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Abstract—In the UK 60,000 people have a brain tumour, and
typically are unaware of its presence until symptoms occur.
Currently there is no mass screening available due to limitations
in diagnostic techniques. Measurement of intracranial pressure
(via tympanic membrane displacement) is a potential low-cost,
accessible solution, however pressure fluctuations degrade its
accuracy. This paper develops a solution to this problem by
assisting participants to precisely track airway pressure profiles.
This stabilises intrathoracic pressure, significantly reducing the
fluctuations and enabling accurate diagnosis of intracranial
pressure.

The paper develops and evaluates the first model of lung
pressure tracking to embed volitional control action. A clinically
feasible identification approach is then derived, together with a
novel model predictive control framework, embedding a valve
control subsystem. Results with 10 participants confirm that
tracking is improved by an average of 22%.

Index Terms—intracranial pressure, brain tumour, airway
pressure tracking, model predictive control, diagnostics

I. INTRODUCTION

EUROLOGICAL conditions affect 11 million people in

the UK (around 1 in 6 people), account for 800,000
hospital admissions every year, and cause 1 in 5 deaths
[1]. Approximately 70% of these deaths were attributed to
conditions that affect the anatomy of the brain such as tumours
or cerebral haemorrhage [2]. Early identification of intracranial
pathologies can increase the available treatment options and
dramatically improve the chance of long-term survival. Current
non-invasive methods for identifying cranial pathologies com-
prise magnetic resonance imaging, computerised tomography,
and brain electrical activity (e.g. magnetoencephalography
and electroencephalography). However, they all require highly
specialised and expensive equipment, making their application
in mass screening by general practitioners unfeasible. There-
fore a new approach is needed for early diagnosis of cranial
pathologies.

A. Intracranial Pressure Measurement

Pressure in the neurocranium is known as intracranial
pressure (ICP), and must remain within closely maintained

This work was supported by the U.K. Engineering and Physical Sciences
Research Council.

M. C. Thompson and C. T. Freeman are with the School of Electronics
and Computer Science, University of Southampton, Southampton SO17 1BJ,
U.K. (email: mt10g17@soton.ac.uk; cf@ecs.soton.ac.uk)

A.-M. Hughes is with the School of Health Sciences, University of
Southampton, Southampton SO17 1BJ, U.K. (email: a.hughes@soton.ac.uk)

N. O’Brien, R. Marchbanks and A. Birch are with the Department
of Medical Physics, University Hospital Southampton, Southampton SO16
6YD, U.K. (email: neil.obrien@uhs.nhs.uk; robert.marchbanks@uhs.nhs.uk;
tony.birch@uhs.nhs.uk)

limits to ensure the brain functions properly. ICP cannot
be used to identify the cause of neurological conditions but
instead characterises the overall state of health of the brain and
can be used to identify whether any pathologies are present.
Changes in ICP can cause constriction of blood vessels and,
if left untreated, lead to hypoxia and the death of brain
tissue. Cerebral blood flow regulation and cerebrospinal fluid
regulation usually maintain ICP within a fixed range (7-15
mmHg) even when changes occur in the body, e.g. increased
blood flow due to exercise or age related anatomical changes in
the brain. However, these regulatory mechanisms break down
when significant pathologies such as tumours are present. The
ability to measure ICP non-invasively and accurately would
provide an accessible, low cost solution to the diagnosis of
cranial malfunction.

A potential non-invasive, accessible solution to intracra-
nial pressure measurement has recently been proposed by
researchers at University Hospital Southampton (UHS). They
used a cerebral and cochlear fluid pressure (CCFP) analyser to
show that there is a fluid link between the inner ear and cere-
brospinal fluid [3]. They then demonstrated that movement of
the eardrum can be measured using acoustic reflex stimulation
based tympanic membrane displacement (TMD) to indirectly
yield the pressure in the inner ear. TMD profiles comprise
audio stimulation applied over intervals of about 20 seconds.

Several other research programmes have investigated TMD
as a non-invasive measure of ICP [3]-[6]. Their main conclu-
sions are that it is a plausible solution but measurements are
corrupted by fluctuations in pressure due to cardiac and respi-
ratory processes which affect cerebral blood flow regulation.
Cerebral blood flow regulation is affected by airway pressure
[7]-[13] via multiple mechanisms in the body which link in-
trathoracic pressure with ICP [14]. The practical consequence
of these interactions is that pressure fluctuations can be miti-
gated by measuring and precisely controlling airway/thoracic
pressure during TMD measurements.

The standard experimental approach to control intrathoracic
pressure used in numerous studies requires participants to blow
into a tube (forced exhalation) in order to generate specific
pressures at specific time intervals. This is called lung pressure
profiling and is used to observe how thoracic and cardiac
pressures affect ICP. These profiles, displayed on a screen,
typically comprise square waves, sine waves or a sequence
of step changes which the participant is required to track
accurately. The closer these profiles are tracked, the better
the comparative data for ICP measurements. Unfortunately,
participants find it is inherently difficult to precisely control
their lung pressure during forced exhalation tests.



The established clinical breathing apparatus is shown in
Figs. 1 and 2. The red cap on the end has an orifice for air
leakage to prevent glottis closure (as shown on the second
unattached cap in Fig. 1). As it stands, this setup does not
provide the participant or operator any form of assistance to
track lung pressure profiles closely. A form of airflow control
is needed to help assist them in their tracking ability.
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Fig. 1. Breathing tube, pressure sensor and removable cap used to measure
lung pressure clinically.
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Fig. 2. Current clinical setup used for lung pressure profiling.

Currently no research has investigated the application of
closed loop control to airway pressure during forced exhala-
tion. This problem is distinct from that of forced ventilation,
which is used to completely replace natural respiration by
controlling airflow. Key challenges include: (1) the need to
react to, and interact with, the human participant’s voluntary
motor control system, (2) the need for an entirely passive
system (air cannot be forced into a participant’s lungs for
safety reasons), and (3) the numerous constraints on the
system.

This paper develops the first control solution to assist
participants in tracking lung pressure profiles. The approach
employs a setup that is suitable for clinical deployment. Since
active approaches (e.g. forcing air into or out of the lungs) are
unfeasible, the approach is to control airflow from the tube by
adding a valve whose aperture is varied in real-time.

This research makes three novel contributions to airflow
control during forced exhalation: it develops

1 - a combined time-varying model of lung dynamics,

diaphragm contraction, voluntary motor control,
reaction delay, and valve resistance;

2 - a model identification procedure that determines

the model parameters, balancing accuracy whilst
maintaining fast computation;

3 - a model-based control approach that optimises future
performance by modifying valve position.

The latter is based on model predictive control (MPC), how-
ever it adjusts an internal parameter of the model (valve
aperture) rather than an input signal as is conventional. It also
embeds an internal valve control loop that addresses hysteresis
and dead-band. Note that preliminary results appeared in
[15] using a far simpler model, a restrictive identification
procedure, and no experimental results.

The paper is arranged as follows: Section II develops the
system model and summarises the constraints in order to yield
a comprehensive problem description. Section III derives an
optimal solution using the MPC framework. Sections IV and
V then describe the experimental test procedure and results
confirming efficacy. Conclusions are set out in Section VI.

II. PROBLEM DESCRIPTION

In this section the lung pressure profile tracking problem de-
scribed previously and shown in Fig. 2 is first formalised, and
then a model structure and problem description are developed.

During each clinical pressure tracking experiment, the target
pressure profile, 7(t), is displayed to the participant on a screen
from time ¢ = O up until the present time ¢. This screen also
shows the pressure measured in the breathing tube, P(¢). Each
test runs over the interval ¢ € [0,T], where T is the overall
duration. The target pressure is higher than ambient pressure,
so the participant must always be exhaling. The only means of
assisting tracking is by replacing the cap of the breathing tube
(Fig. 1), by a controlled valve which uses its position, V' (t),
to adjust airflow out of the tube. The aim of this work is to
control V (t) such that P () tracks r(t) as closely as possible.

A. Forced Respiration Dynamics

During natural respiration the diaphragm/intercostal mus-
cles contract to inhale air through the trachea/bronchi and into
the lungs. Gaseous exchange of oxygen and carbon dioxide
occurs between the alveoli and surrounding blood vessels
before the muscles relax and air is exhaled. Models of natural
respiration comprise gas exchange and all the elements of
human respiratory control (chemoreceptors, neuronal circuits
in the brain which generate respiratory rhythm, and the res-
piratory muscles) [16]. However, the development of control
approaches has hitherto been limited and focuses on medical
ventilators, which employ far simpler models of the passive
interaction between airway pressure and alveoli airflow [17]-
[23]. These models represent the major compliance, resistance
and inertance components as lumped parameters. An electrical
analogue is typically employed where - pressure (P) = voltage
(V); airflow (Q) = current; compliance (C') = capacitance
(C); inertance (L) = inductance (L).

The current application differs fundamentally from those
above since the aim is to assist the participant’s voluntary
motor control of respiration rather than replace it. Instead
of using a controlled ventilation pump, the pressure must be
generated by the participant themselves. To model this means
the conventional lumped parameter representation of passive
lung dynamics must be:



(a) extended to include a breathing tube housing a variable
resistance valve;

(b) augmented by the action of diaphragm/intercostal
muscles controlled by the participant’s voluntary motor
feedback of the tracking task;

(c) able to handle hard constraints such as maximum and
minimum resistances and the pressure/volume limits
imposed by forced exhalation.

Fig. 3 shows an electrical analogue model of the lungs, in
which air inertance is denoted L, airway resistance R, and
lung compliance C,. This lumped parameter form has been

Fig. 3. Left - Lung model showing air inertance L, airway resistance R, valve
resistance V' and lung compliance C|,. Right - equivalent electrical analogue.

chosen due to its success for ventilator design, however in
the proceeding analysis R, C, and L can be replaced with
more detailed representations of airway branching. To address
point (a), variable valve resistance is included in the form of
variable resistor, V'(¢). Here laminar flow is assumed, so that
the Hagen-Poiseuille equation enables valve resistance V' (¢) to
be related directly to the valve aperture (which is the controlled
variable). Voltage P(t) is the pressure difference (cmH>0)
measured across the valve, and corresponds to the pressure at
the entrance to the participant’s airway. The airflow rate out
of the lungs/tube corresponds to the current Q(t).

To incorporate point (b), the pressure source signal P;(t)
has been added to represent the effect of respiratory muscle
movement (cmH5O) under the participant’s voluntary control
(i.e. the pressure in the lungs). To determine how Pj(¢) is
generated, there are a variety of models of voluntary human
sensorimotor control available (see, e.g. [24]), and the most
general form comprises a feedback component, together with
a feed-forward predictive planning component. Combining this
form with the above model yields the overall airway tracking
system shown in Fig. 4. Here operator G comprises the
respiratory tract and breathing apparatus depicted in Fig. 3, the
diaphragm/intercostal muscle control dynamics are represented
by operator K, and the motor control return loop feedback by
operator H. The feed-forward planning component is denoted
by operator F', and the pressure reference is r(t).

To address point (c) it is necessary to specify several
constraints: Limits on the maximum airway pressure, P(t),
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Fig. 4. Voluntary pressure reference tracking system with valve resistance V.

and the total exhaled volume (vital capacity) ftho Q(t) are
necessary to ensure that the participant does not overexert
themselves during pressure profiling. A maximum resistance
Vinax ensures the glottis can remain open throughout measure-
ment, and a minimum resistance V,,;,, is a physical apparatus
limitation. A minimum profile length of 7' = 20 seconds aligns
with TMD measurement profiles.

The overall system description can now be stated:

Definition 1 (System Description): The assistive pressure
tracking system takes the form of Fig. 4 where operators K
and H model voluntary sensorimotor control of the diaphragm
and intercostal muscles with LTI discrete time dynamics
represented by the state-space quadruples (Ak, Bx,Ck, Dk )
and (Ap, By, Cph, D) respectively. Operator F' models the
feed-forward, predictive component of sensorimotor control
by the state-space quadruple (Ap, Bp, Cr, D). The assisted
respiration dynamics G, (P;,V) — P are shown in Fig.
3, where valve resistance V' is a controlled parameter. The
dynamics of G can be represented by the LTV continuous
time state-space system
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so that discretisation with sample period T yields the discrete
time state-space system
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where subscript £ denotes the sample number, ie. V;, =

V(kTs) and N = T/Ts. The composite G and K dynamics

e — y can then be written as the discrete time state-space
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which then enable the closed loop system 7y +— P to be
represented as the state-space triple Ay (Vy) =

Akc(Vi) = Bke(Vi)DuCra(Vi), —Bra(Vi)Cr
BuCra (Vi) Ang

Ba) = | P4 |, cut) = [ i) 0]
@

Incorporating F' then means the overall system r — P can be
represented by the system

Tht1 = { Ar 0 ] Tk + [ Br ] Tk
Ba(Vk)Cr  Aa(Vi) B(Vk)Dr
A(Vi) B(Vk)
Pk:[O C’Cl(Vk)}xk, k=1,---,N, 29=10
C(Vk)
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Having defined the voluntary pressure reference tracking
system dynamics, the control problem can now be stated.

Definition 2 (Valve Assistance Problem): Consider the sys-
tem shown in Fig. 4 with discrete state-space matrices (5)
running over samples k = 1,2,--- , N. The control problem
is to select the sequence of valve resistance values V =
(V1,Va,- -+, Vi) such that the error 2-norm is minimised, i.e.

N
argmin J(V), J(V):= Z(Tl — P)2. (6)

=1

subject to dynamics (5) and constraints

OSPkSPmaz7 (73)
Vinin < Vi < Vmaza k= 1; T 7N (7b)
N
Z Qr < wc (7¢)
k=0
N=T/Ts, T > 20 seconds (7d)

where @y is the airflow at time step k, given by Qx = Pi/Vi
and vc is the vital capacity.

The Valve Assistance Problem is fundamentally different to
a conventional control problem since it involves changing a
parameter within the plant dynamics (i.e. the valve resistance
Vi) on every sample, rather than a control signal input. To
select an appropriate approach, control structures used in
existing respiratory applications are reviewed in Section III.

B. Identification

The system parameters within (1)-(5) must be identified
using a test procedure suitable for clinical application. Pre-
liminary research solved this problem for a restrictive form
of external disturbance [15], however a general procedure
is now proposed that removes assumptions on the system
disturbances.

Definition 3 (Identification Problem): Consider the time-
varying discrete closed loop system shown in Fig. 4 with
components (1)-(5). Given a set of sampled experimental
input-output data {Fi,Pi}i:17...7 ~, and corresponding valve

resistance sequence V = (f/h Vo, oo 7f/N), the identification
problem is to compute the parameter vector 0 containing all the
unknown parameters within K, GG, and H. This corresponds
to the minimisation problem

N
min » (P — P;)” (8)
-
where 6 contains all unknown coefficients of F', K, GG, and H,
subject to dynamics (1)-(5) with input 7 and valve sequence
vector V.

III. MODEL PREDICTIVE VALVE CONTROL (MPVC)

Controllers for respiration have focused on medical ven-
tilation, where they replace natural breathing. This means
they neglect voluntary muscle and motor control processes,
and their aim is solely to adjust flow rates and pressures
to supply adequate gas exchange in a physiologically safe
manner and in the presence of system constraints. In particular,
proportional, integral and derivative (PID) control has provided
a rapid response, but lacks accuracy [19], [21], [25]. Fuzzy
adaptive algorithms [21] and iterative learning control [25]
have both been implemented in conjunction with PID for
medical ventilation to improve performance. Machine learning
has been used to set ventilator categories based on patient
conditions, however it requires substantial data and training
[26]. MPC was applied to medical ventilation in [16], where
it adjusted the minute volume ventilation to track a minute
volume reference. It handled hard constraints on minute vol-
ume while still providing close to optimal support for patient
breathing activity.

The above controllers cannot be directly applied to the Valve
Assistance Problem (Definition 2) directly since it does not
take a typical structure. However, they motivate applying MPC
in an alternative form. The fact that this is a parameter time-
varying varying problem does not pose undue difficulty, as the
system can be reformulated in a straightforward manner. MPC
operates by dividing the measurement period, N, into smaller
predictive horizons in order to reduce computation. However,
here the maximum volume constraint (7c) affects the entire
measurement period, meaning that the finite horizon solution
may be highly non-optimal (e.g. causing the participant to
quickly run out of breath). To ensure an excessive flow is not
exhaled at an early stage, this constraint will be implemented
by adding a term to the cost to encourage conservation
of breath. To reduce computational load, the set of valve
resistances will also be reduced to a discrete set, V. This gives
rise to the following solution:

Definition 4 (Model Predictive Valve Control (MPVC)):
The Valve Assistance Problem (6) with constraints (7) is
solved by computing the sequence of valve resistances V =

(V1,Va, -+, V) that minimise finite horizon cost function
N
argmin J(V), J(V) := Z(n — P)*®; + (Vipaw — Vi)V,

i=1
)
where ®; and W, are positive definite and semi-definite
weights respectively. This is subject to dynamics (1)-(5), and



the constraint that V; is taken from a set of pre-defined valve
resistances, i.e.
‘/ieva V:{UIMUZu"' Vmingvigvmamv
(10)

7vn}7

and the remaining constraint (7a).
To solve (9), MPVC replaces it with the receding horizon
approximation (i.e. stage cost)

k+m
argmin J(Vi), J(Vi) := > (ri = P,)*®; + (Vinaa — Vi)*

i=k (1 1)
subject to dynamics (1)-(5) and constraints (7a), (10). This is
computed at each sample k. Here m is the prediction horizon,
and the stage valve resistance sequence on sample k is V; =
(Vi, Vi1, -+, Vi )- The first element of V. is then applied:
Vi = [1 0 --- 0]V,. The overall MPVC system is shown in
Fig. 5.
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Fig. 5. Block diagram of the MPVC system where r is the pressure profile
input and Z is the estimated plant state.

Computing cost function (11) requires the current state xy
within system (5). This is not measurable, but an approxima-
tion, 1, can be computed using the time-varying Extended
Kalman Filter system [27], given by

M, = SpCT (Vi) (C(Vi)SkCT (Vi
T = & + My (yr — C (Vi) ),

W)+ )7

S = (I = MpC(Vy))Sk, (12)
i‘k+1 = A(Vk)fk; + B(Vk)rk,
Sk1 = A(Vi)Sk AT (Vi) + B(Vi)up BT (Vi)
with initial values £o = 0 and Sy = By, upBsz. Here

Mj, is the Kalman gain matrix, S}, is the state error covariance
matrix, \,, is the measurement noise covariance matrix, and
p 1s the process noise covariance matrix.

Solving (11), subject to (5), (7) and V;, € V, on each sample
k is a non-convex problem and can be addressed using an
exhaustive search or via specialist solvers such as non-linear
or integer programming.

To apply these solvers, note that cost (11) can be written in
matrix form as

where Fk = [T‘k_, Tht1s " Tk+m]T, ﬁk =
LPk:7Pk+la"' aPk-i-m]—Ea Vmaw = [Vmaza"' ;Vmam]—ry
= diag{®,--- ,®}, ¥ = diag{¥,--- , ¥}, and
Py, =T(Vi)Fe + E(Vi) 2 (13)
with
0 0 0 0
~(1,0) 0 0 0
r(Ve) = | 720 (@21 0 0
7(m7 0) V(ma 1) ’Y(ma m — 1) 0
where
v(a,b) := C(Vita) A(Vira—1) X -+ X A(Vierp41) B(Viets)
and

§(a) = C(Vita) AVita—1) - A(Vi).

A. Comparative Control Methods

MPVC provides a highly accurate solution to the Valve
Assistance Problem (Definition 2), however simpler methods
may also provide potential solutions. Based on the review in
Section III, traditional controllers cannot be directly applied
to this parameter control problem, since the controller is
adjusting an internal parameter of the system (V) rather
than an input signal. However, they motivate simple structure
approaches such as PID. To establish its applicability, consider
the dynamics shown in Fig. 3

Pt) = %i)ﬂzﬂw +Oi/Q(t) (14)
P(t) = Q(t)V(t) (15)

which, assuming the rate of change of airflow is small,

simplify to
o

R+V()

around an operating point a = P, — C% J Q(t). Since a and R
are positive, the dynamics V' (t) — P(t) comprise a smooth,
monotonically increasing function that passes through (0, 0),
with an amplitude that depends on the flow volume. This
monotone relationship suggests that a PID type control action
would effectively reduce the error e;, = r;— P. This motivates
implementing a proportional controller of the form

Vk = Veo — Kpcek

@)/V(t)+PE)  (16)

= P(t) = (17)

(18)

where V., is a resistance offset that moves the system to a
pressure operating point concurrent to the r operating point.
K, is set such that constraint (7b) is adhered to. A drawback
to proportional control is possible valve resistance oscillation
due to rapid pressure changes. Large pressure drops may
also cause a significant drop in valve resistance creating a
high airflow, causing the participant to run out of air in their



lungs more quickly. These issues can be addressed using
integral control, which amalgamates valve resistance over time
depending on error ey, taking the form

k
Vi=Ve, —Ki, > e

i=Kec

19)

with limits V,,,;,, and Vi,,4.. Here K;_ is the integral coefficient
of the error and k.. is the time when the error most recently
changed sign.

B. Valve Control System

In the preceding sections it has been assumed that the valve
resistance, Vj, can be directly set at each time instant k by
the controller. However, in reality, the controlled variable is a
pulse-width modulation (PWM) duty cycle sent to the valve,
which affects the airflow through the valve (thus the valve
resistance) in the following indirect manner:

« The PWM signal, p, dictates the magnitude of a propor-
tional current (gain x) that is applied to the valve;

« the resultant current, xkp, changes the flow coefficient,
K, of the valve by actuating the valve position. These
two variables are related by a static nonlinear function,
K, = n(kp), which includes hysteresis;

o The value of K, relates the pressure and flow via K, =

Q/VP.

A resistance-tuning controller is therefore needed to con-
tinually adjust the PWM duty cycle signal p such that the
required valve resistance, Vj, is achieved. This is done by
measuring the pressure value Py, and computing the necessary
flow rate, denoted @), 1, that achieves V, at every sample. Then
a proportional control loop (gain K ) is applied to force Q)
to track this @, . The resulting controller is shown in Fig. 6.
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Fig. 6. Block diagram of the resistance-tuning controller

IV. EXPERIMENTAL APPLICATION

Fig. 7 shows the experimental setup. Compared to the
standard clinical setup shown in Fig. 1, the flextube has been
removed to reduce compliance (which is assumed zero in the
model). The modified system shown in Fig. 7 has retained the
mouthpiece, filter and pressure monitoring tube as in Figs.
1 and 2. An airflow sensor (Sensirion SFM3020 series) is
added to enable accurate resistance calculations and a variable
PWM valve (Burkert 6024 series (12mm)) is added to control
airflow resistance. The pressure sensor is a Panasonic PS-A
series (6KPa). The measurement hardware and software are
National Instruments myRIO-1900 series and Labview 2019
respectively. All identification, control design, and analysis
computations were performed in MATLAB R2020b.

Fig. 7. Breathing tube, pressure sensor, airflow sensor and variable valve used
to measure lung pressure

A. Procedure

During testing, all participants were seated in an upright
position and used the same equipment (apart from different
mouthpieces and filters) in a standardised position. Prior to
testing, the pressure and airflow sensors were calibrated by
placing them on a flat surface as shown in Fig. 7 and applying
an offset to produce zero readings.

B. Model Structure Selection

Since the tracking task is reactive (i.e. the pressure reference
is shown to the participant and they are required to immedi-
ately attain it), the planning component F' is set equal to a
perception delay of 0.2s, corresponding to the average human
response time to a sensory stimulus [28]. Based on established
models of human motor control [24] K and H are chosen to
realise a proportional-integral feedback controller (respective
gains K, and K;). An additional delay is incorporated into K
to account for the decision delay of 0.1s. This selection leads
to the forms:

0 0 0 1
0 : 0
Arp=10 1 |, Br= Y],
0 0 1 0 0
Cp=1[0 0 0 1] (20)
and
0 0 0 0]
1 0 1
0
AK: 0 1 7BK: 0 3
0o -~ 0 1 0 : 0
0o - e oo Ty o1
Cx =10 0 K, K. (21)

Accepted values of L fall between 0.001 and 0.01 and have
negligible effect on the tracking response thus will be omitted
from the G' dynamics.



Therefore the overall closed loop dynamics are given by
state-space system (5) with

00 - - 0 1{_+V‘I}k 1

Lo o e 0

0 1 :
AVp)=|: ~

S0 10

P 0 T, 1 0

0 0 K,T, KT, exp (ﬁ)
B(Vi) =t 0 0] eV =0 - 0 F]

(22)

Lung compliance, C, is set to 0.1 L/cmH5O as this value
accurately fits all subjects [22]. The search parameter vector
within (8) therefore becomes 6 = (R, K, K;).

C. Identification Data Collection

The next step is to capture the dynamics of the system using
the identification procedure in Section II-B. This requires that
the pressure sequences {7; };=1,... n and corresponding valve
resistance sequences {f/}izl .~ are sufficiently exciting
while minimal in number to be practically feasible.

This data set was constructed by amalgamating 24 separate
identification tests, each lasting at least 2 seconds. The first
set of 12 tests captured the participant’s response to a step
reduction in valve resistance, while they attempted to track
a constant reference pressure. The reference value 7;4, was
taken from the set {10, 20,30} with units cmH3O. The valve
was initially closed (V' = 00), and the participant was required
to reach the required value of r;4. Then the valve opened to
a specified resistance V4 taken from the set {20, 40, 60,80}
with units cmH>O/L/s. Measurements began and the partici-
pant was required to get the pressure back up to 7,4 as quickly
as possible (see Fig. 10).

The second set of 12 tests captured the participant’s re-
sponse to a step increase in pressure, starting at a pressure
of P =0 cmH5O. Once the valve opened, they had to reach
the reference pressure ;4 as quickly as possible and settle (see
Fig. 11). The tests were performed with the same combination
of references (r;4) and resistances (V;4) as the first procedure.

The 24 sets of data were then grouped according to the valve
resistance applied and the test. This produced eight groups
(two tests types, four resistance values of V4 each). For each
test and resistance level (i.e. eight groups mentioned above) the
data were normalised over the three reference pressures and
an average was taken. This produced eight data sets which are
used for identification purposes.

This normalisation is possible since the same change in Vj,
occurs at each pressure reference r, the dynamics (22) remain
the same thus superposition applies. Therefore the output can
be scaled by dividing by the pressure reference level. Taking
an average of each of the eight groups reduces the number of
sets used to compare against during identification.

The eight averaged data sets were combined to form the
overall sets {7;, P;}i=1,....n, {V }i=1,...,n. Then cost function
(8) was minimised over the search space of suitable parameters

fe{(R K, K;)|Re{1,2--,20},K, € {1,2,---,20},
K; €{0,1,---,20}}. (23)

To assess how closely the resulting model fitted a measured
data set {7, P,V'}, the percentage accuracy was computed as

N 5 2
(1 g Z<PP>> < 100 o
> PP
where P is the measured pressure, and P is the output of
model (1)-(5) with input {ﬁf/}. This will be termed the
fitting accuracy when using identification data, and prediction
accuracy when using any other data.

D. Control Application

The pressure and airflow sampling frequency was set at
100Hz (T = 0.01s) to match that of clinical TMD mea-
surements. Additionally, the valve regulator in Section III-B
also operated at 100Hz. In order for the control schemes to
be viable for use on low-cost hardware with the potential for
mass screening, the control cycle frequency was limited to
10Hz (7. = 0.1s). The prediction horizon for MPVC was
similarly limited to m = 5, i.e. the controller predicts the
model output up to 0.5 seconds ahead of the current time
instance. The number of possible valve resistance values was
limited to three to ensure computations were completed within
the sampling time.

Based on preliminary testing, the selected valve resistance
values were determined to comprise: a maximum value of
resistance which does not allow glottal closure, a value to
assist the participant in decreasing lung pressure, and a value
to release pressure. This resulted in the permissible set of valve
resistances V := {80,160,1000}. Solving the non-convex
MPVC problem (11) was then achieved by evaluating the stage
cost J for all |V|™ possible valve resistance sequences. The
controller then selects the lowest stage cost and applies the
first element of solution V.

Five control schemes were tested with each participant.
The first approach employed a constant valve resistance. This
replicates the resistance of the red cap in Fig. 1, and is
therefore the standard experimental approach. This is the
baseline approach to lung pressure profile tracking.

The second approach was the discrete integral controller
presented in Section III-A. This took the form (19) but the
gains V., and K; were adapted such that

Vi1 —20, ep <=2,
Vi = ¢ 160, —2<e, <2,
Vi1 +20, e > 2.



The third approach was the discrete proportional controller
(18), whose gains V,,, and K,  were adapted such that

2, ep < —10,
40,  —10<ep < -8,
60, —8<ep< -5,

Vi = 80, -5 <er < -3,
160, -3 <ex <5,
300, 5 < ey <10,
1000, e; > 10.

The choice of gains effectively limits the control action to
prevent valve oscillation or high airflow.

The fourth and fifth approaches use MPVC with different
Kalman Filter covariance scalar parameters, A, and j,, within
(12). As the ratio p, /A, increases, the process noise assumes
more variance compared to the measurement noise. This has
the effect of placing more reliance on the measurement data
compared to the model in computing the estimated state. Mod-
ifying the ratio has a significant effect on the overall control
action. Both MPVC control approaches used a covariance of
A = 1. However, the fourth and fifth control approaches use
tp = 0.1 and p,, = 1 respectively.

E. Pressure Profiles

Participants were required to perform 30 pressure tracking
tests in total. These comprised six pressure profiles (cmH50),
each repeated five times (each with a different controller). The
six profiles were each composed of steps. Each step size was
a multiple of a fixed amplitude Ar, and had a duration of 3
seconds. The profile had to be constrained within an overall
pressure range. The parameters used to construct each profile
type are as follows:

a) 10<r<30,Ar=5
b) 10 <r <30, Ar =10
c) 10 <r <40, Ar =5
d) 10 <r <40, Ar =10
e) 10<r <50, Ar =5
) 10 <r <50, Ar =10

The step sizes were randomised so that participants could
not predict them. Similarly, the order of the controllers was
randomised to provide an unbiased assessment of the ability
of each. Fig. 8 shows an example of a participant’s response
to a pressure profile.

Two safety protocols were employed to identify the lung
vital capacity and pressure constraints in (7). The vital capacity
was measured for each participant 3 times and an average was
taken. The limit v, was then set around 1 litre less than their
vital capacity. The experiment was stopped immediately this
limit was reached. Participants were also asked to exhale until
they reached a maximum pressure they felt was exerting but
still comfortable. Eight of the ten participants were comfort-
able generating a pressure above 50 cmH>O, the other two
participants generated maximums of 40 and 45 cmH,O. In
these cases the pressure profile ranges were 5-25, 10-30, and
5-35 cmH>0 and 10-30, 5-35, and 10-40 cmH>O respectively.
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Fig. 8. Example tracking response (profile type (e)) with constant valve
resistance. Black points represent the first point where the reference has been
reached after a step change. Green points represent peak overshoot/undershoot.

V. RESULTS

Following University of Southampton ethics approval
(ERGO/FPSE/62619), 10 healthy participants (7 men and 3
women, age range 20-56) with no underlying health conditions
were recruited onto this study. The participants will be referred
to as P1-P10.

A. Model Identification

Each participant completed the identification and control
tests described in Section IV. Figs. 10 and 11 show an example
of the measured tracking responses and the model tracking
responses for the two types of identification test.

Fig. 9 presents the model identification results in the form
of box and whisker plots showing the data fitting accuracy
for each participant. Three measures of model fitting accuracy
(MFA) are shown:

MFAL: Fitting accuracy of the model to the averaged
identification data (8 data sets, 2 second measurement
period, see Section IV-C)

MFA2: Prediction accuracy of the model to all
identification data (24 data sets, 2 second measurement
period)

MFA3: Prediction accuracy of the model to all control data
(30 data sets, 10-50 second measurement period)

For MFA1, the average of the medians, means, and IQRs
over all participants are 92.3%, 91.8%, and 4.0% respectively.
This shows that the participants had good consistency after
a short practice period, it also shows that the model and
identification process is effective for practical use. MFAI is
highest as these data were used to identify the model.

For MFA2, the combined average of the medians, means
and IQRs over all participants are 87.6%, 87.0% and 6.8%
respectively. This not only shows that the model is accurate
but also that the participants are relatively consistent in their
pressure reference tracking and response to specific resistance
changes.

MFA3 measures the model accuracy during the participants’
controlled tracking results. Fig. 12 shows the same data as in
Fig. 8 but with the predicted output of the identified model
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TABLE I
TABLE OF MEDIANS AND MEANS FROM THE METRICS IN FIGS. 14-18

Control Combined Statistical Data
Method Average Airflow (L/s) 2-error norm Fall Time (s) Rise/Fall 2-error norm | Abs. Prop. Over/undershoot
Median Mean Median Mean Median Mean Median Mean Median Mean
Constant Resistance 0.1307 0.1378 0.2730  0.2677 | 0.6600  0.7301 0.3791 0.5155 0.2285 0.3596
Proportional-Integral 0.0988 0.1007 0.2647  0.2681 0.6400  0.6620 | 0.3999 0.5364 0.2340 0.3765
Proportional 0.14838 0.1543 0.2347  0.2395 | 0.5500 0.6204 | 0.3355 0.4378 0.2400 0.3445
MPVC 1 0.0471 0.0498 0.2130  0.2260 | 0.5200 0.5660 | 0.3115 0.4277 0.1935 0.3073
MPVC 2 0.0495 0.0512 0.2251  0.2259 | 0.5600 0.6088 | 0.3168 0.4309 0.1780 0.2729
TABLE 11
TABLE OF RANGES AND NUMBER OF DATA POINTS, WITH OUTLIERS IN BRACKETS, FROM THE METRICS IN FIGS. 14-18
Control Combined Statistical Data
Method Average Airflow (L/s) [ error 2-norm [ Fall Time (s) [ Rise/Fall 2-error norm [ Abs. Prop. Over/undershoot
Range
Constant Resistance 0.0530-0.2368 0.1320-0.4641 0-2.55 0.0110-3.0386 0-2.3860
Proportional-Integral 0.0339-0.2189 0.1656-0.4206 0-2.63 0.0106-3.1497 0.0003-4.9780
Proportional 0.0656-0.2886 0.1351-0.3607 0-2.55 0.0020-1.4428 0.0023-2.5640
MPVC 1 0.0176-0.1026 0.1466-0.3636 0-1.71 0.0081-3.2357 0-2.5720
MPVC 2 0.0172-0.0838 0.1089-0.3435 0-1.87 0.0022-2.2928 0.0015-3.3800
Number of Data Points
Constant Resistance 60(0) 60(3) 151(15) 422(18) 422(24)
Proportional-Integral 60(0) 60(0) 187(16) 461(21) 461(30)
Proportional 60(2) 60(0) 143(13) 384(11) 384(17)
MPVC 1 60(1) 60(0) 200(11) 506(23) 506(27)
MPVC 2 60(0) 60(0) 197(14) 517(25) 517(31)

overlaid in blue. The combined average of the medians, means
and IQRs over all participants are 84.9%, 84.6% and 5.3%
respectively. This further confirms the validity of the model
and identification procedure.

B. Control

The following metrics were computed for each profile
tracking test: average airflow; 2-norm of profile tracking error;
time taken to reach the profile pressure after a step down
(labelled ‘fall time’); 2-norm of profile tracking error after a
step up or step down; absolute value of overshoot/undershoot

to a step change in proportion to the magnitude of the step
change. These metrics are defined in more detail below.

Figs. 14 - 18 show box and whisker plots of each metric.
Each box and whisker corresponds to the pooled data from all
participants for a particular control type and is labelled on the
plots as follows:

1) Constant valve resistance
2) Proportional-integral (PI)
3) Proportional

4) MPVC with Kalman parameters A, =
5) MPVC with Kalman parameters A,

1, pp = 0.1
1, pup = 1.
As previously described, Control Type 1 (constant valve resis-
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Fig. 11. Sample tracking response of second identification procedure (r;q =
10, Viq = 60)

tance) is the baseline approach against which Control Types
2-5 are compared below.

Table I shows the medians and means and Table II presents
the ranges and number of data points from Figs. 14-18. In
Table I, the highlighted values are the most desirable values.

To ensure the vital capacity constraint (7c) and time con-
straint (7d) are both met, average airflow must be less than
0.15 L/s (assuming a minimum vital capacity of 3 litres). PI
control shows a small reduction in airflow, proportional control
shows a slight increase and both MPVC approaches show a
significant decrease as well as a smaller range. Lower average
airflow corresponds to longer measurement periods, therefore
MPVC is the best approach for this metric, providing a 64%
decrease in average airflow.

The 2-norm of the tracking error indicates how well the
participants track the profile; the lower the 2-norm, the better
the tracking. PI control shows similar levels of tracking error to
the constant valve resistance case, but both proportional and
MPVC show a reduction in tracking error with the greatest
reduction of 22% shown in MPVC 1.

Fall time refers to the time it takes for a participant to reach
the new pressure reference value after a step-down change (e.g.
black points in Fig. 8). PI control shows a similar fall time to
constant valve resistance, proportional and MPVC 2 show a
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Fig. 12. Sample tracking response with constant valve resistance (Fig. 8,
profile type (e)) with predicted model output overlaid
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Fig. 13. Sample tracking response with MPVC assistance (profile type (e))

significant decrease by about 0.1s, while MPVC 1 shows the
biggest improvement with a decrease of 0.15s (22% reduction).

The 2-norm of the rise/fall error refers to the 2-norm
tracking error in the time window between a step change
in reference and when the pressure reference is reached (i.e.
same time window as rise/fall time). PI control shows an
increase in the error, whilst proportional control and both
MPVC approaches decrease the error. MPVC 1 shows the most
significant reduction (18%) in rise/fall error.

Absolute proportional overshoot/undershoot refers to the
maximum error between profile and measured pressure for one
second after the reference has initially been reached (green
points in Fig. 8). PI and proportional control show a similar
overshoot/undershoot metric while both MPVC approaches
show a reduction with MPVC 2 showing the greatest reduction
(24%).

VI. DISCUSSION

The high median and mean values of MFA1-3 show that
the model and the identification process can accurately model
the healthy adult human response to pressure profiles whilst
maintaining simplicity in design and efficiency in identifica-
tion.

Inspection of the data revealed that most of the percentage
accuracies below 75% were associated with reaction time (the
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combined perception and decision delays discussed in Section
IV-B) to a step increase in the reference pofile. The model
assumed a 0.3 second reaction time, and although most of
the reaction delays were between 0.25 and 0.35, some were
longer than 0.45 seconds. These longer reactions create a large
error between measured and predicted output thus significantly
reducing the prediction accuracy (e.g. see red crosses for
P5 MFA3 and P7/P8 MFA2). This is an issue that can be
easily resolved in future work by adding these delays into the
identification process. These were not included in this work
as the computational load would have been greatly increased,
thus extending the identification time making it impractical
with current hardware.

Across all metrics shown in Figs. 14-18, MPVC demon-
strates a clear improvement in performance and tracking error
over the existing clinical approach or use of proportional
or PI control. Most significantly, it reduces the 2-norm of
the tracking error by 22% and the absolute proportional
overshoot/undershoot by 24%. This shows that the accuracy
of the participants tracking ability both across the profile
and in pressure changes is notably improved with assistance
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control type

from MPVC. This confirms that the model, identification, and
control method could be a viable approach to assist lung
pressure profile tracking during TMD measurements.

An additional aspect to this study was the usability of the
setup. The prevailing feedback received from the participants
after testing was that with initial instructions the setup was
easy to use and they understood what to do; they were mostly
able to perform the intended actions (except those mentioned
in Section IV-E); they found it easier to attain pressures
(particularly higher pressures) with MPVC. This shows that
the new setup and MPVC are successful both from a technical
perspective as well as patient experience perspective.

VII. CONCLUSIONS AND FUTURE WORK

Control of lung and airway pressure is a crucial component
of research into ICP. It is needed for development of improved
non-invasive measurement and diagnostic approaches to brain
pathologies. This paper has presented the first control approach
to assist airway pressure tracking. This employs a novel form
of MPC which manipulates an internal parameter of a model
rather than a control input. It controls the airflow out of a hand-
held clinical breathing setup, via actuation of an integrated



— i £ :
- ] I B T
S 1 I ! ! + T .
2 : | : . ¥
g | | | | i

! 1
Zos | : : i
= : : | | |
3] 1 | ! I I
= I ] : I 1
O 06 1 1 | I : )
Té ! 1 ! | |

I 1

g i I
= 0.4 r ! 7
=] x X 1
g : x
= x
-9
2 02¢ 1
=
=3 T T
z ] I i [ T
< 0 1 1 — —1 -1 4

1 2 3 4 5

Control Type
Fig. 18. Box and whisker of combined absolute proportional over-

shoot/undershoot data for each control type

valve, during lung pressure profile tracking. Results show that
controlling airflow improves profile tracking by 22% compared
to the original setup (Fig. 1). MPVC provides improved
assistance across all metrics compared to the baseline and
model-free control methods. MPVC was also accepted by
participants in terms of usability.

This demonstrates that MPVC has a strong foundation and
future work will validate its use in a clinical setting. Given the
constraint that pressure cannot be actively increased, future
work will focus on further reducing overshoot/undershoot
across a more diverse range of participants. If the average
value for proportional overshoot/undershoot could be reduced
to below 0.2, MPVC would be an appropriate method to be
applied, in a clinical setting, for lung pressure profiling along-
side TMD measurements. Mechanisms to achieve this include:
increasing the prediction horizon; increasing the number of
valve resistances; incorporating reaction/delays into the set
of identified parameters; and developing a multiple model
adaptive control strategy to automatically adjust the model
based on the reference pressure change.
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