entered as a continuous variable for the 

multivariable analysis. The final ARC/ADM models were based on 176 subjects and 45 events for OS 

Supplementary Table 13- Breakdown of available FISH data for the cohort of 495 clinical trial patients, 

divided according to clinical trial and genomic technology group (different columns) i.e. SNP array. The 

number of cases with one of the four recurrent CLL CNA, i.e. del17p, trisomy 12, is given out of the number 

of patients that were screened for it.   

 CLL4  ARCTIC and ADMIRE  

 SNP (n=108) sWGS (n=144) HumanOmni (n= 212) 450K (n=31) 

Del17p 6/101 7/130 13/205 1/31 

Del11q 35/102 20/131 38/207 9/31 

Trisomy 12 11/102 18/131 6/80 5/17 

Del13q 57/102 77/131 55/81 8/16 
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Supplementary Table 14- Univariate survival analysis of the CLL4 cohort examining progression free survival 

(PFS) in a cohort of 251 clinical trial patients. 

Variable Status Total Events Median 

(Years) 

Lower Range 

(Years) 

Upper Range 

(Years) 

HR Lower 

CI 

Upper 

CI 

P-value 

GC ^ High 34 31 1.01 0.05 7.66 1.5 1.02 2.2 <0.05 
 

Intermediate 45 39 2 0 9.46 1.04 0.73 1.48 0.82 
 

Low 172 156 2.53 0 10.12 - - - - 

Telomere 

Length ^ 
Short 137 132 1.99 0 8.15 2.62 1.8 3.82 <0.001 

 
Intermediate 61 57 2.46 0 8.99 1.97 1.3 2.99 <0.01 

 
Long 53 37 4.04 0.08 10.12 - - - - 

Epitype “ n-CLL 115 113 2.1 0 8.07 2.8 1.67 4.69 <0.001 
 

i-CLL 83 72 2.99 0 10.12 1.78 1.05 3.02 <0.05 
 

m-CLL 28 17 3.7 0.07 8.57 - - - - 

TP53 

dysfunction ^ 
Yes 24 24 0.43 0.08 6.28 3.72 2.41 5.75 <0.001 

 
No 227 202 2.57 0 10.12 - - - - 

IGHV mutation 

status * 
Unmutated 141 138 1.87 0 7.71 2.39 1.74 3.27 <0.001 

 
Mutated 80 60 3.59 0.07 10.12 - - - - 

ATM 

disruption ^ 
Biallelic 5 5 1.63 0.84 3 2.2 0.9 5.41 0.08 

 
Deleted 41 41 1.51 0 5.5 1.97 1.39 2.8 <0.001 

 
Mutated 12 12 3.59 0.21 6.26 1.07 0.6 1.93 0.82 

 
No 246 221 2.41 0 10.12 - - - - 

BIRC3 biallelic 

loss ^ 
Yes 5 5 1.1 0.05 4.7 1.98 0.81 4.81 0.13 

 
No 203 178 2.54 0 10.12 - - - - 

Trisomy 12 ^ Yes 25 25 2.18 0.06 6.17 1.46 0.96 2.22 0.08 
 

No 226 201 2.41 0 10.12 - - - - 

Del(13q) ^ Biallelic 25 24 1.55 0 8.99 1.36 0.88 2.1 0.17 
 

Monoallelic 81 73 2.2 0 8.31 1.09 0.82 1.45 0.56 
 

No 145 129 2.5 0.06 10.12 - - - - 

SF3B1 ^ Yes 60 58 2.04 0.23 8.44 1.31 0.97 1.77 0.07 
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No 191 168 2.5 0 10.12 - - - - 

NOTCH1 ^ Yes 39 38 2.1 0.06 7.71 1.36 0.96 1.93 0.08 
 

No 212 188 2.48 0 10.12 - - - - 

Mutation 

count ^ 
≥3 14 14 1.1 0.28 7.71 2.23 1.27 3.92 <0.01 

 
2 34 33 1.43 0.16 7.03 1.81 1.21 2.69 <0.01 

 
1 87 83 2.13 0.05 8.44 1.61 1.2 2.18 <0.01 

 
0 116 96 3.07 0 10.12 - - - - 

Treatment 

Arm ^ 
FC 108 92 3.69 0 10.12 0.5 0.36 0.7 <0.001 

 
Chl 86 79 1.38 0 8.99 1.1 0.78 1.56 0.56 

 
FDR 57 55 1.69 0.05 7.49 - - - - 

Age ^ 
 

- - - - - 1.01 1 1.03 0.12 

Footnote: CI- confidenence interval, HR-hazard ratio. Wald chi squared test, p-value<0.05 is considered significant. 

Within each variable with multiple statuses a reference is needed to be assigned for the univariant analysis, these are 

shown as do not have a calculated HR or CIs, for example in the Telomere length variable the Long status is the 

reference. ^ Based on 251 patients and 226 events. ”Based on 226 patients and 202 events. * Based on 221 patients 

and 198 events. 

Supplementary Table 15- Univariate survival analysis of the CLL4 cohort examining overall survival (OS) in a 

cohort of 251 clinical trial patients.  

Variable Status Total Events Median 

(Years) 

Lower Range 

(Years) 

Upper Range 

(Years) 

HR Lower 

CI 

Upper 

CI 

P-value 

GC ^ High 34 31 4.2 0 14.3 1.62 1.1 2.4 <0.05 
 

Intermediate 45 37 6 0.28 16 1 0.7 1.44 0.99 
 

Low 172 141 6.25 0.06 17.37 - - - - 

Telomere 

Length ^ 
Short 137 124 5.3 0.05 15.9 2.51 1.71 3.68 <0.001 

 
Intermediate 61 50 6.25 0.07 16 1.9 1.23 2.94 <0.01 

 
Long 53 35 10.1 0.08 17.37 - - - - 

Epitype “ n-CLL 115 103 5.86 0.05 16 2.9 1.68 5 <0.001 
 

i-CLL 83 71 5.39 0.06 16.65 2.59 1.48 4.53 <0.001 
 

m-CLL 28 15 10.82 0.07 17.37 - - - - 

TP53 

dysfunction ^ 
Yes 24 23 1.47 0.23 15.63 3.71 2.38 5.78 <0.001 
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No 227 186 6.6 0.05 17.37 - - - - 

IGHV mutation 

status * 
Unmutated 141 130 5.23 0.05 16 2.31 1.67 3.19 <0.001 

 
Mutated 80 55 8.94 0.07 17.37 - - - - 

ATM 

disruption ^ 
Biallelic 5 5 3.87 1 10.17 1.9 0.78 4.65 0.16 

 
Deleted 41 38 5.56 0.05 12.97 1.5 1.05 2.15 <0.05 

 
Mutated 12 12 6.13 1.59 10.17 1.5 0.83 2.71 0.18 

 
No 193 154 6.25 0.06 17.37 - - - - 

BIRC3 biallelic 

loss ^ 
Yes 5 5 3.32 0.05 6.32 2.73 1.12 6.68 <0.05 

 
No 246 204 6.06 0.06 17.37 - - - - 

Trisomy 12 ^ Yes 25 24 4.16 0.06 15.72 1.57 1.03 2.41 <0.05 
 

No 226 185 6.25 0.05 17.37 - - - - 

Del(13q) ^ Biallelic 25 20 7.03 0.07 16.53 0.86 0.53 1.38 0.53 
 

Monoallelic 81 69 5.86 0.05 17.37 0.99 0.74 1.33 0.95 
 

No 145 120 5.95 0.06 16.65 - - - - 

SF3B1 ^ Yes 60 54 4.61 0.23 15.53 1.54 1.13 2.11 <0.01 
 

No 191 155 6.6 0.05 17.37 - - - - 

NOTCH1 ^ Yes 39 36 4.93 0.06 16 1.52 1.06 2.18 <0.05 
 

No 212 173 6.53 0.05 17.37 - - - - 

Mutation 

count ^ 
≥3 14 13 3.52 0.94 15.46 2.4 1.34 4.32 <0.01 

 
2 34 33 4.47 0.23 12.56 2.47 1.64 3.72 <0.001 

 
1 87 78 5.36 0.05 16.36 1.78 1.31 2.42 <0.001 

 
0 116 85 7.9 0.07 17.37 - - - - 

Treatment 

Arm ^ 
FC 108 85 6.29 0.16 16.65 0.78 0.55 1.11 0.16 

 
Chl 86 74 5.92 0.08 16.53 0.99 0.69 1.43 0.98 

 
FDR 57 50 5.59 0.05 17.37 - - - - 

Age ^ 
 

- - - - - 1.05 1.03 1.07 <0.001 

Footnote: CI- confidenence interval, HR-hazard ratio. Wald chi squared test, p-value<0.05 is considered significant. 

Within each variable with multiple statuses a reference is needed to be assigned for the univariant analysis, these are 

shown as do not have a calculated HR or CIs, for example in the Telomere length variable the Long status is the 
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reference. ^ Based on 251 patients and 209 events. ”Based on 226 patients and 189 events. * Based on 221 patients 

and 185 events. 

Supplementary Table 16- Univariate survival analysis of the ARCTIC and ADMIRE cohort examining 

progression free survival (PFS) in a cohort of 226 clinical trial patients.  

Variable Status Total Events Median 

(Years) 

Lower Range 

(Years) 

Upper Range 

(Years) 

HR Lower 

CI 

Upper 

CI 

P-value 

GC ^ High 34 23 2.53 0.04 8.62 2.02 1.27 3.22 <0.01 
 

Intermediate 52 33 4.86 0.63 8.68 1.08 0.72 1.62 0.7 
 

Low 104 82 5.05 0.02 9 - - - - 

Telomere 

Length ^ 
Short 53 40 3.7 0.04 8.19 2.57 1.7 3.88 <0.001 

 
Intermediate 58 43 3.93 0.11 8.86 2.21 1.48 3.31 <0.001 

 
Long 115 55 5.83 0.02 8.99 - - - - 

Epitype “ n-CLL 93 73 3.77 0.02 8.98 4.35 2.51 7.52 <0.001 
 

i-CLL 59 32 5.45 0.11 9 2.09 1.15 3.83 <0.05 
 

m-CLL 50 16 6.85 0.16 8.68 - - - - 

TP53 

dysfunction ^ 
Yes 26 23 2.17 0.04 8.98 4.65 2.93 7.41 <0.001 

 
No 200 115 5.06 0.02 9 - - - - 

IGHV mutation 

status * 
Unmutated 119 93 4.06 0.04 8.98 3.04 2 4.61 <0.001 

 
Mutated 81 31 6.43 0.02 9 - - - - 

ATM 

disruption ^ 
Biallelic 12 9 3.36 0.16 6.43 2.1 1.05 4.18 <0.05 

 
Deleted 28 24 4.02 0.52 6.99 2.1 1.33 3.32 <0.01 

 
Mutated 22 15 4.49 1.66 7.33 1.4 0.8 2.42 0.23 

 
No 164 90 4.99 0.02 9 - - - - 

BIRC3 biallelic 

loss ^ 
Yes 5 5 4.06 2.39 5.91 2.07 0.84 5.06 0.11 

 
No 221 113 4.76 0.02 9 - - - - 

Trisomy 12 ^ Yes 33 20 4.57 0.13 8.98 1.04 0.64 1.67 0.88 
 

No 193 118 4.76 0.02 9 - - - - 

Del(13q) ^ Biallelic 23 11 5.76 0.11 8.62 0.64 0.34 1.22 0.18 
 

Monoallelic 97 60 4.51 0.02 4.51 1 0.7 1.42 0.99 
 

No 106 67 4.58 0.13 8.98 - - - - 
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SF3B1 ^ Yes 48 32 4.38 0.02 8.98 1.3 0.87 1.94 0.19 
 

No 178 106 4.86 0.04 9 - - - - 

NOTCH1 ^ Yes 32 18 5.22 0.33 8.86 0.85 0.52 1.4 0.54 
 

No 194 120 4.58 0.02 9 - - - - 

Mutation 

count ^ 
≥3 

17 
13 2.61 0.02 5.82 3.26 1.74 6.11 <0.001 

 
2 32 25 3.56 0.16 8.98 2.29 1.4 3.76 <0.001 

 
1 90 56 4.48 0.04 8.55 1.64 1.1 2.44 <0.05 

 
0 87 44 5.83 0.13 9 - - - - 

Treatment 

Arm ^ 
FC 51 31 4.76 0.55 8.86 1.1 0.71 1.71 0.66 

 
Chl 45 32 4.58 0.37 8.16 1.41 0.91 2.17 0.12 

 
FDR 13 8 4.29 2.03 6.07 1.38 0.65 2.9 0.4 

Age ^ 
 

101 56 5.45 0.16 9 - - - - 

Footnote: CI- confidenence interval, HR-hazard ratio. Wald chi squared test, p-value<0.05 is considered significant. 

Within each variable with multiple statuses a reference is needed to be assigned for the univariant analysis, these are 

shown as do not have a calculated HR or CIs, for example in the Telomere length variable the Long status is the 

reference. ^ Based on 226 patients and 138 events. ”Based on 202 patients and 121 events. * Based on 200 patients 

and 124 events. 

Supplementary Table 17- Univariate survival analysis of the ARCTIC and ADMIRE cohort examining overall 

survival (OS) in a cohort of 226 clinical trial patients.  

Variable Status Total Events Median 

(Years) 

Lower Range 

(Years) 

Upper Range 

(Years) 

HR Lower 

CI 

Upper 

CI 

P-value 

GC ^ High 34 13 4.48 0.04 8.62 2.21 1.17 4.17 <0.05 
 

Intermediate 52 12 6.58 1.4 8.68 0.87 0.45 1.67 0.67 
 

Low 104 37 6.82 0.02 9.1 - - - - 

Telomere 

Length ^ 
Short 53 20 5.91 0.04 8.19 2.55 1.39 4.67 <0.01 

 
Intermediate 58 19 5.99 0.11 8.99 1.81 0.98 3.32 0.05 

 
Long 115 23 6.92 0.02 9.1 - - - - 

Epitype “ n-CLL 93 35 6 0.02 9.1 4.69 1.83 11.99 <0.01 
 

i-CLL 59 13 6.74 0.11 9 2.28 0.81 6.41 0.12 
 

m-CLL 50 5 7 0.16 8.68 - - - - 

TP53 

dysfunction ^ 
Yes 26 12 3.62 0.04 8.98 2.97 1.58 5.59 <0.001 
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No 200 50 6.69 0.02 9.1 - - - - 

IGHV mutation 

status * 
Unmutated 119 40 6.09 0.04 9.1 1.86 1.04 3.33 <0.05 

 
Mutated 81 16 6.9 0.02 9 - - - - 

ATM 

disruption ^ 
Biallelic 12 3 5.94 0.16 8.2 1.06 0.33 3.4 0.93 

 
Deleted 28 6 6.87 0.75 9.1 0.74 0.31 1.73 0.48 

 
Mutated 22 7 6.12 1.66 8.99 1.05 0.47 2.34 0.9 

 
No 164 46 6.66 0.02 9 - - - - 

BIRC3 biallelic 

loss ^ 
Yes 5 2 5.91 2.56 9.1 1.28 0.3 5.5 0.74 

 
No 221 60 6.43 0.02 9 - - - - 

Trisomy 12 ^ Yes 33 12 5.99 0.13 8.98 1.59 0.85 3 0.15 
 

No 193 50 6.72 0.02 9.1 - - - - 

Del(13q) ^ Biallelic 23 2 7.1 0.11 8.62 0.23 0.06 1 0.05 
 

Monoallelic 97 25 6.46 0.02 9 0.77 0.46 1.28 0.31 
 

No 106 35 6.07 0.13 9.1 - - - - 

SF3B1 ^ Yes 48 11 6.8 0.02 8.99 0.79 0.41 1.53 0.49 
 

No 178 51 6.39 0.04 9.1 - - - - 

NOTCH1 ^ Yes 32 11 6.46 0.47 8.86 1.43 0.74 2.75 0.28 
 

No 194 51 6.43 0.02 9.1 - - - - 

Mutation 

count ^ 
≥3 17 7 4.25 0.02 7.92 3.68 1.51 8.96 <0.01 

 
2 32 9 7 0.16 8.99 1.47 0.65 3.3 0.35 

 
1 90 29 6.04 0.04 9.1 2.02 1.11 3.69 <0.05 

 
0 87 17 6.97 0.13 9 - - - - 

Treatment 

Arm ^ 
FC 51 14 6.74 0.63 8.86 0.82 0.43 1.54 0.53 

 
Chl 45 12 6.98 0.75 8.99 0.8 0.41 1.56 0.51 

 
FDR 13 2 5.78 2.05 6.92 0.6 0.14 2.5 0.48 

Age ^ 
 

101 31 6.14 0.16 9.1 - - - - 

Footnote: CI- confidenence interval, HR-hazard ratio. Wald chi squared test, p-value<0.05 is considered significant. 

Within each variable with multiple statuses a reference is needed to be assigned for the univariant analysis, these are 

shown as do not have a calculated HR or CIs, for example in the Telomere length variable the Long status is the 
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reference. ^ Based on 226 patients and 62 events. ”Based on 202 patients and 53 events. * Based on 200 patients and 

56 events. 

Supplementary Table 18- CLL4 multivariate PFS final model after backward elimination after starting with 

13 covariates (GC, Telomere length, Epitype, TP53 aberration, ATM disruption, BIRC3 biallelic loss, Trisomy 

12, IGHV mutation status, Age, SF3B1 mutation, NOTCH1 mutation, mutation count, and treatment arm). 

Covariate Subgroup HR Lower 95% CI Upper 95% CI P-value 

TP53 dysfunction Yes 3.13 1.87 5.26 <0.001 

IGHV mutation 

status 

Unmutated 2.34 1.36 4.04 <0.001 

ATM disruption Biallelic 2 0.79 5.08 0.15 

 Del11q 1.62 1.07 2.49 <0.05 

 Mutation 1.05 0.56 2 0.87 

Epitype n-CLL 1.84 0.87 3.90 0.11 

 i-CLL 2.34 1.22 4.49 <0.05 

Telomere length TL-S 1.46 0.85 2.48 0.17 

 TL-I 0.92 0.51 1.66 0.78 

Treatment FC 0.30 0.20 0.45 <0.001 

 Chl 0.98 0.64 1.48 0.91 

Footnote: Model included 198 cases with 176 events. Abbreviations; 95% CI, 95% confidence interval; HR, hazard ratio; 

TL-S, short telomere length; TL-I, intermediate telomere length. Candidate variables were entered in the iterative 

backward selection method were factors with P-values ⩽ 0.05 in the univariable analysis. Age was entered as a 

continuous variable for the multivariable analysis. 

Supplementary Table 19- CLL4 multivariate OS final model after backward elimination after starting with 13 

covariates (GC, Telomere length, Epitype, TP53 aberration, ATM disruption, BIRC3 biallelic loss, Trisomy 12, 

IGHV mutation status, Age, SF3B1 mutation, NOTCH1 mutation, mutation count, and treatment arm). 

Covariate Subgroup HR Lower 95% CI Upper 95% CI P-value 

TP53 aberration Yes 3.4 2.05 5.64 <0.001 

Epitype n-CLL 2.17 1.18 3.99 <0.05 

 i-CLL 2.19 1.21 3.98 <0.01 
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TL TL-S 1.84 1.16 2.94 <0.05 

 TL-I 1.26 0.76 2.12 0.37 

SF3B1 Yes 1.79 1.26 2.55 <0.01 

Trisomy 12 Yes 1.74 1.08 2.83 <0.05 

GC High 1.60 1.05 2.44 <0.05 

 Intermediate 0.8 0.53 1.20 0.28 

Age  1.05 1.04 1.07 <0.001 

Treatment arm Chl 0.77 0.51 1.15 0.2 

 FC 0.61 0.41 0.89 <0.05 

Footnote: Model included 226 cases with 189 events. Abbreviations; 95% CI, 95% confidence interval; HR, hazard ratio; 

TL-S, short telomere length; TL-I, intermediate telomere length. Candidate variables were entered in the iterative 

backward selection method were factors with P-values ⩽ 0.05 in the univariable analysis. Age was entered as a 

continuous variable for the multivariable analysis. 

Supplementary Table 20- ARCTIC and ADMIRE multivariate PFS final model after backward elimination after 

starting with 13 covariates (GC, Telomere length, Epitype, TP53 aberration, ATM disruption, BIRC3 biallelic 

loss, Trisomy 12, IGHV mutation status, Age, SF3B1 mutation, NOTCH1 mutation, mutation count, and 

treatment arm). 

Covariate Subgroup HR Lower 95% CI Upper 95% CI P-value 

Epitype n-CLL 3.67 2.08 6.47 <0.011 

 i-CLL 2.21 1.20 4.07 <0.05 

TP53 dysfunction Yes 2.60 1.39 4.85 <0.01 

Mutation count ≥3 2.59 1.24 5.38 <0.01 

 2 1.24 0.67 2.32 0.49 

 1 1.39 0.90 2.15 0.14 

GC High 1.94 1.15 3.27 <0.05 

 Intermediate 1.27 0.82 1.95 0.29 

Footnote: Model included 202 cases and 121 events. Abbreviations; 95% CI, 95% confidence interval; HR, hazard ratio. 

Candidate variables were entered in the iterative backward selection method were factors with P-values ⩽ 0.05 in the 

univariable analysis. Age was entered as a continuous variable for the multivariable analysis. 
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Supplementary Table 21- ARCTIC and ADMIRE multivariate OS final model after backward elimination after 

starting with 13 covariates (GC, Telomere length, Epitype, TP53 aberration, ATM disruption, BIRC3 biallelic 

loss, Trisomy 12, IGHV mutation status, Age, SF3B1 mutation, NOTCH1 mutation, mutation count, and 

treatment arm). 

Footnote: Model included 202 cases and 53 events. Abbreviations; 95% CI, 95% confidence interval; HR, hazard ratio. 

Candidate variables were entered in the iterative backward selection method were factors with P-values ⩽ 0.05 in the 

univariable analysis. Age was entered as a continuous variable for the multivariable analysis. 

  

Covariate Subgroup HR Lower 95% CI Upper 95% CI P-value 

Epitype n-CLL 3.55 1.35 9.35 <0.05 

 i-CLL 3.09 1.06 9.03 <0.05 

Mutation count ≥3 3.52 1.18 10.5 <0.05 

 2 1.09 0.39 3.03 0.869 

 1 2.03 0.99 4.11 0.050 

TP53 dysfunction Yes 2.72 1.14 6.45 <0.05 

Trisomy 12  Yes 2.58 1.15 5.79 <0.05 

GC High 2.44 1.18 5.03 <0.05 

 Intermediate 1.13 0.55 2.34 0.74 

Age  1.05 1.01 1.08 <0.01 
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Supplementary Figures 

Supplementary Figure 1- Violin plot showing the relationship between epitype and telomere length as a 

continuous variable, a pairwise Wilcoxon test was used to compare the average TL across the three epitype 

groups in the violin plot, p-value<0.01 is indicated by **. 
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Supplementary Figure 2- Stacked bar chart displaying the distribution of the IGLV3-21R110 mutation across 

the epitype groups, a p-value<0.01 from a chi squared test is shown by two asterisks (**).  

 

Supplementary Figure 3- Stacked bar chart displaying the distribution of the IGLV3-21R110 mutation across 

the TL groups, a p-value<0.05 from a chi squared test is shown by two asterisks (*). Median TL for the 

IGLV3-21R110 mutated and wild type patient is given in the table. 
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Supplementary Figure 4- Univariant analysis of the telomere length variable within the CLL4 cohort. A 

pairwise log rank test was employed to compare survival plots, p-value<0.01 is indicated by two astericks 

(**). 
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Supplementary Figure 5- Kaplan-Meier plot of the three epitype groups for PFS and OS using the cohort of 

108 ARCTIC and ADMIRE patients with TL-L. A pairwise log rank test was employed to compare survival 

plots, p-value<0.05 is indicated by an asterick (*) and a p-value<0.01 is indicated by two astericks (**). 
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Supplementary Figure 6- Copy number called plot using a stringent bin size of 50 kb. The whole genome 

and chromosome 13 plots are shown for sample 555. Less CNAs are being called compared to when smaller 

bin sizes were used but del13q has been called. 
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Supplementary Figure 7- Scatter plot showing the TL measurements from the two technologies, MMQPCR 

and STELA, employed for a sub cohort of 80 CLL4 patients. A Kendall’s rank correlation test was used to 

compare the TL given by the two metrics for each patient.  

 

Supplementary Figure 8- Sankey diagram illustrating the association between three categorical variables; 

GC, TL and epitype. To the left and right of the Sankey are stacked bar charts showing the percentage of 

each TL group and epitype group that have low, intermediate or high GC. A chi-squared test was employed 

to examine the difference across the three stacked bar charts; a p-value <0.05 is indicated by a single 

asterisk (*) and a p-value<0.01 is indicated by two asterisk (**). 
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Supplementary Figure 9- Boxplot of the CNA count against mutation count. A pairwise wilcoxon test using 

Benjamini Hochberg adjustment found no signficant difference in CNA count as mutation count increased.   
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Supplementary Figure 10- Boxplot showing the CNA count across the two del13q classes (class 1 and 2) (A) 

and the two del13 types (type 1 and 2) (B).  A pairwise wilcoxon test using Benjamini Hochberg adjustment 

assessed if there was a signficant difference in CNA count between the various del13q class and type 

events. A p-value<0.001 is indicated by three asterisk (***). 

 

Supplementary Figure 11- Stacked bar chart of the proportion of the three GC groups in each of the four 

del13q subgroups; class 1 or 2 and type 1 or 2. A pairwise chi-squared test was employed to examine the 

difference across the four stacked bar charts, no significant difference was found.  
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Supplementary Figure 12- Stacked bar charting showing the distribution of the three GC groups across the 

different del13q subgroup. A pairwise chi squared was employed to test the significance difference in the 

GC prevalence across the five del13q classes, no significant difference was found. 

 

Supplementary Figure 13- Density curve of CNA count across the cohort of 244 ARCTIC and ADMIRE clinical 

trial patients, the three GC classification groups are coloured with the number and percentage of the cohort 

each group has is also given. 
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Supplementary Figure 14- Density curve of CNA count across the cohort of 251 CLL4 clinical trial patients, 

the three GC classification groups are coloured with the number and percentage of the cohort each group 

has is also given. 

 

Supplementary Figure 15- Kaplan-Meier plot displaying the PFS of the three GC from the 251 CLL4 

patients. A pairwise log rank test was employed to compare survival plots, no signficant difference was 

found. 

 
  



Supplementary Figures 

220 

Supplementary Figure 16- Kaplan-Meier plot displaying the 52 ARCTIC and ADMIRE patients with 

intermediate GC stratified by the presence of TP53 aberration. A log rank test was employed to compare 

survival plots and the result is annotated to the plot. 
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Supplementary Figure 17- Kaplan-Meier plot displaying the OS from the 172 CLL4 patients with low GC. 

These cases were divided into two groups depending on if patients had both a trisomy 12 and NOTCH1 

mutation present (Low GC+tri12+NOTCH1) or not (Low GC without tri12+NOTCH1). Low GC without 

tri12+NOTCH1 included cases where a trisomy 12 or NOTCH1 mutation was present but did not include 

patients that had both. A log rank test was employed to compare survival plots and the result is annotated 

to the plot. 
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